WorldWideScience

Sample records for functionalized single wall

  1. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    Science.gov (United States)

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  2. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  3. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Zhao Xin; Chu, Bryan T T; Johnston, Colin; Sykes, John M; Grant, Patrick S; Ballesteros, Belen; Wang Weiliang

    2009-01-01

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H 2 SO 4 and the specific capacitance reached 155 and 77 F g -1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  4. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun

    2014-01-01

    V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers

  5. The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Chakraborty, Amit K; Coleman, Karl S; Dhanak, Vinod R

    2009-01-01

    Controlling the electronic structure of carbon nanotubes (CNTs) is of great importance to various CNT based applications. Herein the electronic fine structure of single-walled carbon nanotube films modified with 4-nitrophenyl groups, produced following reaction with 4-nitrobenzenediazonium tetrafluoroborate, was investigated for the first time. Various techniques such as x-ray and ultra-violet photoelectron spectroscopy, and near edge x-ray absorption fine structure studies were used to explore the electronic structure, and the results were compared with the measured electrical resistances. A reduction in number of the π electronic states in the valence band consistent with the increased resistance of the functionalized nanotube films was observed.

  6. Functionalized single walled carbon nanotubes as template for water storage device

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanjib; Taraphder, Srabani, E-mail: srabani@chem.iitkgp.ernet.in

    2016-11-10

    Single walled carbon nanotubes, endohedrally functionalized with a protonated/unprotonated carboxylic acid group, are examined as potential templates for water storage using classical molecular dynamics simulation studies. Following a spontaneous entry of water molecules into the core of model functionalized carbon nanotubes (FCNTs), a large fraction of water molecules are found to be trapped inside FCNTs of lengths 50 and 100 Å. Only water molecules near the two open ends of the nanotube are exchanged with the bulk solvent. The residence times of water molecules inside FCNTs are investigated by varying the length of the tube, the length of suspended functional group and the protonation state of the carboxylic acid group. Favorable energetic interactions between the functional group and water, assisted by a substantial gain in rotational entropy, are found to compensate for the entropy loss resulting from restricted translational diffusion of trapped water molecules.

  7. The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups

    International Nuclear Information System (INIS)

    Le Floch, Fabien; Thuaire, Aurelie; Simonato, Jean-Pierre; Bidan, Gerard

    2009-01-01

    We report the modification and characterization of single-walled carbon nanotubes (SWCNTs) in view of molecular sensing applications. We found that ultrasonicated SWCNTs present sticking properties that make them adhere on electrode surfaces. This allows excellent characterization of SWCNTs by cyclic voltammetry (CV) before and after chemical functionalization with diazonium salts bearing electroactive groups. Bare SWCNTs presented distinct invariant shapes in CV, used as control curves, in comparison with functionalized SWCNTs for which specific signatures corresponding to the presence of grafted molecules were identified. According to the electronic substituents in the para position of the diazonium salts, divergent behaviours were observed for the grafting reactions. Diazonium salts having electrowithdrawing groups could be grafted without electrochemical induction whereas those bearing electron donating groups required a cathodic potential to generate the formation of the radical species.

  8. The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Fabien; Thuaire, Aurelie; Simonato, Jean-Pierre [LITEN/DTNM/LCRE, CEA-Grenoble 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Bidan, Gerard [INAC/DIR, CEA-Grenoble 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)], E-mail: jean-pierre.simonato@cea.fr

    2009-04-08

    We report the modification and characterization of single-walled carbon nanotubes (SWCNTs) in view of molecular sensing applications. We found that ultrasonicated SWCNTs present sticking properties that make them adhere on electrode surfaces. This allows excellent characterization of SWCNTs by cyclic voltammetry (CV) before and after chemical functionalization with diazonium salts bearing electroactive groups. Bare SWCNTs presented distinct invariant shapes in CV, used as control curves, in comparison with functionalized SWCNTs for which specific signatures corresponding to the presence of grafted molecules were identified. According to the electronic substituents in the para position of the diazonium salts, divergent behaviours were observed for the grafting reactions. Diazonium salts having electrowithdrawing groups could be grafted without electrochemical induction whereas those bearing electron donating groups required a cathodic potential to generate the formation of the radical species.

  9. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    International Nuclear Information System (INIS)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I

    2011-01-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  10. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A V; Aseychev, A V; Kostevich, V A; Gusev, A A; Gusev, S A; Vlasova, I I, E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation)

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  11. Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves

    Directory of Open Access Journals (Sweden)

    Victor Mamane

    2014-04-01

    Full Text Available The effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula of the adsorbed/grafted functional groups was determined. According to thermogravimetric analysis coupled with mass spectrometry and Raman spectroscopy, the optimal functionalization level was reached after 5 min of reaction. Prolonged reaction times can lead to undesired reactions such as defunctionalization, solvent addition and polymerization of the grafted functions. The strength (chemi- vs physisorption of the bonds between the grafted functional groups and the SWNTs is discussed showing the occurrence of physical adsorption as a consequence of defunctionalization after 15 min of reaction under microwaves. Several chemical mechanisms of grafting could be identified, and it was possible to distinguish conditions leading to the desired chemical grafting from those leading to undesired reactions such as physisorption and polymerization.

  12. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  13. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili; Abdurahman, Ayjamal; Gü lseren, Oğuz; Schwingenschlö gl, Udo

    2014-01-01

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  14. Ab initio study of F- and Cl-functionalized single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Pan, H; Feng, Y P; Lin, J Y

    2006-01-01

    First-principles calculations were carried out to study the functionalization of single wall carbon nanotubes by the chemical absorption of F and Cl atoms. Our results confirmed that the band gap of semiconductor zigzag carbon nanotubes is reduced on addition of F or Cl atoms on the walls of the nanotubes. For metallic armchair nanotubes, the doubly degenerate states crossing the Fermi level were separated by the introduction of F or Cl atoms. An additional energy level emerged near the Fermi level, due to coupling between the carbon nanotube and the F or Cl atom. For zigzag nanotubes, charge transfers of 0.27e from the tube to the Cl atom and of 0.41e to the F atom took place, while for armchair nanotubes, the charge transfers from the nanotube to Cl and F are 0.25 and 0.42e, respectively. The Cl-C and F-C bond lengths were found to be 2.09 and 1.49 A, respectively. The systems show semiconducting behaviour when charged with one electron per halogen atom, but remain metallic under hole injection, regardless of the chirality of the carbon nanotubes

  15. Selective detection of SO2 at room temperature based on organoplatinum functionalized single-walled carbon nanotube field effect transistors

    NARCIS (Netherlands)

    Cid, C.C.; Jimenez-Cadena, G.; Riu, J.; Maroto, A.; Rius, F.X.; Batema, G.D.; van Koten, G.

    2009-01-01

    We report a field effect transistor (FET) based on a network of single-walled carbon nanotubes (SWCNTs) that for the first time can selectively detect a single gaseous molecule in air by chemically functionalizing the SWCNTs with a selective molecular receptor. As a target model we used SO2. The

  16. Strategic Functionalization of Single Walled Carbon Nanotubes to Manipulate Their Electronic and Optical Properties

    Science.gov (United States)

    Gifford, Brendan Joel

    Single-walled carbon nanotubes (SWCNTs) are unique materials that exhibit chirality-specific properties due to their one-dimensional confinement. As a result, they are explored for a wide range of applications including single-photon sources in communications devices. Despite progress in this area, SWCNTs still suffer from a relatively narrow range of energies of emission features that fall short of the 1500 nm desired for long-distance lossless data transfer. One approach that is frequently used to resolve this involves chemical functionalization with aryl groups. However, this approach is met with a number of fundamental issues. First, chirality-specific SWCNTs must be acquired for subsequent functionalization. Synthesis of such samples has thus far eluded experimental efforts. As such, post-synthetic non-covalent functionalization is required to break bundles and create disperse SWCNTs that can undergo further separation, processing, and functionalization. Second, a number of low-energy emission features are introduced upon functionalization across a 200 nm range. The origin of such diverse emission features remains unknown. The research presented here focuses on computationally addressing these issues. A series of polyfluorene polymers possessing sidechains of varying length are explored using molecular mechanics to determine the impact of alkyl sidechains on SWCNT-conjugated polymer interaction strength and morphology. Additionally, density functional theory (DFT) and linear-response time-dependent DFT (TDDFT) are used to explore the effect of functionalization on emission features. A prerequisite to these calculations involves constructing finite-length SWCNT systems with similar electronic structure to their infinite counterparts: a methodological approach for the formation of such systems is presented. The optical features for aryl-functionalized SWCNTs are then explored. It is shown that the predominant effect on the energies of emission features involves

  17. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol

    2014-06-23

    A difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.6 eV. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers was more effective in donating electrons to SWNTs than closed cage structured [Ca24Al28O64] 4+·4e- due to the higher electron concentration (1.3 × 1022 cm-3) and mobility (∼200 cm 2 V-1 s-1 at RT). A non-covalent conjugation enhanced near-infrared fluorescence of SWNTs as high as 52%. The field emission current density of electride-SWNT-silver paste dramatically increased by a factor of 46000 (14.8 mA cm-2) at 2 V μm-1 (3.5 wt% [Ca2N]+·e-) with a turn-on voltage of 0.85 V μm-1. This journal is © the Partner Organisations 2014.

  18. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.

    Science.gov (United States)

    Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil

    2017-09-25

    Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Jung, E-mail: pejtoxic@hanmail.net [Myunggok Eye Research Institute, Konyang University, Daejeon 302-718 (Korea, Republic of); Hong, Young-Shick [Division of Food and Nutrition, Chonnam National University, Yongbong-Ro, Buk-Gu, Gwangju 500-757 (Korea, Republic of); Lee, Byoung-Seok [Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon (Korea, Republic of); Yoon, Cheolho [Seoul Center, Korea Basic Science Institute, Seoul 126-16 (Korea, Republic of); Jeong, Uiseok; Kim, Younghun [Department of Chemical Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    2016-07-15

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200 μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200 μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. - Highlights: • We evaluated local and systemic health effects following persistence of SWCNTs. • SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation. • Th1-polarized immune response was induced in the lung. • The expression of antigen presentation-related proteins was altered. • Immune and metabolic regulation function were disturbed.

  20. A density functional study of nitrogen adsorption in single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Jie; Wang Yao; Li Wenjun; Wei Fei; Yu Yangxin

    2007-01-01

    An understanding of the adsorption behaviour of nitrogen in single-wall carbon nanotubes (SWCNTs) is necessary for obtaining information on its pores by nitrogen adsorption manometry. Non-local density functional theory was used to simulate nitrogen adsorption behaviour, including the adsorption isotherms, equilibrium density profiles and potential energy of the nitrogen molecules at 77 K, inside SWCNTs with diameters ranging from 0.696 to 3.001 nm. With increasing diameter, nitrogen adsorption changes from continuous filling in one dimension to a two-stage adsorption that corresponds to monolayer formation followed by multilayer condensation. The average density of the adsorbed nitrogen and the density profiles, especially in small diameter SWCNTs, were used to analyse the adsorbate phase at the saturation pressure. The results indicate that the type of pore filling depends primarily on the ratio of the SWCNT diameter to the adsorbate molecular diameter. The filling of SWCNTs is not a simple capillary condensation process, but is dominated by geometrical limitation

  1. High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection

    Science.gov (United States)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.

    2016-12-01

    We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.

  2. Copper hexacyanoferrate functionalized single-walled carbon nano-tubes for selective cesium extraction

    International Nuclear Information System (INIS)

    Draouil, H.; Alvarez, L.; Bantignies, J.L.; Causse, J.; Cambedouzou, J.; Flaud, V.; Zaibi, M.A.; Oueslati, M.

    2017-01-01

    Single-walled carbon nano-tubes (SWCNTs) are functionalized with copper hexacyanoferrate (CuHCF) nanoparticles to prepare solid substrates for sorption of cesium ions (Cs + ) from liquid outflows. The high mechanical resistance and large electrical conductivity of SWCNTs are associated with the ability of CuHCF nanoparticles to selectively complex Cs + ions in order to achieve membrane-like buckypapers presenting high loading capacity of cesium. The materials are thoroughly characterized using electron microscopy, Raman scattering, X-ray photoelectron spectroscopy and thermogravimetric analyses. Cs sorption isotherms are plotted after having measured the Cs + concentration by liquid phase ionic chromatography in the solution before and after exposure to the materials. It is found that the total sorption capacity of the material reaches 230 mg.g -1 , and that about one third of the sorbed Cs (80 mg.g -1 ) is selectively complexed in the CuHCF nanoparticles grafted on SWCNTs. The quantification of Cs + ions on different sorption sites is made for the first time, and the high sorption rates open interesting outlooks in the integration of such materials in devices for the controlled sorption and desorption of these ions. (authors)

  3. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    Science.gov (United States)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  4. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  5. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes.

    Science.gov (United States)

    Tromp, R M; Afzali, A; Freitag, M; Mitzi, D B; Chen, Zh

    2008-02-01

    The problem of separating single-wall carbon nanotubes (CNTs) by diameter and/or chirality is one of the greatest impediments toward the widespread application of these promising materials in nanoelectronics. In this paper, we describe a novel physical-chemical method for diameter-selective CNT separation that is both simple and effective and that allows up-scaling to large volumes at modest cost. Separation is based on size-selective noncovalent matching of an appropriate anchor molecule to the wall of the CNT, enabling suspension of the CNTs in solvents in which they would otherwise not be soluble. We demonstrate size-selective separation in the 1-2 nm diameter range using easily synthesized oligo-acene adducts as a diameter-selective molecular anchor. CNT field effect transistors fabricated from diameter-selected CNTs show markedly improved electrical properties as compared to nonselected CNTs.

  6. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  7. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.; Al-Hadeethi, Yas Fadel; Bekyarova, Elena; Zhao, Chao; Wang, Qingxiao; Zhang, Xixiang; Al-Zahrani, Ali; Al-Agel, Faisal Abdulaziz M; Al-Marzouki, Fahad M.; Haddon, Robert C.

    2015-01-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  8. Structural profiling and biological performance of phospholipid-hyaluronan functionalized single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Dvash, Ram; Khatchatouriants, Artium; Solmesky, Leonardo J

    2013-01-01

    In spite of significant insolubility and toxicity, carbon nanotubes (CNTs) erupt into the biomedical research, and create an increasing interest in the field of nanomedicine. Single-walled CNTs (SWCNTs) are highly hydrophobic and have been shown to be toxic while systemically administrated. Thus...... an inflammatory response in macrophages as evidenced by the cytokine profiling and the use of image-based high-content analysis approach in contrast to non-modified CNTs. In addition, systemic administration of CNT-PL-HA into healthy C57BL/6 mice did not alter the total number of leukocytes nor increased liver...

  9. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  10. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  11. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  12. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  13. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline

    International Nuclear Information System (INIS)

    Dar, Riyaz Ahmad; Naikoo, Gowhar Ahmad; Pitre, Krishna Sadashive

    2013-01-01

    Graphical abstract: Electrode oxidation mechanism of reserpine at PANI modified-SWCNT/CPE. -- Highlights: • Electropolymerization of polyaniline at SWCNT/CPE. • CV, EIS, CC SEM techniques were used for characterization of electrode. • Electrode showed electrocatalytic activity towards anodic oxidation of reserpine. • Oxidation process as irreversible and adsorption-controlled. • Reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations. -- Abstract: In the present work a polyaniline film was successfully deposited by electropolymerization on single walled carbon nanotube paste electrode. The electrode was characterized using cyclic voltammetry, electrochemical impedance spectroscopy, chronocoulometry and scanning electron microscopy. The modified electrode showed electrocatalytic behaviour towards the anodic oxidation of reserpine. The adsorptive stripping voltammetric behaviour of reserpine at polyaniline film modified single walled carbon nanotube paste electrode (modified-SWCNTPE) was investigated and validated in pharmaceuticals and biological fluids by cyclic voltammetry (CV) and adsorptive stripping differential pulse voltammetry (AdSDPV) in 0.02 M phosphate buffer in the pH range of 2.5–8.5. Cyclic voltammetry has shown that the oxidation process is irreversible over the pH range studied and exhibited an adsorption-controlled behaviour. Further, the overall electrode process is mainly diffusion controlled with adsorption effects. The proposed more sensitive AdSDPV method allow quantitation over the range 0.085 μg mL −1 to 0.87 μg mL −1 with the detection limit of 0.407 ng mL −1 and has been successfully used to determine reserpine in bark of Rauwolfia serpentina and in its pharmaceutical formulations

  14. An efficient route towards the covalent functionalization of single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kakade, Bhalchandra A.; Pillai, Vijayamohanan K.

    2008-01-01

    A simple and efficient method of chemical functionalization of both single and multiwalled carbon nanotubes has been discussed to give enhanced water solubility by rapidly and efficiently generating an appreciable amount of hydrophilic functional groups using microwave radiation. Surface functionalization containing more than 30 wt% of oxygen has been achieved, resulting into solubility of 2-5 mg/mL. Further covalent functionalization of such soluble SWNTs provides a remarkable degree of aniline functionalization through amidation, where the formation of polyaniline has been avoided. Functionalization of SWNTs is confirmed by techniques like electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry, Raman spectroscopy, cyclic voltammetry and impedance spectroscopy. Electrochemical analysis suggests an enhanced double layer capacitance (∼110 F/g) of nanotubes after microwave treatment. Aniline functionalization of SWNTs shows possible variations on the nanotube topography with concomitant formation of a dynamic polymer layer on the nanotube surface

  15. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  16. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases.

    Directory of Open Access Journals (Sweden)

    Jonathan Kent Davis

    2012-06-01

    Full Text Available Extracellular polysaccharides are synthesized by a wide variety of species, from unicellular bacteria and Archaea to the largest multicellular plants and animals in the biosphere. In every case, the biosynthesis of these polymers requires transport across a membrane, from the cytosol to either the lumen of secretory pathway organelles or directly into the extracellular space. Although some polysaccharide biosynthetic substrates are moved across the membrane to sites of polysaccharide synthesis by separate transporter proteins before being incorporated into polymers by glycosyltransferase proteins, many polysaccharide biosynthetic enzymes appear to have both transporter and transferase activities. In these cases, the biosynthetic enzymes utilize substrate on one side of the membrane and deposit the polymer product on the other side. This review discusses structural characteristics of plant cell wall glycan synthases that couple synthesis with transport, drawing on what is known about such dual-function enzymes in other species.

  17. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  18. Benchmark study of ionization potentials and electron affinities of armchair single-walled carbon nanotubes using density functional theory

    Science.gov (United States)

    Zhou, Bin; Hu, Zhubin; Jiang, Yanrong; He, Xiao; Sun, Zhenrong; Sun, Haitao

    2018-05-01

    The intrinsic parameters of carbon nanotubes (CNTs) such as ionization potential (IP) and electron affinity (EA) are closely related to their unique properties and associated applications. In this work, we demonstrated the success of optimal tuning method based on range-separated (RS) density functionals for both accurate and efficient prediction of vertical IPs and electron affinities (EAs) of a series of armchair single-walled carbon nanotubes C20n H20 (n  =  2–6) compared to the high-level IP/EA equation-of-motion coupled-cluster method with single and double substitutions (IP/EA-EOM-CCSD). Notably, the resulting frontier orbital energies (–ε HOMO and –ε LUMO) from the tuning method exhibit an excellent approximation to the corresponding IPs and EAs, that significantly outperform other conventional density functionals. In addition, it is suggested that the RS density functionals that possess both a fixed amount of exact exchange in the short-range and a correct long-range asymptotic behavior are suitable for calculating electronic structures of finite-sized CNTs. Next the performance of density functionals for description of various molecular properties such as chemical potential, hardness and electrophilicity are assessed as a function of tube length. Thanks to the efficiency and accuracy of this tuning method, the related behaviors of much longer armchair single-walled CNTs until C200H20 were studied. Lastly, the present work is proved to provide an efficient theoretical tool for future materials design and reliable characterization of other interesting properties of CNT-based systems.

  19. Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay

    International Nuclear Information System (INIS)

    Qi Honglan; Ling Chen; Huang Ru; Qiu Xiaoying; Shangguan Li; Gao Qiang; Zhang Chengxiao

    2012-01-01

    Highlights: ► Single-walled carbon nanotubes were functionalized with protein by click chemistry. ► The SWNTs conjugated with protein showed excellent dispersion in water and kept good bioacitvity. ► A competitive electrochemical immunoassay for the determination of anti-IgG was developed with high sensitivity and good stability. - Abstract: The application of the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition to the functionalization of single-walled carbon nanotubes (SWNTs) with the protein and the use of the artificial SWNTs as a sensing platform for sensitive immunoassay were reported. Covalent functionalization of azide decorated SWNTs with alkyne modified protein was firstly accomplished by the Cu(I)-catalyzed [3 + 2] Huisgen cycloaddition. FT-IR spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron micrograph were used to characterize the protein-functionalized SWNTs. It was found that the SWNTs conjugated with the proteins showed excellent dispersion in water and kept good bioacitivity when immunoglobulin (IgG) and horseradish peroxidase (HRP) were chosen as model proteins. As a proof-of-concept, IgG-functionalized SWNTs were immobilized onto the surface of a glassy carbon electrode by simple casting method as immunosensing platform and a sensitive competitive electrochemical immunoassay was developed for the determination of anti-immunoglobulin (anti-IgG) using HRP as enzyme label. The fabrication of the immunosensor were characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the redox probe [Fe(CN) 6 ] 3−/4− . The SWNTs as immobilization platform showed better sensitizing effect, a detection limit of 30 pg mL −1 (S/N = 3) was obtained for anti-IgG. The proposed strategy provided a stable immobilization method and sensitized recognition platform for analytes. This work demonstrated that the click coupling of SWNTs with protein was an effective

  20. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  1. Density functional theory prediction of pKa for carboxylated single-wall carbon nanotubes and graphene

    Science.gov (United States)

    Li, Hao; Fu, Aiping; Xue, Xuyan; Guo, Fengna; Huai, Wenbo; Chu, Tianshu; Wang, Zonghua

    2017-06-01

    Density functional calculations have been performed to investigate the acidities for the carboxylated single-wall carbon nanotubes and graphene. The pKa values for different COOH-functionalized models with varying lengths, diameters and chirality of nanotubes and with different edges of graphene were predicted using the SMD/M05-2X/6-31G* method combined with two universal thermodynamic cycles. The effects of following factors, such as, the functionalized position of carboxyl group, the Stone-Wales and single vacancy defects, on the acidity of the functionalized nanotube and graphene have also been evaluated. The deprotonated species have undergone decarboxylation when the hybridization mode of the carbon atom at the functionalization site changed from sp2 to sp3 both for the tube and graphene. The knowledge of the pKa values of the carboxylated nanotube and graphene could be of great help for the understanding of the nanocarbon materials in many diverse areas, including environmental protection, catalysis, electrochemistry and biochemistry.

  2. Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes: Green's function approach

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China); Zhai, Liang-Jun [The School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001 (China); Hua, Ling-Ling [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China)

    2016-01-15

    The effect of magnetic spin correlation on the thermodynamic properties of Heisenberg ferromagnetic single-walled nanotubes are comprehensively investigated by use of the double-time Green's function method. The influence of temperature, spin quantum number, diameter of the tube, anisotropy strength and external magnetic field to internal energy, free energy, and magnon specific heat are carefully calculated. Compared to the mean field approximation, the consideration of the magnetic correlation effect significantly improves the internal energy values at finite temperature, while it does not so near zero temperature, and this effect is related to the diameter of the tube, anisotropy strength, and spin quantum number. The magnetic correlation effect lowers the internal energy at finite temperature. As a natural consequence of the reduction of the internal energy, the specific heat is reduced, and the free energy is elevated. - Highlights: • Magnon specific heat and free energy of Heisenberg ferromagnetic single-walled nanotubes (HFM-SWNTs) are investigated. • The magnetic correlations effect has a considerable contribution to the thermodynamics properties of HFM-SWNTs. • Magnetic correlation effects are always to lower the internal energy at finite temperature. • At Curie point, magnetic correlation energy is much less than zero. • The peak values of magnon specific heat curves rise and shift right towards higher temperatures with the diameter of tubes, the anisotropy strength, and the spin quantum number rising.

  3. First-principles study of structural and work function properties for nitrogen-doped single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Shao, Xiji; Li, Detian; Cai, Jianqiu; Luo, Haijun; Dong, Changkun

    2016-01-01

    Graphical abstract: - Highlights: • Substitutional nitrogen atom doping in capped (5, 5) SWNT is investigated. • Serious defects appear from breaks of C−N bonds with N contents of above 23.3 at.%. • Work function drops after N doping and may reach 4.1 eV. - Abstract: The structural and electronic properties of the capped (5, 5) single-walled carbon nanotube (SWNT), including the structural stability, the work function, and the charge transfer performance, are investigated for the substitutional nitrogen atom doping under different concentrations by first-principles density functional theory. The geometrical structure keeps almost intact with single or two N atom doping, while C−N bonds may break up with serious defects for N concentrations of 23.3 at.% and above. The SWNT remains metallic and the work function drops after doping due to the upward shift of Fermi level, leading to the increase of the electrical conductivity. N doping enhances the oxygen reduction activity stronger than N adsorption because of higher charge transfers.

  4. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  5. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions.

    Science.gov (United States)

    Lin, Shangchao; Hilmer, Andrew J; Mendenhall, Jonathan D; Strano, Michael S; Blankschtein, Daniel

    2012-05-16

    Functionalization of single-walled carbon nanotubes (SWCNTs) using diazonium salts allows modification of their optical and electronic properties for a variety of applications, ranging from drug-delivery vehicles to molecular sensors. However, control of the functionalization process remains a challenge, requiring molecular-level understanding of the adsorption of diazonium ions onto heterogeneous, charge-mobile SWCNT surfaces, which are typically decorated with surfactants. In this paper, we combine molecular dynamics (MD) simulations, experiments, and equilibrium reaction modeling to understand and model the extent of diazonium functionalization of SWCNTs coated with various surfactants (sodium cholate, sodium dodecyl sulfate, and cetyl trimethylammonium bromide). We show that the free energy of diazonium adsorption, determined using simulations, can be used to rank surfactants in terms of the extent of functionalization attained following their adsorption on the nanotube surface. The difference in binding affinities between linear and rigid surfactants is attributed to the synergistic binding of the diazonium ion to the local "hot/cold spots" formed by the charged surfactant heads. A combined simulation-modeling framework is developed to provide guidance for controlling the various sensitive experimental conditions needed to achieve the desired extent of SWCNT functionalization.

  6. Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)

    2016-05-15

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.

  7. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.

    Science.gov (United States)

    Zhao, Daohui; Zhou, Jian

    2017-01-04

    The α-chymotrypsin (α-ChT) enzyme is extensively used for studying nanomaterial-induced enzymatic activity inhibition. A recent experimental study reported that carboxylized carbon nanotubes (CNTs) played an important role in regulating the α-ChT activity. In this study, parallel tempering Monte Carlo and molecular dynamics simulations were combined to elucidate the interactions between α-ChT and CNTs in relation to the CNT functional group density. The simulation results indicate that the adsorption and the driving force of α-ChT on different CNTs are contingent on the carboxyl density. Meanwhile, minor secondary structural changes are observed in adsorption processes. It is revealed that α-ChT interacts with pristine CNTs through hydrophobic forces and exhibits a non-competitive characteristic with the active site facing towards the solution; while it binds to carboxylized CNTs with the active pocket through a dominant electrostatic association, which causes enzymatic activity inhibition in a competitive-like mode. These findings are in line with experimental results, and well interpret the activity inhibition of α-ChT at the molecular level. Moreover, this study would shed light on the detailed mechanism of specific recognition and regulation of α-ChT by other functionalized nanomaterials.

  8. Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets.

    Science.gov (United States)

    Jha, Neetu; Ramesh, Palanisamy; Bekyarova, Elena; Tian, Xiaojuan; Wang, Feihu; Itkis, Mikhail E; Haddon, Robert C

    2013-01-01

    Chemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.125 mg(Pt)/cm² set as the US DOE 2017 technical target for total Pt group metals (PGM) loading. This prototype PEMFC also approaches the technical target for the total Pt content per kW of power (<0.125 g(PGM)/kW) at cell potential 0.65 V: a value of 0.15 g(Pt)/kW was achieved at 80°C/22 psig testing conditions, which was further reduced to 0.12 g(Pt)/kW at 35 psig back pressure.

  9. Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems.

    Science.gov (United States)

    Guldi, Dirk M; Rahman, G M Aminur; Jux, Norbert; Balbinot, Domenico; Hartnagel, Uwe; Tagmatarchis, Nikos; Prato, Maurizio

    2005-07-13

    We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.

  10. A novel single walled carbon nanotube (SWCNT) functionalization agent facilitating in vivo combined chemo/thermo therapy

    Science.gov (United States)

    Zhang, Liwen; Rong, Pengfei; Chen, Minglong; Gao, Shi; Zhu, Lei

    2015-10-01

    Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and albumin, the yielding product (SWCNT/EB) demonstrated extreme stability for weeks under physiological conditions and it can be endowed with a therapeutic ability by simply mixing SWCNT/EB with an albumin based drug. Specifically, the formed SWCNT/EB/albumin/PTX nanocomplex exhibits strong near-infrared (NIR) absorbance, and can serve as an agent for chemo/thermal therapeutic purposes. Our in vivo result reveals that SWCNT/EB/albumin/PTX after being administered into the MDA-MB-435 tumor would effectively ablate the tumor by chemo and photothermal therapy. Such a combined treatment strategy provides remarkable therapeutic outcomes in restraining tumor growth compared to chemo or photothermal therapy alone. Overall, our strategy of dispersing SWCNTs by EB can be used as a platform for carrying other drugs or functional genes with the aid of albumin to treat diseases. The present study opens new opportunities in surface modification of SWCNTs for future clinical disease treatment.Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and

  11. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    Science.gov (United States)

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  12. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro.

    Science.gov (United States)

    Li, Haixia; Zhang, Nan; Hao, Yongwei; Wang, Yali; Jia, Shasha; Zhang, Hongling; Zhang, Yun; Zhang, Zhenzhong

    2014-08-01

    Single-walled carbon nanotubes (SWCNTs), an important class of artificial nanomaterials with unique physicochemical properties, were used as novel carriers of curcumin. Formulation and evaluation of curcumin-loaded SWCNTs systems for utilizing the curcumin's anticancer potential by circumventing conventional limitations of extremely low aqueous solubility and instability under physiological conditions, and combining SWCNTs photothermal therapy enabled by the strong optical absorbance of SWCNTs in the 0.8-1.4 μm resulting in excessive local heating. After functionalized SWCNTs were confirmed, they were conjugated with curcumin (SWCNT-Cur). Subsequently, the formulation was analyzed for size, zeta-potential and morphology. And the solubility, stability and release of curcumin were assessed using spectrofluorometer, and the solid state of the curcumin was determined using X-ray diffraction and UV spectroscopy. Furthermore, in PC-3 cells, photothermal response was further determined by irradiating laser after the antitumor effect of SWCNT-Cur was evaluated. SWCNTs were functionalized, and subsequent SWCNT-Cur conjugates were found to possess an average size of 170.4 nm, a zeta potential of -12.5 mV and to significantly enhance the solubility and stability of curcumin, overcoming the barriers to adequate curcumin delivery. Moreover, curcumin in SWCNT-Cur was in an amorphous form and could be rapidly released. In PC-3 cells, improved inhibition efficacy was achieved by SWCNT-Cur compared with native curcumin. Meanwhile, the SWCNTs in SWCNT-Cur served not only as scaffolds but also as thermal ablation agents, further inhibiting PC-3 cell growth. SWCNT-Cur assemblies may provide a promising delivery system for curcumin for use in cancer therapy.

  13. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  14. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron

    International Nuclear Information System (INIS)

    Yannopoulos, S N; Bouropoulos, N; Zouganelis, G D; Nurmohamed, S; Smith, J R; Fatouros, D G; Tsibouklis, J; Calabrese, G

    2010-01-01

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, ζ-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  15. Superconductivity in single wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    H Yavari

    2009-08-01

    Full Text Available   By using Greens function method we first show that the effective interaction between two electrons mediated by plasmon exchange can become attractive which in turn can lead to superconductivity at a high critical temperature in a singl wall carbon nanotubes (SWCNT. The superconducting transition temperature Tc for the SWCNT (3,3 obtained by this mechanism agrees with the recent experimental result. We also show as the radius of SWCNT increases, plasmon frequency becomes lower and leads to lower Tc.

  16. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    Science.gov (United States)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that

  17. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  18. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    International Nuclear Information System (INIS)

    Leinonen, Heli; Lajunen, Marja

    2012-01-01

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8–1.2 nm (diameter) and 100–1,000 nm (length). Functionalizations were performed by a one-pot diazotization–dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  19. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, Heli; Lajunen, Marja, E-mail: marja.lajunen@oulu.fi [University of Oulu, Department of Chemistry (Finland)

    2012-09-15

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  20. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    Science.gov (United States)

    Leinonen, Heli; Lajunen, Marja

    2012-09-01

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  1. Sonochemical optimization of the conductivity of single wall nanotube networks

    NARCIS (Netherlands)

    Kaempgen, M.; Lebert, M.; Haluska, M.; Nicoloso, N.; Roth, S.

    2008-01-01

    Networks of single-wall carbon nanotubes (SWCNTs) are covalently functionalized with oxygen-containing groups. In lower concentration, these functional groups act as stable dopands improving the conductivity of the SWCNT material. In higher concentration however, their role as defects with a certain

  2. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection.

    Science.gov (United States)

    Wang, Jin

    2018-06-01

    A near infrared (NIR) optical biosensor based on peptide functionalized single-walled carbon nanotubes (SWCNTs) hybrids for 2,4,6-trinitrotoluene (TNT) explosive detection was developed. The TNT binding peptide was directly anchored on the sidewall of the SWCNTs using the π-π interaction between the aromatic amino acids and SWCNTs, forming the peptide-SWCNTs hybrids for near infrared absorption spectra measurement. The evidence of the morphology of peptide-SWCNTs hybrids was obtained using atomic force microscopy (AFM). The results demonstrated that peptide-SWCNTs hybrids based NIR optical biosensor exhibited sensitive and highly selective for TNT explosive determination, addressing a promising optical biosensor for security application. Copyright © 2018. Published by Elsevier Inc.

  3. The effects of prolapse surgery on vaginal wall sensibility, vaginal vasocongestion, and sexual function: a prospective single centre study

    NARCIS (Netherlands)

    Lakeman, Marielle M. E.; Laan, Ellen; Roovers, Jan-Paul W. R.

    2014-01-01

    Prolapse surgery has been shown to positively alter body image and decrease pelvic floor symptoms, hereby possibly improving sexual function. However, the surgical trauma itself may adversely affect sexual function, by damaging vaginal innervation and vascularization. The aim of this study is to

  4. Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property

    Directory of Open Access Journals (Sweden)

    Shenoy Vivek

    2011-01-01

    Full Text Available Abstract The magnetic properties of metal-functionalized graphitic carbon nitride nanotubes were investigated based on first-principles calculations. The graphitic carbon nitride nanotube can be either ferromagnetic or antiferromagnetic by functionalizing with different metal atoms. The W- and Ti-functionalized nanotubes are ferromagnetic, which are attributed to carrier-mediated interactions because of the coupling between the spin-polarized d and p electrons and the formation of the impurity bands close to the band edges. However, Cr-, Mn-, Co-, and Ni-functionalized nanotubes are antiferromagnetic because of the anti-alignment of the magnetic moments between neighboring metal atoms. The functionalized nanotubes may be used in spintronics and hydrogen storage.

  5. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    Science.gov (United States)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  6. Mechanics of single-walled carbon nanotubes inside open single-walled carbon nanocones

    International Nuclear Information System (INIS)

    Ansari, R.; Hosseinzadeh, M.

    2013-01-01

    This study investigates the mechanical characteristics of single-walled carbon nanotubes (CNTs) inside open single-walled carbon nanocones (CNCs). New semi-analytical expressions are presented to evaluate van der Waals (vdW) interactions between CNTs and open CNCs. Continuum approximation, along with the the Lennard-Jones (LJ) potential function, is used in this study. The effects of geometrical parameters on alterations in vdW potential energy and the interaction force are extensively examined for the concentric CNT-open CNC configuration. The CNT is assumed to enter the nanocone either through the small end or the wide end of the cone. The preferred position of the CNT with respect to the nanocone axis is fully investigated for various geometrical parameters. The optimum nanotube radius minimizing the total potential energy of the concentric configuration is determined for different radii of the small end of the cone. The examined configuration generates asymmetric oscillation; thus, the system constitutes a nano-oscillator.

  7. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered nmr spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Torres, Mary H.; Molina, Daniel R.

    2012-01-01

    A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...

  8. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com

    2008-11-19

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  9. Ab initio density functional theory investigation of electronic properties of semiconducting single-walled carbon nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Azadi, Sam

    2008-09-01

    By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.

  10. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-01-01

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  11. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-11-01

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  12. Molecular discriminators using single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ray, Nihar Ranjan; Sarkar, Sabyasachi

    2012-01-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular. (paper)

  13. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Ruiz-Chavarria, Gregorio [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico Ciudad Universitaria, Codigo Postal 04510, Mexico D.F. (Mexico); Magana, L.F., E-mail: fernando@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Codigo Postal 01000, Mexico D.F. (Mexico); Arellano, J.S. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco. Avenida San Pablo No. 180, Col. Reynosa Tamaulipas Codigo Postal 02200, Mexico D.F. (Mexico)

    2009-07-06

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H{sub 2}). Nitrogen coverage was C{sub 8}N.

  14. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  15. Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting

    International Nuclear Information System (INIS)

    Ou Zhongmin; Wu Baoyan; Xing Da; Zhou Feifan; Wang Huiying; Tang Yonghong

    2009-01-01

    The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin α v β 3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin α v β 3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin α v β 3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin α v β 3 -positive U87MG cells with low cellular toxicity, while for integrin α v β 3 -negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.

  16. Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo

    Directory of Open Access Journals (Sweden)

    Principi E

    2016-09-01

    Full Text Available Elisa Principi,1,* Rossana Girardello,2,* Antonino Bruno,1,* Isabella Manni,3 Elisabetta Gini,2 Arianna Pagani,1 Annalisa Grimaldi,2 Federico Ivaldi,4 Terenzio Congiu,5 Daniela De Stefano,1 Giulia Piaggio,3 Magda de Eguileor,2 Douglas M Noonan,1,2 Adriana Albini1 1Vascular Biology and Angiogenesis, Scientific and Technology Pole, IRCCS MultiMedica, Milano, 2Department of Biotechnology and Life Sciences, University of Insubria, Varese, 3Department of Research, Advanced Diagnosis and Innovation, Regina Elena National Cancer Institute, Rome, 4Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Genoa, 5Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy *These authors contributed equally to this work Abstract: The increasing use of carbon nanotubes (CNTs in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs, administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections, functional (serum enzymes, and morphological (organs and tissues alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron

  17. Domain walls in single-chain magnets

    Science.gov (United States)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  18. Cardiac functional mapping for thallium-201 myocardial perfusion, washout, wall motion and phase using single-photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taniguchi, Mitsuru; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi; Hirano, Takako; Wani, Hidenobu.

    1986-01-01

    A method for three-dimensional functional mapping of Tl-201 myocardial uptake, washout, wall motion and phase was developed using SPECT. Each parameter was mapped using polar display in the same format. Normal values were determined in Tl-201 exercise study in 16 patients. Myocardial counts were lower in the septum and inferior wall and the difference of counts between anterior and inferior walls were greater in man compared with the perfusion pattern in woman. Washout was slower at septum and inferior wall in man, and slightly slower at inferior wall in woman. In gated blood-pool tomography, length-based and count-based Fourier analyses were applied to calculate the parameters of contraction and phase. The results of both Fourier analyses generally agreed; however, the area of abnormality was slightly different. Phase maps were useful for the assessment of asynergy as well as in patients with conduction disorders. These cardiac functional maps using SPECT were considered to be effective for the understanding of three-dimensional informations of cardiac function. (author)

  19. Carbonyl Functionalized Single-Walled Carbon Nanotube-Hb Crosslinked Network: A Novel Platform for Studying Bio-Electrochemistry and Electrocatalysis of Hemoglobin.

    Science.gov (United States)

    Kafi, A K M; Yam, C C L; Azmi, N S; Yusoff, Mashitah M

    2018-04-01

    In this work, the direct electrochemistry of hemoglobin (Hb), which was immobilized on carbonyl functionalized single walled carbon nanotube (SWCNT) and deposited onto a gold (Au) electrode has been described. The synthesis of the network of crosslinked SWCNT/Hb was done with the help of crosslinking agent EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide). The UV-Vis and FTIR spectroscopy of SWCNT/Hb networks showed that Hb maintained its natural structure and kept good stability. In addition with this, scanning electron microscopy (SEM) illustrated that SWCNT/Hb networks had a featured layered structure and Hb being strongly liked with SWCNT surface. Cyclic voltammetry (CV) was used to study and to optimize the performance of the resulting modified electrode. The cyclic voltammetric (CV) responses of SWCNT/Hb networks in pH 7.0 exhibit prominent redox couple for the FeIII/II redox process with a midpoint potential of -0.46 V and -0.34, cathodic and anodic respectively. Furthermore, SWCNT/Hb networks are utilized for the detection of hydrogen peroxide (H2O2). Electrochemical measurements reveal that the resulting SWCNT/Hb electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, and low detection limit. Overall, the electrochemical results are due to excellent biocompatibility and excellent electron transport efficiency of CNT as well as high Hb loading and synergistic catalytic effect of the modified electrode toward H2O2.

  20. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(-/-)mice

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Jantzen, Kim; Sheykhzade, Majid

    2012-01-01

    Abstract This study compared the oxidative stress level and vasomotor dysfunction after exposure to urban dust, diesel exhaust particles (DEP) or single-walled carbon nanotubes (SWCNT). DEP and SWCNT increased the production of reactive oxygen species (ROS) in cultured endothelial cells and acell......Abstract This study compared the oxidative stress level and vasomotor dysfunction after exposure to urban dust, diesel exhaust particles (DEP) or single-walled carbon nanotubes (SWCNT). DEP and SWCNT increased the production of reactive oxygen species (ROS) in cultured endothelial cells...... and acellullarly, whereas the exposure to urban dust did not generate ROS. ApoE(-/-) mice, which were exposed twice to 0.5 mg/kg of the particles by intratracheal instillation, had unaltered acetylcholine-elicited vasorelaxation in aorta segments. There was unaltered pulmonary expression level of Vcam-1, Icam-1...

  1. Poly(3-hexylthiophene): Functionalized single-walled carbon nanotubes: (6,6)-phenyl-C{sub 61}-butyric acid methyl ester composites for photovoltaic cell at ambient condition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajiv K.; Kumar, Amit; Kumar, Vikram; Singh, Ramadhar [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Jitendra [Metals and Ceramics Division, University of Dayton Research Institute, Dayton, OH 45469-0171 (United States); Kant, Rama [Department of Chemistry, University of Delhi, New Delhi 110007 (India)

    2010-12-15

    We report the synthesis and characterization of nonhygroscopic composites of poly(3-hexylthiophene):functionalized single-walled carbon nanotubes:(6,6)-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:FSWCNT:PCBM) for photovoltaic applications. The composite films have been characterized for their structural, electronic, photo-physical and photovoltaic properties. Fourier transform infrared (FT-IR) investigation suggests that the nanotubes can induce structural changes in P3HT matrix. The homogeneous dispersion of nanotubes in P3HT and its self-arranged matrix in P3HT:PCBM are evident from scanning electron microscopy (SEM). Ultraviolet-visible (UV-vis) spectrum indicates the betterment of P3HT chain stacking by addition of nanotubes, which is further confirmed by transmission electron microscopy (TEM). The small-angle X-ray scattering (SAXS) was used to determine the bulk microstructure of the polymer composite. The photovoltaic cells have been fabricated using the aforementioned photoactive composite and tested at ambient conditions. The comparison of the current density-voltage (J-V) characteristics of photovoltaic cells in light and dark conditions, with and without modified nanotubes, shows that the latter gives better photovoltaic properties. A photovoltaic cell using modified nanotubes exhibit a photo-conversion efficiency of {proportional_to}1.8%. The addition of FSWCNT in P3HT:PCBM composite enhances the conjugation length of P3HT:FSWCNT:PCBM composite, which in turn enhances its absorption capacity of solar energy radiation. (author)

  2. Noncovalent functionalization of pristine CVD single-walled carbon nanotubes with 3d metal(II) phthalocyanines by adsorption from the gas phase

    Science.gov (United States)

    Basiuk, Vladimir A.; Flores-Sánchez, Laura J.; Meza-Laguna, Victor; Flores-Flores, José Ocotlán; Bucio-Galindo, Lauro; Puente-Lee, Iván; Basiuk, Elena V.

    2018-04-01

    Noncovalent hybrids of carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of growing research effort focused on the development of new efficient organic photovoltaic cells, heterogeneous catalysts, lithium batteries, gas sensors, field effect transistors, among other possible applications. The main advantage of using unsubstituted Pcs is their very moderate cost and easy commercial availability. Unfortunately, the deposition of unsubstituted Pcs onto CNT sidewalls via the traditional liquid-phase strategy proves to be very problematic due to an extremely poor solubility of Pcs. At the same time, unsubstituted free-base H2Pc ligand and many of its transition metal complexes exhibit high thermal stability and volatility under reduced pressure, which allows for their physical vapor deposition onto solid surfaces. In the present work, we demonstrated the possibility of simple, fast, efficient and environmentally friendly noncovalent functionalization of single-walled CNTs (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me = Co, Ni, Cu and Zn. The functionalization can be performed at 400-500 °C under moderate vacuum, and takes about 2-3 h only. The nanohybrids obtained were characterized by means of Fourier-transform infrared, Raman, UV-vis and energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), scanning and transmission electron microscopy. TGA suggested that Pc weight content is 30%, 17% and 35% for NiPc, CuPc and ZnPc, respectively (CoPc exhibited anomalous behavior), which is close to the estimates from EDS spectra of 24-39%, 27-36% and 27-44% for CoPc, CuPc and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Pc hybrids, as compared to that of pristine nanotubes, was interpreted as very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the patterns of HOMO and LUMO distribution

  3. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitra Somenath

    2009-10-01

    Full Text Available Abstract Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1 staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs

  4. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    International Nuclear Information System (INIS)

    Xiao, Yan; Savla, Ronak; Wagner, Paul D; Srivastava, Sudhir; He, Huixin; Gao, Xiugong; Taratula, Oleh; Treado, Stephen; Urbas, Aaron; Holbrook, R David; Cavicchi, Richard E; Avedisian, C Thomas; Mitra, Somenath

    2009-01-01

    Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm 2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of Ig

  5. An NPARC Turbulence Module with Wall Functions

    Science.gov (United States)

    Zhu, J.; Shih, T.-H.

    1997-01-01

    The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

  6. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    Science.gov (United States)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  7. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    Molecular mechanics; single wall carbon nanotube; mechanical proper- ... Fracture Mechanics); Rossi & Meo 2009). Furthermore, the work carried out by Natsuki & Endo. (2004), Xiao et al (2005) and Sun & Zhao (2005) in the direction of ..... Jin Y and Yuan F G 2003 Simulation of elastic properties of single walled carbon ...

  8. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  9. Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Liu Hong

    2006-01-01

    The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points

  10. Confinement in single walled carbon nanotubes investigated by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Battie, Y.; Jamon, D.; Lauret, J.S.; Gu, Q.; Gicquel-Guézo, M.; En Naciri, A.; Loiseau, A.

    2014-01-01

    Thick films of single walled carbon nanotubes (SWCNTs) with different diameter and chirality distributions are characterized by combining transmission electron microscopy and spectroscopic ellipsometry. The dependence of the dielectric function with the increase of the SWCNT diameter occurs with a drastic redshift of the S 11 , S 22 and M 11 transition energies. The transfer integral parameter γ 0 of SWCNT is also evaluated and analyzed. We demonstrate that parts of the optical properties of SWCNTs are attributed to a one dimensional confinement effect. - Highlights: • Ellipsometric measurements are performed on carbon nanotube thick films. • The complex dielectric functions of conventional carbon nanotubes are given. • Confinement effects explain the variations of dielectric function of nanotubes

  11. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    have a tunable n-IR emission that responds to changes in the local dielectric function but remains stable to permanent photobleaching. We report the synthesis and successful testing of solution phase, near-infrared sensors, with β-D-glucose sensing as a model system, using single walled carbon nanotubes that modulate their emission in response to the adsorption of specific biomolecules. New types of non-covalent functionalization using electron withdrawing molecules are shown to provide sites for transferring electrons in and out of the nanotube. We also show two distinct mechanisms of signal transduction -- fluorescence quenching and charge transfer. The results demonstrate new opportunities for nanoparticle optical sensors that operate in strongly absorbing media of relevance to medicine or biology.

  12. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Domain wall partition functions and KP

    International Nuclear Information System (INIS)

    Foda, O; Wheeler, M; Zuparic, M

    2009-01-01

    We observe that the partition function of the six-vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP τ function and express it as an expectation value of charged free fermions (up to an overall normalization)

  14. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  15. Functional duality of the cell wall.

    Science.gov (United States)

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  17. Single-Walled Carbon Nanohorns for Energy Applications

    Science.gov (United States)

    Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao

    2015-01-01

    With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092

  18. Single-Walled Carbon Nanohorns for Energy Applications

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    2015-10-01

    Full Text Available With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs, which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented.

  19. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...... walls technology in lab-on-chip systems devoted to accurate individual cell trapping and manipulation....

  20. A unified wall function for compressible turbulence modelling

    Science.gov (United States)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  1. Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD

    Science.gov (United States)

    Kamel, Maedeh; Raissi, Heidar; Morsali, Ali; Shahabi, Mahnaz

    2018-03-01

    In the present work, we have studied the drug delivery performance of the functionalized (5, 5) single-walled carbon nanotube with a carboxylic acid group for Flutamide anticancer drug in the gas phase as well as water solution by means of density functional theory calculations. The obtained results confirmed the energetic stability of the optimized geometries and revealed that the nature of drug adsorption on the functionalized carbon nanotube is physical. Our computations showed that the hydrogen bonding between active sites of Flutamide molecule and the carboxyl functional group of the nanotube plays a vital role in the stabilization of the considered configurations. The natural bond orbital analysis suggested that the functionalized nanotube plays the role of an electron donor and Flutamide molecule acts as an electron acceptor at the investigated complexes. In addition, molecular dynamics simulation is also utilized to investigate the effect of functionalized carbon nanotube chirality on the dynamic process of drug molecule adsorption on the nanotube surface. Simulation results demonstrated that drug molecules are strongly adsorbed on the functionalized nanotube surface with (10,5) chirality, as reflected by the most negative van der Waals interaction energy and a high number of hydrogen bonds between the functionalized nanotube and drug molecules.

  2. Single-Walled Carbon Nanotubes in Solar Cells.

    Science.gov (United States)

    Jeon, Il; Matsuo, Yutaka; Maruyama, Shigeo

    2018-01-22

    Photovoltaics, more generally known as solar cells, are made from semiconducting materials that convert light into electricity. Solar cells have received much attention in recent years due to their promise as clean and efficient light-harvesting devices. Single-walled carbon nanotubes (SWNTs) could play a crucial role in these devices and have been the subject of much research, which continues to this day. SWNTs are known to outperform multi-walled carbon nanotubes (MWNTs) at low densities, because of the difference in their optical transmittance for the same current density, which is the most important parameter in comparing SWNTs and MWNTs. SWNT films show semiconducting features, which make SWNTs function as active or charge-transporting materials. This chapter, consisting of two sections, focuses on the use of SWNTs in solar cells. In the first section, we discuss SWNTs as a light harvester and charge transporter in the photoactive layer, which are reviewed chronologically to show the history of the research progress. In the second section, we discuss SWNTs as a transparent conductive layer outside of the photoactive layer, which is relatively more actively researched. This section introduces SWNT applications in silicon solar cells, organic solar cells, and perovskite solar cells each, from their prototypes to recent results. As we go along, the science and prospects of the application of solar cells will be discussed.

  3. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  4. Electronic properties of single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-09-01

    The electronic properties of single-walled chiral carbon nanotube has been studied using the model based on infinitely long carbon atoms wrapped along a base helix of single-walled carbon nanotubes(SWNTs). The problem is solved semiclassically, and current density J, resistivity ρ, thermopower α z , and electrical power factor P calculated. It is noted that the current density j displays negative differential conductivity, whiles the resistivity ρ increases with increasing electrical field. ρ also slowly increases at low temperatures and then gradually increases with increasing temperature. The thermopower α z shows interesting behaviour. Very intriguing is the electrical power factor which shows relatively large values. (author)

  5. Supercapacitance of Single-Walled Carbon Nanotubes-Polypyrrole Composites

    Directory of Open Access Journals (Sweden)

    Matei Raicopol

    2013-01-01

    Full Text Available The composites based on carbon nanotubes (CNTs and conducting polymers (CPs are promising materials for supercapacitor devices due to their unique nanostructure that combines the large pseudocapacitance of the CPs with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the CNTs. Here, we report a new electrochemical method to obtain polypyrrole (PPY/single-walled carbon nanotube (SWCNT composites. In the first step, the SWCNTs are covalently functionalized with monomeric units of pyrrole by esterification of acyl chloride functionalized SWCNTs and N-(6-hydroxyhexylpyrrole. In the second step, the PPY/SWCNTs composites are obtained by copolymerizing the pyrrole monomer with the pyrrole units grafted on SWCNTs surface using controlled potential electrolysis. The composites were further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results showed good electrochemical charge storage properties for the synthesized composites based on PPY and SWCNTs covalently functionalized with pyrrole units making them promising electrode materials for high power supercapacitors.

  6. Optical properties of armchair (7, 7) single walled carbon nanotubes

    International Nuclear Information System (INIS)

    Gharbavi, K.; Badehian, H.

    2015-01-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations

  7. Plasma excitations in a single-walled carbon nanotube

    Indian Academy of Sciences (India)

    The effect of different uniform transverse external magnetic fields in plasma frequency when propagated parallel to the surface of the single-walled metallic carbon nanotubes is studied. The classical electrodynamics as well as Maxwell's equations are used in the calculations. Equations are developed for both short- and ...

  8. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    A novel method of purification for single-walled carbon nanotubes, prepared by an arc-discharge method, is described. The method involves a combination of acid washing followed by high temperature hydrogen treatment to remove the metal nanoparticles and amorphous carbon present in the as-synthesized singlewalled ...

  9. Phonon and thermal properties of achiral single wall carbon ...

    Indian Academy of Sciences (India)

    A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...

  10. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  11. A Computational Experiment on Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  12. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    NARCIS (Netherlands)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele; Hofmann, Stephan; Arshad, Muhammad; Cepek, Cinzia; Pagliara, Stefania

    2013-01-01

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free

  13. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  14. The Gibbs Function, Spontaneity, and Walls

    Science.gov (United States)

    Tykodi, R. J.

    1996-05-01

    For the expansion-into-the-vacuum process involving a saturated vapor, previously analyzed by Schomaker and waser and by myself, I assert that in general Delta G (composite) is undefined and that for the special case of bulbs with perfectly rigid walls Delta G (composite) is weakly positive. I show that the seemingly contradictory results of Schomaker and Waser are merely the consequences of their use of eccentric or anti-conventional terminology: they calculate the change in the Availability function for the process and call that change "Delta G (composite)".

  15. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  16. A comprehensive theoretical investigation about the bio-functionalization capability of single walled CNT, BNNT and SiCNT using DNA/RNA nucleobases

    Science.gov (United States)

    Alinezhad, Heshmatollah; Ganji, Masoud Darvish; Soleymani, Elham; Tajbakhsh, Mahmood

    2017-11-01

    By means of Density Functional Theory (DFT) based calculations, we have elucidated the interactions between five nucleobases and three nanotubes, namely: CNT, BNNT and SiCNT. The energetics and equilibrium geometries have been calculated within the framework of revPBE method in combination with third version of Grimme's atom pair-wise dispersion corrections with Becke-Johnson damping (D3BJ). The obtained results in terms of adsorption energy values and geometrical parameters suggest that the overall interactions are divided into two parts: non-covalently and covalently bonded systems as the nucleobases are physisorbed onto the surface of CNT and BNNT (Eads ranges from -0.57 to -0.76 eV and -0.54 to -0.78 eV for CNT and BNNT complexes, respectively) while the type of interactions between nucleobase molecules and SiCNT has been found to be of covalent type with the Eads ranging from -0.61 to -1.8 eV. Moreover, the empirical dispersion corrections have been found to play crucial roles in obtaining reliable geometries and adsorption energy values for the non-covalently bonded systems. The role of solvation on the overall interactions has also been explored using the COSMO model within a media with dielectric constant of 78.39 which resembles the water environment and the results revealed that the interaction strength showed a decreasing trend with increasing the polarity of the system. Considering the adsorption energy differences between each nucleobase and the nanotubes, the SiCNT showed promising performance in differentiating between the nucleobase molecules and exhibited the highest affinity to be biofunctionalized in comparison to other nanotubes. The findings of the present work would be very useful for understanding the underlying phenomena behind the interface interactions and would aid future experimental investigations in the fields of biotechnology and materials science.

  17. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  18. Single-walled carbon nanotube-induced mitotic disruption⋆

    OpenAIRE

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.

    2011-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled c...

  19. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  20. Titanium dioxide, single-walled carbon nanotube composites

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  1. Determination of the displacement cross section in single-walled carbon nanotubes under gamma irradiation

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, D.

    2009-01-01

    Using the threshold energy value reported in literature for C atoms in single-walled carbon nanotube and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in nanotubes exposed to the gamma rays was estimated. In this calculation the Kinchin-Pease approximation for the damage function was considered. (Author)

  2. Synthesis of dark brown single-walled carbon nanotubes and their

    Indian Academy of Sciences (India)

    We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mechanism) have been used for a diazonium coupling reaction. The results showed that the chemical method used has ...

  3. Synthesis of dark brown single-walled carbon nanotubes and their ...

    Indian Academy of Sciences (India)

    Abstract. We report here a simple and effective approach to the covalent attachment of single-walled carbon nanotubes (SWCNTs) and azo compounds. The functionalized SWCNTs prepared (through a radical mecha- nism) have been used for a diazonium coupling reaction. The results showed that the chemical method ...

  4. Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes

    DEFF Research Database (Denmark)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-01-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory...

  5. Synthesis of 1D-glyconanomaterials by a hybrid noncovalent-covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells

    Science.gov (United States)

    Pernía Leal, M.; Assali, M.; Cid, J. J.; Valdivia, V.; Franco, J. M.; Fernández, I.; Pozo, D.; Khiar, N.

    2015-11-01

    To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of the dynamic hybrids obtained by non-covalent functionalizations. In the present work, we examined the molecular basis of an original strategy that combines the advantages of both functionalizations without their main drawbacks. The hierarchical self-assembly of diacetylenic-based neoglycolipids into highly organized and compacted rings around the nanotubes, followed by photopolymerization leads to the formation of nanotubes covered with glyconanorings with a shish kebab-type topology exposing the carbohydrate ligands to the water phase in a multivalent fashion. The glyconanotubes obtained are fully functional, and able to establish specific interactions with their cognate receptors. In fact, by taking advantage of this selective binding, an easy method to sense lectins as a working model of toxin detection was developed based on a simple analysis of TEM images. Remarkably, different experimental settings to assess cell membrane integrity, cell growth kinetics and cell cycle demonstrated the cellular biocompatibility of the sugar-coated carbon nanotubes compared to pristine single-walled carbon nanotubes.To take full advantage of the remarkable applications of carbon nanotubes in different fields, there is a need to develop effective methods to improve their water dispersion and biocompatibility while maintaining their physical properties. In this sense, current approaches suffer from serious drawbacks such as loss of electronic structure together with low surface coverage in the case of covalent functionalizations, or instability of

  6. Improvements in Production of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  7. Investigation on single carbon atom transporting through the single-walled carbon nanotube by MD simulation

    International Nuclear Information System (INIS)

    Ding Yinfeng; Zhang Zhibin; Ke Xuezhi; Zhu Zhiyuan; Zhu Dezhang; Wang Zhenxia; Xu Hongjie

    2005-01-01

    The single carbon atom transporting through the single-walled carbon nanotube has been studied by molecular-dynamics (MD) simulation. We got different trajectories of the carbon atom by changing the input parameters. The simulation results indicate that the single carbon atom with low energy can transport through the carbon nanotube under some input conditions and result in different trajectories being straight line or 'rosette' or circular. (authors)

  8. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.; Bekyarova, Elena B.; Wang, Qingxiao; Al-Hadeethi, Yas Fadel; Zhang, Xixiang; Al-Agel, Faisel; Al-Marzouki, Fahad M.; Yaghmour, Saud Jamil; Haddon, Robert C.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were

  9. Metal-doped single-walled carbon nanotubes and production thereof

    Science.gov (United States)

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  10. Inelastic x-ray study of plasmons in oriented single and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Casa, D.M.; Upton, M.H.; Gog, T.; Misewich, J.; Hill, J.P.; Lowndes, D.; Eres, G.

    2006-01-01

    Carbon nanotubes (CNT) have a wide variety of interesting properties and a large number of potential aplications in electronic and optical devices. In this study we concentrate on one important aspect of their electronic stucture: the plasmon dispersions in both single- and multi-wall CNTs and their relation to those in graphite. For the first time inelastic X-ray scattering is used to study these collective electronic excitations in oriented CNT samples. The experiments were performed on the IXS instrument at beamline 9ID CMC-XOR, APS, ANL. The incident energy was defined by a Si(333) monochromator, a spherically bent Ge(733) diced analyzer at the end of a 1-m arm focused the incident radiation onto a solid-state detector. The overall resolution was ∼300 meV FWHM. The incident photons were linearly polarized perpendicular to the scattering plane. Energy loss scans were taken by varying the incident energy while keeping the exit energy fixed at 8.9805 keV. The momentum transfer was kept along the nanotubes axis. Spectra were taken at room temperature. The samples were oriented CNTs (both single- and multi-wall) grown on a Si substrate. The samples referred to as 'single-wall' were in fact a few walls at most (1-5) while the multi-walled ones had ∼12 walls. Fig. 1. shows the inelastic spectra for the single-, multi-wall, and highly oriented pyrolithic graphite (HOPG) from top to bottom. Momentum transfer was Q = 0.79 (angstrom) -1 in all cases, its direction was along the tubes for the first two samples or parallel to the sheets for graphite. The peaks at ∼10 and ∼30 eV are known as the π and σ + π plasmons respectively. Fig. 2. shows the complete dispersion curves for both plasmon modes as a function of momentum transfer for all three samples.

  11. Finite-size scaling functions for directed polymers confined between attracting walls

    Energy Technology Data Exchange (ETDEWEB)

    Owczarek, A L [Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052 (Australia); Prellberg, T [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Rechnitzer, A [Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2 (Canada)

    2008-01-25

    The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been recently calculated. The walks can be considered to model the polymer-induced steric stabilization and sensitized flocculation of colloidal dispersions. The large-width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: Can one interpolate between the single wall and two wall cases? In this paper, we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic {theta} functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.

  12. Electrochemical Charging of Individual Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kavan, Ladislav; Kong, J.; Sasaki, K.; Saito, R.; Dresselhaus, M. S.

    2009-01-01

    Roč. 3, č. 8 (2009), s. 2320-2328 ISSN 1936-0851 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single-walled carbon nanotubes * Raman spectroscopy * electrochemical gating * spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 7.493, year: 2009

  13. Symmetry Properties of Single-Walled BC2N Nanotubes

    Directory of Open Access Journals (Sweden)

    Lin Jianyi

    2009-01-01

    Full Text Available Abstract The symmetry properties of the single-walled BC2N nanotubes were investigated. All the BC2N nanotubes possess nonsymmorphic line groups. In contrast with the carbon and boron nitride nanotubes, armchair and zigzag BC2N nanotubes belong to different line groups, depending on the index n (even or odd and the vector chosen. The number of Raman- active phonon modes is almost twice that of the infrared-active phonon modes for all kinds of BC2N nanotubes.

  14. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  15. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics

    Science.gov (United States)

    Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.

    2018-04-01

    Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.

  16. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  17. Alignment enhanced photoconductivity in single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Liu Ye; Lu Shaoxin; Panchapakesan, Balaji

    2009-01-01

    In this paper we report, for the first time, the alignment enhanced photoconductivity of single wall carbon nanotube films upon laser illumination. The photoconductivity exhibited an increase, decrease or even 'negative' values when the laser spot was on different positions between contact electrodes, showing a 'position' dependent photoconductivity of partially aligned films of carbon nanotubes. Photon induced charge carrier generation in single wall carbon nanotubes and subsequent charge separation across the metal-carbon nanotube contacts is believed to cause the photoconductivity changes. A net photovoltage of ∼4 mV and a photocurrent of ∼10 μA were produced under the laser intensity of ∼273 mW with a quantum efficiency of ∼7.8% in vacuum. The photocurrent was observed to be in the direction of nanotube alignment. Finally, there was a strong dependence of the polarization of the incident light on the photocurrent and the orientation of the films influenced the dynamics of the rise and fall of the photocurrent. All of these phenomena clearly have significance in the area of design and fabrication of solar cells, micro-opto-mechanical systems and photodetectors based on carbon nanotubes.

  18. Counter-ions at single charged wall: Sum rules.

    Science.gov (United States)

    Samaj, Ladislav

    2013-09-01

    For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

  19. Alignment characterization of single-wall carbon nanotubes by Raman scattering

    International Nuclear Information System (INIS)

    Liu Pijun; Liu Liyue; Zhang Yafei

    2003-01-01

    A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum

  20. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  1. Charge transport in transparent single-wall carbon nanotube networks

    International Nuclear Information System (INIS)

    Jaiswal, Manu; Wang, Wei; Fernando, K A Shiral; Sun Yaping; Menon, Reghu

    2007-01-01

    We report the electric-field effects and magnetotransport in transparent networks of single-wall carbon nanotubes (SWNT). The temperature dependence of conductance of the network indicates a 2D Mott variable-range hopping (VRH) transport mechanism. Electric field and temperature are shown to have similar effects on the carrier hops and identical exponents for the conductance of the network are obtained from the high electric field and temperature dependences. A power-law temperature dependence with an exponent 3/2 for the threshold field is obtained and explained as a result of the competing contributions from electric field and phonons to the carrier hop. A negative magnetoresistance (MR) is observed at low temperatures, which arises from a forward interference scattering mechanism in the weak scattering limit, consistent with the VRH transport

  2. Diameter modulation of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo

    2012-08-28

    We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.

  3. Fluorescent single walled nanotube/silica composite materials

    Science.gov (United States)

    Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

    2013-03-12

    Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

  4. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-01-01

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an ∼1 μm film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film (∼7 μm) measured by x-ray diffraction is slightly broader, 35±3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics

  5. Electroluminescence from single-wall carbon nanotube network transistors.

    Science.gov (United States)

    Adam, E; Aguirre, C M; Marty, L; St-Antoine, B C; Meunier, F; Desjardins, P; Ménard, D; Martel, R

    2008-08-01

    The electroluminescence (EL) properties from single-wall carbon nanotube network field-effect transistors (NNFETs) and small bundle carbon nanotube field effect transistors (CNFETs) are studied using spectroscopy and imaging in the near-infrared (NIR). At room temperature, NNFETs produce broad (approximately 180 meV) and structured NIR spectra, while they are narrower (approximately 80 meV) for CNFETs. EL emission from NNFETs is located in the vicinity of the minority carrier injecting contact (drain) and the spectrum of the emission is red shifted with respect to the corresponding absorption spectrum. A phenomenological model based on a Fermi-Dirac distribution of carriers in the nanotube network reproduces the spectral features observed. This work supports bipolar (electron-hole) current recombination as the main mechanism of emission and highlights the drastic influence of carrier distribution on the optoelectronic properties of carbon nanotube films.

  6. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    Science.gov (United States)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  7. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  8. Pressure effects on single wall carbon nanotube bundles

    International Nuclear Information System (INIS)

    Teredesai, P.V.; Sharma, S.M.; Karmakar, S.; Sikka, S.K.; Govindaraj, A.; Rao, C.N.R.

    2001-01-01

    We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives dω/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by ∝7-10 cm -1 as compared to the starting sample. (orig.)

  9. A new wall function boundary condition including heat release effect for supersonic combustion flows

    International Nuclear Information System (INIS)

    Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian

    2016-01-01

    Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.

  10. The adventitia: essential regulator of vascular wall structure and function.

    Science.gov (United States)

    Stenmark, Kurt R; Yeager, Michael E; El Kasmi, Karim C; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia V; Li, Min; Riddle, Suzette R; Frid, Maria G

    2013-01-01

    The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.

  11. Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons

    Science.gov (United States)

    Have, Jonas; Pedersen, Thomas G.

    2018-03-01

    The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.

  12. CFD simulation of the atmospheric boundary layer: wall function problems

    NARCIS (Netherlands)

    Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.

    2007-01-01

    Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness

  13. Single walled carbon nanotube composites for bone tissue engineering.

    Science.gov (United States)

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. Copyright © 2013 Orthopaedic Research Society.

  14. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  15. Transient reflectivity on vertically aligned single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Galimberti, Gianluca; Ponzoni, Stefano; Ferrini, Gabriele [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy); Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Arshad, Muhammad [Zernike Institute for Advanced Materials, University of Groningen (Netherlands); ICTP, Strada Costiera 11, I-34151 Trieste (Italy); National Centre for Physics Quaid-i-Azam University Islamabad (Pakistan); Cepek, Cinzia [Istituto Officina dei Materiali — CNR, Laboratorio TASC, Area Science Park, Basovizza, I-34149 Trieste (Italy); Pagliara, Stefania, E-mail: pagliara@dmf.unicatt.it [Interdisciplinary Laboratory for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia (Italy)

    2013-09-30

    One-color transient reflectivity measurements are carried out on two different samples of vertically aligned single-wall carbon nanotube bundles and compared with the response recently published on unaligned bundles. The negative sign of the optical response for both samples indicates that the free electron character revealed on unaligned bundles is only due to the intertube interactions favored by the tube bending. Neither the presence of bundles nor the existence of structural defects in aligned bundles is able to induce a free-electron like behavior of the photoexcited carriers. This result is also confirmed by the presence of non-linear excitonic effects in the transient response of the aligned bundles. - Highlights: • Transient reflectivity measurements on two aligned carbon nanotube samples • Relationship between unalignment and/or bundling and intertube interaction • The bundling is not able to modify the intertube interactions • The presence of structural defects does not affect the intertube interactions • A localized exciton-like behavior has been revealed in these samples.

  16. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  17. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes

    Science.gov (United States)

    Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.

    2005-01-01

    Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.

  18. Economic assessment of single-walled carbon nanotube processes

    Science.gov (United States)

    Isaacs, J. A.; Tanwani, A.; Healy, M. L.; Dahlben, L. J.

    2010-02-01

    The carbon nanotube market is steadily growing and projected to reach 1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling 1,906, 1,706, and 485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  19. Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)]. E-mail: michele.penza@brindisi.enea.it; Tagliente, M.A. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Aversa, P. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Cassano, G. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Capodieci, L. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)

    2006-07-15

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.

  20. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures

    Directory of Open Access Journals (Sweden)

    Sundes Fakher

    2016-09-01

    Full Text Available The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs, metal–insulator–semiconductor (MIS and thin film transistor (TFT structures, using poly(methyl methacrylate (PMMA as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance–voltage (C–V for MIS structures, as well as output and transfer characteristics for transistors. Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses, the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.

  1. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  2. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, A.M.; Nouralishahi, A.; Karimi, A.; Kashefi, K. [Nanotechnology Research Center, Research Institute of petroleum industry (RIPI), Tehran (Iran); Khodadadi, A.A.; Mortazavi, Y. [Chemical engineering Department, University of Tehran, Tehran (Iran)

    2010-09-15

    Due to unique structural, mechanical and electrical properties of single wall carbon nanotubes, SWNTs, they have been proposed as promising hydrogen storage materials especially in automotive industries. This research deals with investing of CNT's and some activated carbons hydrogen storage capacity. The CNT's were prepared through natural gas decomposition at a temperature of 900 C over cobalt-molybdenum nanoparticles supported by nanoporous magnesium oxide (Co-Mo/MgO) during a chemical vapor deposition (CVD) process. The effects of purity of CNT (80-95%wt.) on hydrogen storage were investigated here. The results showed an improvement in the hydrogen adsorption capacity with increasing the purity of CNT's. Maximum adsorption capacity was 0.8%wt. in case of CNT's with 95% purity and it may be raised up with some purification to 1%wt. which was far less than the target specified by DOE (6.5%wt.). Also some activated carbons were manufactured and the results compared to CNTs. There were no considerable H{sub 2}-storage for carbon nanotubes and activated carbons at room-temperature due to insufficient binding between H{sub 2} molecules carbon nanostructures. Therefore, hydrogen must be adsorbed via interaction of atomic hydrogen with the storage environment in order to achieve DOE target, because the H atoms have a very stronger interaction with carbon nanostructures. (author)

  3. Optical absorption of zigzag single walled boron nitride nanotubes

    Science.gov (United States)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-11-01

    In a realistic three-dimensional model, optical matrix element and linear optical absorption of zigzag single walled boron nitride nanotubes (BNNTs) in the tight binding approximation are studied. In terms of absolute value of dipole matrix elements of the first three direct transitions at kz=0, we divided the zigzag BNNTs into three groups and investigated their optical absorption spectrum in energy ranges E7.5 eV. We found that in lower energies, E7.5 eV, their behaviors depend on their even or odd nanotube index. We also found that in the energy range 7

  4. Purity Evaluation of Bulk Single Wall Carbon Nanotube Materials

    International Nuclear Information System (INIS)

    Dettlaff-Weglikowska, U.; Hornbostel, B.; Cech, J.; Roth, S.; Wang, J.; Liang, J.

    2005-01-01

    We report on our experience using a preliminary protocol for quality control of bulk single wall carbon nanotube (SWNT) materials produced by the electric arc-discharge and laser ablation method. The first step in the characterization of the bulk material is mechanical homogenization. Quantitative evaluation of purity has been performed using a previously reported procedure based on solution phase near-infrared spectroscopy. Our results confirm that this method is reliable in determining the nanotube content in the arc-discharge sample containing carbonaceous impurities (amorphous carbon and graphitic particles). However, the application of this method to laser ablation samples gives a relative purity value over 100 %. The possible reason for that might be different extinction coefficient meaning different oscillator strength of the laser ablation tubes. At the present time, a 100 % pure reference sample of laser ablation SWNT is not available, so we chose to adopt the sample showing the highest purity as a new reference sample for a quantitative purity evaluation of laser ablation materials. The graphitic part of the carbonaceous impurities has been estimated using X-ray diffraction of 1:1 mixture of nanotube material and C60 as an internal reference. To evaluate the metallic impurities in the as prepared and homogenized carbon nanotube soot inductive coupled plasma (ICP) has been used

  5. Mechanisms of tryptophan adsorption onto single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhou Jieping; Tan Jun; Xu Pengshou; Sheng Liusi; Pan Guoqiang

    2011-01-01

    Near edge X-ray absorption fine structure spectroscopy (NEXAFS) and synchrotron radiation photoelectron spectroscopy (SRPES) were employed to investigate the adsorption mechanism of tryptophan (Trp) onto single-walled carbon nanotubes (SWCNTs). The difference of the carbon K-edge NEXAFS spectra between Trp molecules and Trp-adsorbed SWCNTs shows that a significant interaction occurs among the SWCNTs and Trp molecules adsorbed. However, negligible changes in the peak profiles and energy positions of nitrogen K-edge imply that neither of the two nitrogen atoms in Trp molecule is involved in the interface interaction. A change of the shape of the main absorption peak at the oxygen K-edge reveals that O atoms of the C=O or C-O or both are likely involved in the interface interaction. The fact that the peak at about 529 eV at the O K-edge become sharper and stronger demonstrates that the O atom in the C=O participates in the interface interaction, which was confirmed by O1s SRPES spectrum. (authors)

  6. Economic assessment of single-walled carbon nanotube processes

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, J. A., E-mail: jaisaacs@coe.neu.ed [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States); Tanwani, A. [Infojini Solutions Inc. (United States); Healy, M. L. [Babcock Power Inc. (United States); Dahlben, L. J. [Northeastern University, NSF Center for High-rate Nanomanufacturing (United States)

    2010-02-15

    The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1,906, $1,706, and $485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

  7. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  8. Superemission in vertically-aligned single-wall carbon nanotubes

    Science.gov (United States)

    Khmelinskii, Igor; Makarov, Vladimir

    2016-09-01

    Presently we used two samples of vertically aligned single-wall carbon nanotubes (VA SWCNTs) with parallelepiped geometry, sized 0.02 cm × 0.2 cm × 1.0 cm and 0.2 cm × 0.2 cm × 1.0 cm. We report absorption and emission properties of the VA SWCNTs, including strong anisotropy in both their absorption and emission spectra. We found that the emission spectra extend from the middle-IR range to the near-IR range, with such extended spectra being reported for the first time. Pumping the VA SWCNTs in the direction normal to their axis, superemission (SE) was observed in the direction along their axis. The SE band maximum is located at 7206 ± 0.4 cm-1. The energy and the power density of the superemission were estimated, along with the diffraction-limited divergence. At the pumping energy of 3 mJ/pulse, the SE energy measured by the detector was 0.74 mJ/pulse, corresponding to the total SE energy of 1.48 mJ/pulse, with the energy density of 18.5 mJ cm-2/pulse and the SE power density of 1.2 × 105 W cm-2/pulse. We report that a bundle of VA SWCNTs is an emitter with a relatively small divergence, not exceeding 3.9 × 10-3 rad. We developed a theoretical approach to explain such absorption and emission spectra. The developed theory is based on the earlier proposed SSH theory, which we extended to include the exchange interactions between the closest SWCNT neighbors. The developed theoretical ideas were implemented in a homemade FORTRAN code. This code was successfully used to calculate and reproduce the experimental spectra and to determine the SWCNT species that originate the respective absorption bands, with acceptable agreement between theory and experiment.

  9. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    Science.gov (United States)

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  10. Vibrational Analysis of Curved Single-Walled Carbon Nanotube on a Pasternak Elastic Foundation

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Kimiaeifar, Amin

    2012-01-01

    . By utilizing He’s Energy Balance Method (HEBM), the relationships of the nonlinear amplitude and frequency were expressed for a curved, single-walled carbon nanotube. The amplitude frequency response curves of the nonlinear free vibration were obtained for a curved, single-walled carbon nanotube embedded...

  11. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  12. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  13. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  14. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Li, Yueli; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2017-05-01

    Porous carbon-based catalysts showing high catalytic activity for SO2 oxidation to SO3 is often used in flue gas desulfurization. Their catalytic activity has been ascribed in many publications to the microporous structure and the effect of its spatial confinement. First principles method was used to investigate the adsorption and oxidation of SO2 on the inner and outer surface of single-walled carbon nanotubes (SWCNTs) with different diameters. It is interesting to found that there is a direct correlation: the barrier for the oxidation O_SWCNT + SO2 → SO3 + SWCNT monotonically decreases with the increase of SWCNTs' curvature. The oxygen functional located at the inner wall of SWCNTs with small radius is of higher activity for SO2 oxidation, which is extra enhanced by the spatial confinement effects of SWCNTs. These findings can be useful for the development of carbon-based catalysts and provide clues for the optimization and design of porous carbon catalysts.

  15. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    International Nuclear Information System (INIS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  16. Effect of amino acid-functionalized multi-walled carbon nanotubes ...

    Indian Academy of Sciences (India)

    In a single-step, rapid microwave-assisted process, multi-walled carbon nanotubes were functionalized by -valine amino acid. Formation of amino acid on nanotube surface was confirmed by Fourier transform-infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, field emission scanning and transmission ...

  17. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    Science.gov (United States)

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  18. Application of electron energy loss spectroscopy for single wall carbon nanotubes (review)

    International Nuclear Information System (INIS)

    Mittal, N.; Jain, S.; Mittal, J.

    2015-01-01

    Electron energy loss spectroscopy (EELS) is among the few techniques that are available for the characterization of modified single wall carbon nanotubes (SWCNTs) having nanometer dimensions (~1-3 nm). CNTs can be modified either by surface functionalization or coating, between bundles of nanotubes by doping, intercalation and fully or partially filling the central core. EELS is an exclusive technique for the identification, composition analysis, and crystallization studies of the chemicals and materials used for the modification of SWCNTs. The present paper serves as a compendium of research work on the application of EELS for the characterization of modified SWCNTs. (authors)

  19. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  20. Laser-induced forward transfer of single-walled carbon nanotubes

    Science.gov (United States)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  1. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo; Govind, Niranjan; Apra, Edoardo; Klemm, Michael; Hammond, Jeff R.; Kowalski, Karol

    2017-02-03

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent of nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.

  2. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  3. Hot wire production of single-wall and multi-wall carbon nanotubes

    Science.gov (United States)

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  4. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta...... a low toxicity of the conjugates in the THP-1 cells. The low toxicity and the cellular uptake of single-walled carbon nanotube–folic acid by cancer cells suggest their potential use in carbon nanotube-based drug delivery systems and in the diagnosis of cancer or tropical diseases such as leishmaniasis....

  5. Functional residual capacity increase during laparoscopic surgery with abdominal wall lift

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueda

    Full Text Available Abstract Background and objectives: The number of laparoscopic surgeries performed is increasing every year and in most cases the pneumoperitoneum method is used. One alternative is the abdominal wall lifting method and this study was undertaken to evaluate changes of functional residual capacity during the abdominal wall lift procedure. Methods: From January to April 2013, 20 patients underwent laparoscopic cholecystectomy at a single institution. All patients were anesthetized using propofol, remifentanil and rocuronium. FRC was measured automatically by Engstrom Carestation before the abdominal wall lift and again 15 minutes after the start of the procedure. Results: After abdominal wall lift, there was a significant increase in functional residual capacity values (before abdominal wall lift 1.48 × 103 mL, after abdominal wall lift 1.64 × 103 mL (p < 0.0001. No complications such as desaturation were observed in any patient during this study. Conclusions: Laparoscopic surgery with abdominal wall lift may be appropriate for patients who have risk factors such as obesity and respiratory disease.

  6. van der Waals interaction between a microparticle and a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Blagov, E. V.; Mostepanenko, V. M.; Klimchitskaya, G. L.

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-walled carbon nanotube are obtained. The single-walled nanotube is considered as a cylindrical sheet carrying a two-dimensional free-electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-walled carbon nanotubes of different radii. Comparison studies of the van der Waals interaction of hydrogen atoms with single-walled and multiwalled carbon nanotubes show that depending on atom-nanotube separation distance, the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls

  7. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    Energy Technology Data Exchange (ETDEWEB)

    Bruhl, Jakob C., E-mail: jbruhl@purdue.edu; Varma, Amit H., E-mail: ahvarma@purdue.edu; Kim, Joo Min, E-mail: kim1493@purdue.edu

    2015-12-15

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  8. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    International Nuclear Information System (INIS)

    Bruhl, Jakob C.; Varma, Amit H.; Kim, Joo Min

    2015-01-01

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  9. The clinical meaning of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.; Dumont, M. [Centre Hospitalier Universitaire de Quebec, Dept. of Nuclear Medicine, Quebec, Quebec (Canada)]. E-mail: christian.cote@chuq.qc.ca

    2004-06-01

    To evaluate prospectively the incidence and clinical meaning, if any, of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography (SPECT). This phenomenon is completely different from the well-known intraluminal gastric reflux of sestamibi. A group of 819 patients who underwent sestamibi cardiac SPECT was studied from January 2000 to October 2000. Gastric-wall activity was graded qualitatively. Only patients with gastric-wall activity near or equivalent to their heart activity were considered for subsequent analysis. The medical records of patient candidates were reviewed, and their family physicians were asked to respond to a questionnaire by telephone when further information was needed. We identified 13 patients with significant gastric-wall hyperactivity, which was more intense on rest images. Our review of the clinical data shows that all these patients were suffering from dyspepsia and were taking gastric medication. These 13 cases were assigned to 3 groups: gastroesophageal reflux, chronic functional dyspepsia and nonspecific gastritis. Significant gastric-wall hyperactivity is an infrequent observation on sestamibi cardiac SPECT. Our results indicate that the presence of significant gastric-wall hyperactivity is associated with dyspepsia. It is important to realize that this gastric-wall hyperactivity by its proximity to the inferior myocardial wall could in some circumstances lead to either false-negative or false-positive findings, representing a diagnostic problem. Although infrequent, this situation could be avoided by proper quality control, including a systematic review of the raw cine data before reading the images. (author)

  10. Histology types of chest wall tumours: Fifteen year single center ...

    African Journals Online (AJOL)

    Materials and Methods: We performed a retrospective study of chest wall tumours at our institution(NCTCE, UNTH, Enugu, Nigeria), for a period of 15 years, spanning October, 2001 to September, 2015.The pathologic reports were retrieved from the hospital pathology archives and correlated with patients' copies in the ...

  11. Quantitative Analysis of Isolated Single-Wall Carbon Nanotubes with Their Molar Absorbance Coefficients

    Directory of Open Access Journals (Sweden)

    Shota Kuwahara

    2014-01-01

    Full Text Available The molar absorbance coefficients of metallic, semiconducting, and (6,5 chirality enriched single-wall carbon nanotubes were evaluated by a spray technique combined with atomic force microscopy. Single-wall carbon nanotubes with isolated and a single predominant electronic type were obtained by using the density-gradient ultracentrifugation technique. In the visible region, all coefficients had similar values around 2–5 × 109/mL mol−1 cm−1, independent of their diameter distribution and the electronic types of single-wall carbon nanotubes, and the εS22/εM11  and εS11/εM11 were estimated to be 1.0 and 4.0, respectively. The coefficient strongly depends on the length of single-wall carbon nanotubes, independent of their electronic types and chirality.

  12. Theoretical study on the combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Guo; Huang, Yuanhe

    2012-01-01

    Highlights: ► The combined systems of peanut-shaped carbon nanotubes encapsulated in single-walled carbon nanotubes are investigated. ► The band structures and related electronic properties are calculated by using crystal orbital method. ► The carrier mobility and mean free path are evaluated under the deformation potential theory. -- Abstract: The combined systems of peanut-shaped carbon nanotubes encapsulated in both semiconducting and metallic single-walled carbon nanotubes are investigated by using self-consistent field crystal orbital method based on the density functional theory. The investigation indicates that the interaction between the two constituents is mainly contributed by the π orbitals. The encapsulation does not change the semiconducting or metallic nature of the single-walled carbon nanotubes, but significantly changes the band dispersion and decreases the frontier band width of the metallic one. The carrier mobility and mean free path of the metallic single-walled carbon nanotube increase greatly after the encapsulation. The calculated mobilities have the order of 10 3 cm 2 V −1 s −1 for both of the semiconducting and metallic double-walled carbon nanotubes.

  13. An analytical wall-function for turbulent flows and heat transfer over rough walls

    International Nuclear Information System (INIS)

    Suga, K.; Craft, T.J.; Iacovides, H.

    2006-01-01

    This paper reports the development of a refined wall-function strategy for the modelling of turbulent forced convection heat transfer over smooth and rough surfaces. In order to include the effects of fine-grain surface roughness, the present study extends a more fundamental work by Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002. Progress in the generalisation of wall-function treatment. Int. J. Heat Fluid Flow 23, 148-160] on the development of advanced wall-functions of general applicability. The presently proposed model is validated through comparisons with data available for internal flows through channels and for external flows over flat and curved plates with both smooth and rough surfaces. Then, its further validation in separating flows over a sand dune and a sand-roughened ramp is discussed. The validation results suggest that the presently proposed form can be successfully applied to a wide range of attached and separated turbulent flows with heat transfer over smooth and fine-grain rough surfaces

  14. Random trees between two walls: exact partition function

    International Nuclear Information System (INIS)

    Bouttier, J; Di Francesco, P; Guitter, E

    2003-01-01

    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labelled by integers representing their position in the target space, with the solid-on-solid constraint that adjacent vertices have labels differing by ±1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p function with constrained periods. These results are used to analyse the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs

  15. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  16. Giant electrical power factor in single-walled chiral carbon nanotube

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Nkrumah, G.

    2001-10-01

    Using the semiclassical approach we studied the thermoelectrical properties of single-walled chiral carbon nanotubes (SWNTs). We predict a giant electrical power factor and hence proposed the use of carbon nanotubes as thermoelements for refrigeration. (author)

  17. Monte-Carlo Simulation of Hydrogen Adsorption in Single-Wall Carbon Nano-Cones

    Directory of Open Access Journals (Sweden)

    Zohreh Ahadi

    2011-01-01

    Full Text Available The properties of hydrogen adsorption in single-walled carbon nano-cones are investigated in detail by Monte Carlo simulations. A great deal of our computational results show that the hydrogen storage capacity in single-walled carbon nano-cones is slightly smaller than the capacity of single-walled carbon nanotubes at any time at the same conditions. This indicates that the hydrogen storage capacity of single-walled carbon nano-cones is related to angles of carbon nano-cones. It seems that these type of nanotubes could not exceed the 2010 goal of 6 wt%, which is presented by the U.S. Department of Energy. In addition, these results are discussed in theory.

  18. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Directory of Open Access Journals (Sweden)

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  19. Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality. Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle, a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube. In this study, we investigated the bandstructure fluctuations caused by the nanotube strain, which depends on both the vacancy density and the tube chirality. These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Vertical Alignment of Single-Walled Carbon Nanotubes on Nanostructure Fabricated by Atomic Force Microscope

    National Research Council Canada - National Science Library

    Lee, Haiwon

    2007-01-01

    This project focused on the behavior of single-wall carbon nanotubes (SWCNTs) in the electrophoresis cells and aligned growth of SWCNTs by thermal chemical vapor deposition on selectively deposited metallic nanoparticle...

  1. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  2. Immunosensors Based on Single-Walled Carbon Nanotubes (SWCNT for the Detection of Deep Venous Thrombosis

    Directory of Open Access Journals (Sweden)

    Sondes BOURIGUA

    2014-05-01

    Full Text Available Thanks to their properties, Single-Walled carbon nanotubes (SWNT open a new way to the fabrication of Immunosensors with the particularity to amplify the response signal from antibody–antigen interaction and to improve the Immunosensors characteristics. In this context, two new impedimetric immunosensors were developed by immobilizing antibody on Single-Walled carbon, the later was immobilized following two ways the first consist of immobilizing the carbon nanotubes on a polypyrrole layer by adsorption and the second consist of functionalized gold with amino thiol and then immobilizing the carbon nanotubes with covalent binding. The electrical properties and the morphology of the immunosensors have been characterized respectively by Electrochemical Impedance Spectroscopy, cyclic voltammetry and Atomic Force Spectroscopy. A low detection limit for both immunosensors was determined as 1 pg/ml and linear ranges up to 10 ng/ml with polypyrrole and up to 100 ng/ml with amino thiol were obtained. Moreover, the studied Immunosensors exhibited high sensitivity, stability and reproducibility.

  3. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-08-19

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  4. Advances in NO2 sensing with individual single-walled carbon nanotube transistors.

    Science.gov (United States)

    Chikkadi, Kiran; Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors.

  5. The synthesis and filling of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Friedrichs, Steffi

    2002-01-01

    This thesis is concerned with the synthesis, properties and application of single-walled carbon nanotubes (SWNTs). The two main objectives of the work were the development of a continuous-flow synthesis of SWNTs, using chemical vapour deposition (CVD) techniques, and the application of the hollow SWNTs as moulds for the study of the crystallisation behaviour of inorganic materials in the confined space of their inner cavity. The latter study was mainly performed by interpreting high-resolution transmission electron microscopy (HRTEM) images of the filled SWNTs. A so-called focal series restoration approach, which enhances the resolution of the images and thereby increases the information content, was employed where possible. Chapter I reviews the previous work in the field of SWNTs and introduces their basic structure, symmetry, physical and mechanical properties and the common methods of SWNT synthesis. The chapter ends with an overview of the techniques used in the present work for the characterisation of carbon nanotube samples by giving a description of the high-resolution transmission electron microscopy (HRTEM) techniques and the digital image processing method. Other physical measurement techniques used, such as Raman spectroscopy and thermogravimetric analysis (TGA), are discussed with reference to their application for the characterisation of carbon nanotubes. Chapter II describes the development of an improved synthesis strategy for SWNTs. A continuous-flow chemical vapour deposition (CVD) method was explored using carbon monoxide or mixtures of methane and hydrogen as the carbon feedstock gas and introducing various volatile organometallic compounds to catalyse the formation of SWNTs. In this study, a special water-cooled copper nozzle was designed and built so as to prevent the premature decompositiont (disproportionation) of the reactants (the carbon monoxide gas) and to allow their direct introduction into the centre of the hot reaction zone. A

  6. Chronic abdominal wall pain misdiagnosed as functional abdominal pain.

    Science.gov (United States)

    van Assen, Tijmen; de Jager-Kievit, Jenneke W A J; Scheltinga, Marc R; Roumen, Rudi M H

    2013-01-01

    The abdominal wall is often neglected as a cause of chronic abdominal pain. The aim of this study was to identify chronic abdominal wall pain syndromes, such as anterior cutaneous nerve entrapment syndrome (ACNES), in a patient population diagnosed with functional abdominal pain, including irritable bowel syndrome, using a validated 18-item questionnaire as an identification tool. In this cross-sectional analysis, 4 Dutch primary care practices employing physicians who were unaware of the existence of ACNES were selected. A total of 535 patients ≥18 years old who were registered with a functional abdominal pain diagnosis were approached when they were symptomatic to complete the questionnaire (maximum 18 points). Responders who scored at least the 10-point cutoff value (sensitivity, 0.94; specificity, 0.92) underwent a diagnostic evaluation to establish their final diagnosis. The main outcome was the presence and prevalence of ACNES in a group of symptomatic patients diagnosed with functional abdominal pain. Of 535 patients, 304 (57%) responded; 167 subjects (31%) recently reporting symptoms completed the questionnaire. Of 23 patients who scored above the 10-point cutoff value, 18 were available for a diagnostic evaluation. In half of these subjects (n = 9) functional abdominal pain (including IBS) was confirmed. However, the other 9 patients were suffering from abdominal wall pain syndrome, 6 of whom were diagnosed with ACNES (3.6% prevalence rate of symptomatic subjects; 95% confidence interval, 1.7-7.6), whereas the remaining 3 harbored a painful lipoma, an abdominal herniation, and a painful scar. A clinically relevant portion of patients previously diagnosed with functional abdominal pain syndrome in a primary care environment suffers from an abdominal wall pain syndrome such as ACNES.

  7. The forced sound transmission of finite single leaf walls using a variational technique.

    Science.gov (United States)

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  8. The forced sound transmission of finite single leaf walls using a variational technique

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size......, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound...... insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements...

  9. Formation of transition metal cluster adducts on the surface of single-walled carbon nanotubes: HRTEM studies

    KAUST Repository

    Kalinina, Irina V.

    2014-01-01

    We report the formation of chromium clusters on the outer walls of single-walled carbon nanotubes (SWNTs). The clusters were obtained by reacting purified SWNTs with chromium hexacarbonyl in dibutyl ether at 100°C. The functionalized SWNTs were characterized by thermogravimetic analysis, XPS, and high-resolution TEM. The curvature of the SWNTs and the high mobility of the chromium moieties on graphitic surfaces allow the growth of the metal clusters and we propose a mechanism for their formation. © 2014 Taylor and Francis Group, LLC.

  10. The measurement of the transmission loss of single leaf walls and panels by an impulse method

    Science.gov (United States)

    Balilah, Y. A.; Gibbs, B. M.

    1988-06-01

    The standard methods of measurement and rating of sound insulation of panels and walls are generally time-consuming and require expensive and often bulky equipment. In addition, the methods establish only that there has been failure to comply with insulation requirements without indicating the mode of failure. An impulse technique is proposed for the measurement of walls and partitions in situ. The method requires the digital capture of a short duration signal generated by a loudspeaker, and the isolation of the direct component from other reflected and scattered components by time-of-flight methods and windowing. The signal, when transferred from the time to frequency domain by means of fast Fourier transforms, can yield the sound insulation of a partition expressed as a transfer function. Experimental problems in the use of this technique, including those resulting from sphericity of the incident wave front and concentric bending excitation of the partition, are identified and methods proposed for their elimination. Most of the results presented are of single leaf panels subjected to sound at normal incidence, although some measurements were undertaken at oblique incidence. The range of surface densities considered was 7-500 kg/m 2, the highest value corresponding to a brick and plaster wall of thickness 285 mm. Measurement is compared with theoretical prediction, at one-third octave intervals in a frequency range of 100-5000 Hz, or as a continuous function of frequency with a typical resolution of 12·5 Hz. The dynamic range of the measurement equipment sets an upper limit to the measurable transmission loss. For the equipment eventually employed this was represented by a random incidence value of 50 dB.

  11. Solubilization of Single-walled Carbon Nanotubes with Single- stranded DNA Generated from Asymmetric PCR

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2007-07-01

    Full Text Available Carbon nanotubes (CNTs can be effectively dispersed and functionalized bywrapping with long single-stranded DNA (ssDNA synthesized by asymmetric PCR. ThessDNA-CNTs attached on surface of glass carbon electrode made it possible forelectrochemical analysis and sensing, which was demonstrated by reduction of H2O2 onhemoglobin/ssDNA-CNTs modified electrodes. This research showed the potentialapplication of DNA-functionalised CNTs in construction of future electrochemicalbiosensors.

  12. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  13. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Diniz, Ginetom S.; Ulloa, Sergio E.

    2014-01-01

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  14. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E. [Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701-2979 (United States)

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  15. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation

    International Nuclear Information System (INIS)

    Zhang, Da Peng; Lei, Yong Jun; Shen, Zhi Bin; Wang, Cheng Yuan

    2017-01-01

    Vibration responses were investigated for a viscoelastic Single-walled carbon nanotube (visco-SWCNT) resting on a viscoelastic foundation. Based on the nonlocal Euler-Bernoulli beam model, velocity-dependent external damping and Kelvin viscoelastic foundation model, the governing equations were derived. The Transfer function method (TFM) was then used to compute the natural frequencies for general boundary conditions and foundations. In particular, the exact analytical expressions of both complex natural frequencies and critical viscoelastic parameters were obtained for the Kelvin-Voigt visco-SWCNTs with full foundations and certain boundary conditions, and several physically intuitive special cases were discussed. Substantial nonlocal effects, the influence of geometric and physical parameters of the SWCNT and the viscoelastic foundation were observed for the natural frequencies of the supported SWCNTs. The study demonstrates the efficiency and robustness of the developed model for the vibration of the visco-SWCNT-viscoelastic foundation coupling system

  16. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    Science.gov (United States)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  17. Structural and electronic properties of chiral single-wall copper nanotubes

    Science.gov (United States)

    Duan, YingNi; Zhang, JianMin; Xu, KeWei

    2014-04-01

    The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

  18. Transverse electric field–induced deformation of armchair single-walled carbon nanotube

    Directory of Open Access Journals (Sweden)

    Yuan Ningyi

    2010-01-01

    Full Text Available Abstract The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-010-9617-y contains supplementary material, which is available to authorized users. Click here for file

  19. Evolution of dispersion coefficient in the single rough-walled fracture before and after circulated flow near the wall

    Science.gov (United States)

    Lee, S.; Yeo, I.; Lee, K.

    2012-12-01

    Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re 2.78. The reason of this transition zone was related to the generation of circulated flow near the wall. It can flush the trapped contaminant out to the main flow channel, which makes tailing effect diminished. Also, these circulation zones were visualized using microscope, CCD camera and fluorescent particles.

  20. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  1. Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2011-07-01

    Full Text Available The effective parameters of (5, 0 and (5, 5 single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide  molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and parallel to the internal and external walls has been investigated. The carbon dioxide molecule is predicted to bind only weakly to nanotubes, and the tube-molecule interactions can be identified as physisorption. CO2 adsorption is stronger on external wallsthan on internal walls, and adsorption on the external wall of (5, 0 is stronger than on the external wall of (5, 5; the adsorption energies are exothermic and equal to -0.8884 and -0.0528 kcal/mol, respectively. The rotation energy barrier for (5, 5 is lower than that for (5, 0 in all rotations, therefore in these interactions (5, 5 is more active. The energy gap significantly changes in the presence of  carbon  dioxide molecules on the inside surface of (5, 0 and the electric conductivity is affected, but no remarkable change is observed in the electronic structure of (5, 5.

  2. Optical transmission of nematic liquid crystal 5CB doped by single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Lisetski, L N; Fedoryako, A P; Samoilov, A N; Minenko, S S; Soskin, M S; Lebovka, N I

    2014-08-01

    Comparative studies of optical transmission of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), dispersed in nematic liquid crystal matrix 5CB, were carried out. The data evidence violations of Beer-Lambert-Bouguer (BLB) law both in cell thickness and concentration dependencies. The most striking is the fact that optical transmission dependencies for SWCNTs and MWCNTs were quite different in the nematic phase, but they were practically indistinguishable in the isotropic phase. Monte Carlo simulations of the impact of aggregation on direct transmission and violation of BLB law were also done. The results were discussed accounting for the tortuous shape of CNTs, their physical properties and aggregation, as well as strong impact of perturbations of the nematic 5CB structure inside coils and in the vicinity of CNT aggregates.

  3. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Collapse and stability of single- and multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Xiao, J; Liu, B; Huang, Y; Zuo, J; Hwang, K-C; Yu, M-F

    2007-01-01

    The collapse and stability of carbon nanotubes (CNTs) have important implications for their synthesis and applications. While nanotube collapse has been observed experimentally, the conditions for the collapse, especially its dependence on tube structures, are not clear. We have studied the energetics of the collapse of single- and multi-wall CNTs via atomistic simulations. The collapse is governed by the number of walls and the radius of the inner-most wall. The collapsed structure is energetically favored about a certain diameter, which is 4.12, 4.96 and 5.76 nm for single-, double- and triple-wall CNTs, respectively. The CNT chirality also has a strong influence on the collapsed structure, leading to flat, warped and twisted CNTs, depending on the chiral angle

  5. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Cheng, Heyong; Wang, Yuanchao

    2017-08-01

    Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Koh, Byumseok; Cheng, Wei

    2015-08-01

    Sonication process is regularly adopted for dispersing single-walled carbon nanotubes (SWCNTs) in an aqueous medium. This can be achieved by either covalent functionalization of SWCNTs with strong acid or by noncovalent functionalization using dispersants that adsorb onto the surface of SWCNTs during dispersion. Because the dispersion process is usually performed using sonication, unintentional free radical formation during sonication process may induce covalent modification of SWCNT surface. Herein, we have systematically investigated the status of SWCNT surface modification under various sonication conditions using Raman spectroscopy. Comparing ID /IG (Raman intensities between D and G bands) ratio of SWCNTs under various sonication conditions suggests that typical sonication conditions (1-6 h bath sonication with sonication power between 3 and 80 W) in aqueous media do not induce covalent modification of SWCNT surface. In addition, we confirm that SWCNT dispersion with single-stranded DNA (ssDNA) involves noncovalent adsorption of ssDNA onto the surface of SWCNTs, but not covalent linkage between ssDNA and SWCNT surface. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    International Nuclear Information System (INIS)

    Abu-Assy, M.K.; Soliman, M.S.

    2016-01-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  8. Channeling potential in single-walled carbon nanotubes: The effect of radial deformation

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)

    2016-10-01

    We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.

  9. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    Science.gov (United States)

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  10. A new method of preparing single-walled carbon nanotubes

    Indian Academy of Sciences (India)

    Unknown

    microwave acid digestion to reduce the time taken for the purification. High temperature annealing of the purified samples has been adopted by some procedures.12,15 This removes the chemical functional groups created on the nanotube surface due to acid treatment.1,2 It is also important to note that the purification ...

  11. Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow

    International Nuclear Information System (INIS)

    Bostjan Koncar; Borut Mavko; Yassin A Hassan

    2005-01-01

    Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling

  12. Tight binding simulation study on zigzag single-walled carbon nanotubes

    Science.gov (United States)

    Sharma, Deepa; Jaggi, Neena; Gupta, Vishu

    2018-01-01

    Tight binding simulation studies using the density functional tight binding (DFTB) model have been performed on various zigzag single-walled carbon-nanotubes (SWCNTs) to investigate their electronic properties using DFTB module of the Material Studio Software version 7.0. Various combinations of different eigen-solvers and charge mixing schemes available in the DFTB Module have been tried to chalk out the electronic structure. The analytically deduced values of the bandgap of (9, 0) SWCNT were compared with the experimentally determined value reported in the literature. On comparison, it was found that the tight binding approximations tend to drastically underestimate the bandgap values. However, the combination of Anderson charge mixing method with standard eigensolver when implemented using the smart algorithm was found to produce fairly close results. These optimized model parameters were then used to determine the band structures of various zigzag SWCNTs. (9, 0) Single-walled Nanotube which is extensively being used for sensing NH3, CH4 and NO2 has been picked up as a reference material since its experimental bandgap value has been reported in the literature. It has been found to exhibit a finite energy bandgap in contrast to its expected metallic nature. The study is of utmost significance as it not only probes and validates the simulation route for predicting suitable properties of nanomaterials but also throws light on the comparative efficacy of the different approximation and rationalization quantum mechanical techniques used in simulation studies. Such simulation studies if used intelligently prove to be immensely useful to the material scientists as they not only save time and effort but also pave the way to new experiments by making valuable predictions.

  13. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines

    International Nuclear Information System (INIS)

    Zhao, Junhua; Lu, Lixin; Rabczuk, Timon

    2014-01-01

    Recently, Geblinger et al. [Nat. Nanotechnol. 3, 195 (2008)] and Machado et al. [Phys. Rev. Lett. 110, 105502 (2013)] reported the experimental and molecular dynamics realization of S-like shaped single-walled carbon nanotubes (CNTs), the so-called CNT serpentines. We reported here results from continuum modeling of the binding energy γ between different single- and multi-walled CNT serpentines and substrates as well as the mechanical stability of the CNT serpentine formation. The critical length for the mechanical stability and adhesion of different CNT serpentines are determined in dependence of E i I i , d, and γ, where E i I i and d are the CNT bending stiffness and distance of the CNT translation period. Our continuum model is validated by comparing its solution to full-atom molecular dynamics calculations. The derived analytical solutions are of great importance for understanding the interaction mechanism between different single- and multi-walled CNT serpentines and substrates

  14. Single-Walled Carbon Nano tubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    International Nuclear Information System (INIS)

    Upadhyayula, V.K.K

    2008-01-01

    The possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k) for S.aureus and E.coli determined from batch adsorption study was found to be 9 x108 and 2 x108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  15. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)

    2008-08-13

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.

  16. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    Kandemir, B S; Keskin, M

    2008-01-01

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction

  17. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  18. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  20. Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Thurakitseree, T.; Zhao, Pei; Chiashi, Shohei; Maruyama, Shigeo [Department of Mechanical Engineering, University of Tokyo (Japan); Kramberger, Christian [Faculty of Physics, University of Vienna (Austria); Einarsson, Erik [Department of Mechanical Engineering, University of Tokyo (Japan); Global Center of Excellence for Mechanical Systems Innovation, University of Tokyo (Japan)

    2012-12-15

    Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition (CVD) from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates is a versatile approach towards the direct synthesis of tailored single-walled carbon nanotubes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    Science.gov (United States)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  2. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes

    KAUST Repository

    Smajic, Jasmin

    2017-08-16

    Phosphorus boasts extremely high gravimetric and volumetric capacities but suffers from poor electrochemical stability with significant capacity loss immediately after the first cycle. We propose to circumvent this issue by mixing amorphous red phosphorus with single-walled carbon nanotubes. Employing a non-destructive sublimation–deposition method, we have synthesized composites where the synergetic effect between red phosphorus and single-walled carbon nanotubes allows for a considerable improvement in the electrochemical stability of battery anodes. In contrast to the average 40% loss of capacity after 50 cycles for other phosphorus–carbon composites in the literature, our material shows losses of just 22% under analogous cycling conditions.

  3. Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry

    Science.gov (United States)

    Um, Jo-Eun; Song, Sun Gu; Yoo, Pil J.; Song, Changsik; Kim, Woo-Jae

    2018-01-01

    Single-walled carbon nanotubes (SWCNTs) can be either metallic or semiconducting, making their separation critical for applications in nanoelectronics, biomedical materials, and solar cells. Herein, we investigate a novel solution-phase separation method based on click chemistry (azide-alkyne Huisgen cycloaddition) and determine its efficiency and scalability. In this method, metallic SWCNTs in metallic/semiconducting SWCNT mixtures are selectively functionalized with alkyne groups by being reacted with 4-propargyloxybenezenediazonium tetrafluoroborate. Subsequently, silica nanoparticles are functionalized with azide groups and reacted with alkyne-bearing metallic SWCNTs in the SWCNT mixture in the presence of a Cu catalyst. As a result, metallic SWCNTs are anchored on silica powder, whereas non-functionalized semiconducting SWCNTs remain in solution. Low-speed centrifugation effectively removes the silica powder with attached metallic SWCNTs, furnishing a solution of highly pure semiconducting SWCNTs, as confirmed by Raman and UV-vis/near-infrared absorption measurements. This novel separation scheme exhibits the advantage of simultaneously separating both metallic and semiconducting SWCNTs from their mixtures, being cost-effective and therefore applicable at an industrial scale.

  4. Impact of cell-voltage on energy and power performance of supercapacitors with single-walled carbon nanotube electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Izadi-Najafabadi, Ali; Yamada, Takeo; Futaba, Don N.; Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Hatori, Hiroaki [Project Headquarters, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Hata, Kenji [Japan Science and Technology Agency JST, Kawaguchi (Japan)

    2010-12-15

    We report the energy and power voltage-dependencies of supercapacitors using single-walled carbon nanotube electrodes. The energy density was dependent on the cell-voltage cubed (up to 4 V: E = 1.43 x V{sup 3}). The cubic relationship was attributed to the linear increase of the capacitance as a function of voltage, enabled by electrochemical doping. Furthermore, while up to 3.5 V, the maximum power rating of the nanotube electrodes increased as a function of the cell-voltage squared, beyond 3.5 V, a decline in power was observed as a result of depletion of the electrolyte's ions. (author)

  5. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  6. Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films

    International Nuclear Information System (INIS)

    Badawi, Ali; Al Hosiny, N.

    2015-01-01

    Dynamic mechanical properties of nanocomposite films with different ratios of single walled carbon nanotubes/polymethyl methacrylate (SWCNTs/PMMA) are studied. Nanocomposite films of different ratios (0, 0.5, 1.0, and 2.0 weight percent (wt%)) of SWCNTs/PMMA are fabricated by using a casting technique. The morphological and structural properties of both SWCNT powder and SWCNTs/PMMA nanocomposite films are investigated by using a high resolution transmission electron microscope and x-ray diffractometer respectively. The mechanical properties including the storage modulus, loss modulus, loss factor (tan δ) and stiffness of the nanocomposite film as a function of temperature are recorded by using a dynamic mechanical analyzer at a frequency of 1 Hz. Compared with pure PMMA film, the nanocomposite films with different ratios of SWCNTs/PMMA are observed to have enhanced storage moduli, loss moduli and high stiffness, each of which is a function of temperature. The intensity of the tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The glass transition temperature (T g ) of SWCNTs/PMMA nanocomposite film shifts towards the higher temperature side with respect to pure PMMA film from 91.2 °C to 99.5 °C as the ratio of SWCNTs/PMMA increases from 0 to 2.0 wt%. (paper)

  7. Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells

    KAUST Repository

    Del Gobbo, Silvano; Castrucci, P.; Fedele, S.; Riele, L.; Convertino, A.; Morbidoni, M.; De Nicola, F.; Scarselli, M.; Camilli, L.; De Crescenzi, M.

    2013-01-01

    Photovoltaic devices based on single wall carbon nanotubes (SWCNTs) and n-silicon multiple heterojunctions have been fabricated by a SWCNT film transferring process. We report on the ability of the carbon nanotubes to extend the Si spectral range towards the near ultraviolet (UV) and the near infrared regions. Semiconducting and about metallic SWCNT networks have been studied as a function of the film sheet resistance, Rsh. Optical absorbance and Raman spectroscopy have been used to assign nanotube chirality and electronic character. This gave us hints of evidence of the participation of the metal nanotubes in the photocurrent generation. Moreover, we provide evidence that the external quantum efficiency spectral range can be modulated as a function of the SWCNT network sheet resistance in a hybrid SWCNT/Si solar cell. This result will be very useful to further design/optimize devices with improved performance in spectral regions generally not covered by conventional Si p-n devices. © 2013 The Royal Society of Chemistry.

  8. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  9. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy

    NARCIS (Netherlands)

    Golden, M.S.; Fink, J.; Dunsch, L.; Bauer, H.-D.; Reibold, M.; Knupfer, M.; Friedlein, R.; Pichler, T.; Jost, O.

    1999-01-01

    The influence of the synthesis parameters on the mean characteristics of single-wall carbon nanotubes in soot produced by the laser vaporization of graphite has been analyzed using optical absorption spectroscopy. The abundance and mean diameter of the nanotubes were found to be most influenced by

  10. Statistical Characterization of Dispersed Single-Wall Carbon Nanotube Quantum Dots

    International Nuclear Information System (INIS)

    Shimizu, M; Moriyama, S; Suzuki, M; Fuse, T; Homma, Y; Ishibashi, K

    2006-01-01

    Quantum dots have been fabricated in single-wall carbon nanotubes (SWCNTs) simply by depositing metallic contacts on top of them. The fabricated quantum dots show different characteristics from sample to sample, which are even different in samples fabricated in the same chip. In this report, we study the statistical variations of the quantum dots fabricated with our method, and suggest their possible origin

  11. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  12. Comparative Study of Single- and Multi-Wall Carbon Nanotubes with Application in Cerebral Aneurysm

    Directory of Open Access Journals (Sweden)

    Rodica-Mariana Ion

    2011-01-01

    Full Text Available Helping improve humanity is one of the promises of nanotech-
    nology and nanomedicine. This paper will highlight some of the research findings in the nanomedicine area by testing some single- and multi-walls carbon nanotubues in rats cerebral aneurisms.

  13. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Castillo-León, Jaime

    2013-01-01

    Nlayered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6–31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and π electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid...

  14. High-pressure oxygenation of thin-wall YBCO single-domain samples

    International Nuclear Information System (INIS)

    Chaud, X; Savchuk, Y; Sergienko, N; Prikhna, T; Diko, P

    2008-01-01

    The oxygen annealing of ReBCO bulk material, necessary to achieve superconducting properties, usually induces micro- and macro-cracks. This leads to a crack-assisted oxygenation process that allows oxygenating large bulk samples faster than single crystals. But excellent superconducting properties are cancelled by the poor mechanical ones. More progressive oxygenation strategy has been shown to reduce drastically the oxygenation cracks. The problem then arises to keep a reasonable annealing time. The concept of bulk Y123 single-domain samples with thin-wall geometry has been introduced to bypass the inherent limitation due to a slow oxygen diffusion rate. But it is not enough. The use of a high oxygen pressure (16 MPa) enables to speed up further the process. It introduces a displacement in the equilibrium phase diagram towards higher temperatures, i.e., higher diffusion rates, to achieve a given oxygen content in the material. Remarkable results were obtained by applying such a high pressure oxygen annealing process on thin-wall single-domain samples. The trapped field of 16 mm diameter Y123 thin-wall single-domain samples was doubled (0.6T vs 0.3T at 77K) using an annealing time twice shorter (about 3 days). The initial development was made on thin bars. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample

  15. Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes : The Power of Polymer Wrapping

    NARCIS (Netherlands)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    CONSPECTUS: The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as

  16. Increasing amperometric biosensor sensitivity by length fractionated single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Tasca, Federico; Gorton, Lo; Wagner, Jakob Birkedal

    2008-01-01

    In this work the sensitivity-increasing effect of single-walled carbon nanotubes (SWCNTs) in amperometric biosensors, depending on their average length distribution, was studied. For this purpose the SWCNTs were oxidatively shortened and subsequently length separated by size exclusion...

  17. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Mottaghitalab, Fatemeh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Farokhi, Mehdi [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh [Department of Pharmaceutical Nanoechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Omidvar, Ramin [Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National cell bank of Iran, Pasteur Institute, Tehran (Iran, Islamic Republic of); Sadeghizadeh, Majid, E-mail: sadeghma@modares.ac.ir [Department Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-06-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  18. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    International Nuclear Information System (INIS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-01-01

    Highlights: • Increasing the cytocompatibility of single walled carbon nanotube by loading fibronectin. • Enhancing the hydrophilicity and nanosurface roughness of single walled carbon nanotube after loading fibronectin. • Fibronectin makes the surface properties of single walled carbon nanotube more suitable for cell proliferation and growth. - Abstract: Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT

  19. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mehrizad Ali

    2012-09-01

    Full Text Available Abstract The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K.

  20. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Singh, R.

    2003-01-01

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O 2 -molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O 2 -molecules. In metallic (5, 5) SWCNTs, both O 2 adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes

  1. Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Samer Al-Gharabli

    2018-05-01

    Full Text Available Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE, mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM, single-area electron diffraction (SAED analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20 and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20 and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.

  2. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    Science.gov (United States)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  3. Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing.

    Science.gov (United States)

    Jung, Seungwon; Cha, Misun; Park, Jiyong; Jeong, Namjo; Kim, Gunn; Park, Changwon; Ihm, Jisoon; Lee, Junghoon

    2010-08-18

    It has been known that single-strand DNA wraps around a single-walled carbon nanotube (SWNT) by pi-stacking. In this paper it is demonstrated that such DNA is dissociated from the SWNT by Watson-Crick base-pairing with a complementary sequence. Measurement of field effect transistor characteristics indicates a shift of the electrical properties as a result of this "unwrapping" event. We further confirm the suggested process through Raman spectroscopy and gel electrophoresis. Experimental results are verified in view of atomistic mechanisms with molecular dynamics simulations and binding energy analyses.

  4. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  5. Physical consequences of the mitochondrial targeting of single-walled carbon nanotubes probed computationally

    Science.gov (United States)

    Chistyakov, V. A.; Zolotukhin, P. V.; Prazdnova, E. V.; Alperovich, I.; Soldatov, A. V.

    2015-06-01

    Experiments by F. Zhou and coworkers (2010) [16] showed that mitochondria are the main target of the cellular accumulation of single-walled carbon nanotubes (SWCNTs). Our in silico experiments, based on geometrical optimization of the system consisting of SWCNT+proton within Density Functional Theory, revealed that protons can bind to the outer side of SWCNT so generating a positive charge. Calculation results allow one to propose the following mechanism of SWCNTs mitochondrial targeting. SWCNTs enter the space between inner and outer membranes of mitochondria, where the excess of protons has been formed by diffusion. In this compartment SWCNTs are loaded with protons and acquire positive charges distributed over their surface. Protonation of hydrophobic SWCNTs can also be carried out within the mitochondrial membrane through interaction with the protonated ubiquinone. Such "charge loaded" particles can be transferred as "Sculachev ions" through the inner membrane of the mitochondria due to the potential difference generated by the inner membrane. Physiological consequences of the described mechanism are discussed.

  6. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  7. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Science.gov (United States)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  8. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  9. Effects of Two Purification Pretreatments on Electroless Copper Coating over Single-Walled Carbon Nano tubes

    International Nuclear Information System (INIS)

    Zheng, Z.; Li, L.; Dong, Sh.; Li, Sh.; Xiao, A.; Sun, Sh.

    2014-01-01

    To achieve the reinforcement of copper matrix composite by single-walled carbon nano tubes, a three-step-refluxing purification of carbon nano tubes sample with HNO 3 -NaOH-HCl was proposed and demonstrated. A previously reported purification process using an electromagnetic stirring with H 2 O 2 /HCl mixture was also repeated. Then, the purified carbon nano tubes were coated with copper by the same electroless plating process. At the end, the effects of the method on carbon nano tubes themselves and on copper coating were determined by transmission electron microscope spectroscopy, scanning electron microscope spectroscopy, X-ray diffractometry, thermogravimetric analysis, Fourier transformed infrared spectroscopy, and energy dispersive spectrometry. It was clearly confirmed that both of the two processes could remove most of iron catalyst particles and carbonaceous impurities without significant damage to carbon nano tubes. The thermal stability of the sample purified by H 2 O 2 /HCl treatment was slightly higher than that purified by HNO 3 -NaOH-HCl treatment. Nevertheless, the purification by HNO 3 -NaOH-HCl treatment was more effective for carboxyl functionalization on nano tubes than that by H 2 O 2 /HCl treatment. The Cu-coating on carbon nano tubes purified by both purification processes was complete, homogenous, and continuous. However, the Cu-coating on carbon nano tubes purified by H 2 O 2 /HCl was oxidized more seriously than those on carbon nano tubes purified by HNO 3 -NaOH-HCl treatment.

  10. Adsorption of triclosan on single wall carbon nanotubes: A first principle approach

    Energy Technology Data Exchange (ETDEWEB)

    Castro, S.M. [Departamento de Física, Universidade Federal do Maranhão, 65080-805 SãoLuís, MA (Brazil); Araújo, A.B. [Instituto Federal do Maranhão, Campus São Luis-Centro Histórico, 65010-500 SãoLuís, MA (Brazil); Nogueira, R.F.P. [Departamento de Química Analítica, Instituto de Química de Araraquara, UNESP e Univ Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Guerini, S., E-mail: silvete@gmail.com [Departamento de Física, Universidade Federal do Maranhão, 65080-805 SãoLuís, MA (Brazil)

    2017-05-01

    Highlights: • The interaction between the (8,0) SWCNT and triclosan molecule occurs via chemical process in parallel configuration. • The semiconductor SWCNT present predominantly binding energies larger than that of metallic SWCNT. • Triclosan behaves as an electron donor or acceptor depending on configuration. - Abstract: The interaction of triclosan on (8,0) and (5,5) single wall carbon nanotube (SWCNT) was investigated using density functional calculations. The results show that the adsorption of triclosan modifies the electronic properties of pristine (8,0) and (5,5) SWCNT and induced changes in the electronic properties are dependent on the triclosan adsorption site. It was observed through binding energy that triclosan molecule interacts mainly via chemical process in parallel configuration to (8,0) SWCNT, while interaction via physical process was observed with both (8,0) and (5,5) SWCNT. It is proposed that these SWCNTs are a potential filter device due to reasonable physical interaction with triclosan molecule. Furthermore, this type of filter could be reusable, therefore after the filtering, the SWCNTs could be separated from triclosan molecule.

  11. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  12. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina

    2016-12-17

    This chapter employs purified pristine single-walled carbon nanotubes (SWNTs) and octadecylaminefunctionalized-SWNTs. These SWNTs are employed for investigate the potential of the SWNT sidewall to function as a hexahapto ligand for chromium (Cr), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT) and octadecylaminefunctionalized SWNTs were obtained from Carbon Solutions, Inc. The TEM images show the removal of the Cr particles from the outer surface of the SWNT bundles in the SWNT-Cr complexes after decomplexation; Cr attachment to the surface of the as-prepared complexes (η6-SWNT)Cr(CO)3 and (η6-SWNT-CONH(CH2)17CH3)Cr(CO)3 is clearly evident. The positions of the bands in the Raman spectra of SWNTs are sensitive to doping and thus the chapter examines the effect of complexation of the Cr(CO)3 and Cr(η6-benzene) units on the position of the G and 2D bands in the (η6-SWNT)Cr(CO)3 and (η6-SWNT)Cr(η6-benzene) complexes.

  13. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    Science.gov (United States)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  14. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C60 Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Dowgiallo, Anne-Marie; Mistry, Kevin S.; Johnson, Justin C.; Reid, Obadiah G.; Blackburn, Jeffrey L.

    2016-05-19

    The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT 'reporter layer'. In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.

  15. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.

    Science.gov (United States)

    Song, Changsik; Kwon, Taeyun; Han, Jae-Hee; Shandell, Mia; Strano, Michael S

    2009-12-01

    Controlling the morphology of membrane components at the nanometer scale is central to many next-generation technologies in water purification, gas separation, fuel cell, and nanofiltration applications. Toward this end, we report the covalent assembly of single-walled carbon nanotubes (SWNTs) into three-dimensional framework materials with intertube pores controllable by adjusting the size of organic linker molecules. The frameworks are fashioned into multilayer membranes possessing linker spacings from 1.7 to 3.0 nm, and the resulting framework films were characterized, including transport properties. Nanoindentation measurements by atomic force microscopy show that the spring constant of the SWNT framework film (22.6 +/- 1.2 N/m) increased by a factor of 2 from the control value (10.4 +/- 0.1 N/m). The flux ratio comparison in a membrane-permeation experiment showed that larger spacer sizes resulted in larger pore structures. This synthetic method was equally efficient on silica microspheres, which could then be etched to create all-SWNT framework, hollow capsules approximately 5 mum in diameter. These hollow capsules are permeable to organic and inorganic reagents, allowing one to form inorganic nanoparticles, for example, that become entrapped within the capsule. The ability to encapsulate functional nanomaterials inside perm-selective SWNT cages and membranes may find applications in new adsorbents, novel catalysts, and drug delivery vehicles.

  16. Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods

    Directory of Open Access Journals (Sweden)

    Hadidi N

    2011-04-01

    Full Text Available Naghmeh Hadidi1, Farzad Kobarfard2, Nastaran Nafissi-Varcheh3, Reza Aboofazeli11Department of Pharmaceutics, 2Department of Pharmaceutical Chemistry, 3Department of Pharmaceutical Biotechnology, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, IranAbstract: In this study, noncovalent functionalization of single-walled carbon nanotubes (SWCNTs with phospholipid-polyethylene glycols (Pl-PEGs was performed to improve the solubility of SWCNTs in aqueous solution. Two kinds of PEG derivatives, ie, Pl-PEG 2000 and Pl-PEG 5000, were used for the PEGylation process. An experimental design technique (D-optimal design and second-order polynomial equations was applied to investigate the effect of variables on PEGylation and the solubility of SWCNTs. The type of PEG derivative was selected as a qualitative parameter, and the PEG/SWCNT weight ratio and sonication time were applied as quantitative variables for the experimental design. Optimization was performed for two responses, aqueous solubility and loading efficiency. The grafting of PEG to the carbon nanostructure was determined by thermogravimetric analysis, Raman spectroscopy, and scanning electron microscopy. Aqueous solubility and loading efficiency were determined by ultraviolet-visible spectrophotometry and measurement of free amine groups, respectively. Results showed that Pl-PEGs were grafted onto SWCNTs. Aqueous solubility of 0.84 mg/mL and loading efficiency of nearly 98% were achieved for the prepared Pl-PEG 5000-SWCNT conjugates. Evaluation of functionalized SWCNTs showed that our noncovalent functionalization protocol could considerably increase aqueous solubility, which is an essential criterion in the design of a carbon nanotube-based drug delivery system and its biodistribution.Keywords: phospholipid-PEG, D-optimal design, loading efficiency, Raman spectroscopy, scanning electron microscopy, theromogravimetric analysis, carbon nanotubes

  17. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection

    International Nuclear Information System (INIS)

    Hnaien, M.; Bourigua, S.; Bessueille, F.; Bausells, J.; Errachid, A.; Lagarde, F.; Jaffrezic-Renault, N.

    2011-01-01

    Highlights: ► We propose an impedimetric microbial biosensor for trichloroethylene detection. ► A new transducer modified with carbon nanotubes and Pseudomonas putida is evaluated. ► Functionalization steps are controlled by impedance spectroscopy and AFM. ► The biosensor offers good sensitivity, selectivity, linear range and stability. ► The biosensor is successfully applied to spiked natural water samples. - Abstract: Contamination of soils and groundwaters with persistent organic pollutants is a matter of increasing concern. The most common organic pollutants are chlorinated hydrocarbons such as perchloroethylene and trichloroethylene (TCE). In this study, we developed a bacterial impedimetric biosensor for TCE detection, based on the immobilization of Pseudomonas putida F1 strain on gold microelectrodes functionalized with single wall carbon nanotubes covalently linked to anti-Pseudomonas antibodies. The different steps of microelectrodes functionalization were characterized by electrochemical impedance and atomic force spectroscopies, and analytical performances of the developed microbial biosensor were determined. The impedimetric biosensor response was linear with TCE concentration up to 150 μg L −1 and a low limit of detection (20 μg L −1 ) was achieved. No significant loss of signal was observed after 4 weeks of storage at 4 °C in phosphate buffer saline pH 7 (three to four measurements a week). After 5 weeks, 90% of the initial value still remained. cis-1,2-Dichloroethylene and vinylchloride, the main TCE degradation products, did not significantly interfere with TCE. The microbial sensor was finally applied to the determination of TCE in natural water samples spiked at the 30, 50 and 75 μg L −1 levels. Recoveries were very good, ranging from 100 to 103%.

  18. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates

    International Nuclear Information System (INIS)

    Maschmann, Matthew R; Franklin, Aaron D; Amama, Placidus B; Zakharov, Dmitri N; Stach, Eric A; Sands, Timothy D; Fisher, Timothy S

    2006-01-01

    Vertical single-walled and double-walled carbon nanotube (SWNT and DWNT) arrays have been grown using a catalyst embedded within the pore walls of a porous anodic alumina (PAA) template. The initial film structure consisted of a SiO x adhesion layer, a Ti layer, a bottom Al layer, a Fe layer, and a top Al layer deposited on a Si wafer. The Al and Fe layers were subsequently anodized to create a vertically oriented pore structure through the film stack. CNTs were synthesized from the catalyst layer by plasma-enhanced chemical vapour deposition (PECVD). The resulting structure is expected to form the basis for development of vertically oriented CNT-based electronics and sensors

  19. Ultrafast excitation energy transfer from encapsulated quaterrylene to single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Takeshi, E-mail: koyama@nuap.nagoya-u.ac.jp [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Tsunekawa, Takuya [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Saito, Takeshi [Research Center for Advanced Carbon Materials, AIST, Tsukuba, Ibaraki 305-8565 (Japan); Asaka, Koji; Saito, Yahachi [Department of Quantum Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Kishida, Hideo [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nakamura, Arao [Department of Applied Physics, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192 (Japan)

    2016-01-15

    We investigate excitation energy transfer from an encapsulated quaterrylene molecule to a single-walled carbon nanotube by means of femtosecond pump-probe spectroscopy. The time constant of energy transfer becomes shorter with increasing average diameter of nanotube: 1.4±0.2 ps for 1.0 nm, 1.1±0.2 ps for 1.4 nm, and 0.4±0.1 ps for 1.8 nm. The observed behavior is discussed considering the distance of less than 1 nm between the molecule and the nanotube wall. - Highlights: • Dynamical properties of excited states in quaterrylene/SWNT composites were studied. • Excitation energy transfer occurs in the time range of 0.4-1.4 ps. • The transfer rate depends on the nanotube diameter, i.e. molecule-nanotube wall distance. • This dependence indicates the feature of excitation energy transfer on the nanoscale.

  20. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  1. Ultrasensitive Detection of Single-Walled Carbon Nanotubes Using Surface Plasmon Resonance.

    Science.gov (United States)

    Jang, Daeho; Na, Wonhwi; Kang, Minwook; Kim, Namjoon; Shin, Sehyun

    2016-01-05

    Because single-walled carbon nanotubes (SWNTs) are known to be a potentially dangerous material, inducing cancers and other diseases, any possible leakage of SWNTs through an aquatic medium such as drinking water will result in a major public threat. To solve this problem, for the present study, a highly sensitive, quantitative detection method of SWNTs in an aqueous solution was developed using surface plasmon resonance (SPR) spectroscopy. For a highly sensitive and specific detection, a strong affinity conjugation with biotin-streptavidin was adopted on an SPR sensing mechanism. During the pretreatment process, the SWNT surface was functionalized and hydrophilized using a thymine-chain based biotinylated single-strand DNA linker (B-ssDNA) and bovine serum albumin (BSA). The pretreated SWNTs were captured on a sensing film, the surface of which was immobilized with streptavidin on biotinylated gold film. The captured SWNTs were measured in real-time using SPR spectroscopy. Specific binding with SWNTs was verified through several validation experiments. The present method using an SPR sensor is capable of detecting SWNTs of as low as 100 fg/mL, which is the lowest level reported thus far for carbon-nanotube detection. In addition, the SPR sensor showed a linear characteristic within the range of 100 pg/mL to 200 ng/mL. These findings imply that the present SPR sensing method can detect an extremely low level of SWNTs in an aquatic environment with high sensitivity and high specificity, and thus any potential leakage of SWNTs into an aquatic environment can be precisely monitored within a couple of hours.

  2. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering

    1993-04-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  3. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering)

    1993-01-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  4. Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Wei; Tao Xiaoming

    2006-01-01

    We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved

  5. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  6. A black body absorber from vertically aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  7. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  8. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  9. On single nucleon wave functions in nuclei

    International Nuclear Information System (INIS)

    Talmi, Igal

    2011-01-01

    The strong and singular interaction between nucleons, makes the nuclear many body theory very complicated. Still, nuclei exhibit simple and regular features which are simply described by the shell model. Wave functions of individual nucleons may be considered just as model wave functions which bear little resemblance to the real ones. There is, however, experimental evidence for the reality of single nucleon wave functions. There is a simple method of constructing such wave functions for valence nucleons. It is shown that this method can be improved by considering the polarization of the core by the valence nucleon. This gives rise to some rearrangement energy which affects the single valence nucleon energy within the nucleus.

  10. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Kara Yamada

    Full Text Available Foodborne pathogen detection using biomolecules and nanomaterials may lead to platforms for rapid and simple electronic biosensing. Integration of single walled carbon nanotubes (SWCNTs and immobilized antibodies into a disposable bio-nano combinatorial junction sensor was fabricated for detection of Escherichia coli K-12. Gold tungsten wires (50 µm diameter coated with polyethylenimine (PEI and SWCNTs were aligned to form a crossbar junction, which was functionalized with streptavidin and biotinylated antibodies to allow for enhanced specificity towards targeted microbes. In this study, changes in electrical current (ΔI after bioaffinity reactions between bacterial cells (E. coli K-12 and antibodies on the SWCNT surface were monitored to evaluate the sensor's performance. The averaged ΔI increased from 33.13 nA to 290.9 nA with the presence of SWCNTs in a 10(8 CFU/mL concentration of E. coli, thus showing an improvement in sensing magnitude. Electrical current measurements demonstrated a linear relationship (R2 = 0.973 between the changes in current and concentrations of bacterial suspension in range of 10(2-10(5 CFU/mL. Current decreased as cell concentrations increased, due to increased bacterial resistance on the bio-nano modified surface. The detection limit of the developed sensor was 10(2 CFU/mL with a detection time of less than 5 min with nanotubes. Therefore, the fabricated disposable junction biosensor with a functionalized SWCNT platform shows potential for high-performance biosensing and application as a detection device for foodborne pathogens.

  11. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes.

    Science.gov (United States)

    Von Bargen, Christopher D; MacDermaid, Christopher M; Lee, One-Sun; Deria, Pravas; Therien, Michael J; Saven, Jeffery G

    2013-10-24

    The highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent. In simulations of the PPES/SWNT system in an aqueous environment, PPES spontaneously takes on a helical conformation. A potential of mean force, ΔA(ξ), is calculated as a function of ξ, the component of the end-to-end vector of the polymer chain projected on the SWNT axis; ξ is a monotonic function of the polymer's helical pitch. ΔA(ξ) provides a means to quantify the relative free energies of helical conformations of the polymer when wrapped about the SWNT. The aqueous system possesses a global minimum in ΔA(ξ) at the experimentally observed value of the helical pitch. The presence of this minimum is associated with preferred side chain conformations, where the side chains adopt conformations that provide van der Waals contact between the tubes and the aliphatic components of the side chains, while exposing the anionic sulfonates for aqueous solvation. The simulations provide a free energy estimate of a 0.2 kcal/mol/monomer preference for the helical over the linear conformation of the PPES/SWNT system in an aqueous environment.

  12. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Pan Huichin; Lin Yujun; Li Mengwei [Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan (China); Chuang Hanni; Chou Chengchung, E-mail: bioccc@ccu.edu.tw, E-mail: hp29@csmu.edu.tw [Department of Life Science, National Chung Cheng University, Min-Hsiung, 62102 Taiwan (China)

    2011-07-06

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 {mu}g/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 {mu}g/ml or above. Only larvae exposed to {>=} 5 {mu}g/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 {mu}g/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 {mu}g/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 {mu}g/ml.

  13. On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dehbi, A., E-mail: abdel.dehbi@psi.ch

    2013-12-15

    Highlights: • Work investigates the effect of near-wall mesh resolution on CFD predictions. • Case study: turbulent condensation in the presence of noncondensable gases. • Wall functions largely underpredict condensation rates at boundary layer onset. • When boundary layer is developed, wall functions predictions are reasonable. • Prescribed wall functions must be compatible with prevailing flow regime. - Abstract: As one looks forward to applying CFD based methods to simulate turbulent flows in larger volumes up to containment scales, the mesh resolution, especially near the walls, becomes one of the main issues dictating the feasibility of the simulation. The wall-function approach is a natural choice to minimize the computational size of the problem and make it tractable. In the current investigation, we compare the wall-function to the fully resolved boundary layer approaches for the prediction of vapor condensation rates on cold walls in the presence of noncondensable gases. We simulate three sets of geometric configurations. The first two sets relate to domains which are small (height of 2 m) and medium (height 4.8 m), and for which experimental heat transfer data are available. In the third set, we look at a hypothetical large 2D rectangular domain in which the condenser height is comparable to that of typical NPP containments (20 m). In the developing region of the boundary layer, it is found that the wall function treatment leads to substantial deviations from the wall resolved approach and available experimental data. Further downstream, however, when the boundary layer is fully developed, the discrepancy is greatly reduced. It is therefore concluded that the wall-function formulation is able to provide predictions of condensation rates that are similar to wall-resolved treatments in simple forced flows for which fully developed boundary layers can be assumed over most of the domain. Care must however be exercised to ensure the chosen wall

  14. Charge calculation studies done on a single walled carbon nanotube using MOPAC

    Science.gov (United States)

    Negi, S.; Bhartiya, Vivek Kumar; Chaturvedi, S.

    2018-04-01

    Dipole symmetry of induced charges on DWNTs are required for their application as a nanomotor. Earlier a molecular dynamics analysis was performed for a double-walled carbon-nanotube based motor driven by an externally applied sinusoidally varying electric field. One of the ways to get such a system is chemical or end functionalization, which promises to accomplish this specific and rare configuration of the induced charges on the surface of the carbon nanotube (CNT). CNTs are also a promising system for attaching biomolecules for bio-related applications. In an earlier work, ab initio calculations were done to study the electronic and structural properties of the groups -COOH, -OH, -NH2 and -CONH2 functionalized to an (8, 0) SWNT. The systems were shown to have a very stable interaction with the CNTs. The exterior surface of the SWNT is found to be reactive to NH2 (amidogen). In this work, charge calculations are done on a CNT using MOPAC, which is a semi empirical quantum chemistry software package. As a first step, we calculate the effect of NH2 functionalization to a (5,0) SWNT of infinite length. The symmetric charge distribution of the bare SWNT is observed to be disturbed on addition of a single NH2 in the close proximity of the SWNT. A net positive and opposite charge is observed to be induced on the opposite sides of the nanotube circumference, which is, in turn, imperative for the nanomotor applications. The minimum and maximum value of the charge on any atom is observed to increase from - 0.3 to 0.6 and from - 0.3 to - 1.8 electronic charge as compared to the bare SWNT. This fluctuation of the surface charge to larger values than bare CNT, can be attributed to the coulomb repulsion between NH2 and the rest of the charge on the surface which results into minimizing the total energy of the system. No such opposite polarity of charges are observed on adding NH2 to each ring of the SWNT implying addition of a single amidogen to be the most appropriate

  15. Electronic properties of pristine and modified single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kharlamova, M V

    2013-01-01

    The current status of research on the electronic properties of filled single-walled carbon nanotubes (SWCNTs) is reviewed. SWCNT atomic structure and electronic properties are described, and their correlation is discussed. Methods for modifying the electronic properties of SWCNTs are considered. SWCNT filling materials are systematized. Experimental and theoretical data on the electronic properties of filled SWCNTs are analyzed. Possible application areas for filled SWCNTs are explored. (reviews of topical problems)

  16. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    Science.gov (United States)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  17. Plasmon excitation in single wall carbon nanotubes by penetrating charged particles

    International Nuclear Information System (INIS)

    Segui, Silvina; Gervasoni, Juana L; Arista, Néstor R; Mowbray, Duncan J; Mišković, Zoran L

    2012-01-01

    In this work we study the excitation of plasmons due to the incidence of a charged particle passing through a single wall carbon nanotube. We use a quantized hydrodynamic, in which the σ and π electrons characteristic of these carbonaceous structures are depicted as two interacting 2-dimensional fluids, to calculate the average number of plasmons excited. We analyze the contribution of the different plasmon modes in a variety of configurations, and study the energy lost by the incident particle.

  18. Hydrogen storage in single-wall carbon nano-tubes by means of laser excitation

    International Nuclear Information System (INIS)

    Oksengorn, B.

    2010-01-01

    A new mode for hydrogen adsorption and storage in single-wall carbon nano-tubes is used, on the basis of laser excitation. Remember that this method has been useful to obtain, in the case of the fullerene C 60 , many complex C 60 -atoms or C 60 -molecules, where atoms or molecular particles are trapped inside the C 60 -molecules. We think this method might be important to store many hydrogen molecules inside carbon nano-tubes. (author)

  19. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    International Nuclear Information System (INIS)

    Marquez, F.; Morant, C.; Elizalde, E.; Roque-Malherbe, R.; Lopez, V.; Zamora, F.; Domingo, C.

    2010-01-01

    Arrays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 degree C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.

  20. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    Science.gov (United States)

    2015-05-12

    Final 3. DATES COVERED (From - To) 03-April-2013 to 02-April-2015 4. TITLE AND SUBTITLE Novel Catalyst for the Chirality Selective...Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chiral single walled carbon nanotubes (SWCNTs) are known to possess unique... chirality control in SWCNT synthesis. A model catalyst based on CoSO4/SiO2 was developed that showed good selectivity to (9,8) nanotubes. Remote plasma

  1. The Kinetics of Chirality Assignment in Catalytic Single Walled Carbon Nanotube Growth

    OpenAIRE

    Xu, Ziwei; Yan, Tianying; Ding, Feng

    2014-01-01

    Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNT's chirality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on...

  2. Transport properties of a potassium-doped single-wall carbon nanotube rope

    International Nuclear Information System (INIS)

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-01-01

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V g becomes featureless after K doping. (c) 2000 The American Physical Society

  3. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  4. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    International Nuclear Information System (INIS)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-01-01

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm 2 V -1 s -1 , On/Off ratio of ∼ 10 2 , transmittance of ∼ 81% and excellent mechanical bendability.

  5. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun, E-mail: ahnj@skku.edu, E-mail: byunghee@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-10-22

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of {approx} 2 cm{sup 2} V{sup -1} s{sup -1}, On/Off ratio of {approx} 10{sup 2}, transmittance of {approx} 81% and excellent mechanical bendability.

  6. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  7. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    Science.gov (United States)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  8. Functionalization of oxidized single-walled carbon nanotubes with 4 ...

    Indian Academy of Sciences (India)

    This ionic interaction has led to a considerable increase in the solubility of. SWCNTs in both organic and aqueous solvents such as ethanol, dimethyl sulphoxide, dimethylformamide, ... 5mL of water and steam distillation produced white.

  9. Functional exercise capacity, lung function and chest wall deformity in patients with adolescent idiopathic scoliosis

    Directory of Open Access Journals (Sweden)

    Evandro Fornias Sperandio

    Full Text Available AbstractIntroduction The adolescent idiopathic scoliosis (AIS causes changes on the compliance of the chest. These changes may be associated with impaired lung function and reduced functional exercise capacity of these adolescents. We aimed to evaluate the correlation between functional exercise capacity, lung function and geometry of the chest at different stages of AIS.Materials and methods The study was carried out in a cross-sectional design which were evaluated 27 AIS patients at different stages of the disease. For chest wall evaluation, were created geometry angles/distances (A/D, which were quantified by Software Postural Assessment. The functional exercise capacity was assessed by a portable gas analyzer during the incremental shuttle walk test (ISWT. Besides that, manovacuometry and spirometry were also performed.Results Linear regressions showed that oxygen uptake (peak VO2 was correlated with distance travelled in the ISWT (R2 = 0.52, maximal respiratory pressures, cough peak flow (R2 = 0.59 and some thoracic deformity markers (D1, D2 and A6.Discussion We observed that the chest wall alterations, lung function and respiratory muscle strength are related to the functional exercise capacity and may impair the physical activity performance in AIS patients.Final considerations There is correlation between functional exercise capacity, lung function and geometry of the chest in AIS patients. Our results point to the possible impact of the AIS in the physical activities of these adolescents. Therefore, efforts to prevent the disease progression are extremely important.

  10. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  11. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  12. 2D speckle tracking echocardiography of the right ventricle free wall in SCUBA divers after single open sea dive.

    Science.gov (United States)

    Susilovic-Grabovac, Zora; Obad, Ante; Duplančić, Darko; Banić, Ivana; Brusoni, Denise; Agostoni, Piergiuseppe; Vuković, Ivica; Dujic, Zeljko; Bakovic, Darija

    2018-03-01

    The presence of circulating gas bubbles and their influence on pulmonary and right heart hemodynamics was reported after uncomplicated self-contained underwater breathing apparatus (SCUBA) dive(s). Improvements in cardiac imaging have recently focused great attention on the right ventricle (RV). The aim of our study was to evaluate possible effects of a single air SCUBA dive on RV function using 2D speckle tracking echocardiography in healthy divers after single open sea dive to 18 meters of seawater, followed by bottom stay of 47 minutes with a direct ascent to the surface. Twelve experienced male divers (age 39.5 ± 10.5 years) participated in the study. Echocardiographic assessment of the right ventricular function (free wall 2 D strain, tricuspid annular planes systolic excursion [TAPSE], lateral tricuspid annular peak systolic velocity [RV s`] and fractional area change [FAC]) was performed directly prior to and 30, 60, 90 and 120 minutes after surfacing. Two-dimensional strain of all three segments of free right ventricular wall showed a significant increase in longitudinal shortening in post-dive period for maximally 26% (basal), 15.4% (mid) and 16.3% (apical) as well as TAPSE (11.6%), RV FAC (19.2%), RV S` (12.7%) suggesting a rise in systolic function of right heart. Mean pulmonary arterial pressure (mean PAP) increased post-dive from 13.3 mmHg to maximally 23.5 mmHg (P = .002), indicating increased RV afterload. Our results demonstrated that single dive with significant bubble load lead to increase in systolic function and longitudinal strain of the right heart in parallel with increase in mean PAP. © 2017 John Wiley & Sons Australia, Ltd.

  13. Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhang ZZ

    2011-10-01

    Full Text Available Lei Wang1, Mingyue Zhang1, Nan Zhang1, Jinjin Shi1, Hongling Zhang1, Min Li1, Chao Lu2, Zhenzhong Zhang1 1School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 2University of Maryland, College Park, MD, USA Background: Single-walled carbon nanotubes (SWNT are poorly soluble in water, so their applications are limited. Therefore, aqueous solutions of SWNT, designed by noncovalent functionalization and without toxicity, are required for biomedical applications. Methods: In this study, we conjugated docetaxel with SWNT via p-p accumulation and used a surfactant to functionalize SWNT noncovalently. The SWNT were then conjugated with docetaxel (DTX-SWNT and linked with NGR (Asn-Gly-Arg peptide, which targets tumor angiogenesis, to obtain a water-soluble and tumor-targeting SWNT-NGR-DTX drug delivery system. Results: SWNT-NGR-DTX showed higher efficacy than docetaxel in suppressing tumor growth in a cultured PC3 cell line in vitro and in a murine S180 cancer model. Tumor volumes in the S180 mouse model decreased considerably under near-infrared radiation compared with the control group. Conclusion: The SWNT-NGR-DTX drug delivery system may be promising for high treatment efficacy with minimal side effects in future cancer therapy. Keywords: single-walled carbon nanotubes, docetaxel, NGR peptide, tumor-targeting, near-infrared radiation

  14. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abhinav; Hong, Seongkyeol; Singh, Renu [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-04-15

    Highlights: • A transparent CNT immunosensor is presented for detection of a prostate cancer biomarker osteopontin. • This immunosensor showed a highly linear and reproducible behavior from 1 pg mL{sup −1} to 1 μg mL{sup −1}. • The limit of detection of the immunosensor was 0.3 pg mL{sup −1}. • This immunosensor demonstrated high selectivity against bovine serum albumin and human serum. - Abstract: Osteopontin (OPN) is involved in almost all steps of cancer development, and it is being investigated as a potential biomarker for a diagnosis and prognosis of prostate cancer. Here, we report a label-free, highly sensitive and transparent immunosensor based on single-walled carbon nanotubes (SWCNTs) for detection of OPN. A high density of −COOH functionalized SWCNTs was deposited between two gold/indium tin oxide electrodes on a glass substrate by dielectrophoresis. Monoclonal antibodies specific to OPN were covalently immobilized on the SWCNTs. Relative resistance change of the immunosensors was measured as the concentration of OPN in phosphate buffer saline (PBS) and human serum was varied from 1 pg mL{sup −1} to 1 μg mL{sup −1} for different channel lengths of 2, 5, and 10 μm, showing a highly linear and reproducible behavior (R{sup 2} > 97%). These immunosensors were also specific to OPN against another test protein, bovine serum albumin, PBS and human serum, showing that a limit of detection for OPN was 0.3 pg mL{sup −1}. This highly sensitive and transparent immunosensor has a great potential as a simple point-of-care test kit for various protein biomarkers.

  15. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N_2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N_2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N_2O onto CNT, the horizontal adsorption with E_a_d_s = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N_2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N_2O were investigated. Adsorption of N_2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N_2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N_2O sensors.

  16. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  17. Optimizing sonication parameters for dispersion of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haibo [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Graduate University of the Chinese Academy of Sciences, Beijing (China); State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Hermann, Sascha, E-mail: sascha.hermann@zfm.tu-chemnitz.de [Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Schulz, Stefan E.; Gessner, Thomas [Fraunhofer Institute for Electronic Nano Systems (Fraunhofer ENAS), 09126 Chemnitz (Germany); Center for Microtechnologies (ZfM), Chemnitz University of Technology, 09126 Chemnitz (Germany); Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Li, Wen J., E-mail: wenjungli@gmail.com [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, 110016 Shenyang (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR (China)

    2012-10-26

    Graphical abstract: We study the dispersing behavior of SWCNTs based on the surfactant and the optimization of sonication parameters including the sonication power and running time. Highlights: Black-Right-Pointing-Pointer We study the optimization of sonication for the surfactant-based dispersion of SWCNTs. Black-Right-Pointing-Pointer The absorption spectrum of SWCNT solution strongly depend on the sonication conditions. Black-Right-Pointing-Pointer The sonication process has an important influence on the average length and diameters of SWCNTs in solution. Black-Right-Pointing-Pointer Centrifugation mainly contributes to the decrease of nonresonant absorption background. Black-Right-Pointing-Pointer Under the same sonication parameters, the large-diameter tip performs dispersion of SWCNTs better than the small-diameter tip. -- Abstract: Non-covalent functionalization based on surfactants has become one of the most common methods for dispersing of single-walled carbon nanotubes (SWCNTs). Previously, efforts have mainly been focused on experimenting with different surfactant systems, varying their concentrations and solvents. However sonication plays a very important role during the surfactant-based dispersion process for SWCNTs. The sonication treatment enables the surfactant molecules to adsorb onto the surface of SWCNTs by overcoming the interactions induced by the hydrophobic, electrostatic and van der Waals forces. This work describes a systematic study of the influence of the sonication power and time on the dispersion of SWCNTs. UV-vis-NIR absorption spectra is used to analyze and to evaluate the dispersion of SWCNTs in an aqueous solution of 1 w/v% sodium deoxycholate (DOC) showing that the resonant and nonresonant background absorption strongly depends on the sonication conditions. Furthermore, the diameter and length of SWCNTs under different sonication parameters are investigated using atomic force microscopy (AFM).

  18. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  19. Plasma-synthesized single-walled carbon nanotubes and their applications

    International Nuclear Information System (INIS)

    Hatakeyama, R; Kaneko, T; Kato, T; Li, Y F

    2011-01-01

    Plasma-based nanotechnology is a rapidly developing area of research ranging from physics of gaseous and liquid plasmas to material science, surface science and nanofabrication. In our case, nanoscopic plasma processing is performed to grow single-walled carbon nanotubes (SWNTs) with controlled chirality distribution and to further develop SWNT-based materials with new functions corresponding to electronic and biomedical applications. Since SWNTs are furnished with hollow inner spaces, it is very interesting to inject various kinds of atoms and molecules into their nanospaces based on plasma nanotechnology. The encapsulation of alkali-metal atoms, halogen atoms, fullerene or azafullerene molecules inside the carbon nanotubes is realized using ionic plasmas of positive and negative ions such as alkali-fullerene, alkali-halogen, and pair or quasipair ion plasmas. Furthermore, an electrolyte solution plasma with DNA negative ions is prepared in order to encapsulate DNA molecules into the nanotubes. It is found that the electronic and optical properties of various encapsulated SWNTs are significantly changed compared with those of pristine ones. As a result, a number of interesting transport phenomena such as air-stable n- and p-type behaviour, p-n junction characteristic, and photoinduced electron transfer are observed. Finally, the creation of an emerging SWNTs-based nanobioelectronics system is challenged. Specifically, the bottom-up electric-field-assisted reactive ion etching is proposed to control the chirality of SWNTs, unexplored SWNT properties of magnetism and superconductivity are aimed at being pioneered, and innovative biomedical-nanoengineering with encapsulated SWNTs of higher-order structure are expected to be developed by applying advanced gas-liquid interfacial plasmas.

  20. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  1. Atomic scale mass delivery driven by bend kink in single walled carbon nanotube

    International Nuclear Information System (INIS)

    Kan Biao; Ding Jianning; Ling Zhiyong; Yuan Ningyi; Cheng Guanggui

    2010-01-01

    The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.

  2. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  3. The influence of wall resonances on the levitation of objects in a single-axis acoustic processing chamber

    Science.gov (United States)

    Ross, B. B.

    1980-01-01

    Instabilities were observed in high temperature, single axis acoustic processing chambers. At certain temperatures, strong wall resonances were generated within the processing chamber itself and these transverse resonances were thought sufficient to disrupt the levitation well. These wall resonances are apparently not strong enough to cause instabilities in the levitation well.

  4. Proposal of a Self-baking Single-wall Design for the VI Section of the ATLAS Beam Pipe

    CERN Document Server

    Marco Olcese, MO

    2002-01-01

    A single-wall design for the VI section of the ATLAS beam vacuum chamber is presented. This design would allow for a major cost saving with respect to the current double-wall baseline. All the thermal implications and impact on the B-layer mudules are discussed.

  5. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    Science.gov (United States)

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  6. Benchmarking LES with wall-functions and RANS for fatigue problems in thermal–hydraulics systems

    Energy Technology Data Exchange (ETDEWEB)

    Tunstall, R., E-mail: ryan.tunstall@manchester.ac.uk [School of MACE, The University of Manchester, Manchester M13 9PL (United Kingdom); Laurence, D.; Prosser, R. [School of MACE, The University of Manchester, Manchester M13 9PL (United Kingdom); Skillen, A. [Scientific Computing Department, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2016-11-15

    Highlights: • We benchmark LES with blended wall-functions and low-Re RANS for a pipe bend and T-Junction. • Blended wall-laws allow the first cell from the wall to be placed anywhere in the boundary layer. • In both cases LES predictions improve as the first cell wall spacing is reduced. • Near-wall temperature fluctuations in the T-Junction are overpredicted by wall-modelled LES. • The EBRSM outperforms other RANS models for the pipe bend. - Abstract: In assessing whether nuclear plant components such as T-Junctions are likely to suffer thermal fatigue problems in service, CFD techniques need to provide accurate predictions for wall temperature fluctuations. Though it has been established that this is within the capabilities of wall-resolved LES, its high computational cost has prevented widespread usage in industry. In the present paper the suitability of LES with blended wall-functions, that allow the first cell to be placed in any part of the boundary layer, is assessed. Numerical results for the flows through a 90° pipe bend and a T-Junction are compared against experimental data. Both test cases contain areas where equilibrium laws are violated in practice. It is shown that reducing the first cell wall spacing improves agreement with experimental data by limiting the extent from the wall in which the solution is constrained to an equilibrium law. The LES with wall-function approach consistently overpredicts the near-wall temperature fluctuations in the T-Junction, suggesting that it can be considered as a conservative approach. We also benchmark a range of low-Re RANS models. EBRSM predictions for the 90° pipe bend are in significantly better agreement with experimental data than those from the other models. There are discrepancies from all RANS models in the case of the T-Junction.

  7. Dye-assisted dispersion of single-walled carbon nanotubes for solution fabrication of NO2 sensors

    Directory of Open Access Journals (Sweden)

    M. M. Ramli

    2012-09-01

    Full Text Available Direct golden orange dye molecules were used as a dispersing agent to produce suspensions of single-walled carbon nanotubes (SWCNTs in water. Uniform, thin film networks were fabricated by vacuum filtration using different concentrations of SWCNT and transferred subsequently to glass substrates. The dispersion efficiency was compared to other surfactants. Measurement of the sheet resistance as a function of SWCNT concentration showed a transition from 2D percolation to 3D conduction behaviour when the concentration of SWCNTs exceeded 0.001 mg/mL. The electrical response to NO2 gas exposure was investigated as a function of temperature and an optimum response was observed at 200°C.

  8. Buckling of ZnS-filled single-walled carbon nanotubes – The influence of aspect ratio

    KAUST Repository

    Monteiro, André O.; Da Costa, Pedro M. F. J.; Cachim, Paulo B.; Holec, David

    2014-01-01

    The mechanical response of single-walled carbon nanotubes (SWCNT) filled with crystalline zinc sulphide (ZnS) nanowires under uniaxial compression is studied using classical molecular dynamics. These simulations were used to analyse the behaviour

  9. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  10. The effect of atomic hydrogen adsorption on single-walled carbon nano tubes properties

    International Nuclear Information System (INIS)

    Jalili, S.; Majidi, R.

    2007-01-01

    We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nano tubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nano tube, the energy gap will be appeared. This is due to the degree of the Sp 3 hybridization, and the hydrogen coverage can control the band gap of the carbon nano tube

  11. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yang [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)], E-mail: wxb@hubu.edu.cn; Tian Rong; Li Shaoqing; Wan Li; Li Mingjian; You Haijun; Li Qin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Shimin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2008-02-15

    We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.

  12. Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and in Situ Raman Spectroelectrochemical Study

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Hsieh, Y. P.; Farhat, H.; Kavan, Ladislav; Hofmann, M.; Kong, J.; Dresselhaus, M. S.

    2010-01-01

    Roč. 10, č. 11 (2010), s. 4619-4626 ISSN 1530-6984 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single wall carbon nanotubes * Raman spectroscopy * defects Subject RIV: CG - Electrochemistry Impact factor: 12.186, year: 2010

  13. Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2009-01-01

    Under hydrostatic pressure, the equivalent elastic moduli of a zigzag single-walled carbon nanotube (SWNT) are analytically determined by energy conservation, with the consideration of the covalent bond deformation. The theoretical predictions on the transverse mechanical properties of a zigzag SWNT agree reasonably well with those given by the molecular structures mechanics simulations and also the ab initio calculations. From the simple geometry calculation, the circumferential strain is about 2-3 times of the axial strain of a zigzag SWNT under hydrostatic pressure. The bulk modulus of a zigzag SWNT is found to be 3/7 times of its radial Young's modulus.

  14. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  15. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  16. Improving the conductivity of single-walled carbon nanotubes films by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaping [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Sun Jing, E-mail: jingsun@mail.sic.ac.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Gao Lian, E-mail: liangaoc@online.sh.c [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Liu Yangqiao; Wang Yan; Zhang Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Superfine Microstructures, 1295 Dingxi Road, Shanghai 200050 (China); Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro [Advanced Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2009-10-19

    A simple heat treatment method was applied to remove surfactants remaining in the single-walled carbon nanotubes (SWNTs) films at 300 deg. C for 5 h in air. Scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and reflected light interference microscope (RLIM) were employed to verify the elimination of surfactants. The comprehensive performance, especially the conductivity, could be improved by more than one order after heat treatment. For example, using SDBS as dispersant, the sheet resistance decreased from 782,600 OMEGA/square to 40,460 OMEGA/square with the transmittance of about 99.5% at 550 nm.

  17. Growth of single-wall carbon nanotubes by chemical vapor deposition for electrical devices

    OpenAIRE

    Furer, Jürg

    2006-01-01

    Carbon emerges in di®erent forms. Diamond and graphite have been well known mate- rials for centuries. Moreover fullerenes and nanotubes were discovered only a few years ago. H. W. Kroto et al. depicted the fullerenes in 1985 [1]. A few years later, in 1991, S. Iijima described carbon nanotubes (CNTs) for the ¯rst time [2] (Figure 1.1). CNTs have a close relation to graphite, since a single-wall carbon nanotube is like a rolled-up graphite mono layer. However a nanotube has wi...

  18. On the charge transfer between single-walled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Rao, Rahul; Pierce, Neal; Dasgupta, Archi

    2014-01-01

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO 2 substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO 2 substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  19. Record Endurance for Single-Walled Carbon Nanotube–Based Memory Cell

    Directory of Open Access Journals (Sweden)

    Yang Y

    2010-01-01

    Full Text Available Abstract We study memory devices consisting of single-walled carbon nanotube transistors with charge storage at the SiO2/nanotube interface. We show that this type of memory device is robust, withstanding over 105 operating cycles, with a current drive capability up to 10−6 A at 20 mV drain bias, thus competing with state-of-the-art Si-devices. We find that the device performance depends on temperature and pressure, while both endurance and data retention are improved in vacuum.

  20. Inkjet printing of aligned single-walled carbon-nanotube thin films

    Science.gov (United States)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  1. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-01-01

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes

  2. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Visualizing the growth dynamics of individual single-wall carbon nanotubes

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Zhang, Lili; He, Maoshuai

    In order to meet the increasing demand of faster and more flexible electronics and optical devices and at the same time decrease the use of the critical metals, carbon based devices are in fast development. Single walled carbon nanotube (SWCNT) based electronics is a way of addressing...... around the studied sample at elevated temperature gives a unique way of monitoring gas-solid interactions such as CNT growth. Here we show the direct experimental evidence on the growth dynamics of SW-CNTs from Co/MgO catalysts using CO as carbon source inside the environmental TEM. The evolution...

  4. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  5. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    Science.gov (United States)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  6. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF6 electrolyte

    International Nuclear Information System (INIS)

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-01-01

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF 6 non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g −1 . - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g −1 at a scan rate of 1 mV s −1

  7. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  8. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  9. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type...... by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  10. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  11. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  12. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    Science.gov (United States)

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  13. Abdominal wall reconstruction for incisional hernia optimizes truncal function and quality of life

    DEFF Research Database (Denmark)

    Jensen, Kristian K.; Munim, Kanzah; Kjaer, Michael

    2017-01-01

    Objective: The aim of the study was to examine abdominal wall function in patients undergoing abdominal wall reconstruction (AWR) for incisional hernia. Background: The literature on abdominal wall function in patients with incisional hernia is sparse. It has been suggested that AWR leads...... to improvement in function, but it is unknown whether this is specific to the abdominal wall or due to an improvement in overall physical fitness. Methods: We performed a prospective case-control study of 18 consecutive patients with large incisional hernia undergoing AWR with linea alba restoration. Truncal...... flexion and extension strength, hand grip strength, leg extension power, and quality of life (SF-36 and Carolinas Comfort Scale) were assessed preoperatively and 1 year postoperatively. Patients were compared with a control group of patients with an intact abdominal wall undergoing colorectal resection (n...

  14. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of direct ethanol/methanol fuel cells and nanoscale electronics.

  15. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Takumi, E-mail: endou@az.appi.keio.ac.jp; Ishi-Hayase, Junko; Maki, Hideyuki, E-mail: maki@appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522 (Japan)

    2015-03-16

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  16. Non-radiative Exciton Decay in Single-walled Carbon Nanotubes

    Science.gov (United States)

    Harrah, Mark; Swan, Anna

    2010-03-01

    Experiments have shown step-wise changes in the fluorescence intensity from single-walled carbon nanotubes [1,2]. It has been proposed that the underlying mechanism for the step-wise changes is diffusion-limited quenching of excitons at defects [1]. This property has been used to demonstrate single-molecule detection for biological applications [3]. We perform a Monte-Carlo simulation of nanotube fluorescence with a diffusion-limited quenching model. The fluorescence intensity is seen to depend on the mean-square distance between defects, implying a nonlinear dependence on the number of defects. The intensity for consecutive defect counts can overlap depending on the positions of the defects. [4pt] [1] Cognet, L. et al. Science 316, 1465-1468 (2007).[0pt] [2] Jin, H. et al. Nano Lett. 8, 4299-4304 (2008).[0pt] [3] Heller, D. A. et al. Nature Nanotech. 4, 114-120 (2009).

  17. Poly(ethylene-co-butylene) functionalized multi walled carbon nanotubes applied in polypropylene nanocomposites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Marín, Jose Manuel Roman

    2012-01-01

    A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient...

  18. A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi; Zahedi, Mansour; Mola, Adeleh; Naserian, Samira

    2015-01-01

    Highlights: • Investigation of the adsorption of SO 2 on Au/SWCNT and Pt/SWCNT. • SO 2 adsorbed on Au/SWCNT and Pt/SWCNT system demonstrate a strong chemisorption. • NBO analysis was done to reach more understanding about intermolecular interactions. - Abstract: Adsorption of single and double SO 2 gas molecule(s) on the surface of Pt-doped and Au-doped (5,5) single-walled carbon nanotubes (Pt/CNT-V and Au/CNT-V) were investigated by using density functional theory (DFT) at B3LYP/LANL2DZ level. The results showed the following: firstly, adsorption on Au/CNT-V is independent of special orientation, secondly, SO 2 adsorption on Pt/CNT-V in single case is stronger than Au/CNT-V, and finally, adsorption of the first molecule influences adsorption of the second one. Upon adsorption of SO 2 molecule(s), the energy gap of Pt/CNT-V were considerably reduced, resulting in enhanced electrical conductivity but in Au/CNT-V, despite of adsorption energy similar to Pt/CNT-V, E g slightly increased. In order to consider the effect of adsorption on electronic properties, DOS and PDOS calculations were performed. Moreover, NBO analysis was done to reach more understanding about intermolecular interactions. In conclusion, chemical reactivity was investigated in terms of chemical hardness, softness and work function (ϕ)

  19. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison.

    Science.gov (United States)

    Park, Eun-Jung; Choi, Je; Kim, Jae-Ho; Lee, Byoung-Seok; Yoon, Cheolho; Jeong, Uiseok; Kim, Younghun

    2016-10-01

    Impurity has been suggested as an important factor determining toxicity following exposure to single-walled carbon nanotubes (SWCNTs). In this study, we first compared immunotoxicity based on iron content on day 90 after a single intratracheal instillation of SWCNTs in male and female mice. The inflammatory responses were generally stronger in mice exposed to acid-purified (P)-SWCNTs compared to raw (R)-SWCNTs. In addition, both R- and P-SWCNTs induced Th1-polarized immune responses with apoptotic death of BAL cells and systemically impaired the function of antigen-presenting cells (APC). We also screened reproductive and developmental toxicity by cohabitating male and female mice on day 14 after instillation. Interestingly, the pregnancy rate rapidly decreased following exposure to both types of SWCNTs, especially R-SWCNTs. In addition, we investigated developmental immunotoxicity of the offspring on day 28 after exposure to both types of SWCNTs. Their hematological changes were clearer relative to those of the parents and a significant decrease in the alkaline phosphatase and potassium levels was observed in mice of both sexes exposed to the higher dose of R- and P-SWCNTs. In conclusion, we suggest that SWCNTs may induce Th1-polarized immune responses accompanied by suppression of APC function on day 90 after a single instillation without significant iron content dependance. In addition, the consecutive exposure of SWCNTs to the subsequent generation may exacerbate metabolic and hematological disturbance. Furthermore, our results underscore the need to clarify the reproductive and developmental health effects of SWCNTs.

  20. Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter

    International Nuclear Information System (INIS)

    Tonkikh, Alexander A.; Obraztsova, Elena D.; Pozharov, Anatolii S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.

    2012-01-01

    Single-wall carbon nanotubes with polyiodide chains inside are interesting from two points of view. According to predictions, first, the iodine structure type inside the nanotube is determined by the nanotube geometry. Second, after iodination all nanotubes become metallic. In this work, we made an attempt to check both predictions. To study the diameter-dependent properties we have taken for a gas-phase iodination the pristine single-wall carbon nanotubes grown by three different techniques providing a different average diameter: a chemical vapor deposition with a Co/Mo catalyst (CoMoCat) with a diameter range (0.6-1.3) nm, a high-pressure CO decomposition (HiPCO) - a diameter range (0.8-1.5) nm, and an aerosol technique with Fe catalyst - a diameter range (1.3-2.0) nm. The Raman spectra have shown a complication of the polyiodide chain structure while the nanotube diameter increased. The optical spectroscopy data (a suppression of E 11 band in the UV-Vis-NIR absorption spectrum) have confirmed the theoretical prediction about transformation of all nanotubes into metallic phase after doping. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Length-dependent optical properties of single-walled carbon nanotube samples

    International Nuclear Information System (INIS)

    Naumov, Anton V.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, R. Bruce

    2013-01-01

    Highlights: ► Length-independent absorption per atom in single-walled carbon nanotubes. ► Reduced fluorescence quantum yield for short nanotubes. ► Exciton quenching at nanotube ends, sidewall defects probably limits quantum yield. - Abstract: Contradictory findings have been reported on the length dependence of optical absorption cross sections and fluorescence quantum yields in single-walled carbon nanotubes (SWCNTs). To clarify these points, studies have been made on bulk SWCNT dispersions subjected to length fractionation by electrophoretic separation or by ultrasonication-induced scission. Fractions ranged from ca. 120 to 760 nm in mean length. Samples prepared by shear-assisted dispersion were subsequently shortened by ultrasonic processing. After accounting for processing-induced changes in the surfactant absorption background, SWCNT absorption was found constant within ±11% as average nanotube length changed by a factor of 3.8. This indicates that the absorption cross-section per carbon atom is not length dependent. By contrast, in length fractions prepared by both methods, the bulk fluorescence efficiency or average quantum yield increased with SWCNT average length and approached an apparent asymptotic limit near 1 μm. This result is interpreted as reflecting the combined contributions of exciton quenching by sidewall defects and by the ends of shorter nanotubes

  2. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)

    2016-04-21

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  3. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Science.gov (United States)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  4. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.

    2016-01-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  5. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    Science.gov (United States)

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  6. Sintering behavior of porous wall tile bodies during fast single-firing process

    Directory of Open Access Journals (Sweden)

    Sidnei José Gomes Sousa

    2005-06-01

    Full Text Available In ceramic wall tile processing, fast single-firing cycles have been widely used. In this investigation a fast single-firing porous wall tile mixture was prepared using raw materials from the North Fluminense region.Specimens were obtained by uniaxial pressing and sintered in air at various temperatures (1080 - 1200 °C using a fast-firing cycle (60 minutes. Evolution of the microstructure was followed by XRD and SEM. The results revealed that the main phases formed during the sintering step are anorthite, gehlenite and hematite. It appears that the sintering process is characterized by the presence of a small amount of a liquid phase below 1140 °C. As a result, the microstructure of the ceramic bodies showed a network of small dense zones interconnected with a porous phase. In addition, the strength of the material below 1140 °C appeared to be related to the type and quantity of crystalline phases in the sintered bodies.

  7. Hydrogen adsorption on metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, E.; Chahine, R.; Benard, P.; Lafi, L.; Dorval-Douville, G.; Chandonia, P.-A. [Univ. du Quebec a Trois-Rivieres, Inst. de recherche sur l' hydrogene, Trois-Rivieres, Quebec (Canada)]. E-mail: Lyubov.Lafi@uqtr.ca

    2006-07-01

    'Full text:' In recent years, several novel carbon-based microporous materials such as single-walled carbon nanotubes (SWNTs) and metal-organic frameworks (MOFs) have been proposed as promising adsorbents for hydrogen. Hydrogen adsorption measurements on Al-, Cr- and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77K ranges from 2,8 to 3,9 wt % for the MOFs and from 1,5 to 2,5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (< 0,4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is found to be about 2,9 kJ/mol for the MOF-5 and about 3,6 - 4,2 kJ/mol for SWNTs. The uptake of hydrogen on SWNTs and MOF-5 appears to be due to physisorption and can be described, through the DA-model, by a traditional theory of micropore filling. (author)

  8. Domain wall partition function of the eight-vertex model with a non-diagonal reflecting end

    International Nuclear Information System (INIS)

    Yang Wenli; Chen Xi; Feng Jun; Hao Kun; Shi Kangjie; Sun Chengyi; Yang Zhanying; Zhang Yaozhong

    2011-01-01

    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex SOS model, we derive the recursion relations of the partition function for the eight-vertex model with a generic non-diagonal reflecting end and domain wall boundary condition. Solving the recursion relations, we obtain the explicit determinant expression of the partition function. Our result shows that, contrary to the eight-vertex model without a reflecting end, the partition function can be expressed as a single determinant.

  9. Enhancement of heterogeneous electron transfer dynamics tuning single-walled carbon nanotube forest height and density

    International Nuclear Information System (INIS)

    Lamberti, Francesco; Ferraro, Davide; Giomo, Monica; Elvassore, Nicola

    2013-01-01

    Electrochemical sensors are growing in number and importance. Surface modifications could enhance charge transfer properties occurring at the interfaces and carbon nanoassemblies is one of the most used strategy to improve sensitivity to measurements. However, well defined protocols of surface modification are needed in order to fabricate electrochemically effective nanostructured sensors. Therefore, we aim at investigating the electrochemical properties of single-walled carbon nanotube (SWCNT) forests as a function of height and nanotube surface density. Height of the forests is accurately controlled tuning the oxidation temperatures in the range of 293–313 K of SWCNTs. The surface density of carbon nanotubes was adjusted developing cysteamine/2-mercaptoethanol (CYS/ME) self-assembled monolayers (SAMs) on gold surfaces at different ratios (1:0, 1:3, 1:10, 1:100, 0:1). Apparent electron transfer rate was analyzed with electrochemical impedance spectroscopy (EIS) and experimental data show that transfer rate constant, k app , increases from 1 × 10 −4 cm/s to 6 × 10 −4 cm/s rising oxidation temperatures (i.e. lowering forest height); therefore forests with reduced height show higher electron transfer rate without significant difference in electrodic reversibility. On the other hand, tuning SWCNT surface density, forests obtained with no ME show optimal Δ peak value of 0.087 ± 0.015 V and highest k app value of 9.15 × 10 −3 cm/s. Surprisingly, electrochemical surface area analysis shows that samples with lower amount of cysteamine have an active surface area three times bigger than samples with 1:3 CYS/ME ratio. Low electrochemical efficiency associated with high active surface may be related to unwanted SWCNT bundles adsorbed on the surface for 1:10 and 1:100 CYS/ME ratio samples as confirmed by AFM morphological characterization. Further investigation shows that a transition from a semi-infinite planar diffusion mechanism to a radial diffusion one takes

  10. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  11. The Surface Reactivities of Single-Walled Carbon Nanotubes and Their Related Toxicities

    Science.gov (United States)

    Ren, Lei

    After 20 years of extensive exploration, people are more and more convinced on the great potentials of single-walled carbon nanotubes (SWCNTs) in the applications of many different areas. On the other hand, the properties and toxicities have also been closely watched for the safe utilization. In this dissertation I focus on the surface properties of SWCNTs and their related toxicities. In chapter 2, we revealed the generation of peroxyl radical by the unmodified SWCNT and the poly(ethylene glycol) functionalized SWCNT in aqueous solution with capillary electrophoresis (CE) and a reactive oxygen species (ROS) indicator, 2,7-dichlorodihydrofluorescein (H2DCF). According to the results, we identified peroxyl radical, ROO• as the major ROS in our system. Peroxyl radical could be produced from the adsorption of oxygen on the SWCNT surface. In chapter 3, we studied oxidation of several biologically relevant reducing agents in the presence of SWCNTs in aqueous solutions. H2DCF and several small antioxidants (vitamin C, Trolox, and cysteine), and a high-molecular-weight ROS scavenger (bovine serum albumin (BSA)) were selected as reductants. We revealed that the unmodified or carboxylated SWCNT played duplex roles by acting as both oxidants and catalysts in the reaction. In chapter 4, we confirmed that SWCNTs bind to horseradish peroxidase (HRP) at a site proximate to the enzyme's activity center and participating in the ET process, enhancing the activity of (HRP) in the solution-based redox reaction. The capability of SWCNT in receiving electrons and the direct attachment of HRP to the surface of SWCNT strongly affected the enzyme activity due to the direct involvement of SWCNT in ET. In chapter 5, the toxicity of SWCNTs coated with different concentrations of BSA to a human fibroblast cell line was explored. The result indicates that the toxicity of SWCNTs decrease with the higher coating degree as assumed. Then we choose mitochondrion to study the interactions between

  12. The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes

    International Nuclear Information System (INIS)

    Vedala, Harindra; Roy, Somenath; Choi, Wonbong; Doud, Melissa; Mathee, Kalai; Hwang, Sookhyun; Jeon, Minhyon

    2008-01-01

    We present an electrical conductivity study on a double-stranded DNA molecule bridging a single-walled carbon nanotube (SWNT) gap. The amine terminated DNA molecule was trapped between carboxyl functionalized SWNT electrodes by dielectrophoresis. The conductivity of DNA was measured while under the influence of various environmental factors, including salt concentration, counterion variation, pH and temperature. Typically, a current of tens of picoamperes at 1 V was observed at ambient conditions, with a decrease in conductance of about 33% in high vacuum conditions. The counterion variation was analyzed by changing the buffer from sodium acetate to tris(hydroxymethyl) aminomethane, which resulted in a two orders of magnitude increase in the conductivity of the DNA. A reversible shift in the current signal was observed for pH variation. An increase in conductivity of the DNA was also observed at high salt concentrations

  13. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  14. Promoting mechanism of N-doped single-walled carbon nanotubes for O2 dissociation and SO2 oxidation

    Science.gov (United States)

    Chen, Yanqiu; Yin, Shi; Chen, Yang; Cen, Wanglai; Li, Jianjun; Yin, Huaqiang

    2018-03-01

    Although heteroatom doping in carbon based catalysts have recently received intensive attentions, the role of the intrinsically porous structure of practical carbon materials and their potential synergy with doping atoms are still unclear. To investigate the complex effects, a range of N-doped single-walled carbon nanotubes (SWCNTs) were used to investigate their potential use for O2 dissociation and the subsequent SO2 oxidation using density functional theory. It is found that graphite N doping can synergize with the outer surface of SWCNTs to facilitate the dissociation of O2. The barrier for the dissociation on dual graphite N-doped SWCNT-(8, 8) is as low as 0.3 eV, and the subsequent SO2 oxidation is thermodynamically favorable and kinetically feasible. These results spotlight on developing promising carboncatalyst via utilization of porous gemometry and heteroatom-doping of carbon materials simultaneously.

  15. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    Science.gov (United States)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  16. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    Science.gov (United States)

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to

  17. Templated Synthesis of Single-Walled Carbon Nanotubes with Specific Structure.

    Science.gov (United States)

    Yang, Feng; Wang, Xiao; Li, Meihui; Liu, Xiyan; Zhao, Xiulan; Zhang, Daqi; Zhang, Yan; Yang, Juan; Li, Yan

    2016-04-19

    Single-walled carbon nanotubes (SWNTs) have shown great potential in various applications attributed to their unique structure-dependent properties. Therefore, the controlled preparation of chemically and structurally pristine SWNTs is a crucial issue for their advanced applications (e.g., nanoelectronics) and has been a great challenge for two decades. Epitaxial growth from well-defined seeds has been shown to be a promising strategy to control the structure of SWNTs. Segments of carbon nanotubes, including short pipes from cutting of preformed nanotubes and caps from opening of fullerenes or cyclodehydrogenation of polycyclic hydrocarbon precursors, have been used as the seeds to grow SWNTs. Single-chirality SWNTs were obtained with both presorted chirality-pure SWNT segments and end caps obtained from polycyclic hydrocarbon molecules with designed structure. The main challenges of nanocarbon-segment-seeded processes are the stability of the seeds, yield, and efficiency. Catalyst-mediated SWNT growth is believed to be more efficient. The composition and morphology of the catalyst nanoparticles have been widely reported to affect the chirality distribution of SWNTs. However, chirality-specific SWNT growth is hard to achieve by alternating catalysts. The specificity of enzyme-catalyzed reactions brings us an awareness of the essentiality of a unique catalyst structure for the chirality-selective growth of SWNTs. Only catalysts with the desired atomic arrangements in their crystal planes can act as structural templates for chirality-specific growth of SWNTs. We have developed a new family of catalysts, tungsten-based intermetallic compounds, which have high melting points and very special crystal structures, to facilitate the growth of SWNTs with designed chirality. By the use of W6Co7 catalysts, (12,6) SWNTs were directly grown with purity higher than 92%. Both high-resolution transmission electron microscopy measurements and density functional theory simulations

  18. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer

    Science.gov (United States)

    Virani, Needa A.; Davis, Carole; McKernan, Patrick; Hauser, Paul; Hurst, Robert E.; Slaton, Joel; Silvy, Ricardo P.; Resasco, Daniel E.; Harrison, Roger G.

    2018-01-01

    Bladder cancer has a 60%-70% recurrence rate most likely due to any residual tumour left behind after a transurethral resection (TUR). Failure to completely resect the cancer can lead to recurrence and progression into higher grade tumours with metastatic potential. We present here a novel therapy to treat superficial tumours with the potential to decrease recurrence. The therapy is a heat-based approach in which bladder tumour specific single-walled carbon nanotubes (SWCNTs) are delivered intravesically at a very low dose (0.1 mg SWCNT per kg body weight) followed 24 h later by a short 30 s treatment with a 360° near-infrared light that heats only the bound nanotubes. The energy density of the treatment was 50 J cm-2, and the power density that this treatment corresponds to is 1.7 W cm-2, which is relatively low. Nanotubes are specifically targeted to the tumour via the interaction of annexin V (AV) and phosphatidylserine, which is normally internalised on healthy tissue but externalised on tumours and the tumour vasculature. SWCNTs are conjugated to AV, which binds specifically to bladder cancer cells as confirmed in vitro and in vivo. Due to this specific localisation, NIR light can be used to heat the tumour while conserving the healthy bladder wall. In a short-term efficacy study in mice with orthotopic MB49 murine bladder tumours treated with the SWCNT-AV conjugate and NIR light, no tumours were visible on the bladder wall 24 h after NIR light treatment, and there was no damage to the bladder. In a separate survival study in mice with the same type of orthotopic tumours, there was a 50% cure rate at 116 days when the study was ended. At 116 days, no treatment toxicity was observed, and no nanotubes were detected in the clearance organs or bladder.

  19. Improved covalent functionalization of multi-walled carbon ...

    Indian Academy of Sciences (India)

    MWCNTs). The structures of the functionalized MWCNTs were characterized with Fourier-transform infrared spectroscopy. Thermogravimetric analysis results also demonstrated the presence of organic portions of the functionalized MWCNTs.

  20. Antimicrobial Activity of Single-Walled Carbon Nano tubes Suspended in Different Surfactants

    International Nuclear Information System (INIS)

    Dong, L.; Alex Henderson, A.; Field, Ch.

    2012-01-01

    We investigated the antibacterial activity of single-walled carbon nano tubes (SWCNTs) dispersed in surfactant solutions of sodium cholate, sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Among the three surfactants, sodium cholate demonstrated the weakest antibacterial activity against Salmonella enterica, Escherichia coli, and Enterococcus faecium and thereby was used to disperse bundled SWCNTs in order to study nano tube antibiotic activity. SWCNTs exhibited antibacterial characteristics for both S. enterica and E. coli. With the increase of nano tube concentrations from 0.3 mg/mL to 1.5 mg/mL, the growth curves had plateaus at lower absorbance values whereas the absorbance value was not obviously affected by the incubation ranging from 5?min to 2 h. Our findings indicate that carbon nano tubes could become an effective alternative to antibiotics in dealing with drug-resistant and multidrug-resistant bacterial strains because of the physical mode of bactericidal action that SWCNTs display

  1. High-performance photoresponse from single-walled carbon nanotube-zinc oxide heterojunctions

    International Nuclear Information System (INIS)

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Lee, Minsu; Kim, Jae-Ho

    2011-01-01

    Photoactive materials consisting of single-walled carbon nanotube (SWNT)-zinc oxide (ZnO) heterojunctions targeted for optoelectronic applications are investigated in terms of photoresponse and photovoltaic effects. The devices based on SWNT-ZnO heterojunction films are fabricated by two step processes: first, a well aligned SWNT monolayer is deposited on an oxide substrate by the Langmuir-Blodgett (LB) technique; then a ZnO film prepared by filtration of ZnO nanowire solution is transferred onto the SWNT film to form SWNT-ZnO junctions. The SWNT-ZnO heterojunction demonstrates faster photoresponse time (2.75 s) up to 18 times and photovoltaic efficiency (1.33 nA) up to 4 times higher than that of only a ZnO device. Furthermore, the mechanisms of UV sensitivity enhancement and photovoltaic effects are explained according to the high electron mobility in the SWNT-ZnO heterojunctions.

  2. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    Science.gov (United States)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  3. Debundling of single-walled carbon nanotubes by using natural polyelectrolytes

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian; Zheng Shan; Wang Yan; Sun Jing; Kajiura, Hisashi; Li Yongming; Noda, Kazuhiro

    2007-01-01

    Natural polyelectrolytes (NPs), including sodium lignosulfonate, humic acid and so forth, are reported for the first time to solubilize single-walled carbon nanotubes (SWNTs) in water through a noncovalent interaction. A variety of methods, including transmission electron microscopy (TEM), visible-near-infrared (vis-NIR) spectra, Raman spectra and zeta potential measurements, were used to characterize the NP-dispersed SWNT solutions. It is found that the SWNTs can be exfoliated into thin bundles or individual tubes, even at NP concentrations as low as 0.15 mg ml -1 . Their high performance is attributed to the abundance of aromatic groups and ionized groups in the NP molecules. This method of solubilization opens the way for exploiting new natural materials as SWNT solubilizers and may find applications in nanocomposites, self-assembly, and so forth

  4. Debundling of single-walled carbon nanotubes by using natural polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yangqiao [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao Lian [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng Shan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang Yan [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Sun Jing [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Kajiura, Hisashi [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan); Li Yongming [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan); Noda, Kazuhiro [Materials Laboratories, Sony Corporation, Atsugi Tec. No. 2, 4-16-1 Okata Atsugi, Kanagawa 243-0021 (Japan)

    2007-09-12

    Natural polyelectrolytes (NPs), including sodium lignosulfonate, humic acid and so forth, are reported for the first time to solubilize single-walled carbon nanotubes (SWNTs) in water through a noncovalent interaction. A variety of methods, including transmission electron microscopy (TEM), visible-near-infrared (vis-NIR) spectra, Raman spectra and zeta potential measurements, were used to characterize the NP-dispersed SWNT solutions. It is found that the SWNTs can be exfoliated into thin bundles or individual tubes, even at NP concentrations as low as 0.15 mg ml{sup -1}. Their high performance is attributed to the abundance of aromatic groups and ionized groups in the NP molecules. This method of solubilization opens the way for exploiting new natural materials as SWNT solubilizers and may find applications in nanocomposites, self-assembly, and so forth.

  5. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite

    International Nuclear Information System (INIS)

    Wang Shiren; Liang Zhiyong; Pham, Giang; Park, Young-Bin; Wang, Ben; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2007-01-01

    This paper presents an effective technique to fabricate thermoplastic nanocomposites with high loading of well-dispersed single-walled carbon nanotubes (SWNTs). SWNT membranes were made from a multi-step dispersion and filtration method, and then impregnated with polycarbonate solution to make thermoplastic nanocomposites. High loading of nanotubes was achieved by controlling the viscosity of polycarbonate solution. SEM and AFM characterization results revealed the controlled nanostructure in the resultant nanocomposites. Dynamic mechanical property tests indicated that the storage modulus of the resulting nanocomposites at 20 wt% nanotubes loading was improved by a factor of 3.4 compared with neat polycarbonate material. These results suggest the developed approach is an effective way to fabricate thermoplastic nanocomposites with good dispersion and high SWNT loading

  6. Band Gap Changes Of Single Walled Carbon Nanotubes Under Uniaxial Strain

    International Nuclear Information System (INIS)

    Dereli, G.

    2010-01-01

    The study of the band gap variation with mechanical deformation is important in manipulations of Single Walled Carbon Nanotubes (SWCNT). In this study we investigated the electronic band structure and the mechanical properties of (12,0) and (13,0) SWCNTs under the effect of uniaxial strain. Electronic and mechanical properties are studied using a parallel, order N, tight-binding molecular dynamics (O(N) TBMD) simulation code designed by G. Dereli et. al. We showed the effect of uniaxial strain on the variations of band gaps and the total energy per atom of (12,0) and (13,0) SWCNTs. We calculated Young's modulus and the Poisson ratio of these SWCNTs. The research reported here was supported through the Yildiz Technical University Research Found Project No: 24-01-01-04. Simulations are performed in parallel environment at Carbon Nanotube Simulation Laboratory of Yildiz Technical University.

  7. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    Directory of Open Access Journals (Sweden)

    Amanda García-García

    2016-06-01

    Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  8. Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

    Science.gov (United States)

    Ye, Jianglin; Wu, Shuilin; Ni, Kun; Tan, Ziqi; Xu, Jin; Tao, Zhuchen; Zhu, Yanwu

    2017-07-19

    While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO 2 , and H 2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    Science.gov (United States)

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si.

  10. Diameter Tuning of Single-Walled Carbon Nanotubes by Diffusion Plasma CVD

    Directory of Open Access Journals (Sweden)

    Toshiaki Kato

    2011-01-01

    Full Text Available We have realized a diameter tuning of single-walled carbon nanotubes (SWNTs by adjusting process gas pressures with plasma chemical vapor deposition (CVD. Detailed photoluminescence measurements reveal that the diameter distribution of SWNTs clearly shifts to a large-diameter region with an increase in the pressure during plasma CVD, which is also confirmed by Raman scattering spectroscopy. Based on the systematical investigation, it is found that the main diameter of SWNTs is determined by the pressure during the heating in an atmosphere of hydrogen and the diameter distribution is narrowed by adjusting the pressure during the plasma generation. Our results could contribute to an application of SWNTs to high-performance thin-film transistors, which requires the diameter-controlled semiconductor-rich SWNTs.

  11. Optical and thermal response of single-walled carbon nanotube–copper sulfide nanoparticle hybrid nanomaterials

    International Nuclear Information System (INIS)

    Tseng, Yi-Hsuan; He Yuan; Que Long; Lakshmanan, Santana; Yang Chang; Chen Wei

    2012-01-01

    This paper reports the optical and thermal response of a single-walled carbon nanotube–copper sulfide nanoparticle (SWNT–CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 × by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. (paper)

  12. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Jang, E.S.; Goak, J.C.; Lee, H.S.; Lee, S.H.; Han, J.H.; Lee, C.S.; Sok, J.H.; Seo, Y.H.; Park, K.S.; Lee, N.S.

    2010-01-01

    In the conventional carbon nanotube backlight units (CNT-BLUs), light passes through the phosphor-coated anode glass plate, which thus faces closely the thin film transistor (TFT) backplate of a liquid crystal display panel. This configuration makes heat dissipation structurally difficult because light emission and heat generation occur simultaneously at the anode. We propose a novel configuration of a CNT-BLU where the cathode rather than the anode faces the TFT backplate by turning it upside down. In this design, light passes through the transparent cathode glass plate while heating occurs at the anode. We demonstrated a novel design of CNT-BLU by fabricating transparent single-walled CNT field emitters on the cathode and by coating a reflecting metal layer on the anode. This study hopefully provides a clue to solve the anode-heating problem which would be inevitably confronted for high-luminance and large-area CNT-BLUs.

  13. Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; An, Hua; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-05-01

    Compared with isolated single-walled carbon nanotubes (SWNTs), thermal conductivity is greatly impeded in SWNT bundles; however, the measurement of the bundle size effect is difficult. In this study, the number of SWNTs in a bundle was determined based on the transferred horizontally aligned SWNTs on a suspended micro-thermometer to quantitatively study the effect of the bundle size on thermal conductivity. Increasing the bundle size significantly degraded the thermal conductivity. For isolated SWNTs, thermal conductivity was approximately 5000 ± 1000 W m-1 K-1 at room temperature, three times larger than that of the four-SWNT bundle. The logarithmical deterioration of thermal conductivity resulting from the increased bundle size can be attributed to the increased scattering rate with neighboring SWNTs based on the kinetic theory.

  14. Vertically aligned single-walled carbon nanotubes by chemical assembly--methodology, properties, and applications.

    Science.gov (United States)

    Diao, Peng; Liu, Zhongfan

    2010-04-06

    Single-walled carbon nanotubes (SWNTs), as one of the most promising one-dimension nanomaterials due to its unique structure, peculiar chemical, mechanical, thermal, and electronic properties, have long been considered as an important building block to construct ordered alignments. Vertically aligned SWNTs (v-SWNTs) have been successfully prepared by using direct growth and chemical assembly strategies. In this review, we focus explicitly on the v-SWNTs fabricated via chemical assembly strategy. We provide the readers with a full and systematic summary covering the advances in all aspects of this area, including various approaches for the preparation of v-SWNTs using chemical assembly techniques, characterization, assembly kinetics, and electrochemical properties of v-SWNTs. We also review the applications of v-SWNTs in electrochemical and bioelectrochemical sensors, photoelectric conversion, and scanning probe microscopy.

  15. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    Science.gov (United States)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  16. Growth mechanism and internal structure of vertically aligned single-walled carbon nanotubes.

    Science.gov (United States)

    Einarsson, Erik; Kadowaki, Masayuki; Ogura, Kazuaki; Okawa, Jun; Xiang, Rong; Zhang, Zhengyi; Yamamoto, Takahisa; Ikuhara, Yuichi; Maruyama, Shigeo

    2008-11-01

    An in situ optical absorbance technique was used to monitor the growth of vertically aligned single-walled carbon nanotubes (VA-SWNTs) at various temperatures and pressures. The effects of the growth temperature and ethanol pressure on the initial growth rate and catalyst lifetime were investigated. It was found that the ideal pressure for VA-SWNT synthesis changes with the growth temperature, shifting toward higher pressure as the growth temperature increases. It was also found that the growth reaction is first-order below this ideal pressure. Additionally, the internal structure of the VA-SWNT film was observed at different depths into the film by transmission electron microscopy. The absence of large bundles was confirmed, and little change in the structure was observed to a depth of approximately 1 microm.

  17. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    Science.gov (United States)

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  18. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  19. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-09

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear free vibration of single walled Carbone NanoTubes conveying fluid

    Directory of Open Access Journals (Sweden)

    Azrar A.

    2014-04-01

    Full Text Available Nonlinear free vibration of single-walled carbon nanotubes (CNTs conveying fluid are modeled and numerically simulated based on von Kármán geometric nonlinearity and Eringen’s nonlocal elasticity theory. The CNTs are modelled as nanobeams where the effects of transverse shear deformation and rotary inertia are considered within the framework of Timoshenko beam theory. The governing equations and boundary conditions are derived using the Hamilton’s principle and the nonlinear equation of motion is solved by the Galerkin’s method. The small scale parameter and the fluid-tube interaction effects on the dynamic behaviours of the CNT-fluid system as well as the instabilities induced by the fluid-velocity can be investigated. The critical fluid-velocity and frequency-amplitude relationships as well as the flutter and divergence instability types and the associated time responses are obtained based on the presented methodological approach.

  1. Si-coated single-walled carbon nanotubes under axial loads: An atomistic simulation study

    International Nuclear Information System (INIS)

    Song Haiyang; Zha Xinwei

    2007-01-01

    The mechanical properties of the Si-coated imperfect (5, 5) single-walled carbon nanotube (SWCNT), the imperfect (5, 5) SWCNT and several perfect armchair SWCNTs under axial loads were investigated using molecular dynamics simulation. The interactions between atoms were modeled using the empirical Tersoff potential and the Tersoff-Brenner potential coupled with the Lennard-Jones potential. We get Young's modulus of the defective (5, 5) nanotube with and without the Si coating under axial tension 1107.92 and 1076.02 GPa, respectively. The results also show that the structure failure of the Si-coated imperfect (5, 5) SWCNT under axial compression occurs at a slightly higher strain than for the perfect (5, 5) SWCNT. Therefore, we can confirm the protective effect of Si as a coating material for defective SWCNTs. We also obtain the critical buckling strains of perfect SWCNTs

  2. Photo-induced thermoelectric response in suspended single-walled carbon nanotube films

    Science.gov (United States)

    St-Antoine, Benoit; Menard, David; Martel, Richard

    2010-03-01

    A study was carried out on the position dependent photovoltage of suspended single-walled carbon nanotube films in vacuum. The photoresponse of such films was found to be driven by a thermal mechanism, rather than by direct photoexcitation of carriers. [1] A model was developed which establishes a relation between the photoresponse profile and the local Seebeck coefficient of the film, thus opening up new perspectives for material characterization. The technique was demonstrated by monitoring the doping changes in the nanotube films obtained by successive current conditioning steps. Since the Seebeck coefficient of carbon nanotubes spans a considerable range depending on their doping state, the photovoltage amplitude can be tuned and large responses have been measured (up to 0.75mV for 1.2mW). [4pt] [1] B. St-Antoine et al. Nano Lett. 9, 3503 (2009)

  3. Reinforcement of single-walled carbon nanotube bundles by intertube bridging

    Science.gov (United States)

    Kis, A.; Csányi, G.; Salvetat, J.-P.; Lee, Thien-Nga; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forró, L.

    2004-03-01

    During their production, single-walled carbon nanotubes form bundles. Owing to the weak van der Waals interaction that holds them together in the bundle, the tubes can easily slide on each other, resulting in a shear modulus comparable to that of graphite. This low shear modulus is also a major obstacle in the fabrication of macroscopic fibres composed of carbon nanotubes. Here, we have introduced stable links between neighbouring carbon nanotubes within bundles, using moderate electron-beam irradiation inside a transmission electron microscope. Concurrent measurements of the mechanical properties using an atomic force microscope show a 30-fold increase of the bending modulus, due to the formation of stable crosslinks that effectively eliminate sliding between the nanotubes. Crosslinks were modelled using first-principles calculations, showing that interstitial carbon atoms formed during irradiation in addition to carboxyl groups, can independently lead to bridge formation between neighbouring nanotubes.

  4. Hardness of high-pressure high-temperature treated single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Kawasaki, S.; Nojima, Y.; Yokomae, T.; Okino, F.; Touhara, H.

    2007-01-01

    We have performed high-pressure high-temperature (HPHT) treatments of high quality single-walled carbon nanotubes (SWCNTs) over a wide pressure-temperature range up to 13 GPa-873 K and have investigated the hardness of the HPHT-treated SWCNTs using a nanoindentation technique. It was found that the hardness of the SWCNTs treated at pressures greater than 11 GPa and at temperatures higher than 773 K is about 10 times greater than that of the SWCNTs treated at low temperature. It was also found that the hardness change of the SWCNTs is related to the structural change by the HPHT treatments which was based on synchrotron X-ray diffraction measurements

  5. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response

    Science.gov (United States)

    Scagliotti, Mattia; Salvato, Matteo; De Crescenzi, Maurizio; Boscardin, Maurizio; Castrucci, Paola

    2018-03-01

    A systematic study of the optical response of photodetectors based on carbon nanotube/Si heterojunctions is performed by measuring the responsivity, the detectivity and the time response of the devices with different contact configurations. The sensors are obtained by dry transferring single-walled carbon nanotube films on the surface of n-doped Si substrate provided with a multifinger contact geometry. The experimental data show a consistent improvement of the photodetector parameters with the increase of the number of fingers without affecting the carbon nanotube film thickness for increase its optical transmittance as in previous experiments. The role of the electrical resistance of the carbon nanotube film is discussed. The obtained results confirm the method and suggest new perspectives in the use of nanostructured materials as part of semiconducting optical devices.

  6. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.

    Science.gov (United States)

    Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah

    2014-09-10

    We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.

  7. Antenna-coupled terahertz radiation from joule-heated single-wall carbon nanotubes

    Directory of Open Access Journals (Sweden)

    M. Muthee

    2011-12-01

    Full Text Available In this letter an experimental method is introduced that allows detection of terahertz (THz radiation from arrays of joule-heated Single-Walled Carbon Nanotubes (SWCNTs, by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW. The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

  8. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Environment and Energy, KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-19

    Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites were prepared by in situ potentiostatic deposition of PANI onto SWCNTs at the potential of 0.75V versus SCE, with the aim to investigate the influence of microstructure on the specific capacitance of PANI/SWCNT composites. It was found that the specific capacitance of the PANI/SWCNT composites is strongly influenced by their microstructure, which is correlated to the wt.% of the PANI deposited onto the SWCNTs. The optimum condition, corresponding to the highest specific capacitance, 463Fg{sup -1} (at 10mAcm{sup -2}), was obtained for 73wt.% PANI deposited onto SWCNTs. The specific capacitance of the PANI/SWCNT composite electrode was highly stable, with a capacitive decrease of 5% during the first 500 cycles and just 1% during the next 1000 cycles, indicative of the excellent cyclic stability of the composite for supercapacitor applications. (author)

  9. Raman spectroscopic investigations of swift heavy ion irradiation effects in single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Olejniczak, A.; Skuratov, V.A.; Lukaszewicz, J.P.

    2013-01-01

    In this study, we report the results on swift heavy ion irradiation effects in single-walled carbon nanotubes (SWNTs). Buckypapers, prepared of CVD grown, SWNTs were irradiated at room temperature with 167 MeV Xe ions to fluences in the range of 6×10 11 - 6.5×10 13 cm -2 and investigated using Raman spectroscopy. We observed a rich set of features in the intermediate frequency mode region. Some of them, being defect-induced, resembled fairly well the phonon density of states (DOS) of nanocrystalline glassy carbon. Analysis of the RBM modes has shown that the broader metallic tubes are characterized by higher radiation stability than thinner semiconducting ones. (authors)

  10. Hydrogen storage in single-walled carbon nanotubes: methods and results

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Tessier, A.; Cossement, D.; Lafi, L.; Bose, T.K.

    2004-01-01

    We present high sensitivity gravimetric and volumetric hydrogen sorption measurement systems adapted for in situ conditioning under high temperature and high vacuum. These systems, which allow for precise measurements on small samples and thorough degassing, are used for sorption measurements on carbon nanostructures. We developed one volumetric system for the pressure range 0-1 bar, and two gravimetric systems for 0-1 bar and 0-100 bars. The use of both gravimetric and volumetric methods allows for the cross-checking of the results. The accuracy of the systems has been determined from hydrogen absorption measurements on palladium. The accuracies of the 0-1 bar volumetric and gravimetric systems are about 10 μg and 20 μg respectively. The accuracy of the 0-100 bars gravimetric system is about 20 μg. Hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) and metal-incorporated- SWNTs are presented. (author)

  11. Controlling the growth of vertically aligned single walled carbon nanotubes from ethanol for electrochemical supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A.; Mohamed, M.A.; Shikoh, E.; Fujiwara, A.; Shimoda, T. [Japan Advanced Inst. of Science and Technology, Ishikawa (Japan)

    2010-07-01

    Single-walled carbon nanotubes (SWCNTs) have been proven suitable for use as electrodes in electrochemical capacitors (EC). In this study, alcohol catalytic chemical vapor deposition (ACCVD) was used to grow vertically-aligned SWCNTs (VASWCNTs). An aluminium oxide (Al{sub 2}O{sub 3})-supported cobalt (Co) catalyst and high purity ethanol carbon feedstock was used for the growth process. The Al layer and Co thin films were deposited using an electron beam evaporator. CNT growth was optimized using Si/SiO{sub 2} substrates. An atomic force microscope, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used to characterize the synthesis of the catalyst nanoparticles and their subsequent growth. Raman spectrum of the samples demonstrated peaks of radial breathing mode (RBM) from 100 to 250 per cm. Results demonstrated that the CNTs were successfully grown on the conducting metal substrate using the ACCVD process. 4 refs.

  12. Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu

    2000-01-01

    Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.

  13. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules.

  14. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  15. Purity Evaluation of Single-Walled Carbon Nanotubes Using Thermogravimetric Analysis

    International Nuclear Information System (INIS)

    Goak, Jeung Choon; Kim, Tae Yang; Jung, Jongwan; Seo, Young-Soo; Lee, Naesung; Sok, Junghyun

    2013-01-01

    This study evaluated the purity of single-walled carbon nanotubes (SWCNTs) in the arc-synthesized SWCNT samples by using thermogravimetric analysis (TGA). The as-produced SWCNT samples were heat-treated in air for 20 h at 275-475°C and characterized by scanning and transmission electron microscopes and TGA to establish oxidation temperature ranges of SWCNTs and carbonaceous impurities comprising the samples. Based on these oxidation temperature ranges, derivative thermogravimetric curves were deconvoluted, and differentiated peaks were assigned to SWCNTs and carbonaceous impurities. The compositions and the SWCNT purities of the samples were obtained simply by calculating the areal ratios under the deconvoluted curves. TGA studies on purity evaluation and thermal stabilities of SWCNTs and carbonaceous impurities are likely to provide us with a simple route of thermal oxidation purification to acquire high-purity SWCNT samples.

  16. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  17. Spectroscopic study of the diameter distribution of B-doped single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Soria, G.; Pichler, T.; Ayala, P. [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Daothong, S. [Chiang Mai University, Faculty of Science, 50200 Chiang Mai (Thailand)

    2012-12-15

    In this paper, we report on the diameter distribution of boron-doped single-walled carbon nanotubes grown from triethyl borate with high vacuum chemical vapor deposition, using multi-frequency Raman resonance spectroscopy. The nanotube yield is higher than in previously reported material produced with the same method. Our results suggest that the amount of as-grown material and the range of diameters are directly correlated with feedstock used in the synthesis. The I{sub D}/I{sub G} ratio shows that the morphology of the samples is critically affected by the temperature. The population of diameters in the optimal conditions shows a Poisson distribution with a mean value at {proportional_to}1.15 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors

    Directory of Open Access Journals (Sweden)

    Trung Kien Vu

    2012-03-01

    Full Text Available This study presents a novel flexible strain sensor for real-time strain sensing. The material for strain sensing is single-walled carbon nanonets, grown using the alcohol catalytic chemical vapor deposition method, that were encapsulated between two layers of Parylene-C, with a polyimide layer as the sensing surface. All of the micro-fabrication was compatible with the standard IC process. Experimental results indicated that the gauge factor of the proposed strain sensor was larger than 4.5, approximately 2.0 times greater than those of commercial gauges. The results also demonstrated that the gauge factor is small when the growth time of SWCNNs is lengthier, and the gauge factor is large when the line width of the serpentine pattern of SWCNNs is small.

  19. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    Science.gov (United States)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-04-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  20. Single-walled carbon nanotube electromechanical switching behavior with shoulder slip

    International Nuclear Information System (INIS)

    Ryan, Peter; Wu, Yu-Chiao; Somu, Sivasubramanian; Adams, George; McGruer, Nicol

    2011-01-01

    Several electromechanical devices, each consisting of a small bundle of single-walled carbon nanotubes suspended over an actuation electrode, have been fabricated and operated electrically. The nanotubes are assembled on the electrodes using dielectrophoresis, a potential high-rate nanomanufacturing process. A large decrease in the threshold voltage was seen after the first actuation. This is a result of the nanotubes sliding inward on their supports as they are pulled down toward the actuation electrode, leaving slack in the nanotube bundle for subsequent actuations. The electrical measurements agree well with an electromechanical model that uses a literature-reported value of the shear stress between the nanotubes and the SiO 2 shoulders. Electrical measurements were performed in dry nitrogen as a large build-up of contamination was seen when the measurements were performed in lab air. We present measurements as well as a detailed mechanics model that support the interpretation of the data.

  1. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  2. Tight binding electronic band structure calculation of achiral boron nitride single wall nanotubes

    International Nuclear Information System (INIS)

    Saxena, Prapti; Sanyal, Sankar P

    2006-01-01

    In this paper we report the Tight-Binding method, for the electronic structure calculations of achiral single wall Boron Nitride nanotubes. We have used the contribution of π electron only to define the electronic band structure for the solid. The Zone-folding method is used for the Brillouin Zone definition. Calculation of tight binding model parameters is done by fitting them to available experimental results of two-dimensional hexagonal monolayers of Boron Nitride. It has been found that all the boron nitride nanotubes (both zigzag and armchair) are constant gap semiconductors with a band gap of 5.27eV. All zigzag BNNTs are found to be direct gap semiconductors while all armchair nanotubes are indirect gap semiconductors. (author)

  3. A study on AFM manipulation of single-wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tian Xiaojun; Dong Zaili; Yu Peng; Liu Zhu [State Key Lab. of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China)], E-mail: xjtian@sia.cn

    2009-09-01

    As single-wall carbon nanotube (SWCNT) has special electrical and physical property, it can be used as excellent material to construct various nano electronic device. However, in the fabrication process, the modification of size, shape and even the electronic property, especially to the metallic SWCNT, is a key problem to be overcome. Here a modified nanomanipulation technology based on atomic force microscope (AFM) is utilized to perform various kinds of SWCNT manipulation, such as SWCNT separation, catalyst remove, continual nano buckles fabrication and even stretch to break, thus to modify the size, shape and eventually the electrical property of the SWCNT. In addition, the manipulation results are analyzed based on the mechanical mechanism.

  4. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  5. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins

    International Nuclear Information System (INIS)

    Hu Pingan; Zhang Jia; Wen Zhenzhong; Zhang Can

    2011-01-01

    Detection of proteins is powerfully assayed in the diagnosis of diseases. A strategy for the development of an ultrahigh sensitivity biosensor based on a network single-walled carbon nanotube (SWNT) field-effect transistor (FET) has been demonstrated. Metallic SWNTs (m-SWNTs) in the network nanotube FET were selectively removed or cut via a carefully controlled procedure of electrical break-down (BD), and left non-conducting m-SWNTs which magnified the Schottky barrier (SB) area. This nanotube FET exhibited ultrahigh sensitivity and fast response to biomolecules. The lowest detection limit of 0.5 pM was achieved by exploiting streptavidin (SA) or a biotin/SA pair as the research model, and BD-treated nanotube biosensors had a 2 x 10 4 -fold lower minimum detectable concentration than the device without BD treatment. The response time is in the range of 0.3-3 min.

  6. Interaction of molecular oxygen with single wall nanotubes: Role of surfactant contamination

    International Nuclear Information System (INIS)

    Larciprete, R.; Goldoni, A.; Lizzit, S.

    2003-01-01

    The interaction of molecular oxygen with single wall nanotubes in the form of a commercial bucky paper was investigated by high resolution photoemission spectroscopy. Sodium contamination was found in the sample, which was completely removed only after prolonged heating at 1250 K. The C 1s core level spectrum measured on the sample annealed to 1020 K dramatically changed upon exposure to molecular oxygen. On the contrary, when exposing the Na-free SWNTs to several KL of O 2 , the sample remained oxygen free and no modification in the C 1s core level was observed. Therefore the observed sensitivity of the sample to O 2 was due to a Na mediated oxidation, determining a charge transfer from the C tubes to the Na-O complex

  7. Revealing properties of single-walled carbon nanotubes under high pressure

    CERN Document Server

    Tang Jie; Sasaki, T; Yudasaka, M; Matsushita, A; Iijima, S

    2002-01-01

    It was found by the x-ray diffraction experiment under hydrostatic pressure that the carbon nanotubes are compressed easily with a high volume compressibility of 0.024 GPa sup - sup 1. The single-walled carbon nanotubes are polygonized when they form bundles of hexagonal close-packed structure and the inter-tubular gap is smaller than the equilibrium spacing of graphite. Under high pressure, further polygonization occurs to accommodate the extra amount of volume reduction. The ratio of the short and the long diagonals in the hexagonalized cross section is found to have changed from 0.991 at zero pressure to 0.982 at 1.5 GPa pressure, when the Bragg reflection from the nanotube lattice diminished. Accompanying polygonization, a discontinuous change in electrical resistivity was observed at 1.5 GPa pressure, suggesting a phase transition had occurred.

  8. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    Zheng Liping; Zhu Zhiyuan; Li Yong; Zhu Dezhang; Xia Huihao

    2008-01-01

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  9. Adhesion energy of single wall carbon nanotube loops on various substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjun [Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS-46, Allée d' Italie, Lyon 69364 (France); Department of Physics, Shaoxing University, 508 Huancheng West Rd., Shaoxing 312000 (China); Ayari, Anthony [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Bellon, Ludovic, E-mail: ludovic.bellon@ens-lyon.fr [Université de Lyon, Laboratoire de Physique, ENS de Lyon, CNRS-46, Allée d' Italie, Lyon 69364 (France)

    2015-04-28

    The physics of adhesion of one-dimensional nano structures such as nanotubes, nano wires, and biopolymers on different substrates is of great interest for the study of biological adhesion and the development of nano electronics and nano mechanics. In this paper, we present force spectroscopy experiments of individual single wall carbon nanotube loops using a home-made interferometric atomic force microscope. Characteristic force plateaus during the peeling process allow the quantitative measurement of the adhesion energy per unit length on various substrates: graphite, mica, platinum, gold, and silicon. Moreover, using a time-frequency analysis of the deflection of the cantilever, we estimate the dynamic stiffness of the contact, providing more information on the nanotube configurations and its intrinsic mechanical properties.

  10. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  11. Single-walled carbon nanotube networks for flexible and printed electronics

    International Nuclear Information System (INIS)

    Zaumseil, Jana

    2015-01-01

    Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-processable materials for flexible and printed electronics. This review introduces the basic properties of SWNTs, current methods for dispersion and separation of metallic and semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion. Recent examples of applications of carbon nanotubes as conductors and semiconductors in (opto-)electronic devices and integrated circuits will be discussed. (paper)

  12. The adsorption of L-phenylalanine on oxidized single-walled carbon nanotubes.

    Science.gov (United States)

    Piao, Lingyu; Liu, Quanrun; Li, Yongdan; Wang, Chen

    2009-02-01

    A simple and green approach was proceeded to obtain a stable single-walled carbon nanotubes (SWNTs)/L-phenylalanine (Phe) solution. The oxidized SWNTs (OSWNT) were used in this work. The scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), Raman spectrometer, Fourier transform-infrared resonance (FT-IR), Ultraviolet-visible (UV-vis) spectroscopy, Thermogravimetric analysis (TGA) and High performance liquid chromatography (HPLC) were joined together to investigate the interaction between OSWNT and Phe. The OSWNT became soluble in the water and formed a stable solution since the Phe was adsorbed. The absorbed amount of Phe on the OSWNT is around 33 wt%. Adsorption of the Phe was mainly carried out on the OSWNT with smaller diameters. The Phe molecules were absorbed on the OSWNT by conjunct interaction of the pi-pi stacking, hydrogen bond and part of covalent bond.

  13. On the vibrational behavior of single- and double-walled carbon nanotubes under the physical adsorption of biomolecules in the aqueous environment: a molecular dynamics study.

    Science.gov (United States)

    Ajori, S; Ansari, R; Darvizeh, M

    2016-03-01

    The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.

  14. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luis Filipe Ferreira

    To develop a therapeutic system with cancer cell selectivity, the present study evaluated a possible specific and localized tumor treatment. Phosphatidylserine (PS) exposure on the external face of the cell membrane is almost completely exclusive to cancer cells and endothelial cells in the tumor vasculature. The human protein annexin V is known to have strong calcium-dependent binding to anionic phospholipids such as PS. This protein was studied for targeting single-walled carbon nanotubes (SWNTs) to the vasculature of breast tumors. The synthesis of the protein annexin V, by a pET vector in Escherichia coli, constitutes the first phase of this study. Recombinant annexin V was purified from the cell lysate supernatant by immobilized metal affinity chromatography. The overall production of purified annexin V protein was 50 mg/L. The binding ability of the protein annexin V was evaluated by determining the dissociation constant when incubated with proliferating human endothelial cells in vitro. The dissociation constant, Kd, was measured to be 0.8 nM, indicating relatively strong binding. This value of Kd is within the range reported in the literature. Single-walled carbon nanotubes (SWNTs) were functionalized with annexin V using two intermediate linkers (containing FMOC and DSPE) resulting in stable suspensions. The SWNT and protein concentrations were 202 mg/L and 515 mg/L, respectively, using the linker with DSPE (average of nine preparations). The conjugation method that used the DSPE-PEG-maleimide linker allowed to successfully conjugate the SWNTs with final concentrations approximately five times higher than the linker containing FMOC. The conjugation method used has a non-covalent nature, and therefore the optical properties of the nanotubes were preserved. The conjugate was also visually observed using atomic force microscopy (AFM), allowing to verify the presence of the protein annexin V on the surface of the nanotubes, with an height ranging between 2

  15. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lili [China Pharmaceutical University, Nanjing 210009 (China); The Nursing College of Pingdingshan University, Pingdingshan 467000 (China); Lin, Rui [Yancheng Health Vocational and Technical College, Yancheng 224005 (China); He, Hua, E-mail: dochehua@163.com [China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Sun, Meiling, E-mail: sml-nir@sohu.com [China Pharmaceutical University, Nanjing 210009 (China); Jiang, Li; Gao, Mengmeng [China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na{sup +} with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum.

  16. Impact of single-walled carbon nanotubes on the embryo: a brief review

    Directory of Open Access Journals (Sweden)

    Al Moustafa AE

    2016-01-01

    Full Text Available Ala-Eddin Al Moustafa,1–4 Etienne Mfoumou,5 Dacian E Roman,3 Vahe Nerguizian,6 Anas Alazzam,7 Ion Stiharu,3 Amber Yasmeen8 1College of Medicine & Biomedical Research Centre, Qatar University, Doha, Qatar; 2Oncology Department, McGill University, 3Mechanical and Industrial Engineering Department, Concordia University, Montreal, QC, Canada; 4Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria; 5Nova Scotia Community College, Dartmouth, NS, 6École de Technologie Supérieure, Montreal, QC, Canada; 7Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE; 8Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada Abstract: Carbon nanotubes (CNTs are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, few investigations revealed that CNTs could also be harmful to the normal development of the embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, which was recently explored by several groups including ours. Keywords: single-walled carbon nanotubes, embryo, toxicity

  17. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    Science.gov (United States)

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  18. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    Science.gov (United States)

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  20. Abdominal wall reconstruction for large incisional hernia restores expiratory lung function

    DEFF Research Database (Denmark)

    Jensen, Kristian K; Backer, Vibeke; Jorgensen, Lars N

    2017-01-01

    BACKGROUND: Respiratory complications secondary to intermittent intra-abdominal hypertension and/or atelectasis are common after abdominal wall reconstruction for large incisional hernias. It is unknown if the respiratory function of this patient group is affected long term or impairs activities...... of daily living. We hypothesized that abdominal wall reconstruction for large incisional hernia would not lead to improved, long-term pulmonary function or respiratory quality of life. METHODS: Eighteen patients undergoing open abdominal wall reconstruction with mesh for a large incisional hernia...... (horizontal fascial defect width >10 cm) were compared with 18 patients with an intact abdominal wall who underwent colorectal resection. Patients were examined pre- and 1-year postoperatively. Examined measures included forced vital capacity, forced expiratory volume in first second, peak expiratory flow...

  1. Sexual function after anterior vaginal wall prolapse surgery

    Directory of Open Access Journals (Sweden)

    Paulo Cezar Feldner Jr.

    2012-08-01

    Full Text Available OBJECTIVE: The aim of this study was to compare female sexual function after surgical treatment of anterior vaginal prolapse with either small intestine submucosa grafting or traditional colporrhaphy. METHODS: Subjects were randomly assigned, preoperatively, to the small intestine submucosa graft (n = 29 or traditional colporrhaphy (n = 27 treatment group. Postoperative outcomes were analyzed at 12 months. The Female Sexual Function Index questionnaire was used to assess sexual function. Data were compared with independent samples or a paired Student's t-test. RESULTS: In the small intestine submucosa group, the total mean Female Sexual Function Index score increased from 15.5±7.2 to 24.4±7.5 (p<0.001. In the traditional colporrhaphy group, the total mean Female Sexual Function Index score increased from 15.3±6.8 to 24.2±7.0 (p<0.001. Improvements were noted in the domains of desire, arousal, lubrication, orgasm, satisfaction, and pain. There were no differences between the two groups at the 12-month follow-up. CONCLUSIONS: Small intestine submucosa repair and traditional colporrhaphy both improved sexual function postoperatively. However, no differences were observed between the two techniques.

  2. Effects of residual aberrations explored on single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Biskupek, Johannes; Hartel, Peter; Haider, Maximilian; Kaiser, Ute

    2012-01-01

    The effects of geometric residual aberrations such as coma B 2 and two-fold astigmatism A 1 on the contrast in aberration corrected high resolution transmission electron microscopy (HRTEM) images are investigated on single-walled carbon nanotubes (SWNT). The individual aberrations are adjusted and set up manually using an imaging C S -corrector. We demonstrate how coma B 2 can be recognized by an experienced user directly in the image and how it blurs the contrast. Even with uncorrected (resolution limiting) spherical aberration C S the coma B 2 has to be considered and must be minimized. Limits for a tolerable coma are given. The experiments are confirmed by image simulations. -- Highlights: ► Individual effects of residual aberrations such as B 2 , A 1 , and C S are demonstrated. ► Experimental HRTEM and simulated images of carbon nanotubes are compared. ► A detection limit of 50 nm B 2 in a single HRTEM image is determined.

  3. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator

    Science.gov (United States)

    Ning, Zhiyuan; Fu, Mengqi; Wu, Gongtao; Qiu, Chenguang; Shu, Jiapei; Guo, Yao; Wei, Xianlong; Gao, Song; Chen, Qing

    2016-04-01

    We for the first time quantitatively investigate experimentally the remarkable influence of slack on the vibration of a single-walled carbon nanotube (SWCNT) resonator with a changeable channel length fabricated in situ inside a scanning electron microscope, compare the experimental results with the theoretical predictions calculated from the measured geometric and mechanical parameters of the same SWCNT, and find the following novel points. We demonstrate experimentally that as the slack s is increased from about zero to 1.8%, the detected vibration transforms from single-mode to multimode vibration, and the gate-tuning ability gradually attenuates for all the vibration modes. The quadratic tuning coefficient α decreases linearly with when the gate voltage Vdcg is small and the nanotube resonator operates in the beam regime. The linear tuning coefficient γ decreases linearly with when Vdcg has an intermediate value and the nanotube resonator operates in the catenary regime. The calculated α and γ fit the experimental values of the even in-plane mode reasonably well. As the slack is increased, the quality factor Q of the resonator linearly goes up, but the increase is far less steep than that predicted by the previous theoretical study. Our results are important to understand and design resonators based on CNT and other nanomaterials.

  4. Polarized excitons and optical activity in single-wall carbon nanotubes

    Science.gov (United States)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2018-05-01

    The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.

  5. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    Science.gov (United States)

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photonic density of states in the vicinity of a single-wall finite-length carbon nanotube

    International Nuclear Information System (INIS)

    Nemilentsau, A; Ya Slepyan, G; Maksimenko, S A

    2009-01-01

    Photonic density of states in the vicinity of a single-wall finite-length carbon nanotube (CNT) is investigated theoretically in this paper. The analysis is based on the fluctuation-dissipative theorem in the Callen-Welton form. The Dyson equation for the Green dyadic of the electromagnetic field in the presence of CNT is formulated and a method for its numerical solution is elaborated. We show that the photonic density of states spectrum has a nontrivial resonant structure in the terahertz range in the vicinity of the metallic single-wall CNT. The origin of these resonances is the surface plasmon resonances on the CNT's edges.

  7. Raman characterization of 0.4 nm single-walled carbon nanotubes formed in the channels of AlPO4-5 zeolite single crystals

    International Nuclear Information System (INIS)

    Ye, J T; Zhai, J P; Tang, Z K

    2007-01-01

    In this paper, we review our recent research on ultra-small single-walled carbon nanotubes (SWNTs). Using Raman scattering as a tool, we systematically studied the pyrolysis process of carbon precursors in the channels of AlPO 4 -5 zeolite single crystals, and studied the formation process of the ultra-small SWNTs in the channels. The thermal expansion behaviour and thermal stability of these ultra-small SWNTs, either confined in the AlPO 4 -5 channels or in a freestanding environment, were also studied as a function of temperature. The in situ Raman-scattering measurement under 1 x 10 -5 mbar showed that the (3, 3) and (4, 2) tubes were totally destroyed at a temperature of about 700 K, while the (5, 0) tube can survive to 790 K. The electronic states of the 0.4 nm SWNTs were modulated by means of lithium doping. The continuous electron charge transfer from lithium atoms to the tubes was traced using Raman scattering. With increasing doping level, the radial breathing modes of these tubes shifted to higher frequency because the vibration perpendicular to the tube axis was depressed, in contrast to the conventional softening and downshift of the tangential G-mode vibrations

  8. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    International Nuclear Information System (INIS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-01-01

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10"−"1"4 to 1.0 × 10"−"8 M), with a detection limit of 3.5 × 10"−"1"5 M (signal/noise ratio of 3). The biosensor also showed high selectivity to

  9. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  10. On modeling biomolecular–surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Akdim, B; Pachter, R; Day, P N; Kim, S S; Naik, R R

    2012-01-01

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson–Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange–correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular–macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson–Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface. (paper)

  11. MINIMALLY INVASIVE SINGLE FLAP APPROACH WITH CONNECTIVE TISSUE WALL FOR PERIODONTAL REGENERATION

    Directory of Open Access Journals (Sweden)

    Kamen Kotsilkov

    2017-09-01

    Full Text Available INTRODUCTION: The destructive periodontal diseases are among the most prevalent in the human population. In some cases, bony defects are formed during the disease progression, thus sustaining deep periodontal pockets. The reconstruction of these defects is usually done with the classical techniques of bone substitutes placement and guided tissue regeneration. The clinical and histological data from the recent years, however, demonstrate the relatively low regenerative potential of these techniques. The contemporary approaches for periodontal regeneration rely on minimally invasive surgical protocols, aimed at complete tissue preservation in order to achieve and maintain primary closure and at stimulating the natural regenerative potential of the periodontal tissues. AIM: This presentation demonstrates the application of a new, minimally invasive, single flap surgical technique for periodontal regeneration in a clinical case with periodontitis and a residual deep intrabony defect. MATERIALS AND METHODS: A 37 years old patient presented with chronic generalised periodontitis. The initial therapy led to good control of the periodontal infection with a single residual deep periodontal pocket medially at 11 due to a deep intrabony defect. A single flap approach with an enamel matrix derivate application and a connective tissue wall technique were performed. The proper primary closure was obtained. RESULT: One month after surgery an initial mineralisation process in the defect was detected. At the third month, a complete clinical healing was observed. The radiographic control showed finished bone mineralisation and periodontal space recreation. CONCLUSION: In the limitation of the presented case, the minimally invasive surgical approach led to complete clinical healing and new bone formation, which could be proof for periodontal regeneration.

  12. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The analysis of thin walled composite laminated helicopter rotor with hierarchical warping functions and finite element method

    Science.gov (United States)

    Zhu, Dechao; Deng, Zhongmin; Wang, Xingwei

    2001-08-01

    In the present paper, a series of hierarchical warping functions is developed to analyze the static and dynamic problems of thin walled composite laminated helicopter rotors composed of several layers with single closed cell. This method is the development and extension of the traditional constrained warping theory of thin walled metallic beams, which had been proved very successful since 1940s. The warping distribution along the perimeter of each layer is expanded into a series of successively corrective warping functions with the traditional warping function caused by free torsion or free bending as the first term, and is assumed to be piecewise linear along the thickness direction of layers. The governing equations are derived based upon the variational principle of minimum potential energy for static analysis and Rayleigh Quotient for free vibration analysis. Then the hierarchical finite element method is introduced to form a numerical algorithm. Both static and natural vibration problems of sample box beams are analyzed with the present method to show the main mechanical behavior of the thin walled composite laminated helicopter rotor.

  14. Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi

    Directory of Open Access Journals (Sweden)

    Akira Yoshimi

    2017-11-01

    Full Text Available Although α-1,3-glucan is a major cell wall polysaccharide in filamentous fungi, its biological functions remain unclear, except that it acts as a virulence factor in animal and plant pathogenic fungi: it conceals cell wall β-glucan on the fungal cell surface to circumvent recognition by hosts. However, cell wall α-1,3-glucan is also present in many of non-pathogenic fungi. Recently, the universal function of α-1,3-glucan as an aggregation factor has been demonstrated. Applications of fungi with modified cell wall α-1,3-glucan in the fermentation industry and of in vitro enzymatically-synthesized α-1,3-glucan in bio-plastics have been developed. This review focuses on the recent progress in our understanding of the biological functions and biosynthetic mechanism of cell wall α-1,3-glucan in fungi. We briefly consider the history of studies on α-1,3-glucan, overview its biological functions and biosynthesis, and finally consider the industrial applications of fungi deficient in α-1,3-glucan.

  15. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    Directory of Open Access Journals (Sweden)

    Michela Zanetti

    2015-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction.

  16. Covalently {beta}-cyclodextrin modified single-walled carbon nanotubes: a novel artificial receptor synthesized by 'click' chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liang Li [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China); Liang Jiajie; Ma Yanfeng; Yang Xiaoying [Nankai University, Center for Nanoscale Science and Technology and Institute of Polymer Chemistry, College of Chemistry (China); Ren Dongmei [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China); Chen Yongsheng [Nankai University, Center for Nanoscale Science and Technology and Institute of Polymer Chemistry, College of Chemistry (China); Zheng Jianyu, E-mail: jyzheng@nankai.edu.c [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China)

    2008-08-15

    Novel {beta}-cyclodextrin covalently modified single-walled carbon nanotubes have been synthesized via a 'click' coupling reaction. The product was fully characterized with Raman, FTIR, XRD, UV-Vis-NIR spectra as well as TEM and TGA measurements. The effective functionalization via 'click' coupling has set up a facile and versatile route for modular preparation of SWNTs based functional materials. The inclusion complexation behavior of this artificial receptor with quinine has been investigated in aqueous solution by fluorescence spectroscopy.

  17. Theoretical Investigation on Single-Wall Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms

    Directory of Open Access Journals (Sweden)

    Michael Mananghaya

    2012-01-01

    Full Text Available This study addresses the inherent difficulty in synthesizing single-walled carbon nanotubes (SWCNTs with uniform chirality and well-defined electronic properties through the introduction of dopants, topological defects, and intercalation of metals. Depending on the desired application, one can modify the electronic and magnetic properties of SWCNTs through an appropriate introduction of imperfections. This scheme broadens the application areas of SWCNTs. Under this motivation, we present our ongoing investigations of the following models: (i (10, 0 and (5, 5 SWCNT doped with nitrogen (CNxNT, (ii (10, 0 and (5, 5 SWCNT with pyridine-like defects (3NV-CNxNT, (iii (10, 0 SWCNT with porphyrine-like defects (4ND-CNxNT. Models (ii and (iii were chemically functionalized with 14 transition metals (TMs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Pt and Au. Using the spin-unrestricted density functional theory (DFT, stable configurations, deformations, formation and binding energies, the effects of the doping concentration of nitrogen, pyridine-like and porphyrine-like defects on the electronic properties were all examined. Results reveal that the electronic properties of SWCNTs show strong dependence on the concentration and configuration of nitrogen impurities, its defects, and the TMs adsorbed.

  18. Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications

    International Nuclear Information System (INIS)

    Aïssa, B; Haddad, E; Jamroz, W; Hassani, S; Farahani, R D; Therriault, D; Merle, P G

    2012-01-01

    We report on the fabrication of self-healing nanocomposite materials, consisting of single-walled carbon nanotube (SWCNT) reinforced 5-ethylidene-2-norbornene (5E2N) healing agent—reacted with ruthenium Grubbs catalyst—by means of ultrasonication, followed by a three-roll mixing mill process. The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) was studied as a function of the reaction temperature and the SWCNT loads. Our results demonstrated that the ROMP reaction was still effective in a large temperature domain ( − 15–45 °C), occurring at very short time scales (less than 1 min at 40 °C). On the other hand, the micro-indentation analysis performed on the SWCNT/5E2N nanocomposite material after its ROMP polymerization showed a clear increase in both the hardness and the Young modulus—up to nine times higher than that of the virgin polymer—when SWCNT loads range only from 0.1 to 2 wt%. The approach demonstrated here opens new prospects for using carbon nanotube and healing agent nanocomposite materials for self-repair functionality, especially in a space environment. (paper)

  19. Photothermal optical coherence tomography for depth-resolved imaging of mesenchymal stem cells via single wall carbon nanotubes

    Science.gov (United States)

    Subhash, Hrebesh M.; Connolly, Emma; Murphy, Mary; Barron, Valerie; Leahy, Martin

    2014-03-01

    The progress in stem cell research over the past decade holds promise and potential to address many unmet clinical therapeutic needs. Tracking stem cell with modern imaging modalities are critically needed for optimizing stem cell therapy, which offers insight into various underlying biological processes such as cell migration, engraftment, homing, differentiation, and functions etc. In this study we report the feasibility of photothermal optical coherence tomography (PT-OCT) to image human mesenchymal stem cells (hMSCs) labeled with single-walled carbon nanotubes (SWNTs) for in vitro cell tracking in three dimensional scaffolds. PT-OCT is a functional extension of conventional OCT with extended capability of localized detection of absorbing targets from scattering background to provide depth-resolved molecular contrast imaging. A 91 kHz line rate, spectral domain PT-OCT system at 1310nm was developed to detect the photothermal signal generated by 800nm excitation laser. In general, MSCs do not have obvious optical absorption properties and cannot be directly visualized using PT-OCT imaging. However, the optical absorption properties of hMSCs can me modified by labeling with SWNTs. Using this approach, MSC were labeled with SWNT and the cell distribution imaged in a 3D polymer scaffold using PT-OCT.

  20. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  1. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction.

    Science.gov (United States)

    Liu, L; Li, G H; Wang, Y; Wang, Y Y; Li, T; Zhang, T; Qin, S J

    2017-12-07

    We present a novel photovoltaic self-powered gas sensor based on a p-type single-walled carbon nanotube (SWNT) and n-type silicon (n-Si) heterojunction. The energy from visible light suffices to drive the device owing to a built-in electric field (BEF) induced by the differences between the Fermi levels of SWNTs and n-Si.

  2. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    Science.gov (United States)

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  3. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  4. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  5. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  6. Study of the surface chemistry and morphology of single walled carbon nanotube-magnetite composites

    International Nuclear Information System (INIS)

    Marquez-Linares, F.; Uwakweh, O.N.C.; Lopez, N.; Chavez, E.; Polanco, R.; Morant, C.; Sanz, J.M.; Elizalde, E.; Neira, C.; Nieto, S.; Roque-Malherbe, R.

    2011-01-01

    The study of the morphologies of the single walled carbon nanotube (SWCNT), magnetite nanoparticles (MNP), and the composite based on them was carried with combined X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). These techniques together with thermogravimetric analyses (TGA) and diffuse reflectance infrared transform spectroscopy (DRIFTS) confirmed the production of pure single phases, and that the composite material consisted of MNP attached to the outer surface of the SWCNT. The Moessbauer spectroscopy (MS) research showed the presence of a large quantity of Lewis acid sites in the highly dispersed magnetite particles supported on the SWCNT outer surface. The DRIFTS carbon dioxide adsorption study of the composites revealed significant adsorption of carbon dioxide, fundamentally in the Lewis acid sites. Then, the Lewis acid sites were observed to be catalytically active. Further, the electron exchange between the Lewis acid sites and the basic or amphoteric adsorbed molecules could influence the magnetic properties of the magnetite. Consequently, together with this first ever use of MS in the study of Lewis acid sites, this investigation revealed the potential of the composites for catalytic and sensors applications. -- Graphical abstract: A large amount of Lewis acid sites were found in the highly dispersed magnetite which is supported on the SWCNT outer surface. Display Omitted Research highlights: → The obtained materials were completely characterized with XRD, Raman and SEM-TEM. → DRIFT, TGA and adsorption of the composites allowed understand the material formation. → This is the first report of a study of Lewis sites by Moessbauer spectroscopy.

  7. Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hyun-Kyung Choi

    2017-01-01

    Full Text Available The goal of this research is to develop a single-walled carbon nanotube- (SWCNT- based biosensor to detect Staphylococcus aureus. The specificity of 11 bacteria and polyclonal anti-Staphylococcus aureus antibodies (pAbs was determined using an indirect ELISA. The pAbs were immobilized onto sensor platform after the hybridization of 1-pyrenebutanoic acid succinimidyl ester (PBASE. The resistance difference (ΔR was calculated using a potentiostat. The bacteria detected by the biosensor were observed using a scanning electron microscope (SEM. The optimum concentration of SWCNTs on the platform was determined to be 0.1 mg/mL. The binding of pAbs with S. aureus resulted in a significant increase in resistance value of the biosensor (P<0.05. The SEM images confirmed the specific binding of S. aureus on the biosensor. The SWCNT-based biosensor was able to detect S. aureus with a limit of detection (LOD of 4 log⁡CFU/mL.

  8. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E; Goze-Bac, C; Nitze, F; Schmid, M; Aznar, R; Mehring, M; Wå gberg, T

    2011-01-01

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The 'metallization' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  9. Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers.

    Science.gov (United States)

    Wang, Qi; Wang, Chunya; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2016-10-12

    Silkworm silk is gaining significant attention from both the textile industry and research society because of its outstanding mechanical properties and lustrous appearance. The possibility of creating tougher silks attracts particular research interest. Carbon nanotubes and graphene are widely studied for their use as reinforcement. In this work, we report mechanically enhanced silk directly collected by feeding Bombyx mori larval silkworms with single-walled carbon nanotubes (SWNTs) and graphene. We found that parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, whereas the others went into the excrement of silkworms. Spectroscopy study indicated that nanocarbon additions hindered the conformation transition of silk fibroin from random coil and α-helix to β-sheet, which may contribute to increased elongation at break and toughness modules. We further investigated the pyrolysis of modified silk, and a highly developed graphitic structure with obviously enhanced electrical conductivity was obtained through the introduction of SWNTs and graphene. The successful generation of these SWNT- or graphene-embedded silks by in vivo feeding is expected to open up possibilities for the large-scale production of high-strength silk fibers.

  10. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    International Nuclear Information System (INIS)

    Romero-Hermida, M. I.; Romero-Enrique, J. M.; Morales-Flórez, V.; Esquivias, L.

    2016-01-01

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N 2 , CO 2 , and O 2 , emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO 2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO 2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO 2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO 2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO 2 concentrations and low temperatures, the CO 2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  11. Thermal analysis for laser selective removal of metallic single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jizhou, E-mail: jzsong@zju.edu.cn [Department of Engineering Mechanics and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Li, Yuhang [The Solid Mechanics Research Center, Beihang University (BUAA), Beijing 100191 (China); Du, Frank; Xie, Xu; Rogers, John A. [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Huang, Yonggang [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-04-28

    Single-walled carbon nanotubes (SWNTs) have been envisioned as one of the best candidates for future semiconductors due to their excellent electrical properties and ample applications. However, SWNTs grow as mixture of both metallic and semiconducting tubes and this heterogeneity hampers their practical applications. Laser radiation shows promises to remove metallic SWNTs (m-SWNTs) in air under an appropriate condition. We established a scaling law, validated by finite element simulations, for the temperature rise of m-SWNTs under a pulsed laser with a Gaussian spot. It is shown that the maximum normalized m-SWNT temperature rise only depends on two non-dimensional parameters: the normalized pulse duration time and the normalized interfacial thermal resistance. In addition, the maximum temperature rise is inversely proportional to the square of spot size and proportional to the incident laser power. These results are very helpful to understand the underlying physics associated with the removal process and provides easily interpretable guidelines for further optimizations.

  12. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    Science.gov (United States)

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Spin-curvature interaction from curved Dirac equation: Application to single-wall carbon nanotubes

    Science.gov (United States)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2017-06-01

    The spin-curvature interaction (SCI) and its effects are investigated based on curved Dirac equation. Through the low-energy approximation of curved Dirac equation, the Hamiltonian of SCI is obtained and depends on the geometry and spinor structure of manifold. We find that the curvature can be considered as field strength and couples with spin through Zeeman-like term. Then, we use dimension reduction to derive the local Hamiltonian of SCI for cylinder surface, which implies that the effective Hamiltonian of single-wall carbon nanotubes results from the geometry and spinor structure of lattice and includes two types of interactions: one does not break any symmetries of the lattice and only shifts the Dirac points for all nanotubes, while the other one does and opens the gaps except for armchair nanotubes. At last, analytical expressions of the band gaps and the shifts of their positions induced by curvature are given for metallic nanotubes. These results agree well with experiments and can be verified experimentally.

  14. Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue

    International Nuclear Information System (INIS)

    Radoi, A.; Compagnone, D.; Valcarcel, M.A.; Placidi, P.; Materazzi, S.; Moscone, D.; Palleschi, G.

    2008-01-01

    Screen-printed electrodes (SPEs) modified with Variamine blue (VB), covalently attached to the oxidized single-walled carbon nanotubes (SWCNTs-COOH), were developed and used as chemical sensors for the detection of the reduced nicotinamide adenine dinucleotide (NADH). The Variamine blue redox mediator was covalently linked to the SWCNTs-COOH by the N,N'-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. Infrared Fourier transform (FT-IR) spectroscopy revealed the presence of the amide bands situated at 1623 cm -1 (I band), 1577 cm -1 (II band) and 1437 cm -1 (III band) demonstrating the covalent linkage of Variamine blue to SWCNTs-COOH. The heterogeneous electron transfer rate, k obs. , was 13,850 M -1 s -1 , and the k s and α were 0.8 s -1 and 0.56, respectively. The pH dependence was also investigated. SPEs modified with Variamine blue by using the DCC/NHS conjugation method, showed a variation of -36 mV per pH unit. A successful application was the development of a lactate biosensor obtained by the immobilization of the L-lactate dehydrogenase on the NADH sensor

  15. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  16. In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells.

    Science.gov (United States)

    Cancino, J; Paino, I M M; Micocci, K C; Selistre-de-Araujo, H S; Zucolotto, V

    2013-05-10

    Single-wall carbon nanotubes (SWCNTs) and polyamidoamine dendrimers (PAMAM) have been proposed for a variety of biomedical applications. The combination of both molecules makes this new composite nanomaterial highly functionalizable and versatile to theranostic and drug-delivery systems. However, recent toxicological studies have shown that nanomaterials such as SWCNTs and PAMAM may have high toxicity in biological environments. Aiming to elucidate such behavior, in vitro studies with different cultured cells have been conducted in the past few years. This study focuses on the effects of SWCNT-PAMAM nanomaterials and their individual components on the C2C12 murine cell line, which is a mixed population of stem and progenitor cells. The interactions between the cells and the nanomaterials were studied with different techniques usually employed in toxicological analyses. The results showed that SWCNT-PAMAM and PAMAM inhibited the proliferation and caused DNA damage of C2C12 cells. Data from flow cytometry revealed a less toxicity in C2C12 cells exposed to SWCNT compared to the other nanomaterials. The results indicated that the toxicity of SWCNT, SWCNT-PAMAM and PAMAM in C2C12 cells can be strongly correlated with the charge of the nanomaterials. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    International Nuclear Information System (INIS)

    Lee, Sangyeop; Lindsay, Lucas

    2017-01-01

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.

  18. Targeting single-walled carbon nanotubes for the treatment of breast cancer using photothermal therapy

    Science.gov (United States)

    Neves, Luís F. F.; Krais, John J.; Van Rite, Brent D.; Ramesh, Rajagopal; Resasco, Daniel E.; Harrison, Roger G.

    2013-09-01

    This paper focuses on the targeting of single-walled carbon nanotubes (SWNTs) for the treatment of breast cancer with minimal side effects using photothermal therapy. The human protein annexin V (AV) binds specifically to anionic phospholipids expressed externally on the surface of tumour cells and endothelial cells that line the tumour vasculature. A 2 h incubation of the SWNT-AV conjugate with proliferating endothelial cells followed by washing and near-infrared (NIR) irradiation at a wavelength of 980 nm was enough to induce significant cell death; there was no significant cell death with irradiation or the conjugate alone. Administration of the same conjugate i.v. in BALB/c female mice with implanted 4T1 murine mammary at a dose of 0.8 mg SWNT kg-1 and followed one day later by NIR irradiation of the tumour at a wavelength of 980 nm led to complete disappearance of implanted 4T1 mouse mammary tumours for the majority of the animals by 11 days since the irradiation. The combination of the photothermal therapy with the immunoadjuvant cyclophosphamide resulted in increased survival. The in vivo results suggest the SWNT-AV/NIR treatment is a promising approach to treat breast cancer.

  19. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N.B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (E_c) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (V_t_h) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current–voltage (I–V) characteristics V_t_h and E_c is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes V_t_h is reduced by about 30% in presence of SWCNT. The trap energy E_c also reduces in case of all the dyes. The relation between V_t_h, E_c and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  20. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study.

    Science.gov (United States)

    Romero-Hermida, M I; Romero-Enrique, J M; Morales-Flórez, V; Esquivias, L

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  1. High Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles.

    Science.gov (United States)

    Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong

    2012-01-01

    Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.

  2. Molecular dynamics study on heat transport from single-walled carbon nanotubes to Si substrate

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya; Zhu, Jie, E-mail: zhujie@iet.cn; Tang, Da-Wei

    2015-02-06

    In this paper, non-equilibrium molecular dynamics simulations were performed to investigate the heat transport between a vertically aligned single-walled carbon nanotube (SWNT) and Si substrate, to find out the influence of temperature and system sizes, including diameter and length of SWNT and measurements of substrate. Results revealed that high temperature hindered heat transport in SWNT itself but was a beneficial stimulus for heat transport at interface of SWNT and Si. Furthermore, the system sizes strongly affected the peaks in vibrational density of states of Si, which led to interfacial thermal conductance dependent on system sizes. - Highlights: • NEMD is performed to simulate the heat transport from SWNT to Si substrate. • We analyze both interfacial thermal conductance and thermal conductivity of SWNT. • High temperature is a beneficial stimulus for heat transport at the interface. • Interfacial thermal conductance strongly depends on the sizes of SWNT and substrate. • We calculate VDOS of C and Si atoms to analyze phonon couplings between them.

  3. Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure-property relationships

    International Nuclear Information System (INIS)

    Naebe, Minoo; Lin Tong; Wang Xungai; Staiger, Mark P; Dai Liming

    2008-01-01

    Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT-polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde

  4. Ultrafast Mid-Infrared Intra-Excitonic Response of Individualized Single-Walled Carbon Nanotubes

    International Nuclear Information System (INIS)

    Wang, Jigang; Graham, Matt W.; Ma, Yingzhong; Fleming, Graham R.; Kaindl, Robert A.

    2009-01-01

    The quasi-1D confinement and reduced screening of photoexcited charges in single-walled carbon nanotubes (SWNTs) entails strongly-enhanced Coulomb interactions and exciton binding energies. Such amplified electron-hole (e-h) correlations have important implications for both fundamental physics and optoelectronic applications of nanotubes. The availability of 'individualized' SWNT ensembles with bright and structured luminescence has rendered specific tube chiralities experimentally accessible. In these samples, evidence for excitonic behavior was found in absorption-luminescence maps, two-photon excited luminescence, or ultrafast carrier dynamics. Here, we report ultrafast mid-infrared (mid-IR) studies of individualized SWNTs, evidencing strong photoinduced absorption around 200 meV in semiconducting tubes of (6,5) and (7,5) chiralities. This manifests the observation of quasi-1D intra-excitonic transitions between different relative-momentum states, in agreement with the binding energy and calculated oscillator strength. Our measurements further reveal a saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs. The transient mid-IR response represents a new tool, unhindered by restrictions of momentum or interband dipole moment, to investigate the density and dynamics of SWNT excitons.

  5. Acute Toxicity Comparison of Single-Walled Carbon Nanotubes in Various Freshwater Organisms

    Directory of Open Access Journals (Sweden)

    Eun Kyung Sohn

    2015-01-01

    Full Text Available While the commercialization of single-walled carbon nanotubes (SWCNTs is rapidly expanding, the environmental impact of this nanomaterial is not well understood. Therefore, the present study evaluates the acute aquatic toxicity of SWCNTs towards two freshwater microalgae (Raphidocelis subcapitata and Chlorella vulgaris, a microcrustacean (Daphnia magna, and a fish (Oryzias latipes based on OECD test guidelines (201, 202, and 203. According to the results, the SWCNTs inhibited the growth of the algae R. subcapitata and C. vulgaris with a median effective concentration (EC50 of 29.99 and 30.96 mg/L, respectively, representing “acute category 3” in the Globally Harmonized System (GHS of classification and labeling of chemicals. Meanwhile, the acute toxicity test using O. latipes and D. magna did not show any mortality/immobilizing effects up to a concentration of 100.00 mg/L SWCNTs, indicating no hazard category in the GHS classification. In conclusion, SWCNTs were found to induce acute ecotoxicity in freshwater microalgae, yet not in D. magna and medaka fish.

  6. Microbiological quality control of single-walled carbon-nanotubes-coated surfaces experimentally contaminated

    International Nuclear Information System (INIS)

    Natalizi, T.; Frioni, A.; Passeri, D.; Pantanella, F.

    2013-01-01

    The emergence of new nanotechnologies involves the spreading of nanoparticles in various fields of human life. Nanoparticles in general and, more specifically, carbon nanotubes have been adopted for many practical approaches i.e.: coatings for medical devices, food process industry and drug delivery. Humans will be increasingly exposed to nanoparticles but the susceptibility of nanostructured materials to microbial colonization in process of manufacturing and storage has not been thoroughly considered. Therefore, the microbiological quality control of nanoparticles plays a pivotal role. Different analytical methods have been attempted for detecting bacterial population contaminating a surface, but no one can be considered fully appropriate. Here, BioTimer Assay (BTA) and conventional sonication followed by colony forming units method (S-CFU) were applied for microbiological quality control of single-walled carbon nanotubes (SWCNTs)-coated surfaces experimentally contaminated with Streptococcus mutans and Pseudomonas aeruginosa. Our results demonstrated that S-CFU is unreliable to actually determine the number of bacteria, contaminating abiotic surfaces, as it does not detach all adherent bacteria and kills part of the bacterial population. Instead, BTA is a reliable method to enumerate bacteria colonizing SWCNTs-coated surfaces and can be considered a useful tool for microbiological quality control of nanomaterials for human use.

  7. Substrate-Wrapped, Single-Walled Carbon Nanotube Probes for Hydrolytic Enzyme Characterization.

    Science.gov (United States)

    Kallmyer, Nathaniel E; Musielewicz, Joseph; Sutter, Joel; Reuel, Nigel F

    2018-04-17

    Hydrolytic enzymes are a topic of continual study and improvement due to their industrial impact and biological implications; however, the ability to measure the activity of these enzymes, especially in high-throughput assays, is limited to an established, few enzymes and often involves the measurement of secondary byproducts or the design of a complex degradation probe. Herein, a versatile single-walled carbon nanotube (SWNT)-based biosensor that is straightforward to produce and measure is described. The hydrolytic enzyme substrate is rendered as an amphiphilic polymer, which is then used to solubilize the hydrophobic nanotubes. When the target enzyme degrades the wrapping, the SWNT fluorescent signal is quenched due to increased solvent accessibility and aggregation, allowing quantitative measurement of hydrolytic enzyme activity. Using (6,5) chiral SWNT suspended with polypeptides and polysaccharides, turnover frequencies are estimated for cellulase, pectinase, and bacterial protease. Responses are recorded for concentrations as low as 5 fM using a well-characterized protease, Proteinase K. An established trypsin-based plate reader assay is used to compare this nanotube probe assay with standard techniques. Furthermore, the effect of freeze-thaw cycles and elevated temperature on enzyme activity is measured, suggesting freezing to have minimal impact even after 10 cycles and heating to be detrimental above 60 °C. Finally, rapid optimization of enzyme operating conditions is demonstrated by generating a response surface of cellulase activity with respect to temperature and pH to determine optimal conditions within 2 h of serial scans.

  8. Hysteresis loop design by geometry of garnet film element with single domain wall

    International Nuclear Information System (INIS)

    Skidanov, V A; Vetoshko, P M; Stempkovskiy, A L

    2011-01-01

    Numerical modeling and experimental investigation of magnetostatic stable states of two-domain structure in Bi-substituted uniaxial garnet film elements was made. Single domain walls (DW) between two opposite normally magnetized parts in isolated rectangular strip and strip-like bridge are found to exhibit different behavior. DW inside strip (bridge) suffers increasing repulsion (attraction) from nearest edge when shifted from element center. DW position center position is stable in isolated strip but bridge is magnetized spontaneously to one of two saturated states in zero external field. Isolated strip magnetization process occurs reversibly while bridge magnetization reversal occurs by coercive manner. Strip susceptibility and bridge coercive field are entirely defined by magnetostatic barrier created by element boundary stray field in case of constant DW length during magnetization reversal. Variation of strip and bridge boundary shape along DW trajectory gives the opportunity to create additional controllable potential profile due to DW surface energy modulation by DW length. Garnet elements with high Faraday rotation and low light switching field were developed for fine magnetic sensing and optical data processing applications.

  9. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D

    2015-01-01

    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  10. Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Baris Yilmaz

    2015-08-01

    Full Text Available Single-walled carbon nanotubes have been dispersed by novel phthalimide containing donor-acceptor type copolymers in organic media. Brominated phthalimide comonomer has been copolymerized with several electron rich structures using Suzuki and Stille coupling reactions. Carbon nanotube dispersion capability of the resultant polymers has been assessed by exploiting the non-covalent interaction of nanotube surface with the pi-system of conjugated backbone of polymers. Four polymers have been found to be good candidates for individually dispersing nanotubes in solution. In order to identify the dispersed nanotube species, 2D excitation-emission map and Raman spectroscopy have been performed. Molecular dynamics modelling has been utilized to reveal the binding energies of dispersants with the nanotube surface and the simulation results have been compared with the experimental findings. Both experimental and theoretical results imply the presence of a complex mechanism that governs the extent of dispersion capacity and selectivity of each conjugated polymeric dispersant in solubilizing carbon nanotubes.

  11. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.

    Science.gov (United States)

    Li, Xin; Rong, Jiepeng; Wei, Bingqing

    2010-10-26

    The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.

  12. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip.

    Science.gov (United States)

    Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2014-04-21

    A novel microfluidic pH-sensing chip was developed based on pH-sensitive single-walled carbon nanotubes (SWCNTs). In this study, the SWCNT thin film acted both as an electrode and a pH-sensitive membrane. The potentiometric pH response was observed by electronic structure changes in the semiconducting SWCNTs in response to the pH level. In a microfluidic chip consisting of a SWCNT pH-sensing working electrode and an Ag/AgCl reference electrode, the calibration plot exhibited promising pH-sensing performance with an ideal Nernstian response of 59.71 mV pH(-1) between pH 3 and 11 (standard deviation of the sensitivity is 1.5 mV pH(-1), R(2) = 0.985). Moreover, the SWCNT electrode in the microfluidic device showed no significant variation at any pH value in the range of the flow rate between 0.1 and 15 μl min(-1). The selectivity coefficients of the SWCNT electrode revealed good selectivity against common interfering ions.

  13. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  14. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  15. Release characteristics of single-wall carbon nanotubes during manufacturing and handling

    International Nuclear Information System (INIS)

    Ogura, I; Kishimoto, A; Kotake, M; Hashimoto, N; Gotoh, K

    2013-01-01

    We investigated the release characteristics of single-wall carbon nanotubes (CNTs) synthesized by a pilot-scale plant. In addition to on-site aerosol measurements at the pilot-scale plant where the CNTs were synthesized, harvested, and packed, we conducted dustiness tests by vortex shaking and by transferring CNTs from one bowl to another. In the results of the on-site aerosol measurements, slight increases in the concentration were observed by aerosol monitoring instruments in the enclosure where CNTs were harvested and packed. In filter samples collected in this enclosure, micron-sized CNT clusters were observed by electron microscopy analysis. For samples collected outside the enclosure or during other processes, no CNTs were observed. The concentrations of elemental carbon at all locations were lower than the proposed occupational exposure limits of CNTs. The results of the dustiness tests revealed that submicron-sized particles were dominant in the number concentration measured by aerosol monitoring instruments, whereas micron-sized CNT clusters were mainly observed by electron microscopy analysis. The results of dustiness tests indicate that these CNTs have a low release characteristic. The lower drop impact of CNT clusters due to their lower bulk density resulted in lower CNT release from falling CNTs.

  16. Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Khoei, A.R.; Ban, E.; Banihashemi, P.; Abdolhosseini Qomi, M.J.

    2011-01-01

    Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.

  17. Theoretical studies on lattice-oriented growth of single-walled carbon nanotubes on sapphire

    Science.gov (United States)

    Li, Zhengwei; Meng, Xianhong; Xiao, Jianliang

    2017-09-01

    Due to their excellent mechanical and electrical properties, single-walled carbon nanotubes (SWNTs) can find broad applications in many areas, such as field-effect transistors, logic circuits, sensors and flexible electronics. High-density, horizontally aligned arrays of SWNTs are essential for high performance electronics. Many experimental studies have demonstrated that chemical vapor deposition growth of nanotubes on crystalline substrates such as sapphire offers a promising route to achieve such dense, perfectly aligned arrays. In this work, a theoretical study is performed to quantitatively understand the van der Waals interactions between SWNTs and sapphire substrates. The energetically preferred alignment directions of SWNTs on A-, R- and M-planes and the random alignment on the C-plane predicted by this study are all in good agreement with experiments. It is also shown that smaller SWNTs have better alignment than larger SWNTs due to their stronger interaction with sapphire substrate. The strong vdW interactions along preferred alignment directions can be intuitively explained by the nanoscale ‘grooves’ formed by atomic lattice structures on the surface of sapphire. This study provides important insights to the controlled growth of nanotubes and potentially other nanomaterials.

  18. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E

    2011-05-24

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The \\'metallization\\' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  19. Effect of Saline Solution on the Electrical Response of Single Wall Carbon Nanotubes-Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Hammad Younes

    2017-01-01

    Full Text Available The effects of saline solution on the electrical resistance of single wall carbon nanotubes-epoxy nanocomposites have been investigated experimentally. Ultrasonic assisted fabricated 1.0% and 0.5 W/W% SWCNTs epoxy nanocomposites are integrated into a Kelvin structure by smear cast the nanocomposites on a glass wafer. Four metal pads are deposited on the nanocomposites using the beam evaporator and wires are tethered using soldering. The effect of saline solution on the electrical resistance of the nanocomposites is studied by adding drop of saline solution to the surface of the fabricated nanocomposites and measuring electrical resistance. Moreover, the nanocomposites are soaked completely into 3 wt.% saline solution and real-time measurement of the electrical resistance is conducted. It is found that a drop of saline solution on the surface of the nanocomposites film increases the resistance by 50%. Furthermore, the real-time measurement reveals a 40% increase in the resistance of the nanocomposites film. More importantly, the nanocomposites are successfully reset by soaking in DI water for four hours. This study may open the door for using SWCNTs epoxy nanocomposites as scale sensors in oil and gas industry.

  20. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    Science.gov (United States)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.