WorldWideScience

Sample records for functional theory analysis

  1. Functional analysis theory and applications

    CERN Document Server

    Edwards, RE

    2011-01-01

    ""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the

  2. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  3. Introduction to measure theory and functional analysis

    CERN Document Server

    Cannarsa, Piermarco

    2015-01-01

    This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book, such as functions of bounded variation, absolutely continuous functions, and signed measures. This textbook addresses the needs of graduate students in mathematics, who will find the basic material they will need in their future careers, as well as those of researchers, who will appreciate the self-contained exposition which requires no other preliminaries than basic calculus and linear algebra.

  4. Applications of model theory to functional analysis

    CERN Document Server

    Iovino, Jose

    2014-01-01

    During the last two decades, methods that originated within mathematical logic have exhibited powerful applications to Banach space theory, particularly set theory and model theory. This volume constitutes the first self-contained introduction to techniques of model theory in Banach space theory. The area of research has grown rapidly since this monograph's first appearance, but much of this material is still not readily available elsewhere. For instance, this volume offers a unified presentation of Krivine's theorem and the Krivine-Maurey theorem on stable Banach spaces, with emphasis on the

  5. Complex analysis a modern first course in function theory

    CERN Document Server

    Muir, Jerry R

    2015-01-01

    A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic fun

  6. The Analysis of Nida’s Functional Equivalence Theory

    Institute of Scientific and Technical Information of China (English)

    杨雪; 任培红

    2014-01-01

    Eugene A. Nida is an influential translation theoretician with great research achievements. The functional equivalence theory which is the core of his translation theories lays a solid foundation for the modern translation. However, there also exist some limitations in it. It should be dialectically analyzed to find its contributions and limitations.

  7. Complex analysis fundamentals of the classical theory of functions

    CERN Document Server

    Stalker, John

    1998-01-01

    This clear, concise introduction to the classical theory of one complex variable is based on the premise that "anything worth doing is worth doing with interesting examples." The content is driven by techniques and examples rather than definitions and theorems. This self-contained monograph is an excellent resource for a self-study guide and should appeal to a broad audience. The only prerequisite is a standard calculus course. The first chapter deals with a beautiful presentation of special functions. . . . The third chapter covers elliptic and modular functions. . . in much more detail, and from a different point of view, than one can find in standard introductory books. . . . For [the] subjects that are omitted, the author has suggested some excellent references for the reader who wants to go through these topics. The book is read easily and with great interest. It can be recommended to both students as a textbook and to mathematicians and physicists as a useful reference. ---Mathematical Reviews Mainly or...

  8. Functional analysis

    CERN Document Server

    Kantorovich, L V

    1982-01-01

    Functional Analysis examines trends in functional analysis as a mathematical discipline and the ever-increasing role played by its techniques in applications. The theory of topological vector spaces is emphasized, along with the applications of functional analysis to applied analysis. Some topics of functional analysis connected with applications to mathematical economics and control theory are also discussed. Comprised of 18 chapters, this book begins with an introduction to the elements of the theory of topological spaces, the theory of metric spaces, and the theory of abstract measure space

  9. Analysis of correlation functions in Toda theory and AGT-W relation for SU(3) quiver

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro

    2010-01-01

    We give some evidences of the AGT-W relation between SU(3) quiver gauge theories and A_2 Toda theory. In particular, we derive the explicit form of 5-point correlation functions in the lower orders and confirm the agreement with Nekrasov's partition function for SU(3)xSU(3) quiver gauge theory. The algorithm to derive the correlation functions can be applied to general n-point function in A_2 Toda theory which will be useful to establish the relation for more generic quivers. Partial analysis is also given for SU(3)xSU(2) case and we comment on some technical issues which need clarification before establishing the relation.

  10. Periodic Density Functional Theory Solver using Multiresolution Analysis with MADNESS

    Science.gov (United States)

    Harrison, Robert; Thornton, William

    2011-03-01

    We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for nuclear potential, and an implementation for Hartree Fock exchange. This work was supported by NSF project OCI-0904972 and made use of resources at the Center for Computational Sciences at Oak Ridge National Laboratory under contract DE-AC05-00OR22725.

  11. Density Functional Theory using Multiresolution Analysis with MADNESS

    Science.gov (United States)

    Thornton, Scott; Harrison, Robert

    2012-02-01

    We describe the first implementation of the all-electron Kohn-Sham density functional periodic solver (DFT) using multi-wavelets and fast integral equations using MADNESS (multiresolution adaptive numerical environment for scientific simulation; http://code.google.com/p/m-a-d-n-e-s-s). The multiresolution nature of a multi-wavelet basis allows for fast computation with guaranteed precision. By reformulating the Kohn-Sham eigenvalue equation into the Lippmann-Schwinger equation, we can avoid using the derivative operator which allows better control of overall precision for the all-electron problem. Other highlights include the development of periodic integral operators with low-rank separation, an adaptable model potential for the nuclear potential, and an implementation for Hartree-Fock exchange.

  12. Analysis of the segmented contraction of basis functions using density matrix theory.

    Science.gov (United States)

    Custodio, Rogério; Gomes, André Severo Pereira; Sensato, Fabrício Ronil; Trevas, Júlio Murilo Dos Santos

    2006-11-30

    A particular formulation based on density matrix (DM) theory at the Hartree-Fock level of theory and the description of the atomic orbitals as integral transforms is introduced. This formulation leads to a continuous representation of the density matrices as functions of a generator coordinate and to the possibility of plotting either the continuous or discrete density matrices as functions of the exponents of primitive Gaussian basis functions. The analysis of these diagrams provides useful information allowing: (a) the determination of the most important primitives for a given orbital, (b) the core-valence separation, and (c) support for the development of contracted basis sets by the segmented method.

  13. Real analysis an introduction to the theory of real functions and integration

    CERN Document Server

    Dshalalow, Jewgeni H

    2000-01-01

    Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and constructions needed not only by mathematics students but also by students of statistics and probability, operations research, physics, and engineering.Structured logically and flexibly through the author''s many years of teaching experience, the material is presented in three main sections:Part 1, chapters 1through 3, covers the preliminaries of set theory and the fundamentals of metric spaces and topology. This section can also serves as a text for first courses in topology.Part II, chapter 4 through 7, details the basics of measure and integration and stands independently for use in a separate measure theory course.Part III addresses more advanced topics, includin...

  14. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J

    2001-04-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis.

  15. Foundations of complex analysis in non locally convex spaces function theory without convexity condition

    CERN Document Server

    Bayoumi, A

    2003-01-01

    All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field. Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and

  16. Analysis in $R^{1,1}$ or the Principal Function Theory

    CERN Document Server

    Kisil, V V

    1997-01-01

    We explore a function theory connected with the principal series representation of SL(2,R) in contrast to standard complex analysis connected with the discrete series. We construct counterparts for the Cauchy integral formula, the Hardy space, the Cauchy-Riemann equation and the Taylor expansion. Keywords: Complex analysis, Cauchy integral formula, Hardy space, Taylor expansion, Cauchy-Riemann equations, Dirac operator, group representations, SL(2,R), discrete series, principal series, wavelet transform, coherent states.

  17. Time-dependence of graph theory metrics in functional connectivity analysis.

    Science.gov (United States)

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M

    2016-01-15

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations.

  18. Analysis of Chinese Cuisine Names Translation From the Perspective of Nida’s Functional Equivalence Theory

    Institute of Scientific and Technical Information of China (English)

    陈鹏

    2016-01-01

    This paper is based on famous American translation theorist Eugene Nida’s Functional Equivalence Theory, aiming to analyze the necessity of Functional Equivalence Theory in the Chinese cuisine names translation and propose some translation methods.

  19. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    Science.gov (United States)

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.

  20. Harmonic function theory

    CERN Document Server

    Axler, Sheldon; Ramey, Wade

    2013-01-01

    This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.

  1. Function theory on planar domains a second course in complex analysis

    CERN Document Server

    Fisher, Stephen D

    2007-01-01

    A high-level treatment of complex analysis, this text focuses on function theory on a finitely connected planar domain. Clear and complete, it emphasizes domains bounded by a finite number of disjoint analytic simple closed curves.The first chapter and parts of Chapters 2 and 3 offer background material, all of it classical and important in its own right. The remainder of the text presents results in complex analysis from the far, middle, and recent past, all selected for their interest and merit as substantive mathematics. Suitable for upper-level undergraduates and graduate students, this te

  2. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  3. Theory of functions

    CERN Document Server

    Knopp, Konrad

    1996-01-01

    This is a one-volume edition of Parts I and II of the classic five-volume set The Theory of Functions prepared by renowned mathematician Konrad Knopp. Concise, easy to follow, yet complete and rigorous, the work includes full demonstrations and detailed proofs.Part I stresses the general foundation of the theory of functions, providing the student with background for further books on a more advanced level.Part II places major emphasis on special functions and characteristic, important types of functions, selected from single-valued and multiple-valued classes.

  4. Functional Renormalisation Group analysis of Tensorial Group Field Theories on $\\mathbb{R}^d$

    CERN Document Server

    Geloun, Joseph Ben; Oriti, Daniele

    2016-01-01

    Rank-d Tensorial Group Field Theories are quantum field theories defined on a group manifold $G^{\\times d}$, which represent a non-local generalization of standard QFT, and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalisation analysis is crucial both for establishing their consistency as quantum field theories, and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalisation group flow of two simple classes of TGFTs, defined for the group $G=\\mathbb{R}$ for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalisation group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed poin...

  5. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    Science.gov (United States)

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated.

  6. Bending Analysis of Functionally Graded Plates in the Context of Different Theories of Thermoelasticity

    Directory of Open Access Journals (Sweden)

    A. M. Zenkour

    2009-01-01

    Full Text Available The quasistatic bending response is presented for a simply supported functionally graded rectangular plate subjected to a through-the-thickness temperature field under the effect of various theories of generalized thermoelasticity, namely, classical dynamical coupled theory, Lord and Shulman's theory with one relaxation time, and Green and Lindsay's theory with two relaxation times. The generalized shear deformation theory obtained by the first author is used. Material properties of the plate are assumed to be graded in the thickness direction according to a simple exponential law distribution in terms of the volume fractions of the constituents. The numerical illustrations concern quasistatic bending response of functionally graded square plates with two constituent materials are studied using the different theories of generalized thermoelasticity

  7. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    B. Sidda Reddy

    2013-01-01

    Full Text Available The prime aim of the present study is to present analytical formulations and solutions for the buckling analysis of simply supported functionally graded plates (FGPs using higher order shear deformation theory (HSDT without enforcing zero transverse shear stresses on the top and bottom surfaces of the plate. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. Material properties of the plate are assumed to vary in the thickness direction according to a power law distribution in terms of the volume fractions of the constituents. The equations of motion and boundary conditions are derived using the principle of virtual work. Solutions are obtained for FGPs in closed-form using Navier’s technique. Comparison studies are performed to verify the validity of the present results from which it can be concluded that the proposed theory is accurate and efficient in predicting the buckling behavior of functionally graded plates. The effect of side-to-thickness ratio, aspect ratio, modulus ratio, the volume fraction exponent, and the loading conditions on the critical buckling load of FGPs is also investigated and discussed.

  8. Complex function theory

    CERN Document Server

    Sarason, Donald

    2007-01-01

    Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Co

  9. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents.

    Science.gov (United States)

    McNally, Joshua S; Noll, Bruce; Orme, Christopher J; Wilson, Aaron D

    2015-06-01

    A density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An X-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction with the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo six membered ring which included both protons.

  10. Graph theory analysis of functional brain networks and mobility disability in older adults.

    Science.gov (United States)

    Hugenschmidt, Christina E; Burdette, Jonathan H; Morgan, Ashley R; Williamson, Jeff D; Kritchevsky, Stephen B; Laurienti, Paul J

    2014-11-01

    The brain's structural integrity is associated with mobility function in older adults. Changes in function may be evident earlier than changes in structure and may be more directly related to mobility. Therefore, we assessed whether functional brain networks varied with mobility function in older adults. Short Physical Performance Battery (SPPB) and resting state functional magnetic resonance imaging were collected on 24 young (mean age = 26.4±5.1) and 48 older (mean age = 72.04±5.1) participants. Older participants were divided into three groups by SPPB score: Low SPPB (score = 7-9), Mid SPPB (score = 10), High SPPB (score = 11-12).Graph theory-based methods were used to characterize and compare brain network organization. Connectivity in the somatomotor cortex distinguished between groups based on SPPB score. The community structure of the somatomotor cortex was significantly less consistent in the Low SPPB group (mean = 0.097±0.05) compared with Young (mean = 0.163±0.09, p = .03) SPPB group. Striking differences were evident in second-order connections between somatomotor cortex and superior temporal gyrus and insula that reached statistical significance. The Low SPPB group (mean = 140.87±109.30) had a significantly higher number of connections than Young (mean = 45.05±33.79, p = .0003) or High (mean = 49.61±35.31, p = .002) SPPB group. Older adults with poorer mobility function exhibited reduced consistency of somatomotor community structure and a greater number of secondary connections with vestibular and multisensory regions of the brain. Further study is needed to fully interpret these effects, but analysis of functional brain networks adds new insights to the contribution of the brain to mobility. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid

    Science.gov (United States)

    Mishra, Soni; Tandon, Poonam; Eravuchira, Pinkie J.; El-Abassy, Rasha M.; Materny, Arnulf

    2013-03-01

    Density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the chlorogenic acid isomer 3-CQA (1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid), a major phenolic compound in coffee. DFT calculations with the 6-311G(d,p) basis set produce very good results. The electrostatic potential mapped onto an isodensity surface has been obtained. A natural bond orbital analysis (NBO) has been performed in order to study intramolecular bonding, interactions among bonds, and delocalization of unpaired electrons. HOMO-LUMO studies give insights into the interaction of the molecule with other species. The calculated HOMO and LUMO energies indicate that a charge transfer occurs within the molecule.

  12. Executive Function and Reading Aptitude: A Grounded Theory Analysis of Teacher Perspectives

    Science.gov (United States)

    Nordman, Jenny

    2013-01-01

    This qualitative, grounded theory study investigated teacher perspectives on the relationship between executive function and reading aptitude. The influence of executive function may be underestimated in terms of its impact on reading aptitude, which could have significant implications on how reading aptitude is currently defined. The foundational…

  13. Executive Function and Reading Aptitude: A Grounded Theory Analysis of Teacher Perspectives

    Science.gov (United States)

    Nordman, Jenny

    2013-01-01

    This qualitative, grounded theory study investigated teacher perspectives on the relationship between executive function and reading aptitude. The influence of executive function may be underestimated in terms of its impact on reading aptitude, which could have significant implications on how reading aptitude is currently defined. The foundational…

  14. Sociological functionalism, exchange theory and life-cycle analysis: a call for more explicit theoretical bridges.

    Science.gov (United States)

    Bengtson, V L; Dowd, J J

    There has been a notable lack of articulation between mainstream sociological theory and the work of social gerontologists. This paper suggests four reasons for this, and reviews the basic assumptions and applications to gerontology of two well-established frameworks in sociological theory: structural-functionalism and exchange. With more rigorous and systematic integration of gerontological data with social and social psychological theory, more comprehensive explanations of life course phenomena would result. Moreover, the age variable would be considerably by other sociologists as less of a control and more of a relevant variable in its own right.

  15. Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach

    Science.gov (United States)

    Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.

    2017-08-01

    Background: The central depression of nucleonic density, i.e., a reduction of density in the nuclear interior, has been attributed to many factors. For instance, bubble structures in superheavy nuclei are believed to be due to the electrostatic repulsion. In light nuclei, the mechanism behind the density reduction in the interior has been discussed in terms of shell effects associated with occupations of s orbits. Purpose: The main objective of this work is to reveal mechanisms behind the formation of central depression in nucleonic densities in light and heavy nuclei. To this end, we introduce several measures of the internal nucleonic density. Through the statistical analysis, we study the information content of these measures with respect to nuclear matter properties. Method: We apply nuclear density functional theory with Skyrme functionals. Using the statistical tools of linear least square regression, we inspect correlations between various measures of central depression and model parameters, including nuclear matter properties. We study bivariate correlations with selected quantities as well as multiple correlations with groups of parameters. Detailed correlation analysis is carried out for 34Si for which a bubble structure has been reported recently, 48Ca, and N =82 , 126, and 184 isotonic chains. Results: We show that the central depression in medium-mass nuclei is very sensitive to shell effects, whereas for superheavy systems it is firmly driven by the electrostatic repulsion. An appreciable semibubble structure in proton density is predicted for 294Og, which is currently the heaviest nucleus known experimentally. Conclusion: Our correlation analysis reveals that the central density indicators in nuclei below 208Pb carry little information on parameters of nuclear matter; they are predominantly driven by shell structure. On the other hand, in the superheavy nuclei there exists a clear relationship between the central nucleonic density and symmetry energy.

  16. Analysis of Vibration Mode for H2+F→HF+H Reaction Mechanism: Density functional Theory Calculation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three density functional theory methods (DFT) have been used to investigate the H2+F?HF+H reaction comparing with the Hartree-Fock method and Moller-Plesset (MP2) perturbation theory method. Through the analysis of the vibrational mode and vibrational frequency in the reaction process, the reaction mechanism has been discussed. The activation energy, the reorganization energy and rate constant of the ET reaction are calculated at semi-quantitative level.

  17. Analysis of Sigmoid Functionally Graded Material (S-FGM Nanoscale Plates Using the Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.

  18. Analysis of Time-Dependent Density Functional Theory of Transition Wavelengths of Thioaldehydes and Thioketones

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; WANG Fan

    2006-01-01

    @@ Thioaldehydes and thioketones are candidates of new photoluminescence materials. The time-dependent density functional theory is applied to calculate the absorption and emission wavelengths of ten thiocarbonyl compounds using both B3LYP and PBE0 functionals. The theoretical results are in agreement with the measurable ones.Furthermore, it is found that the maximum absorption and emission wavelengths are linearly correlated to the C-S bond lengths.

  19. NBO analysis and vibrational frequencies of tautomers of citrinin by density functional theory

    Science.gov (United States)

    Citrinin is a toxic polyketide contaminant of a number of agricultural commodities, notably Monascus-fermented red rice. Detailed structures and electronic properties of three tautomeric forms of citrinin were investigated using density functional theory calculations at various extended basis sets ...

  20. Fundamentals of Functional Analysis

    CERN Document Server

    Kutateladze, S S; Slovák, Jan

    2001-01-01

    A concise guide to basic sections of modern functional analysis. Included are such topics as the principles of Banach and Hilbert spaces, the theory of multinormed and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm index theory, convex analysis and duality theory for locally convex spaces with applications to the Schwartz spaces of distributions and Radon measures.

  1. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory.

    Science.gov (United States)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aa

    2011-07-21

    Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational implementation of the latter is based on a Neumann series which, interestingly, even though the effect is small, usually diverges. A convergence technique, which perhaps can be applied in other uses of Neumann series in perturbation theory, is proposed. The numerical results thus obtained show that, in weakly bound systems, self-consistency can be neglected since the long-range correlation does not affect the density significantly. Although MP is not adequate for multireference systems, it can still be used as a reliable analysis tool. Though the density change is not negligible anymore in such cases, self-consistency effects are found to be much smaller than long-range correlation effects (less than 10% for the systems considered). For that reason, a sensible approximation might be to update the short-range energy functional term while freezing its functional derivative, namely, the short-range local potential, in the wave function optimization. The accuracy of such an approximation still needs to be assessed.

  2. Partition density functional theory

    Science.gov (United States)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  3. An Analysis of Problematic C-E Translations of Signs in Light of Nida ’s Functional Equivalence Theory

    Institute of Scientific and Technical Information of China (English)

    TANG Fang

    2015-01-01

    Based on Nida’s Functional Equivalence theory, this article makes an analysis of the problems in C-E translations of signs in China. The author will discuss respectively the problematic C-E translations from two respects: 1) not being equivalent to source-language message, and 2) not being natural for target language. If translators work hard with the help of Nida’s functional equivalence theory, the defects and imperfections will be discovered, and standard signs in English will be read more and more in public places.

  4. Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters.

    Science.gov (United States)

    Mewes, Stefanie A; Plasser, Felix; Dreuw, Andreas

    2015-11-01

    Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ(∗), Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

  5. Mass serving theory application to the analysis of maintenance system functioning

    Directory of Open Access Journals (Sweden)

    Veljko Predrag Petrović

    2013-06-01

    Full Text Available This paper describes models and conditions for the application of the Mass Serving Theory in order to analyze relations between clients demanding the service and channels which provide the service as well as to design technological elements in the optimal regime for the given maintenance system. Based on the actual data collected and the statistical analysis of the expected intensity of combat vehicle arrivals and queuing at service for tehnical maintenance, the mathematical modeling of a real process of queuing was carried out and certain parameters quantified, in terms of determining the weaknesses of the existing models and the corrective actions needed. Introduction While solving many practical problems within the process of maintenance, the technological demands (TD for maintenance appear with the characteristics of stochasticity and stationarity. These properties provide the ability of the Mass Serving Theory (MST to be used, under certain conditions, for the dimensioning of technological elements (TE in the reporting maintenance system.The analysis of the mass serving system (MSS means the analysis of the input stream of clients, time and number of customers in a queue, time of serving and the output stream of clients as well. Mahtemathical models of the mass serving system applicable to maintenance processes There are many mathematical models developed in the MST to analyze the relationship between clients demanding the serving and channels that serve them. In the mathematical models of mass serving, the following parameters are commonly used as inputs: Input stream intensity,Serving intensity of the TE, Number of channels, i.e. TE; as outputs: Serving probability of TD,The average number of TD in a serving queue, and The average time of stay in the TD queue. In practice, during the system sizing, the number of channels is usually required, i.e. TE (n necessary to serve the TD, and in certain situations Input stream intensity and Serving

  6. Quantal Density Functional Theory II

    CERN Document Server

    Sahni, Viraht

    2009-01-01

    Discusses approximation methods and applications of Quantal Density Functional Theory (QDFT), a local effective-potential-energy theory of electronic structure. This book describes approximations methods based on the incorporation of different electron correlations, as well as a many-body perturbation theory within the context of QDFT

  7. A sublinear-scaling approach to density-functional-theory analysis of crystal defects

    Science.gov (United States)

    Ponga, M.; Bhattacharya, K.; Ortiz, M.

    2016-10-01

    We develop a sublinear-scaling method, referred to as MacroDFT, for the study of crystal defects using ab-initio Density Functional Theory (DFT). The sublinear scaling is achieved using a combination of the Linear Scaling Spectral Gauss Quadrature method (LSSGQ) and a Coarse-Graining approach (CG) based on the quasi-continuum method. LSSGQ reformulates DFT and evaluates the electron density without computing individual orbitals. This direct evaluation is possible by recourse to Gaussian quadrature over the spectrum of the linearized Hamiltonian operator. Furthermore, the nodes and weights of the quadrature can be computed independently for each point in the domain. This property is exploited in CG, where fields of interest are computed at selected nodes and interpolated elsewhere. In this paper, we present the MacroDFT method, its parallel implementation and an assessment of convergence and performance by means of test cases concerned with point defects in magnesium.

  8. A Simple Analysis of English Proverb Translation under Functional Equivalence Theory

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    English proverbs are fixed oral sayings widespread in English-speaking countries,expressing profound meanings in simple words.The content of English proverbs involves every aspect of social life of English-speaking countries,and the form presents the unique linguistic characteristics of English language. This paper explores the translation of English proverbs in the view of functional equivalence theory.%英语谚语是流传于英语国家的口头固定用语,用简单通俗的话来反映深刻的道理,内容涉及社会生活的各方面,富有独特的英语语言特点。本文将从功能对等理论视角浅析英语谚语的翻译。

  9. Functional analysis

    CERN Document Server

    Kesavan, S

    2009-01-01

    The material presented in this book is suited for a first course in Functional Analysis which can be followed by Masters students. While covering all the standard material expected of such a course, efforts have been made to illustrate the use of various theorems via examples taken from differential equations and the calculus of variations, either through brief sections or through exercises. In fact, this book will be particularly useful for students who would like to pursue a research career in the applications of mathematics. The book includes a chapter on weak and weak topologies and their applications to the notions of reflexivity, separability and uniform convexity. The chapter on the Lebesgue spaces also presents the theory of one of the simplest classes of Sobolev spaces. The book includes a chapter on compact operators and the spectral theory for compact self-adjoint operators on a Hilbert space. Each chapter has large collection of exercises at the end. These illustrate the results of the text, show ...

  10. Theory of cortical function.

    Science.gov (United States)

    Heeger, David J

    2017-02-21

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.

  11. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  12. Uranium(VI) bis(imido) chalcogenate complexes: synthesis and density functional theory analysis.

    Science.gov (United States)

    Spencer, Liam P; Yang, Ping; Scott, Brian L; Batista, Enrique R; Boncella, James M

    2009-03-16

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(N(t)Bu)(2)(EAr)(2)(OPPh(3))(2) (EAr = O-2-(t)BuC(6)H(4), SPh, SePh, TePh) and U(N(t)Bu)(2)(EAr)(2)(R(2)bpy) (EAr = SPh, SePh, TePh) (R(2)bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, (t)Bu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(N(t)Bu)(2)(EAr)(2)(OPPh(3))(2) as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  13. Fundamentals of functional analysis

    CERN Document Server

    Farenick, Douglas

    2016-01-01

    This book provides a unique path for graduate or advanced undergraduate students to begin studying the rich subject of functional analysis with fewer prerequisites than is normally required. The text begins with a self-contained and highly efficient introduction to topology and measure theory, which focuses on the essential notions required for the study of functional analysis, and which are often buried within full-length overviews of the subjects. This is particularly useful for those in applied mathematics, engineering, or physics who need to have a firm grasp of functional analysis, but not necessarily some of the more abstruse aspects of topology and measure theory normally encountered. The reader is assumed to only have knowledge of basic real analysis, complex analysis, and algebra. The latter part of the text provides an outstanding treatment of Banach space theory and operator theory, covering topics not usually found together in other books on functional analysis. Written in a clear, concise manner,...

  14. Functional theories of thermoelectric phenomena

    Science.gov (United States)

    Eich, F. G.; Di Ventra, M.; Vignale, G.

    2017-02-01

    We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables—the density and the energy density—and two conjugate fields—the ordinary scalar potential and Luttinger’s thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger’s thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.

  15. Computational Methods and Function Theory

    CERN Document Server

    Saff, Edward; Salinas, Luis; Varga, Richard

    1990-01-01

    The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

  16. Spheroidal Wave Functions in Electromagnetic Theory

    Science.gov (United States)

    Li, Le-Wei; Kang, Xiao-Kang; Leong, Mook-Seng

    2001-11-01

    The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.

  17. NBO analysis and vibrational spectra of 2,6-bis(p-methyl benzylidene cyclohexanone) using density functional theory

    Science.gov (United States)

    Padmaja, L.; Amalanathan, M.; Ravikumar, C.; Hubert Joe, I.

    2009-10-01

    Vibrational analysis of the 2,6-bis(p-methyl benzylidene cyclohexanone) [PMBC] compound was carried out by using NIR FT-Raman and FT-IR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational frequencies of PMBC have been investigated with the help of B3LYP/6-31G(d) density functional theory method. The optimized geometry clearly demonstrates cyclohexanone ring chair conformation is changed into half-chair conformation. The shortening of C-H bond length and blue shifting of the CH stretching wavenumber suggest the existence of improper weak C-H⋯O hydrogen bonding, which is confirmed by the natural bond orbital analysis. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy are also calculated.

  18. Lectures on Functional Analysis

    CERN Document Server

    Kurepa, Svetozar; Kraljević, Hrvoje

    1987-01-01

    This volume consists of a long monographic paper by J. Hoffmann-Jorgensen and a number of shorter research papers and survey articles covering different aspects of functional analysis and its application to probability theory and differential equations.

  19. Applied functional analysis

    CERN Document Server

    Griffel, DH

    2002-01-01

    A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the

  20. Distribution theory and transform analysis an introduction to generalized functions, with applications

    CERN Document Server

    Zemanian, AH

    2010-01-01

    This well-known text provides a relatively elementary introduction to distribution theory and describes generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. Suitable for a graduate course for engineering and science students or for an advanced undergraduate course for mathematics majors. 1965 edition.

  1. Constructive Function Theory on Sets of the Complex Plane through Potential Theory and Geometric Function Theory

    OpenAIRE

    Andrievskii, Vladimir

    2006-01-01

    This is a survey of some recent results concerning polynomial inequalities and polynomial approximation of functions in the complex plane. The results are achieved by the application of methods and techniques of modern geometric function theory and potential theory.

  2. Functional analysis of concealment: a novel application of prospect and refuge theory.

    Science.gov (United States)

    Singh, Punya; Ellard, Colin G

    2012-09-01

    According to prospect-refuge theory, humans prefer environments that afford protection from threat (refuge), but also provide large fields of view (prospect). Prospect-refuge theory in the past has traditionally only been applied to humans, but many of the same contingencies governing spatial preference ought to also hold true in animals. The focus of this study was to examine if this phenomena also occurs in animals. Gerbils were placed in an arena containing three dome shaped refuges that varied in prospect-refuge levels. A simulated predator was released during the trial to examine how contextual factors may influence the degree of prospect and refuge preferred. The results indicate a preference for the enclosed refuge at stimulus onset even though this was not reflective of what happened prior to predator release. The results suggest spatial preferences in animals are influenced by prospect-refuge considerations in certain contexts.

  3. Theory of function spaces II

    CERN Document Server

    Triebel, Hans

    1992-01-01

    Theory of Function Spaces II deals with the theory of function spaces of type Bspq and Fspq as it stands at the present. These two scales of spaces cover many well-known function spaces such as Hölder-Zygmund spaces, (fractional) Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and local approximation spaces which are closely connected with Morrey-Campanato spaces. Theory of Function Spaces II is self-contained, although it may be considered an update of the author’s earlier book of the same title. The book’s 7 chapters start with a historical survey of the subject, and then analyze the theory of function spaces in Rn and in domains, applications to (exotic) pseudo-differential operators, and function spaces on Riemannian manifolds. ------ Reviews The first chapter deserves special attention. This chapter is both an outstanding historical survey of function spaces treated in the book and a remarkable survey of rather different techniques developed in the last 50 years. It is s...

  4. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    Science.gov (United States)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  5. A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items

    Science.gov (United States)

    Fukuhara, Hirotaka; Kamata, Akihito

    2011-01-01

    A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…

  6. Theory of mind and neurocognitive functioning in schizophrenia

    OpenAIRE

    Rumyantseva E. E.

    2016-01-01

    The aim of this work was to study the problem of interrelation between theory of mind and neurocognitive functioning in schizophrenia. Tasks: analysis of the literature on the problem of interrelation of theory of mind and neurocognitive functioning in schizophrenia. Subject of research: interrelation of theory of mind and neurocognitive functioning. Research hypothesis: the state of the mental model correlated with neurocognitive functioning. Registered a decline in the functioning of theory...

  7. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    Science.gov (United States)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  8. Semiclassics in Density Functional Theory

    Science.gov (United States)

    Lee, Donghyung; Cangi, Attila; Elliott, Peter; Burke, Kieron

    2009-03-01

    Recently, we published an article [1] about the semiclassical origin of density functional theory. We showed that the density and the kinetic energy density of one dimensional finite systems with hard walls can be expressed in terms of the external potential using the semiclassical Green's function method. Here, we show a uniformization scheme for the semiclassical density and the kinetic energy density for turning-point problems.[1] P. Elliott, D. Lee, A. Cangi, and K. Burke, Phys. Rev. Lett. 100, 256406 (2008).

  9. Generalized functions, volume 6 representation theory and automorphic functions

    CERN Document Server

    Gel′fand, I M; Pyatetskii-Shapiro, I I

    2016-01-01

    The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unif

  10. Nonlinear functional analysis in Banach spaces and Banach algebras fixed point theory under weak topology for nonlinear operators and block operator matrices with applications

    CERN Document Server

    Jeribi, Aref

    2015-01-01

    Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several exten

  11. Analysis of Thermal Buckling of Ceramic-Metal Functionally Graded Plates Using Refined Third Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    S. S. Daimi

    2014-08-01

    Full Text Available Functionally graded materials (FGMs are microscopically inhomogeneous spatial composite materials, typically composed of a ceramic-metal or ceramic-polymer pair of materials. Therefore, it is important to investigate the behaviors of engineering structures such as beams and plates made from FGMs when they are subjected to thermal loads for appropriate design. Therefore, using an improved third order shear deformation theory (TSDT based on more rigorous kinetics of displacements to predict the behaviors of functionally graded plates is expected to be more suitable than using other theories. In this paper, the improved TSDT is used to investigate thermal buckling of functionally graded plates. Temperature dependent material property solutions are adopted to investigate thermal buckling results of functionally graded plates. To obtain the solutions, the Ritz method using polynomial and trigonometric functions for defining admissible displacements and rotations is applied to solve the governing equations.

  12. An Analysis of the Substitution Effect and of Revenue Effect in the Case of the Consumer’s Theory Provided with a CES Utility Function

    Directory of Open Access Journals (Sweden)

    Catalin Angelo Ioan

    2012-02-01

    Full Text Available In the consumer’s theory, a crucial problem is to determine the substitution effect and therevenue effect in the case of one good price’s modifing. There exists two theories due to John RichardHicks and Eugen Slutsky which allocates differentsshares of the total change of the consumption tothese effects. The paper makes an analysis betweenthe two effects, considering the general case of aCES utility function and introduces three indicators which will characterize these shares.

  13. Formalization of Function Matrix Theory in HOL

    Directory of Open Access Journals (Sweden)

    Zhiping Shi

    2014-01-01

    Full Text Available Function matrices, in which elements are functions rather than numbers, are widely used in model analysis of dynamic systems such as control systems and robotics. In safety-critical applications, the dynamic systems are required to be analyzed formally and accurately to ensure their correctness and safeness. Higher-order logic (HOL theorem proving is a promise technique to match the requirement. This paper proposes a higher-order logic formalization of the function vector and the function matrix theories using the HOL theorem prover, including data types, operations, and their properties, and further presents formalization of the differential and integral of function vectors and function matrices. The formalization is implemented as a library in the HOL system. A case study, a formal analysis of differential of quadratic functions, is presented to show the usefulness of the proposed formalization.

  14. Density functional theory: Foundations reviewed

    Energy Technology Data Exchange (ETDEWEB)

    Kryachko, Eugene S., E-mail: eugene.kryachko@ulg.ac.be [Bogolyubov Institute for Theoretical Physics, Kiev, 03680 (Ukraine); Ludeña, Eduardo V., E-mail: popluabe@yahoo.es [Centro de Química, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Prometheus Program, Senescyt (Ecuador); Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNano, USFQ, N104-E, Quito (Ecuador); Escuela Politécnica Superior del Litoral, ESPOL, Guayaquil (Ecuador)

    2014-11-10

    Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained. In the second place, we review some problems appearing in the original formulation of the first Hohenberg–Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb’s comment on this proof and the extension to this proof given by Pino et al. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn–Sham solutions are obtained in practical applications). We also consider the issue of whether the Kohn–Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn–Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed. We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem

  15. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  16. Scaled density functional theory correlation functionals.

    Science.gov (United States)

    Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B

    2007-10-18

    We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.

  17. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  18. Synthesis, Characterization, and Density Functional Theory Analysis of Uranium and Thorium Complexes Containing Nitrogen-Rich 5-Methyltetrazolate Ligands.

    Science.gov (United States)

    Browne, Kevin P; Maerzke, Katie A; Travia, Nicholas E; Morris, David E; Scott, Brian L; Henson, Neil J; Yang, Ping; Kiplinger, Jaqueline L; Veauthier, Jacqueline M

    2016-05-16

    Two nitrogen-rich, isostructural complexes of uranium and thorium, (C5Me5)2U[η(2)-(N,N')-tetrazolate]2 (7) and (C5Me5)2Th[η(2)-(N,N')-tetrazolate]2 (8), containing 5-methyltetrazolate, have been synthesized and structurally characterized by single-crystal X-ray diffraction, electrochemical methods, UV-visible-near-IR spectroscopy, and variable-temperature (1)H NMR spectroscopy. Density functional theory (DFT) calculations yield favorable free energies of formation (approximately -375 kJ/mol) and optimized structures in good agreement with the experimental crystal structures. Additionally, calculated NMR chemical shifts of 7 and 8 are in good agreement with the variable-temperature (1)H NMR experiments. Time-dependent DFT calculations of both complexes yield UV-visible spectroscopic features that are consistent with experiment and provide assignments of the corresponding electronic transitions. The electronic transitions in the UV-visible spectroscopic region are attributed to C5Me5 ligand-to-metal charge transfer. The low-lying molecular orbitals of the tetrazolate ligands (∼2 eV below the HOMO) do not contribute appreciably to experimentally observed electronic transitions. The combined experimental and theoretical analysis of these new nitrogen-rich uranium and thorium complexes indicates the tetrazolate ligand behaves primarily as a σ-donor.

  19. A Density Functional Theory Study

    KAUST Repository

    Lim, XiaoZhi

    2011-12-11

    Complexes with pincer ligand moieties have garnered much attention in the past few decades. They have been shown to be highly active catalysts in several known transition metal-catalyzed organic reactions as well as some unprecedented organic transformations. At the same time, the use of computational organometallic chemistry to aid in the understanding of the mechanisms in organometallic catalysis for the development of improved catalysts is on the rise. While it was common in earlier studies to reduce computational cost by truncating donor group substituents on complexes such as tertbutyl or isopropyl groups to hydrogen or methyl groups, recent advancements in the processing capabilities of computer clusters and codes have streamlined the time required for calculations. As the full modeling of complexes become increasingly popular, a commonly overlooked aspect, especially in the case of complexes bearing isopropyl substituents, is the conformational analysis of complexes. Isopropyl groups generate a different conformer with each 120 ° rotation (rotamer), and it has been found that each rotamer typically resides in its own potential energy well in density functional theory studies. As a result, it can be challenging to select the most appropriate structure for a theoretical study, as the adjustment of isopropyl substituents from a higher-energy rotamer to the lowest-energy rotamer usually does not occur during structure optimization. In this report, the influence of the arrangement of isopropyl substituents in pincer complexes on calculated complex structure energies as well as a case study on the mechanism of the isomerization of an iPrPCP-Fe complex is covered. It was found that as many as 324 rotamers can be generated for a single complex, as in the case of an iPrPCP-Ni formato complex, with the energy difference between the global minimum and the highest local minimum being as large as 16.5 kcalmol-1. In the isomerization of a iPrPCP-Fe complex, it was found

  20. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV-Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2015-03-05

    The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated.

  1. Handbook of functional equations stability theory

    CERN Document Server

    2014-01-01

    This  handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications.                           The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...

  2. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    Science.gov (United States)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the

  3. Applied functional analysis

    CERN Document Server

    Oden, J Tinsley

    2010-01-01

    The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010

  4. Function theory on symplectic manifolds

    CERN Document Server

    Polterovich, Leonid

    2014-01-01

    This is a book on symplectic topology, a rapidly developing field of mathematics which originated as a geometric tool for problems of classical mechanics. Since the 1980s, powerful methods such as Gromov's pseudo-holomorphic curves and Morse-Floer theory on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present book focuses on function spaces associated with a symplectic manifold. A number of recent advances show that these spaces exhibit intriguing properties and structures, giving rise to an alternative intuition and new tools in symplectic topology. The book provides an essentially self-contained introduction into these developments along with applications to symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian dynamics and quantum mechanics. It will appeal to researchers and students from the graduate level onwards. I like the spirit of this book. It formulates concepts clearly and explains the relationship between them. The subject matter is i...

  5. Bending and free vibration analysis of functionally graded plates using new eight-unknown shear deformation theory by finite-element method

    Science.gov (United States)

    Van Long, Nguyen; Quoc, Tran Huu; Tu, Tran Minh

    2016-12-01

    In this paper, a new eight-unknown shear deformation theory is developed for bending and free vibration analysis of functionally graded plates by finite-element method. The theory based on full 12-unknown higher order shear deformation theory simultaneously satisfies zeros transverse stresses at top and bottom surfaces of FG plates. A four-node rectangular element with 16 degrees of freedom per node is used. Poisson's ratios, Young's moduli, and material densities vary continuously in thickness direction according to the volume fraction of constituents which is modeled as power-law functions. Results are verified with available results in the literature. Parametric studies are performed for different power-law indices, side-to-thickness ratios.

  6. Discourse theory and analysis

    NARCIS (Netherlands)

    Molder, te H.F.M.

    2009-01-01

    Available in both print and electronic formats, the Encyclopedia of Communication Theory provides students and researchers with a comprehensive two-volume overview of contemporary communication theory. Reference librarians report that students frequently approach them seeking a source that will

  7. Nitrogenase structure and function relationships by density functional theory.

    Science.gov (United States)

    Harris, Travis V; Szilagyi, Robert K

    2011-01-01

    Modern density functional theory has tremendous potential with matching popularity in metalloenzymology to reveal the unseen atomic and molecular details of structural data, spectroscopic measurements, and biochemical experiments by providing insights into unobservable structures and states, while also offering theoretical justifications for observed trends and differences. An often untapped potential of this theoretical approach is to bring together diverse experimental structural and reactivity information and allow for these to be critically evaluated at the same level. This is particularly applicable for the tantalizingly complex problem of the structure and molecular mechanism of biological nitrogen fixation. In this chapter we provide a review with extensive practical details of the compilation and evaluation of experimental data for an unbiased and systematic density functional theory analysis that can lead to remarkable new insights about the structure-function relationships of the iron-sulfur clusters of nitrogenase.

  8. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Directory of Open Access Journals (Sweden)

    Michael V LeVine

    2014-05-01

    Full Text Available Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i-channels for long-distance information sharing between functional sites, and (ii-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  9. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT.

    Science.gov (United States)

    LeVine, Michael V; Weinstein, Harel

    2014-05-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems.

  10. NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT

    Science.gov (United States)

    LeVine, Michael V.; Weinstein, Harel

    2014-01-01

    Complex networks of interacting residues and microdomains in the structures of biomolecular systems underlie the reliable propagation of information from an input signal, such as the concentration of a ligand, to sites that generate the appropriate output signal, such as enzymatic activity. This information transduction often carries the signal across relatively large distances at the molecular scale in a form of allostery that is essential for the physiological functions performed by biomolecules. While allosteric behaviors have been documented from experiments and computation, the mechanism of this form of allostery proved difficult to identify at the molecular level. Here, we introduce a novel analysis framework, called N-body Information Theory (NbIT) analysis, which is based on information theory and uses measures of configurational entropy in a biomolecular system to identify microdomains and individual residues that act as (i)-channels for long-distance information sharing between functional sites, and (ii)-coordinators that organize dynamics within functional sites. Application of the new method to molecular dynamics (MD) trajectories of the occluded state of the bacterial leucine transporter LeuT identifies a channel of allosteric coupling between the functionally important intracellular gate and the substrate binding sites known to modulate it. NbIT analysis is shown also to differentiate residues involved primarily in stabilizing the functional sites, from those that contribute to allosteric couplings between sites. NbIT analysis of MD data thus reveals rigorous mechanistic elements of allostery underlying the dynamics of biomolecular systems. PMID:24785005

  11. Impact of Functionally Graded Cylinders: Theory

    Science.gov (United States)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)

    2001-01-01

    This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.

  12. Psychologic theories in functional neurologic disorders.

    Science.gov (United States)

    Carson, A; Ludwig, L; Welch, K

    2017-01-01

    In this chapter we review key psychologic theories that have been mooted as possible explanations for the etiology of functional neurologic symptoms, conversion disorder, and hysteria. We cover Freudian psychoanalysis and later object relations and attachment theories, social theories, illness behavior, classic and operant conditioning, social learning theory, self-regulation theory, cognitive-behavioral theories, and mindfulness. Dissociation and modern cognitive neuroscience theories are covered in other chapters in this series and, although of central importance, are omitted from this chapter. Our aim is an overview with the emphasis on breadth of coverage rather than depth.

  13. Program Theory Evaluation: Logic Analysis

    Science.gov (United States)

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  14. Discourse theory and analysis

    NARCIS (Netherlands)

    Molder, te H.F.M.

    2009-01-01

    Available in both print and electronic formats, the Encyclopedia of Communication Theory provides students and researchers with a comprehensive two-volume overview of contemporary communication theory. Reference librarians report that students frequently approach them seeking a source that will prov

  15. Item response theory analysis of the life orientation test-revised: age and gender differential item functioning analyses.

    Science.gov (United States)

    Steca, Patrizia; Monzani, Dario; Greco, Andrea; Chiesi, Francesca; Primi, Caterina

    2015-06-01

    This study is aimed at testing the measurement properties of the Life Orientation Test-Revised (LOT-R) for the assessment of dispositional optimism by employing item response theory (IRT) analyses. The LOT-R was administered to a large sample of 2,862 Italian adults. First, confirmatory factor analyses demonstrated the theoretical conceptualization of the construct measured by the LOT-R as a single bipolar dimension. Subsequently, IRT analyses for polytomous, ordered response category data were applied to investigate the items' properties. The equivalence of the items across gender and age was assessed by analyzing differential item functioning. Discrimination and severity parameters indicated that all items were able to distinguish people with different levels of optimism and adequately covered the spectrum of the latent trait. Additionally, the LOT-R appears to be gender invariant and, with minor exceptions, age invariant. Results provided evidence that the LOT-R is a reliable and valid measure of dispositional optimism.

  16. Analysis of the Structures and Properties of (GaSb)n (n = 4-9) Clusters through Density Functional Theory.

    Science.gov (United States)

    Lu, Qi Liang; Luo, Qi Quan; Huang, Shou Guo; Li, Yi De; Wan, Jian Guo

    2016-07-07

    An optimization strategy combining global semiempirical quantum mechanical search with all-electron density functional theory was adopted to determine the lowest energy structure of (GaSb)n clusters up to n = 9. The growth pattern of the clusters differed from those of previously reported group III-V binary clusters. A cagelike configuration was found for cluster sizes n ≤ 7. The structure of (GaSb)6 deviated from that of other III-V clusters. Competition existed between core-shell and hollow cage structures of (GaSb)7. Novel noncagelike structures were energetically preferred over the cages for the (GaSb)8 and (GaSb)9 clusters. Electronic properties, such as vertical ionization potential, adiabatic electron affinities, HOMO-LUMO gaps, and average on-site charges on Ga or Sb atoms, as well as binding energies, were computed.

  17. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H₂ at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N₂O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  18. Liapunov Functions and Stability in Control Theory

    CERN Document Server

    Bacciotti, Andrea

    2005-01-01

    This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new section

  19. Function theory of several complex variables

    CERN Document Server

    Krantz, Steven G

    2001-01-01

    The theory of several complex variables can be studied from several different perspectives. In this book, Steven Krantz approaches the subject from the point of view of a classical analyst, emphasizing its function-theoretic aspects. He has taken particular care to write the book with the student in mind, with uniformly extensive and helpful explanations, numerous examples, and plentiful exercises of varying difficulty. In the spirit of a student-oriented text, Krantz begins with an introduction to the subject, including an insightful comparison of analysis of several complex variables with th

  20. Theoretical numerical analysis a functional analysis framework

    CERN Document Server

    Atkinson, Kendall

    2005-01-01

    This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu

  1. Blast counts in bone marrow aspirate smears: analysis using the poisson probability function, bayes theorem, and information theory.

    Science.gov (United States)

    Vollmer, Robin T

    2009-02-01

    Counts of cells or other phenomena observed through a microscope are numeric observations and, as such, are subject to mathematical and statistical analyses. For example, the Poisson probability function provides the probability of observing a particular number of blasts in a bone marrow aspirate, given an underlying true fraction of blasts present and a particular number of cells evaluated. Furthermore, using the Poisson function, Bayes theorem can provide the probabilities of specific categories of refractory anemia, given a number of observed blasts in a specific total of cells evaluated. Herein, I introduce and demonstrate these mathematical functions for the analysis of counts of blasts in marrow aspirates and explore the uncertainty that naturally arises when counts of blasts are near cut points used to separate the categories of refractory anemia without excess blasts, refractory anemia with excess blasts, and acute leukemia.

  2. Graph Zeta function and gauge theories

    Science.gov (United States)

    He, Yang-Hui

    2011-03-01

    Along the recently trodden path of studying certain number theoretic properties of gauge theories, especially supersymmetric theories whose vacuum manifolds are non-trivial, we investigate Ihara's Graph Zeta Function for large classes of quiver theories and periodic tilings by bi-partite graphs. In particular, we examine issues such as the spectra of the adjacency and whether the gauge theory satisfies the strong and weak versions of the graph theoretical analogue of the Riemann Hypothesis.

  3. Density functional theory in quantum chemistry

    CERN Document Server

    Tsuneda, Takao

    2014-01-01

    This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.

  4. Nuclear charge and neutron radii and nuclear matter: Trend analysis in Skyrme density-functional-theory approach

    Science.gov (United States)

    Reinhard, P.-G.; Nazarewicz, W.

    2016-05-01

    Background: Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by the presence of nuclear surface. Purpose: In this work, by studying the correlation of charge and neutron radii, and neutron skin, with nuclear matter parameters, we assess different mechanisms that drive nuclear sizes. Method: We apply nuclear density functional theory using a family of Skyrme functionals obtained by means of optimization protocols, which do not include any radius information. By performing the Monte Carlo sampling of reasonable functionals around the optimal parametrization, we scan all correlations between nuclear matter properties and observables characterizing charge and neutron distributions of spherical closed-shell nuclei 48Ca,208Pb, and 298Fl. Results: By considering the influence of various nuclear matter properties on charge and neutron radii in a multidimensional parameter space of Skyrme functionals, we demonstrate the existence of two strong relationships: (i) between the nuclear charge radii and the saturation density of symmetric nuclear matter ρ0, and (ii) between the neutron skins and the slope of the symmetry energy L . The impact of other nuclear matter properties on nuclear radii is weak or nonexistent. For functionals optimized to experimental binding energies only, proton and neutron radii are found to be weakly correlated due to canceling trends from different nuclear matter characteristics. Conclusion: The existence of only two strong relations connecting nuclear radii with nuclear matter properties has important consequences. First, by requiring that the nuclear functional reproduces the empirical saturation point of symmetric nuclear matter practically fixes the charge (or proton) radii, and vice versa. This explains the recent results of ab initio calculations

  5. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory

    Science.gov (United States)

    Zhang, Xiaoxing; Huang, Rong; Gui, Yingang; Zeng, Hong

    2016-01-01

    Detection of decomposition products of sulfur hexafluoride (SF6) is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene) and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene), for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT). We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2) and double gas molecules (2SO2F2, 2SOF2, 2SO2) on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6. PMID:27809269

  6. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2016-11-01

    Full Text Available Detection of decomposition products of sulfur hexafluoride (SF6 is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene, for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT. We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2 and double gas molecules (2SO2F2, 2SOF2, 2SO2 on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6.

  7. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory.

    Science.gov (United States)

    Zhang, Xiaoxing; Huang, Rong; Gui, Yingang; Zeng, Hong

    2016-11-01

    Detection of decomposition products of sulfur hexafluoride (SF₆) is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene) and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene), for decomposition products of SF₆, including SO₂F₂, SOF₂, and SO₂, based on density functional theory (DFT). We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO₂F₂, SOF₂, SO₂) and double gas molecules (2SO₂F₂, 2SOF₂, 2SO₂) on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO₂F₂ and SO₂ gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO₂F₂ > SO₂, while SOF₂ absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO₂F₂. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF₆-insulated equipment based on detecting decomposition products of SF₆.

  8. Cluster density functional theory for lattice models based on the theory of Möbius functions

    Science.gov (United States)

    Lafuente, Luis; Cuesta, José A.

    2005-08-01

    Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Möbius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Möbius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.

  9. Cluster density functional theory for lattice models based on the theory of Moebius functions

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, Luis; Cuesta, Jose A [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, 28911 Leganes, Madrid (Spain)

    2005-08-26

    Rosenfeld's fundamental-measure theory for lattice models is given a rigorous formulation in terms of the theory of Moebius functions of partially ordered sets. The free-energy density functional is expressed as an expansion in a finite set of lattice clusters. This set is endowed with a partial order, so that the coefficients of the cluster expansion are connected to its Moebius function. Because of this, it is rigorously proven that a unique such expansion exists for any lattice model. The low-density analysis of the free-energy functional motivates a redefinition of the basic clusters (zero-dimensional cavities) which guarantees a correct zero-density limit of the pair and triplet direct correlation functions. This new definition extends Rosenfeld's theory to lattice models with any kind of short-range interaction (repulsive or attractive, hard or soft, one or multicomponent ...). Finally, a proof is given that these functionals have a consistent dimensional reduction, i.e. the functional for dimension d' can be obtained from that for dimension d (d' < d) if the latter is evaluated at a density profile confined to a d'-dimensional subset.

  10. Notes on functional analysis

    CERN Document Server

    Bhatia, Rajendra

    2009-01-01

    These notes are a record of a one semester course on Functional Analysis given by the author to second year Master of Statistics students at the Indian Statistical Institute, New Delhi. Students taking this course have a strong background in real analysis, linear algebra, measure theory and probability, and the course proceeds rapidly from the definition of a normed linear space to the spectral theorem for bounded selfadjoint operators in a Hilbert space. The book is organised as twenty six lectures, each corresponding to a ninety minute class session. This may be helpful to teachers planning a course on this topic. Well prepared students can read it on their own.

  11. Correlation functions in theories with Lifshitz scaling

    CERN Document Server

    Keranen, Ville; Szepietowski, Phillip; Thorlacius, Larus

    2016-01-01

    The 2+1 dimensional quantum Lifshitz model can be generalised to a class of higher dimensional free field theories that exhibit Lifshitz scaling. When the dynamical critical exponent equals the number of spatial dimensions, equal time correlation functions of scaling operators in the generalised quantum Lifshitz model are given by a d-dimensional higher-derivative conformal field theory. Autocorrelation functions in the generalised quantum Lifshitz model in any number of dimensions can on the other hand be expressed in terms of autocorrelation functions of a two-dimensional conformal field theory. This also holds for autocorrelation functions in a strongly coupled Lifshitz field theory with a holographic dual of Einstein-Maxwell-dilaton type. The map to a two-dimensional conformal field theory extends to autocorrelation functions in thermal states and out- of-equilbrium states preserving symmetry under spatial translations and rotations in both types of Lifshitz models. Furthermore, the spectrum of quasinorma...

  12. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  13. Electronic fluxes during Diels-Alder reactions involving 1,2-benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory.

    Science.gov (United States)

    González-Navarrete, Patricio; Domingo, Luis R; Andrés, Juan; Berski, Slawomir; Silvi, Bernard

    2012-11-15

    By means of the joint use of electron localization function (ELF) and Thom's catastrophe theory, a theoretical analysis of the energy profile for the hetero-Diels-Alder reaction of 4-methoxy-1,2-benzoquinone 1 and methoxyethylene 2 has been carried out. The 12 different structural stability domains obtained by the bonding evolution theory have been identified as well as the bifurcation catastrophes (fold and cusp) responsible for the changes in the topology of the system. This analysis permits finding a relationship between the ELF topology and the evolution of the bond breaking/forming processes and electron pair rearrangements through the reaction progress in terms of the different ways of pairing up the electrons. The reaction mechanism corresponds to an asynchronous electronic flux; first, the O1-C5 bond is formed by the nucleophilic attack of the C5 carbon of the electron rich ethylene 2 on the most electrophilically activated carbonyl O1 oxygen of 1, and once the σ bond has been completed, the formation process of the second O4C6 bond takes place. In addition, the values of the local electrophilicity and local nucleophilcity indices in the framework of conceptual density functional theory accounts for the asychronicity of the process as well as for the observed regioselectivity.

  14. Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory

    Science.gov (United States)

    Zhang, Xiaoxing; Gui, Yingang; Xiao, Hanyan; Zhang, Ying

    2016-08-01

    To develop novel nanomaterial for online detection and diagnosis of insulated faults in SF6 insulated equipment, the nickel-doped single wall carbon nanotubes (Ni-SWCNTs) are proposed and its sensing capabilities for the measurement of typical decomposition products (SO2, SOF2 and SO2F2) of SF6 insulated gas are investigated in this work. The geometric configurations of decomposition products and (8, 0) zigzag Ni-SWCNTs, and adsorption properties are studied based on the first-principle density functional theory (DFT) methods implemented in the DMol3 package of Materials Studio. Three interaction models, single molecule, double identical molecules and double foreign molecules adsorption, have been studied to fully characterize the gas sensing mechanism under different situations. Simulation results reveal that Ni-SWCNTs have different sensitivity and selectivity to SO2 than SOF2 and SO2F2. The conductivity of Ni-SWCNTs increases in the following order: SO2 > SOF2 after SO2 and SOF2 adsorption. Conversely, the adsorption of SO2F2 onto Ni-SWCNTs slightly decreases its conductivity.

  15. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  16. Octupole deformation in the ground states of even-even nuclei: a global analysis within the covariant density functional theory

    CERN Document Server

    Agbemava, S E; Ring, P

    2016-01-01

    A systematic investigation of octupole deformed nuclei is presented for even-even systems with $Z\\leq 106$ located between the two-proton and two-neutron drip lines. For this study we use five most up-to-date covariant energy density functionals of different types, with a non-linear meson coupling, with density dependent meson couplings, and with density-dependent zero-range interactions. Pairing correlations are treated within relativistic Hartree-Bogoliubov (RHB) theory based on an effective separable particle-particle interaction of finite range. This allows us to assess theoretical uncertainties within the present covariant models for the prediction of physical observables relevant for octupole deformed nuclei. In addition, a detailed comparison with the predictions of non-relativistic models is performed. A new region of octupole deformation, centered around $Z\\sim 98, N\\sim 196$ is predicted for the first time. In terms of its size in the $(Z,N)$ plane and the impact of octupole deformation on binding e...

  17. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    Science.gov (United States)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  18. Conformational Analysis, Molecular Structure and Solid State Simulation of the Antiviral Drug Acyclovir (Zovirax Using Density Functional Theory Methods

    Directory of Open Access Journals (Sweden)

    Margarita Clara Alvarez-Ros

    2014-06-01

    Full Text Available The five tautomers of the drug acyclovir (ACV were determined and optimised at the MP2 and B3LYP quantum chemical levels of theory. The stability of the tautomers was correlated with different parameters. On the most stable tautomer N1 was carried out a comprehensive conformational analysis, and the whole conformational parameters (R, β, Φ, φ1, φ2, φ3, φ4, φ5 were studied as well as the NBO Natural atomic charges. The calculations were carried out with full relaxation of all geometrical parameters. The search located at least 78 stable structures within 8.5 kcal/mol electronic energy range of the global minimum, and classified in two groups according to the positive or negative value of the torsional angle j1. In the nitrogen atoms and in the O2' and O5' oxygen atoms of the most stable conformer appear a higher reactivity than in the natural nucleoside deoxyguanosine. The solid state was simulated through a dimer and tetramer forms and the structural parameters were compared with the X-ray crystal data available. Several general conclusions were emphasized.

  19. Workshop on The Functional Analysis of Quantum Information Theory : a Collection of Notes Based on Lectures by Gilles Pisier, K. R. Parthasarathy, Vern Paulsen and Andreas Winter

    CERN Document Server

    Gupta, Ved Prakash; Sunder, V S

    2015-01-01

    This book provides readers with a concise introduction to current studies on operator-algebras and their generalizations, operator spaces and operator systems, with a special focus on their application in quantum information science. This basic framework for the mathematical formulation of quantum information can be traced back to the mathematical work of John von Neumann, one of the pioneers of operator algebras, which forms the underpinning of most current mathematical treatments of the quantum theory, besides being one of the most dynamic areas of twentieth century functional analysis. Today, von Neumann’s foresight finds expression in the rapidly growing field of quantum information theory. These notes gather the content of lectures given by a very distinguished group of mathematicians and quantum information theorists, held at the IMSc in Chennai some years ago, and great care has been taken to present the material as a primer on the subject matter. Starting from the basic definitions of operator space...

  20. Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals.

    Science.gov (United States)

    Labat, Frédéric; Baranek, Philippe; Domain, Christophe; Minot, Christian; Adamo, Carlo

    2007-04-21

    The two polymorphs of TiO2, rutile and anatase, have been investigated at the ab initio level using different Hamiltonians with all-electron Gaussian and projector augmented plane wave basis sets. Their equilibrium lattice parameters, relative stabilities, binding energies, and band structures have been evaluated. The calculations have been performed at the Hartree-Fock, density functional theory (DFT), and hybrid (B3LYP and PBE0) levels. As regards DFT, the local density and generalized gradient (PBE) approximations have been used. Our results show an excellent agreement with the experimental band structures and binding energies for the B3LYP and PBE0 functionals, while the best structural descriptions are obtained at the PBE0 level. However, no matter which Hamiltonian and method are used, anatase is found more stable than rutile, in contrast with recent experimental reports, although the relative stabilities of the two phases are very close to each other. Nevertheless, based on the overall results, the hybrid PBE0 functional appears as a good compromise to obtain an accurate description of both structural and electronic properties of solids.

  1. Particle conservation in dynamical density functional theory.

    Science.gov (United States)

    de Las Heras, Daniel; Brader, Joseph M; Fortini, Andrea; Schmidt, Matthias

    2016-06-22

    We present the exact adiabatic theory for the dynamics of the inhomogeneous density distribution of a classical fluid. Erroneous particle number fluctuations of dynamical density functional theory are absent, both for canonical and grand canonical initial conditions. We obtain the canonical free energy functional, which yields the adiabatic interparticle forces of overdamped Brownian motion. Using an exact and one of the most advanced approximate hard core free energy functionals, we obtain excellent agreement with simulations. The theory applies to finite systems in and out of equilibrium.

  2. General degeneracy in density functional perturbation theory

    CERN Document Server

    Palenik, Mark C

    2016-01-01

    Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. We develop the fully general degenerate perturbation theory for DFT without assuming that the degeneracy is required by symmetry. The resulting methodology is applied to the iron atom ground state in order to demonstrate the effects of degeneracy that appears both due to symmetry requirements and accidentally, between different representations of the symmetry group.

  3. Nevanlinna theory of meromorphic functions on annuli

    Institute of Scientific and Technical Information of China (English)

    LUND; Mark

    2010-01-01

    In this survey paper, we discuss the recent development of Nevanlinna theory of meromorphic functions on annuli, which extends results in Nevanlinna theory in the complex plane or in a disk. In particular, we show that the approach taken on annuli is a unified treatment of functions meromorphic in the complex plane, a disk and an annulus. It allows one to obtain many results in the complex plane and in a disk as corollaries of our results in annuli.

  4. Quantal density functional theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Viraht

    2016-07-01

    This book is on quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The time-independent QDFT constitutes a special case. The 2{sup nd} edition describes the further development of the theory, and extends it to include the presence of an external magnetostatic field. The theory is based on the 'quantal Newtonian' second and first laws for the individual electron. These laws are in terms of 'classical' fields that pervade all space, and their quantal sources. The fields are separately representative of the electron correlations that must be accounted for in local potential theory. Recent developments show that irrespective of the type of external field the electrons are subject to, the only correlations beyond those due to the Pauli exclusion principle and Coulomb repulsion that need be considered are solely of the correlation-kinetic effects. Foundational to QDFT, the book describes Schroedinger theory from the new perspective of the single electron in terms of the 'quantal Newtonian' laws. Hohenberg-Kohn density functional theory (DFT), new understandings of the theory and its extension to the presence of an external uniform magnetostatic field are described. The physical interpretation via QDFT, in terms of electron correlations, of Kohn-Sham DFT, approximations to it and Slater theory are provided.

  5. Functional Equations and Fourier Analysis

    OpenAIRE

    2010-01-01

    By exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations -- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation, on compact groups.

  6. A nonlinear theory of generalized functions

    CERN Document Server

    1990-01-01

    This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...

  7. Theory of mind and neurocognitive functioning in schizophrenia

    Directory of Open Access Journals (Sweden)

    Rumyantseva E.E.

    2016-02-01

    Full Text Available The aim of this work was to study the problem of interrelation between theory of mind and neurocognitive functioning in schizophrenia. Tasks: analysis of the literature on the problem of interrelation of theory of mind and neurocognitive functioning in schizophrenia. Subject of research: interrelation of theory of mind and neurocognitive functioning. Research hypothesis: the state of the mental model correlated with neurocognitive functioning. Registered a decline in the functioning of theory of mind in schizophrenia. It is known that hypofrontality in schizophrenia determines the reduction of social perception. A number of authors allocate structures in the brain, providing mental models: regions of the medial prefrontal cortex and posttemporal areas, including the temporo parietal region. Some studies found relationship between the theory of mind and memory, executive functions. However, there are studies, which has not been found the interrelation between theory of mind and neurocognitive functioning. Nonetheless, some studies concluded that currently there is no consensus about the influence of neurocognitive functioning on the theory of mind in schizophrenia.

  8. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3.

    Science.gov (United States)

    Wang, Yun; Gould, Tim; Dobson, John F; Zhang, Haimin; Yang, Huagui; Yao, Xiangdong; Zhao, Huijun

    2014-01-28

    The organic-inorganic hybrid perovskite CH3NH3PbI3 is a novel light harvester, which can greatly improve the solar-conversion efficiency of dye-sensitized solar cells. In this article, a first-principle theoretical study is performed using local, semi-local and non-local exchange-correlation approximations to find a suitable method for this material. Our results, using the non-local optB86b + vdWDF functional, excellently agree with the experimental data. Thus, consideration of weak van der Waals interactions is demonstrated to be important for the accurate description of the properties of this type of organic-inorganic hybrid materials. Further analysis of the electronic properties reveals that I 5p electrons can be photo-excited to Pb 6p empty states. The main interaction between the organic cations and the inorganic framework is through the ionic bonding between CH3 and I ions. Furthermore, I atoms in the Pb-I framework are found to be chemically inequivalent because of their different chemical environments.

  9. Function theory for a beltrami algebra

    Directory of Open Access Journals (Sweden)

    B. A. Case

    1985-01-01

    Full Text Available Complex functions are investigated which are solutions of an elliptic system of partial differential equations associated with a real parameter function. The functions f associated with a particualr parameter function g on a domain D form a Beltrami algebra denoted by the pair (D,g and a function theory is developed in this algebra. A strong conformality property holds for all functions in a (D,g algebra. For g≡|z|=r the algebra (D,r is that of the analytic functions.

  10. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  11. A multiconfigurational hybrid density-functional theory

    DEFF Research Database (Denmark)

    Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard

    2012-01-01

    We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...

  12. A multiconfigurational hybrid density-functional theory

    DEFF Research Database (Denmark)

    Sharkas, Kamal; Savin, Andreas; Jensen, Hans Jørgen Aagaard

    2012-01-01

    We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension ...

  13. Multiconfiguration Pair-Density Functional Theory.

    Science.gov (United States)

    Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura

    2014-09-09

    We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.

  14. Generalized functions, volume 5 integral geometry and representation theory

    CERN Document Server

    Gel′fand, I M; Vilenkin, N Ya; Vilenkin, N Ya

    2016-01-01

    The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unif

  15. Generalized functions, volume 3 theory of differential equations

    CERN Document Server

    Gel′fand, I M

    2016-01-01

    The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. In Volum

  16. Transform analysis of generalized functions

    CERN Document Server

    Misra, O P

    1986-01-01

    Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will

  17. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  18. Noncovalent Interactions in Density-Functional Theory

    CERN Document Server

    DiLabio, Gino A

    2014-01-01

    Non-covalent interactions are essential in the description of soft matter, including materials of technological importance and biological molecules. In density-functional theory, common approaches fail to describe dispersion forces, an essential component in noncovalent binding interactions. In the last decade, great progress has been made in the development of accurate and computationally-efficient methods to describe noncovalently bound systems within the framework of density-functional theory. In this review, we give an account of the field from a chemical and didactic perspective, describing different approaches to the calculation of dispersion energies and comparing their accuracy, complexity, popularity, and general availability. This review should be useful to the newcomer who wants to learn more about noncovalent interactions and the different methods available at present to describe them using density-functional theory.

  19. Spin in Density-Functional Theory

    CERN Document Server

    Jacob, Christoph R; 10.1002/qua.24309

    2012-01-01

    The accurate description of open-shell molecules, in particular of transition metal complexes and clusters, is still an important challenge for quantum chemistry. While density-functional theory (DFT) is widely applied in this area, the sometimes severe limitations of its currently available approximate realizations often preclude its application as a predictive theory. Here, we review the foundations of DFT applied to open-shell systems, both within the nonrelativistic and the relativistic framework. In particular, we provide an in-depth discussion of the exact theory, with a focus on the role of the spin density and possibilities for targeting specific spin states. It turns out that different options exist for setting up Kohn-Sham DFT schemes for open-shell systems, which imply different definitions of the exchange-correlation energy functional and lead to different exact conditions on this functional. Finally, we suggest some possible directions for future developments.

  20. Le fonctionnalisme parmi quelques theories syntaxiques (Functionalism among Several Syntactic Theories)

    Science.gov (United States)

    Faita, Daniel

    1977-01-01

    A sketch of the development of functionalism in relation to other linguistic theories and a brief analysis of the present state of the research. Topics covered are: form versus function; the impasse between distributional and transformational grammar; and transformational grammar according to Harris. (Text is in French.) (AMH)

  1. Construction and analysis of cryptographic functions

    CERN Document Server

    Budaghyan, Lilya

    2015-01-01

    This book covers novel research on construction and analysis of optimal cryptographic functions such as almost perfect nonlinear (APN), almost bent (AB), planar and bent functions. These functions have optimal resistance to linear and/or differential attacks, which are the two most powerful attacks on symmetric cryptosystems. Besides cryptographic applications, these functions are significant in many branches of mathematics and information theory including coding theory, combinatorics, commutative algebra, finite geometry, sequence design and quantum information theory. The author analyzes equ

  2. Multicomponent density functional theory embedding formulation.

    Science.gov (United States)

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  3. Multicomponent density functional theory embedding formulation

    Science.gov (United States)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon

    2016-07-01

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF- molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  4. Epistasis analysis using information theory.

    Science.gov (United States)

    Moore, Jason H; Hu, Ting

    2015-01-01

    Here we introduce entropy-based measures derived from information theory for detecting and characterizing epistasis in genetic association studies. We provide a general overview of the methods and highlight some of the modifications that have greatly improved its power for genetic analysis. We end with a few published studies of complex human diseases that have used these measures.

  5. Automatic Functional Harmonic Analysis

    NARCIS (Netherlands)

    de Haas, W.B.; Magalhães, J.P.; Wiering, F.; Veltkamp, R.C.

    2013-01-01

    Music scholars have been studying tonal harmony intensively for centuries, yielding numerous theories and models. Unfortunately, a large number of these theories are formulated in a rather informal fashion and lack mathematical precision. In this article we present HarmTrace, a functional model of W

  6. Connection formula for thermal density functional theory

    CERN Document Server

    Pribram-Jones, Aurora

    2015-01-01

    The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upwards from the system's physical temperature to infinite temperatures. Several formulas yield one component of the thermal correlation free energy in terms of another, many of which can be expressed either in terms of temperature- or coupling-constant integration. We illustrate with the uniform electron gas.

  7. Mathematical theory of sedimentation analysis

    CERN Document Server

    Fujita, Hiroshi; Van Rysselberghe, P

    1962-01-01

    Mathematical Theory of Sedimentation Analysis presents the flow equations for the ultracentrifuge. This book is organized into two parts encompassing six chapters that evaluate the systems of reacting components, the differential equations for the ultracentrifuge, and the case of negligible diffusion. The first chapters consider the Archibald method for molecular weight determination; pressure-dependent sedimentation; expressions for the refractive index and its gradient; relation between refractive index and concentration; and the analysis of Gaussian distribution. Other chapters deal with th

  8. Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using Gaussian basis sets and isotopic substitution.

    Science.gov (United States)

    Daramola, Damilola A; Muthuvel, Madhivanan; Botte, Gerardine G

    2010-07-29

    Geometry and vibration properties for monoclinic zirconium oxide were studied using Gaussian basis sets and LDA, GGA, and B3LYP functionals. Bond angles, bond lengths, lattice parameters, and Raman frequencies were calculated and compared to experimental values. Bond angles and lengths were found to agree within experimental standard deviations. The B3LYP gave the best performance of all three functionals with a percent error of 1.35% for the lattice parameters while the average difference between experimental and calculated Raman frequency values was -3 cm(-1). The B3LYP functional was then used to assign the atomic vibrations causing each frequency mode using isotopic substitution of (93.40)Zr for (91.22)Zr and (18.00)O for (16.00)O. This resulted in seven modes assigned to the Zr atom, ten modes to the O atom, and one mode being a mixture of both.

  9. Invariant functionals in higher-spin theory

    Science.gov (United States)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  10. Field Analysis and Potential Theory

    Science.gov (United States)

    1985-06-01

    T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431

  11. Monte Carlo studies of matrix theory correlation functions.

    Science.gov (United States)

    Hanada, Masanori; Nishimura, Jun; Sekino, Yasuhiro; Yoneya, Tamiaki

    2010-04-16

    We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) gauge theory, which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity duality predicts power-law behaviors in the infrared region for the two-point correlation functions of operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge theory side by the Monte Carlo method. Clear power-law behaviors are observed at N=3, and the predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.

  12. The implicit function theorem history, theory, and applications

    CERN Document Server

    Krantz, Steven G

    2003-01-01

    The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...

  13. Bending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory

    Directory of Open Access Journals (Sweden)

    M. Mohammadimehr

    2013-12-01

    Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.

  14. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  15. Density-functional theory of thermoelectric phenomena.

    Science.gov (United States)

    Eich, F G; Di Ventra, M; Vignale, G

    2014-05-16

    We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.

  16. Dictionary criticism and lexicographical function theory

    DEFF Research Database (Denmark)

    Tarp, Sven

    2017-01-01

    This contribution discusses dictionary criticism in the light of the function theory. It starts analyzing the objective of dictionary criticism and lists eight of the most important purposes with which criticism has been made by supporters of the function theory. It then discusses the two main...... types of dictionary criticism, namely criticism of other authors’ dictionaries and self-criticism of one’s own dictionaries. Based on this discussion, it proceeds to a definition of the concept of dictionary criticism which is above all considered a theory-based activity, the outcome of which may...... be expressed in texts belonging to various genres or even kept indoors depending on the specific purpose of the criticism. Moreover, the contribution discusses the various types of knowledge required to make a comprehensive criticism, the issues which may be criticized, the overall method applied...

  17. Teaching Density Functional Theory Through Experiential Learning

    Science.gov (United States)

    Narasimhan, Shobhana

    2015-09-01

    Today, quantum mechanical density functional theory is often the method of choice for performing accurate calculations on atomic, molecular and condensed matter systems. Here, I share some of my experiences in teaching the necessary basics of solid state physics, as well as the theory and practice of density functional theory, in a number of workshops held in developing countries over the past two decades. I discuss the advantages of supplementing the usual mathematically formal teaching methods, characteristic of graduate courses, with the use of visual imagery and analogies. I also describe a successful experiment we carried out, which resulted in a joint publication co-authored by 67 lecturers and students participating in a summer school.

  18. Density functional theory studies of etoricoxib

    Science.gov (United States)

    Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.

    2016-05-01

    Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.

  19. Bosonic self-energy functional theory

    Science.gov (United States)

    Hügel, Dario; Werner, Philipp; Pollet, Lode; Strand, Hugo U. R.

    2016-11-01

    We derive the self-energy functional theory for bosonic lattice systems with broken U(1) symmetry by parametrizing the bosonic Baym-Kadanoff effective action in terms of one- and two-point self-energies. The formalism goes beyond other approximate methods such as the pseudoparticle variational cluster approximation, the cluster composite boson mapping, and the Bogoliubov+U theory. It simplifies to bosonic dynamical-mean-field theory when constraining to local fields, whereas when neglecting kinetic contributions of noncondensed bosons, it reduces to the static mean-field approximation. To benchmark the theory, we study the Bose-Hubbard model on the two- and three-dimensional cubic lattice, comparing with exact results from path integral quantum Monte Carlo. We also study the frustrated square lattice with next-nearest-neighbor hopping, which is beyond the reach of Monte Carlo simulations. A reference system comprising a single bosonic state, corresponding to three variational parameters, is sufficient to quantitatively describe phase boundaries and thermodynamical observables, while qualitatively capturing the spectral functions, as well as the enhancement of kinetic fluctuations in the frustrated case. On the basis of these findings, we propose self-energy functional theory as the omnibus framework for treating bosonic lattice models, in particular, in cases where path integral quantum Monte Carlo methods suffer from severe sign problems (e.g., in the presence of nontrivial gauge fields or frustration). Self-energy functional theory enables the construction of diagrammatically sound approximations that are quantitatively precise and controlled in the number of optimization parameters but nevertheless remain computable by modest means.

  20. The functional theory of counterfactual thinking

    NARCIS (Netherlands)

    Epstude, Kai; Roese, Neal J.

    2008-01-01

    Counterfactuals are thoughts about alternatives to past events, that is, thoughts of what might have been. This article provides an updated account of the functional theory of counterfactual thinking, suggesting that such thoughts are best explained in terms of their role in behavior regulation and

  1. On Theories of Superalgebras of Differentiable Functions

    NARCIS (Netherlands)

    Carchedi, D.J.; Roytenberg, D.

    2013-01-01

    This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be

  2. Some Functional Equations Originating from Number Theory

    Indian Academy of Sciences (India)

    Soon-Mo Jung; Jae-Hyeong Bae

    2003-05-01

    We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.

  3. On Theories of Superalgebras of Differentiable Functions

    NARCIS (Netherlands)

    Carchedi, D.J.; Roytenberg, D.

    2013-01-01

    This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be evaluat

  4. Density functional theory: Fixing Jacob's ladder

    Science.gov (United States)

    Car, Roberto

    2016-09-01

    Density functional theory calculations can be carried out with different levels of accuracy, forming a hierarchy that is often represented by the rungs of a ladder. Now a new method has been developed that significantly improves the accuracy of the 'third rung' when calculating the properties of diversely bonded systems.

  5. Density functional theory on phase space

    CERN Document Server

    Blanchard, Philippe; Várilly, Joseph C

    2010-01-01

    Forty-five years after the point de d\\'epart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the "divine" energy functional in terms of the electron density [2] still eludes us --and possibly will do so forever [3]. In what follows we examine a formulation in the same spirit with phase-space variables. The validity of Hohenberg-Kohn-Levy-type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase-space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation-exchange functionals on phase space. A new proof of the overbinding property of the Mueller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the T...

  6. Structural Analysis and Reactivity of Tetramethylcopper(III Complex towards Nitrogen Donor Ligands by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Perumal Balu

    2016-01-01

    Full Text Available DFT studies are carried out on some ligand substitution reactions of tetramethylcuprate(III (TMC complex with five different nitrogen donor ligands as probe ligands. The geometry optimization of the possible nine model systems and the frequency calculations are carried out at DFT level using LANL2DZ basis set. The selected structural parameters of optimized model systems of Cu(III complexes are reported and discussed. The change in the M-C bond distance in TMC due to substitution by probe ligands is explained. Natural population analysis (NPA has been carried out for these complexes to establish the charge of copper in these complexes. A detailed population analysis of valence orbitals of copper complexes supports the existence of d8 configuration for metal in complexes and there is evidence for the transmission of electrons from the nitrogen donor atom to dxy, dx2-y2, and 4s orbitals. Bond order calculations have been performed for all the complexes to probe the interaction between Cu(III and the ligand. The stability of the complexes is ascertained from the computed chemical hardness. In order to understand the nature of Cu(III-L (L = N donors and Cu(III-Me bonds in different complexes, Energy Decomposition Analysis (EDA has been carried out for all the complexes chosen in the theoretical study. Thermodynamic feasibility of these reactions is investigated in terms of free energy changes of these reactions.

  7. A Cp-theory problem book compactness in function spaces

    CERN Document Server

    Tkachuk, Vladimir V

    2015-01-01

    This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level.  The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained...

  8. Functional tolerance theory in incremental growth design

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; YANG Tao; ZE Xiangbo

    2007-01-01

    The evolutionary tolerance design strategy and its characteristics are studied on the basis of automation technology in the product structure design.To guarantee a successful transformation from the functional requirement to geometry constraints between parts,and finally to dimension constraints,a functional tolerance design theory in the process of product growth design is put forward.A mathematical model with a correlated sensitivity function between cost and the tolerance is created,in which the design cost,the manufacturing cost,the usage cost,and the depreciation cost of the product are regarded as control constraints of the tolerance allocation.Considering these costs,a multifactor-cost function to express quality loss of the product is applied into the model.In the mathematical model,the minimum cost is used as the objective function; a reasonable process capability index,the assembly function,and assembly quality are taken as the constraints; and depreciation cost in the objective function is expressed as the discount rate-terminology in economics.Thus,allocation of the dimension tolerance as the function and cost over the whole lifetime of the product is realized.Finally,a design example is used to demonstrate the successful application of the proposed functional tolerance theory in the incremental growth design of the product.

  9. Conformal field theory and functions of hypergeometric type

    Energy Technology Data Exchange (ETDEWEB)

    Isachenkov, Mikhail

    2016-03-15

    Conformal field theory provides a universal description of various phenomena in natural sciences. Its development, swift and successful, belongs to the major highlights of theoretical physics of the late XX century. In contrast, advances of the theory of hypergeometric functions always assumed a slower pace throughout the centuries of its existence. Functional identities studied by this mathematical discipline are fascinating both in their complexity and beauty. This thesis investigates the interrelation of two subjects through a direct analysis of three CFT problems: two-point functions of the 2d strange metal CFT, three-point functions of primaries of the non-rational Toda CFT and kinematical parts of Mellin amplitudes for scalar four-point functions in general dimensions. We flash out various generalizations of hypergeometric functions as a natural mathematical language for two of these problems. Several new methods inspired by extensions of classical results on hypergeometric functions, are presented.

  10. Hydrodynamic transport functions from quantum kinetic theory

    CERN Document Server

    Calzetta, E A; Ramsey, S

    2000-01-01

    Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with $\\lambda \\Phi ^{4}$ self-interaction we need to include 4 loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success...

  11. Thermodynamic Green functions in theory of superconductivity

    Directory of Open Access Journals (Sweden)

    N.M.Plakida

    2006-01-01

    Full Text Available A general theory of superconductivity is formulated within the thermodynamic Green function method for various types of pairing mediated by phonons, spin fluctuations, and strong Coulomb correlations in the Hubbard and t-J models. A rigorous Dyson equation for matrix Green functions is derived in terms of a self-energy as a many-particle Green function. By applying the noncrossing approximation for the self-energy, a closed self-consistent system of equations is obtained, similar to the conventional Eliashberg equations. A brief discussion of superconductivity mediated by kinematic interaction with an estimation of a superconducting transition temperature in the Hubbard model is given.

  12. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    Science.gov (United States)

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  13. Delimiting the boron influence on the adsorptive properties of water and rad OH radicals on H-terminated Boron Doped Diamond catalysts: A Density Functional Theory analysis

    Science.gov (United States)

    Jaimes, Raciel; Vazquez-Arenas, Jorge; González, Ignacio; Galván, Marcelo

    2016-11-01

    Motivated for the success of Boron Doped Diamond (BDD) in electrocatalysis, where water and hydroxyl radical interactions play an overriding role on surface reactivity, this study presents a Density Functional Theory (DFT) analysis intended to correlate its structure and reactivity. H-terminated periodic surfaces (supercells 5 × 5) with atomic composition of one boron per 150 C atoms are used for these purposes, and where B position was varied in different layers. Analyses of total density of states (TDOS), localization of occupied and unoccupied states near the Fermi level and adsorption energies show that the effect of B doping on surface reactivity decreases as a function of its vertical distance from the BDD surface, and it is restricted to the first three surface layers. The adsorption free energy calculated for a water molecule corroborates the hydrophobic nature of these surfaces, becoming more repulsive as B is located within the first three surface layers. In contrast, the free energy computed for hydroxyl radical is always exergonic. Hydrogen abstraction by hydroxyl radical is an energy-enabled process for all surface hydrogens, regardless if they are bonded to C or B atoms, becoming more energetic when hydrogen is directly bonded to B or its nearest neighbor carbon, while other abstractions present very similar adsorption energies than in the absence of boron.

  14. COGNITIVE FUNCTIONS AS A GENERALIZATION OF THE CLASSICAL CONCEPT OF FUNCTIONAL DEPENDENCE ON THE BASIS OF INFORMATION THEORY IN ASC-ANALYSIS AND SYSTEM FUZZY INTERVAL MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2014-01-01

    Full Text Available This article briefly reviews the classical concept of functional dependence in mathematics, determines the limitations of this concept for adequate modeling of reality and formulates the problem, consisting in search of such generalization of the concept of func-tions, which is more suitable for the adequate reflec-tion of causal relationships in the real domain. Also, it discusses theoretical and practical solving the prob-lem, consisting in: (a we suggest the universal method of calculating the amount of information in the value of argument about the meaning of the function, i.e. cognitive functions which is independent from the subject area; b we offer software tools: Eidos intelli-gent system, allowing in practice to carry out these calculations, i.e. to build cognitive functions based on a fragmented noisy empirical data of high dimension. We also offer the concepts of nonreducing, partially and completely reduced direct and inverse, positive and negative cognitive functions and the method of formation of reduced cognitive function, which is a generalization of known weighted least-squares meth-od on the basis of observation the amount of infor-mation in the values of the argument about the values of the functions accounting

  15. General degeneracy in density functional perturbation theory

    Science.gov (United States)

    Palenik, Mark C.; Dunlap, Brett I.

    2017-07-01

    Degenerate perturbation theory from quantum mechanics is inadequate in density functional theory (DFT) because of nonlinearity in the Kohn-Sham potential. Herein, we develop the fully general perturbation theory for open-shell, degenerate systems in Kohn-Sham DFT, without assuming the presence of symmetry or equal occupation of degenerate orbitals. To demonstrate the resulting methodology, we apply it to the iron atom in the central field approximation, perturbed by an electric quadrupole. This system was chosen because it displays both symmetry required degeneracy, between the five 3 d orbitals, as well as accidental degeneracy, between the 3 d and 4 s orbitals. The quadrupole potential couples the degenerate 3 d and 4 s states, serving as an example of the most general perturbation.

  16. Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-dl-phenylalanine by density functional theory.

    Science.gov (United States)

    Govindarasu, K; Kavitha, E

    2014-12-10

    The Fourier transform infrared (4000-400cm(-1)) and Fourier transform Raman (3500-50cm(-1)) spectra of 4-Chloro-dl-phenylalanine (4CLPA) were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory (DFT) method using B3LYP/6-31G(d,p) as basis set. The observed vibrational wavenumbers were compared with the calculated results. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Predicted electronic absorption spectra from TD-DFT calculation have been analyzed comparing with the UV-Vis (200-800nm) spectrum. The effects of chlorine and ethylene group substituent in benzene ring in the vibrational wavenumbers have been analyzed. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4CLPA were calculated. The Chemical reactivity and chemical potential of 4CLPA is calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbital (FMO) analysis were investigated using theoretical calculations. Published by Elsevier B.V.

  17. Molecular structure, vibrational spectra, NBO, UV and first order hyperpolarizability, analysis of 4-Chloro-DL-phenylalanine by density functional theory

    Science.gov (United States)

    Govindarasu, K.; Kavitha, E.

    2014-12-01

    The Fourier transform infrared (4000-400 cm-1) and Fourier transform Raman (3500-50 cm-1) spectra of 4-Chloro-DL-phenylalanine (4CLPA) were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of density functional theory (DFT) method using B3LYP/6-31G(d,p) as basis set. The observed vibrational wavenumbers were compared with the calculated results. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. Predicted electronic absorption spectra from TD-DFT calculation have been analyzed comparing with the UV-Vis (200-800 nm) spectrum. The effects of chlorine and ethylene group substituent in benzene ring in the vibrational wavenumbers have been analyzed. The HOMO-LUMO energy gap explains the charge interaction taking place within the molecule. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4CLPA were calculated. The Chemical reactivity and chemical potential of 4CLPA is calculated. In addition, molecular electrostatic potential (MEP), frontier molecular orbital (FMO) analysis were investigated using theoretical calculations.

  18. Adiabatic density-functional perturbation theory

    Science.gov (United States)

    Gonze, Xavier

    1995-08-01

    The treatment of adiabatic perturbations within density-functional theory is examined, at arbitrary order of the perturbation expansion. Due to the extremal property of the energy functional, standard variation-perturbation theorems can be used. The different methods (Sternheimer equation, extremal principle, Green's function, and sum over state) for obtaining the perturbation expansion of the wave functions are presented. The invariance of the Hilbert space of occupied wave functions with respect to a unitary transformation leads to the definition of a ``parallel-transport-gauge'' and a ``diagonal-gauge'' perturbation expansion. Then, the general expressions are specialized for the second, third, and fourth derivative of the energy, with an example of application of the method up to third order.

  19. Density functional theory a practical introduction

    CERN Document Server

    Sholl, David

    2009-01-01

    Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to studen...

  20. Behavior of a functional in learning theory

    Institute of Scientific and Technical Information of China (English)

    SUN Hongwei

    2007-01-01

    Let H be a Hilbert space, A ∈ L(H), y ∈ R(A), and y R(A). We study the behavior of the distance square between y and A(BT), defined as a functional F(T), as the radius T of the ball BT of H tends to ∞. This problem is important in estimating the approximation error in learning theory. Our main result is to estimate the asymptotic behavior of F(T) without the compactness assumption on the operator A. We also consider the Peetre K-functional and its convergence rates.

  1. Integer Discontinuity of Density Functional Theory

    CERN Document Server

    Mosquera, Martin A

    2014-01-01

    Density functional approximations to the exchange-correlation energy of Kohn-Sham theory, such as the local density approximation and generalized gradient approximations, lack the well-known integer discontinuity, a feature that is critical to describe molecular dissociation correctly. Moreover, standard approximations to the exchange-correlation energy also fail to yield the correct linear dependence of the ground-state energy on the number of electrons when this is a non-integer number obtained from the grand canonical ensemble statistics. We present a formal framework to restore the integer discontinuity of any density functional approximation. Our formalism derives from a formula for the exact energy functional and a new constrained search functional that recovers the linear dependence of the energy on the number of electrons.

  2. A multiconfigurational hybrid density-functional theory

    CERN Document Server

    Sharkas, Kamal; Jensen, Hans Jørgen Aa; Toulouse, Julien; 10.1063/1.4733672

    2012-01-01

    We propose a multiconfigurational hybrid density-functional theory which rigorously combines a multiconfiguration self-consistent-field calculation with a density-functional approximation based on a linear decomposition of the electron-electron interaction. This gives a straightforward extension of the usual hybrid approximations by essentially adding a fraction \\lambda of exact static correlation in addition to the fraction \\lambda of exact exchange. Test calculations on the cycloaddition reactions of ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) density functionals show that a good value of \\lambda is 0.25, as in the usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid approximations can improve over usual density-functional calculations for situations with strong static correlation effects.

  3. Scale Alpha and Beta of Quantitative Convergence and Chemical Reactivity Analysis in Dual Cholinesterase/Monoamine Oxidase Inhibitors for the Alzheimer Disease Treatment Using Density Functional Theory (DFT

    Directory of Open Access Journals (Sweden)

    Alejandro Morales-Bayuelo

    2013-01-01

    Full Text Available Molecular quantum similarity descriptors and Density Functional Theory (DFT based reactivity descriptors were studied for a series of cholinesterase/monoamine oxidase inhibitors used for the Alzheimer's disease treatment (AD. This theoretical study is expected to shed some light onto some molecular aspects that could contribute to the knowledge of the molecular mechanics behind interactions of these molecules with acetylcholinesterase (AChE and butyrylcholinesterase (BuChE, as well as with monoamine oxidase (MAO A and B. The Topogeometrical Superposition Algorithm to handle flexible molecules (TGSA-Flex alignment method was used to solve the problem of the relative orientation in the quantum similarity (QS field. Using the molecular quantum similarity (MQS field and reactivity descriptors supported in the DFT was possible the quantification of the steric and electrostatic effects through of the Coulomb and Overlap quantitative convergence scales (alpha and beta. In addition, an analysis of reactivity indexes is development, using global and local descriptors, identifying the binding sites and selectivity in the (cholinesterase/monoamine oxidase inhibitors, understanding the retrodonor process, and showing new insight for drugs design in a disease of difficult control as Alzheimer.

  4. Theory of mind and executive functions in schizophrenia and bipolar disorder: A cross-diagnostic latent class analysis for identification of neuropsychological subtypes.

    Science.gov (United States)

    Bora, Emre; Veznedaroğlu, Baybars; Vahip, Simavi

    2016-10-01

    Executive dysfunction is a common feature of schizophrenia and bipolar disorder (BP). While deficits in social cognitive abilities, including theory of mind (ToM), have been suggested to be specific to schizophrenia, available evidence suggests that there is also a significant overlap in social cognitive performances of both disorders. However, there is significant heterogeneity of executive dysfunction and ToM deficits in BP and schizophrenia. Cross-diagnostic data-driven methods can reveal potential neurocognitive subtypes characterized by relatively selective deficits in social cognition. Neurocognitive subgroups were investigated using latent class analysis, based on executive functions and ToM, in a mixed sample of 97 clinically stable patients with schizophrenia or BP and 27 healthy controls. Four neurocognitive subgroups, including a "neuropsychologically normal" cluster, a severe global impairment cluster and two clusters of mixed cognitive profiles were found. Severe impairment cluster was characterized by particularly severe ToM deficits and predominantly included patients with schizophrenia. Schizophrenia patients in this cluster had severe negative symptoms. In contrast, individuals with BP compared to schizophrenia patients were more likely to be included in the "neuropsychologically normal" cluster. Identification of distinctive neurobiological subtypes of patients based on social and non-social cognitive profiles can improve classification of major psychoses. Neurocognitive subgroupings of patients might be also beneficial for intervention strategies including cognitive rehabilitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spherical radial basis functions, theory and applications

    CERN Document Server

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  6. A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Shi-Chao Yi

    2017-01-01

    Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.

  7. Molecular Density Functional Theory of Water

    CERN Document Server

    Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel; 10.1021/jz301956b

    2013-01-01

    Three dimensional implementations of liquid state theories offer an efficient alternative to computer simulations for the atomic-level description of aqueous solutions in complex environments. In this context, we present a (classical) molecular density functional theory (MDFT) of water that is derived from first principles and is based on two classical density fields, a scalar one, the particle density, and a vectorial one, the multipolar polarization density. Its implementation requires as input the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric constants. It has to be complemented by a solute-solvent three-body term that reinforces tetrahedral order at short range. The approach is shown to provide the correct three-dimensional microscopic solvation profile around various molecular solutes, possibly possessing H-bonding sites, at a computer cost two-three orders of magnitude lower tha...

  8. Density Functional Theory An Advanced Course

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contain...

  9. Computing dispersion interactions in density functional theory

    Science.gov (United States)

    Cooper, V. R.; Kong, L.; Langreth, D. C.

    2010-02-01

    In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional - the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations.

  10. Covariant density functional theory for nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Badarch, U.

    2007-07-01

    The present thesis is organized as follows. In Chapter 2 we study the Nucleon-Nucleon (NN) interaction in Dirac-Brueckner (DB) approach. We start by considering the NN interaction in free-space in terms of the Bethe-Salpeter (BS) equation to the meson exchange potential model. Then we present the DB approach for nuclear matter by extending the BS equation for the in-medium NN interaction. From the solution of the three-dimensional in-medium BS equation, we derive the DB self-energies and total binding energy which are the main results of the DB approach, which we later incorporate in the field theoretical calculation of the nuclear equation of state. In Chapter 3, we introduce the basic concepts of density functional theory in the context of Quantum Hadrodynamics (QHD-I). We reach the main point of this work in Chapter 4 where we introduce the DDRH approach. In the DDRH theory, the medium dependence of the meson-nucleon vertices is expressed as functionals of the baryon field operators. Because of the complexities of the operator-valued functionals we decide to use the mean-field approximation. In Chapter 5, we contrast microscopic and phenomenological approaches to extracting density dependent meson-baryon vertices. Chapter 6 gives the results of our studies of the EOS of infinite nuclear matter in detail. Using formulas derived in Chapters 4 and 5 we calculate the properties of symmetric and asymmetric nuclear matter and pure neutron matter. (orig.)

  11. Rhetorical structure theory and text analysis

    Science.gov (United States)

    Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.

    1989-11-01

    Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.

  12. Functional and shape data analysis

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...

  13. Insight and progress in density functional theory

    Science.gov (United States)

    Yang, Weitao; Mori-Sanchez, Paula; Cohen, Aron J.

    2012-12-01

    Density functional theory of electronic structure is widely and successfully applied in simulations throughout engineering and sciences. However, there are spectacular failures for many predicted properties. The errors include underestimation of the barriers of chemical reactions, the band gaps of materials, the energies of dissociating molecular ions and charge transfer excitation energies. Typical DFT calculations also fail to describe degenerate or near degenerate systems, as arise in the breaking of chemical bonds, and strongly correlated materials. These errors can all be characterized and understood through the perspective of fractional charges and fractional spins introduced recently.

  14. Extended screened exchange functional derived from transcorrelated density functional theory

    Science.gov (United States)

    Umezawa, Naoto

    2017-09-01

    We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, HTC, is introduced by a similarity transformation of a many-body Hamiltonian, H , with respect to a complex function F: HTC=1/F H F . It is proved that an expectation value of HTC for a normalized single Slater determinant, Dn, corresponds to the total energy: E [n ] = ⟨Ψn|H |Ψn ⟩ /⟨Ψn|Ψn ⟩ = ⟨Dn|HTC|Dn ⟩ under the two assumptions: (1) The electron density n (r ) associated with a trial wave function Ψn = DnF is v -representable and (2) Ψn and Dn give rise to the same electron density n (r ). This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H- ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.

  15. Functional data analysis

    CERN Document Server

    Ramsay, J O

    1997-01-01

    Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researc...

  16. Pressure Correction in Density Functional Theory Calculations

    CERN Document Server

    Lee, S H

    2008-01-01

    First-principles calculations based on density functional theory have been widely used in studies of the structural, thermoelastic, rheological, and electronic properties of earth-forming materials. The exchange-correlation term, however, is implemented based on various approximations, and this is believed to be the main reason for discrepancies between experiments and theoretical predictions. In this work, by using periclase MgO as a prototype system we examine the discrepancies in pressure and Kohn-Sham energy that are due to the choice of the exchange-correlation functional. For instance, we choose local density approximation and generalized gradient approximation. We perform extensive first-principles calculations at various temperatures and volumes and find that the exchange-correlation-based discrepancies in Kohn-Sham energy and pressure should be independent of temperature. This implies that the physical quantities, such as the equation of states, heat capacity, and the Gr\\"{u}neisen parameter, estimat...

  17. Conformal invariants topics in geometric function theory

    CERN Document Server

    Ahlfors, Lars V

    2010-01-01

    Most conformal invariants can be described in terms of extremal properties. Conformal invariants and extremal problems are therefore intimately linked and form together the central theme of this classic book which is primarily intended for students with approximately a year's background in complex variable theory. The book emphasizes the geometric approach as well as classical and semi-classical results which Lars Ahlfors felt every student of complex analysis should know before embarking on independent research. At the time of the book's original appearance, much of this material had never ap

  18. Functional Analysis: Entering Hilbert Space

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    In the second edition, I have expanded the material on normed vector spaces and their operators presented in Chapter 1 to include proofs of the Open Map-ping Theorem, the Closed Graph Theorem and the Hahn-Banach The orem. The material on operators between normed vector spaces is further expanded...... of the new material on normed vector spaces and their operators, the book can hopefully serve as a general introduction to functional analysis viewed as a theory of infinite dimensional linear spaces and linear operators acting on them....... in a new chapter on Fredholm theory (Chapter 6). Fredholm theory originates in pioneering work of the Swedish mathematician Erik Ivar Fred-holm on integral equations, which inspired the study of a new class of bounded linear operators, known as Fredholm operators. Chapter 6 presents the basic elements...

  19. Reduced density-matrix functionals from many-particle theory

    Science.gov (United States)

    Schade, Robert; Kamil, Ebad; Blöchl, Peter

    2017-07-01

    In materials with strong electron correlation the proper treatment of local atomic physics described by orbital occupations is crucial. Reduced density-matrix functional theory is a natural extension of density functional theory for systems that are dominated by orbital physics. We review the current state of reduced density-matrix functional theory (RDMFT). For atomic structure relaxations or ab-initio molecular dynamics the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) possesses a number of disadvantages, like the cumbersome evaluation of forces. We therefore describe a method, DFT+RDMFT, that combines many-particle effects based on reduced density-matrix functional theory with a density functional-like framework. A recent development is the construction of density-matrix functionals directly from many-particle theory such as methods from quantum chemistry or many-particle Green's functions. We present the underlying exact theorems and describe current progress towards quantitative functionals.

  20. Excitation Spectra of Nucleobases with Multiconfigurational Density Functional Theory

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Jensen, Hans Jørgen Aa; Hedegård, Erik D.

    2016-01-01

    Range-separated hybrid methods between wave function theory and density functional theory (DFT) can provide high-accuracy results, while correcting some of the inherent flaws of both the underlying wave function theory and DFT. We here assess the accuracy for excitation energies of the nucleobases...

  1. Chemistry by Way of Density Functional Theory

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Partridge, Harry; Langohff, Stephen R.; Arnold, James O. (Technical Monitor)

    1996-01-01

    In this work we demonstrate that density functional theory (DFT) methods make an important contribution to understanding chemical systems and are an important additional method for the computational chemist. We report calibration calculations obtained with different functionals for the 55 G2 molecules to justify our selection of the B3LYP functional. We show that accurate geometries and vibrational frequencies obtained at the B3LYP level can be combined with traditional methods to simplify the calculation of accurate heats of formation. We illustrate the application of the B3LYP approach to a variety of chemical problems from the vibrational frequencies of polycyclic aromatic hydrocarbons to transition metal systems. We show that the B3LYP method typically performs better than the MP2 method at a significantly lower computational cost. Thus the B3LYP method allows us to extend our studies to much larger systems while maintaining a high degree of accuracy. We show that for transition metal systems, the B3LYP bond energies are typically of sufficient accuracy that they can be used to explain experimental trends and even differentiate between different experimental values. We show that for boron clusters the B3LYP energetics are not as good as for many of the other systems presented, but even in this case the B3LYP approach is able to help understand the experimental trends.

  2. The Interpolation Theory of Radial Basis Functions

    CERN Document Server

    Baxter, Brad

    2010-01-01

    In this dissertation, it is first shown that, when the radial basis function is a $p$-norm and $1 2$. Specifically, for every $p > 2$, we construct a set of different points in some $\\Rd$ for which the interpolation matrix is singular. The greater part of this work investigates the sensitivity of radial basis function interpolants to changes in the function values at the interpolation points. Our early results show that it is possible to recast the work of Ball, Narcowich and Ward in the language of distributional Fourier transforms in an elegant way. We then use this language to study the interpolation matrices generated by subsets of regular grids. In particular, we are able to extend the classical theory of Toeplitz operators to calculate sharp bounds on the spectra of such matrices. Applying our understanding of these spectra, we construct preconditioners for the conjugate gradient solution of the interpolation equations. Our main result is that the number of steps required to achieve solution of the lin...

  3. Paraxial Green's functions in Synchrotron Radiation theory

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M; Geloni, Gianluca; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail

    2005-01-01

    This work contains a systematic treatment of single particle Synchrotron Radiation and some application to realistic beams with given cross section area, divergence and energy spread. Standard theory relies on several approximations whose applicability limits and accuracy are often forgotten. We begin remarking that on the one hand, a paraxial approximation can always be applied without loss of generality and with ultra relativistic accuracy. On the other hand, dominance of the acceleration field over the velocity part in the Lienard-Wiechert expressions is not always granted and constitutes a separate assumption, whose applicability is discussed. Treating Synchrotron Radiation in paraxial approximation we derive the equation for the slow varying envelope function of the Fourier components of the electric field vector. Calculations of Synchrotron Radiation properties performed by others showed that the phase of the Fourier components of the electric field vector differs from the phase of a virtual point sourc...

  4. Phases of Polonium via Density Functional Theory

    Science.gov (United States)

    Verstraete, Matthieu J.

    2010-01-01

    The thermodynamical properties of the main phases of metallic polonium are examined using density functional theory. The exceptional nature of the solid-solid phase transition of α to β Po is underlined: it induces a lowering in symmetry, from cubic to rhombohedral, with increasing temperature. This is explained as the result of a delicate balance between bonding and entropic effects. Overall agreement with existing experimental data is good by state-of-the-art standards. The phonons of Po present Kohn anomalies, and it is shown that the effect of spin-orbit interactions is the inverse of that in normal metals: due to the nonspherical nature of the Fermi Surface, spin-orbit effects reduce nesting and harden most phonon frequencies.

  5. Physical Unclonable Functions in Theory and Practice

    CERN Document Server

    Böhm, Christoph

    2013-01-01

    In Physical Unclonable Functions in Theory and Practice, the authors present an in-depth overview of various topics concerning PUFs, providing theoretical background and application details. This book concentrates on the practical issues of PUF hardware design, focusing on dedicated microelectronic PUF circuits. Additionally, the authors discuss the whole process of circuit design, layout and chip verification. The book also offers coverage of: Different published approaches focusing on dedicated microelectronic PUF circuits Specification of PUF circuits and different error rate reducing pre-selection techniques General design issues and minimizing error rate from the circuit’s perspective Transistor modeling issues of Montecarlo mismatch simulation and solutions Examples of PUF circuits including an accurate description of the circuits and testing/measurement results  This monograph gives insight into PUFs in general and provides knowledge in the field of PUF circuit design and implementation. It coul...

  6. Algebras of holomorphic functions and control theory

    CERN Document Server

    Sasane, Amol

    2009-01-01

    This accessible, undergraduate-level text illustrates the role of algebras of holomorphic functions in the solution of an important engineering problem: the stabilization of a linear control system. Its concise and self-contained treatment avoids the use of higher mathematics and forms a bridge to more advanced treatments. The treatment consists of two components: the algebraic framework, which serves as the abstract language for posing and solving the problem of stabilization; and the analysis component, which examines properties of specific rings of holomorphic functions. Elementary, self-co

  7. Systemic Functional Theory: A Pickax of Textual Investigation

    Directory of Open Access Journals (Sweden)

    Taofeek Dalamu

    2017-03-01

    Full Text Available The study examines Systemic Functional Theory (SFT as a tool of examining text, and perhaps, text of any dimension as long as it falls within the grammatical organs of the clause. The author provides explanations for the theory from its relevant source(s. The chronological appreciation involves the efforts of Saussure, Firth, Malinowski, Hjelmslev, etc. However, Halliday’s insight seems prominent and upon which Systemic Functional Theory receives a global status that it has assumed today. Halliday constructs numerous concepts e.g. lexicogrammar, processes, cohesion, coherence, system, system network with background from traditional grammar and sociological tokens. In addition to that, the three metafunctions are characterized as its core operational concepts. Out of these, the mood system serves as the instrument of analysis of Psalm one utilized in this endeavor as a case study. Although the clauses fall within the profile of the indicative and imperative, the study reveals that some of the structures are inverted in order to propagate the intended messages. To that end, there are inverted indicative clauses expressed as inverted declarative statements, inverted imperative questions and inverted negativized polarity. In sum, Systemic Functional Theory is a facility for explaining different shapes of texts.

  8. Differentiable but exact formulation of density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Ekström, Ulf; Teale, Andrew M; Helgaker, Trygve

    2014-05-14

    The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density-in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg-Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ((ε)E, (ε)F) that converge to (E, F) pointwise everywhere as ε → 0(+), and such that (ε)F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau-Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy (ε)E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ((ε)E, (ε)F). The Moreau-Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of (ε)F, a rigorous formulation of Kohn-Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn-Sham theory.

  9. Differentiable but exact formulation of density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kvaal, Simen, E-mail: simen.kvaal@kjemi.uio.no; Ekström, Ulf; Helgaker, Trygve [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, Andrew M. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-05-14

    The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.

  10. Uncertainty Quantification and Propagation in Nuclear Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M

    2015-03-17

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

  11. Functional Object Analysis

    DEFF Research Database (Denmark)

    Raket, Lars Lau

    -effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high......-dimensional Euclidean spaces under the effect of additive spatially correlated effects, and then move on to consider how to include data alignment in the statistical model as a nonlinear effect under additive correlated noise. In both cases, we will give directions on how to generalize the methodology to more complex...

  12. Nonlinear analysis approximation theory, optimization and applications

    CERN Document Server

    2014-01-01

    Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

  13. Antenna theory analysis and design

    CERN Document Server

    Balanis, Constantine A

    2005-01-01

    The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of e

  14. Topics in nonlinear functional analysis

    CERN Document Server

    Nirenberg, Louis

    2001-01-01

    Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible br

  15. Density functional theory and multiscale materials modeling

    Indian Academy of Sciences (India)

    Swapan K Ghosh

    2003-01-01

    One of the vital ingredients in the theoretical tools useful in materials modeling at all the length scales of interest is the concept of density. In the microscopic length scale, it is the electron density that has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. In the intermediate mesoscopic length scale, an appropriate picture of the equilibrium and dynamical processes has been obtained through the single particle number density of the constituent atoms or molecules. A wide class of problems involving nanomaterials, interfacial science and soft condensed matter has been addressed using the density based theoretical formalism as well as atomistic simulation in this regime. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related density functions has been found to be quite appropriate. A unique single unified theoretical framework that emerges through the density concept at these diverse length scales and is applicable to both quantum and classical systems is the so called density functional theory (DFT) which essentially provides a vehicle to project the many-particle picture to a single particle one. Thus, the central equation for quantum DFT is a one-particle Schrödinger-like Kohn–Sham equation, while the same for classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential. Selected illustrative applications of quantum DFT to microscopic modeling of intermolecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are presented.

  16. Density functional theory in the solid state.

    Science.gov (United States)

    Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J

    2014-03-13

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

  17. Functional impulsivity and reinforcement sensitivity theory.

    Science.gov (United States)

    Smillie, Luke D; Jackson, Chris J

    2006-02-01

    In this article, we attempt to integrate Dickman's (1990) descriptive concept of Functional Impulsivity (FI) with Gray's (1970, 1991) Reinforcement Sensitivity Theory (RST). Specifically, we consider that FI bears great conceptual similarity to Gray's concept of reward-reactivity, which is thought to be caused by the combined effects of a Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS). In our first study, we examine the construct validity and structural correlates of FI. Results indicate that FI is related positively to measures of BAS and Extraversion, negatively to measures of BIS and Neuroticism, and is separate from Psychoticism and typical trait Impulsivity, which Dickman calls Dysfunctional Impulsivity (DI). In our second study, we use a go/no-go discrimination task to examine the relationship between FI and response bias under conditions of rewarding and punishing feedback. Results indicate that FI, along with two measures of BAS, predicted the development of a response bias for the rewarded alternative. In comparison, high DI appeared to reflect indifference toward either reward or punishment. We consider how these findings might reconcile the perspectives of Gray and Dickman and help clarify the broader understanding of Impulsivity.

  18. Combining Molecular Dynamics and Density Functional Theory

    Science.gov (United States)

    Kaxiras, Efthimios

    2015-03-01

    The time evolution of a system consisting of electrons and ions is often treated in the Born-Oppenheimer approximation, with electrons in their instantaneous ground state. This approach cannot capture many interesting processes that involved excitation of electrons and its effects on the coupled electron-ion dynamics. The time scale needed to accurately resolve the evolution of electron dynamics is atto-seconds. This poses a challenge to the simulation of important chemical processes that typically take place on time scales of pico-seconds and beyond, such as reactions at surfaces and charge transport in macromolecules. We will present a methodology based on time-dependent density functional theory for electrons, and classical (Ehrenfest) dynamics for the ions, that successfully captures such processes. We will give a review of key features of the method and several applications. These illustrate how the atomic and electronic structure evolution unravels the elementary steps that constitute a chemical reaction. In collaboration with: G. Kolesov, D. Vinichenko, G. Tritsaris, C.M. Friend, Departments of Physics and of Chemistry and Chemical Biology.

  19. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities.

    Science.gov (United States)

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2016-06-28

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.

  20. Aerobic oxidation of methanol to formic acid on Au8-: benchmark analysis based on completely renormalized coupled-cluster and density functional theory calculations.

    Science.gov (United States)

    Hansen, Jared A; Ehara, Masahiro; Piecuch, Piotr

    2013-10-10

    The left-eigenstate completely renormalized coupled-cluster (CC) method with singles, doubles, and noniterative triples [CR-CC(2,3)] and a few representative density functional theory (DFT) approaches have been applied to methanol oxidation to formic acid on a Au8(-) cluster, which is a model for aerobic oxidations on gold nanoparticles. It is demonstrated that CR-CC(2,3) supports the previous exothermic reaction mechanism, placing the initial rate-determining transition state, which corresponds to hydrogen transfer from the methoxy species to the molecular oxygen, at about 20 kcal/mol above the reactants, less than 40 kcal/mol above the O2 and CH3O(-) species coadsorbed on Au8(-), and considerably above the remaining two transition states along the reaction pathway. The DFT calculations using the previously exploited M06 hybrid functional show reasonable agreement with CR-CC(2,3), but B3LYP offers additional improvements in the description of the relevant activation energies. Pure functionals, including M06-L, BP86, and TPSS, do not work well, significantly underestimating the activation barriers, but dispersion corrections, as in B97-D, bring the results closer to the M06 accuracy level.

  1. Analysis on the German Functionalist Translation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Ying

    2013-01-01

    German functionalist approach makes considerable contributions to translation studies for considering translation as an fact of intercultural communication and concentrate on the purpose and function of the target text. It distinctively promoted translation theory against the traditional translation views. The paper analyzes its main ideas ,contribution and criticism of the Ger⁃man Functionalist Translation Theory.

  2. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.;

    2003-01-01

    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  3. Anharmonicity of multi-octupole-phonon excitations in $^{208}$Pb: analysis with multi-reference covariant density functional theory and subbarrier fusion of $^{16}$O+$^{208}$Pb

    CERN Document Server

    Yao, J M

    2016-01-01

    We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.

  4. Molecular structure, vibrational spectra and HOMO, LUMO analysis of yohimbine hydrochloride by density functional theory and ab initio Hartree-Fock calculations

    Science.gov (United States)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2011-11-01

    Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.

  5. Number Theory, Analysis and Geometry

    CERN Document Server

    Goldfeld, Dorian; Jones, Peter

    2012-01-01

    Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th

  6. Determination of plutonium temperature using the special trans functions theory

    Directory of Open Access Journals (Sweden)

    Perović Slavica M.

    2010-01-01

    Full Text Available The problem of estimating plutonium temperature by an iterative procedure based on the special trans functions theory has been studied in some detail. In theory, the differential linear plutonium temperature equation can be effectively reduced to a non-linear functional transcendental equation solvable by special trans functions theory. This approach is practically invariant under the starting plutonium temperature value. This is significant, because the said iterative special trans functions theory does not depend on the password data of the plutonium cargo. Obtained numerical results and graphical simulations confirm the applicability of such approach.

  7. Fundamental Neutron Physics: Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir [South Carolina Research Foundation, Columbia, SC (United States)

    2016-10-31

    The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity and time reversal invariance violating processes in neutron induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity and time reversal violating effects in the consistent way. A major emphasis of our research during the funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.

  8. Projection Theory and Its Application into Media Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    邵宏

    2008-01-01

    Projection is a kind of logical-semantic relation which refers to the phenomenon that the secondary clause is projected through the primary clause, which instates it as a locution or an idea. Halliday conducts the basic research on projection from the functional perspective. Then Martin and Zeng try to develop Halliday's projection theory, resulting in a comprehensive framework of projection. Finally the projection theory is applied into the analysis of a sample media discourse. And projection theory is of great help in its application into media discourse analysis.

  9. Bootstrapping conformal field theories with the extremal functional method.

    Science.gov (United States)

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  10. Group theory analysis of braided geometry structures

    Institute of Scientific and Technical Information of China (English)

    FENG Wei; MA Wensuo

    2005-01-01

    The braided geometry structures are analyzed with point groups and space groups for which the continuous yarn of the braided preforms is segmented and expressed in some special symbols. All structures of braided material are described and classified with group theory, and new braiding methods are found. The group theory analysis lays the theoretical foundation for optimizing material performance.

  11. A comparative analysis of in-medium spectral functions for $N(940)$ and $N^*(1535)$ in real-time thermal field theory

    CERN Document Server

    Ghosh, Sabyasachi

    2015-01-01

    In the real-time thermal field theory, the nucleon self-energy at finite temperature and density is evaluated where an extensive set of pion-baryon ($\\pi B$) loops are considered. On the other side the in-medium self-energy of $N^*(1535)$ for $\\pi N$ and $\\eta N$ loops is also determined in the same framework. The detail branch cut structures for these different $\\pi B$ loops for nucleon $N(940)$ and $\\pi N$, $\\eta N$ loops for $N^*(1535)$ are addressed. Using the total self-energy of $N(940)$ and $N^*(1535)$, which contain the contributions of their corresponding loop diagrams, the complete structures of their in-medium spectral functions have been obtained. The Landau and unitary cut contributions provide two separate peak structures in the nucleon spectral function while $N^*(1535)$ has single peak structure in its unitary cuts. At high temperature, the peak structures of both at their individual poles are attenuated while at high density Landau peak structure of nucleon is completely suppressed and its un...

  12. Unraveling the adsorption mechanism of aromatic and aliphatic diols on the TiO2 surface: a density functional theory analysis.

    Science.gov (United States)

    Giorgi, Giacomo; Fujisawa, Jun-ichi; Segawa, Hiroshi; Yamashita, Koichi

    2013-06-28

    Understanding the adsorption mechanism of organic molecules on inorganic semiconductors is of great importance for generating and control functions in organic-inorganic materials. Here we have comprehensively investigated, by means of the density functional theory, the adsorption structure and energetic stability of aliphatic and aromatic diols on TiO2 using ethylene glycol, 1,2-n-decanediol, and catechol. Our calculations clearly show that the non-dissociative bidentate adsorption is more stable than the dissociative one for the aliphatic diol, both at low and high coverage conditions, result far differently from many other chemical anchor cases for which the dissociative mechanism usually prevails. On the other hand, for catechol the dissociative bidentate is the most stable at low coverage conditions, whereas, surprisingly, increasing the coverage with catechol makes the non-dissociative mechanism the most stable one, revealing possible coexistence of a dissociative and non-dissociative anchoring at high coverage. This work unraveled a variety of adsorption fashions of the diol compounds in conjunction with the impact of the coverage effect, highly dependent on the nature of the lateral chain of the anchor group.

  13. Elements of the theory of functions

    CERN Document Server

    Knopp, Konrad

    2016-01-01

    Well-known book provides a clear, concise review of complex numbers and their geometric representation; linear functions and circular transformations; sets, sequences, and power series; analytic functions and conformal mapping; and elementary functions. 1952 edition.

  14. On the Nominalization from the Functional Grammar Theory Perspective

    Institute of Scientific and Technical Information of China (English)

    管梦迪

    2014-01-01

    this paper intends to explore the phenomena of nominalization from the perspective of Functional Grammar Theory. With the brief interpretation of the nominalization functioning in the text, it is hoped to make a bet er understanding about the nominalization.

  15. Fixed point theory, variational analysis, and optimization

    CERN Document Server

    Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan

    2015-01-01

    ""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China

  16. Ad Translation from the Perspective of Functional Theory

    Institute of Scientific and Technical Information of China (English)

    张海强

    2015-01-01

    Advertising translation,as a tool of promoting sales,plays an increasingly important part in the international arena.The objective of advertising translation is to persuade customers to make purchase or buy services.Therefore,functional theory is put forward to analyze advertising translation.Advertising translation is explored from the perspective of functional theory by reviewing Vermeer’s Skopos theory.Successful translation strategies such as structure-borrowing translation,Creative Translation and zero-translation are discussed through specific examples.It proves that advertising translation can be guided by functional theory.

  17. Ad Translation from the Perspective of Functional Theory

    Institute of Scientific and Technical Information of China (English)

    张海强

    2015-01-01

    Advertising translation,as a tool of promoting sales,plays an increasingly important part in the international arena.The objective of advertising translation is to persuade customers to make purchase or buy services.Therefore,functional theory is put forward to analyze advertising translation. Advertising translation is explored from the perspective of functional theory by reviewing Vermeer’s Skopos theory. Successful translation strategies such as structure-borrowing translation,Creative Translation and zero-translation are discussed through specific examples.It proves that advertising translation can be guided by functional theory.

  18. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  19. Introduction to Classical Density Functional Theory by a Computational Experiment

    Science.gov (United States)

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…

  20. Superconformal indices and partition functions for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, I.B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Vartanov, G.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-12-15

    Recently there was a substantial progress in understanding of supersymmetric theories (in particular, their BPS spectrum) in space-times of different dimensions due to the exact computation of superconformal indices and partition functions using localization method. Here we discuss a connection of 4d superconformal indices and 3d partition functions using a particular example of supersymmetric theories with matter in antisymmetric representation.

  1. The corona problem connections between operator theory, function theory, and geometry

    CERN Document Server

    Krantz, Steven; Sawyer, Eric; Treil, Sergei; Wick, Brett

    2014-01-01

    The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within. The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed. There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematicians—...

  2. Analysis and identification of time-invariant systems, time-varying systems, and multi-delay systems using orthogonal hybrid functions theory and algorithms with Matlab

    CERN Document Server

    Deb, Anish; Sarkar, Gautam

    2016-01-01

    This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.

  3. Synthesis, crystal structure analysis, molecular docking studies and density functional theory predictions of the local reactive properties and degradation properties of a novel halochalcone

    Science.gov (United States)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.

    2017-09-01

    In the present study, single crystals of E)-3-(3,5-dichlorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one, were prepared and structurally characterized by single crystal X-ray diffraction analysis. The molecular structure crystallized in monoclinic crystal system with P21/c space group. Sensitivity of the title molecule towards electrophilic attacks has been examined by calculations of average localized ionization energies (ALIE) and their mapping to electron density surface. Further determination of atoms that could be important reactive centres has been performed by calculations of Fukui functions. Sensitivity of title molecule towards autoxidation and hydrolysis mechanisms has been assessed by calculations of bond dissociation energies and radial distribution functions (RDF), respectively. Also, in order to explore possible binding mode of the title compound towards Dihydrofolate reductase enzyme, we have utilized in silico molecular docking to explore possible binding modes of the title compound with the DHFR enzyme.

  4. Solvation of complex surfaces via molecular density functional theory

    CERN Document Server

    Levesque, Maximilien; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-01-01

    We show that classical molecular density functional theory (MDFT), here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular CLAYFF force field. Solvent energetics and structure are found to depend weakly upon ...

  5. Density Functional Theory Studies of Magnetically Confined Fermi Gas

    Institute of Scientific and Technical Information of China (English)

    陈宇俊; 马红孺

    2001-01-01

    A theory is developed for magnetically confined Fermi gas at a low temperature based on the density functional theory. The theory is illustrated by the numerical calculation of the density distributions of Fermi atoms 40K with parameters according to DeMarco and Jin's experiment [Science, 285(1999)1703]. Our results are in close agreement with the experiment. To check the theory, we also performed calculations using our theory at a high temperature, which compared very well to the results of the classical limit.

  6. Study of Magnesium Diboride Clusters Using Hybrid Density Functional Theory

    Directory of Open Access Journals (Sweden)

    D. Rodríguez

    2007-12-01

    Full Text Available Using hybrid density functional theory and a relatively large basis set, the lowest energy equilibrium structure, vibrational spectrum, and natural orbital analysis were obtained for magnesium diboride clusters [(MgB2x for x=1,2, and 3]. For comparison, boron clusters [Bx for x=2,4, and 6] were also considered. The MgB2 and (MgB22 showed equilibrium structures with the boron atoms in arrangements similar to what was obtained for pure boron atoms, whereas, for (MgB23 a different arrangement of boron was obtained. From the population analysis, large electron density in the boron atoms forming the clusters was observed.

  7. Theory-Based Lexicographical Methods in a Functional Perspective

    DEFF Research Database (Denmark)

    Tarp, Sven

    2014-01-01

    This contribution provides an overview of some of the methods used in relation to the function theory. It starts with a definition of the concept of method and the relation existing between theory and method. It establishes an initial distinction between artisanal and theory-based methods...... of various methods used in the different sub-phases of the overall dictionary compilation process, from the making of the concept to the preparation for publication on the chosen media, with focus on the Internet. Finally, it briefly discusses some of the methods used to create and test the function theory...

  8. Differentiable but exact formulation of density-functional theory

    CERN Document Server

    Kvaal, Simen; Teale, Andrew M; Helgaker, Trygve

    2013-01-01

    The universal density functional $F$ of density-functional theory is a complicated and ill-behaved function of the density--in particular, $F$ is not differentiable, making many formal manipulations more complicated. Whilst $F$ has been well characterized in terms of convex analysis as forming a conjugate pair $(F,E)$ with the ground-state energy $E$ via the Hohenberg-Kohn and Lieb variation principles, $F$ is only subdifferentiable on a small (but dense) set of its domain. In this article, we apply a tool from convex analysis, Moreau-Yosida regularization, to construct, for any $\\epsilon>0$, pairs of conjugate functionals $({}^\\epsilon\\!E,{}^\\epsilon\\! F)$ that converge to $(E,F)$ pointwise everywhere as $\\epsilon\\rightarrow 0^+$, and such that ${}^\\epsilon\\!F$ is (Fr\\'echet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box, which does not change the physics. It is noteworthy that no information is lost in the Moreau-Yosida regularization...

  9. Seiberg Duality, Quiver Gauge Theories, and Ihara Zeta Function

    CERN Document Server

    Zhou, Da; He, Yang-Hui

    2015-01-01

    We study Ihara zeta function for graphs in the context of quivers arising from gauge theories, especially under Seiberg duality transformations. The distribution of poles is studied as we proceed along the duality tree, in light of the weak and strong graph versions of the Riemann Hypothesis. As a by-product, we find a refined version of Ihara zeta function to be the generating function for the generic superpotential of the gauge theory.

  10. Universality principle and the development of classical density functional theory

    Institute of Scientific and Technical Information of China (English)

    周世琦; 张晓琪

    2002-01-01

    The universality principle of the free energy density functional and the ‘test particle' trick by Percus are combined to construct the approximate free energy density functional or its functional derivative. Information about the bulk fluid ralial distribution function is integrated into the density functional approximation directly for the first time in the present methodology. The physical foundation of the present methodology also applies to the quantum density functional theory.

  11. Inductive effect of methyl group in a series of methylated indoles: A graph theoretical analysis in the light of density functional theory and correlation with experimental charge transfer transition energies

    Indian Academy of Sciences (India)

    Amit S Tiwary; Asok K Mukherjee

    2013-07-01

    The inductive effect of methyl group has been quantified by expressing highest occupied molecular orbital (HOMO) and HOMO-1 energies of indole and a series of methylated indoles using a combination of graph theory (GT) and the Coulson-Longuett-Higgins perturbation method. By correlating these expressions with the corresponding Kohn-Sham orbital energies of the indoles obtained by density functional theory (DFT) calculation at the B3LYP/6-31++G(d,p) and M06-2X/6-31++G(d,p) levels of theory, the inductive effect parameter ℎ has been estimated; the Coulomb integral of -conjugated carbon atom also comes out from the analysis. A correlation of the GT results with the HOMO and HOMO-1 energies obtained by the HF/STO-3G method yield almost the same values of ℎ and . Finally, when these estimated ℎ and are used to calculate the vertical ionization potentials of the methylated indoles in the series, an excellent correlation with experimental charge transfer transition energies of their molecular complexes with tetracyanoethylene is obtained which complies with Mulliken’s theory of charge transfer.

  12. Identification of novel histone deacetylase 1 inhibitors by combined pharmacophore modeling, 3D-QSAR analysis, in silico screening and Density Functional Theory (DFT) approaches

    Science.gov (United States)

    Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan

    2016-12-01

    Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.

  13. Trigonometric sums in number theory and analysis

    CERN Document Server

    Karatsuba, Anatoly A; Chubarikov, Vladimir N; Shishkova, Maria

    2004-01-01

    The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I. M. Vinogradov´s estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and in addition they present purely arithmetic results concerning the solvability of equations in integers.

  14. Modified interfacial statistical associating fluid theory: a perturbation density functional theory for inhomogeneous complex fluids.

    Science.gov (United States)

    Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G

    2007-12-28

    A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.

  15. Introduction to Classical Density Functional Theory by Computational Experiment

    CERN Document Server

    Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-01-01

    We present here an introductory practical course to classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely largely on nonintuitive abstract concepts and applied mathematics. They are nevertheless a powerful tool and an active field of research in physics and chemistry that led to the 1998 Nobel prize in chemistry. We here illustrate the DFT in its most mathematically simple and yet physically relevant form: the classical density functional theory of an ideal fluid in an external field, as applied to the prediction of the structure of liquid neon at the molecular scale. This introductory course is built around the production of a cDFT code written by students using the Mathematica language. In this way, they are brought to deal with (i) the cDFT theory itself, (ii) some basic concepts around the statistical mechanics of simple fluids, (iii) the underlying mathematical and numerical problem of functional minimization, and (iv) a functional programming languag...

  16. Density functional theory for polymeric systems in 2D.

    Science.gov (United States)

    Słyk, Edyta; Roth, Roland; Bryk, Paweł

    2016-06-22

    We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.

  17. Perspective: Fundamental aspects of time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2016-06-01

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  18. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  19. Exact partition functions for gauge theories on Rλ3

    Science.gov (United States)

    Wallet, Jean-Christophe

    2016-11-01

    The noncommutative space R,SUB>λ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of R&x03bb;3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  20. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    Science.gov (United States)

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the

  1. A molecular density functional theory to study solvation in water

    CERN Document Server

    Jeanmairet, Guillaume

    2014-01-01

    A classical density functional theory is applied to study solvation of solutes in water. An approx- imate form of the excess functional is proposed for water. This functional requires the knowledge of pure solvent direct correlation functions. Those functions can be computed by using molecular simulations such as molecular dynamic or Monte Carlo. It is also possible to use functions that have been determined experimentally. The functional minimization gives access to the solvation free energy and to the equilibrium solvent density. Some correction to the functional are also proposed to get the proper tetrahedral order of solvent molecules around a charged solute and to reproduce the correct long range hydrophobic behavior of big apolar solutes. To proceed the numerical minimization of the functional, the theory has been discretized on two tridimensional grids, one for the space coordinates, the other for the angular coordinates, in a functional minimization code written in modern Fortran, mdft. This program i...

  2. Density functional theory predictions of isotropic hyperfine coupling constants.

    Science.gov (United States)

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  3. Adult neurogenesis: integrating theories and separating functions

    OpenAIRE

    2010-01-01

    The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus network: immature adult-born neurons appear to function as pattern integrators of temporally adjacent events, thereby enhancing pattern s...

  4. Universality of the Distribution Functions of Random Matrix Theory. II

    OpenAIRE

    Tracy, Craig A.; Widom, Harold

    1999-01-01

    This paper is a brief review of recent developments in random matrix theory. Two aspects are emphasized: the underlying role of integrable systems and the occurrence of the distribution functions of random matrix theory in diverse areas of mathematics and physics.

  5. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou

  6. Two-loop beta functions for supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Jack, I. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1984-11-15

    The two-loop ..beta.. functions in the dimensional regularisation framework for a general gauge theory coupled to scalar and spinor fields are presented and by means of a finite transformation of the couplings are converted into a form which vanishes for special cases corresponding to supersymmetric gauge theories.

  7. beta-functions in higher dimensional field theories

    CERN Document Server

    Gracey, J A

    2016-01-01

    We review recent activity in the construction of the renormalization group functions for O(N) scalar and gauge theories in six and higher dimensions. The theories lie in their respective universality classes at the Wilson-Fisher fixed point. The critical exponents at this fixed point in the various dimensions are all in agreement with the known exponents determined in the large Nexpansion.

  8. Electron paramagnetic resonance and Mössbauer spectroscopy and density functional theory analysis of a high-spin Fe(IV)-oxo complex.

    Science.gov (United States)

    Gupta, Rupal; Lacy, David C; Bominaar, Emile L; Borovik, A S; Hendrich, Michael P

    2012-06-13

    High-spin Fe(IV)-oxo species are known to be kinetically competent oxidants in non-heme iron enzymes. The properties of these oxidants are not as well understood as the corresponding intermediate-spin oxidants of heme complexes. The present work gives a detailed characterization of the structurally similar complexes [Fe(IV)H(3)buea(O)](-), [Fe(III)H(3)buea(O)](2-), and [Fe(III)H(3)buea(OH)](-) (H(3)buea = tris[(N'-tert-butylureaylato)-N-ethylene]aminato) using Mössbauer and dual-frequency/dual-mode electron paramagnetic resonance (EPR) spectroscopies. The [Fe(IV)H(3)buea(O)](-) complex has a high-spin (S = 2) configuration imposed by the C(3)-symmetric ligand. The EPR spectra of the [Fe(IV)H(3)buea(O)](-) complex presented here represent the first documented examples of an EPR signal from an Fe(IV)-oxo complex, demonstrating the ability to detect and quantify Fe(IV) species with EPR spectroscopy. Quantitative simulations allowed the determination of the zero-field parameter, D = +4.7 cm(-1), and the species concentration. Density functional theory (DFT) calculations of the zero-field parameter were found to be in agreement with the experimental value and indicated that the major contribution to the D value is from spin-orbit coupling of the ground state with an excited S = 1 electronic configuration at 1.2 eV. (17)O isotope enrichment experiments allowed the determination of the hyperfine constants ((17)O)A(z) = 10 MHz for [Fe(IV)H(3)buea(O)](-) and ((17)O)A(y) = 8 MHz, ((17)O)A(z) = 12 MHz for [Fe(III)H(3)buea(OH)](-). The isotropic hyperfine constant (((17)O)A(iso) = -16.8 MHz) was derived from the experimental value to allow a quantitative determination of the spin polarization (ρ(p) = 0.56) of the oxo p orbitals of the Fe-oxo bond in [Fe(IV)H(3)buea(O)](-). This is the first experimental determination for non-heme complexes and indicates significant covalency in the Fe-oxo bond. High-field Mössbauer spectroscopy gave an (57)Fe A(dip) tensor of (+5.6, +5

  9. Reliability analysis of the Chinese version of the Functional Assessment of Cancer Therapy - Leukemia (FACT-Leu) scale based on multivariate generalizability theory.

    Science.gov (United States)

    Meng, Qiong; Yang, Zheng; Wu, Yang; Xiao, Yuanyuan; Gu, Xuezhong; Zhang, Meixia; Wan, Chonghua; Li, Xiaosong

    2017-05-04

    The Functional Assessment of Cancer Therapy-Leukemia (FACT-Leu) scale, a leukemia-specific instrument for determining the health-related quality of life (HRQOL) in patients with leukemia, had been developed and validated, but there have been no reports on the development of a simplified Chinese version of this scale. This is a new exploration to analyze the reliability of the HRQOL measurement using multivariate generalizability theory (MGT). This study aimed to develop a Chinese version of the FACT-Leu scale and evaluate its reliability using MGT to provide evidence to support the revision and improvement of this scale. The Chinese version of the FACT-Leu scale was developed by four steps: forward translation, backward translation, cultural adaptation and pilot-testing. The HRQOL was measured for eligible inpatients with leukemia using this scale to provide data. A single-facet multivariate Generalizability Study (G-study) design was demonstrated to estimate the variance-covariance components and then several Decision Studies (D-studies) with varying numbers of items were analyzed to obtain reliability coefficients and to understand how much the measurement reliability could be vary as the number of items in MGT changes. One-hundred and one eligible inpatients diagnosed with leukemia were recruited and completed the HRQOL measurement at the time of admission to the hospital. In the G-study, the variation component of the patient-item interaction was largest while the variation component of the item was the smallest for the four of five domains, except for the leukemia-specific (LEUS) domain. In the D-study, at the level of domain, the generalizability coefficients (G) and the indexes of dependability (Ф) for four of the five domains were approximately equal to or greater than 0.80 except for the Emotional Well-being (EWB) domain (>0.70 but FACT-Leu scale has good reliability as a whole based on the results of MGT and the implementation of MGT could lead to more

  10. Schwinger-Dyson functional in Chern-Simons theory

    CERN Document Server

    Guadagnini, Enore

    2016-01-01

    In perturbative SU(N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.

  11. Schwinger-Dyson functional in Chern-Simons theory

    Science.gov (United States)

    Guadagnini, E.

    2016-11-01

    In perturbative SU (N) Chern-Simons gauge theory, it is shown that the Schwinger-Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger-Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.

  12. Schwinger–Dyson functional in Chern–Simons theory

    Directory of Open Access Journals (Sweden)

    E. Guadagnini

    2016-11-01

    Full Text Available In perturbative SU(N Chern–Simons gauge theory, it is shown that the Schwinger–Dyson equations assume a quite simplified form. The generating functional of the correlation functions of the curvature is considered; it is demonstrated that the renormalized Schwinger–Dyson functional is related with the generating functional of the correlation functions of the gauge connections by some kind of duality transformation.

  13. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  14. The partition function of 2d string theory

    CERN Document Server

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  15. Cognitive Adequacy in Structural-Functional Theories of Language

    Science.gov (United States)

    Butler, Christopher S.

    2008-01-01

    This paper discusses the role played by cognition in three linguistic theories which may be labelled as "structural-functional": Functional (Discourse) Grammar, Role and Reference Grammar and Systemic Functional Grammar. It argues that if we are to achieve true cognitive adequacy, we must go well beyond the grammar itself to include the processes…

  16. On Painleve Related Functions Arising in Random Matrix Theory

    CERN Document Server

    Choup, Leonard N

    2011-01-01

    In deriving large n probability distribution function of the rightmost eigenvalue from the classical Random Matrix Theory Ensembles, one is faced with que question of ?finding large n asymptotic of certain coupled set of functions. This paper presents some of these functions in a new light.

  17. Harmonic analysis and the theory of probability

    CERN Document Server

    Bochner, Salomon

    2005-01-01

    Nineteenth-century studies of harmonic analysis were closely linked with the work of Joseph Fourier on the theory of heat and with that of P. S. Laplace on probability. During the 1920s, the Fourier transform developed into one of the most effective tools of modern probabilistic research; conversely, the demands of the probability theory stimulated further research into harmonic analysis.Mathematician Salomon Bochner wrote a pair of landmark books on the subject in the 1930s and 40s. In this volume, originally published in 1955, he adopts a more probabilistic view and emphasizes stochastic pro

  18. Geometric measure theory and real analysis

    CERN Document Server

    2014-01-01

    In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone. The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.

  19. Density functional resonance theory: complex density functions, convergence, orbital energies, and functionals.

    Science.gov (United States)

    Whitenack, Daniel L; Wasserman, Adam

    2012-04-28

    Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.

  20. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    Science.gov (United States)

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Analysis IV integration and spectral theory, harmonic analysis, the garden of modular delights

    CERN Document Server

    Godement, Roger

    2015-01-01

    Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be modern and classical, is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.

  2. Causal Rate Distortion Function and Relations to Filtering Theory

    CERN Document Server

    Charalambous, Charalambos D; Kourtellaris, Christos K

    2011-01-01

    A causal rate distortion function is defined, its solution is described, and its relation to filtering theory is discusssed. The relation to filtering is obtained via a causal constraint imposed on the reconstruction kernel to be realizable.

  3. Locality of correlation in density functional theory.

    Science.gov (United States)

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  4. New applications of pseudoanalytic function theory to the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Antonio; Kravchenko, Vladislav V [Seccion de Posgrado e Investigacion, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP07738 Mexico DF (Mexico)

    2005-10-21

    In the present work, we establish a simple relation between the Dirac equation with a scalar and an electromagnetic potential in a two-dimensional case and a pair of decoupled Vekua equations. In general, these Vekua equations are bicomplex. However, we show that the whole theory of pseudoanalytic functions without modifications can be applied to these equations under a certain nonrestrictive condition. As an example we formulate the similarity principle which is the central reason why a pseudoanalytic function and as a consequence a spinor field depending on two space variables share many of the properties of analytic functions. One of the surprising consequences of the established relation with pseudoanalytic functions consists in the following result. Consider the Dirac equation with a scalar potential depending on one variable with fixed energy and mass. In general, this equation cannot be solved explicitly even if one looks for wavefunctions of one variable. Nevertheless, for such Dirac equation, we obtain an algorithmically simple procedure for constructing in explicit form a complete system of exact solutions (depending on two variables). These solutions generalize the system of powers 1, z, z{sup 2}, ... in complex analysis and are called formal powers. With their aid any regular solution of the Dirac equation can be represented by its Taylor series in formal powers.

  5. Adult neurogenesis: integrating theories and separating functions.

    Science.gov (United States)

    Aimone, James B; Deng, Wei; Gage, Fred H

    2010-07-01

    The continuous incorporation of new neurons in the dentate gyrus of the adult hippocampus raises exciting questions about memory and learning, and has inspired new computational models to understand the function of adult neurogenesis. These theoretical approaches suggest distinct roles for new neurons as they slowly integrate into the existing dentate gyrus network: immature adult-born neurons seem to function as pattern integrators of temporally adjacent events, thereby enhancing pattern separation for events separated in time; whereas maturing adult-born neurons possibly contribute to pattern separation by being more amenable to learning new information, leading to dedicated groups of granule cells that respond to experienced environments. We review these hypothesized functions and supporting empirical research and point to new directions for future theoretical efforts.

  6. Universal fermionic spectral functions from string theory.

    Science.gov (United States)

    Gauntlett, Jerome P; Sonner, Julian; Waldram, Daniel

    2011-12-09

    We carry out the first holographic calculation of a fermionic response function for a strongly coupled d=3 system with an explicit D=10 or D=11 supergravity dual. By considering the supersymmetry current, we obtain a universal result applicable to all d=3 N=2 SCFTs with such duals. Surprisingly, the spectral function does not exhibit a Fermi surface, despite the fact that the system is at finite charge density. We show that it has a phonino pole and at low frequencies there is a depletion of spectral weight with a power-law scaling which is governed by a locally quantum critical point.

  7. An asymptotically exact theory of functionally graded piezoelectric shells

    CERN Document Server

    Le, Khanh Chau

    2016-01-01

    An asymptotically exact two-dimensional theory of functionally graded piezoelectric shells is derived by the variational-asymptotic method. The error estimation of the constructed theory is given in the energetic norm. As an application, analytical solution to the problem of forced vibration of a functionally graded piezoceramic cylindrical shell with thickness polarization fully covered by electrodes and excited by a harmonic voltage is found.

  8. Density Functional Theory with Dissipation: Transport through Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kieron Burke

    2012-04-30

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  9. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    Science.gov (United States)

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  10. Non-perturbative Nekrasov partition function from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I., E-mail: ignatios.antoniadis@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Florakis, I., E-mail: florakis@mppmu.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Hohenegger, S., E-mail: stefan.hohenegger@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Narain, K.S., E-mail: narain@ictp.trieste.it [High Energy Section, The Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11-34014 Trieste (Italy); Zein Assi, A., E-mail: zeinassi@cern.ch [Department of Physics, CERN – Theory Division, CH-1211 Geneva 23 (Switzerland); Centre de Physique Théorique (UMR CNRS 7644), Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-15

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T{sup 2} and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background.

  11. A Primer on Functional Analysis

    Science.gov (United States)

    Yoman, Jerome

    2008-01-01

    This article presents principles and basic steps for practitioners to complete a functional analysis of client behavior. The emphasis is on application of functional analysis to adult mental health clients. The article includes a detailed flow chart containing all major functional diagnoses and behavioral interventions, with functional assessment…

  12. Dynamical Functional Theory for Compressed Sensing

    DEFF Research Database (Denmark)

    Cakmak, Burak; Opper, Manfred; Winther, Ole

    2017-01-01

    the Thouless Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way...

  13. Density functional theory with quantum nuclei

    CERN Document Server

    Requist, Ryan

    2016-01-01

    It is proved that the ground state energy of an electron-nuclear system is a variational functional of the conditional electronic density n_R(r), the nuclear wavefunction \\chi(R) and the quantum geometric tensor of the conditional electronic wavefunction $T_{\\mu\

  14. Density Function Theory Studies on Reaction of HCS with OH

    Institute of Scientific and Technical Information of China (English)

    PEI Ke-Mei; LI Yi-Min; LI Hai-Yang

    2003-01-01

    The exothermic reaction of HCS with OH on the single-state potential energy surface was explored by means of Density Function Theory(DFT). The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies and the zero point energies(ZPE) of all the species in the reaction were computed. Six intermediates and seven transition states were located, three exothermic channels were found. The frequency analysis and the Intrinsic Reaction Coordinate(IRC) calculation confirm that the transitions are truthful. The results indicate that there are three exothermic channels and their corresponding products are: P1(H2O+CS), P2(H2S+CO), P3(OCS+H2), and P1 has a larger branch ratio.

  15. Scalable Nuclear Density Functional Theory with Sky3D

    CERN Document Server

    Afibuzzaman, Md; Aktulga, Hasan Metin

    2016-01-01

    In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.

  16. Pomeron-Odderon Interactions: A Functional RG Flow Analysis

    CERN Document Server

    Vacca, Gian Paolo

    2016-01-01

    In the quest for an effective field theory which could help to understand some non perturbative feature of the QCD in the Regge limit, we consider a Reggeon Field Theory (RFT) for both Pomeron and Odderon interactions and perform an analysys of the critical theory using functional renormalization group techniques, unveiling a novel symmetry structure.

  17. Theory of mind and social functioning in first episode psychosis.

    Science.gov (United States)

    Sullivan, Sarah; Herzig, Daniela; Mohr, Christine; Lewis, Glyn; Corcoran, Rhiannon; Drake, Richard; Evans, Jonathan

    2013-05-01

    There is evidence of associations between social functioning and theory of mind performance and between social functioning and negative symptoms in chronic psychosis. This study investigates these associations in those with first episode psychosis who are unaffected by factors related to long-term mental illness. Our first hypothesis states that there is an association between theory of mind and social functioning. The second hypothesis states that there is no association between symptoms of psychosis and social functioning. Fifty-two individuals with first episode psychosis were assessed for social functioning, theory of mind ability (using the Hinting test with verbal stimuli and the Visual Cartoon test with pictorial stimuli), and symptoms of psychosis. Multivariable logistic regression was used to examine associations. Social functioning and theory of mind were associated when measured by the Hinting test (OR 1.70, 95% CI 1.08, 2.66), but not with the Visual Cartoon test (ToM jokes OR 0.61, 95% CI 0.15, 2.53). There was no association between social functioning and symptoms (psychotic symptoms; OR 0.95, 95% CI 0.81, 1.12; selected negative symptoms; OR 1.33, 95% CI 0.78, 2.25). Theory of mind assessed by verbal stimuli is associated with social functioning in a population with first episode psychosis. These findings may be related to language disorders in psychosis.

  18. Quantization conditions and functional equations in ABJ(M) theories

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2014-12-15

    The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.

  19. On Quantum Field Theories in Operator and Functional Integral Formalisms

    CERN Document Server

    Teleki, A; Noga, Milan; Teleki, Aba

    2006-01-01

    Relations and isomorphisms between quantum field theories in operator and functional integral formalisms are analyzed from the viewpoint of inequivalent representations of commutator or anticommutator rings of field operators. A functional integral in quantum field theory cannot be regarded as a Newton-Lebesgue integral but rather as a formal object to which one associates distinct numerical values for different processes of its integration. By choosing an appropriate method for the integration of a given functional integral, one can select a single representation out of infinitely many inequivalent representations for an operator whose trace is expressed by the corresponding functional integral. These properties are demonstrated with two exactly solvable examples.

  20. A Cp-theory problem book functional equivalencies

    CERN Document Server

    Tkachuk, Vladimir V

    2016-01-01

    This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces.  An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch.   The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as  the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical re...

  1. Item Response Theory Analysis and Differential Item Functioning across Age, Gender and Country of a Short Form of the Advanced Progressive Matrices

    Science.gov (United States)

    Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Morsanyi, Kinga; Primi, Caterina

    2012-01-01

    Item Response Theory (IRT) models were applied to investigate the psychometric properties of the Arthur and Day's Advanced Progressive Matrices-Short Form (APM-SF; 1994) [Arthur and Day (1994). "Development of a short form for the Raven Advanced Progressive Matrices test." "Educational and Psychological Measurement, 54," 395-403] in order to test…

  2. Vacuum energy as a c-function for theories with dynamically generated masses

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, A.C., E-mail: arlene.aguilar@ufabc.edu.b [Federal University of ABC, CCNH, Rua Santa Adelia 166, 09210-170, Santo Andre (Brazil); Doff, A. [Universidade Tecnologica Federal do Parana - UTFPR, COMAT, Via do Conhecimento Km 01, 85503-390, Pato Branco, PR (Brazil); Natale, A.A. [Instituto de Fisica Teorica, UNESP - Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070, Sao Paulo (Brazil)

    2011-01-24

    We argue that in asymptotically free non-Abelian gauge theories possessing the phenomenon of dynamical mass generation the {beta} function is negative up to a value of the coupling constant that corresponds to a non-trivial fixed point, in agreement with recent AdS/QCD analysis. This fixed point happens at the minimum of the vacuum energy ({Omega}), which, as a characteristic of theories with dynamical mass generation, has the properties of a c-function.

  3. Transforming Teacher Education, An Activity Theory Analysis

    Science.gov (United States)

    McNicholl, Jane; Blake, Allan

    2013-01-01

    This paper explores the work of teacher education in England and Scotland. It seeks to locate this work within conflicting sociocultural views of professional practice and academic work. Drawing on an activity theory framework that integrates the analysis of these seemingly contradictory discourses with a study of teacher educators' practical…

  4. Generating Functionals for Quantum Field Theories with Random Potentials

    CERN Document Server

    Jain, Mudit

    2015-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include condensed matter systems with quenched disorder (e.g. spin glass) or cosmological systems in context of the string theory landscape (e.g. cosmic inflation). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out ...

  5. Correspondence analysis theory, practice and new strategies

    CERN Document Server

    Beh, Eric J

    2014-01-01

    A comprehensive overview of the internationalisation of correspondence analysis Correspondence Analysis: Theory, Practice and New Strategies examines the key issues of correspondence analysis, and discusses the new advances that have been made over the last 20 years. The main focus of this book is to provide a comprehensive discussion of some of the key technical and practical aspects of correspondence analysis, and to demonstrate how they may be put to use.  Particular attention is given to the history and mathematical links of the developments made. These links include not just those majo

  6. An Introduction to Wavelet Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  7. Particle vibrational coupling in covariant density functional theory

    CERN Document Server

    Ring, P; 10.1134/S1063778809080055

    2009-01-01

    A consistent combination of covariant density functional theory (CDFT) and Landau-Migdal Theory of Finite Fermi Systems (TFFS) is presented. Both methods are in principle exact, but Landau-Migdal theory cannot describe ground state properties and density functional theory does not take into account the energy dependence of the self-energy and therefore fails to yield proper single-% particle spectra as well as the coupling to complex configurations in the width of giant resonances. Starting from an energy functional, phonons and their vertices are calculated without any further parameters. They form the basis of particle-vibrational coupling leading to an energy dependence of the self-energy and an induced energy-dependent interaction in the response equation. A subtraction procedure avoids double counting. Applications in doubly magic nuclei and in a chain of superfluid nuclei show excellent agreement with experimental data.

  8. The Role of the Basis Set: Assessing Density Functional Theory

    CERN Document Server

    Boese, A D; Handy, N C; Martin, Jan M. L.; Handy, Nicholas C.

    2003-01-01

    When developing and assessing density functional theory methods, a finite basis set is usually employed. In most cases, however, the issue of basis set dependency is neglected. Here, we assess several basis sets and functionals. In addition, the dependency of the semiempirical fits to a given basis set for a generalised gradient approximation and a hybrid functional is investigated. The resulting functionals are then tested for other basis sets, evaluating their errors and transferability.

  9. The decay of excited He from Stochastic Density-Functional Theory: a quantum measurement theory interpretation

    OpenAIRE

    2007-01-01

    Recently, time-dependent current-density functional theory has been extended to include the dynamical interaction of quantum systems with external environments [Phys. Rev. Lett. {\\bf 98}, 226403 (2007)]. Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the c...

  10. Dynamics of inequalities in geometric function theory

    Directory of Open Access Journals (Sweden)

    Reich Simeon

    2001-01-01

    Full Text Available A domain in the complex plane which is star-like with respect to a boundary point can be approximated by domains which are star-like with respect to interior points. This approximation process can be viewed dynamically as an evolution of the null points of the underlying holomorphic functions from the interior of the open unit disk towards a boundary point. We trace these dynamics analytically in terms of the Alexander–Nevanlinna and Robertson inequalities by using the framework of complex dynamical systems and hyperbolic monotonicity.

  11. Dualities and Curved Space Partition Functions of Supersymmetric Theories

    Science.gov (United States)

    Agarwal, Prarit

    In this dissertation we discuss some conjectured dualities in supersymmetric field theories and provide non-trivial checks for these conjectures. A quick review of supersymmetry and related topics is provided in chapter 1. In chapter 2, we develop a method to identify the so called BPS states in the Hilbert space of a supersymmetric field theory (that preserves at least two real supercharges) on a generic curved space. As an application we obtain the superconformal index (SCI) of 4d theories. The large N SCI of quiver gauge theories has been previously noticed to factorize over the set of extremal BPS mesonic operators. In chapter 3, we reformulate this factorization in terms of the zigzag paths in the dimer model associated to the quiver and extend the factorization theorem of the index to include theories obtained from D-branes probing orbifold singularities. In chapter 4, we consider the dualities in two classes of 3 dimensional theories. The first class consist of dualities of certain necklace type Chern-Simons (CS) quiver gauge theories. A non trivial check of these dualities is provided by matching their squashed sphere partition functions. The second class consists of theories whose duals are described by a collection of free fields. In such cases, due to mixing between the superconformal R-symmetry and accidental symmetries, the matching of electric and magnetic partition functions is not straightforward. We provide a prescription to rectify this mismatch. In chapter 5, we consider some the N = 1 4d theories with orthogonal and symplectic gauge groups, arising from N = 1 preserving reduction of 6d theories on a Riemann surface. This construction allows us to dual descriptions of 4d theories. Some of the dual frames have no known Lagrangian description. We check the dualities by computing the anomaly coefficients and the superconformal indices. We also give a prescription to write the index of the theory obtained by reduction of 6d theories on a three

  12. Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2012-09-01

    Full Text Available Multivariate hydrologic frequency analysis has been widely studied using: (1 commonly known joint distributions or copula functions with the assumption of univariate variables being independently identically distributed (I.I.D. random variables; or (2 directly applying the entropy theory-based framework. However, for the I.I.D. univariate random variable assumption, the univariate variable may be considered as independently distributed, but it may not be identically distributed; and secondly, the commonly applied Pearson’s coefficient of correlation (g is not able to capture the nonlinear dependence structure that usually exists. Thus, this study attempts to combine the copula theory with the entropy theory for bivariate rainfall and runoff analysis. The entropy theory is applied to derive the univariate rainfall and runoff distributions. It permits the incorporation of given or known information, codified in the form of constraints and results in a universal solution of univariate probability distributions. The copula theory is applied to determine the joint rainfall-runoff distribution. Application of the copula theory results in: (i the detection of the nonlinear dependence between the correlated random variables-rainfall and runoff, and (ii capturing the tail dependence for risk analysis through joint return period and conditional return period of rainfall and runoff. The methodology is validated using annual daily maximum rainfall and the corresponding daily runoff (discharge data collected from watersheds near Riesel, Texas (small agricultural experimental watersheds and Cuyahoga River watershed, Ohio.

  13. Chiroptical Properties of Amino Acids: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Martine Adrian-Scotto

    2010-04-01

    Full Text Available Amino acids are involved in many scientific theories elucidating possible origins of life on Earth. One of the challenges when discussing the evolutionary origin of biopolymers such as proteins and oligonucleotides in living organisms is the phenomenon that these polymers implement monomers of exclusively one handedness, a feature called biomolecular homochirality. Many attempts have been made to understand this process of racemic symmetry breaking. Assuming an extraterrestrial origin of the molecular building blocks of living organisms, their susceptibility to asymmetric photolysis by the absorption of circularly polarized electromagnetic radiation in interstellar space was proposed. In order to predict whether the interaction of circularly polarized light with various racemic amino acids can induce an enantiomeric excess, we investigated the electronic and chiroptical properties of the amino acids valine and isovaline by a molecular modelling approach based on quantum chemistry (Density Functional Theory. The average spectra of both L-valine and L-isovaline have been produced on the basis of Boltzmann population analysis using computed spectra for the various conformations of each amino acid.

  14. Density functional theory study of BnC clusters.

    Science.gov (United States)

    Liu, Chunhui; Han, Peilin; Tang, Mingsheng

    2011-05-15

    B(n)C clusters (n = 3-10) were studied at the density functional theory (DFT) (B3LYP)/6-311G** level of theory. The calculations predicted that the most stable configurations of the B(n) C clusters are the (n + 1)-membered cyclic structures. For boron-carbon clusters, the configurations containing greater numbers of three-membered boron rings are more favorable, except for the B(7)C and B(9)C clusters. Through molecular orbital analysis of these B(n)C clusters, we have concluded that π-electron delocalization plays a crucial role in the stability of n + 1-membered cyclic structures. In this paper, the relative stability of each cluster is discussed based on their single atomic-binding energies. The capability of clusters to obtain or lose an electron was also discussed, based on their vertical electron detachment energies (VDEs), adiabatic electron detachment energies (ADEs), vertical electron affinities (VEAs) and adiabatic electron affinities (AEAs). Copyright © 2011 John Wiley & Sons, Ltd.

  15. THEORY AND APPLICATION OF WAVELET ANALYSIS INSTRUMENT LIBRARY

    Institute of Scientific and Technical Information of China (English)

    BO Lin; QIN Shuren; LIU Xiaofeng

    2006-01-01

    Some new theory and algorithms on wavelet analysis are proposed, including continuous wavelet transform (CWT), discrete wavelet transform (DWT), wavelet package transform (WPT),wavelet denosing and mother wavelet selection, etc. Using the component-based hierarchy mode, the platform for virtual instrument (Ⅵ) is constructed, and the functions such as data sampling, data analysis and data present, etc are provided. Subsequently, the wavelet analysis library is designed and developed. The library consists of expert system, experienced database, development platform and abundant wavelet analysis functional module, which together implement general and special wavelet analysis in the field of mechanical engineering, energy source, transportation and biomedicine, etc.Finally, the wavelet analysis virtual instrument library is applied to detect fault called engine knock.Experimental result indicates that the wavelet analysis virtual instrument library can efficiently solve the engineering problem such as detecting engine knock.

  16. Density Functional Theory Embedding for Correlated Wavefunctions

    Science.gov (United States)

    2014-01-01

    Van Barel, J. Comput. Appl. Math. 213, 268 (2008). [52] M. Gu and S. C. Eisenstat, SIAM J. Matrix Anal. Appl. 16, 172 (1995). [53] M. Schutz, R. Lindh ...Analysis and Methods , (Dover Pub- lishing, 2003). 93 [56] H.-J. Werner, P. J. Knowles, R. Lindh , F. R. Manby, M. Schütz et al. Molpro, ver- sion...43] T. M. Henderson, J. Chem. Phys. 125, 014105 (2006). [44] B. Swerts, L. F. Chibotaru, R. Lindh , L. Seijo, Z. Barandiaran, S. Clima, K. Pier- loot

  17. The decay of excited He from stochastic density-functional theory: a quantum measurement theory interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Bushong, Neil; Di Ventra, Massimiliano [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)], E-mail: diventra@physics.ucsd.edu

    2008-10-01

    Recently, time-dependent current-density-functional theory has been extended to include the dynamical interaction of quantum systems with external environments (Di Ventra and D'Agosta 2007 Phys. Rev. Lett. 98 226403). Here we show that such a theory allows us to study a fundamentally important class of phenomena previously inaccessible by standard density-functional methods: the decay of excited systems. As an example we study the decay of an ensemble of excited He atoms, and discuss these results in the context of quantum measurement theory.

  18. Exact observability, square functions and spectral theory

    CERN Document Server

    Haak, Bernhard Hermann

    2011-01-01

    In the first part of this article we introduce the notion of a backward-forward conditioning (BFC) system that generalises the notion of zero-class admissibiliy introduced in [Xu,Liu,Yung]. We can show that unless the spectum contains a halfplane, the BFC property occurs only in siutations where the underlying semigroup extends to a group. In a second part we present a sufficient condition for exact observability in Banach spaces that is designed for infinite-dimensional output spaces and general strongly continuous semigroups. To obtain this we make use of certain weighted square function estimates. Specialising to the Hilbert space situation we obtain a result for contraction semigroups without an analyticity condition on the semigroup.

  19. Effective potential in density matrix functional theory.

    Science.gov (United States)

    Nagy, A; Amovilli, C

    2004-10-01

    In the previous paper it was shown that in the ground state the diagonal of the spin independent second-order density matrix n can be determined by solving a single auxiliary equation of a two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a two-particle problem. The effective potential of the two-particle equation contains a term v(p) of completely kinetic origin. Virial theorem and hierarchy of equations are derived for v(p) and simple approximations are proposed. A relationship between the effective potential u(p) of the shape function equation and the potential v(p) is established.

  20. Interior point algorithms theory and analysis

    CERN Document Server

    Ye, Yinyu

    2011-01-01

    The first comprehensive review of the theory and practice of one of today's most powerful optimization techniques. The explosive growth of research into and development of interior point algorithms over the past two decades has significantly improved the complexity of linear programming and yielded some of today's most sophisticated computing techniques. This book offers a comprehensive and thorough treatment of the theory, analysis, and implementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basic and advanced aspects of the subject.

  1. Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories

    CERN Document Server

    Aniceto, Inês; Schiappa, Ricardo

    2015-01-01

    Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the com...

  2. Noncommutative analysis, operator theory and applications

    CERN Document Server

    Cipriani, Fabio; Colombo, Fabrizio; Guido, Daniele; Sabadini, Irene; Sauvageot, Jean-Luc

    2016-01-01

    This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.

  3. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  4. Basis convergence of range-separated density-functional theory

    CERN Document Server

    Franck, Odile; Luppi, Eleonora; Toulouse, Julien

    2014-01-01

    Range-separated density-functional theory is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components, and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whe...

  5. Correlation functions in conformal Toda field theory II

    CERN Document Server

    Fateev, V A

    2009-01-01

    This is the second part of the paper 0709.3806v2. Here we show that three-point correlation function with one semi-degenerate field in Toda field theory as well as four-point correlation function with one completely degenerate and one semi-degenerate field can be represented by the finite dimensional integrals.

  6. Density functional theory based generalized effective fragment potential method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Kiet A., E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States); Pachter, Ruth, E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States)

    2014-06-28

    We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.

  7. Density-functional perturbation theory goes time-dependent

    OpenAIRE

    Gebauer, Ralph; Rocca, Dario; Baroni, Stefano

    2009-01-01

    The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...

  8. Methods of Approximation Theory in Complex Analysis and Mathematical Physics

    CERN Document Server

    Saff, Edward

    1993-01-01

    The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. ...

  9. Cost benefit theory and optimal design of gene regulation functions

    Science.gov (United States)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  10. 义位函数理论的共时与历时分析%Synchronic and Diachronic Analysis of Glosseme Function Theory

    Institute of Scientific and Technical Information of China (English)

    刘善涛

    2014-01-01

    The concept of function is borrowed from mathematical logic. The component meaning of glosseme is a function which is made up of many different kinds of sememes. The structure meaning of glosseme is also a function which is made up of value meaning and field meaning and their internal subtypes. And the context meaning of glosseme is a function which is made up of subject context meaning, linguistic context meaning, occasions meaning, social and cultural meaning, and zero context meaning too. The above three functions constitute the glosseme multivariable function together.%函数是从数理逻辑借来的概念,义位的成分义是由义位内部不同类型的义素组成的函数;义位的结构义是由义值(包括基义和陪义)和义域(包括多少域、大小域、伙伴域)以及内部的子类型组成的函数;义位的语境义则是由主体语境义、语言环境义、小背景义、大背景义、语境零义组成的函数。上述三种函数又共同构成义位的多元函数表达式。

  11. The benchmark of gutzwiller density functional theory in hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2012-02-23

    We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.

  12. The Benchmark of Gutzwiller Density Functional Theory in Hydrogen Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2011-01-13

    We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

  13. Numerical stochastic perturbation theory in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  14. Numerical Stochastic Perturbation Theory in the Schr\\"odinger Functional

    CERN Document Server

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Sint, Stefan

    2013-01-01

    The Schr\\"odinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  15. Basis convergence of range-separated density-functional theory.

    Science.gov (United States)

    Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien

    2015-02-21

    Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.

  16. Solvation of complex surfaces via molecular density functional theory.

    Science.gov (United States)

    Levesque, Maximilien; Marry, Virginie; Rotenberg, Benjamin; Jeanmairet, Guillaume; Vuilleumier, Rodolphe; Borgis, Daniel

    2012-12-14

    We show that classical molecular density functional theory, here in the homogeneous reference fluid approximation in which the functional is inferred from the properties of the bulk solvent, is a powerful new tool to study, at a fully molecular level, the solvation of complex surfaces and interfaces by polar solvents. This implicit solvent method allows for the determination of structural, orientational, and energetic solvation properties that are on a par with all-atom molecular simulations performed for the same system, while reducing the computer time by two orders of magnitude. This is illustrated by the study of an atomistically-resolved clay surface composed of over a thousand atoms wetted by a molecular dipolar solvent. The high numerical efficiency of the method is exploited to carry a systematic analysis of the electrostatic and non-electrostatic components of the surface-solvent interaction within the popular Clay Force Field (CLAYFF). Solvent energetics and structure are found to depend weakly upon the atomic charges distribution of the clay surface, even for a rather polar solvent. We conclude on the consequences of such findings for force-field development.

  17. Einstein gravity 3-point functions from conformal field theory

    CERN Document Server

    Afkhami-Jeddi, Nima; Kundu, Sandipan; Tajdini, Amirhossein

    2016-01-01

    We study stress tensor correlation functions in four-dimensional conformal field theories with large $N$ and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions $\\langle TTT\\rangle$, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular...

  18. King's theory of goal attainment: exploring functional status.

    Science.gov (United States)

    Caceres, Billy A

    2015-04-01

    Imogene King's Theory of Goal Attainment provides a schema for nurses interested in functional status. However, the lack of a uniform definition for functional status has hindered development of a concise understanding of this phenomenon. Functional status is particularly important to nurses who are concerned with the safety and wellbeing of clients. With healthcare's increased focus on client-family-centered care it is important to develop innovative approaches for evaluating functional status that incorporate the client-family perspective. King's focus on mutual decision-making is an underutilized resource that can provide great insight into the study and understanding of functional status.

  19. Theory and applications of numerical analysis

    CERN Document Server

    Phillips, G M

    1996-01-01

    This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions

  20. Information theory applications for biological sequence analysis.

    Science.gov (United States)

    Vinga, Susana

    2014-05-01

    Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.

  1. Liouville theory Ward identities for generating functional and modular geometry

    CERN Document Server

    Takhtajan, L A

    1994-01-01

    We continue the study of quantum Liouville theory through Polyakov's functional integral \\cite{Pol1,Pol2}, started in \\cite{T1}. We derive the perturbation expansion for Schwinger's generating functional for connected multi-point correlation functions involving stress-energy tensor, give the "dynamical" proof of the Virasoro symmetry of the theory and compute the value of the central charge, confirming previous calculation in \\cite{T1}. We show that conformal Ward identities for these correlation functions contain such basic facts from Kähler geometry of moduli spaces of Riemann surfaces, as relation between accessory parameters for the Fuchsian uniformization, Liouville action and Eichler integrals, Kähler potential for the Weil-Petersson metric, and local index theorem. These results affirm the fundamental role, that universal Ward identities for the generating functional play in Friedan-Shenker modular geometry \\cite{FS}.

  2. Functionalism as a philosophical theory of the cognitive sciences.

    Science.gov (United States)

    Polger, Thomas W

    2012-05-01

    Functionalism is a philosophical theory (or family of theories) concerning the nature of mental states. According to functionalism psychological/cognitive states are essentially functional states of whole systems. Functionalism characterizes psychological states essentially according to what they do, by their relations to stimulus inputs and behavioral outputs as well as their relations to other psychological and nonpsychological internal states of a system. The central constructive relation for functionalism is the so-called realization relation. Realization is a proposal for how psychological states can be real, physical, and causally efficacious while at the same time preserving the autonomy of cognitive explanations and avoiding reduction or elimination. WIREs Cogn Sci 2012, 3:337-348. doi: 10.1002/wcs.1170 For further resources related to this article, please visit the WIREs website.

  3. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    Science.gov (United States)

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  4. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    Science.gov (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  5. Quantum power functional theory for many-body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Matthias, E-mail: Matthias.Schmidt@uni-bayreuth.de [Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth (Germany)

    2015-11-07

    We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.

  6. The Riemann zeta-function theory and applications

    CERN Document Server

    Ivic, Aleksandar

    2003-01-01

    ""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim

  7. Compositional Data Analysis Theory and Applications

    CERN Document Server

    Pawlowsky-Glahn, Vera

    2011-01-01

    This book presents the state-of-the-art in compositional data analysis and will feature a collection of papers covering theory, applications to various fields of science and software. Areas covered will range from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. Key features:Provides the state-of-the-art text in compositional data analysisCovers a variety of subject areas, from geology to medicineWritten by leading researchers in the fieldIs supported by a website featuring R code

  8. Data flow analysis theory and practice

    CERN Document Server

    Khedker, Uday; Sathe, Bageshri

    2009-01-01

    Data flow analysis is used to discover information for a wide variety of useful applications, ranging from compiler optimizations to software engineering and verification. Modern compilers apply it to produce performance-maximizing code, and software engineers use it to re-engineer or reverse engineer programs and verify the integrity of their programs.  Supplementary Online Materials to Strengthen Understanding Unlike most comparable books, many of which are limited to bit vector frameworks and classical constant propagation, Data Flow Analysis: Theory and Practice offers comprehensive covera

  9. Open-system Kohn-Sham density functional theory.

    Science.gov (United States)

    Zhou, Yongxi; Ernzerhof, Matthias

    2012-03-07

    A simple model for electron transport through molecules is provided by the source-sink potential (SSP) method [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)]. In SSP, the boundary conditions of having an incoming and outgoing electron current are enforced through complex potentials that are added to the Hamiltonian. Depending on the sign of the imaginary part of the potentials, current density is generated or absorbed. In this way, a finite system can be used to model infinite molecular electronic devices. The SSP has originally been developed for the Hückel method and subsequently it has been extended [F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011)] to the Hubbard model. Here we present a step towards its generalization for first-principles electronic structure theory methods. In particular, drawing on our earlier work, we discuss a new generalized density functional theory for complex non-Hermitian Hamiltonians. This theory enables us to combine SSP and Kohn-Sham theory to obtain a method for the description of open systems that exchange current density with their environment. Similarly, the Hartree-Fock method is extended to the realm of non-Hermitian, SSP containing Hamiltonians. As a proof of principle, we present the first applications of complex-density functional theory (CODFT) as well as non-Hermitian Hartree-Fock theory to electron transport through molecules. © 2012 American Institute of Physics

  10. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    DEFF Research Database (Denmark)

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels;

    2013-01-01

    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  11. Random matrix theory for the analysis of the performance of an analog computer: a scaling theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Hur, Asa; Feinberg, Joshua; Fishman, Shmuel; Siegelmann, Hava T

    2004-03-22

    The phase space flow of a dynamical system, leading to the solution of linear programming (LP) problems, is explored as an example of complexity analysis in an analog computation framework. In this framework, computation by physical devices and natural systems, evolving in continuous phase space and time (in contrast to the digital computer where these are discrete), is explored. A Gaussian ensemble of LP problems is studied. The convergence time of a flow to the fixed point representing the optimal solution, is computed. The cumulative distribution function of the convergence time is calculated in the framework of random matrix theory (RMT) in the asymptotic limit of large problem size. It is found to be a scaling function, of the form obtained in the theories of critical phenomena and Anderson localization. It demonstrates a correspondence between problems of computer science and physics.

  12. Functional approach to coherent states in non commutative theories

    CERN Document Server

    Lubo, M

    2003-01-01

    In many high dimensional noncommutative theories, no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. This differs from the usual theory where the squeezed states possess this property. The important role played by these states when recovering classical mechanics as a limit of quantum theory makes necessary the investigation of the possible generalizations in the noncommutative context. We propose an extension based on a variational principle. The action considered is the sum of the squares of the terms associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory: we find the known gaussian functions and, besides them, other states which can be expressed as products of gaussians with specific hypergeometrics. We illustrate our construction in three models defined on a four dimensional phase space: two models endowed with a minimal length uncertainty and the popular case in which the commutators of the positions ...

  13. APPLICATION OF WAVELET THEORY IN RESEARCH ON WEIGHT FUNCTION OF MESHLESS METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; ZHANG Xuan-bing; GE Xiu-run

    2005-01-01

    Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis, so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions.Now, the useful new way to research weight function is found, and the numerical result is given.

  14. Benchmark density functional theory calculations for nanoscale conductance

    DEFF Research Database (Denmark)

    Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer;

    2008-01-01

    We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...... in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k(parallel to) points in the surface plane. For all systems we find...

  15. Function Analysis and Decomposistion using Function Analysis Systems Technique

    Energy Technology Data Exchange (ETDEWEB)

    Wixson, James Robert

    1999-06-01

    The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Technique (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.

  16. Function Analysis and Decomposistion using Function Analysis Systems Technique

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Wixson

    1999-06-01

    The "Father of Value Analysis", Lawrence D. Miles, was a design engineer for General Electric in Schenectady, New York. Miles developed the concept of function analysis to address difficulties in satisfying the requirements to fill shortages of high demand manufactured parts and electrical components during World War II. His concept of function analysis was further developed in the 1960s by Charles W. Bytheway, a design engineer at Sperry Univac in Salt Lake City, Utah. Charles Bytheway extended Mile's function analysis concepts and introduced the methodology called Function Analysis Systems Techniques (FAST) to the Society of American Value Engineers (SAVE) at their International Convention in 1965 (Bytheway 1965). FAST uses intuitive logic to decompose a high level, or objective function into secondary and lower level functions that are displayed in a logic diagram called a FAST model. Other techniques can then be applied to allocate functions to components, individuals, processes, or other entities that accomplish the functions. FAST is best applied in a team setting and proves to be an effective methodology for functional decomposition, allocation, and alternative development.

  17. The Schrödinger functional a renormalization probe for non-abelian gauge theories

    CERN Document Server

    Lüscher, Martin; Weisz, P; Wolff, U; L\\"{u}scher, Martin; Narayanan, Rajamani; Weisz, Peter; Wolff, Ulli

    1992-01-01

    Following Symanzik we argue that the Schr\\"odinger functional in lattice gauge theories without matter fields has a well-defined continuum limit. Due to gauge invariance no extra counter terms are required. The Schr\\"odinger functional is, moreover, accessible to numerical simulations. It may hence be used to study the scaling properties of the theory and in particular the evolution of the renormalized gauge coupling from low to high energies. A concrete proposition along this line is made and the necessary perturbative analysis of the Schr\\"odinger functional is carried through to 1-loop order.

  18. On skew tau-functions in higher spin theory

    CERN Document Server

    Melnikov, D; Morozov, A

    2016-01-01

    Recent studies of higher spin theory in three dimensions concentrate on Wilson loops in Chern-Simons theory, which in the classical limit reduce to peculiar corner matrix elements between the highest and lowest weight states in a given representation of SL(N). Despite these "skew" tau-functions can seem very different from conventional ones, which are the matrix elements between the two highest weight states, they also satisfy the Toda recursion between different fundamental representations. Moreover, in the most popular examples they possess simple representations in terms of matrix models and Schur functions. We provide a brief introduction to this new interesting field, which, after quantization, can serve as an additional bridge between knot and integrability theories.

  19. Semilocal density functional theory with correct surface asymptotics

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  20. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  1. Astrophysical data analysis with information field theory

    CERN Document Server

    Enßlin, Torsten

    2014-01-01

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  2. Reflection-asymmetric nuclear deformations within the Density Functional Theory

    CERN Document Server

    Olsen, E; Nazarewicz, W; Stoitsov, M; 10.1088/1742-6596/402/1/012034

    2013-01-01

    Within the nuclear density functional theory (DFT) we study the effect of reflection-asymmetric shapes on ground-state binding energies and binding energy differences. To this end, we developed the new DFT solver AxialHFB that uses an approximate second-order gradient to solve the Hartree-Fock-Bogoliubov equations of superconducting DFT with the quasi-local Skyrme energy density functionals. Illustrative calculations are carried out for even-even isotopes of radium and thorium.

  3. Functional methods underlying classical mechanics, relativity and quantum theory

    OpenAIRE

    Kryukov, Alexey A.

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accou...

  4. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. New Hypothesis and Theory about Functions of Sleep and Dreams

    Directory of Open Access Journals (Sweden)

    Nikola N. Ilanković

    2014-03-01

    Conclusion: IEP-P1 could be a new biological marker to distinction of sleep organization in different psychotic states and other states of altered consciousness. The developed statistical models could be the basis for new hypothesis and theories about functions of sleep and dreams.

  6. Effective Maxwell Equations from Time-dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Weinan E; Jianfeng LU; Xu YANG

    2011-01-01

    The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.

  7. Theory of Mind and Executive Function in Chinese Preschool Children

    Science.gov (United States)

    Duh, Shinchieh; Paik, Jae H.; Miller, Patricia H.; Gluck, Stephanie C.; Li, Hui; Himelfarb, Igor

    2016-01-01

    Cross-cultural research on children's theory of mind (ToM) understanding has raised questions about its developmental sequence and relationship with executive function (EF). The current study examined how ToM develops (using the tasks from Wellman & Liu, 2004) in relation to 2 EF skills (conflict inhibition, working memory) in 997 Chinese…

  8. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  9. Charge and spin fluctuations in the density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Gyoerffy, B.L.; Barbieri, A. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Staunton, J.B. (Warwick Univ., Coventry (UK). Dept. of Physics); Shelton, W.A.; Stocks, G.M. (Oak Ridge National Lab., TN (USA))

    1990-01-01

    We introduce a conceptual framework which allow us to treat charge and spin fluctuations about the Local density Approximation (LDA) to the Density Functional Theory (DFT). We illustrate the approach by explicit study of the Disordered Local Moment (DLM) state in Fe above the Curie Temperature {Tc} and the Mott insulating state in MnO. 27 refs., 6 figs.

  10. Orbital-Free Density Functional Theory for Molecular Structure Calculations

    Institute of Scientific and Technical Information of China (English)

    Huajie Chen; Aihui Zhou

    2008-01-01

    We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.

  11. A Tryst With Density: Walter Kohn and Density Functional Theory

    Indian Academy of Sciences (India)

    Shobhana Narasimhan

    2017-08-01

    Walter Kohn transformed theoretical chemistry and solid statephysics with his development of density functional theory, forwhich he was awarded the Nobel Prize. This article tries toexplain, in simple terms, why this was an important advancein the field, and to describe precisely what it was that he (togetherwith his collaborators Pierre Hohenberg and Lu JeuSham) achieved.

  12. Theory of Mind and Executive Function in Chinese Preschool Children

    Science.gov (United States)

    Duh, Shinchieh; Paik, Jae H.; Miller, Patricia H.; Gluck, Stephanie C.; Li, Hui; Himelfarb, Igor

    2016-01-01

    Cross-cultural research on children's theory of mind (ToM) understanding has raised questions about its developmental sequence and relationship with executive function (EF). The current study examined how ToM develops (using the tasks from Wellman & Liu, 2004) in relation to 2 EF skills (conflict inhibition, working memory) in 997 Chinese…

  13. Replicating Small Group Research Using the Functional Theory.

    Science.gov (United States)

    Cragan, John F.; Wright, David W.

    A replication study tested functional theory utilizing untrained full-fledged groups. One hundred forty undergraduate students who were enrolled in a small group communication course at a large midwestern university participated in small group discussions analyzing a plagiarism case used in an original study by R. Y. Hirokawa. Results indicated…

  14. Exact ensemble density-functional theory for excited states

    CERN Document Server

    Yang, Zeng-hui; Pribram-Jones, Aurora; Burke, Kieron; Needs, Richard J; Ullrich, Carsten A

    2014-01-01

    We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) of excited states from the ground and excited states of helium. The exchange-correlation potential is compared with current approximations, which miss prominent features. The ensemble derivative discontinuity is tested, and the virial theorem is proven and illustrated.

  15. Reproducibility in density functional theory calculations of solids

    DEFF Research Database (Denmark)

    Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn

    2016-01-01

    The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We r...

  16. Linear-response thermal time-dependent density functional theory

    CERN Document Server

    Pribram-Jones, Aurora; Burke, Kieron

    2015-01-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.

  17. Elementary functional analysis

    CERN Document Server

    Shilov, Georgi E

    1996-01-01

    Introductory text covers basic structures of mathematical analysis (linear spaces, metric spaces, normed linear spaces, etc.), differential equations, orthogonal expansions, Fourier transforms - including problems in the complex domain, especially involving the Laplace transform - and more. Each chapter includes a set of problems, with hints and answers. Bibliography. 1974 edition.

  18. Density functional theory analysis and molecular docking evaluation of 1-(2, 5-dichloro-4-sulfophenyl)-3-methyl-5-pyrazolone as COX2 inhibitor against inflammatory diseases

    Science.gov (United States)

    Kavitha, T.; Velraj, G.

    2017-08-01

    The molecular structure of 1-(2, 5-Dichloro-4-Sulfophenyl)-3-Methyl-5-Pyrazolone (DSMP) was optimized using DFT/B3LYP/6-31++G(d,p) level and its corresponding experimental as well as theoretical FT-IR, FT-Raman vibrational frequencies and UV-Vis spectral analysis were carried out. The vibrational assignments and total energy distributions of each vibration were presented with the aid of Veda 4xx software. The molecular electrostatic potential, HOMO-LUMO energies, global and local reactivity descriptors and natural bond orbitals were analyzed in order to find the most possible reactive sites of the molecule and it was found that DSMP molecule possess enhanced nucleophilic activity. One of the common known COX2 inhibitor, celecoxib (CXB) was also found to exhibit similar reactivity properties and hence DSMP was also expected to inhibit COX enzymes. In order to detect the COX inhibition nature of DSMP, molecular docking analysis was carried out with the help of Autodock software. For that, the optimized structure was in turn used for docking DSMP with COX enzymes. The binding energy scores and inhibitory constant values reveal that the DSMP molecule possess good binding affinity and low inhibition constant towards COX2 enzyme and hence it can be used as an anti-inflammatory drug after carrying out necessary biological tests.

  19. Density functional theory study, FT-IR and FT-Raman spectra and SQM force field calculation for vibrational analysis of 1, 3-Bis (hydroxymethyl) benzimidazolin-2-one.

    Science.gov (United States)

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Devarajegowda, H C; Isac, Jayakumary

    2013-10-01

    FT-IR and FT-Raman spectra of 1, 3-Bis (hydroxymethyl) benzimidazolin-2-one were recorded and analyzed in the solid phase. The optimized molecular geometry and vibrational wavenumbers have also been calculated in optimized structure by using DFT method. Scaled quantum mechanical force fields have also been used to calculate potential energy distributions in order to make conspicuous vibrational assignments. The red shifting of the O-H stretching wavenumber is due to the formation of O-H···O intermolecular hydrogen bonding. The lowering and splitting of the carbonyl stretching vibrational modes is assigned to the intermolecular association based on C=O···H type hydrogen bonding in the molecule. Chemical interpretation of hyperconjugative interactions was done by natural bond orbital analysis.

  20. Some Topics in Fourier Analysis and Approximation Theory

    CERN Document Server

    Trigub, R M

    1996-01-01

    This manuscript presents shortly the results obtained by participants of the scientific seminar which is held more than twenty years under leadership of the author at Donetsk University. In the list of references main publications are given. These results are published in serious scientific journals and reported at various conferences, including international ones at Moscow,ICM66; Kaluga,1975; Kiev,1983; Haifa,1994; Zürich,ICM94; Moscow,1995. The area of investigation is the Fourier analysis and the theory of approximation of functions. Used are methods of classical analysis including special functions, Banach spaces, etc., of harmonic analysis in finitedimensional Euclidean space, of Diophantine analysis, of random choice, etc. The results due to the author and active participants of the seminar, namely E. S. Belinskii, O. I. Kuznetsova, E. R. Liflyand, Yu. L. Nosenko, V. A. Glukhov, V. P. Zastavny, Val. V. Volchkov, V. O. Leontyev, and others, are given. Besides the participants of the seminar and other ma...

  1. Configurational study of amino-functionalized silica surfaces: A density functional theory modeling.

    Science.gov (United States)

    Hozhabr Araghi, Samira; Entezari, Mohammad H; Sadeghi Googheri, Mohammad Sadegh

    2015-06-01

    Despite extensive studies of the amino-functionalized silica surfaces, a comprehensive investigation of the effects of configuration and hydrolysis of 3-aminopropyltriethoxysilan (APTES) molecules attached on silica has not been studied yet. Therefore, the methods of quantum mechanics were used for the study of configuration and hydrolysis forms of APTES molecules attached on the surface. For this purpose, five different categories based on the number of hydrolyzed ethoxy groups including 16 configurations were designed and analyzed by the density functional theory (DFT) method. The steric hindrance as an effective factor on the stability order was extracted from structural analysis. Other impressive parameters such as the effects of hydrogen bond and electron delocalization energy were obtained by using the atoms in molecules (AIM) and natural bond orbitals (NBO) theories. Consequently, it was found that the stability of configurations was attributed to steric effects, hydrogen bond numbers and electron delocalization energy. The maximum stability was achieved when at least two of these parameters cooperate with each other.

  2. Atomic scale analysis of the GaP/Si(100) heterointerface by in situ reflection anisotropy spectroscopy and ab initio density functional theory

    Science.gov (United States)

    Supplie, Oliver; Brückner, Sebastian; Romanyuk, Oleksandr; Döscher, Henning; Höhn, Christian; May, Matthias M.; Kleinschmidt, Peter; Grosse, Frank; Hannappel, Thomas

    2014-12-01

    A microscopic understanding of the formation of polar-on-nonpolar interfaces is a prerequisite for well-defined heteroepitaxial preparation of III-V compounds on (100) silicon for next-generation high-performance devices. Energetically and kinetically driven Si(100) step formations result in majority domains of monohydride-terminated Si dimers oriented either parallel or perpendicular to the step edges. Here, the intentional variation of the Si(100) surface reconstruction controls the sublattice orientation of the heteroepitaxial GaP film, as observed by in situ reflection anisotropy spectroscopy (RAS) in chemical vapor ambient and confirmed by benchmarking to surface science analytics in ultrahigh vacuum. Ab initio density functional calculations of both abrupt and compensated interfaces are carried out. For P-rich chemical potentials at abrupt interfaces, Si-P bonds are energetically favored over Si-Ga bonds, in agreement with in situ RAS experiments. The energetically most favorable interface is compensated with an intermixed interfacial layer. In situ RAS reveals that the GaP sublattice orientation depends on the P chemical potential during nucleation, which agrees with a kinetically limited formation of abrupt interfaces.

  3. Green's function and Bloch theory for the analysis of the dynamic response of a periodically supported beam to a moving load

    Science.gov (United States)

    Lassoued, R.; Lecheheb, M.; Bonnet, G.

    2012-08-01

    This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.

  4. Linear functional analysis an application-oriented introduction

    CERN Document Server

    Alt, Hans Wilhelm

    2016-01-01

    This book gives an introduction to Linear Functional Analysis, a synthesis of algebra, topology, and analysis. In addition to the basic theory it explains operator theory, distributions, Sobolev spaces, and many other things. The text is self-contained and includes all proofs, as well as many exercises, most of them with solutions. Moreover, there are a number of appendices, for example on Lebesgue integration theory. A complete introduction to the subject, Linear Functional Analysis will be particularly useful to readers who want to quickly get to the key statements and who are interested in applications to differential equations.

  5. Tests of QCD and non-asymptotically-free theories of the strong interaction by an analysis of the nucleon structure functions xF/sub 3 /, F/sub 2/, and q

    CERN Document Server

    Abramowicz, H; Duda, J; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Guyot, C; He, J T; Klasen, H P; Kleinknecht, K; Knobloch, J; Królikowski, J; May, J; Merlo, J P; Palazzi, P; Para, A; Peyaud, B; Pszola, B; Rander, J; Ranjard, F; Renk, B; Rothberg, J E; Ruan, T Z; Schlatter, W D; Schuller, J P; Steinberger, J; Taureg, H; Tittel, K; Turlay, René; von Rüden, Wolfgang; Wahl, H; Willutzki, H J; Wotschack, J; Wu, W M

    1982-01-01

    The scaling violations of the structure functions F/sub 2/, xF/sub 3/, and q, as measured in deep-inelastic neutrino-nucleon scattering at high hadron class W, have been compared with the predictions of QCD and other candidate field theories of strong interactions. Non- asymptotically free theories with scalar and vector gluons are incompatible with the data. This leaves QCD as the only field theory that gives a consistent description of all the observed scaling violations. The data do not, however, permit a sensitive test of the existence of the gluon self-coupling.

  6. Model Theory in Algebra, Analysis and Arithmetic

    CERN Document Server

    Dries, Lou; Macpherson, H Dugald; Pillay, Anand; Toffalori, Carlo; Wilkie, Alex J

    2014-01-01

    Presenting recent developments and applications, the book focuses on four main topics in current model theory: 1) the model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; and 4) the model theory of real and complex exponentiation. Young researchers in model theory will particularly benefit from the book, as will more senior researchers in other branches of mathematics.

  7. Analysis of differential item functioning in the depression item bank from the Patient Reported Outcome Measurement Information System (PROMIS: An item response theory approach

    Directory of Open Access Journals (Sweden)

    JOSEPH P. EIMICKE

    2009-06-01

    Full Text Available The aims of this paper are to present findings related to differential item functioning (DIF in the Patient Reported Outcome Measurement Information System (PROMIS depression item bank, and to discuss potential threats to the validity of results from studies of DIF. The 32 depression items studied were modified from several widely used instruments. DIF analyses of gender, age and education were performed using a sample of 735 individuals recruited by a survey polling firm. DIF hypotheses were generated by asking content experts to indicate whether or not they expected DIF to be present, and the direction of the DIF with respect to the studied comparison groups. Primary analyses were conducted using the graded item response model (for polytomous, ordered response category data with likelihood ratio tests of DIF, accompanied by magnitude measures. Sensitivity analyses were performed using other item response models and approaches to DIF detection. Despite some caveats, the items that are recommended for exclusion or for separate calibration were "I felt like crying" and "I had trouble enjoying things that I used to enjoy." The item, "I felt I had no energy," was also flagged as evidencing DIF, and recommended for additional review. On the one hand, false DIF detection (Type 1 error was controlled to the extent possible by ensuring model fit and purification. On the other hand, power for DIF detection might have been compromised by several factors, including sparse data and small sample sizes. Nonetheless, practical and not just statistical significance should be considered. In this case the overall magnitude and impact of DIF was small for the groups studied, although impact was relatively large for some individuals.

  8. Analysis of differential item functioning in the depression item bank from the Patient Reported Outcome Measurement Information System (PROMIS): An item response theory approach

    Science.gov (United States)

    Teresi, Jeanne A.; Ocepek-Welikson, Katja; Kleinman, Marjorie; Eimicke, Joseph P.; Crane, Paul K.; Jones, Richard N.; Lai, Jin-shei; Choi, Seung W.; Hays, Ron D.; Reeve, Bryce B.; Reise, Steven P.; Pilkonis, Paul A.; Cella, David

    2009-01-01

    The aims of this paper are to present findings related to differential item functioning (DIF) in the Patient Reported Outcome Measurement Information System (PROMIS) depression item bank, and to discuss potential threats to the validity of results from studies of DIF. The 32 depression items studied were modified from several widely used instruments. DIF analyses of gender, age and education were performed using a sample of 735 individuals recruited by a survey polling firm. DIF hypotheses were generated by asking content experts to indicate whether or not they expected DIF to be present, and the direction of the DIF with respect to the studied comparison groups. Primary analyses were conducted using the graded item response model (for polytomous, ordered response category data) with likelihood ratio tests of DIF, accompanied by magnitude measures. Sensitivity analyses were performed using other item response models and approaches to DIF detection. Despite some caveats, the items that are recommended for exclusion or for separate calibration were “I felt like crying” and “I had trouble enjoying things that I used to enjoy.” The item, “I felt I had no energy,” was also flagged as evidencing DIF, and recommended for additional review. On the one hand, false DIF detection (Type 1 error) was controlled to the extent possible by ensuring model fit and purification. On the other hand, power for DIF detection might have been compromised by several factors, including sparse data and small sample sizes. Nonetheless, practical and not just statistical significance should be considered. In this case the overall magnitude and impact of DIF was small for the groups studied, although impact was relatively large for some individuals. PMID:20336180

  9. Scaled-particle theory analysis of cylindrical cavities in solution.

    Science.gov (United States)

    Ashbaugh, Henry S

    2015-04-01

    The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy.

  10. Constructivism theory analysis and application to curricula.

    Science.gov (United States)

    Brandon, Amy F; All, Anita C

    2010-01-01

    Today's nursing programs are struggling to accommodate the changing needs of the health care environment and need to make changes in how students are taught. Using constructivism theory, whereby learning is an active process in which learners construct new ideas or concepts based upon their current or past knowledge, leaders in nursing education can make a paradigm shift toward concept-based curricula. This article presents a summary and analysis of constructivism and an innovative application of its active-learning principles to curriculum development, specifically for the education of nursing students.

  11. Spin projection with double hybrid density functional theory.

    Science.gov (United States)

    Thompson, Lee M; Hratchian, Hrant P

    2014-07-21

    A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.

  12. Building a functional multiple intelligences theory to advance educational neuroscience.

    Science.gov (United States)

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.

  13. Correlation functions in a c=1 boundary conformal field theory

    CERN Document Server

    Kristjansson, K R; Kristjansson, Kristjan R.; Thorlacius, Larus

    2005-01-01

    We obtain exact results for correlation functions of primary operators in the two-dimensional conformal field theory of a scalar field interacting with a critical periodic boundary potential. Amplitudes involving arbitrary bulk discrete primary fields are given in terms of SU(2) rotation coefficients while boundary amplitudes involving discrete boundary fields are independent of the boundary interaction. Mixed amplitudes involving both bulk and boundary discrete fields can also be obtained explicitly. Two- and three-point boundary amplitudes involving fields at generic momentum are determined, up to multiplicative constants, by the band spectrum in the open-string sector of the theory.

  14. Energy Continuity in Degenerate Density Functional Perturbation Theory

    CERN Document Server

    Palenik, Mark C

    2016-01-01

    Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.

  15. The Gaussian radial basis function method for plasma kinetic theory

    Science.gov (United States)

    Hirvijoki, E.; Candy, J.; Belli, E.; Embréus, O.

    2015-10-01

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker-Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker-Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas.

  16. Estimation and Inference of Directionally Differentiable Functions: Theory and Applications

    Science.gov (United States)

    Fang, Zheng

    This dissertation addresses a large class of irregular models in economics and statistics -- settings in which the parameters of interest take the form φ(theta 0), where φ is a known directionally differentiable function and theta 0 is estimated by thetan. Chapter 1 provides a tractable framework for conducting inference, Chapter 2 focuses on optimality of estimation, and Chapter 3 applies the developed theory to construct a test whether a Hilbert space valued parameter belongs to a convex set and to derive the uniform weak convergence of the Grenander distribution function -- i.e. the least concave majorant of the empirical distribution function -- under minimal assumptions.

  17. An introduction to the theory of local zeta functions

    CERN Document Server

    Igusa, Jun-ichi

    2007-01-01

    This book is an introductory presentation to the theory of local zeta functions. Viewed as distributions, and mostly in the archimedean case, local zeta functions are also called complex powers. The volume contains major results on analytic and algebraic properties of complex powers by Atiyah, Bernstein, I. M. Gelfand, S. I. Gelfand, and Sato. Chapters devoted to p-adic local zeta functions present Serre's structure theorem, a rationality theorem, and many examples found by the author. The presentation concludes with theorems by Denef and Meuser.

  18. Fringe pattern analysis for optical metrology theory, algorithms, and applications

    CERN Document Server

    Servin, Manuel; Padilla, Moises

    2014-01-01

    The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such

  19. Mean Spherical Approximation-Based Partitioned Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2003-01-01

    Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =ζ∫ dr4a(r4 - r1)a(r4 - r2)a(r4 - r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ζ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.

  20. Mean Spherical Approximation-Based Partitioned Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    ZHOUShi-Qi

    2003-01-01

    Previous literature claims that the density functional theory for non-uniform non-hard sphere interaction potential fluid can be improved on by treating the tail part by the third order functional perturbation expansion approximation (FPEA) with the symmetrical and intuitive consideration-based simple function C0(3)(r1, r2, r3) =(∫dr4a(r4-r1)a(r4-r2)a(r4-r3) as the uniform third order direct correlation function (DCF) for the tail part,here kernel function a(r) = (6/πσ3)Heaviside(σ/2 - r). The present contribution concludes that for the mean spherical approximation-based second order DCF, the terms higher than second order in the FPEA of the tail part of the non-uniform first order DCF are exactly zero. The reason for the partial success of the previous a kernel function-based third order FPEA for the tail part is due to the adjustable parameter ξ and the short range of the a kernel function.Improvement over the previous theories is proposed and tested.

  1. Charge transfer in time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2017-10-01

    Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.

  2. A Comparative Analysis of Three Unique Theories of Organizational Learning

    Science.gov (United States)

    Leavitt, Carol C.

    2011-01-01

    The purpose of this paper is to present three classical theories on organizational learning and conduct a comparative analysis that highlights their strengths, similarities, and differences. Two of the theories -- experiential learning theory and adaptive -- generative learning theory -- represent the thinking of the cognitive perspective, while…

  3. Random Matrix Theory in molecular dynamics analysis.

    Science.gov (United States)

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.

  4. Perturbative analysis in higher-spin theories

    Science.gov (United States)

    Didenko, V. E.; Misuna, N. G.; Vasiliev, M. A.

    2016-07-01

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higherspin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  5. Functional approach to squeezed states in non commutative theories

    CERN Document Server

    Lubo, M

    2004-01-01

    We review some noncommutative theories in which no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. We show how the difference of structure between the Poisson brackets and the commutators in these theories generically leads to a harmonic oscillator whose position mean value is not strictly equal to the one predicted by classical mechanics. This raises the question of the nature of quasi classical states in these models. We propose an extension based on a variational principle. The action considered is the sum of the squares of the terms associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory: we recover the known gaussian functions and, besides them, other states which can be expressed as products of gaussians with specific hypergeometrics. We illustrate our construction in three models defined on a four dimensional phase space: two models endowed with a minimal length uncertainty and the non commutative p...

  6. Method of guiding functions in problems of nonlinear analysis

    CERN Document Server

    Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei

    2013-01-01

    This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.

  7. Negative symptoms mediate the influence of theory of mind on functional status in schizophrenia.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Thirthalli, Jagadisha; Kumar, Channaveerachari Naveen; Kumar, J Keshav; Gangadhar, Bangalore N

    2014-07-01

    We aimed to assess the relationship between social cognition, neurocognition, negative symptoms and functional status in a homogeneous schizophrenia patient group remitted from positive symptoms. Sixty patients underwent assessments of social and neurocognition dimensions recommended by expert panels. A blind rater assessed their functional status. Second order theory of mind (ToM) and negative symptoms had significant correlations with functional status. A bootstrapping analysis used to test for specific mediation models revealed that the effect of second order ToM on functioning was mediated by negative symptoms. Future studies should examine if targeted remediation of ToM improves negative symptoms and thus functioning.

  8. Functional analysis and the Feynman operator calculus

    CERN Document Server

    Gill, Tepper L

    2016-01-01

    This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers.

  9. Multireference spin-adapted variant of density functional theory.

    Science.gov (United States)

    Khait, Yuriy G; Hoffmann, Mark R

    2004-03-15

    A new Kohn-Sham formalism is developed for studying the lowest molecular electronic states of given space and spin symmetry whose densities are represented by weighted sums of several reference configurations. Unlike standard spin-density functional theory, the new formalism uses total spin conserving spin-density operators and spin-invariant density matrices so that the method is fully spin-adapted and solves the so-called spin-symmetry dilemma. The formalism permits the use of an arbitrary set of reference (noninteracting) configurations with any number of open shells. It is shown that the requirement of degeneracy of the total noninteracting energies of the reference configurations (or configuration state functions) is equivalent to the stationary condition of the exact energy relative to the weights of the configurations (or configuration state functions). Consequently, at any molecular geometry, the weights can be determined by minimization of the energy, and, for given reference weights, the Kohn-Sham orbitals can be determined. From this viewpoint, the developed theory can be interpreted as an analog of the multiconfiguration self-consistent field approach within density functional theory.

  10. Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated?

    Science.gov (United States)

    Brorsen, Kurt R; Yang, Yang; Pak, Michael V; Hammes-Schiffer, Sharon

    2017-05-04

    The development of approximate exchange-correlation functionals is critical for modern density functional theory. A recent analysis of atomic systems suggested that some modern functionals are straying from the path toward the exact functional because electron densities are becoming less accurate while energies are becoming more accurate since the year 2000. To investigate this trend for more chemically relevant systems, the electron densities in the bonding regions and the atomization energies are analyzed for a series of diatomic molecules with 90 different functionals. For hybrid generalized gradient approximation functionals developed since the year 2000, the errors in densities and atomization energies are decoupled; the accuracy of the energies remains relatively consistent while the accuracy of the densities varies significantly. Such decoupling is not observed for generalized gradient and meta-generalized gradient approximation functionals. Analysis of electron densities in bonding regions is found to be important for the evaluation of functionals for chemical systems.

  11. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); School of Advanced International Studies on Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: elio.conte@fastwebnet.it; Khrennikov, Andrei [International Center for Mathematical Modelling in Physics and Cognitive Sciences, M.S.I., University of Vaexjoe, S-35195 (Sweden); Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-09-15

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  12. Decision Support with Belief Functions Theory for Seabed Characterization

    CERN Document Server

    Martin, Arnaud

    2008-01-01

    The seabed characterization from sonar images is a very hard task because of the produced data and the unknown environment, even for an human expert. In this work we propose an original approach in order to combine binary classifiers arising from different kinds of strategies such as one-versus-one or one-versus-rest, usually used in the SVM-classification. The decision functions coming from these binary classifiers are interpreted in terms of belief functions in order to combine these functions with one of the numerous operators of the belief functions theory. Moreover, this interpretation of the decision function allows us to propose a process of decisions by taking into account the rejected observations too far removed from the learning data, and the imprecise decisions given in unions of classes. This new approach is illustrated and evaluated with a SVM in order to classify the different kinds of sediment on image sonar.

  13. Inclusion of Dispersion Effects in Density Functional Theory

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas

    In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development...... and benchmarking of a new van der Waals density functional, and iii) the application of the newly developed functional to CO desorption from Ru(0001). The effect of van der Waals interactions in water was studied by performing ab initio molecular dynamics simulations using PBE and the two recent van der Waals...... density functionals optPBE-vdW and vdW-DF2 with identical computational setup. The two van der Waals functionals have been found to give excellent descriptions of the constituents of water (e.g., water dimers and hexamers). Including van der Waals interactions gives a softer water structure as seen from...

  14. Effective Field Theory of Dark Energy: a Dynamical Analysis

    CERN Document Server

    Frusciante, Noemi; Silvestri, Alessandra

    2013-01-01

    The effective field theory (EFT) of dark energy relies on three functions of time to describe the background dynamics. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism an...

  15. Enhancement of field renormalization in scalar theories via functional renormalization group

    OpenAIRE

    Zappalà, Dario

    2012-01-01

    The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, in four Euclidean dimensions, d=4, to determine the effective potential and the renormalization function of the field in the broken phase. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-per...

  16. What Density Functional Theory could do for Quantum Information

    Science.gov (United States)

    Mattsson, Ann

    2015-03-01

    The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Multistate Density Functional Theory for Effective Diabatic Electronic Coupling.

    Science.gov (United States)

    Ren, Haisheng; Provorse, Makenzie R; Bao, Peng; Qu, Zexing; Gao, Jiali

    2016-06-16

    Multistate density functional theory (MSDFT) is presented to estimate the effective transfer integral associated with electron and hole transfer reactions. In this approach, the charge-localized diabatic states are defined by block localization of Kohn-Sham orbitals, which constrain the electron density for each diabatic state in orbital space. This differs from the procedure used in constrained density functional theory that partitions the density within specific spatial regions. For a series of model systems, the computed transfer integrals are consistent with experimental data and show the expected exponential attenuation with the donor-acceptor separation. The present method can be used to model charge transfer reactions including processes involving coupled electron and proton transfer.

  18. The combinatorics of Green's functions in planar field theories

    Science.gov (United States)

    Ebrahimi-Fard, Kurusch; Patras, Frédéric

    2016-12-01

    The aim of this exposition is to provide a detailed description of the use of combinatorial algebra in quantum field theory in the planar setting. Particular emphasis is placed on the relations between different types of planar Green's functions. The primary object is a Hopf algebra that is naturally defined on variables representing non-commuting sources, and whose coproduct splits into two half-coproducts. The latter give rise to the notion of an unshuffle bialgebra. This setting allows a description of the relation between full and connected planar Green's functions to be given by solving a simple linear fixed point equation. We also include a brief outline of the consequences of our approach in the framework of ordinary quantum field theory.

  19. Relativistic density functional theory for finite nuclei and neutron stars

    CERN Document Server

    Piekarewicz, J

    2015-01-01

    The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.

  20. The force distribution probability function for simple fluids by density functional theory.

    Science.gov (United States)

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  1. A Translation Case Analysis Based on Skopos Theory

    Institute of Scientific and Technical Information of China (English)

    刘冬梅

    2015-01-01

    With the spread of globalization,the roleof translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.

  2. A Translation Case Analysis Based on Skopos Theory

    Institute of Scientific and Technical Information of China (English)

    刘冬梅

    2015-01-01

    With the spread of globalization,the role of translation is crucial in cultural,economic,and social communication.The functionalist approaches of translation originated in the 1970s in Germany.They had carried on the reasonable aspects of the traditional theories and broken their restraint,which are very practical.Skopos theory reflects a general shift from predominantly linguistic and rather formal translation theories to a more functionally and socio-culturally oriented concept of translation,which drew inspiration from communication theory,action theory,text linguistics,and text theory,as well as from movements in literary studies towards reception theories.

  3. Density functional theory across chemistry, physics and biology.

    Science.gov (United States)

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT.

  4. Buckled graphene: A model study based on density functional theory

    KAUST Repository

    Khan, Mohammad A.

    2010-09-01

    We make use of ab initio calculations within density functional theory to investigate the influence of buckling on the electronic structure of single layer graphene. Our systematic study addresses a wide range of bond length and bond angle variations in order to obtain insights into the energy scale associated with the formation of ripples in a graphene sheet. © 2010 Elsevier B.V. All rights reserved.

  5. Reproducibility in density functional theory calculations of solids

    OpenAIRE

    2016-01-01

    This is the author accepted manuscript.The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aad3000 The widespread popularity of density-functional theory has given rise to a vast range of dedicated codes to predict molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions on the reproducibility of such predictions. We report the results of a community-...

  6. Density functional theory studies of transition metal nanoparticles in catalysis

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Rankin, Rees; Zeng, Zhenhua

    2013-01-01

    Periodic Density Functional Theory calculations are capable of providing powerful insights into the structural, energetics, and electronic phenomena that underlie heterogeneous catalysis on transition metal nanoparticles. Such calculations are now routinely applied to single crystal metal surfaces...... and to subnanometer metal clusters. Descriptions of catalysis on truly nanosized structures, however, are generally not as well developed. In this talk, I will illustrate different approaches to analyzing nanocatalytic phenomena with DFT calculations. I will describe case studies from heterogeneous catalysis...

  7. Improved theory of generalized meteo-ballistic weighting factor functions and their use

    Directory of Open Access Journals (Sweden)

    Vladimir Cech

    2016-06-01

    Full Text Available It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model. Trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions (WFFs which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements µB (ballistic wind wB, density ρB, virtual temperature τB, pressure pB as well. We have found that the existing theory of WFF calculation has several significant shortcomings. The aim of the article is to present a new, improved theory of generalized WFFs that eliminates the deficiencies found. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.

  8. Functional Analysis for Chemical Engineers.

    Science.gov (United States)

    Ramkrishna, D.

    1979-01-01

    Described is a graduate level engineering course on functional analysis offered at Purdue University. The course restricts itself to linear problems, specifically analysis of linear operators on vector spaces. Key applications in the course demonstrating the utility of abstract formulations are presented. (BT)

  9. Dynamic density functional theory with hydrodynamic interactions and fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Donev, Aleksandar, E-mail: donev@courant.nyu.edu; Vanden-Eijnden, Eric, E-mail: eve2@courant.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-06-21

    We derive a closed equation for the empirical concentration of colloidal particles in the presence of both hydrodynamic and direct interactions. The ensemble average of our functional Langevin equation reproduces known deterministic Dynamic Density Functional Theory (DDFT) [M. Rex and H. Löwen, “Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps,” Phys. Rev. Lett. 101(14), 148302 (2008)], and, at the same time, it also describes the microscopic fluctuations around the mean behavior. We suggest separating the ideal (non-interacting) contribution from additional corrections due to pairwise interactions. We find that, for an incompressible fluid and in the absence of direct interactions, the mean concentration follows Fick's law just as for uncorrelated walkers. At the same time, the nature of the stochastic terms in fluctuating DDFT is shown to be distinctly different for hydrodynamically-correlated and uncorrelated walkers. This leads to striking differences in the behavior of the fluctuations around Fick's law, even in the absence of pairwise interactions. We connect our own prior work [A. Donev, T. G. Fai, and E. Vanden-Eijnden, “A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law,” J. Stat. Mech.: Theory Exp. (2014) P04004] on fluctuating hydrodynamics of diffusion in liquids to the DDFT literature, and demonstrate that the fluid cannot easily be eliminated from consideration if one wants to describe the collective diffusion in colloidal suspensions.

  10. Bayesian error estimation in density-functional theory

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Kaasbjerg, Kristen; Frederiksen, Søren Lund

    2005-01-01

    We present a practical scheme for performing error estimates for density-functional theory calculations. The approach, which is based on ideas from Bayesian statistics, involves creating an ensemble of exchange-correlation functionals by comparing with an experimental database of binding energies...... for molecules and solids. Fluctuations within the ensemble can then be used to estimate errors relative to experiment on calculated quantities such as binding energies, bond lengths, and vibrational frequencies. It is demonstrated that the error bars on energy differences may vary by orders of magnitude...

  11. Formation energies of rutile metal dioxides using density functional theory

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Hansen, Heine Anton; Rossmeisl, Jan

    2009-01-01

    We apply standard density functional theory at the generalized gradient approximation (GGA) level to study the stability of rutile metal oxides. It is well known that standard GGA exchange and correlation in some cases is not sufficient to address reduction and oxidation reactions. Especially...... and due to a more accurate description of exchange for this particular GGA functional compared to PBE. Furthermore, we would expect the self-interaction problem to be largest for the most localized d orbitals; that means the late 3d metals and since Co, Fe, Ni, and Cu do not form rutile oxides...

  12. Atomistic force field for alumina fit to density functional theory.

    Science.gov (United States)

    Sarsam, Joanne; Finnis, Michael W; Tangney, Paul

    2013-11-28

    We present a force field for bulk alumina (Al2O3), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.

  13. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  14. Using Integrative Propositional Analysis for Evaluating Entrepreneurship Theories

    Directory of Open Access Journals (Sweden)

    Bernadette Wright

    2015-09-01

    Full Text Available Previous studies have noted a proliferation of disparate theories of entrepreneurship. This makes it difficult to find the best theory for application in teaching, practice, and research. Choosing the right entrepreneurship theories to teach and encourage is critical to providing entrepreneurs with the knowledge they need to succeed. Scholars have recommended integrating entrepreneurship theories across disciplines and across practice; however, rigorous methods to assess and integrate the best theories are lacking. Integrative propositional analysis is an emerging method to assess and improve theories using the theory structure as data, rather than relying on empirical data and opinion alone. This exploratory study pilot tested this approach with a sample of nine entrepreneurship theories. Several insights emerged that entrepreneurship researchers, educators, and practitioners can use to synthesize and improve theories for their specific needs and to collaboratively integrate the best theories from research and experience to create better theories.

  15. Levels of Analysis in Systems Theories of Personality.

    Science.gov (United States)

    Lester, David

    1986-01-01

    Systems theories of personality often describe subsystems (such as conscious and unconscious) and subsubsystems (such as ego, id, and superego). This paper classifies the major systems theories of personality in terms of the number of levels in their analysis. (Author)

  16. A Stylistic Analysis of Register Theory in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    刘鑫

    2015-01-01

    Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens' masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.

  17. A Stylistic Analysis of Register Theory in Oliver Twist

    Institute of Scientific and Technical Information of China (English)

    刘鑫

    2015-01-01

    Stylistic analysis refers to the linguistic approach to literature.Stylistics will mainly focus on the register theory,taking Charles Dickens’ masterpiece Oliver Twist as a good example to demonstrate how the register theory is embodied in the work.

  18. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  19. Elements of mathematics functions of a real variable : elementary theory

    CERN Document Server

    Bourbaki, Nicolas

    2004-01-01

    This book is an English translation of the last French edition of Bourbaki’s Fonctions d'une Variable Réelle. The first chapter is devoted to derivatives, Taylor expansions, the finite increments theorem, convex functions. In the second chapter, primitives and integrals (on arbitrary intervals) are studied, as well as their dependence with respect to parameters. Classical functions (exponential, logarithmic, circular and inverse circular) are investigated in the third chapter. The fourth chapter gives a thorough treatment of differential equations (existence and unicity properties of solutions, approximate solutions, dependence on parameters) and of systems of linear differential equations. The local study of functions (comparison relations, asymptotic expansions) is treated in chapter V, with an appendix on Hardy fields. The theory of generalized Taylor expansions and the Euler-MacLaurin formula are presented in the sixth chapter, and applied in the last one to the study of the Gamma function on the real ...

  20. Time evolution of the autocorrelation function in dynamical replica theory

    Science.gov (United States)

    Sakata, A.

    2013-04-01

    Asynchronous dynamics given by the master equation in the Sherrington-Kirkpatrick (SK) spin-glass model is studied based on dynamical replica theory (DRT) with an extension to take into account the autocorrelation function. The dynamical behaviour of the system is approximately described by dynamical equations of the macroscopic quantities: magnetization, energy contributed by randomness and the autocorrelation function. The dynamical equations under the replica symmetry assumption are derived by introducing the subshell equipartitioning assumption and exploiting the replica method. The obtained dynamical equations are compared with Monte Carlo simulations, and it is demonstrated that the proposed formula describes well the time evolution of the autocorrelation function in some parameter regions. The study offers a reasonable description of the autocorrelation function in the SK spin-glass system.

  1. Time-dependent density functional theory: Causality and other problems

    Energy Technology Data Exchange (ETDEWEB)

    Ruggenthaler, Michael; Bauer, Dieter [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    2007-07-01

    Time-dependent density functional theory (TDDFT) is a reformulation of the time dependent many-body problem in quantum mechanics which is capable of reducing the computational cost to calculate, e.g., strongly driven many-electron systems enormously. Recent developments were able to overcome fundamental problems associated with ionization processes. Still vital issues have to be clarified. Besides the construction of the underlying functionals we investigate the causality problem of TDDFT by general considerations and by studying a exactly solvable system of two correlated electrons in an intense laser-pulse. For the latter system, the two alternative approaches to the construction of the action functional or a constrained functional derivative by van Leeuwen and Gal, respectively, are explored.

  2. The mechanism of the formation of the hemiaminal and Schiff base from the benzaldehyde and triazole studied by means of the topological analysis of electron localisation function and catastrophe theory

    Science.gov (United States)

    Berski, Slawomir; Zbigniew Ciunik, Leszek

    2015-04-01

    The mechanisms of reaction of benzaldehyde (ald) with 4-amine-4H-1,2,4-triazole (4at), leading to Schiff base (Sch) and water, were investigated using topological analysis of the electron localisation function and catastrophe theory. Two reactions (synthesis of hemiaminal and synthesis of Schiff base) are represented by one catastrophe sequence: ald+4at: 1-14-[FF†F†FFTS1FF†F†FF†F†CF†]-2-9-[C†FFTS3F†F†FFF]-0:Sch+H2O with only fold (F) and cusp (C) catastrophes. The first reaction, in which a molecule of the hemiaminal is formed, consists of 14 steps separated by 13 catastrophes. The mechanism is non-concerted. The covalent bond C-N is formed after the formation of the O-H bond is terminated. The Schiff base formation through the water molecule elimination in the second reaction requires nine steps with eight catastrophes. The mechanism is non-concerted because first the C-O bond is broken and then the proton transfer occurs that results in the O-H bond creation.

  3. Index analysis approach theory at work

    CERN Document Server

    Lowen, R

    2015-01-01

    A featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction.   The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis.   Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is the...

  4. Compactly supported Wannier functions and algebraic K -theory

    Science.gov (United States)

    Read, N.

    2017-03-01

    In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n -component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K -theory, based on a ring of polynomials in e±i kx,e±i ky,..., which occur as entries in the Fourier-transformed Wannier functions.

  5. Theoretical and methodological analysis of personality theories of leadership

    Directory of Open Access Journals (Sweden)

    Оксана Григорівна Гуменюк

    2016-10-01

    Full Text Available The psychological analysis of personality theories of leadership, which is the basis for other conceptual approaches to understanding the nature of leadership, is conducted. Conceptual approach of leadership is analyzed taking into account the priority of personality theories, including: heroic, psychoanalytic, «trait» theory, charismatic and five-factor. It is noted that the psychological analysis of personality theories are important in understanding the nature of leadership

  6. Study of the Six-Loop Beta Function of the $\\lambda\\phi^4_4$ Theory

    OpenAIRE

    Shrock, Robert

    2016-01-01

    We investigate whether the six-loop beta function of the $\\lambda \\phi^4_4$ theory exhibits evidence for an ultraviolet zero. As part of our analysis, we calculate and analyze Pad\\'e approximants to this beta function. Extending our earlier results at the five-loop level, we find that in the range of $\\lambda$ where the perturbative calculation of the six-loop beta function is reliable, the theory does not exhibit robust evidence for an ultraviolet zero.

  7. Study of the Six-Loop Beta Function of the $\\lambda\\phi^4_4$ Theory

    CERN Document Server

    Shrock, Robert

    2016-01-01

    We investigate whether the six-loop beta function of the $\\lambda \\phi^4_4$ theory exhibits evidence for an ultraviolet zero. As part of our analysis, we calculate and analyze Pad\\'e approximants to this beta function. Extending our earlier results at the five-loop level, we find that in the range of $\\lambda$ where the perturbative calculation of the six-loop beta function is reliable, the theory does not exhibit robust evidence for an ultraviolet zero.

  8. Analytic number theory, approximation theory, and special functions in honor of Hari M. Srivastava

    CERN Document Server

    Rassias, Michael

    2014-01-01

    This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality, and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics, and other computational and applied sciences.

  9. Reduced density matrix functional theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baldsiefen, Tim

    2012-10-15

    Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to

  10. Performance of the density matrix functional theory in the quantum theory of atoms in molecules.

    Science.gov (United States)

    García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A

    2012-02-02

    The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.

  11. Density-functional perturbation theory goes time-dependent

    Directory of Open Access Journals (Sweden)

    Gebauer, Ralph

    2008-05-01

    Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.

  12. NEW STRAIN GRADIENT THEORY AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Dake Yi; Tzu Chiang Wang; Shaohua Chen

    2009-01-01

    A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.

  13. Stochastic Time-Dependent Current-Density Functional Theory

    Science.gov (United States)

    D'Agosta, Roberto

    2008-03-01

    Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.

  14. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...

  15. Continuous nowhere differentiable functions the monsters of analysis

    CERN Document Server

    Jarnicki, Marek

    2015-01-01

    This book covers the construction, analysis, and theory of continuous nowhere differentiable functions, comprehensively and accessibly. After illuminating the significance of the subject through an overview of its history, the reader is introduced to the sophisticated toolkit of ideas and tricks used to study the explicit continuous nowhere differentiable functions of Weierstrass, Takagi–van der Waerden, Bolzano, and others. Modern tools of functional analysis, measure theory, and Fourier analysis are applied to examine the generic nature of continuous nowhere differentiable functions, as well as linear structures within the (nonlinear) space of continuous nowhere differentiable functions. To round out the presentation, advanced techniques from several areas of mathematics are brought together to give a state-of-the-art analysis of Riemann’s continuous, and purportedly nowhere differentiable, function. For the reader’s benefit, claims requiring elaboration, and open problems, are clearly indicated. An a...

  16. Steady-State Density Functional Theory for Finite Bias Conductances.

    Science.gov (United States)

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  17. Descriptions of carbon isotopes within the energy density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atef [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia and Department of Physics, Al-Azhar University, 71524 Assiut (Egypt); Cheong, Lee Yen; Yahya, Noorhana [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Tammam, M. [Department of Physics, Al-Azhar University, 71524 Assiut (Egypt)

    2014-10-24

    Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly the blocking effect plays a significant role in the shell model configurations.

  18. Time-dependent density functional theory for quantum transport.

    Science.gov (United States)

    Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-09-21

    Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  19. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  20. Density functional theory for inhomogeneous associating chain fluids.

    Science.gov (United States)

    Bryk, P; Sokołowski, S; Pizio, O

    2006-07-14

    We propose a nonlocal density functional theory for associating chain molecules. The chains are modeled as tangent spheres, which interact via Lennard-Jones (12,6) attractive interactions. A selected segment contains additional, short-ranged, highly directional interaction sites. The theory incorporates an accurate treatment of the chain molecules via the intramolecular potential formalism and should accurately describe systems with strongly varying external fields, e.g., attractive walls. Within our approach we investigate the structure of the liquid-vapor interface and capillary condensation of a simple model of associating chains with only one associating site placed on the first segment. In general, the properties of inhomogeneous associating chains depend on the association energy. Similar to the bulk systems we find the behavior of associating chains of a given length to be in between that for the nonassociating chains of the same length and that for the nonassociating chains twice as large.

  1. Nucleation for Lennard-Jones Fluid by Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    FU Dong

    2005-01-01

    @@ A non-mean field density functional theory is employed to investigate the vapour-liquid nucleation. The excess Helmholtz free energy functional is formulated in terms of a local density approximation for short ranged repulsion and a density-gradient expansion for long-ranged attractions. An analytical expression for the direct correlation function of a Lennard-Jones fluid is utilized to take into account the effect of long-ranged attractions on intermolecular correlations. With the predicted bulk properties and surface tension as input, the nucleation properties including density profile, work of formation and number of particles at the reduced temperatures T* = 0.694 and 0.741 are inuestigated. The obtained number of particles in the critical nucleus agrees well with the simulation data.

  2. Nuclear energy density functional inspired by an effective field theory

    CERN Document Server

    Papakonstantinou, Panagiota; Lim, Yeunhwan; Hyun, Chang Ho

    2016-01-01

    Inspired by an effective field theory (EFT) for Fermi systems, we write the nuclear energy density functional (EDF) as an expansion in powers of the Fermi momentum $k_F$, or the cubic root of the density $\\rho^{1/3}$. With the help of pseudodata from microscopic calculations we fit the coefficients of the functional within a wide range of densities relevant for nuclei and neutron stars. The functional already at low order can reproduce known or adopted values of nuclear matter near saturation, a range of existing microscopic results on asymmetric matter, and a neutron-star mass-radius relation consistent with observations. Our approach leads to a transparent expansion of Skyrme-type EDFs and opens up many possibilities for future explorations in nuclei and homogeneous matter.

  3. New useful special function in quantum optics theory

    Science.gov (United States)

    Chen, Feng; Fan, Hong-Yi

    2016-08-01

    By virtue of the operator Hermite polynomial method [Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involves both power-series and Hermite polynomials, i.e., By virtue of the operator Hermite polynomial method and the technique of integration within ordered product of operators (IWOP) we derive its generating function. The circumstance in which this new special function appears and is applicable is considered. Project supported by the Natural Science Fund of Education Department of Anhui Province, China (Grant No. KJ2016A590), the Talent Foundation of Hefei University, China (Grant No. 15RC11), and the National Natural Science Foundation of China (Grant Nos. 11247009 and 11574295).

  4. Applications of large-scale density functional theory in biology

    Science.gov (United States)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  5. Structured Functional Principal Component Analysis

    Science.gov (United States)

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  6. Descriptive Topology in Selected Topics of Functional Analysis

    CERN Document Server

    Kakol, J; Pellicer, Manuel Lopez

    2011-01-01

    "Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Frechet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical set

  7. A Translation Case Analysis Based on Skopos Theory

    Institute of Scientific and Technical Information of China (English)

    盖孟姣

    2015-01-01

    This paper is a translation case analysis based on Skopos Theory.This paper choose President Xi’s New Year congratulations of 2015 as analysis text and gives the case analysis.This paper focuses on translating the text based on Skopos Theory.

  8. The electron-propagator approach to conceptual density-functional theory

    Indian Academy of Sciences (India)

    Junia Melin; Paul W Ayers; J V Ortiz

    2005-09-01

    Both electron propagator theory and density-functional theory provide conceptually useful information about chemical reactivity and, most especially, charge transfer. This paper elucidates thequalitative and quantitative links between the two theories, with emphasis on how the reactivity indicators of conceptual density-functional theory can be derived from electron propagator theory. Electron propagator theory could be used to compute reactivity indices with high accuracy at reasonable computational cost.

  9. Dynamics of localized particles from density functional theory

    Science.gov (United States)

    Reinhardt, J.; Brader, J. M.

    2012-01-01

    A fundamental assumption of the dynamical density functional theory (DDFT) of colloidal systems is that a grand-canonical free-energy functional may be employed to generate the thermodynamic driving forces. Using one-dimensional hard rods as a model system, we analyze the validity of this key assumption and show that unphysical self-interactions of the tagged particle density fields, arising from coupling to a particle reservoir, are responsible for the excessively fast relaxation predicted by the theory. Moreover, our findings suggest that even employing a canonical functional would not lead to an improvement for many-particle systems, if only the total density is considered. We present several possible schemes to suppress these effects by incorporating tagged densities. When applied to confined systems, we demonstrate, using a simple example, that DDFT necessarily leads to delocalized tagged particle density distributions, which do not respect the fundamental geometrical constraints apparent in Brownian dynamics simulation data. The implication of these results for possible applications of DDFT to treat the glass transition are discussed.

  10. Function-valued adaptive dynamics and optimal control theory.

    Science.gov (United States)

    Parvinen, Kalle; Heino, Mikko; Dieckmann, Ulf

    2013-09-01

    In this article we further develop the theory of adaptive dynamics of function-valued traits. Previous work has concentrated on models for which invasion fitness can be written as an integral in which the integrand for each argument value is a function of the strategy value at that argument value only. For this type of models of direct effect, singular strategies can be found using the calculus of variations, with singular strategies needing to satisfy Euler's equation with environmental feedback. In a broader, more mechanistically oriented class of models, the function-valued strategy affects a process described by differential equations, and fitness can be expressed as an integral in which the integrand for each argument value depends both on the strategy and on process variables at that argument value. In general, the calculus of variations cannot help analyzing this much broader class of models. Here we explain how to find singular strategies in this class of process-mediated models using optimal control theory. In particular, we show that singular strategies need to satisfy Pontryagin's maximum principle with environmental feedback. We demonstrate the utility of this approach by studying the evolution of strategies determining seasonal flowering schedules.

  11. Curvature and Frontier Orbital Energies in Density Functional Theory.

    Science.gov (United States)

    Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Kronik, Leeor; Baer, Roi

    2012-12-20

    Perdew et al. discovered two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points. (ii) Across an integer number of electrons, the exchange-correlation potential "jumps" by a constant, known as the derivative discontinuity (DD). Here we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT the two properties are two sides of the same coin. The absence of a DD dictates deviation from piecewise linearity, but the latter, appearing as curvature, can be used to correct for the former, thereby restoring the physical meaning of orbital energies. A simple correction scheme for any semilocal and hybrid functional, even Hartree-Fock theory, is shown to be effective on a set of small molecules, suggesting a practical correction for the infamous DFT gap problem. We show that optimally tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and that this can be used as a sound theoretical basis for novel tuning strategies.

  12. Chemical reactivity in the framework of pair density functional theories.

    Science.gov (United States)

    Otero, Nicolás; Mandado, Marcos

    2012-05-15

    Chemical reactivity descriptors are derived within the framework of the pair density functional theory. These indices provide valuable information about bonding rearrangements and activating mechanisms upon electrophilic or nucleophilic reactions. Indices derived and tested in this work represent nonlocal counterparts of the local reactivity indices derived in the context of conceptual density functional theory (CDFT) and frequently used in reactivity studies; the Fukui function, the local softness and the dual descriptor. In this work, we show how these nonlocal indices provide a quantum chemical basis to explain the success of qualitative resonance models in chemical reactivity predictions. Also, local information is implicitly contained as CDFT indices are obtained by simple integration. As illustrative examples, we have considered in this work the Markovnikov's rule, the reactivity of enolate anion, the nucleophilic conjugate addition to α,β-unsaturated compounds and the electrophilic aromatic substitution of benzene derivatives. The densities used in this work were obtained with Hartree-Fock, Kohn-Sham DFT, and singles and doubles configuration interaction (CISD) approaches. Copyright © 2012 Wiley Periodicals, Inc.

  13. Singularity analysis: theory and further developments

    Science.gov (United States)

    Cheng, Qiuming

    2015-04-01

    Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.

  14. Four-point correlation function of stress-energy tensors in N=4 superconformal theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.

  15. Large-Scale Density Functional Theory Transition State Searching in Enzymes.

    Science.gov (United States)

    Lever, Greg; Cole, Daniel J; Lonsdale, Richard; Ranaghan, Kara E; Wales, David J; Mulholland, Adrian J; Skylaris, Chris-Kriton; Payne, Mike C

    2014-11-06

    Linear-scaling quantum mechanical density functional theory calculations have been applied to study the rearrangement of chorismate to prephenate in large-scale models of the Bacillus subtilis chorismate mutase enzyme. By treating up to 2000 atoms at a consistent quantum mechanical level of theory, we obtain an unbiased, almost parameter-free description of the transition state geometry and energetics. The activation energy barrier is calculated to be lowered by 10.5 kcal mol(-1) in the enzyme, compared with the equivalent reaction in water, which is in good agreement with experiment. Natural bond orbital analysis identifies a number of active site residues that are important for transition state stabilization in chorismate mutase. This benchmark study demonstrates that linear-scaling density functional theory techniques are capable of simulating entire enzymes at the ab initio quantum mechanical level of accuracy.

  16. Enhancement of field renormalization in scalar theories via functional renormalization group

    CERN Document Server

    Zappalà, Dario

    2012-01-01

    The flow equations of the Functional Renormalization Group are applied to the O(N)-symmetric scalar theory, for N=1 and N=4, to determine the effective potential and the renormalization function of the field in the broken phase. The flow equations of these quantities are derived from a reduction of the full flow of the effective action onto a set of equations for the n-point vertices of the theory. In our numerical analysis, the infrared limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to obtain the physical values of the parameters by extrapolation. In the N=4 theory a non-perturbatively large value of the physical renormalization of the longitudinal component of the field is observed. The dependence of the field renormalization on the UV cut-off and on the bare coupling is also investigated.

  17. Direct test of the gauge-gravity correspondence for Matrix theory correlation functions

    CERN Document Server

    Hanada, Masanori; Sekino, Yasuhiro; Yoneya, Tamiaki

    2011-01-01

    We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) Yang-Mills theory, which was proposed by Banks et al. as a non-perturbative definition of 11-dimensional M-theory in the infinite-momentum frame. We perform first-principle calculations using Monte Carlo simulations, and compare the results against the predictions obtained previously based on the gauge-gravity correspondence from 10 dimensions. After providing a self-contained review on these predictions, we present clear evidence that the predictions in the large-N limit actually hold even at small N such as N=2 and 3. The predicted behavior seems to continue to the far infrared regime, which goes beyond the naive range of validity of the 10D supergravity analysis. This suggests that the correlation functions also contain important information on the M-theory limit.

  18. Application of Density Functional Theory to Systems Containing Metal Atoms

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.

    2006-01-01

    The accuracy of density functional theory (DFT) for problems involving metal atoms is considered. The DFT results are compared with experiment as well as results obtained using the coupled cluster approach. The comparisons include geometries, frequencies, and bond energies. The systems considered include MO2, M(OH)+n, MNO+, and MCO+2. The DFT works well for frequencies and geometries, even in case with symmetry breaking; however, some examples have been found where the symmetry breaking is quite severe and the DFT methods do not work well. The calculation of bond energies is more difficult and examples of successes as well as failures of DFT will be given.

  19. Density functional theory studies of doping in Titania

    OpenAIRE

    2010-01-01

    The structural and electronic properties of rutile and anatase, and the influence of both mono- and co-doping, have been studied using Density Functional Theory. Ge-doped anatase and rutile exhibit different band gap-narrowing mechanisms; in particular, host Ti 3d states move to lower energy regions in anatase and Ge 4s impurities states locate below the conduction band of rutile. For S-doping, S 3p states locate above the top of the valence band and mix with O 2p states, leading to band gap ...

  20. Cosmic Wave Functions with the Brans-Dicke Theory

    Institute of Scientific and Technical Information of China (English)

    ZHU Zong-Hong

    2000-01-01

    Using the standard Wentzel-Kramers-Brillouin method, the Wheeler-De Witt equation for the Brans-Dicke theory is solved under three kinds of boundary conditions (proposed by Hattie-Hawking, Vilenkin and Linde, respectively). It is found that, although the gravitational and cosmological"constants" are dynamical and timedependent in the classical models, they will acquire constant values when the universe comes from the quantum creation, and that in particular, the amplitude of the resulting wave function under Linde or Vilenkin boundary conditions reaches its maximum if the cosmological constant is the minimum.

  1. On the applications of Hardy class functions in scattering theory

    CERN Document Server

    Gadella, M

    2007-01-01

    This paper is a response to an article (R. de la Madrid, Journal of Physics A: Mathematical and General, 39,9255-9268 (2006)) recently published in Journal of Physics A: Mathematical and Theoretical. The article claims that the theory of resonances and decaying states based on certain rigged Hilbert spaces of Hardy functions is physically untenable. In this paper we show that all of the key conclusions of the cited article are the result of either the errors in mathematical reasoning or an inadequate understanding of the literature on the subject.

  2. Applications of random field theory to functional connectivity.

    Science.gov (United States)

    Worsley, K J; Cao, J; Paus, T; Petrides, M; Evans, A C

    1998-01-01

    Functional connectivity between two voxels or regions of voxels can be measured by the correlation between voxel measurements from either PET CBF or BOLD fMRI images in 3D. We propose to look at the entire 6D matrix of correlations between all voxels and search for 6D local maxima. The main result is a new theoretical formula based on random field theory for the p-value of these local maxima, which distinguishes true correlations from background noise. This can be applied to crosscorrelations between two different sets of images--such as activations under two different tasks, as well as autocorrelations within the same set of images.

  3. Use of density functional theory in drug metabolism studies

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Flemming Steen; Olsen, Lars

    2014-01-01

    INTRODUCTION: The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool...... isoforms. This is probably due to the fact that the binding of the substrates is not the major determinant. When binding of the substrate plays a significant role, the well-known issue of determining the free energy of binding is the challenge. How approaches taking the protein environment into account...

  4. Dynamical density functional theory with hydrodynamic interactions in confined geometries

    Science.gov (United States)

    Goddard, B. D.; Nold, A.; Kalliadasis, S.

    2016-12-01

    We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.

  5. Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory

    CERN Document Server

    Staszczak, A; Baran, A; Nazarewicz, W

    2010-01-01

    The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.

  6. Multiphase aluminum equations of state via density functional theory

    Science.gov (United States)

    Sjostrom, Travis; Crockett, Scott; Rudin, Sven

    2016-10-01

    We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics, and orbital-free DFT are employed. The results are then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We provide extensive comparison with experiment, and based on this we also provide a slightly modified equation of state for the aluminum 6061 alloy.

  7. Geometric function theory in one and higher dimensions

    CERN Document Server

    Graham, Ian

    2003-01-01

    This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the infinite-dimensional theory and provides numerous exercises in each chapter for further study. The authors present such topics as linear invariance in the unit disc, Bloch functions and the Bloch constant, and growth, covering and distortion results for starlike and convex mappings in Cn and complex Banach spaces.

  8. Quantification of Uncertainties in Nuclear Density Functional theory

    CERN Document Server

    Schunck, N; Higdon, D; Sarich, J; Wild, S

    2014-01-01

    Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.

  9. [The theory of functional systems in medicine: methodological aspects].

    Science.gov (United States)

    Khrutskiĭ, K S

    2009-01-01

    P.K. Anokhin's theory of functional systems (TFS) is a unique scientific development extending an original field of biomedical research initiated in this country by I.M. Sechenov, I.P. Pavlov, and A.A. Ukhtomsky. Unique methodology of TFS is based on the integrated approach to the study of human vital activity including psychic and somatic processes. The main results of the studies in the framework of TFS methodology and prospects for its further development are reviewed with special reference to the key mechanisms of eitiopathogenesis of chronic non-infectious diseases.

  10. Singularity theory of fitness functions under dimorphism equivalence.

    Science.gov (United States)

    Wang, Xiaohui; Golubitsky, Martin

    2016-09-01

    We apply singularity theory to classify monomorphic singular points as they occur in adaptive dynamics. Our approach is based on a new equivalence relation called dimorphism equivalence, which is the largest equivalence relation on strategy functions that preserves ESS singularities, CvSS singularities, and dimorphisms. Specifically, we classify singularities up to topological codimension two and compute their normal forms and universal unfoldings. These calculations lead to the classification of local mutual invasibility plots that can be seen generically in systems with two parameters.

  11. Current functional theory for multi-electron configuration

    DEFF Research Database (Denmark)

    Bang, Jens N.; Bohr, Henrik

    2010-01-01

    The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state...... to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application...

  12. Special functions in Fuzzy Analysis

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2006-01-01

    Full Text Available In the treatment of Fuzzy Logic an useful tool appears: the membership function, with the information about the degree of completion of a condition which defines the respective Fuzzy Set or Fuzzy Relation. With their introduction, it is possible to prove some results on the foundations of Fuzzy Logic and open new ways in Fuzzy Analysis.

  13. Fifteen papers on functional analysis

    CERN Document Server

    Allakhverdiev, B P; Fainshtein, A S; Khelemskii, AYa; Klenina, LI

    1984-01-01

    The papers in this volume cover topics on functional analysis. They have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.

  14. Thermodynamic extension of density-functional theory. II. Finite-temperature ensemble spin-density functional theory

    CERN Document Server

    Balawender, Robert

    2009-01-01

    The formalism developed in the first paper of the series [arXiv:0901.1060v3] is applied to two thermodynamic systems: (i) of three global observables (the energy, the total electron number and the spin number), (ii) of one global observable (the internal electron energy) and two local (position-dependent) observables (the total electron density and the spin density). The two-component potential of the many-electron system of interest is constructed of a scalar external potential and a collinear magnetic field (coupled only with the spin operator). Various equilibrium characteristics of two systems are defined and investigated. Conditions for the equivalence between two systems (the same equilibrium density matrix demanded) are derived and thoroughly discussed. The applicability of the Hohenberg-Kohn theorem is extended to the thermodynamic spin-density functional theory. Obtained results provide a rigorous mathematical foundation for future derivation of the zero-temperature limit of this theory and determina...

  15. Functional approach to squeezed states in non commutative theories

    Science.gov (United States)

    Lubo, Musongela

    2004-05-01

    We review here the quantum mechanics of some noncommutative theories in which no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. We show how the difference of structure between the Poisson brackets and the commutators in these theories generically leads to a harmonic oscillator whose positions and momenta mean values are not strictly equal to the ones predicted by classical mechanics. This raises the question of the nature of quasi classical states in these models. We propose an extension based on a variational principle. The action considered is the sum of the absolute values of the expressions associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory i.e. we recover the known gaussian functions. Besides them, we find other states which can be expressed as products of gaussians with specific hyper geometrics. We illustrate our construction in two models defined on a four dimensional phase space: a model endowed with a minimal length uncertainty and the non commutative plane. Our proposal leads to second order partial differential equations. We find analytical solutions in specific cases. We briefly discuss how our proposal may be applied to the fuzzy sphere and analyze its shortcomings.

  16. Generalized functions, volume 4 applications of harmonic analysis

    CERN Document Server

    Gel′fand, I M; Vilenkin, N Ya

    2016-01-01

    The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The main

  17. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  18. Behavior of Halogen Bonds of the Y-X⋅⋅⋅π Type (X, Y=F, Cl, Br, I) in the Benzene π System, Elucidated by Using a Quantum Theory of Atoms in Molecules Dual-Functional Analysis.

    Science.gov (United States)

    Sugibayashi, Yuji; Hayashi, Satoko; Nakanishi, Waro

    2016-08-18

    The nature of halogen bonds of the Y-X-✶-π(C6 H6 ) type (X, Y=F, Cl, Br, and I) have been elucidated by using the quantum theory of atoms in molecules (QTAIM) dual-functional analysis (QTAIM-DFA), which we proposed recently. Asterisks (✶) emphasize the presence of bond-critical points (BCPs) in the interactions in question. Total electron energy densities, Hb (rc ), are plotted versus Hb (rc )-Vb (rc )/2 [=(ħ(2) /8m)∇(2) ρb (rc )] for the interactions in QTAIM-DFA, in which Vb (rc ) are potential energy densities at the BCPs. Data for perturbed structures around fully optimized structures were used for the plots, in addition to those of the fully optimized ones. The plots were analyzed by using the polar (R, θ) coordinate for the data of fully optimized structures with (θp , κp ) for those that contained the perturbed structures; θp corresponds to the tangent line of the plot and κp is the curvature. Whereas (R, θ) corresponds to the static nature, (θp , κp ) represents the dynamic nature of the interactions. All interactions in Y-X-✶-π(C6 H6 ) are classified by pure closed-shell interactions and characterized to have vdW nature, except for Y-I-✶-π(C6 H6 ) (Y=F, Cl, Br) and F-Br-✶-π(C6 H6 ), which have typical hydrogen-bond nature without covalency. I-I-✶-π(C6 H6 ) has a borderline nature between the two. Y-F-✶-π(C6 H6 ) (Y=Br, I) were optimized as bent forms, in which Y-✶-π interactions were detected. The Y-✶-π interactions in the bent forms are predicted to be substantially weaker than those in the linear F-Y-✶-π(C6 H6 ) forms.

  19. Lewis Acid and Substituent Effects on the Molecular Mechanism for the Nazarov Reaction of Penta-1,4-dien-3-one and Derivatives. A Topological Analysis Based on the Combined Use of Electron Localization Function and Catastrophe Theory.

    Science.gov (United States)

    Polo, Victor; Andrés, Juan

    2007-05-01

    The joint use of the topological analysis provided by the electron localization function (ELF) and catastrophe theory (CT), at the B3LYP/6-31G(d) calculation level, allows us to examine the Lewis acid (protonation H(+) and presence of BH3) and the role of an electron donor substituent (-OCH3) at α and β positions along the course of the molecular mechanism for the Nazarov rearrangement of penta-1,4-dien-3-one and eight derivatives. The progress of the reaction is monitored by the changes of the ELF structural stability domains (SSDs), each change being controlled by a turning point derived from CT. These SSDs and the corresponding turning points are associated with a sequence of elementary chemical steps. Along the cyclization path of penta-1,4-diene-3-one, four SSDs as well as three turning points (cusp1-fold1-cusp2) have been characterized. The first and second SSDs correspond to a polarization of the C-O bond and electronic redistribution among the C-C bonds, respectively, and they can be associated with the formation of an oxyallyl structure. The third and fourth SSDs can be assigned to the ring closure process. Protonation of the oxygen atom shifts the reactive directly into the second SSD, greatly reducing the activation and reaction energies. The electronic effects due to Lewis acids and electron donor substituents have been rationalized in terms of calculations of mesomeric structures from ELF basin populations. The combination of Lewis acids together with α and β -OCH3 substitutions renders a cooperative and competitive effect on activation and reaction free energies, respectively.

  20. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    Science.gov (United States)

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-05

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.