WorldWideScience

Sample records for fume system contaminated

  1. Removal of an acid fume system contaminated with perchlorates located within hot cell

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers

  2. Analysis of heat transfer and contaminant transport in fume hoods

    International Nuclear Information System (INIS)

    Pathanjali, C.; Rahman, M.M.

    1996-01-01

    The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room

  3. Dry fumes purifying system using anhydrous baking soda; Procede chimique d`epuration des fumees au bicarbonate de soude anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1998-04-01

    UNISYSTEMS has developed the industrial implementation of the chemical process using anhydrous backing soda, patented by SOLVAY, for purifying fumes containing inorganic salts and sulphur oxides as polluting agents. The system can be applied to industrial processes releasing this type of polluting agents in the fumes at a temperature over 160 deg C, as it is specially indicated in purifying fumes coming from ceramic firing kilns. (authors)

  4. Designing, Constructing and Installing a Local Exhaust Ventilation System to Minimize Welders\\' Exposure to Welding Fumes

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2017-10-01

    Full Text Available Background & Aims of the Study: Welder’s exposure to welding fumes can cause occupational diseases. The current study sought to examine exposure to welding fumes among welders who work in the repair shop of Sarcheshmeh Copper Complex and design a local exhaust ventilation system to control exposure to welding fumes. Materials & Methods: This applied analytical study was conducted in the summer of 2016 among welders working in the repair shop of Sarcheshmeh Copper Complex. The study comprised three phases; in the first one, welders’ exposure to welding fumes was assessed at the beginning of the study. After that, a local exhaust ventilation system was designed and installed in the aforementioned repair shop. In the final stage, welders’ exposure to welding fumes was assessed again after installation of the ventilation system. The procedure recommended by NIOSH (method number 7300 was used for individual sampling of welders. Results: Based on the obtained findings, before installing the ventilation system, welding technicians were exposed to 0.3 mg/m3 of copper fumes and 0.04 mg/m3 of chromium fumes. Journeyman welders were also exposed to 2.16 mg/m3 of manganese fumes, while stellar welders were exposed to 6.9 mg/m3 of iron fumes. In the light of these measurements, a local exhaust ventilation system was designed and installed. Subsequently, measurement of exposure to welding fumes showed a significant reduction. That is, welding technicians were exposed to 0.17 mg/m3 and 0.015 mg/m3 of copper and chromium fumes respectively. Additionally, journeyman welders were exposed to 0.86 mg/m3 of manganese fumes, whereas stellar welders were exposed to 4.3 mg/m3 of iron fumes. Conclusions: A comparison of standard limits of exposure to welding fumes and the results obtained from measurements in sampling stations before and after the installation of the local exhaust ventilation system reveals that this controlling measure was very effective in the

  5. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  6. Performance studies on hydrofluoric acid fumes scrubbing systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S; Bhowmik, A; Bera, T K; Sridhar, H; Shanmugavelu, P; Muralidhara, H R [Rare Materials Project, Bhabha Atomic Research Centre, Mysore (India)

    1994-06-01

    Uranium hexafluoride gas is a major process medium for the production of nuclear fuels. Different types of scrubbers suitable for disposal of exhaust gases containing low concentration of HF/UF{sub 6} contaminants, treatment of contaminated air from the working environment of a plant and bulk quantity of HF/UF{sub 6} from storage vessels are described. 8 refs., 3 figs., 3 tabs.

  7. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  8. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.

    Science.gov (United States)

    Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P

    2018-01-01

    Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.

  9. Isothermal model investigation of fume extraction systems for the scrap burner at Appleby Frodingham

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.

    1976-08-01

    Model tests have been made on three suggested schemes for improving the efficiency of fume collection on the scrap burning installation in the Anchor BOS plant at Appleby Frodingham. In particular the usefulness of air curtains as a means of containing the fume has been examined. CO/sub 2/ tracer measurements, and photographs using smoke for visualization have allowed the assessment of the collection efficiencies of the three schemes, and some alterative solutions have been investigated using similar methods. (GRA)

  10. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    Science.gov (United States)

    Mucke, D.

    2012-04-01

    Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analysis of contaminated soils by XRF Dieter Mucke, Rolf Kumann, Sebastian Baldauf GEOMONTAN Gesellschaft für Geologie und Bergbau mbH&Co.KG, Muldentalstrasse 56, 09603 Rothenfurth, Saxony/Germany For hundreds of years in the Ore Mountains between Bohemia and Saxony silver and other ores are produced and smelted. Sulphide- and sulpharsenide-ores needed to be roasted first. In doing so the sulphide sulphur was oxidised under formation of sulphur dioxide SO2 and arsenide conversed into elemental arsenic and arsenide trioxide As2O3 respectively. Also the metals lead, cadmium and zinc are components of hut smokes, in the field of nickel foundries also nickel. The contents of soils basically reflect the geogenic conditions, which are caused by decomposition- and relocation-effects of the mineralisations, in the area of foundries also with influences by with the hut smokes anthropogenic mobilised elements. The Saxonian Agency for Environment and Geology drafted in 1992 a Soil Investigation Program with the aim of investigation of the contamination of Saxonian soils with arsenic and toxic heavy metals. In order of this Agency GEOMONTAN investigated 1164 measuring points in the grid 4 * 4 km.soil profiles and extracted soil samples for analysis. In the result of the laboratory examinations the Agency edited the "Soil atlas of the Free State of Saxony". 27 elements, pH and PAK are shown in detailed maps and allow in whole Saxony the first assessment of the contamination of soils with arsenic and toxic heavy metals. Each of the investigated soil profiles represent an area of 16 km2. Already by the different use of the districts (agricultural, industrial, urban) restricts representative values. GEOMONTAN in the meantime used at the exploration of a copper deposit in Brandenburg/Germany with approx. 50,000 single tests at drill cores a very fast low-cost method: the X Ray fluorescence

  11. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    Directory of Open Access Journals (Sweden)

    Guohui Mei

    2017-03-01

    Full Text Available Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  12. Visibility in sodium fume

    International Nuclear Information System (INIS)

    Hughes, G.W.; Anderson, N.R.

    1971-01-01

    The appearance of sodium fume of unknown concentration and the effects of short term exposure on unprotected workers is described. The molecular extinction coefficient of sodium fume is calculated from which light transmission data, and a rapid method for the estimation of the fume concentration is proposed. (author)

  13. Contamination Control: a systems approach

    NARCIS (Netherlands)

    Donck, J.C.J. van der

    2010-01-01

    Contamination influences a wide variety of industrial processes. For complex systems, contamination control, the collective effort to control contamination to such a level that it guarantees or even improves process or product functionality, offers a way for finding workable solutions. Central in

  14. A cleanroom contamination control system

    OpenAIRE

    Whyte, W.; Eaton, T.

    2002-01-01

    Analytical methods for hazard and risk analysis are being considered for controlling contamination\\ud in pharmaceutical cleanrooms. The most suitable method appears to be the HACCP system that has\\ud been developed for the food industry, but this requires some reinterpretation for use in\\ud pharmaceutical manufacturing. This paper suggests a possible system.\\ud To control contamination effectively, it is necessary to have a good appreciation of the routes and\\ud sources of contamination, and ...

  15. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  16. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  17. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  18. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  19. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  20. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    Science.gov (United States)

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  1. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  2. Interlaboratory comparison on 137Cs activity concentration in fume dust

    International Nuclear Information System (INIS)

    Tzika, Faidra; Hult, Mikael; Burda, Oleksiy; Arnold, Dirk; Sibbens, Goedele; Caro Marroyo, Belén; Gómez–Mancebo, Maria Belén; Peyrés, Virginia; Moser, Hannah; Ferreux, Laurent; Šolc, Jaroslav; Dryák, Pavel; Fazio, Aldo; Luca, Aurelian; Vodenik, Branko; Reis, Mario

    2015-01-01

    A comparison was conducted, between 11 European National Metrology Institutes and EC-JRC, on measurement of 137 Cs activity concentration in fume dust. As test material an activity standard produced from real contaminated fume dust was used. The standard material consisted of 13 cylindrical samples of compressed fume dust. The material contained 137 Cs and 60 Co of reference activity concentrations of (9.72±0.10) Bq/g and (0.450±0.018) Bq/g, respectively, for the reference date of 1 June 2013, determined using the comparison results. The organization and results of the intercomparison, as well as the process of obtaining reliable reference values are presented. - Highlights: • A European comparison was conducted on measurement of 137 Cs activity in fume dust. • Participants used high resolution gamma ray spectrometry. • Efficiency calibration included Monte Carlo, numerical and experimental methods. • Reference 137 Cs and 60 Co activity concentrations in the fume dust were determined. • A new traceable activity standard of fume dust matrix is available to end-users.

  3. Removal of Airborne Contaminants from a Surface Tank by a Push-Pull System

    DEFF Research Database (Denmark)

    Heiselberg, Per; Topp, Claus

    Open surface tanks are used in many industrial processes, and local exhaust systems are often designed to capture and remove toxic fumes diffused from materials in the tanks prior to their escape into the workplace environment. The push-pull system seems to be the most efficient local exhaust...... system, but proper design is required to ensure health and safety of the workers and, furthermore, it is very desirable from an energy conservation point of view to determine an optimum and -an efficient design of push-pull hoods which can exhaust all contaminants with a minimum quantity of volume flow....... The paper describes and discusses different design methods and compares designed values with results from a measurement series of push-pull system efficiency....

  4. Airborne iodine-125 arising from surface contamination

    International Nuclear Information System (INIS)

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  5. Pozzolanic Reactivity of Silica Fume and Ground Rice Husk Ash as Reactive Silica in a Cementitious System: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Weiting Xu

    2016-03-01

    Full Text Available This study comparably assessed the pozzolanic effect of silica fume (SF and ground rice husk ash (RHA as supplementary cementing materials on the properties of blended cement pastes and concretes. A commonly commercial silica fume (SF and locally-produced rice husk ash (RHA samples with two finenesses (one with larger size than cement and the other with smaller size than cement were used in this study. Material properties of SF and RHA were experimentally characterized. Hydration and mechanical properties of cement pastes incorporating SF and RHA were determined by thermogravimetric analysis (TGA and compressive strength tests, respectively. Properties of concretes regarding workability, mechanical property, durability, and microstructure were evaluated. Results showed that, although the finely ground RHA used in this study possessed lower SiO2 content and higher particle size compared to SF, it exhibited comparable pozzolanic reactivity with SF due to the nano-scale pores on its each single particle, leading to a higher specific surface area. The optimal replacement levels of SF and RHA were 10% by weight of cement in pastes and concretes. Although addition of SF and RHA led to a significant reduction in slump for the fresh mixtures, inclusion of up to 30% of SF or 15% of ground RHA did not adversely affect the strength of concretes. At the same mix, incorporation of finely-ground RHA in cement composites provided comparable mechanical properties, hydration degree, and durability with SF blended cement composites, owing to the porous structure and high specific surface area of RHA particles. Microstructure morphology analysis of concretes explored by scanning electron microscopy (SEM further validated the strength and the durability test results.

  6. Bronchiolitis from nitrous fumes

    Energy Technology Data Exchange (ETDEWEB)

    Darke, C S; Warrack, A J.N.

    1958-01-01

    Gases of low solubility (e.g., NO/sub 2/) may not irritate upper respiratory tract but may act insidiously on lower tract producing edema and bronchiolitis. Cases of bronchiolitis (1 resulting in death) from exposure to brown nitrous fumes are reported. There were no or slight symptoms at first but severe ones after about 1 wk. Pathology appears as acute pulmonary edema with damage and desquamation of alveolar epithelium particularly and that of respiratory bronchioles somewhat. Patchy atelectasis, bronchopneumonia and disruption of fibers in cell walls may also occur. Severe cases have obliteration of lumen (bronchiolitis obliterans) with extreme distress and death.

  7. Dosimetric system for measurement of radioactive contaminations

    International Nuclear Information System (INIS)

    Litynski, Z.; Pienkos, J.P.; Witkowski, J.; Zadrozny, S.

    1985-01-01

    A dosimetric system for personnel dosimetry and monitoring measuring a contamination without time delay and dead time is described. The system ensures many-point measurement and minimalization of background radiation influence. 1 fig. (A.S.)

  8. Short term exposure to cooking fumes and pulmonary function

    OpenAIRE

    Qvenild Torgunn; Svendsen Kristin; Svedahl Sindre; Sjaastad Ann; Hilt Bjørn

    2009-01-01

    Abstract Background Exposure to cooking fumes may have different deleterious effects on the respiratory system. The aim of this study was to look at possible effects from inhalation of cooking fumes on pulmonary function. Methods Two groups of 12 healthy volunteers (A and B) stayed in a model kitchen for two and four hours respectively, and were monitored with spirometry four times during twenty four hours, on one occasion without any exposure, and on another with exposure to controlled level...

  9. When are fume-cupboards necessary in hospital radioisotope laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Birks, J L [Singleton Hospital, Swansea (UK)

    1976-06-01

    Suggestions are made for procedures likely to require the provision of efficient fume-cupboards in hospital radioisotope laboratories. All such departments undertaking in vivo radioisotope procedures will require a supply of sterile materials, but only some of these will also require a fume-cupboard, since the use of a relatively inexpensive aseptic cabinet, without air flow and exhaust system, may suffice for such procedures as the labelling of blood cells or plasma. Efficient fume-cupboards may be required in hospital laboratories that are routinely concerned with the elution of generators of isotopes such as /sup 99/Tcsup(m) and /sup 113/Insup(m), the sterilization of radiopharmaceuticals (e.g. technetium-sulphur colloid) requiring the use of a pressure cooker, and the storage and handling of therapeutic quantities of /sup 131/I. Copious general ventilation of isotope rooms may be preferable to the too frequent incorporation of unnecessary fume-cupboards.

  10. 222-S LABORATORY FUME HOOD TESTING STUDY

    International Nuclear Information System (INIS)

    RUELAS, B.H.

    2007-01-01

    The 222-S Laboratory contains 155 active fume hoods that are used to support analytical work with radioactive and/or toxic materials. The performance of a fume hood was brought into question after employees detected odors in the work area while mixing chemicals within the subject fume hood. Following the event, testing of the fume hood was conducted to assess the performance of the fume hood. Based on observations from the testing, it was deemed appropriate to conduct performance evaluations of other fume hoods within the laboratory

  11. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  12. Radioactive contamination mapping system detailed design report

    International Nuclear Information System (INIS)

    Bauer, R.G.; O'Callaghan, P.B.

    1996-08-01

    The Hanford Site's 100 Area production reactors released radioactively and chemically contaminated liquids into the soil column. The primary source of the contaminated liquids was reactor coolant and various waste waters released from planned liquid discharges, as well as pipelines, pipe junctions, and retention basins leaking into the disposal sites. Site remediation involves excavating the contaminated soils using conventional earthmoving techniques and equipment, treating as appropriate, transporting the soils, and disposing the soils at ERDF. To support remediation excavation, disposal, and documentation requirements, an automated radiological monitoring system was deemed necessary. The RCMS (Radioactive Contamination Mapping System) was designed to fulfill this need. This Detailed Design Report provides design information for the RCMS in accordance with Bechtel Hanford, Inc. Engineering Design Project Instructions

  13. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  14. Background compensation methodologies for contamination monitoring systems

    International Nuclear Information System (INIS)

    Raman, Anand; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Radiation surveillance program in the various nuclear facilities incorporate contamination monitoring as an important component. Contamination monitoring programs constitute monitoring for alpha and beta contamination of the physical entities associated with the working personnel that include his hands, feet, clothing, shoes as well as the general surface areas in the working environment like floors. All these measurements are fraught with the contribution of the ambient gamma background radiation fields. These inhibit a proper and precise estimation of the contamination concentration being monitored. This paper investigates the efficacy of two methodologies that have been incorporated in two of the contamination monitoring systems developed in the Division. In the first system discussed, a high degree of gamma compensation has been achieved for an uniform exposure of the order of 50 nSv/hr to 100 mSv/hr. In the second system discussed, the degree of gamma compensation achieved is equal to those dictated by the statistical nature of the uncertainties associated with the subtraction of background from the source data. These two methods can be very effectively employed depending on the application requirement. A minimum detection level equivalent to 0.37 Bq/cdm 2 has been achieved in both these cases

  15. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  16. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  17. Short term exposure to cooking fumes and pulmonary function

    Directory of Open Access Journals (Sweden)

    Qvenild Torgunn

    2009-05-01

    Full Text Available Abstract Background Exposure to cooking fumes may have different deleterious effects on the respiratory system. The aim of this study was to look at possible effects from inhalation of cooking fumes on pulmonary function. Methods Two groups of 12 healthy volunteers (A and B stayed in a model kitchen for two and four hours respectively, and were monitored with spirometry four times during twenty four hours, on one occasion without any exposure, and on another with exposure to controlled levels of cooking fumes. Results The change in spirometric values during the day with exposure to cooking fumes, were not statistically significantly different from the changes during the day without exposure, with the exception of forced expiratory time (FET. The change in FET from entering the kitchen until six hours later, was significantly prolonged between the exposed and the unexposed day with a 15.7% increase on the exposed day, compared to a 3.2% decrease during the unexposed day (p-value = 0.03. The same tendency could be seen for FET measurements done immediately after the exposure and on the next morning, but this was not statistically significant. Conclusion In our experimental setting, there seems to be minor short term spirometric effects, mainly affecting FET, from short term exposure to cooking fumes.

  18. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  19. System for removing contaminated surface layers

    International Nuclear Information System (INIS)

    Yoshikawa, Kozo.

    1987-04-01

    The object of the present invention is to offer a new type of useful decontamination system, with which the contaminated surface layers can be removed effectively by injection of such solid microparticles. Liquid carbon dioxide is passed from a liquid carbon dioxide tank via the carbon dioxide supply line into the system for injecting solid carbon dioxide particles. Part of the liquid carbon dioxide introduced into the system is converted to solid carbon dioxide particles by the temperature drop resulting from adiabatic expansion in the carbon dioxide expansion space of the injection system. The solid carbon dioxide particles reach the injection nozzle, which is connected through the expansion space. The carbon dioxide microparticles are further cooled and accelerated by nitrogen gas injected from the nitrogen gas nozzle at the tip of the nitrogen gas supply line, which is connected to a liquid nitrogen tank. The cooled and accelerated solid carbon dioxide microparticles are injected from the injection nozzle for the solid carbon dioxide and directed against the contaminated surface to be cleaned, and, as a result, the surface contamination is removed

  20. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  1. The development and site investigation of fume diluter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    It is third project year on `Application of mobile diesel equipment in underground mines` for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. For reducing the exhaust temperature bellow 70 deg. C to prevent production of the governing pollutant (NO{sub 2}), the fume diluter is verified the most effective device through the site investigation. Therefore, the fume diluter is strongly recommended instead of catalytic converter which is employed presently. The performances derived from the tests are as follows; 1) This device increased air flow to 6.7-8.4 times of the original exhaust, 2) Exhaust temperature can be reduced to 66 deg. C from 161 deg. C, 3) All the pollutants can be reduced to bellow than 30 % of exhaust concentration, 4) This device requires less cost and no maintenance. (author). 4 tabs., 4 figs.

  2. Best Practices for Fuel System Contamination Detection and Remediation

    Science.gov (United States)

    2016-01-15

    The University of Dayton Research Institute Best Practices for Fuel System Contamination Detection and Remediation Final Report Marlin D... Remediation Executive Summary: Fuel contamination is a broad term commonly applied to anything that causes a fuel test to fail quality assurance...Statement A: Approved for public release: distribution unlimited. 1 Best Practices for Fuel System Contamination Detection and Remediation Contents

  3. Detection of contamination of municipal water distribution systems

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  4. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  5. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation.

    Science.gov (United States)

    Sessink, Paul J M; Leclercq, Gisèle M; Wouters, Dominique-Marie; Halbardier, Loïc; Hammad, Chaïma; Kassoul, Nassima

    2015-04-01

    Environmental contamination, product contamination and technicians exposure were measured following preparation of iv bags with cyclophosphamide using the robotic system CytoCare. Wipe samples were taken inside CytoCare, in the clean room environment, from vials, and prepared iv bags including ports and analysed for contamination with cyclophosphamide. Contamination with cyclophosphamide was also measured in environmental air and on the technicians hands and gloves used for handling the drugs. Exposure of the technicians to cyclophosphamide was measured by analysis of cyclophosphamide in urine. Contamination with cyclophosphamide was mainly observed inside CytoCare, before preparation, after preparation and after daily routine cleaning. Contamination outside CytoCare was incidentally found. All vials with reconstituted cyclophosphamide entering CytoCare were contaminated on the outside but vials with powdered cyclophosphamide were not contaminated on the outside. Contaminated bags entering CytoCare were also contaminated after preparation but non-contaminated bags were not contaminated after preparation. Cyclophosphamide was detected on the ports of all prepared bags. Almost all outer pairs of gloves used for preparation and daily routine cleaning were contaminated with cyclophosphamide. Cyclophosphamide was not found on the inner pairs of gloves and on the hands of the technicians. Cyclophosphamide was not detected in the stationary and personal air samples and in the urine samples of the technicians. CytoCare enables the preparation of cyclophosphamide with low levels of environmental contamination and product contamination and no measurable exposure of the technicians. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. The use of high expansion foam in the control of sodium and other fumes

    International Nuclear Information System (INIS)

    Hughes, G.W.

    1971-01-01

    The uses of high expansion air foam for removing sodium fume and airborne radioactivity is discussed. Experiments are described which indicate that a high rate of removal of air contamination can be expected by encapsulation in a high expansion foam of low stability. (author)

  7. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  8. Detailed characterization of welding fumes in personal exposure samples

    International Nuclear Information System (INIS)

    Quémerais, B; Mino, James; Amin, M R; Golshahi, H; Izadi, H

    2015-01-01

    The objective of the project was to develop a method allowing for detailed characterization of welding particles including particle number concentration, size distribution, surface chemistry and chemical composition of individual particles, as well as metal concentration of various welding fumes in personal exposure samples using regular sampling equipment. A sample strategy was developed to evaluate the variation of the collection methods on mass concentration. Samples were collected with various samplers and filters at two different locations using our collection system. The first location was using a robotic welding system while the second was manual welding. Collected samples were analysed for mass concentration using gravimetryand metal concentration using ICP/OES. More advanced analysis was performed on selected filters using X-Ray Photoelectron Spectroscopy to determine surface composition of the particles, and X-Ray Diffraction to determine chemical composition of the fumes. Results showed that the robotic system had a lot of variation in space when the collection system was located close to the weld. Collection efficiency was found to be quite variable depending upon the type of filter. As well, metal concentrations in blank filters were dependent upon the type of filter with MCE presenting with the highest blank values. Results obtained with the XRD and XPS systems showed that it was possible to analyse a small of powdered welding fume sample but results on filters were not conclusive. (paper)

  9. Propellant and Purge System Contamination "2007: A Summer of Fun"

    Science.gov (United States)

    Galloway, Randy

    2010-01-01

    This slide presentation reviews the propellant and purge system contamination that occurred during the summer of 2007 at Stennis Space Center. During this period Multiple propellant/pressurant system contamination events prompted a thorough investigation, the results of which are reviewed.

  10. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  11. An automatic drawing system for a report radioactive contamination check

    International Nuclear Information System (INIS)

    Saneyoshi, Keiji; Tomita, Satoru; Yoda, Isao

    2002-01-01

    An Automatic drawing system for a report of surface contamination check in a radiation controlled area has been developed. The system can print out the report applied for the format provided by the law from the raw data that is the output from measuring instruments. The task of a worker is only to insert an FD storing the data into a PC and to push a button. The system also yields contamination maps to indicate contamination points clearly. With this system the time to complete the report from the raw data could be decreased from more than two hours to 4 minutes. (author)

  12. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  13. System to control contamination during retrieval of buried TRU waste

    Science.gov (United States)

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  14. Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol ...

    African Journals Online (AJOL)

    DR SULEIMAN

    Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol Attendants in Ibadan, Nigeria. *1A.L. Ogunneye ... inhalation of petrol fumes is associated with adverse effect on the kidney and liver function. ..... neurotoxicity in mice. African ...

  15. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  16. Contamination of Detained Sediment in Sustainable Urban Drainage Systems

    Directory of Open Access Journals (Sweden)

    Deonie Allen

    2017-05-01

    Full Text Available Adsorption is a key water pollution remediation measure used to achieve stormwater quality improvement in Sustainable urban Drainage Systems (SuDS. The level of contamination of detained sediment within SuDS assets is not well documented, with published investigations limited to specific contaminant occurrence in ponds, wetlands or infiltration devices (bioretention cells and generally focused on solute or suspended sediment. Guidance on contamination threshold levels and potential deposited sediment contamination information is not included in current UK SuDS design or maintenance guidance, primarily due to a lack of evidence and understanding. There is a need to understand possible deposited sediment contamination levels in SuDS, specifically in relation to sediment removal maintenance activities and potential impact on receiving waterways of conveyed sediment. Thus, the objective of the research presented herein was to identify what major elements and trace metals were observable in (the investigated SuDS assets detained sediment, the concentration of these major elements and trace metals and whether they met/surpassed ecotoxicity or contaminated land thresholds. The research presented here provides evidence of investigated SuDS sediment major element and trace metal levels to help inform guidance and maintenance needs, and presents a new methodology to identify the general cause (anthropocentric land use and extent of detained SuDS fine urban sediment contamination through use of a contamination matrix.

  17. Persistence of Change: Fume Hood Campaign Lessons

    Science.gov (United States)

    Feder, Elah; Robinson, Jennifer; Wakefield, Sarah

    2012-01-01

    Purpose: Sustainability initiatives typically operate for a limited time period, but it is often unclear whether they have lasting effects. The purpose of this paper is to examine a laboratory fume hood campaign, in order to identify factors that might contribute or detract from long-term change persistence. Design/methodology/approach: The…

  18. Development of a calibration system for surface contamination monitors

    International Nuclear Information System (INIS)

    Marechal, M.H.H.; Barbosa, M.P.

    1992-01-01

    A calibration system for surface contamination monitors is developed, aiming supply the existence demand of these instruments. A experimental arrangement and a methodology are described. The advantages of use this system for calibration routine optimization are also discussed. (C.G.C.)

  19. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antonini James M

    2010-06-01

    Full Text Available Abstract Background Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6 mice and a trend for increased tumor incidence after stainless steel (SS fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant or non-carcinogenic (iron abundant metal-containing welding fumes at the transcriptome level. Methods Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS, Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done. Results Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as CCL3, CCL4, CXCL2, and MMP12 in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as S100A8, S100A9 and

  20. Mobile Monitoring System for Nuclear Contamination Analysis

    International Nuclear Information System (INIS)

    Broide, A.; Sheinfeld, M.; Marcus, E.; Wengrowicz, U.; Tirosh, D.

    2002-01-01

    In case of a nuclear accident, it is essential to have extensive knowledge concerning the nature of the radioactive plume expansion, for further analysis. For this purpose a mobile monitoring system may provide important data about the plume characteristics. An advanced Mobile Monitoring System is under development at the Nuclear Research Center-Negev. The system is composed of a network of mobile stations, typically installed onboard vehicles, which transmit radiation measurements along with position information to a central station. The mobile network's communications infrastructure is based on Motorola Mobile Logic Unit devices, which are state-of-the-art reliable modems with an integrated Global Positioning System module. The radiation measurements received by the central station are transferred to a risk assessment program, which evaluates the expected hazards to the populated areas located in the estimated plume's expansion direction

  1. Control system for mapping contaminated areas

    International Nuclear Information System (INIS)

    Milton, Soares; Becker, Paulo H. B.

    2006-01-01

    Some Member states reported to the IAEA an interest in developing a system to be applied in the control of a detector for mapping a surface and defining the distribution of the radioactive material over this area. One of the possible applications would be refurbishment of Rectilinear Scanners (the predecessor of Gamma Cameras) that are old machines but might be still useful for some countries. The IAEA supported this development and a control system for this type of application was designed. in cooperation with the Instituto de Engenharia Nuclear (IEN), Brazil. The system is based on a board developed by the Forschungszentrum Julich in Germany (also in cooperation with the IAEA) and which is based on a Xilinx FPGA SPARTAN XC25150. It contains an MCA (1024 channels based on a fast ADC with software controlled peek detection) and two stepper motor controllers. The human-machine interface developed using Lab View is able to control two stepper motors in order to map an area with a radiation detector. During the mapping the pulse height distributions are collected and an intensity graph for the scanned area is presented on a PC screen. The system was successfully tested using a commercial X-Y table and two commercial stepper motors drivers.. In the next step this system will be used in real applications in the IAEA Member States

  2. Environmental Systems Microbiology of Contaminated Environments

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, Gary [University of Tennessee, Knoxville (UTK); Hazen, Terry C. [ORNL

    2016-01-01

    Environmental Systems Microbiology is well positioned to move forward in dynamic complex system analysis probing new questions and developing new insight into the function, robustness and resilience in response to anthropogenic perturbations. Recent studies have demonstrated that natural bacterial communities can be used as quantitative biosensors in both groundwater and deep ocean water, predicting oil concentration from the Gulf of Mexico Deep Water Horizon spill and from groundwater at nuclear production waste sites (16, 17, 25). Since the first demonstration of catabolic gene expression in soil remediation (34) it has been clear that extension beyond organismal abundance to process and function of microbial communities as a whole using the whole suite of omic tools available to the post genomic era. Metatranscriptomics have been highlighted as a prime vehicle for understanding responses to environmental drivers (35) in complex systems and with rapidly developing metabolomics, full functional understanding of complex community biogeochemical cycling is an achievable goal. Perhaps more exciting is the dynamic nature of these systems and their complex adaptive strategies that may lead to new control paradigms and emergence of new states and function in the course of a changing environment.

  3. Development of Contaminant Detection System using HTS SQUIDs

    International Nuclear Information System (INIS)

    Ohtani, T.; Tanaka, S.; Narita, Y.; Ariyoshi, S.; Suzuki, S.

    2015-01-01

    In terms of food safety, mixture of contaminants in food is a serious problem for not only consumers but also manufacturers. In general, the target size of the metallic contaminant to be removed is 0.5 mm. However, it is a difficult task for manufacturers to achieve this target, because of lower system sensitivity. Therefore, we developed a food contaminant detection system based on high-Tc RF superconducting quantum interference devices (SQUIDs), which are highly sensitive magnetic sensors. This study aims to improve the signal to noise ratio (SNR) of the system and detect a 0.5 mm diameter steel ball. Using a real time digital signal processing technique along with analog band-pass filters, we improved the SNR of the system. Owing to the improved SNR, a steel ball with a diameter as small as 0.3 mm, with stand-off distance of 117 mm was successfully detected. These results suggest that the proposed system is a promising candidate for the detection of metallic contaminants in food products

  4. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  5. The accumulation of radioactive contaminants in drinking water distribution systems.

    Science.gov (United States)

    Lytle, Darren A; Sorg, Thomas; Wang, Lili; Chen, Abe

    2014-03-01

    The accumulation of trace contaminants in drinking water distribution system sediment and scales has been documented, raising concerns that the subsequent release of the contaminants back to the water is a potential human exposure pathway. Radioactive contaminants are of concern because of their known health effects and because of their persistence within associated distribution system materials. The objective of this work was to measure the amount of a number of radioactive contaminants (radium, thorium, and uranium isotopes, and gross alpha and beta activity) in distribution solids collected from water systems in four states (Wisconsin, Illinois, Minnesota, and Texas). The water utilities chosen had measurable levels of radium in their source waters. In addition, 19 other elements in the solids were quantified. Water systems provided solids primarily collected during routine fire hydrant flushing. Iron was the dominant element in nearly all of the solids and was followed by calcium, phosphorus, magnesium, manganese, silicon, aluminum and barium in descending order. Gross alpha and beta radiation averaged 255 and 181 pCi/g, and were as high as 1602 and 1169 pCi/g, respectively. Total radium, thorium and uranium averaged 143, 40 and 6.4 pCi/g, respectively. Radium-226 and -228 averaged 74 and 69 pCi/g, and were as high as 250 and 351 pCi/g, respectively. Published by Elsevier Ltd.

  6. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    Science.gov (United States)

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  7. Occupational exposure to diesel exhaust fumes

    International Nuclear Information System (INIS)

    Wheatley, A. D.; Sadhra, S.

    2004-01-01

    There is currently no OEL for diesel fumes in the UK. This study reports parallel measurements of airborne levels of diesel fume pollutants in nine distribution depots where diesel powered fork-lift trucks (FLTs) were in use. Correlations between individual pollutants are assessed as well as their spatial distribution. Samples were collected on board FLTs and at background positions at nine distribution depots. Substances measured and the range of exposures by site were: respirable dust (n = 76) GM ≤ 80-179 μg/m 3 ; elemental carbon (n = 79) GM = 7-55 μg/m 3 ; organic carbon (n = 79) GM 11-69 μg/m 3 ; ultrafine particles (n = 17) range = 58-231 x 10 3 particles/cm 3 ; selected particulate phase polycyclic aromatic hydrocarbons (PAHs) (n - 14) range = 6-37 ng/m 3 . In addition, a tracer method based on ultrafine particle measurements was used to estimate the spatial distribution of total carbon and PAHs at the sites monitored. The spatial distribution was found to be reasonably uniform. Major diesel fume aerosol components were, in general, well correlated (r = 0.62-0.97). CO 2 measurements were also made and found to be below the HSE guideline of 1000 p.p.m., with most levels below 600 p.p.m. (Author)

  8. Control System Radioactive Contamination in Food Samples in Poland

    International Nuclear Information System (INIS)

    Grabowski, D.; Kurowski, W.; Muszynski, W.; Rubel, B.; Smagala, G.; Swietochowska, J.

    2001-01-01

    Full text: The analyses of the level of radioactive contamination in food samples are carried out by the Service for Measurements of Radioactive Contamination (SMRC) in Poland. The Service was brought into existence in 1961. The Service comprises of a network of measurement stations and the Centre of Radioactive Contamination Measurements (CRCM). The duty of the Centre is being executed by the Central Laboratory for Radiological Protection (CLRP). The uniform methods of sampling are used in measurement stations. All important foodstuff: milk, meat, vegetables, fruit, cereals are controlled in the Service stations. The radiochemical and spectrometric methods are used to determine the activity of radioactive isotopes. The standard equipment of the measurement station is the measurement system type SAPOS-90 and multichannel analyser with scintillation or germanium detector. The structure of the Service, kinds of samples tested by each station, program of sampling in normal and during accident situation are presented in this paper. (author)

  9. Radiocesium dynamics in herons inhabiting a contaminated reservoir system

    International Nuclear Information System (INIS)

    Dombey, A.H.; Paine, D.; McFarlane, R.W.

    1977-01-01

    The little blue heron (Florida caerulea) and the green heron (Butorides virescens) nest at a radionuclide-contaminated reservoir on the Savannah River Plant near Aiken, South Carolina. Green herons distributed their nests singly along the periphery of the reservoir but fed their nestlings exclusively upon amphibians collected from adjacent uncontaminated Carolina bays. Radiocesium burdens in green heron nestlings did not exceed 5 pCi/g wet wt. and 12 regurgitated food pellets averaged 0.2 pCi/g. Twelve pairs of little blue herons established a heronry upon a small island and fed their nestlings fish and amphibians foraged from within the differentially radionuclide-contaminated reservoir system. Nestlings within the same nest did not exhibit significant differences in body burdens, and the maximum radiocesium burden determined was 27.4 pCi/g wet wt. Substantial differences were found between nestlings from different nests however. The radiocesium level of 43 regurgitated food pellets had a high correlation with observed levels in the nestlings, and variation in food contamination is believed to be the major contributor in the observed variation in the nestlings. The variable contamination of primary prey species was correlated with the differentially contaminated foraging sites and indicates that adult little blue herons tended to spatially partition the available foraging areas. (author)

  10. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  11. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  12. Mapping of contaminated sites using mobile gamma spectrometry: Marcassin system

    International Nuclear Information System (INIS)

    Panza, F.; Demongeot, S.; Crosland, E.; Foissard, B.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: As part of the development of a tool for use in a nuclear emergency, post-accident situations and contaminated sites, the Institute for Radiation Protection and Nuclear Safety (IRSN) has designed an instrument for mapping natural and artificial radioactivity in soil using in situ gamma spectrometry. The development of this mobile system is based on various studies initiated by IRSN. The tool, named MARCASSIN (Moyen Autoporteur pour la Realisation de Cartographies de l'Activite Sur Sites contamINes, or automotive resource for mapping radioactivity at contaminated sites), has already been used to characterise various types of sites: contaminated soil (Fukushima), old open-pit mines (centre of France) and environmental sites (Paris region). Mounted on a quad-type vehicle, the instrument is composed of a spectrometer, a radiation meter and a global positioning system. Using coordinates and nuclear data, results are given in the form of mapping indicating type of radionuclides, radioactivity level, dose rate and contamination distribution in real-time. To improve detection level above sites where radioactivity levels are low, the system also is capable of processing data. Two of these methods are as follows: the first, 're-meshing', improves the estimate of soil radioactivity by increasing measurement statistics. The results agree with the reference values (soil samples measured in the laboratory), even for normal environmental levels of radioactivity. The second method, for which a patent is pending, is based on a deconvolution of mapping data. Re-processing deducts the impulse response of MARCASSIN from the radiation flux measurements in order to restore the value sought, which is the soil emission rate by radiological energy or activity. A theoretical example demonstrates the possibilities of this method. (authors)

  13. RI Mapping System for Identification of Radiological Contamination in Environmental Water Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Teresa W.; Ha, Jang Ho; Kim, Han Soo; Lee, Seung Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Teresa W.; Lee, Rena [Ewha Womans Univ., Hospital, Seoul (Korea, Republic of)

    2012-03-15

    The interest of radiation protection has risen due to accidents of the Nuclear Power Plant, nuclear terrorism, and the radiological contamination in the city, In this respect, the development of environmental radiation monitoring for the radiological contaminants has been studied. In this study, the experiment for the radiological contamination in the water supply pipe line system has been simulated and preliminarily tested. The CsI(Tl)-PIN diode detectors were used and the preliminary test of radiation monitoring system was performed as multi detection system. The 2D image reconstruction algorithm was also developed for feasibility of the constructed multi-detection system.

  14. Study of radon transport through concrete modified with silica fume

    International Nuclear Information System (INIS)

    Chauhan, R.P.; Kumar, Amit

    2013-01-01

    The concentration of radon in soil usually varies between a few kBq/m 3 and tens or hundreds of kBq/m 3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10 −7 to (0.65 ± 0.01) × 10 −8 m 2 /s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels. -- Highlights: • Radon diffusion study through silica fume modified concrete was carried out. • Radon diffusion coefficient of concrete decreased with increase of silica fume contents. • Compressive strength increased with increase of silica fume. • Radon exhalation rates and porosity of samples decreased with addition of silica fume. • Radon diffusion coefficient decreased to 2.6% by 30% silica fume substitution

  15. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  16. Alternatives Generation Analysis Long Length Contaminated Equipment Removal System Storage

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    Major pieces of Characterization sampling equipment are currently stored outdoors. This includes the Long Length Contaminated Equipment receiver trailer and transportation trailer. A decision is required to determine the preferred alternative for facilities to store and maintain this equipment. The Long Length Contaminated Equipment Removal System (LLCERS) consists of many tools, mechanisms, and controllers currently stored in various locations. Much of this equipment should be protected from the elements while being stored. Some of the LLCERS equipment should be protected with some kind of roof cover. This decision analysis is to determine the best alternative for weather protection for the large equipment requiring a cover. Additional details are included in Sections 2.0 and 5.0. Key assumptions used in this analysis are detailed in Section 3.2

  17. Obtaining and utilizing contaminant arrival distributions in transient flow systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The versatility of the new contaminant arrival distributions for determining environmental consequences of subsurface pollution problems is demonstrated through application to a transient flow system. Though some of the four phases of the hydrologic evaluations are more complicated because of the time-dependence of the flow and input contaminant concentrations, the arrival distributions still effectively summarize the data required to determine the environmental implications. These arrival distributions yield two graphs or tabular sets of data giving the consequences of the subsurface pollution problems in a simple and direct form. Accordingly, the public control authorities would be able to use these results to choose alternatives or initiate corrective actions, depending on the indicated environmental consequences

  18. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  19. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  20. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans.To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure.The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry.Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders.High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  1. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  2. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  3. MOLFLUX analysis of the SSF electrical power system contamination

    Science.gov (United States)

    Cognion, Rita L.

    1991-01-01

    The external induced contamination of Space Station Freedom's electrical power system surfaces is assessed using a molecular flow evaluation code, MOLFLUX. Outgassing rates are compared to available experimental data, and deposition to the midregion of both the solar array and the photovoltaic power module thermal control system radiator is calculated using a constant sticking coefficient. An estimate of annual deposition to the solar array due to outgassing is found to be 10 percent of the Space Station Freedom program requirement for maximum allowable deposition, while annual deposition to the radiator is approximately equal to the requirement.

  4. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  5. Treatment system for contaminated water in Fukushima of Areva

    International Nuclear Information System (INIS)

    Guillet, P.

    2012-01-01

    The Great East Japan earthquake and following tsunami that occurred on March 11, 2011 resulted in a very difficult situation on the site of the Fukushima Dai-Ichi NPP, TEPCO was facing a very difficult challenge to cool down the reactors. Following the implementation of an open circuit reactor cooling using seawater mixed seawater and freshwater began to accumulate in the basements of the reactors and turbine building on site. This eater was highly contaminated at different levels, due to contact with damaged fuel elements and contaminated elements. Despite efforts to increase water storage capacity, it was estimated that in end of June 2011, water would ever flow as storage capacity would be reached. The site was urgently in needed of a water decontamination system that would greatly reduce the activity of the water. This would allow a recirculation to cool the reactors, reduce the water storage needs and facilitate access for other site remediation operations by decreasing the activity on site. Quality of water to be processed was estimated at about 100,000 tons with contamination level reaching 1Ci/L. (Author)

  6. Development of contaminated concrete removing system 'Clean cut method'

    International Nuclear Information System (INIS)

    Kinoshita, Takehiko; Tanaka, Tsutomu; Funakawa, Naoyoshi; Idemura, Hajime; Sakashita, Fumio; Tajitsu, Yoshiteru

    1989-01-01

    In the case of decommissioning nuclear facilities such as nuclear power stations, nuclear fuel facilities and RI handling facilities and carrying out reconstruction works, if there is radioactive contamination on the surfaces of concrete structures such as the floors and walls of the buildings for nuclear facilities, it must be removed. Since concrete is porous, contamination infiltrates into the inside of concrete, and the wiping of surfaces only or chemical decontamination cannot remove it, therefore in most cases, contaminated concrete must be removed. The removal of concrete surfaces has been carried out with chipping hammers, grinders and so on, but many problems arise due to it. In order to solve these problems, the mechanical cutting method was newly devised, and clean cut method (CCRS) was completed. The depth of cutting from concrete surface is set beforehand, and the part to be removed is accurately cut, at the same time, the concrete powder generated is collected nearly perfectly, and recovered into a drum. The outline of the method and the constitution of the system, the features of the clean cut method, the development of the technology for cutting concrete and the technology for recovering concrete powder, and the test of verifying decontamination are reported. (K.I.)

  7. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  8. System of two containers contaminated on the inside

    International Nuclear Information System (INIS)

    Hager, L.; Heller, G.

    1983-01-01

    Two lids coupled together of a system of two containers contaminated on the inside form a frustrum of a cone with an outer surface decreasing smoothly in the same direction. The seats for these lids form two openings of the containers of the frustrum of a cone-shaped jacket matched to the jacket of the two coupled lids. The outsides of the two lids and the outsides of the containers form a surface in the same plane as the openings in the annular regions of at least one of the jacket surfaces of the frustrum of a cone or the seats of the frustrum of a cone jacket. (orig./HP) [de

  9. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  10. Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance

    Science.gov (United States)

    Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.

    2016-01-01

    Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.

  11. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. Rinkinen, J. [Pall Europe Ltd., Portsmouth (United Kingdom); Tampere University of Technology, Tampere (Finland)

    1998-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  12. Contaminant monitoring of hydraulic systems. The need for reliable data

    Energy Technology Data Exchange (ETDEWEB)

    Day, M.J. [Pall Europe Ltd., Portsmouth (United Kingdom)] Rinkinen, J. [Tampere University of Technology, Tampere (Finland)

    1997-12-31

    The need for both reliable operation of hydraulic and lubrication systems and long component lives has focused users to the benefits of controlling the contamination in the hydraulic fluid. Maximum operating (target) levels are being implemented as part of a condition based maintenance regime. If these are exceeded, maintenance effort is directed to correcting the rise in consummation level, and so make optimum use of resources as maintenance effort is only affected when it is necessary to do so. Fundamental to ibis aspect of condition based monitoring is the provision of accurate and reliable data in the shortest possible time. This way, corrective actions can be implemented immediately so minimising the damage to components. On-line monitoring devices are a way of achieving this and are seeing increased use, but some are affected by the condition of the fluid. Hence, there is a potential for giving incorrect data which will waste time and effort by initiating unnecessary corrective actions. A more disturbing aspect is the effect on the user of continual errors. The most likely effect would be a loss of confidence in the technique or even complete rejection of it and hence the potential benefits will be lost. This presentation explains how contaminant monitoring techniques are applied to ensure that the potential benefits of operating with clean fluids is realised. It examines the sources of error and shows how the user can interrogate the data and satisfy himself of its authenticity. (orig.) 14 refs.

  13. Welding fume exposure and chronic obstructive pulmonary disease in welders.

    Science.gov (United States)

    Koh, D-H; Kim, J-I; Kim, K-H; Yoo, S-W

    2015-01-01

    Occupational exposure is estimated to contribute 15% to the burden of chronic obstructive pulmonary disease (COPD). Welding fumes are suspected to accelerate the decline of lung function and development of COPD. To examine the relationship between welding fume exposure and COPD in Korean shipyard welders. The study involved a group of male welders working at two shipyards who underwent an annual health examination in 2010. Subjects completed a questionnaire about smoking habits and occupational history and a pulmonary function test (PFT) was carried out with strict quality control measures. Welding fume exposure concentrations were estimated using 884 measurements taken between 2002 and 2009 in one of the shipyards. Multiple linear and logistic regression was employed to evaluate the association between cumulative fume exposure and lung function parameters, controlling for age, height and cigarette smoking. Two hundred and forty subjects participated, with a mean age of 48 and mean work duration of 15 years. The mean cumulative fume exposure was 7.7mg/m(3). The prevalence of COPD was 15%. FEV1 and FVC showed non-significant negative correlations with cumulative fume exposure. Odds ratios of COPD were significantly elevated for the middle (3.9; 95% CI 1.4-13.3) and high exposure groups (3.8; 95% CI 1.03-16.2) compared with the low fume exposure group. Our findings support an association between welding fume exposure and increased risk of COPD. Further prospective study is needed to investigate whether this is a causal relationship. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    Science.gov (United States)

    Tenenbein, M; deGroot, W; Rajani, K R

    1984-01-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to specifically identify the formulation of hydrocarbons being abused. PMID:6093978

  15. Anatomical indications of fume resistance in certain woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Ninova, D.

    1970-01-01

    An attempt is made to describe studies on seven species of fruit and forest trees close to or far from a Bulgarian factory emitting fumes containing S. The most resistant species (Quercus borealis, Gleditsia triacanthos, Morus alba) had the smallest stomata and the greatest number of stomata per unit leaf area. Changes observed in leaf anatomy as a result of exposure to the fumes were: decreased leaf aeration, elongated palisade cells, thicker cuticles, and more stomata.

  16. IMPROVEMENT OF EXPANSIVE SOIL BY USING SILICA FUME

    Directory of Open Access Journals (Sweden)

    Kawther Y. AL-Soudany

    2018-01-01

    Full Text Available Expansive soils are characterized by their considerable volumetric deformations representing a serious challenge for the stability of the engineering structures such as foundations. Consequently, the measurements of swelling properties, involving swelling and swell pressure, become extremely important in spite of their determination needs a lot of time with costly particular equipment. Thus, serious researches attempts have been tried to remedy such soils by means of additives such as cement, lime, steel fibers, stone dust, fly ash and silica fume. In this research the study of silica fume has studied to treatment expansion soil, the clay soil was brought from Al-Nahrawan in Baghdad. The soil selected for the present investigation prepared in laboratory by mixing natural soil with different percentages of bentonite (30, 50 and 70% by soil dry weight. The test program included the effect of bentonite on natural soil then study the effect of silica fume (SF on prepared soil by adding different percentage of silica fume (3, 5, and 7 by weight to the prepared soils and the influence of these admixtures was observed by comparing their results with those of untreated soils (prepared soils. The results show that both liquid limit and plasticity index decreased with the addition of silica fume, while the plastic limit is increase with its addition. As well as, a decrease in the maximum dry unit weight with an increase in the optimum water contents have been obtained with increasing the percentage of addition of the silica fume. It is also observed an improvement in the free swell, swelling pressure by using silica fume. It can be concluded that the silica fume stabilization may be used as a successful way for the treatment of expansive clay.

  17. Danish Investigations on Silica Fume Concretes at Elevated Temperatures

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    1992-01-01

    Describes fire tests in which the increased risk of explosive spalling of concrete densified by silica fume was first discovered. Further results are discussed from tests to define appropriate limits of silica fume content and to develop a new concrete for slender column units. Observations are m...... are made about circumstances under which superplasticizing additives in concrete gave rise to the development of toxic gases....

  18. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes.

    Science.gov (United States)

    Li, S; Pan, D; Wang, G

    1994-01-01

    Various samples of cooking oil fumes were analyzed to an effort to study the relationship between the high incidence of pulmonary adenocarcinoma in Chinese women and cooking oil fumes in the kitchen. Polycyclic aromatic hydrocarbons (PAHs) in samples of cooking oil fumes were extracted, chromatographed, and measured by fluorescence spectrophotometer. The samples included oil fumes from three commercial cooking oils and fumes from three catering shops. All samples contained benzo(a)pyrene (BaP) and dibenzo (a,h)anthracene (DBahA). In addition, the concentration of DBahA was 5.7 to 22.8 times higher than that of BaP in the fume samples. Concentrations of BaP and DBahA were, respectively, 0.463 and 5.736 micrograms/g in refined vegetable oil, 0.341 and 3.725 micrograms/g in soybean oil, and 0.305 and 4.565 micrograms/g in vegetable oil. Investigation of PAH concentrations at three catering shops showed that the level of BaP at a Youtiao (deep-fried twisted dough sticks) shop was 4.18 micrograms/100 m3, 2.28 micrograms/100 m3 at a Seqenma (candied fritters) workshop, and 0.49 micrograms/100 m3 at a kitchen of a restaurant; concentrations of DBahA were 33.80, 14.41, and 3.03 micrograms/100 m3, respectively. The high concentration of carcinogens, such as BaP and DBahA, in cooking oil fumes might help explain why Chinese women, who spend more time exposed to cooking oil fumes than men, have a high incidence of pulmonary adenocarcinoma.

  19. Bacterial contamination of table eggs and the influence of housing systems

    NARCIS (Netherlands)

    Reu, de K.; Messens, W.; Heyndrickx, M.; Rodenburg, T.B.; Uyttendaele, M.; Herman, L.

    2008-01-01

    With the introduction of alternative housing systems for laying hens in the EU, recent research has focussed on the bacterial contamination of table eggs, e.g. eggshell and egg content contamination. Contamination of eggshells with aerobic bacteria is generally higher for nest eggs from non-cage

  20. Decreasing biotoxicity of fume particles produced in welding process.

    Science.gov (United States)

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  2. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  3. Development of a telerobotic system for handling contaminated process equipment

    International Nuclear Information System (INIS)

    Fisher, J.J.; Ward, C.R.; Schuler, T.F.

    1987-01-01

    E. I. du Pont de Nemours and Company is evaluating a unique eight-degree-of-freedom Telerobot manipulator to perform size-reduction and material handling operations on contaminated process equipment at the Savannah River Plant (SRP). The Telerobot will be installed in the proposed Transuranic (TRU) Waste Processing Facility, which is scheduled to be operational by 1990. A full-scale prototype Telerobot, manufactured by GCA Corporation, St. Paul, MN is being tested with other process equipment in the Components Test Facility at the Savannah River Laboratory (SRL). All telerobotic operations required in the TRU Waste Facility such as crate unpacking, equipment dismantling, material size-reduction, and selected maintenance operations are being tested. This paper discusses the major mechanical and control features of the Telerobot system. Several system enhancements were added by SRL, including a new quick-hand-change coupling and expanded software control functions. The new software enables a system operator to perform both teleoperated and automatic tasks through several operating modes. These enhancements, as well as future mechanical, control system, and software features, are reviewed

  4. Stochastic Radiative Transfer Model for Contaminated Rough Surfaces: A Framework for Detection System Design

    Science.gov (United States)

    2013-11-01

    example for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. 15. SUBJECT TERMS Radiative transfer...detector m-out-of-n detector Potassium chlorate Probability theory System performance Probability of detection and false alarm iii...for the detection of a potassium chlorate contaminated “car” with a CO2 tunable laser system. Subject Terms Radiative transfer, contaminated

  5. [Study on the chemical components of edible oil fume in kitchen and its genotoxity on Drosophila].

    Science.gov (United States)

    Li, S; Wang, Y; Zhang, J; Zhao, X

    1999-01-30

    To study the chemical components of the condensate of edible oil fume in kitchen and its genotoxicity on Drosophila. Analysis for the chemical components was carried out by gas chromatography and mass spectra (GC/MS) and its genotoxicity was studied by sex linked recessive lethal (SLRL) test in Drosophila. A total of 74 organic compounds were found in samples of condensed oil from the fume in kitchen. It included hydroxylic acids, hydrocarbons, alcohols, esters, aldehydes, ketones, aromatic compounds, and steroids, etc. The total mutagenicity rates in SLRL test induced by the samples at concentrations of 110,320 and 960 mg/L were 0.1732%, 0.4306% and 0.1707% respectively. The sterility rates of the first broods were 2.564%, 2.056% and 2.845% at above 3 concentrations respectively(P < 0.05, as compared with the control). The mutagenicity rate of the second brood at 320 mg/L was 0.530% and that of the third brood at 110 mg/L 0.540%(P < 0.001). Some of the compounds in the condensate of edible oil fume were proved to have high recessive lethal effect and genotoxic effect on the reproductive system of Drosophila.

  6. Evaluating the environmental consequences of groundwater contamination. IV. Obtaining and utilizing contaminant arrival distributions in transient flow systems

    International Nuclear Information System (INIS)

    Nelson, R.W.

    1978-01-01

    The versatility of the new contaminant arrival distributions for determining environmental consequences of subsurface pollution problems is demonstrated through application to a transient flow system. Though some of the four phases of the hydrologic evaluations are more complicated because of the time dependence of the flow and input contaminant concentrations, the arrival distributions still effectively summarize the data required to determine the environmental implications. These arrival distributions yield two graphs or tabular sets of data giving the consequences of the subsurface pollution problems in a simple and direct form. 4 refs

  7. Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume

    International Nuclear Information System (INIS)

    Cheng, Hsin-Han; Hsieh, Chu-Chin

    2010-01-01

    There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K L a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K L a, liquid/gas ratio, pH and C NaOCl .

  8. Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Han [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan (China); Hsieh, Chu-Chin, E-mail: hsiehcc@yuntech.edu.tw [Department of Environmental and Safety Engineering, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan (China)

    2010-10-15

    There are many types of technologies to control cooking oil fumes (COFs), but current typical technologies, such as electrostatic precipitator, conventional scrubber, catalyst, or condenser, are unable to efficiently remove the odorous materials present in COFs which are the primary cause of odor-complaint cases. There is also a lack of information about using sodium hypochlorite (NaOCl) and surfactants to remove contaminants in COFs, and previous studies lack on-site investigations in restaurants. This study presents a chemical scrubber integrated with an automatic control system (ACS) to treat hydrocarbons (HCs) in COFs, and to monitor non-methane HCs (NMHC) and odor as indicators for its efficiency evaluation. The chemical scrubber effectively treats hydrophobic substances in COFs by combining surfactant and NaOCl under optimal operational conditions with NHMC removal efficiency as high as 85%. The mass transfer coefficient (K{sub L}a) of NMHC was enhanced by 50% under the NaOCl and surfactant conditions, as compared to typical wet scrubber. Further, this study establishes the fuzzy equations of the ACS, including the relationship between the removal efficiency and K{sub L}a, liquid/gas ratio, pH and C{sub NaOCl}.

  9. Effects of nitrous fumes upon the lung

    Energy Technology Data Exchange (ETDEWEB)

    Muhar, F; Raber, A

    1974-01-01

    After a thorough discussion of the accidental poisoning of 34 workers by large amounts of nitrous fumes in an Austrian chemical plant producing artificial fertilizer and its effects on the lung along with therapeutical measures taken, the chronic effects of long-term exposure to nitrous gases are reviewed. Nitrous gases are a mixture of various oxidation states of nitrogen such as nitric oxide, nitrogen dioxide, N/sub 2/O/sub 4/, and nitric anhydride plus vapors of nitrous and nitric acid. The individual components of the gas mixture change in dependence on the ambient temperature and the humidity. A different mixture of nitrous gases develops, therefore, at welding operations, blasts, in the chemical industry, in the glass industry, at the production of fertilizer, in the exhausts of combustion engines, and in smoking of cigarettes. The irritations caused by nitrous gases on mucous tissue increase with rising relative humidity. The presence of NO ameliorates the toxic effect of NO/sub 2/. Oil mists protect against the effects of nitrous gases. The addition of sulfur dioxide is supposed to reduce the toxicity of nitrous gases, provided the SO/sub 2/ concentration is considerably higher than the concentration of nitrous gases. Exposure of rats and mice to concentrations of less than 1 ppm nitrous gases caused structural changes in the lung similar to pulmonary edema in humans.

  10. Analysis And Assessment Of The Security Method Against Incidental Contamination In The Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-09-01

    Full Text Available The paper presents the main types of surface water incidental contaminations and the security method against incidental contamination in water sources. Analysis and assessment the collective water supply system (CWSS protection against incidental contamination was conducted. Failure Mode and Effects Analysis (FMEA was used. The FMEA method allow to use the product or process analysis, identification of weak points, and implementation the corrections and new solutions for eliminating the source of undesirable events. The developed methodology was shown in application case. It was found that the risk of water contamination in water-pipe network of the analyzed CWSS caused by water source incidental contamination is at controlled level.

  11. Environmental exposure to cooking oil fumes and cervical intraepithelial neoplasm

    International Nuclear Information System (INIS)

    Wu, M.-T.; Lee, L.-H.; Ho, C.-K.; Wu, S.-C.; Lin, L.-Y.; Cheng, B.-H.; Liu, C.-L.; Yang, C.-Y.; Tsai, H.-T.; Wu, T.-N.

    2004-01-01

    The fumes from cooking oil, similar to cigarette smoke, contain numerous carcinogens such as polycyclic aromatic hydrocarbons, aromatic amines, nitro-polycyclic aromatic hydrocarbons, etc. In this study, we examined the association between exposure to cooking oil fumes and the risk of cervical intraepithelial neoplasm. The study population in this nested case-control study consisted of women above the age of 19 years living in Chia-Yi County, located in the southwestern Taiwan, who had received pap smear screening between October, 1999, and December, 2000 (n=32,466). The potential cases were women having lesions greater than cervical intraepithelium neoplasm II (≥CIN2) reconfirmed by cervical biopsy (n=116). The potential controls (case: control=1:2) were age-matched (±2 years) and residence-matched women who had normal pap smears within 6 months of the cases. In total, 100 cases and 197 controls were completely interviewed by public health nurses about cooking methods, ventilation, and other potential risk factors. Women who cooked at home in a kitchen (n=269) without the presence of a fume extractor at least once a week between the ages of 20 and 40 had a 2.29 times higher risk [95% confidence interval (CI)=1.08-4.87] of developing cervical intraepithelial neoplasm than those who did not cook once a week in such a kitchen during the same age span, after adjusting for other potential confounders. This finding was further strengthened by the finding that women who did not use the fume extractors had a 2.47 times higher risk (95% CI=1.15-5.32) of developing cervical intraepithelial neoplasm than women who cooked in kitchens with fume extractors that were always switched on while cooking. We also found a joint protective effect of fume extractor use among women older than 40 years (n=202) if they used the extractors during both age spans of their lives, ages 20-40 and >40 years. Comparing our findings on women more than 40 years old who used fume extractors during

  12. Comparison of Effect of Metakaolin and silica Fume on Fly Ash Concrete Performance

    Directory of Open Access Journals (Sweden)

    Hou Yunfen

    2016-01-01

    Full Text Available Silica fume is a common mineral admixture used in HSC and HPC, but being its high price and shrinkage in concrete, its usage is under restrictions. As a new mineral admixture, metakaolin gets more and more attention. In order to compare the difference between silica fume and metakaolin, the effects of metakaolin and silica fume on concrete workability, compressive strength, and chloride penetration resistance are studied. It shows that incorporating with fly ash together, silica fume reduces the slump extension, but metakaolin can increases it; silica fume can increases early strength more than metakaolin can, but it isn’t useful for later and long-time strength; metakaolin not only can increase early strength, but also can improve long-time strength. Silica fume and metakaolin can increase the chloride penetration resistance. As a new mineral additive, metakaolin can play a role in concrete which silica fume does, even much better than silica fume.

  13. Surface Contamination Monitor and Survey Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.

  14. Surface Contamination Monitor and Survey Information Management System

    International Nuclear Information System (INIS)

    1998-02-01

    Shonka Research Associates, Inc.'s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East's (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies

  15. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  16. Silica fume effect on retention characteristics of portland cement for uranium (VI)

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2005-01-01

    With simulated groundwater as leachant, the retention capabilities of the portland cement, which contains different amount of silica fume, are investigated under 25 degree C and 42 days. The results indicate that silica fume can improve the retention capabilities of portland cement for uranium. When the cement contains 15% silica fume, the diffusion coefficient is 7 x 10 -3 cm 3 · -1 . It is only 5.5% of the cement without containing fume. (authors)

  17. Pulmonary fibrosis and exposure to steel welding fume.

    Science.gov (United States)

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Evaluation of characterisation techniques for particulate weld fume morphology

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Monaghan, B.J.; Norrish, J.

    2009-01-01

    An evaluation of three techniques: scanning electron microscopy (SEM); transmission electron microscopy (TEM); and laser diffraction (LD), was carried out to determine the most suitable technique for the particle-size measurement of particulate-welding fume collected during the robotic gas-metal-arc welding (GMAW) of plain-carbon steel. Particulate fume was deposited onto an Al stub positioned at a horizontal distance of 30 mm and a vertical height of 50 mm from the welding arc, and was then prepared for SEM, TEM and LD sizing. Results are presented for paniculate-welding fume collected for three welding voltages (20, 23 and 26 V) and two metal-transfer modes (dip and dip/globular). TEM imaging was found to be the most effective of the three sizing technique as it was able to resolve both fine nano-particles (5 ran diameter) and coarse nano-particles (>100 mn diameter). The TEM approach showed that results determined were reproducible and that the majority of fume particles produced at the welding voltages investigated were less than 40 nm in diameter. SEM (La B6 filament) images were shown to be inadequate for the quantitative-size analysis of paniculate-welding fume due to the limited resolution of the microscope (-40 nm). However. SEM images did confirm that at a welding voltage of 23 V the majority of particle sizes produced were less than 100 nm in diameter, and thus supported the conclusion that the individual fume particles are predominantly in the nanometre size range. LD gave unexpectedly large mean particle sizes and did not detect particles less than 180 run in diameter. It is concluded that the LD technique measures particle agglomerates and/or simultaneously monitors multiple particles in the beam path.

  19. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    Science.gov (United States)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  20. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    is time consuming and constitutes a major bottleneck for experimental researchers in the field. Here we present the deFUME web server, an easy-to-use web-based interface for processing, annotation and visualization of functional metagenomics sequencing data, tailored to meet the requirements of non......-bioinformaticians. The web-server integrates multiple analysis steps into one single workflow: read assembly, open reading frame prediction, and annotation with BLAST, InterPro and GO classifiers. Analysis results are visualized in an online dynamic web-interface. The deFUME webserver provides a fast track from raw sequence...

  1. Addition of Silica Fume to Improve Strength of Cement Paste

    Science.gov (United States)

    Chen, Jiajian; Chen, Hongniao; Li, Gu

    2018-03-01

    This study measured the packing densities of 0 to 30% silica fume (SF) added cementitious materials and strength of the cementitious pastes with various water content. The results revealed that addition of silica fume up to a certain level has great effects on packing density and strength. In-depth analysis illustrated that a lower W/CM ratio would not always result in a higher cube strength, and the range between 0.05 and 0.07 µm would be the amount of water film thickness (WFT) for muximum strength.

  2. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes

  3. Combined local and systemic antibiotic delivery improves eradication of wound contamination: An animal experimental model of contaminated fracture.

    Science.gov (United States)

    Rand, B C C; Penn-Barwell, J G; Wenke, J C

    2015-10-01

    Systemic antibiotics reduce infection in open fractures. Local delivery of antibiotics can provide higher doses to wounds without toxic systemic effects. This study investigated the effect on infection of combining systemic with local antibiotics via polymethylmethacrylate (PMMA) beads or gel delivery. An established Staphylococcus aureus contaminated fracture model in rats was used. Wounds were debrided and irrigated six hours after contamination and animals assigned to one of three groups, all of which received systemic antibiotics. One group had local delivery via antibiotic gel, another PMMA beads and the control group received no local antibiotics. After two weeks, bacterial levels were quantified. Combined local and systemic antibiotics were superior to systemic antibiotics alone at reducing the quantity of bacteria recoverable from each group (p = 0.002 for gel; p = 0.032 for beads). There was no difference in the bacterial counts between bead and gel delivery (p = 0.62). These results suggest that local antibiotics augment the antimicrobial effect of systemic antibiotics. Although no significant difference was found between vehicles, gel delivery offers technical advantages with its biodegradable nature, ability to conform to wound shape and to deliver increased doses. Further study is required to see if the gel delivery system has a clinical role. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    Science.gov (United States)

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  5. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    Science.gov (United States)

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  6. Evaluation of exhaust system for gaseous waste from the source production laboratory for radiotherapy - IPEN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, D.C.B. de; Costa, O.L.; Feher, A.; Geraldo, B.; Carvalho, V.S.; Barbosa, N.K.O.; Vicente, R.; Zeituni, C.A.; Rostelato, M.E.C.M., E-mail: dcsouza@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Exhaust systems in fume hood for chemicals and hazardous materials as radioactive substances are of great importance for the protection of the Occupationally Exposed Individual and the environment. They protect against external contaminations by particulate matter, volatile and against inhalation of radioactive gases. This work intends to evaluate the exhaustion system of the Laboratory of Production of Radioactive Sources at the Nuclear and Energy Research Institute (IPEN). (author)

  7. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Miller, Christopher Francis [Macungie, PA

    2008-09-16

    Method for gas purification comprising (a) obtaining a feed gas stream containing one or more contaminants selected from the group consisting of volatile metal oxy-hydroxides, volatile metal oxides, and volatile silicon hydroxide; (b) contacting the feed gas stream with a reactive solid material in a guard bed and reacting at least a portion of the contaminants with the reactive solid material to form a solid reaction product in the guard bed; and (c) withdrawing from the guard bed a purified gas stream.

  8. Delineation of the extent of milling-related contamination in a naturally contaminated aquifer system

    International Nuclear Information System (INIS)

    Downs, William F.; Storms, Erik F.

    1992-01-01

    Uranium mill tailings from the Susquehanna-Western mill near Falls City, Texas, were pumped to tailings ponds located in abandoned open pit uranium mines. The ores from these mines were oxidized. Uranium and the associated hazardous constituents were present in these ores as relatively soluble secondary minerals. Because the tailings piles are located on the outcrops of the units designated as the uppermost aquifer, there is no upgradient aquifer from which to establish 'background' water quality. The widespread mineralization in the area naturally imposes a large variability in water quality in these units. It was necessary to demonstrate to State and Federal regulators that selected downgradient wells were beyond the influence of milling operations, and to develop a series of 'indicator parameters' that could be used to differentiate milling contaminated groundwater from that native to the aquifer. (author)

  9. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  10. Development of a biotreatment system for the remediation of groundwater contaminated with hydrocarbons and trichloroethylene

    International Nuclear Information System (INIS)

    Folsom, B.R.; Kurisko, P.R.; Ensley, B.D.

    1992-01-01

    Inadvertent release of fuels and solvents into soil has resulted in groundwater contamination across the United States. This paper reports on the development of biologically based systems for treating mixtures of chemical contaminants which often requires knowledge of both degradative pathways and interactions between individual chemicals. These issues may necessitate the use of specialized microorganisms and/or treatment systems designed to overcome these limitations. One strategy for the treatment of chemical mixtures which cannot be source separated, such as contaminated groundwater, is a modular system to sequentially biodegrade groups of compatible chemicals. A two-stage bioreactor system was constructed for the treatment of groundwater contaminated with benzene and TCE. This treatment system is undergoing development for a field pilot demonstration. Successful implementation of this system should result in significant cost and time savings compared to competitive technologies

  11. Waste processing system for product contaminated with radioactivity

    International Nuclear Information System (INIS)

    Sotoyama, Koichi; Takaya, Jun-ichi; Takahashi, Suehiro.

    1987-01-01

    Purpose: To enable to processing contaminated products while separating them into metals at high contamination level and non-metals at low contamination level. Constitution: Pulverized radioactive wastes conveyed on a conveyor belt are uniformly irradiated by a ring-illumination device and then they are picked-up by a television camera or the like. The picked-up signals are sent to an image processing device, applied with appropriate binarization and metal objects are separated by utilizing the light absorbing property of non-metal and light reflection property of metals. The graviational center for the metal object is calculated from the binarized image, the positional information is provided to a robot controller and the metal object is transferred to another position by a robot. Since only the metal object at high radioactive contamination level can be taken out separately, it is no more necessary to process the entire wastes as the high level decontamination products, to thereby provide an economical advantage. (Sekiya, K.)

  12. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  13. Effect of plasticizer and fumed silica on ionic conductivity behaviour ...

    Indian Academy of Sciences (India)

    behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide ... Polymer electrolytes; ionic conductivity; polyethylene oxide; plasticizer; fumed silica. 1. Introduction ..... is a rapid weight loss which could be due to the degradation of polymer ...

  14. EFFECTS OF FIRE FUMES ON ALMOND SAFETY AND QUALITY

    Directory of Open Access Journals (Sweden)

    Amanda Ramírez-Gandolfo

    2011-08-01

    Full Text Available A fire originated and burnt two cold chambers; the present study focused on almonds stored in adjacent chambers (4, 5, 6 and 13 and evaluated both their food safety and quality. Testing for polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans was carried out in affected facilities, packaging and almonds. Experimental results proved that fire fumes did not reach chambers 4-6, but traces were found in bin packaging of chamber 13; thus, packaging from this chamber were changed. Concentrations of benzo(apyrene were low enough to prove that fire fumes did not get in contact with the stored almonds. Later, only volatile compounds typical of nuts were identified in both raw and toasted almonds. Finally, a trained panel concluded that no sensory signal of fumes reaching almonds was found. This manuscript could be taken as a model protocol to establish whether fire fumes have reached and affected the safety and/or quality of foods. This information will be especially useful for insurance companies.

  15. Effect of Generator (Exhaust) Fumes on the Growth and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    as the distance of the plants from the source of pollution increased, only the 3 m treatment led to significant ... plants were adversely affected by the fume emission especially at the distance of 3 m away from the ..... Principles of Biochemical.

  16. Pemanfaatan Mikrobakteri Terhadap Beton Mutu Tinggi dengan Tambahan Silica Fume

    Directory of Open Access Journals (Sweden)

    Azwar Annas

    2016-04-01

    Full Text Available Beton mutu tinggi adalah beton yang kuat tekan tinggi sekitar 50 MPa – 100 MPa. Untuk meningkatkan kuat tekan, material pozollan seperti silica fume dan flyash biasanya digunakan untuk mengganti material beton Dalam laporan ini, beton mutu tinggi dengan silica fume sebagai pengganti semen dipelajari. Kadar silica fume yang digunakan adalah 0%, 5%, 7,5% dan 10%. Selain itu pengaruh dari mikrobakteri juga dipelajari. Faktor water per binder yang dipakai adalah 25% dari berat binder, dan untuk membuat workabilitynya bagus maka digunakan superplasticizer. Kadar superplasticizer yang digunakan dicari lewat trial pengujian di laboratorium. Pengujian yang dilakukan pada umur 1, 3, 7, 14, 21, 28 adalah uji tekan pasta, mortar dan beton, selain itu pada benda uji beton umur 28 hari akan dilakukan uji split beton dan uji porositas. Dari hasil penelitian didapatkan kuat tekan beton tertinggi pada umur 28 hari (B7,5M adalah 69,71 MPa, sedangkan variasi silica fume yang paling optimum ada pada kadar 7,5%. Penambahan mikrobakteri tidak berpengaruh pada berat volume beton tetapi berpengaruh pada kuat tekan beton tersebut. Dengan penambahan mikrobakteri maka kuat tekan beton meningkat sebesar ± 30%. Sedangkan porositas total dan porositas tertutup yang terjadi pada beton semakin kecil, ini dibuktikan dengan hasil SEM terlihat bahwa bakteri mengisi area antara aggregat dan matrix beton.

  17. Reaction products of densified silica fume agglomerates in concrete

    International Nuclear Information System (INIS)

    Diamond, Sidney; Sahu, Sadananda; Thaulow, Niels

    2004-01-01

    Most silica fume currently used in concrete is in the dry densified form and consists of agglomerates of sizes between 10 μm and several millimeters. Many of these agglomerates may break down only partially in normal concrete mixing. Examination of various mature silica-fume-bearing concretes using backscatter mode scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis shows that such agglomerates have reacted in situ and given rise to recognizable types of reaction products filling the space within the original outline of the agglomerate. One type is 'quiescent', and usually shows no evidence of volume instability. EDX spectra indicate that the product formed within such grains is C-S-H of very low Ca/Si ratio, with modest alkali contents. Other silica fume agglomerates may undergo a distinct alkali-silica-type reaction (ASR), with the reaction product found within the original outline of the agglomerate having significantly less calcium and usually much higher alkali contents than the quiescent type. Such reacted agglomerates show evidence of local expansion, shrinkage cracking (on drying), and other features common to ASR. Both types may be found within the same concrete, sometimes in close proximity. It further appears that exposure to seawater may convert previously formed reaction products of silica fume agglomerates to magnesium silicate hydrates

  18. Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol ...

    African Journals Online (AJOL)

    The present study was conducted to evaluate the hepatotoxic and nephrotoxic effects of petroleum fumes on male and female petrol attendants. Investigations had been carried out on thirty (30) adult petrol attendants from different filling stations in Ibadan metropolis of Nigeria with ten (10) healthy adults as control. All the ...

  19. Problem of industrial fumes in the forested valleys of Savoy

    Energy Technology Data Exchange (ETDEWEB)

    Bossavy, J

    1962-01-01

    A study of injury to forest trees in the Maurienne valley, caused by F in the fumes from aluminum factories was made. Of the local conifers, Pinus sylvestris was the most susceptible, followed by Picea abies and Abies alba; Larch has so far proved resistant, as have broadleaved deciduous species.

  20. Effect of plasticizer and fumed silica on ionic conductivity behaviour

    Indian Academy of Sciences (India)

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ...

  1. Development of contaminant detection system based on ultra-low field SQUID-NMR/MRI

    International Nuclear Information System (INIS)

    Tsunaki, S; Yamamoto, M; Hatta, J; Hatsukade, Y; Tanaka, S

    2014-01-01

    We have developed an ultra-low field (ULF) NMR/MRI system using an HTS-rf-SQUID and evaluated performance of the system as a contaminant detection system for foods and drinks. In this work, we measured 1D MRIs from water samples with or without various contaminants, such as aluminum and glass balls using the system. In the 1D MRIs, changes of the MRI spectra were detected, corresponding to positions of the contaminants. We measured 2D MRIs from food samples with and without a hole. In the 2D MRIs, the hole position in the sample was well visualized. These results show that the feasibility of the system to detect and localize contaminants in foods and drinks.

  2. Hepatotoxicity and genotoxicity of gasoline fumes in albino rats

    Directory of Open Access Journals (Sweden)

    Folarin O. Owagboriaye

    2017-09-01

    Full Text Available Toxic effects of gasoline fumes have been reported, but evidence of its hepatotoxicity and genotoxicity are rare. Therefore, this study assesses hepatotoxicity and genotoxicity of gasoline fumes on forty Albino rats randomly assigned to five experimental treatments (T with eight rats per treatment (T1, T2, T3, T4 and T5. T1(Control was housed in a section of experimental animal house free from gasoline fumes while T2, T3, T4 and T5 were exposed to gasoline fumes in exposure chambers for one, three, five and nine hours daily respectively for twelve weeks. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP and histopathological examination of the liver tissues were used as diagnostic markers to assess liver dysfunction. Genotoxicity test was conducted on the lung tissues using randomly amplified polymorphic DNA fingerprinting polymerase chain reaction (RAPD PCR technique. Significant increase (p < 0.05 in the level of ALT, AST and ALP for T2, T3, T4 and T5 compared to T1 were recorded. Photomicrograph examination of the liver sections of T1 showed hepatic tissue with normal liver cell architecture while that of T2, T3, T4 and T5 revealed degenerative changes in the ultrastructural integrity of the hepatic cells. Genotoxicity test revealed DNA bands at a reducing intensity from T1 to T5. Dendrogram showed DNA damage in the lungs of T3, T4 and T5 were closely similar and the genotoxic impact was more in T3. Frequent exposure to gasoline fumes was observed to induce hepatoxicity and genotoxicity, hence impairing the normal liver function and gene structure.

  3. Development of plastic scintillator based food radioactivity contamination monitoring system

    International Nuclear Information System (INIS)

    Parihar, A.; Sahani, R.M.; Mahala, V.K.; Vaijapurkar, S.G.

    2016-01-01

    Radioactivity is naturally present in soil, water and food stuffs. Food can be contaminated after discharge of radioactivity into the environment from industries that concentrate natural radionuclide and from civil or military nuclear operations. The contamination can be in three ways; by direct deposition, through the food chain and induced radioactivity due to exposure of high neutron flux. The health effects on human depend on the type of radionuclide and the length of time people are exposed to it. The studies of fission product behaviour in the food chain have revealed radionuclide Strontium-90, Caesium 137 and Iodine-131 are of major concern. Plastic scintillator is already developed indigenously at Defence Laboratory, Jodhpur. Efforts has been made to develop a portable field instrument using plastic scintillator for assessment of beta ( 90 Sr) and gamma ( 137 Cs and 131 I) radioactivity in food

  4. Novel, Vacuum-Regenerable Trace Contaminant Control System for Advanced Spacesuit Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a new material paradigm for the Trace Contaminant Control System (TCCS) based upon its novel adsorbent nanomaterials that...

  5. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  6. The Use of Wetting Agents/Fume Supressants for Minimizing the Atmospheric Emissions from Hard Chromium Electroplating Baths

    Science.gov (United States)

    2003-08-01

    Accreditation (A2LA) for compliance with ISO 9001, Quality Systems - Model for Quality Assurance in Design, Development, Production, Installation and Servicing...All samples handling and testing at Patuxent River laboratory is ISO 9001 compliant. Appendix D, Table 1, 2, and 4 outline the test methods...HCF 0.1 4 3 8583 ± 288 8257/8909 8155/9012 1 TEST (N = 44090 CYCLES) TREATED AS AN OUTLIER. EXTRA HARD CHROME WITH FUME SUPPRESSANT HCF -1 4 4

  7. Reduction of fume damage in forests: report on the symposium on fume damage held in Tharandt from 30th September to 2nd October 1965

    Energy Technology Data Exchange (ETDEWEB)

    Daessler, H G; Ranft, H

    1967-01-01

    Summaries are presented of 15 papers, including: extent of variation in fume resistance in Larix and problems of breeding for resistance (Schoenbach); results of research on fume damage on experimental areas in E. Germany (H. Enderlin) (noting differences in resistance to SO/sub 2/ damage of various species of Picea, Pinus, and Abies, varieties of Pseudotsuga taxifolia and provenances of Pinus contorta and Larix spp., effect of fertilizers on resistance, and mass selection of resistant planting stock in practice); resistance of Pinus omorika to fume damage (K.F. Wentzel); chemical and physiological studies on the metabolism of the assimilation organs of conifers affected by SO/sub 2/ (S. Boertitz); basic physiological and phenological studies on the preliminary selection of conifers for SO/sub 2/ resistance (M. Vogl); fertilizer trials in fume-damaged pine stands on Dueben Heath (H. Krauss); insect pests on young pine stands in fume-damaged regions in Poland (Z. Sierpinski); birch and alder pests in industrial regions (Z. Schnaider); management of young fume-damaged spruce stands (E. Pelz); effect of fumes from the potash industry on forest stands in East Germany (E. Ewert); the distribution of injurious substances in leaves (G. Halbwachs); emission of SO/sub 2/ absorbed by spruce needles (J. Materna); and estimating fume damage expected near future power stations (H. Lux).

  8. Importance of exposure model in estimating impacts when a water distribution system is contaminated

    International Nuclear Information System (INIS)

    Davis, M. J.; Janke, R.; Environmental Science Division; USEPA

    2008-01-01

    The quantity of a contaminant ingested by individuals using tap water drawn from a water distribution system during a contamination event depends on the concentration of the contaminant in the water and the volume of water ingested. If the concentration varies with time, the actual time of exposure affects the quantity ingested. The influence of the timing of exposure and of individual variability in the volume of water ingested on estimated impacts for a contamination event has received limited attention. We examine the significance of ingestion timing and variability in the volume of water ingested by using a number of models for ingestion timing and volume. Contaminant concentrations were obtained from simulations of an actual distribution system for cases involving contaminant injections lasting from 1 to 24 h. We find that assumptions about exposure can significantly influence estimated impacts, especially when injection durations are short and impact thresholds are high. The influence of ingestion timing and volume should be considered when assessing impacts for contamination events

  9. Issues facing the management of radioactively contaminated lead within the DOE system

    International Nuclear Information System (INIS)

    Gilmore, M.C.; Kent, S.H.

    1993-01-01

    The purpose of this paper is to discuss and evaluate the issues that managing and operating contractors in the US DOE system should consider that are associated with management of radioactively contaminated elemental lead. There are many instances where DOE contaminated lead fall within Resource Conservation and Recovery Act (RCRA) regulation. In light of the Federal Facilities Compliance Act (FFCA), it is becoming increasingly important for additional regulatory options to be explored in order to facilitate proper treatment, storage and disposal of RCRA regulated lead. Various DOE facilities have initiated processes to reuse or recycle contaminated lead. Technologies such as melt-refining, surface blasting, and electromigration are being explored. One or more of these technologies may be the key to reducing contaminated lead inventories in the DOE system. Many DOE facilities are finding that these efforts need to have stringent regulatory evaluation since some alternatives have proven to be environmentally desirable but not economically feasible

  10. Obtaining contaminant arrival distributions for steady flow in heterogeneous systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The versatility of the new contaminant arrival distributions for determining environmental consequences of subsurface pollution problems is demonstrated through application to a field example involving land drainage in heterogeneous porous materials. Though the four phases of the hydrologic evaluations are complicated because of the material heterogeneity encountered in the field problem, the arrival distributions still effectively summarize the minimal amount of data required to determine the environmental implications. These arrival distributions yield a single graph or tabular set of data giving the consequences of the subsurface pollution problems. Accordingly, public control authorities would be well advised to request that the results of subsurface pollution investigations be provided in the form of arrival distributions and the resulting simpler summary curve or tabulation. Such an objective is most easily accomplished through compliance with the requirements for assuring a complete subsurface evaluation

  11. Design and development of food radioactivity contamination monitoring system

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Vaijapurkar, S.G.; Bohra, Dinesh

    2014-01-01

    Radioactivity has been part and parcel of living being since the existence of the earth. It is available everywhere in our environment and being responsible for evolution of life on earth at some extent. However, the radioactivity in excess of the natural radioactive can have harmful effects on living being. The radiation exposure can be of external or internal origin or of both. The main route of internal radiation exposure is through the contaminated food chains. The concentration of natural radioactivity in food varies in range of 40-600 Bq/kg. 40 K being the single major radionuclide of food with typical radioactivity; 50 Bq/kg in milk, 420 Bq/kg in milk powder, 165 Bq/kg in potatoes, and 125 Bq/kg in beef is also the main contributor of natural radiation doses to human being. Measurement of radioactivity in food items and drinks is thus very important in controlling the internal exposure to human being especially in case of nuclear disaster. Though, the methods and techniques for food radioactivity measurement already existing, the need of portable instrument is warranted to measure the radioactivity in food items in raw form. Measurement of radioactivity may help in quick and mass screening of food items in case of nuclear emergencies. Any enhanced level of radioactivity in food items especially in case of nuclear emergency need to be evaluated for controlling its spread and restriction of consumption by the public. This way, it may help in managing internal radioactivity contamination to human being

  12. Decision aiding handbooks for managing contaminated food production systems, drinking water and inhabited areas in Europe

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Brown, J.; Howard, B.J.

    2010-01-01

    Three handbooks have been developed, in conjunction with a wide range of stakeholders to assist in the management of contaminated food production systems, inhabited areas and drinking water following a radiological incident. The handbooks are aimed at national and local authorities, central...... government departments and agencies, emergency services, radiation protection experts, the agriculture and food production sectors, industry and others who may be affected. The handbooks include management options for application in the different phases of an incident. Sources of contamination considered...

  13. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  14. A study of the bio-accessibility of welding fumes.

    Science.gov (United States)

    Berlinger, Balázs; Ellingsen, Dag G; Náray, Miklós; Záray, Gyula; Thomassen, Yngvar

    2008-12-01

    The respiratory bio-accessibility of a substance is the fraction that is soluble in the respiratory environment and is available for absorption. In the case of respiratory exposure the amount of absorbed substance plays a main role in the biological effects. Extensive bio-accessibility studies have always been an essential requirement for a better understanding of the biological effects of different workplace aerosols, such as welding fumes. Fumes generated using three different welding techniques, manual metal arc (MMA) welding, metal inert gas (MIG) welding, and tungsten inert gas (TIG) welding were investigated in the present study. Each technique was used for stainless steel welding. Welding fumes were collected on PVC membrane filters in batches of 114 using a multiport air sampler. Three different fluids were applied for the solubility study: deionised water and two kinds of lung fluid simulants: lung epithelial lining fluid simulant (Gamble's solution) and artificial lung lining fluid simulant (Hatch's solution). In order to obtain sufficient data to study the tendencies in solubility change with time, seven different leaching periods were used (0.5, 1, 2, 4, 8, 16, 24 h), each of them with three replicates. The effect of dissolution temperature was also studied. The total amounts of selected metals in the three different welding fumes were determined after microwave-assisted digestion with the mixture of aqua regia and hydrofluoric acid. The most obvious observation yielded by the results is that the solubility of individual metals varies greatly depending on the welding technique, the composition of the leaching fluid and leaching time. This study shows that the most reasonable choice as a media for the bio-assessment of solubility might be Hatch's solution by a dissolution time of 24 h.

  15. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  16. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes

    International Nuclear Information System (INIS)

    Ji Yajun; Cahyadi, Jong Herman

    2003-01-01

    Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials

  17. Sources and remediation for mercury contamination in aquatic systems--a literature review

    International Nuclear Information System (INIS)

    Wang, Qianrui; Kim, Daekeun; Dionysiou, Dionysios D.; Sorial, George A.; Timberlake, Dennis

    2004-01-01

    Sources of mercury contamination in aquatic systems were studied in a comprehensive literature review. The results show that the most important anthropogenic sources of mercury pollution in aquatic systems are: (1) atmospheric deposition, (2) erosion, (3) urban discharges, (4) agricultural materials, (5) mining, and (6) combustion and industrial discharges. Capping and dredging are two possible remedial approaches to mercury contamination in aquatic systems, and natural attenuation is a passive decontamination alternative. Capping seems to be an economical and effective remedial approach to mercury-contaminated aquatic systems. Dredging is an expensive remedial approach. However, for heavily polluted systems, dredging may be more effective. Natural attenuation, involving little or no cost, is a possible and very economical choice for less contaminated sites. Proper risk assessment is necessary to evaluate the effectiveness of remedial and passive decontamination methods as well as their potential adverse environmental effects. Modeling tools have a bright future in the remediation and passive decontamination of mercury contamination in aquatic systems. Existing mercury transport and transformation models were reviewed and compared

  18. Removal of polonium contamination by lead-bismuth eutectic in nuclear systems

    International Nuclear Information System (INIS)

    Miura, Terumitsu; Obara, Toru; Sekimoto, Hiroshi

    2003-01-01

    Lead-Bismuth eutectic (LBE) is considered as a promising candidate of the coolant of liquid metal cooled fast reactor, and the coolant and/or target of accelerator driven system. LBE has various good characters for coolant, but it has also some problems such as polonium production. It is necessary to take polonium contamination into consideration, when LBE is used as the coolant. In the present paper, the removal of contaminating polonium from material surface is studied. Baking method is investigated for polonium removal from contaminated quartz glass plate in vacuum. Before and after baking, the mass of the contaminants on the surface and alpha particle counts from contaminated surface is measured. When the contaminated quartz glass plates are baked at more than 400degC for a few minutes, alpha particle counts from the surface decreases by more than 99.7%, and the mass of contaminants decreases by more than 50%. When the baking was performed at 300degC for 15 minutes and more, alpha particle count decreases by more than 80%, and the mass decreases in little. When, the baking temperature is lower than 200degC, alpha particle counts and mass do not decrease. (author)

  19. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro

    International Nuclear Information System (INIS)

    McNeilly, Jane D.; Heal, Mathew R.; Beverland, Iain J.; Howe, Alan; Gibson, Mark D.; Hibbs, Leon R.; MacNee, William; Donaldson, Ken

    2004-01-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the 'washed' particulate. All whole fumes were significantly toxic to A549 cells at doses >63 μg ml -1 (TD 50; 42, 25, and 12 μg ml -1 , respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism

  20. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    OpenAIRE

    Mydin M.A.O.; Sani N. Md.; Mohd Yusoff M.A.; Ganesan S.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC) and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the m...

  1. Processing plutonium-contaminated soild for volume reduction using the segmented gate system

    International Nuclear Information System (INIS)

    Moroney, K.S.; Moroney, J.D.; Turney, J.M.; Doane, R.W.

    1994-01-01

    TMA/Eberline has developed and demonstrated an effective method for removing mixed plutonium and americium contamination from a coral soil matrix at the Defense Nuclear Agency's Johnston Atoll site. TMA's onsite soil processing for volume reduction is ongoing at a rate of over 2000 metric tons per week. The system uses arrays of sensitive radiation detectors coupled with sophisticated computer software developed by Eberline Instrument Corporation. The proprietary software controls four soil sorting units operating in parallel that utilize TMA's unique Segmented Gate System technology to remove radiologically contaminated soil from a moving supply on conveyor belts. Clean soil is released for use elsewhere on the island. Contaminated soil is diverted to either a metal drum for collecting higher activity open-quotes hotclose quotes particles (>5000 Becquerels), or to a supplementary soil washing process designed to remove finely divided particles of dispersed low level contamination. Site contamination limits specify maximum dispersed radioactivity of no more than 500 Becquerels per kilogram of soil averaged over no more than 0.1 cubic meter. Results of soil processing at this site have been excellent. After processing over 50,000 metric tons, the volume of contaminated material that would have required expensive special handling, packaging, and disposal as radioactive waste has been successfully reduced by over 98 percent. By mid-January 1994, nearly three million kiloBecquerels of plutonium/americium contamination had been physically separated from the contaminated feed by TMA's Segmented Gate System, and quality control sampling showed no radioactivity above release criteria in the open-quotes cleanclose quotes soil pile

  2. Exposure to welding fumes is associated with hypomethylation of the F2RL3 gene: a cardiovascular disease marker.

    Science.gov (United States)

    Hossain, Mohammad B; Li, Huiqi; Hedmer, Maria; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-12-01

    Welders are at risk for cardiovascular disease. Recent studies linked tobacco smoke exposure to hypomethylation of the F2RL3 (coagulation factor II (thrombin) receptor-like 3) gene, a marker for cardiovascular disease prognosis and mortality. However, whether welding fumes cause hypomethylation of F2RL3 remains unknown. We investigated 101 welders (median span of working as a welder: 7 years) and 127 unexposed controls (non-welders with no obvious exposure to respirable dust at work), age range 23-60 years, all currently non-smoking, in Sweden. The participants were interviewed about their work history, lifestyle factors and diseases. Personal sampling of respirable dust was performed for the welders. DNA methylation of F2RL3 in blood was assessed by pyrosequencing of four CpG sites, CpG_2 (corresponds to cg03636183) to CpG_5, in F2RL3. Multivariable linear regression analysis was used to assess the association between exposure to welding fumes and F2RL3 methylation. Welders had 2.6% lower methylation of CpG_5 than controls (pWelding fumes exposure and previous smoking were associated with F2RL3 hypomethylation. This finding links low-to-moderate exposure to welding fumes to adverse effects on the cardiovascular system, and suggests a potential mechanistic pathway for this link, via epigenetic effects on F2RL3 expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Detection system qualification for direct measurement of thyroid internal contamination by radioiodine

    International Nuclear Information System (INIS)

    Tiberi, V.; Battisti, P.; Gualdrini, G.

    1999-01-01

    The work deals with a detection system qualification for direct measurements of thyroid internal contamination by radioiodine. The isotopes 131 I and 125 I are the most frequently used in nuclear medicine. Because of their volatility they are very dangerous for thyroid contamination by inhalation. The system has been projected to be easily and fast used and above all transportable where the control is necessary. These characteristic make it able to realise supervision programs of internal contamination by radioiodine. In fact due the very high control frequencies (each 15 days for 131 I), these programs are usually very expensive and demanding when they are executed in external measurement laboratories. The following steps are described: devices presentation, calculation of energy and efficiency parameters, minimum detectable activity, time system reliability, best operative conditions in the measurements. At the end an application example of the system is reported [it

  4. Potential risk for bacterial contamination in conventional reused ventilator systems and disposable closed ventilator-suction systems.

    Science.gov (United States)

    Li, Ya-Chi; Lin, Hui-Ling; Liao, Fang-Chun; Wang, Sing-Siang; Chang, Hsiu-Chu; Hsu, Hung-Fu; Chen, Sue-Hsien; Wan, Gwo-Hwa

    2018-01-01

    Few studies have investigated the difference in bacterial contamination between conventional reused ventilator systems and disposable closed ventilator-suction systems. The aim of this study was to investigate the bacterial contamination rates of the reused and disposable ventilator systems, and the association between system disconnection and bacterial contamination of ventilator systems. The enrolled intubated and mechanically ventilated patients used a conventional reused ventilator system and a disposable closed ventilator-suction system, respectively, for a week; specimens were then collected from the ventilator circuit systems to evaluate human and environmental bacterial contamination. The sputum specimens from patients were also analyzed in this study. The detection rate of bacteria in the conventional reused ventilator system was substantially higher than that in the disposable ventilator system. The inspiratory and expiratory limbs of the disposable closed ventilator-suction system had higher bacterial concentrations than the conventional reused ventilator system. The bacterial concentration in the heated humidifier of the reused ventilator system was significantly higher than that in the disposable ventilator system. Positive associations existed among the bacterial concentrations at different locations in the reused and disposable ventilator systems, respectively. The predominant bacteria identified in the reused and disposable ventilator systems included Acinetobacter spp., Bacillus cereus, Elizabethkingia spp., Pseudomonas spp., and Stenotrophomonas (Xan) maltophilia. Both the reused and disposable ventilator systems had high bacterial contamination rates after one week of use. Disconnection of the ventilator systems should be avoided during system operation to decrease the risks of environmental pollution and human exposure, especially for the disposable ventilator system. ClinicalTrials.gov PRS / NCT03359148.

  5. Effectiveness of a Novel Specimen Collection System in Reducing Blood Culture Contamination Rates.

    Science.gov (United States)

    Bell, Mary; Bogar, Catherine; Plante, Jessica; Rasmussen, Kristen; Winters, Sharon

    2018-04-20

    False-positive blood-culture results due to skin contamination of samples remain a persistent problem for health care providers. Our health system recognized that our rates of contamination across the 4 emergency department campuses were above the national average. A unique specimen collection system was implemented throughout the 4 emergency departments and became the mandatory way to collect adult blood cultures. The microbiology laboratory reported contamination rates weekly to manage potential problems; 7 months of data are presented here. There was an 82.8% reduction in false positives with the unique specimen collection system compared with the standard method (chi-squared test with Yates correction, 2-tailed, P = 0.0001). Based on the historical 3.52% rate of blood-culture contamination for our health facilities, 2.92 false positives were prevented for every 100 blood cultures drawn, resulting from adoption of the unique specimen collection system as the standard of care. This unique collection system can reduce the risk of blood culture contamination significantly and is designed to augment, rather than replace, the standard phlebotomy protocol already in use in most health care settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume

    International Nuclear Information System (INIS)

    Han, Ta-Yuan; Lin, Wei-Ting; Cheng, An; Huang, Ran; Huang, Chin-Cheng

    2012-01-01

    Highlights: ► Experimental study is focus on the engineering properties of cement-based composites. ► Different mixes containing fiber and silica fume proportions have been tested. ► The influence of different mixes on the engineering properties has been discussed. ► The properties are included strength, ductility, permeability and microstructure. -- Abstract: This study evaluated the mechanical properties of cement-based composites produced with added polyolefin fibers and silica fume. Material variables included the water-cementitious ratio, the dosage of silica fume, and the length and dosage of polyolefin fiber. Researchers conducted tests on compressive strength, splitting tensile strength, direct tensile strength, resistivity, rapid chloride penetration, and initial surface absorption, and performed microscopic observation. Test results indicate that the specimens containing silica fume have higher compressive strength than the control and specimen made with fibers. The specimens with polyolefin fiber and silica fume have considerably higher tensile strength and ductility than the control and specimens made with silica fume. The specimens containing silica fume and polyolefin fiber demonstrated better resistance to chloride penetration than composites with polyolefin fiber or silica fume. For a given volume fraction, short polyolefin fiber performs better than its long counterpart in improving the properties of concrete. Specimens containing silica fume demonstrated a significant increase in resistivity and decrease in the total charge passed and absorption. Scanning electron microscopy illustrates that the polyolefin fiber acts to arrest the propagation of internal cracks.

  7. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Metcalfe, Chris D; Beddows, Patricia A; Bouchot, Gerardo Gold; Metcalfe, Tracy L; Li, Hongxia; Van Lavieren, Hanneke

    2011-04-01

    Intensive land development as a result of the rapidly growing tourism industry in the "Riviera Maya" region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Redox oscillation impact on natural and engineered biogeochemical systems: chemical resilience and implications for contaminant mobility

    Energy Technology Data Exchange (ETDEWEB)

    Charlet, Laurent [ISTerre, University of Grenoble, B.P. 53X, 38041 Grenoble (France); Institut Universitaire de France, Paris (France); Markelova, Ekaterina [ISTerre, University of Grenoble, B.P. 53X, 38041 Grenoble (France); Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L3G1 4 (Canada); Parsons, Chris; Couture, Raoul-Marie [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L3G1 4 (Canada); Made, Benoit [Andra / DRD-TR, Direction Recherche et Developpement, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry cedex (France)

    2013-07-01

    Many geochemical systems fluctuate regularly from oxic to anoxic conditions (flooded soils and nuclear waste surface repositories, for instance). In these conditions many inorganic contaminants including Sb, Se, Cr, As, and U are highly sensitive to changes in redox conditions. These oscillations may result in changes to their speciation, toxicity, and mobility. We demonstrate through the combination of redox-stat batch-reactor experiments that periodic and cumulative changes to matrix mineralogy, contaminant speciation, and mineral surface properties occur following periodic cycles of reduction and oxidation. These changes result in both short-term (intra-cycle) and long-term (inter-cycle) changes to K{sub d} values for a range of redox sensitive contaminants. These results demonstrate that naturally occurring redox oscillations may result in long-term immobilization of contaminants in the solid phase in addition to short-term variations in mobility. (authors)

  9. Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

    International Nuclear Information System (INIS)

    Phelan, J.M.; Webb, S.W.

    1994-01-01

    Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994

  10. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  11. Virus contamination from operation and maintenance practices in small drinking water distribution systems

    Science.gov (United States)

    We tested the association of common events in drinking water distribution systems with contamination of household tap water with human enteric viruses. Viruses were enumerated by qPCR in the tap water of 14 municipal systems that use non-disinfected groundwater. Ultra-violet disinfection was install...

  12. Dispersibility of silica fume in mortar and its effect on properties of mortar. Silica fume no bunsan to mortar no shotokusei

    Energy Technology Data Exchange (ETDEWEB)

    Oga, H; Uomoto, T [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1992-08-01

    Effect of silica fume dispersibility on concrete characteristics was discussed. Properties of mortar mixed with silica fume to exhibit compression strength varied with displacement rates, patterns, and mixing time of silica fume. In submerged curing age of 28 days, the compression strength in a mortar mixed with silica fume at 10% was affected only very little by the mixing time for both pelletizing and non-pelletizing types for up to 180 seconds. The strength increased thereafter with the mixing time. The compression strength at 1020 seconds showed higher value by about 150 kgf/cm [sup 2] than when no silica fume is added, with a difference because of patterns disappearing. In the case of a mixing time of 1020 seconds, neutralization depth receives very little effect from a pattern difference, and decreases with increasing displacement rate. Neutralization coefficient of the mortar mixed with silica fume at 10% decreased with the mixing time, and it was possible to suppress the neutralization coefficient to 25% of the case without silica fume addition in a 1020-second mixing. 7 refs., 8 figs., 1 tab.

  13. Washing of Cloth Contaminated with Radionuclides Using a Detergent-free Laundry System

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Sung Paal

    2005-07-01

    In this study, a new laundry system to wash clothes without using detergent (detergent-free) was applied to wash clothes contaminated with radionuclides at the RWTF of KAERI. If the clothes contaminated with radionuclides and soil decontaminated and cleaned by washing without using detergent, the problem caused by the detergent could be solved naturally. The experiment was performed in two stages. In the first stage, washability of the processed water from the detergent=free laundry system was investigated with regard to its decontamination efficiency for the radionuclides and the detergency for the soil by using the test cloth specimens. In the second stage, real working clothes contaminated with radionuclides from the RWTF were washed by using a laundry machine equipped with a detergent-free system. Decontamination and detergency of the clothes were estimated after washing and the wastewater was also analyzed for its properties.

  14. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  15. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico

    International Nuclear Information System (INIS)

    Metcalfe, Chris D.; Beddows, Patricia A.; Bouchot, Gerardo Gold; Metcalfe, Tracy L.; Li Hongxia; Van Lavieren, Hanneke

    2011-01-01

    Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. - Research highlights: → Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico is contaminating groundwater resources that discharge into Caribbean coastal ecosystems. → Passive sampling devices deployed in groundwater flowing through cave systems below two communities in the Riviera Maya accumulated: pharmaceuticals and personal care products originating from domestic sewage. → PAHs originating from runoff from highways and other impermeable surfaces; chlorophenoxy herbicides originating from pesticide applications to lawns and turf. → Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health in the region. - Contaminants accumulated in passive samplers deployed in flooded cave systems in the Yucatan Peninsula in Mexico indicate contamination by domestic sewage, runoff and applications of pesticides

  16. Contaminants in the coastal karst aquifer system along the Caribbean coast of the Yucatan Peninsula, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Chris D., E-mail: cmetcalfe@trentu.ca [Worsfold Water Quality Centre, Trent University, Peterborough, ON, K9J 7B8 (Canada); Beddows, Patricia A. [Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL (United States); Bouchot, Gerardo Gold [Departemento de Recursos del Mar, CINVESTAV Unidad Merida, Yucatan (Mexico); Metcalfe, Tracy L.; Li Hongxia [Worsfold Water Quality Centre, Trent University, Peterborough, ON, K9J 7B8 (Canada); Van Lavieren, Hanneke [UN University Institute for Water, Environment and Health (UNU-INWEH), Hamilton, ON (Canada)

    2011-04-15

    Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico may result in contamination of groundwater resources that eventually discharge into Caribbean coastal ecosystems. We deployed two types of passive sampling devices into groundwater flowing through cave systems below two communities to evaluate concentrations of contaminants and to indicate the possible sources. Pharmaceuticals and personal care products accumulated in the samplers could only have originated from domestic sewage. PAHs indicated contamination by runoff from highways and other impermeable surfaces and chlorophenoxy herbicides accumulated in samplers deployed near a golf course indicated that pesticide applications to turf are a source of contamination. Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health, thus damaging the tourism-based economy of the region. - Research highlights: > Intensive land development as a result of the rapidly growing tourism industry in the 'Riviera Maya' region of the Yucatan Peninsula, Mexico is contaminating groundwater resources that discharge into Caribbean coastal ecosystems. > Passive sampling devices deployed in groundwater flowing through cave systems below two communities in the Riviera Maya accumulated: pharmaceuticals and personal care products originating from domestic sewage. > PAHs originating from runoff from highways and other impermeable surfaces; chlorophenoxy herbicides originating from pesticide applications to lawns and turf. > Prevention and mitigation measures are needed to ensure that expanding development does not impact the marine environment and human health in the region. - Contaminants accumulated in passive samplers deployed in flooded cave systems in the Yucatan Peninsula in Mexico indicate contamination by domestic sewage, runoff and applications of

  17. Contamination confinement system of irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A. dos S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-06-01

    A study to prevent radioctivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the especification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  18. Containment system of contamination in irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A.S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-01-01

    A study to prevent radiactivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the specification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  19. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  20. Development of a decision support system to manage contamination in marine ecosystems.

    Science.gov (United States)

    Dagnino, A; Viarengo, A

    2014-01-01

    In recent years, contamination and its interaction with climate-change variables have been recognized as critical stressors in coastal areas, emphasizing the need for a standardized framework encompassing chemical and biological data into risk indices to support decision-making. We therefore developed an innovative, expert decision support system (Exp-DSS) for the management of contamination in marine coastal ecosystems. The Exp-DSS has two main applications: (i) to determine environmental risk and biological vulnerability in contaminated sites; and (ii) to support the management of waters and sediments by assessing the risk due to the exposure of biota to these matrices. The Exp-DSS evaluates chemical data, both as single compounds and as total toxic pressure of the mixture, to compare concentrations to effect-based thresholds (TELs and PELs). Sites are then placed into three categories of contamination: uncontaminated, mildly contaminated, and highly contaminated. In highly contaminated sites, effects on high-level ecotoxicological endpoints (i.e. survival and reproduction) are used to determine risk at the organism-population level, while ecological parameters (i.e. alterations in community structure and ecosystem functions) are considered for assessing effects on biodiversity. Changes in sublethal biomarkers are utilized to assess the stress level of the organisms in mildly contaminated sites. In Triad studies, chemical concentrations, ecotoxicological high-level effects, and ecological data are combined to determine the level of environmental risk in highly contaminated sites; chemical concentration and ecotoxicological sublethal effects are evaluated to determine biological vulnerability in mildly contaminated sites. The Exp-DSS was applied to data from the literature about sediment quality in estuarine areas of Spain, and ranked risks related to exposure to contaminated sediments from high risk (Huelva estuary) to mild risk (Guadalquivir estuary and Bay of

  1. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  2. MOIRA: a computerised decision support system for the management of radionuclide contaminated freshwater ecosystems

    International Nuclear Information System (INIS)

    Gallego, Eduardo; Brittain, John E.; Hakanson, Lars; Heling, Rudie; Hofman, Dmitry; Monte, Luigi

    2004-01-01

    The radiation dose resulting from contamination of freshwater ecosystems due to the release of radioactive substances into the environment may be reduced by applying suitable countermeasures. Despite their benefits, intervention strategies may have detrimental effects of economic, ecological and social nature. Thus, it is of paramount importance to assess, by objective criteria, the global cost-benefit balance of different options. The MOIRA project (A MOdel based computerised system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems) has developed a user-friendly, computerised tool that will allow decision makers to choose optimal intervention strategies for freshwater ecosystems with different contamination scenarios. The aim of the paper is to briefly describe the main components of the MOIRA system and to demonstrate its application using real case based scenarios. (author)

  3. THE ACCUMULATION AND RELEASE OF CONTAMINANTS FROM DISTRIBUTION SYSTEM SOLIDS

    Science.gov (United States)

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  4. The impact of steam generator replacement on PWR primary system contamination

    International Nuclear Information System (INIS)

    Dacquait, F.; Marteau, H.; Guinard, L.; Ranchoux, G.; Taunier, S.; Wintergerst, M.; Bretelle, J.L.; Rocher, A.

    2010-01-01

    This paper analyses the impact of Steam Generator Replacement (SGR) on PWR primary circuit contamination. It presents a comparison of the activities deposited inside the primary system and released during refuelling outages after SGR with three different SG tube alloys (600, 690 and 800) and different SG tube manufacturing processes. A SGR has a great impact on the primary system contamination. After SGR, whatever the SG tube material is, the typical variations are the following: The 58 Co contamination increases for 1 to 3 cycles, and then decreases to very low levels in some cases, mainly depending on the manufacturing process of the replacement SG tubes; The 60 Co Co contamination tends to decrease on the primary coolant pipes and increases by a lower rate on the new SG tubes. This analysis highlights the importance on contamination levels after SGR of both the corrosion product deposits on the primary surfaces before SGR and the surface finish of the SG tubes related to their manufacturing process. (author)

  5. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean; Slaven, James; Schwegler-Berry, Diane; Antonini, James

    2009-02-01

    Occupational exposure to welding fumes is a known health hazard. To isolate elements in stainless steel welding fumes with high potential for adverse health outcomes, fumes were generated using a robotic gas metal arc system, using four shield gases of varying oxygen content. The objective was to measure Cr(VI) concentrations in a broad spectrum of gas metal arc welding processes, and identify processes of exceptionally high or low Cr(VI) content. The gases used were 95% Ar/5% O(2), 98% Ar/2% O(2), 95% Ar/5%CO(2), and 75% He/25% Ar. The welder was operated in axial spray mode (Ar/O(2), Ar/CO(2)), short-circuit (SC) mode (Ar/CO(2) low voltage and He/Ar), and pulsed axial-spray mode (98% Ar/2% O(2)). Results indicate large differences in Cr(VI) in the fumes, with Ar/O(2) (Pulsed)>Ar/O(2)>Ar/CO(2)>Ar/CO(2) (SC)>He/Ar; values were 3000+/-300, 2800+/-85, 2600+/-120, 1400+/-190, and 320+/-290 ppm respectively (means +/- standard errors for 2 runs and 3 replicates per run). Respective rates of Cr(VI) generation were 1.5, 3.2, 4.4, 1.3, and 0.46 microg/min; generation rates were also calculated in terms of microg Cr(VI) per metre of wire used. The generation rates of Cr(VI) increased with increasing O(3) concentrations. Particle size measurements indicated similar distributions, but somewhat higher >0.6 microm fractions for the short-circuit mode samples. Fumes were also sampled into 2 selected size ranges, a microspatter fraction (>or=0.6 microm) and a fine (welding type and shield gas type, and this presents an opportunity to tailor welding practices to lessen Cr(VI) exposures in workplaces by selecting low Cr(VI)-generating processes. Short-circuit processes generated less Cr(VI) than axial-spray methods, and inert gas shielding gave lower Cr(VI) content than shielding with active gases. A short circuit He/Ar shielded process and a pulsed axial spray Ar/O(2) process were both identified as having substantially lower Cr(VI) generation rates per unit of wire used relative

  6. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved by...

  7. Increased lung function decline in blue-collar workers exposed to welding fumes.

    Science.gov (United States)

    Thaon, Isabelle; Demange, Valérie; Herin, Fabrice; Touranchet, Annie; Paris, Christophe

    2012-07-01

    There is no consensus at the present time about the effect of welding on lung function decline. This study compared lung function decline between blue-collar workers exposed and not exposed to welding fumes in a French longitudinal cohort of 21,238 subjects aged 37 to 52 years at inclusion. Medical data, occupation, sector of activity, and spirometry were recorded twice by occupational physicians in 1990 and 1995. A job-exposure matrix was used to identify 503 male blue-collar workers exposed to welding fumes and 709 control subjects and to define the weekly duration of exposure to welding fumes. Baseline lung function parameters were higher in workers exposed to welding fumes than in control subjects. After a 5-year follow-up, welding-fume exposure was associated with a nonsignificant decline in FVC (P = .06) and FEV(1) (P = .07) after adjustment for age, pack-years, BMI, and baseline value of the parameter. A significant accelerated decline in FEV(1) (P = .046) was also observed in never smokers exposed to welding fumes. An “exposure-response” relationship was observed between FEV(1) decline and weekly duration of exposure to welding fumes in nonsmokers but not in smokers. Blue-collar workers exposed to welding fumes showed accelerated decline in lung function, which, in nonsmokers, was related to weekly duration of exposure.

  8. Influence of silica fume and fly ash on hydration, microstructure and strength of cement based mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Kaimao

    1992-10-01

    The influence of fly ash and silica fume on the hydration, microstructure and strength of cement-based mixtures was investigated. A literature review of the hydration processes, compressive strength development, and microstructure of Portland cement is presented, followed by description of materials and specimens preparation and experimental methodology. It was found that silica fume retards cement hydration at low water/concrete ratios. It reduces calcium hydroxide significantly and increases the amount of hydrates at early ages. Fly ash retards hydration more significantly at high water/concrete ratios than at low ratios. The combination of silica fume and fly ash further retards hydration at one day. Silica fume dominates the reaction with calcium hydroxide. Silica fume significantly increases early strength of mortars and concrete, while fly ash reduces early strength. Silica fume can substantially increase strength of fly ash mortar and concrete after 7 days. Silica fume refines pores in the range 100-500 A, while fly ash mortars exhibit gradual pore refinement as hydration proceeds. Silica fume dominates the pore refinement if used with fly ash. 89 refs., 74 figs., 16 tabs.

  9. Risk of ischemic heart disease following occupational exposure to welding fumes

    DEFF Research Database (Denmark)

    Mocevic, Emina; Kristiansen, Pernille; Bonde, Jens Peter

    2015-01-01

    PURPOSE: Air pollution has been linked to an increased risk of ischemic heart disease (IHD), but less is known about occupational exposure to welding fumes and the risk of IHD. The objective of this paper was to review the epidemiological evidence on causal links between welding fume exposure...

  10. Frankincense and myrrh essential oils and burn incense fume against micro-inhabitants of sacral ambients. Wisdom of the ancients?

    Science.gov (United States)

    Ljaljević Grbić, Milica; Unković, Nikola; Dimkić, Ivica; Janaćković, Peđa; Gavrilović, Milan; Stanojević, Olja; Stupar, Miloš; Vujisić, Ljubodrag; Jelikić, Aleksa; Stanković, Slaviša; Vukojević, Jelena

    2018-03-09

    Essential oils obtained from resins of Boswellia carteri Birdw. and Commiphora myrrha (Nees) Engl., commonly known as frankincense and true myrrh respectively, have been used extensively since 2800 BCE for the treatment of skin sores, wounds, teeth, inflammation, and urinary tract diseases in traditional medicine; for preparation of mummification balms and unguents; and also as incense and perfumes. Since ancient times, burning of frankincense and myrrh in places of worship for spiritual purposes and contemplation (a ubiquitous practice across various religions) had hygienic functions, to refine the smell and reduce contagion by purifying the indoor air. The general purpose of the study was to assess the in vitro antimicrobial potential of the liquid and vapour phases of B. carteri and C. myrrha essential oils and burn incense, as well as to test the effectiveness of their in situ application to cleanse microbially-contaminated air within the ambient of an investigated 17th-century church. The chemical composition of B. carteri and C. myrrha essential oils, obtained by hydrodistillation of frankincense and true myrrh oleo gum resins was determined using GC/MS, and antimicrobial properties of their liquid and vapour phases were assessed by the broth microdilution and microatmosphere diffusion methods. Chemical analysis of burn incense fume obtained using bottle gas washing with dichloromethane as a solvent was performed by GC/MS, while its antimicrobial activity was evaluated using a modified microatmosphere diffusion method to evaluate germination inhibition for fungi and CFU count reduction for bacteria. The in situ antimicrobial activity of B. carteri burn incense and essential oil vapour phase was assessed in the sealed nave and diaconicon of the church, respectively. The dominant compounds of B. carteri EO were α-pinene (38.41%) and myrcene (15.21%), while C. myrrha EO was characterized by high content of furanoeudesma-1,3-diene (17.65%), followed by curzerene

  11. Some engineering properties of heavy concrete added silica fume

    International Nuclear Information System (INIS)

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-01-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated

  12. X-ray fluorescence analysis of welding fume particles

    International Nuclear Information System (INIS)

    Carsey, T.P.

    1982-01-01

    A commercial standard filter set and two laboratory-made standard filter sets are compared via the analysis of generated welding fume samples by X-ray fluorescence. The latter standards are made by (1) hydrophobic-edge membrane filters spiked with prepared metal ion solutions, and (2) filters through which a dispersion of metal oxide powder in isopropanol has been drawn. The results are presented in table form. Precision (Pre) is the relative standard deviation of the six samples. Four main conclusions are enumerated

  13. Compresive Strength for FRC Member using Silica Fume

    OpenAIRE

    R.M.Damgir,; Y.M.Ghugal

    2011-01-01

    The compressive strength of concrete was obtained by conducting tests on standard cubes of size 150X 150X150 mm size with fibers 0 to 5% with an increment of 0.5% and Silica Fume of 5%.The compressivestrength was determined by carrying out compressive test by using UTM. Slump loss increases with increase in Fiber Volume Crack Width reduces as percentage Fiber Volume increases and Crack width varying between 0.75 to 1.30 mm for 28 days concrete strength. Toughness of concrete member increases ...

  14. Best Practices for Fuel System Contamination Detection and Remediation

    Science.gov (United States)

    2015-12-14

    Nitrile rubber Buna-N or NBR x C,H,N PC Polyurethane Coated x N,C,H,O PF Paper Fiber x PV PVC x Cl,C,H SR Syn Rubber x TF Teflon PTFE x F,C UR...levels of microbial activity that signal increased housekeeping efforts are necessary to prevent system degradation . Historical data is used to support a...proper chemical names. The most likely indication of coating degradation particles is the presence of metal or mineral topcoat additives. Approved

  15. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    Science.gov (United States)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  16. 42 CFR 84.1141 - Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

    Science.gov (United States)

    2010-10-01

    ... mist respirators designed for respiratory protection against fumes of various metals having an air... HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist....1141 Isoamyl acetate tightness test; dust, fume, and mist respirators designed for respiratory...

  17. Higher contamination rate than usual. Treatment and disinfection of water in hot whirlpool systems

    Energy Technology Data Exchange (ETDEWEB)

    Herschman, W

    1985-10-01

    Hot whirlpools must meet the hygienic standards set in the Federal Law Concerning Prevention of Epidemics of 18 Dec 1979. The low water volume of whirlpool systems and the extraordinary contamination rate in uninterrupted operation require a specific water treatment and disinfestation technology to make up for the poor buffer capacity of the low water volume. (orig./BWI).

  18. Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventililation System

    DEFF Research Database (Denmark)

    Qian, H.; Nielsen, Peter Vilhelm; Li, Y.

    2004-01-01

    Airflow and Contaminant Distribution in Hospital Wards with a Displacement Ventilalation System. The 2nd International Conference on Build Environment and Public Health, BEPH 2004, Shenzhen , China . ABSTRACT Displacement ventilation has not been considered to be an applicable system for hospital...... to accurately predict three-dimensional distribution of air velocity, temperature, and contaminant concentration in the ward. Indoor airflow in a displacement ventilation system involves a combination of different flow streams such as the gravity currents and thermal plumes. It is important to choose...... ventilation system in hospital wards. It is for this purpose that we study the performance of displacement ventilation in hospital wards as one of the steps to optimize the ventilation design. When the prospect of applying displacement ventilation system in a hospital ward is examined, it should be necessary...

  19. Development of a purification system at Dhruva to treat oil contaminated and chemically impure heavy water

    International Nuclear Information System (INIS)

    Suttraway, S.K.; Mishra, V.; Bitla, S.V.; Ghosh, S.K.

    2006-01-01

    Dhruva, a 100 MW (thermal) Research reactor uses Heavy Water as moderator, reflector and coolant. Normally during plant operation, the Heavy water from the system gets removed during operational and maintenance activities and this collected heavy water gets degraded and contaminated in the process. The degraded heavy water meeting the chemical specification requirement of the up gradation plant is sent for up gradation. Part of the Heavy water collected is contaminated with various organic and inorganic impurities and therefore cannot be sent for IP up gradation as it does not meet the chemical specification of the up gradation plant. This contaminated Heavy water was being stored in SS drums. Over the years of Reactor operation reasonable amount of contaminated Heavy water got collected in the plant. This Heavy water collected from leakages, during routine maintenance, operational activities and fuelling operation had tritium activity and variety of contamination including oil, chlorides, turbidity due to which the specific conductivity was very high. It was decided to purify this Heavy water in house to bring it up to up gradation plant chemical specification requirement. There were number of challenges in formulating a scheme to purify this Heavy water. The scheme needed to be simple and compact in design which could be set up in the plant itself. It should not pose radiological hazards due to radioactive Heavy water during its purification and handling. The contaminated Heavy water collected in drums had varying chemistry and IP. The purification plant should be able to do batch processing so that the different IP and chemical quality of Heavy water stored in different drums are not mixed during purification. It should be capable of removing the oil, chlorides, turbidity and decrease the conductivity to acceptable limits of the Up gradation plant. A purification plant was developed and commissioned after detail laboratory studies and trials. This paper explains

  20. Understanding Fluid and Contaminant Movement in the Unsaturated Zone Using the INEEL Vadose Zone Monitoring System

    International Nuclear Information System (INIS)

    Hubbell, J. M.; Mattson, E. D.; Sisson, J. B.; Magnuson, S. O.

    2002-01-01

    DOE has hundreds of contaminated facilities and waste sites requiring cleanup and/or long-term monitoring. These contaminated sites reside in unsaturated soils (i.e. the vadose zone) above the water table. Some of these sites will require active remediation activities or removal while other sites will be placed under institutional controls. In either case, evaluating the effectiveness of the remediation strategy or institutional controls will require monitoring. Classical monitoring strategies implemented at RCRA/CERCLA sites require ground water sampling for 30 years following closure. The overall effectiveness of ground water sampling is diminished due to the fact that by the time you detect chemical transport from a waste site, a major contamination plume likely exists in the vadose zone and the aquifer. This paper suggests a more effective monitoring strategy through monitoring near the contaminant sites within the vadose zone. Vadose zone monitoring allows for quicker detection of potential contaminant transport. The INEEL Vadose Zone Monitoring System (VZMS) is becoming an accepted, cost effective monitoring technology for assessing contaminant transport at DOE facilities. This paper describes the technologies employed in the VZMS and describes how it was used at several DOE facilities. The INEEL VZMS has provided the information in developing and validating both conceptual and risk assessment models of contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge National Laboratory (ORNL), Savannah River Site (SRS) and the Hanford site. These DOE sites exhibit a broad range of meteorologic, hydrologic and geologic conditions representative of various common geologic environments. The VZMS is comprised of advanced tensiometers, water content sensors, temperature sensors and soil and gas samplers. These instruments are placed at multiple depths in boreholes and allows for the detection of water movement in the

  1. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers.

    Science.gov (United States)

    Shaikh, Amrin; Barot, Darshana; Chandel, Divya

    2018-04-01

    Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation of gasoline fumes. The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  2. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    Directory of Open Access Journals (Sweden)

    Amrin Shaikh

    2018-04-01

    Full Text Available Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group and 70 healthy age-matched individuals with no known exposure (comparison group. Buccal micronucleus cytome assay (BMCyt was performed to check the genotoxicity caused due to inhalation of gasoline fumes. Results: The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Conclusion: Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  3. Investigation of durability of silica fume concretes in coastal structures within tidal zone

    International Nuclear Information System (INIS)

    Ganjian, E.; Sadeghi Pouya, H.

    2003-01-01

    In recent decade use of silica fume has been become greater in coastal concrete structures in the persona gulf, to increase durability of those establishments. In this research the durability of cement passers and concrete cubes with use of 7 and 10 percent of silica fume as a cement replacement have been investigated in three curing conditions (fresh water, coast of sea and simulation bonds) by measuring compressive strengths and capillary absorption. Silica fume specimens under wetting and drying condition showed more strength loss after 180 days compare to samples without silica fume or cured in the fresh water. In addition the greater silica fume amount in specimens cured within tidal zone and under wetting and drying simulation, the more water absorption by capillary. According to the results, good correspondence between simulated condition and real site exposure was obtained

  4. [Identification of Systemic Contaminations with Legionella Spec. in Drinking Water Plumbing Systems: Sampling Strategies and Corresponding Parameters].

    Science.gov (United States)

    Völker, S; Schreiber, C; Müller, H; Zacharias, N; Kistemann, T

    2017-05-01

    After the amendment of the Drinking Water Ordinance in 2011, the requirements for the hygienic-microbiological monitoring of drinking water installations have increased significantly. In the BMBF-funded project "Biofilm Management" (2010-2014), we examined the extent to which established sampling strategies in practice can uncover drinking water plumbing systems systemically colonized with Legionella. Moreover, we investigated additional parameters that might be suitable for detecting systemic contaminations. We subjected the drinking water plumbing systems of 8 buildings with known microbial contamination (Legionella) to an intensive hygienic-microbiological sampling with high spatial and temporal resolution. A total of 626 drinking hot water samples were analyzed with classical culture-based methods. In addition, comprehensive hygienic observations were conducted in each building and qualitative interviews with operators and users were applied. Collected tap-specific parameters were quantitatively analyzed by means of sensitivity and accuracy calculations. The systemic presence of Legionella in drinking water plumbing systems has a high spatial and temporal variability. Established sampling strategies were only partially suitable to detect long-term Legionella contaminations in practice. In particular, the sampling of hot water at the calorifier and circulation re-entrance showed little significance in terms of contamination events. To detect the systemic presence of Legionella,the parameters stagnation (qualitatively assessed) and temperature (compliance with the 5K-rule) showed better results. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Remediation of a radioactively contaminated soil using a mobile soil-washing system

    International Nuclear Information System (INIS)

    Grant, D.C.; Lahoda, E.J.; Dietrich, A.J.; Weigle, D.H.; Keegan, C.P.; Sachse, J.D.

    1993-01-01

    In order to obtain free-release of a former uranium mining site in Texas, it was required that the surface soil meet specific radiological guidelines. The soil has been contaminated with uranium and radium as a result of the spillage of well-drilling material, process solutions, and ion exchange resins during mining. To meet the required guidelines, the contaminated soil had to be either removed and disposed of off-site or remediated. For economic and long-term liability reasons, remediation of the soil by soil washing was performed. The remediation of this site utilizing the Scientific Ecology Group's soil washing system is discussed in this paper

  6. Feed gas contaminant control in ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  7. Pathways of sulfate and hydrogen sulfide transformations in a BTEX- contaminated groundwater system

    DEFF Research Database (Denmark)

    Einsiedl, Florian; Anneser, B.; Griebler, C.

    2010-01-01

    in complex environmental systems. As a result, compound specific stable isotope signatures in various sulfur species were determined in a tar-oil contaminated site and were linked to the microbial community distribution in the aquifer. The goal of the study was to reach an integrated understanding of sulfur...... intermediate during abiotic oxidation of hydrogen sulphide, with the latter formed during bacterial sulfate reduction. The formed elemental sulfur may be used by the specific microbial community found in this aquifer for the oxidation of organic contaminants such as toluene. In contrast, reoxidation...... of hydrogen sulfide to sulfate by molecular oxygen may affect sulfur cycling within the transition between the unsaturated and the saturated zones and therefore attenuate concentrations of contaminants in groundwater as well....

  8. Innovative characterization techniques and decision support systems for ground water contamination projects

    International Nuclear Information System (INIS)

    Hoffman, F.

    1992-07-01

    Ground water contamination projects throughout the world must be approached as individual and unique problems. Many traditional investigation techniques require modification to meet the needs of site-specific situations. Because the age of the science of contaminant hydrogeology can be measured only in a few decades, the field is ripe for innovation. This paper describes the following new technologies: At Lawrence Livermore National Laboratory (LLNL), we have developed a new drilling and sampling method, which allows the evaluation of the vertical extent of contamination in a single borehole. We are also using new fiber-optic-based chemical analytical sensors that promise to greatly increase the case of obtaining chemical analyses in the subsurface while greatly reducing costs. Because ground water investigations are data intensive, we need the best decision support system information tools to proceed with investigation and cleanup. These tools have three components: a relational database, data analysis tools, and tools for data display

  9. Development of the automatic measuring system to survey the surface contamination on equipments

    International Nuclear Information System (INIS)

    Ishizuka, Akira; Matsumura, Hidekatsu; Nawa, Takao; Yamaguchi, Seiji; Yamada, Tadashi.

    1980-01-01

    The inspection of surface contamination carried out when things are taken out of the control areas in nuclear power stations requires considerable labor and time because it is carried out manually. In order to make the inspection of surface contamination more efficiently and to standardize it, the development of an automatic inspection apparatus was carried out. This apparatus inspects the surface contamination due to radio isotopes which do not emit α-ray, and the objects to be measured are the large things with definite forms, such as boards and pipes for scaffolding. The method of measuring β-ray with a gas flow counter was adopted for the apparatus in view of the good detection sensitivity, relatively simple shielding against background, and easy conversion to surface contamination density. The measuring system was composed of the gas flow counters and a rate meter. The outline of the apparatus made for trial is explained. As the result of the performance test, the lowest detection sensitivity was 1.29 x 10 -5 μCi/cm 2 at the moving speed of an object of 1 cm/sec. The detection sensitivity is improved by the flattening of the sensitivity distribution. The evaluation of the error, the reduction of measuring time and the prevention of contamination were also made. (Kako, I.)

  10. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India.

    Science.gov (United States)

    Dsikowitzky, Larissa; Nordhaus, Inga; Sujatha, C H; Akhil, P S; Soman, Kunjupilai; Schwarzbauer, Jan

    2014-07-01

    The Cochin Backwaters in India are part of the Vembanad-Kol system, which is a protected wetland and one of the largest estuarine ecosystems in South Asia. The backwaters are a major supplier of fisheries resources and are developed as tourist destination. Periyar River discharges into the northern arm of the system and receives effluents from chemical, petrochemical and metal processing industries which release huge amounts of wastewaters after little treatment. We investigated water and sediment contamination in the industrial vicinity and at one station further away including organic and inorganic contaminants. In total 83 organic contaminants were found, e.g. well known priority pollutants such as endosulfan, hexachlorobenzene, DDT, hexachlorocyclohexane and their metabolites, which likely stem from the industrial manufacturing of organochlorine pesticides. Furthermore, several benzothiazole, dibenzylamine and dicyclohexylamine derivatives were detected, which indicated inputs from rubber producing facilities. Several of these compounds have not been reported as environmental contaminants so far. A comparison of organic contaminant and trace hazardous element concentrations in sediments with reported sediment quality guidelines revealed that adverse effects on benthic species are likely at all stations. The chemical assessment was combined with an investigation of macrobenthic diversity and community composition. Benthic organisms were completely lacking at the site with the highest trace hazardous element concentrations. Highest species numbers, diversity indices and abundances were recorded at the station with the greatest distance to the industrial area. Filter feeders were nearly completely lacking, probably leading to an impairment of the filter function in this area. This study shows that a combination of chemical and biological methods is an innovative approach to achieve a comprehensive characterization of industrial contamination, to evaluate

  11. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  12. A coupled classification - evolutionary optimization model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2014-03-15

    This study describes a decision support system, alerts for contamination events in water distribution systems. The developed model comprises a weighted support vector machine (SVM) for the detection of outliers, and a following sequence analysis for the classification of contamination events. The contribution of this study is an improvement of contamination events detection ability and a multi-dimensional analysis of the data, differing from the parallel one-dimensional analysis conducted so far. The multivariate analysis examines the relationships between water quality parameters and detects changes in their mutual patterns. The weights of the SVM model accomplish two goals: blurring the difference between sizes of the two classes' data sets (as there are much more normal/regular than event time measurements), and adhering the time factor attribute by a time decay coefficient, ascribing higher importance to recent observations when classifying a time step measurement. All model parameters were determined by data driven optimization so the calibration of the model was completely autonomic. The model was trained and tested on a real water distribution system (WDS) data set with randomly simulated events superimposed on the original measurements. The model is prominent in its ability to detect events that were only partly expressed in the data (i.e., affecting only some of the measured parameters). The model showed high accuracy and better detection ability as compared to previous modeling attempts of contamination event detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. New miniaturized alpha/beta spectrometric system for the surface contamination monitoring and radon personal dosimeter

    International Nuclear Information System (INIS)

    Streil, T.; Oeser, V.; Holfeld, G.

    1998-01-01

    The heart of the new miniaturized alpha/beta spectroscopic system is a Smart Card MCA having a 12 bit resolution and a 32 bit memory for each channel with the size of a cheque card. The system consists of a single or up to 12 alpha spectrometers in a battery powered casing with connectors for direct detector/amplifier module plugging. Surface contamination in the order of 1 Bq/cm 2 of 239 Pu can be measured. (M.D.)

  14. Fresh and some mechanical properties of sifcon containing silica fume

    Directory of Open Access Journals (Sweden)

    Salih Shakir

    2018-01-01

    Full Text Available Slurry infiltrated fiber concrete (SIFCON is one of the recently developed construction material. SIFCON could be considered as a special type of fiber concrete with high fiber content. The matrix of SIFCON consists of flowing cement mortar or cement slurry. SIFCON has a very good potential for application in area where resistance to impact and high ductility are needed especially in designing the seismic retrofit, in the structures under impact and explosive effects and repair of structural reinforced concrete element. The main objective of this paper is to determine the effect of steel fiber content and silica fume (SF cement replacement on the mechanical properties of SIFCON concrete. The percentage of SF replacement was 10% by weight of cement in SIFCON slurry, and three different volume fractions of hooked ended steel fiber (6, 8.5, and 11 % were used. The tested properties of SIFCON were compressive strength and splitting tensile strength which were carried out on standard size of cubes and cylinders respectively at the age of 7and 28 days. It was observed that the mechanical properties of SIFCON were affected in a positive manner by using silica fume as a partial replacement of cement and by adding steel fiber reinforcement in different percentages. The compressive and splitting tensile strength up to 83.7 MPa and 17.3MPa, respectively were obtained at the age of 28 days.

  15. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of saliva contamination and artificial aging on different primer/cement systems bonded to zirconia.

    Science.gov (United States)

    Pitta, João; Branco, Teresa C; Portugal, Jaime

    2018-05-01

    Saliva contamination has been shown to decrease bonding to zirconia. Adopting a less contamination-sensitive cement system may be an alternative to decontamination. The purpose of this in vitro study was to assess the ability of different primer/cement systems to promote a durable bond to zirconia after saliva contamination. Zirconia blocks (Lava Plus) (N=320) were airborne-particle abraded (50 μm Al 2 O 3 ) and divided into 32 experimental groups (n=10) according to the variables in the study: saliva contamination; primer/cement system (Panavia SA [PSA]; RelyX Unicem 2 [RU2]; Bifix SE [BSE]; Panavia F2.0 [PF2]; Scotchbond Universal + RelyX Ultimate [SBU+RXU]; Futurabond M+ + Bifix QM [FBM+BQM]; All-Bond Universal + Duo-link [ABU+DL]; Z-Prime Plus + Duo-link [ZPP+DL]; and aging period (72 hours; 30 days with 10 000 thermocycles at 5°C to 55°C). After half of the blocks had been contaminated with fresh human saliva for 10 minutes, rinsed with water, and air-dried, each primer/cement was applied. Polymerized composite resin disks were then placed over the cement, and the resin cement was light-polymerized for 20 seconds each at 2 opposite margins. After the aging time, the specimens were tested in shear (1 mm/min). The failure mode was classified as adhesive, cohesive, or mixed. Statistical analysis of the shear bond strength (SBS) data was performed with ANOVA followed by Tukey honest significant difference post hoc tests. Chi-square tests were used to analyze the failure mode data (α=.05). The mean SBS ranged between 4.2 and 34.5 MPa. Shear bond strength was influenced (Pcontamination, aging time). SBU+RXU and FBM+BQM showed a higher mean SBS than those of the other experimental groups (Pcontamination (P>.05). Failure was predominantly classified as adhesive. In general, saliva contamination and aging decreased bonding efficacy. Two systems, combining an application of a universal adhesive and a resin cement (SBU+RXU and FBM+BQM) were not affected by

  17. Links between contaminant hotspots in low flow estuarine systems and altered sediment biogeochemical processes

    Science.gov (United States)

    Sutherland, Michael D.; Dafforn, Katherine A.; Scanes, Peter; Potts, Jaimie; Simpson, Stuart L.; Sim, Vivian X. Y.; Johnston, Emma L.

    2017-11-01

    The urbanisation of coastal zones is a major threat to the health of global estuaries and has been linked to increased contamination (e.g. metals) and excess organic matter. Urban stormwater networks collect and funnel contaminants into waterways at point sources (e.g. stormdrains). Under dry, low flow conditions, these stormwater contaminants can accumulate in sediments over time and result in modifications to benthic sediment biogeochemical processes. To quantify these processes, this field study measured differences in benthic metabolism (CR, GPP, NEM) and sediment-water nutrient fluxes (NH3, NOx, PO4) associated with stormdrains (0 m, 200 m and 1000 m away) and increased water-retention (embayments vs channels). Significant changes to benthic metabolism were detected with distance from stormdrains, and with differences in water-retention rates, above natural spatial and temporal variation. Oxygen consumption was ∼50% higher at stormdrains (0 m) compared to 1000 m away and >70% higher at stormdrains (0 m) located in embayments compared to channels. Oxygen production also appeared to decrease with distance from stormdrains in embayments, but patterns were variable. These changes to benthic metabolism were of a magnitude expected to influence benthic nutrient cycling, but NH3, NOx and PO4 fluxes were generally low, and highly spatially and temporally variable. Overall, metal (Cu) contamination explained most of the variation in sediment biogeochemical processes between embayments and channels, while sediment grain size explained differences in fluxes with distance from stormdrains. Importantly, although there was evidence of increased productivity associated with stormdrains, we also detected evidence of early hypoxia suggesting that systems with legacy stormwater contaminants exist on a tipping point. Future work should investigate changes to sediment processes after a major rainfall event, when large and sudden inputs of potentially toxic contaminants occur

  18. Dacfood: a knowledge-based system for decision support in case of radiological contamination of foodstuffs

    International Nuclear Information System (INIS)

    Diaz, A.; Despres, A.; Soulatges, D.

    1991-01-01

    In case of radiological contamination of foodstuffs, the introduction of a countermeasure has to be justified by balancing its advantages and drawbacks, as recommended by ICRP. Also, to provide authorities with information about the decision context, it has been decided to develop a Decision Support System (DSS). A knowledge-based approach is used for the DSS. Indeed, it allows: . better modelling thanks to, for instance, object oriented programming and rules, . ability to introduce more knowledge thanks to an easier consistency and validity control of the knowledge base, . handling of uncertainties (incomplete, uncertain or evolving knowledge). The present state of the system is presented. DACFOOD is a decision aiding system for contamined foodstuffs, based on a knowledge-based approach. A demonstration model has been developed in a post-Chernobyl CEC research program. It evaluates the sanitary situation, the alternative actions through costs and sanitary effects, and gives information on the decisional background

  19. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  20. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  1. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Lowry, W.

    1994-01-01

    The objective for the development of the Pipe Explorer trademark radiological characterization system is to achieve a cost effective, low risk means of characterizing gamma radioactivity on the inside surface of pipes. The unique feature of this inspection system is the use of a pneumatically inflated impermeable membrane which transports the detector into the pipe as it inverts. The membrane's internal air pressure tows the detector and tether through the pipe. This mechanism isolates the detector and its cabling from the contaminated surface, yet allows measurement of radioactive emissions which can readily penetrate the thin plastic membrane material (such as gamma and high energy beta emissions). In Phase 1, an initial survey of DOE facilities was conducted to determine the physical and radiological characteristics of piping systems. The inverting membrane deployment system was designed and extensively tested in the laboratory. A range of membrane materials was tested to evaluate their ruggedness and deployment characteristics. Two different sizes of gamma scintillation detectors were procured and tested with calibrated sources. Radiation transport modeling evaluated the measurement system's sensitivity to detector position relative to the contaminated surface, the distribution of the contamination, background gamma levels, and gamma source energy levels. In the culmination of Phase 1, a field demonstration was conducted at the Idaho National Engineering Laboratory's Idaho Chemical Processing Plant. The project is currently in transition from Phase 1 to Phase 2, where more extensive demonstrations will occur at several sites. Results to date are discussed

  2. Use of a horizontal air-dispersion system to enhance biodegradation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Baker, J.N.; Nickerson, D.A.; Guest, P.R.; Portele, T.E.

    1993-01-01

    A horizontal air-dispersion system was designed and installed to enhance the natural biodegradation of residual diesel fuel contaminated soils at an underground storage tank (UST) facility in Seattle, Washington. This system was designed to operate in conjunction with an existing free-product recovery system which exposes more heavily contaminated soils at the capillary fringe to injected air. Results of a pilot study conducted at the facility indicate that an initial biodegradation rate of 2,200 mg of total petroleum hydrocarbons (TPH) per kg of soil per year will be achieved, making in-situ biodegradation a feasible remedial alternative for contaminated site soils. Oxygen, carbon dioxide, and hydrocarbon vapor concentrations have been monitored since full-scale startup in September 1992, using a series of vapor monitoring points (VMPs) installed in the vicinity of the aerated beds and around the perimeter of the facility. Recent monitoring data indicate that the system is capable of aerating soils at distances greater than 80 feet from the aerated beds. Oxygen utilization and carbon dioxide production measured during post-startup respiration tests indicate microbial activity has increased as a result of seven months of full-scale system operation

  3. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration

  4. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Effects of Calcined clay minerals and Silica fume on the compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Abolfazl Soltani

    2017-05-01

    Full Text Available Pozzolanic materials are well known as potential replacements for cement manufacturing in order to increase compressive strength and improve durability of concrete in different environments and leading to save energy particularly reducing global warming effect. The present study reveals the effect of calcined clay minerals as natural pozzolanic material, separately and in combination with and without silica fume. To achieve this aim, 15 mixed designs with a constant water to cementitious ratio of  0.38 is made. In six mixed designs only metakaolin, zeolite or silica fume  and in eight other designs metakaolin and silica fume or zeolite and silica fume have been combined. Mixes containing metakaolin or zeolite with ratio of 10 or 20 percent and silica fume with 7 or 10 percent show significant increasing in compressive strength and improving durability, being valuable replacement for cement (in percentages. In particular, the best practice is attributed to the age of 28 days for compressive strength the replacement of the composition is 10% zeolite with 7% of silica fume and for electrical resistance the replacement of the composition is 10% zeolite with 7% of silica fume.

  6. Mirasol PRT system inactivation efficacy evaluated in platelet concentrates by bacteria-contamination model

    Directory of Open Access Journals (Sweden)

    Jocić Miodrag

    2011-01-01

    Full Text Available Background/Aim. Bacterial contamination of blood components, primarily platelet concentrates (PCs, has been identified as one of the most frequent infectious complications in transfusion practice. PC units have a high risk for bacterial growth/multiplication due to their storage at ambient temperature (20 ± 2°C. Consequences of blood contamination could be effectively prevented or reduced by pathogen inactivation systems. The aim of this study was to determine the Mirasol pathogen reduction technology (PRT system efficacy in PCs using an artificial bacteria-contamination model. Methods. According to the ABO blood groups, PC units (n = 216 were pooled into 54 pools (PC-Ps. PC-Ps were divided into three equal groups, with 18 units in each, designed for an artificial bacteria-contamination. Briefly, PC-Ps were contaminated by Staphylococcus epidermidis, Staphylococcus aureus or Escherichia coli in concentrations 102 to 107 colony forming units (CFU per unit. Afterward, PC-Ps were underwent to inactivation by Mirasol PRT system, using UV (l = 265-370 nm activated riboflavin (RB. All PC-Ps were assayed by BacT/Alert Microbial Detection System for CFU quantification before and after the Mirasol treatment. Samples from non-inactivated PC-P units were tested after preparation and immediately following bacterial contamination. Samples from Mirasol treated units were quantified for CFUs one hour, 3 days and 5 days after inactivation. Results. A complete inactivation of all bacteria species was obtained at CFU concentrations of 102 and 103 per PC-P unit through storage/ investigation period. The most effective inactivation (105 CFU per PC-P unit was obtained in Escherichia coli setting. Contrary, inactivation of all the three tested bacteria species was unworkable in concentrations of ≥ 106 CFU per PC-P unit. Conclusion. Efficient inactivation of investigated bacteria types with a significant CFU depletion in PC-P units was obtained - 3 Log for all

  7. Decomissioning of nuclear reactors - methods for calculation of radionuclide inventories in contaminated BWR systems

    International Nuclear Information System (INIS)

    Lundgren, K.

    1991-01-01

    The purpose of the study has been to develop and demonstrate calculation models for the prediction of radionuclide inventories in contaminated systems in the Nordic BWRs at the time of decommissioning. Oskarshamn 2 was selected as reference reactor for the study. The study is divided in radionuclide inventories of activated corrosion products, and inventories of fission products and actinides from leaking fuel. The study is restricted to contamination outside the reactor pressure vessel. Inventories of activated corrosion products on primary system surfaces were predicted with the ABB Atom computer code BKM-CRUD. The calculations were performed for an extended operation time up to year 2010 for the nuclides Co60, Co58, Zn65 and Mn54. A special set of calculations were also made covering the non-standard nuclides Fe55, Ni59, No63 and Mo93. ABB Atom has carried out a comprehensive program on shutdown dose rates and activity measurements in delivered BWRs. The resulting data base have been used in the study to derive conversion factors for evaluation of contamination levels in secondary systems from the BKM-CRUD results for primary systems. Fission products and actinides were treated by defining two different fuel leakage scenarios. The first one corresponds to a rather stable situation, with an average leakage rate of 1 'standard pin hole' (i.e. 2 MBq/s Xe133). The second scenario means more severe fuel leakage every 10 years (200 MBq/s Xe133). The radioactive inventories in different part of the plant were calculated by combining the surface areas with the calculated contamination levels in the different systems. The uncertainty in total activity inventory has been estimated to not exceed a factor of 2. The uncertainty in total activity inventory has been to not exceed a factor of 2. The estimated inventories in this study has been compared to the results from other studies, and a reasonable agreement was achieved

  8. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.; Floran, R.J.; Williams, C.V.

    1995-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ''steer'' the drill bit in or out hazardous zones. During measurement-while-drilling, down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented

  9. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    International Nuclear Information System (INIS)

    DALE, R.N.

    2000-01-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O and M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085

  10. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    Energy Technology Data Exchange (ETDEWEB)

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  11. Technical note: Efficient online source identification algorithm for integration within a contamination event management system

    Science.gov (United States)

    Deuerlein, Jochen; Meyer-Harries, Lea; Guth, Nicolai

    2017-07-01

    Drinking water distribution networks are part of critical infrastructures and are exposed to a number of different risks. One of them is the risk of unintended or deliberate contamination of the drinking water within the pipe network. Over the past decade research has focused on the development of new sensors that are able to detect malicious substances in the network and early warning systems for contamination. In addition to the optimal placement of sensors, the automatic identification of the source of a contamination is an important component of an early warning and event management system for security enhancement of water supply networks. Many publications deal with the algorithmic development; however, only little information exists about the integration within a comprehensive real-time event detection and management system. In the following the analytical solution and the software implementation of a real-time source identification module and its integration within a web-based event management system are described. The development was part of the SAFEWATER project, which was funded under FP 7 of the European Commission.

  12. Frequency of legionella contamination in conditional & water distribution systems of Tehran hospitals

    Directory of Open Access Journals (Sweden)

    Davod Esmaieli

    2008-09-01

    Full Text Available Background: Legionella species are ubiquitous in natural aquatic environments, capable of existing in waters with varied temperatures, PH levels, and nutrient and oxygen contents. Of 49 known legionella species, 20 species have been linked to pneumonia in humans. Contamination by legionella has occurred in the distribution systems of many hospitals. Aerosol-generating systems such as faucets, showerheads, cooling towers, and nebulizers are responsible for their transmission from water to air. Methods: A total of 113 water samples were gathered from different wards of 32 hospitals in different geographical regions of Tehran city. These samples were concentrated by filtration, treated with the acid and temperature buffers, and isolated on a BCYE agar culture medium. Results: A total of 22 hospitals out of 33 (26.5% were contaminated by legionella species, and 30 samples (26.5% out of 113 were positive. Chlorine concentration and pH level of the water samples were 0.18-2.2 mg/l and 6.6-7.6, respectively. Conclusion: The high rate of waste water contamination in Tehran hospitals with Legionella indicates the resistance of this microorganism to chlorine and other disinfectants, or inadequate disinfection process, representing the insufficiency of the current decontamination of hospital water distribution system. Thus identifying legionella species and their controlling in water distribution system of hospitals is of great importance.

  13. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  14. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    International Nuclear Information System (INIS)

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m 3 ; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks

  15. Prediction of Groundwater Arsenic Contamination using Geographic Information System and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Md. Moqbul Hossain

    2013-01-01

    Full Text Available Ground water arsenic contamination is a well known health and environmental problem in Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater are poorly understood phenomena. In quest of mitigation of the problem it is necessary to predict probable contamination before it causes any damage to human health. Hence our research has been carried out to find the factor relations of arsenic contamination and develop an arsenic contamination prediction model. Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil reaction (pH, organic matter content, geology, iron content, etc. However, the variability of concentration within short lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN comes in handy for such a black box type problem. This research uses Back propagation Neural Networks (BPNN to train and validate the data derived from Geographic Information System (GIS spatial distribution grids. The neural network architecture with (6-20-1 pattern was able to predict the arsenic concentration with reasonable accuracy.

  16. Effect of Silica Fume on two-stage Concrete Strength

    Science.gov (United States)

    Abdelgader, H. S.; El-Baden, A. S.

    2015-11-01

    Two-stage concrete (TSC) is an innovative concrete that does not require vibration for placing and compaction. TSC is a simple concept; it is made using the same basic constituents as traditional concrete: cement, coarse aggregate, sand and water as well as mineral and chemical admixtures. As its name suggests, it is produced through a two-stage process. Firstly washed coarse aggregate is placed into the formwork in-situ. Later a specifically designed self compacting grout is introduced into the form from the lowest point under gravity pressure to fill the voids, cementing the aggregate into a monolith. The hardened concrete is dense, homogeneous and has in general improved engineering properties and durability. This paper presents the results from a research work attempt to study the effect of silica fume (SF) and superplasticizers admixtures (SP) on compressive and tensile strength of TSC using various combinations of water to cement ratio (w/c) and cement to sand ratio (c/s). Thirty six concrete mixes with different grout constituents were tested. From each mix twenty four standard cylinder samples of size (150mm×300mm) of concrete containing crushed aggregate were produced. The tested samples were made from combinations of w/c equal to: 0.45, 0.55 and 0.85, and three c/s of values: 0.5, 1 and 1.5. Silica fume was added at a dosage of 6% of weight of cement, while superplasticizer was added at a dosage of 2% of cement weight. Results indicated that both tensile and compressive strength of TSC can be statistically derived as a function of w/c and c/s with good correlation coefficients. The basic principle of traditional concrete, which says that an increase in water/cement ratio will lead to a reduction in compressive strength, was shown to hold true for TSC specimens tested. Using a combination of both silica fume and superplasticisers caused a significant increase in strength relative to control mixes.

  17. PEMANFAATAN LIMBAH SERBUK MARMER PADA BETON SEBAGAI BAHAN PENGGANTI SEBAGIAN SEMEN DENGAN VARIASI PENGGUNAAN SILICA FUME

    OpenAIRE

    Agil Fitri Handayani; Agoes Soehardjono M.D.; Achfas Zacoeb

    2015-01-01

    The Utilization of Marble Powder Waste in Concrete Ma­­­­­­­­terials as a Partial Material Substitution of Cement  with the Variation Use of Silica Fume. The purpose of this study was to determine the effect of marble powder and silica fume on the mechanical pro­per­ties of concrete. This study used an experimental design using 16 group of testing materials with variety types of mixtures between marble powder and silica fume 0.00; 5.00; 10.00; and 15.00%. The wa­ter-cement ratio was 0.50 and ...

  18. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  19. Determination of the CD performance and carbon contamination of an EUV mask by using a coherent scattering microscopy/in-situ contamination system

    International Nuclear Information System (INIS)

    Doh, Jonggul; Jeong, Changyoung; Lee, Sangsul; Lee, Jaeuk; Cha, Hansun; Ahn, Jinho; Lee, Donggun; Kim, Seongsue; Cho, Hanku; Rah, Seungyu

    2010-01-01

    The impact of carbon contamination on imaging performance was analyzed using an in-situ accelerated contamination system (ICS) combined with coherent scattering microscopy (CSM) at the 11B extreme ultraviolet lithography (EUVL) beamline of the Pohang Accelerator Laboratory (PAL). The CSM/ICS is composed of the CSM for measuring imaging properties and the ICS for accelerating the carbon contamination. The CD (critical dimension) and the reflectivity of the mask were compared before and after carbon contamination through acceleration exposure. The reflectivity degradation was 1.3%, 2.1%, and 2.5% after 1-, 2-, and 3-hour exposures, respectively, due to carbon contamination of 5, 10, and 20 nm as measured by using a Zygo interferometer. The mask CD change of an 88-nm line and space pattern was analyzed using CSM and CD SEM (scanning electron microscope), and the result showed a similar trend, but a different absolute value. This difference confirmed the importance of the actinic inspection technique, which employs exactly the same imaging condition as the exposure tool.

  20. Safety analysis report for packaging onsite long-length contaminated equipment transport system

    International Nuclear Information System (INIS)

    McCormick, W.A.

    1997-01-01

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks

  1. Theoretical considerations on design and analysis of monitoring systems for Pu-contaminated solid wastes

    International Nuclear Information System (INIS)

    Notea, A.

    1979-01-01

    Monitoring systems for plutonium contaminated wastes refers to both managerial regulations and instrumental hardware. Its design is inseparable from the design of the production line in the fuel handling facility, and depends on the general wastes management program. Characteristic functions of the monitors are discussed and the necessity of reference monitors is stressed. The reference monitor enables the formation of a quality scale. Guidelines for future R and D efforts are suggested

  2. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  3. Treatment of plutonium-contaminated solid waste: a review of handling systems

    International Nuclear Information System (INIS)

    Meredith, B.E.; Hardy, A.R.

    1985-02-01

    Handling techniques are reviewed to identify those suitable for adaptation for use in transporting large items of redundant plutonium contaminated plant and equipment to a remotely operated size reduction facility, moving them into the facility, presenting them to size reduction equipment and loading the processed waste into drums. It is concluded that an integrated system based on a combination of slatted conveyors, roller tables, air transporters and manipulators, merits further consideration. An appropriate experimental programme is outlined. (author)

  4. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  5. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  6. Contamination of estuaries from failing septic tank systems: difficulties in scaling up from monitored individual systems to cumulative impact.

    Science.gov (United States)

    Geary, Phillip; Lucas, Steven

    2018-02-03

    Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.

  7. Influence of a chronic 90Sr contamination by ingestion on the hematopoietic, immune and bone systems

    International Nuclear Information System (INIS)

    Synhaeve, Nicholas

    2011-01-01

    Strontium 90 ( 90 Sr) is a radionuclide of anthropogenic origin released in large quantities in the environment as a result of nuclear atmospheric tests or accidents at nuclear facilities. 90 Sr persists on a long-term basis in the environment, leading to chronic contamination by ingestion of populations living on contaminated territories. The induction of bone tumours associated with the fixation of 90 Sr has been widely described. However, the occurrence of non-cancer effects is much less known. We used a mouse model with chronic contamination by ingestion of water containing 20 kBq/l of 90 Sr. A bio-kinetic study confirmed the accumulation of 90 Sr in the bones, with an increased rate of accumulation during bone growth. This accumulation was higher in the bones of females than in males. The whole-body absorbed doses ranged from 0.33 ± 0.06 mGy (birth) to 10.6 ± 0.1 mGy (20 weeks). The absorbed dose for the skeleton was up to 55 mGy. Ingestion of 90 Sr induced a change in the expression of genes inducing an imbalance in favour of bone resorption, but without effect on bone morphology. No significant effect was observed for the hematopoietic system. On the other hand, minor modifications were observed for the immune system. To evaluate the functionality of the immune system, a vaccination test with TT and KLH antigens was used. Results showed in contaminated animals a significant decrease in the production of specific immunoglobulins, changes in the Th1/Th2 balance in the spleen and a disrupted B lymphocyte differentiation. These results improve the understanding of some of the noncancerous consequences of chronic exposure at low dose of radionuclides with a long half-life, which can be accidentally released. (author)

  8. Influence of a chronic 90Sr contamination by ingestion on the hematopoietic, immune and bone systems

    International Nuclear Information System (INIS)

    Synhaeve, N.

    2011-12-01

    Strontium 90 ( 90 Sr) is a radionuclide of anthropogenic origin released in large quantities in the environment as a result of nuclear atmospheric tests or accidents at nuclear facilities. 90 Sr persists on a long-term basis in the environment, leading to chronic contamination by ingestion of populations living on contaminated territories. The induction of bone tumours associated with the fixation of 90 Sr has been widely described. However, the occurrence of non-cancer effects is much less known. We used a mouse model with chronic contamination by ingestion of water containing 20 kBq/l of 90 Sr. A biokinetic study confirmed the accumulation of 90 Sr in the bones, with an increased rate of accumulation during bone growth. This accumulation was higher in the bones of females than in males. The whole-body absorbed doses ranged from 0.33 ± 0.06 mGy (birth) to 10.6 ± 0.1 mGy (20 weeks). The absorbed dose for the skeleton was up to 55 mGy. Ingestion of 90 Sr induced a change in the expression of genes inducing an imbalance in favour of bone resorption, but without effect on bone morphology. No significant effect was observed for the hematopoietic system. On the other hand, minor modifications were observed for the immune system. To evaluate the functionality of the immune system, a vaccination test with TT and KLH antigens was used. Results showed in contaminated animals a significant decrease in the production of specific immunoglobulins, changes in the Th1/Th2 balance in the spleen and a disrupted B lymphocyte differentiation. These results improve the understanding of some of the non-cancerous consequences of chronic exposure at low dose of radionuclides with a long half-life, which can be accidentally released. (author)

  9. Visible-light system for detecting doxorubicin contamination on skin and surfaces.

    Science.gov (United States)

    Van Raalte, J; Rice, C; Moss, C E

    1990-05-01

    A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.

  10. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    CERN Document Server

    Martins, D R; Verdonck, P; Brown, I G

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  11. Use of EGS4 codes system for the evaluation of electron contamination in telecobalt therapy unit

    International Nuclear Information System (INIS)

    Bernal, B.; Alfonso, R.

    1995-01-01

    The cobalt 60 beams employed radiotherapy usually have some electron contamination, mainly depending on the selected field size, the diaphragm-skin distance and the collation system features. The electron component of a thyratron 780C cobalt unit was evaluated, using in any material and geometry, by using Monte Carlo techniques. The radiation transport in the unit head was simulated, as well as the absorbed dose in a water phantom, so the surface dose fraction due to electron was computed. Measurements from 0 to 5 mm depth were carried out in order to confirm our calculations, finding good agreement with them. Several PMMA filters with different thickness were analyzed to study their role in the electron contamination reduction; an optimal thickness around 5 mm was found

  12. Peracetic acid in the disinfection of a hospital water system contaminated with Legionella species.

    Science.gov (United States)

    Ditommaso, Savina; Biasin, Cinzia; Giacomuzzi, Monica; Zotti, Carla Maria; Cavanna, Alberto; Ruggenini Moiraghi, Angela

    2005-05-01

    To assess the efficacy of an alternative disinfection method for hospital water distribution systems contaminated with Legionella. Disinfection with peracetic acid was performed in a small hospital contaminated with L. pneumophila serotype 1. The disinfectant was used at concentrations of 50 ppm (first three surveillance phases) and 1,000 ppm (fourth surveillance phase) for 30 minutes. Environmental monitoring revealed that disinfection was maintained 1 week after treatment; however, levels of recontamination surpassing baseline values were detected after approximately 1 month. Comparison of water temperatures measured at the distal outlets showed a statistically significant association between temperature and bacterial load. The circulating water temperature was found to be lower in the two wards farthest away from the hot water production plant than in other wards. It was thought that the lower water temperature in the two wards promoted the bacterial growth even after disinfection. Peracetic acid may be useful in emergency situations, but does not provide definitive protection even if used monthly.

  13. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    International Nuclear Information System (INIS)

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the stopping and range of ions in matter code. We find film contamination of the order of 10 -4 -10 -3 , and the memory of the prior history of the deposition hardware can be relatively long lasting

  14. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    Energy Technology Data Exchange (ETDEWEB)

    Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

    2002-08-13

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  15. The mechanism of cesium immobilization in densified silica-fume blended cement pastes

    International Nuclear Information System (INIS)

    Bar-Nes, G.; Katz, A.; Peled, Y.; Zeiri, Y.

    2008-01-01

    The role of silica-fume agglomerates, found in densified silica-fume (DSF) pastes, in the immobilization mechanism of Cs ions was studied. Samples of cementitious pastes containing two different forms of silica fume - DSF and raw silica fume (RSF) - were prepared. Leaching experiments showed that both additives reduced the leachability of the metal ion, but the effect of the DSF paste was much stronger. Scanning Electron Microscopy, together with Differential Thermal Analysis, proved that no agglomerated particles were present in the RSF pastes and that the extent of pozzolanic reactivity was higher. We therefore believe that unreacted silica within the DSF agglomerates adsorbs Cs ions and consequently increases their immobilization. Furthermore, this work suggests that during the pozzolanic reaction, a hydrated rim develops around the agglomerate that acts as an additional diffusion barrier for the Cs ions, resulting in an increased efficiency of Cs immobilization

  16. Radon exhalation rates of concrete modified with fly ash and silica fumes

    International Nuclear Information System (INIS)

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  17. Effect of paint fumes on histoarchitecture of the testes of adult male ...

    African Journals Online (AJOL)

    abdominal incision was performed after which one testis was received from each rats, preserved in 10% formal saline and further processed for histological study using Hematoxylin and eosin technique. Results: The testes of the paint fumes ...

  18. Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite

    Directory of Open Access Journals (Sweden)

    Adul Thiangchanya

    2003-01-01

    Full Text Available The effect of adding fumed silica and hydroxy apatite to Radiation Vulcanized Natural Rubber Latex (RVNRL for improving tear strength, aging properties, degradability and water-soluble protein content of rubber films has been investigated. The addition of fumed silica and hydroxy apatite in RVNRL improves tear strength and aging properties of rubber films, whereas tensile strength and degradability of rubber films were unchanged during storage at room temperature. The water-soluble protein content in rubber films was reduced by immobilization of the fumed silica and hydroxy apatite and enhanced by addition of ZnO. This may reduce allergy problems of natural rubber latex products caused by water-soluble protein. The MST of the RVNRL with fumed silica and hydroxy apatite indicated that the latex must be used within two months after mixing because of its stability.

  19. Minimum acceptable face velocities of laboratory fume hoods and guidelines for their classification

    International Nuclear Information System (INIS)

    Bolton, N.E.; Porter, W.E.; Alcorn, S.P.; Everett, W.S.; Hunt, J.B.; Morehead, J.F.; Higdon, H.F.

    1978-06-01

    Data developed to support the requirement of a 100 LFM minimum face velocity requirement for laboratory fume hoods are summarized. Also included is a description of the Y-12 test hood as well as guidelines for a hood classification scheme

  20. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  1. Hierarchic levels of a system classification of radiation-contaminated landscapes

    International Nuclear Information System (INIS)

    Dolyin, V.V.; Sushchik, Yu.Ya.; Bondarenko, G.M.; Shramenko, Yi.F.; Dudar, T.V.

    2001-01-01

    Five hierarchic levels of the systematic organization of natural landscapes are determined: substantial-phase, soil-profile, biogeocenotic, landscape, and geosystematic. Systems and subsystems of compounds of chemical elements and natural and man-caused factors that characterized properties and mechanisms of ecological self-organization of biogeocenoses are brought into accordance with each level. A scheme of hierarchic subordination of systems, subsystems, and processes is worked out. Leading links of transformation and migration of radionuclides that define the contamination of tropic chains are determined

  2. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  3. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    Science.gov (United States)

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes

  4. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  5. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    Science.gov (United States)

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  6. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage

    International Nuclear Information System (INIS)

    Chen, Jiajie; Ling, Ziye; Fang, Xiaoming; Zhang, Zhengguo

    2015-01-01

    Highlights: • Form-stable dodecane/fumed silica composite for cold storage is prepared. • A suggesting hypothesis that explains infiltration mechanism is proposed. • The performance of the composite phase change material is investigated. • Numerical simulation of system is carried out and results fit well. - Abstract: A kind of form-stable composite phase change materials used for cold thermal energy storage is prepared by absorbing dodecane into the hydrophobic fumed silica. With relatively suitable pore diameter and hydrophobic groups, hydrophobic fumed silica is beneficial to the penetration and infiltration of dodecane and the leakage problem solving. Scanned by electron micrographs and Fourier transformation infrared, the composite phase change material is characterized to be just physical penetration. Besides, the differential scanning calorimeter and thermo gravimetric analysis reveals the high enthalpy, good thermal stability and cycling performance of this composite phase change material. What’s more, Hot-Disk thermal constants analyzer demonstrates that the composite phase change material has low thermal conductivity which is desired in cold storage application. In the experiment, a cold energy storage system is set up and the results from the experiment show that the system has excellent performance of cold storage by incorporating composite phase change material. Apart from that, the experimental data is found to have a great agreement with the numerical simulation which is carried out by using the commercial computational fluid dynamics software FLUENT.

  7. After-blast fumes from ANFO mixtures - the effect of prill type and mixing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Farnfield, R.; Wetherelt, A.

    2003-06-01

    Over the last couple of years the Technical Services Department of exchem explosives has received a number of enquiries regarding the nature of after-blast fumes. These enquiries have been driven by two concerns: site-related health and safety and public comment from people living close to blasting operations. The paper examines how these choices can impact the quality and quantity of after-blast fume. 3 refs., 9 figs., 3 tabs.

  8. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    OpenAIRE

    Amrin Shaikh; Darshana Barot; Divya Chandel

    2018-01-01

    Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation ...

  9. Effect of silica fume on reaction products of uranium (VI) with portland cement

    International Nuclear Information System (INIS)

    Tan Hongbin; Shaanxi Univ. of Technology, Hanzhong; Li Yuxiang

    2005-01-01

    Simulation of radioactive waste of U(VI) by uranyl nitrate and the effects of different additive quantities (12%, 20%, 30%, 35%, 40%) of silica fume on the products of U(VI) with Portland cement were studied at a hydrothermal condition of 180 degree C for a duration of one week. The X-ray powder diffraction examination results showed that the calcium uranate would be transformed into uranophane when the cement contained 30% silica fume. (authors)

  10. University of Missouri research reactor exhaust ventilation/laboratory fume hood upgrade

    International Nuclear Information System (INIS)

    Edwards, C.B. Jr.; McKibben, J.C.; McCracken, C.B.

    1989-01-01

    The University of Missouri research reactor (MURR) facility is located in Research Park, 1 mile south of the Columbia campus. The reactor is a 10-MW pressurized loop, in-pool-type, light-water-moderated, beryllium-and-graphite-reflected core, serviced by six radial beam tubes for research, and has sample irradiation facilities in both a flux trap and in the graphite region. The reactor operates at full power 150 h/week, 52 week/yr, making it one of the best operating schedules and the most extensively used of any university research reactor. This extensive utilization includes many programs, such as radioisotope applications, neutron activation analysis, etc., that depend heavily on fume hoods, glove boxes, and hot cells that put a tremendous demand on the exhaust system. The exhaust system is required to be operable whenever the reactor is operating and must have the capability of being operated from an emergency electrical generator on loss of site electrical power. The originally installed exhaust ventilation system was below needed capacity and, with increased program requirements and system age, the necessity to upgrade the system was paramount. The challenge was to complete the upgrade construction while continuing to operate the reactor and maintain all the other ongoing programs, rather than take the easy way of an extended shutdown. This paper discusses how MURR met this challenge and solved these problems, problems that are similarly experienced by almost all research reactors to some degree when major work is required on critical systems

  11. Environmental safety of the disposal system for radioactive substance-contaminated wastes

    International Nuclear Information System (INIS)

    Oosako, Masahiro

    2012-01-01

    In accordance with the full-scale enforcement of 'The Act on Special Measures concerning the Handling of Radioactive Pollution' in 2012, the collective efforts of entire Japan for dealing with radioactive pollutants began. The most important item for dealing with radioactive pollution is to control radioactive substances that polluted the global environment and establish a contaminated waste treatment system for risk reduction. On the incineration system and landfill disposal system of radioactive waste, this paper arranges the scientific information up to now, and discusses the safety of the treatment / disposal systems of contaminated waste. As for 'The Act on Special Measures concerning the Handling of Radioactive Pollution,' this paper discusses the points of the Act and basic policy, roadmap for the installation of interim storage facilities, and enforcement regulations (Ordinance of the Ministry of the Environment). About the safety of waste treatment system, it discusses the safety level of technical standards at waste treatment facilities, safety of incineration facilities, and safety of landfill disposal sites. (O.A.)

  12. Investigations on the tensile strength of high performance concrete incorporating silica fume

    International Nuclear Information System (INIS)

    Santanu Bhanja; Bratish Sengupta

    2005-01-01

    Though the literature is rich in reporting on silica fume concrete the technical data on tensile strength is quite limited. The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of High Performance Concrete. Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume binder ratios from 0.0 to 0.3. For all the mixes compressive, flexural and split tensile strengths were determined at 28 days. The results of the present investigation indicate that silica fume incorporation results in significant improvements in the tensile strengths of concrete. It is also observed that the optimum replacement percentage, which led to maximization of strength, is not a constant one but depends on the water- cementitious material ratio of the mix. Compared to split tensile strengths, flexural strengths have exhibited greater percentage gains in strength. Increase in split tensile strength beyond 15% silica fume replacement is almost insignificant whereas sizeable gains in flexural tensile strength have occurred even up to 25% replacements. For the present investigation transgranular failure of concrete was observed which indicate that silica fume incorporation results in significant improvements in the strength of both paste and transition zone. (authors)

  13. Influence of polyacrylic ester and silica fume on the mechanical properties of mortar for repair application

    Directory of Open Access Journals (Sweden)

    Chaohua Jiang

    2016-12-01

    Full Text Available Experimental investigations on the influence of different amounts of polyacrylic ester and silica fumes on the mechanical properties of mortar such as the compressive strength, splitting tensile strength, bonding strength, and abrasion resistance are presented in this article. The results show that the compressive and splitting tensile strength of mortar can be improved with the addition of polyacrylic ester and silica fumes. Results obtained from both the direct tensile bond test and flexural bond test indicate that the addition of polyacrylic ester and silica fumes improves the bond strength significantly, and the enhancement is more obvious with polyacrylic ester paste as interfacial adhesives. Furthermore, mortar incorporation of polyacrylic ester and silica fumes shows superior abrasion resistance compared to the control mortar. Therefore, the correct combination of polyacrylic ester and silica fumes to produce mortars has been shown to have synergistic effects, which results in excellent properties including high bond strength and superior abrasion resistance. Mortars containing polyacrylic ester and silica fumes are ideal for repairing concrete especially for hydraulic concrete structure.

  14. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    Science.gov (United States)

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  15. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  16. [Disinfectants and main sanitary and preventive measures for protection of ventilation and air-conditioning systems from Legionella contamination].

    Science.gov (United States)

    Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A

    2008-01-01

    The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.

  17. Sensitivity of radiation monitoring systems in Manila Ports in detecting contamination in foodstuff shipments

    International Nuclear Information System (INIS)

    Romallosa, Kristine Marie D.; Caseria, Estrella S.; Piquero, Ronald E.; Agustin, Jan Aldrich A.

    2011-01-01

    During the Fukushima Nuclear Power Plant accident in Japan, one of the Philippines' measures to protect the public from radiological hazards of the accident is by monitoring agricultural and food imports for radioactive contamination. In this study, the sensitivity of the mobile Radiation Monitoring System (RM) in Manila Ports in detecting contamination in incoming foodstuff shipments was determined. Large volume synthetic 137 Cs reference sources were used to determine the minimum detectable concentration (MDC) of the RMS. The reference sources have radioactivity concentrations that are comparable to the PNRI guidance level of 1000 Bg/kg for 137 Cs that is destined for general consumption. Results of the MDC measurements show that the RMS units are sensitive enough to detect radioactivity levels that are within the guidance levels provided that a) the minimum package lot is approximately 200 kg, b) the package is positioned at the detector side, and c) the alarm setting of RMS is as calibrated. It was therefore established that the RMS can be used to initially screen incoming foodstuff shipments of possible contamination and thereby help minimize potential radiation exposures to the public. (author)

  18. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms.

    Science.gov (United States)

    El Haddad, Lynn; Ghantoji, Shashank S; Stibich, Mark; Fleming, Jason B; Segal, Cindy; Ware, Kathy M; Chemaly, Roy F

    2017-10-10

    Environmental cleanliness is one of the contributing factors for surgical site infections in the operating rooms (ORs). To decrease environmental contamination, pulsed xenon ultraviolet (PX-UV), an easy and safe no-touch disinfection system, is employed in several hospital environments. The positive effect of this technology on environmental decontamination has been observed in patient rooms and ORs during the end-of-day cleaning but so far, no study explored its feasibility between surgical cases in the OR. In this study, 5 high-touch surfaces in 30 ORs were sampled after manual cleaning and after PX-UV intervention mimicking between-case cleaning to avoid the disruption of the ORs' normal flow. The efficacy of a 1-min, 2-min, and 8-min cycle were tested by measuring the surfaces' contaminants by quantitative cultures using Tryptic Soy Agar contact plates. We showed that combining standard between-case manual cleaning of surfaces with a 2-min cycle of disinfection using a portable xenon pulsed ultraviolet light germicidal device eliminated at least 70% more bacterial load after manual cleaning. This study showed the proof of efficacy of a 2-min cycle of PX-UV in ORs in eliminating bacterial contaminants. This method will allow a short time for room turnover and a potential reduction of pathogen transmission to patients and possibly surgical site infections.

  19. A robotic system to conduct radiation and contamination surveys on nuclear waste transport casks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Sanders, T.L.

    1990-06-01

    The feasibility of performing, numerous spent fuel cask operations using fully integrated robotic systems is under evaluation. Using existing technology, operational and descriptive software and hardware in the form of robotic end effectors are being designed in conjunction with interfacing cask components. A robotic radiation and contamination survey system has been developed and used on mock-up cask hardware to evaluate the impact of such fully automated operations on cask design features and productivity. Based on experience gained from the survey system, numerous health physics operations can be reliably performed with little human intervention using a fully automated system. Such operations can also significantly reduce time requirements for cask-receiving operations. 7 refs., 51 figs., 6 tabs

  20. Decision support systems for the post-emergency management of contaminated territories

    International Nuclear Information System (INIS)

    Morrey, M.; Higgins, N.; Dovgiy, S.; Grekov, L.; Yatsalo, B.; Likhtariov, I.; Dreicer, M.; Lochard, J.; Savkin, M.; Demin, V.; Khramtsov, P.; Utkina, T.

    1996-01-01

    The worked implemented within the framework of the project was directed towards understanding the conceptual basis for the organization of intervention strategies after the accident at the Chernobyl nuclear station. Based on the situation in regions of Belarus, Russia and Ukraine that suffered the consequences of the accident, this project was directed towards the provision of support the decision makers. The work will assist in the choice of proper strategies to protect the population from the effects of environmental contamination, taking into account the available resources. The experience gained, both of the problems of decision aiding in this context and their solution, will be of use in post-emergency planning for possible future accident situations. At present there are several prototype computer systems which provide the following: access to a wide range of information gathered after the accident at the Chernobyl nuclear station in the CIS; support in complex evaluations of the post-accident situation for a wide range of parameters; analysis and forecast of how the situation may develop using mathematical models and algorithms; support in choosing strategies at each level of decision making taking into account the possibilities of applying a wide range of countermeasures; exploration of multifactor interdependence and the consequences of resource and other limits; the integration of experience in social and psychological factors into the decision making process. Calculations made by the computer modules are based on actual data from contaminated territories including structure of soils, age/sex structure of the population, and dietary habits. At present the models for the calculation of doses and radionuclide migration in soil are specific to the regions contaminated after the Chernobyl accident. They m based on a large amount of experimental data ranging from whole body measurements of the population to data about radionuclide transfer from soils to plants

  1. Decision support systems for the post-emergency management of contaminated territories

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, M; Higgins, N; Dovgiy, S; Grekov, L; Yatsalo, B; Likhtariov, I; Dreicer, M; Lochard, J; Savkin, M; Demin, V; Khramtsov, P; Utkina, T

    1996-07-01

    The worked implemented within the framework of the project was directed towards understanding the conceptual basis for the organization of intervention strategies after the accident at the Chernobyl nuclear station. Based on the situation in regions of Belarus, Russia and Ukraine that suffered the consequences of the accident, this project was directed towards the provision of support the decision makers. The work will assist in the choice of proper strategies to protect the population from the effects of environmental contamination, taking into account the available resources. The experience gained, both of the problems of decision aiding in this context and their solution, will be of use in post-emergency planning for possible future accident situations. At present there are several prototype computer systems which provide the following: access to a wide range of information gathered after the accident at the Chernobyl nuclear station in the CIS; support in complex evaluations of the post-accident situation for a wide range of parameters; analysis and forecast of how the situation may develop using mathematical models and algorithms; support in choosing strategies at each level of decision making taking into account the possibilities of applying a wide range of countermeasures; exploration of multifactor interdependence and the consequences of resource and other limits; the integration of experience in social and psychological factors into the decision making process. Calculations made by the computer modules are based on actual data from contaminated territories including structure of soils, age/sex structure of the population, and dietary habits. At present the models for the calculation of doses and radionuclide migration in soil are specific to the regions contaminated after the Chernobyl accident. They m based on a large amount of experimental data ranging from whole body measurements of the population to data about radionuclide transfer from soils to plants

  2. Assessing the chemical contamination dynamics in a mixed land use stream system.

    Science.gov (United States)

    Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L

    2017-11-15

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The

  3. A System Dynamics Approach for the Integrative Assessment of Contaminated Land Management Options

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Finkel, Michael

    2009-01-01

    ). Within the suggested tiered frameworks a gap exists with respect to preliminary assessment methodologies that are capable of prioritising hot spots and streamlining the further planning process. In this paper, we give a brief glimpse of the decision support system CARO-Plus (Cost-efficiency Analysis...... of contamination extent, boundary conditions/limitations, stakeholders, etc.) has led to the proposal of tiered frameworks for site investigation, risk assessment and management, e.g. in the United Kingdom and in the USA. Recent policies request an increased emphasis on modelling (e.g. EU Water Framework Directive...

  4. A systems approach to the management of a contaminated metal recycle project

    International Nuclear Information System (INIS)

    Pincock, L.; Wahnachaffe, S.

    1994-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is working with private industry to recycle contaminated metal from the dismantling and decommissioning of Department of Energy sites and commercial reactors. The recycled metal could be used in many applications such as fabrication of canisters and waste boxes for the storage of spent nuclear fuel and radioactive waste. Management of technical projects similar to this is difficult because these projects consist of a myriad of complex and interrelated issues ranging from technical feasibility to stakeholder acceptance. Systems Analysis provides a way to deal with many complex issues and supports effective decision making

  5. Induced Environment Contamination Monitor (IECM), air sampler - Results from the Space Transport System (STS-2) flight

    Science.gov (United States)

    Peters, P. N.; Hester, H. B.; Bertsch, W.; Mayfield, H.; Zatko, D.

    1983-01-01

    An investigation involving sampling the rapidly changing environment of the Shuttle cargo bay is considered. Four time-integrated samples and one rapid acquisition sample were collected to determine the types and quantities of contaminants present during ascent and descent of the Shuttle. The sampling times for the various bottles were controlled by valves operated by the Data Acquisition and Control System (DACS) of the IECM. Many of the observed species were found to be common solvents used in cleaning surfaces. When the actual volume sampled is taken into account, the relative mass of organics sampled during descent is about 20 percent less than during ascent.

  6. Synthesis and comparison of mechanical behavior of fly ash-epoxy and silica fumes-epoxy composite

    Science.gov (United States)

    Sangamesh; Ravishankar, K. S.; Kulkarni, S. M.

    2017-08-01

    Present day innovation requires materials with a typical combination of properties that are not possible by conventional metal, alloys, ceramics and polymeric materials. Particulate reinforcements for polymers are selected with the dual objective of improving composite properties and save on the total cost of the system. The point of this study is to utilize and compare the mechanical properties of filler (fly ash and silica fumes) reinforced epoxy composites. The composites of different proportions by percentage of matrix (100%), fillers (5%, 10% and 15%) volume are developed using hand lay-up process are tested for tensile and compression, according to ASTM Standards. From these mechanical properties, the flexural analysis of these composites is simulated. And which are characterized by Scanning electron microscopy for the fracture surface study, which reveals the brittle fracture, this also conforms from the Finite element analysis (FEA). And the overall mechanical properties of the fly ash reinforced polymer composites were found to have better than silica fumes reinforced composites.

  7. An intelligent decision support system for management of petroleum-contaminated sites

    International Nuclear Information System (INIS)

    Liquang Geng; Chan, C.W.; Zhi Chen; Huang, G.H.

    2001-01-01

    Groundwater and soil contamination resulted from LNAPLs (light nonaqueous phase liquids) spills and leakage in petroleum industry is currently one of the major environmental concerns in North America. Numerous site remediation technologies have been developed and implemented in the last two decades. They are classified as ex-situ and in-situ remediation techniques. One of the problems associated with ex-situ remediation is the cost of operation. In recent years, in-situ techniques have acquired popularity. However, the selection of the optimal techniques is difficult and insufficient expertise in the process may result in large inflation of expenses. This study presents an expert system (ES) for the management of petroleum contaminated sites in which a variety of artificial intelligence (AI) techniques were used to construct a support tool for site remediation decision-making. This paper presents the knowledge engineering processes of knowledge acquisition, conceptual design, and system implementation. The results from some case studies indicate that the expert system can generate cost-effective remediation alternatives to assist decision-makers. (Author)

  8. Effect of type of defeathering system on Salmonella cross-contamination during commercial processing.

    Science.gov (United States)

    Clouser, C S; Knabel, S J; Mast, M G; Doores, S

    1995-04-01

    The cross-contamination effects of three commercial defeathering systems were compared using turkeys from a single Salmonella-positive flock (defeathered in each system as the first flock of the day and compared with 30 hand-defeathered (control) birds. Three trials, each using a different common flock, were completed. In Trial 1, the incidence of Salmonella-positive birds decreased following mechanical defeathering at all three processors. The incidence of Salmonella-positive carcasses in test flocks increased following steam-spray (approximately 100%) and kosher (approximately 50%) defeathering in Trials 2 and 3, whereas no increase in Salmonella-positive carcasses resulted from conventional defeathering. The decrease in the number of Salmonella-positive birds as a result of defeathering observed in Trial 1, as compared to increases observed in Trials 2 and 3, may be related to the selection of feather-contaminated (Trial 1) vs intestinal-colonized (Trials 2 and 3) turkeys. Surface temperature of the carcasses and length of time required to defeather were monitored within each system. It is hypothesized that the increases in the number of Salmonella-positive birds following steam-spray and kosher defeathering in Trials 2 and 3 were a result of skin surface changes occurring during the defeathering process, which allowed increased adherence or entrapment of Salmonella spp. on or within remaining skin layers.

  9. Nucleation and capture of condensible airborne contaminants in an aqueous scrubbing system

    International Nuclear Information System (INIS)

    Postma, A.K.; Hilliard, R.K.

    1978-09-01

    The fate of condensible contaminants in an aqueous scrubbing system was evaluated. Knowledge of the behavior of volatile fission product compounds is important in evaluating the effectiveness of emergency air cleaning systems proposed for use in containment systems of breeder reactor plants. When a high temperature air stream passes through a spray quench chamber, very large cooling rates occur in the drop boundary layers. These large cooling rates cause large supersaturations in airborne concentrations of condensible contaminants, and one predicts that most condensation would take place through homogeneous nucleation. The very small particles formed would agglomerate, and attach to sodium aerosol particles which would be present. In the study the overall removal efficiency of volatile fission product species (typified by NaI, SeO 2 , and Sb 2 O 3 ) in an air cleaning train (quench chamber, venturi scrubber, and fibrous bed) was theoretically evaluated. The overall removal efficiency of condensible materials was found to be lower than that for sodium compound aerosols because the freshly condensed particles would be smaller in size. For a base case, a removal efficiency of 99.97 percent was predicted for condensible materials. The fibrous bed scrubber exhibited superior particle removal characteristics for small particles compared to the quench chamber and venturi scrubber. Its removal efficiency exceeded 97 percent for even the most penetrating particle size (about 0.4 micron aerodynamic diameter). Therefore, all condensible fission products would be removed with efficiencies exceeding 97 percent

  10. Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

    KAUST Repository

    Zaib, Alam

    2016-07-22

    By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.

  11. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation

    NARCIS (Netherlands)

    Zuurbier, K.G.; Hartog, N.; Valstar, J.; Post, V.E.A.; Breukelen, B.M. van

    2013-01-01

    Groundwater systems are increasingly used for seasonal aquifer thermal energy storage (SATES) for periodic heating and cooling of buildings. Its use is hampered in contaminated aquifers because of the potential environmental risks associated with the spreading of contaminated groundwater, but

  13. Multi-isotopic gamma-ray assay system for alpha-contaminated waste

    International Nuclear Information System (INIS)

    Close, D.A.; Pratt, J.C.; Caldwell, J.T.; Kunz, W.E.; Schultz, F.J.; Haff, K.W.

    1983-01-01

    The capability of an existing segmented gamma-ray system is being expanded for the analysis of alpha-contaminated waste drums. A cursory assay of 114 transuranic waste drums of 208-l capacity has been made. Analysis of these data indicates a detection limit better than 100 nCi/g of waste for 237 Np/ 233 Pa, 239 Pu, 241 Am, 243 Am/ 239 Np, 60 Co, 125 Sb, 134 137 Cs, and 154 Eu. A pending Code of Federal Regulation (10CFR61) stipulates that the nuclear industry quantify not only its transuranic waste, but also certain beta- and gamma-ray-emitting fission products. An assay system based on gamma-ray spectroscopy is the only system that can meet this requirement for the fission products

  14. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  15. Design and construction of an interceptor system for radioactively contaminated solvent

    International Nuclear Information System (INIS)

    Weiss, T.G. Jr.; Blickwedehl, R.R.

    1991-01-01

    During the conduct of fuel reprocessing operations at the Western New York Nuclear Service Center from 1966 to 1972, the site operator disposed of spent solvent by shallow land burial in the area used for disposal of solid radioactive waste. The spent solvent was placed in twenty-two 3785 liter (1000-gallon) steel tanks which were then placed in eight 6-meter-deep burial holes. With the passage of time groundwater entered the tanks displacing the solvent (a mixture of tributyl phosphate and n-dodecane) and allowing it to enter the surrounding groundwater system. The solvent, which is lighter than water, floated to the surface of the groundwater within the burial holes and began to migrate laterally through cracks caused by weathering. In 1983, after the US Department of Energy (DOE) initiated efforts for the West Valley Demonstration Project (WVDP), trace amounts of solvent were encountered in a monitoring well near the perimeter of the burial area. Since the initial discovery, extensive studies and continued monitoring have been conducted of the solvent migration. In the fall of 1989, this monitoring showed evidence of further on-site migration of the solvent within the disposal area. In response, the DOE authorized West Valley Nuclear Services Company, Inc. (WVNS) to proceed with the design and construction of a trench system to intercept the flow of solvent and prevent it from discharging to nearby streams. Since the solvent and the contaminated groundwater samples taken in the area exhibited high levels of Iodine-129 in an organic complex, it was necessary to construct a pretreatment facility. An important aspect of the trench construction was the management of contaminated soil and construction water. Contaminated soils were placed into storage containers and held for future treatment and disposal. All water pumped from the trench during construction was stored in large bladder tanks, analyzed for hazardous constituents, and upon finding none, was discharged

  16. Verification of surface contamination density standard using clearance automatic laser inspection system for objects from a nuclear power plant

    International Nuclear Information System (INIS)

    Sasaki, Michiya; Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi

    2008-01-01

    In the clearance level inspection in Japan, it is necessary to indicate that the activity level of the target object must be less than not only the clearance levels, but also the surface contamination density standards. The classification measurements for these two standards have been performed separately, and the GM survey meters based on beta-ray measurement have mainly been used for surface contamination density measurement so far. Recently the Clearance Automatic Laser Inspection System, named CLALIS, has been developed to estimate the low-level activity concentration. This system consists of 3-dimensional laser scanner for shape measurement and eight large NE102A plastic scintillation detectors for gamma-ray measurement, and it has been clarified that the CLALIS has adequate detection ability for clearance measurement of both metal scraps and concrete debris. In this study, we compared the surface contamination densities for a number of actual contaminated and non-contaminated objects generated inside from the radiation controlled area at the Kashiwazaki-Kariwa nuclear power station by using the CLALIS and the GM survey meter. As a result, since CLALIS could detect the surface contamination as well as the GM survey meter for all measurement targets, it was revealed that CLALIS can rationally achieve clearance level inspection in a single radiation measurement. The practicality of CLALIS in view of the detection limit and processing time was discussed by comparison with the usual radiation monitors for surface contamination measurement. (author)

  17. A system for the rapid detection of bacterial contamination in cell-based therapeutica

    Science.gov (United States)

    Bolwien, Carsten; Erhardt, Christian; Sulz, Gerd; Thielecke, Hagen; Johann, Robert; Pudlas, Marieke; Mertsching, Heike; Koch, Steffen

    2010-02-01

    Monitoring the sterility of cell or tissue cultures is of major concern, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. Our sterility-control system is based on a Raman micro-spectrometer and is able to perform fast sterility testing on microliters of liquid samples. In conventional sterility control, samples are incubated for weeks to proliferate the contaminants to concentrations above the detection limit of conventional analysis. By contrast, our system filters particles from the liquid sample. The filter chip fabricated in microsystem technology comprises a silicon nitride membrane with millions of sub-micrometer holes to retain particles of critical sizes and is embedded in a microfluidic cell specially suited for concomitant microscopic observation. After filtration, identification is carried out on the single particle level: image processing detects possible contaminants and prepares them for Raman spectroscopic analysis. A custom-built Raman-spectrometer-attachment coupled to the commercial microscope uses 532nm or 785nm Raman excitation and records spectra up to 3400cm-1. In the final step, the recorded spectrum of a single particle is compared to an extensive library of GMP-relevant organisms, and classification is carried out based on a support vector machine.

  18. Dedusting: recovery of dust and fumes; Captation de poussieres et fumees

    Energy Technology Data Exchange (ETDEWEB)

    Bergez, J. [Etablissement Neu, Bruxelles (Belgium)

    2000-09-01

    The objective of this paper is the recovery of dust emitted during handling and processing of minerals in order to protect the operating personnel and the neighbourhood, to minimise losses of valuable products and prevent the wear of the equipment. For this purpose, a system of hoods connected by ducts to a dedusting unit and a fan is generally used. The air speed in the ducts should be adequately selected in order to avoid any particle settling. Size and shape of particles are very important: they depend on the dust origin such as furnaces, handling equipment, comminution machines, etc. General recommendations are given as for the shape of hoods, the required air flowrate and the minimum air speed depending on the nature of the dust and the type of operation that generates it. A special attention should be given when some particles are flammable (anti-static filtration bags, no sparkling, etc.), and provision should be made for explosion valves. (author)

  19. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    Science.gov (United States)

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  20. MOIRA: a computerised decision support system for the restoration of radionuclide contaminated freshwater ecosystems

    International Nuclear Information System (INIS)

    Gallego, Eduardo; Brittain, J.E.; Hakanson, Lars; Heling, Rudie; Hofman, Dmitry; Monte, Luigi

    2000-01-01

    The radiation dose resulting from contamination of freshwater ecosystems due to the release of radioactive substances into the environment may be reduced by applying suitable countermeasures. The options for intervention are wide-ranging and can be broadly grouped into three main categories: chemical, physical and social countermeasures. In some cases, a combination of actions -or even the no action- may be the optimal strategy. Despite their benefits, intervention strategies may have detrimental effects of economic, ecological and social nature. Thus, it is of paramount importance to assess, by objective criteria, the global cost-benefit balance of different options. The MOIRA project (A MOdel based computerised system for management support to Identity optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems, European Commission contract FI4P-CT96-0036) has developed a user-friendly, computerised tool that will allow decision makers to choose optimal intervention strategies for freshwater ecosystems with different contamination scenarios. To achieve that goal, the MOIRA software system -apart from a user-friendly interface- incorporates several innovative aspects: - eographical information system (GIS) and databases to get to get the values of the model parameters at different locations in Europe. - redictive ecosystem models for the behaviour of radionuclides (namely Cs-137 and Sr-90) in catchments, lakes and rivers, complemented with models of the effect of the countermeasures on the environmental contamination levels. These models are based on an extensive use of aggregate parameters' that summarise, in single quantities, the effects of a variety of environmental processes. Methods for critical model testing, sensitivity and uncertainty analyses have been applied to them getting a high reliability. - cosystem index (EI) to handle the influence chemical remedial measures may have on the structure, reproduction and biomass of key

  1. In vitro evaluation of influence of salivary contamination on the dentin bond strength of one-bottle adhesive systems

    Directory of Open Access Journals (Sweden)

    Nujella B.P Suryakumari

    2011-01-01

    Full Text Available Aim: To evaluate the effect of salivary contamination on the bond strength of one-bottle adhesive systems - (the V generation at various stages during the bonding procedure and to investigate the effect of the contaminant removing treatments on the recovery of bond strengths. Materials and Methods: In this study the V generation one-bottle system - (Adper Single Bond was tested. Fifty caries-free human molars with flat dentin surfaces were randomly divided into five groups of ten teeth each: Group I had 15 second etching with 35% Ortho Phosphoric acid, 15 second rinse and blot dried (Uncontaminated; Group II contaminated and blot dried; Group III contaminated and completely dried; Group IV contaminated, washed, blot dried; Group V contaminated, retched washed, and blot dried. The bonding agent was applied and resin composite (Z-100 3M ESPE was bonded to the treated surfaces using the Teflon mold. The specimens in each group were then subjected to shear bond strength testing in an Instron Universal testing machine at a crosshead speed of 1 mm / minute and the data were subjected to one way ANOVA for comparison among the groups (P<0.05. Results: There was a significant difference between the group that was dried with strong oil-free air after contamination (Group III and the other groups. When the etched surface was contaminated by saliva, there was no statistical difference between the just blot dry, wash, or the re-etching groups (Groups II, IV, V if the dentin surface was kept wet before priming. When the etched dentin surface was dried (Group III the shear bond strength decreased considerably. Conclusion: The bond strengths to the tooth structure of the recent dentin bonding agents are less sensitive to common forms of contamination than assumed. Re-etching without additional mechanical preparation is sufficient to provide or achieve the expected bond strength.

  2. Constructing a management strategy for contaminated agricultural systems using the decision support system RODOS and GIS technology

    International Nuclear Information System (INIS)

    Montero, Milagros; Dvorzhak, Alla

    2008-01-01

    Full text: In the event of a radiological accident or incident, the construction of a strategy for managing the possible contaminated systems is an important component into the emergency response process. There are a wide collection of possible management options, but for any one accident scenario only a subset of options conforming a management strategy will be applied. The selection of these options depends on a wide range of criteria (time and space, effectiveness, economic cost, radiological and environmental impact, waste disposal, legislative issues and societal and ethical aspects, for example) which, nowadays, are implemented into tools and systems to guide to the decision-makers. This work aims to establish the usefulness and applicability of the Decision Support System RODOS for representative Spanish situations where food production systems become contaminated after a radiological emergency. This aspect is demonstrated for developing an management strategy for one scenario involving contamination of the food chain after a hypothetical accidental release of 137 Cs and 90 Sr from a Spanish NPP. For this scenario, the NWP (Numerical Weather Prediction) data of INM (National Meteorological Institute) have been considered. The deposited contamination, the activity concentration in significant agricultural products for this region, human doses and countermeasures proposed by the RODOS system have been considered and analyzed. There could be defined a ranking of the information intended for the decision makers based on the importance of the decisions to be made from it in each phase of the accident. In the initial moments, there is no detailed radiological information, and urgent countermeasures must be taken promptly to be effective. In regard to the information in which decision is supported during subsequent phases of the accident (late phase), time scheduling is not limiting, being the key requirement to count on the most reliable and complete information

  3. Effect of saliva contamination on cementation of orthodontic brackets using different adhesive systems.

    Science.gov (United States)

    Robaski, Aliden-Willian; Pamato, Saulo; Tomás-de Oliveira, Marcelo; Pereira, Jefferson-Ricardo

    2017-07-01

    The enamel condition and the quality of surface are points that need to be considered for achieving optimal efficiency in the treatment with orthodontic brackets. The aim of this study was to assess the immediate bond strength of metallic brackets cemented to dental. Forty human premolars were double-sectioned, placed in PVC matrices and randomly divided into 10 groups (n=8). They received artificial saliva contamination before or after the application of adhesive systems, except for the control groups. The metallic brackets were cemented using two orthodontic cements (Transbond™ Plus Color Change, 3M Unitek e Transbond™ XT Light, 3M Unitek). The specimens were subjected to mechanical shear bond strength testing and classified according to the fracture pattern. The results were analyzed using a two-way ANOVA and Tukey's test for multiple comparisons ( p brackets cemented on the dental enamel. Key words: Bonding, orthodontic brackets, shear bond strength, saliva, adhesive systems.

  4. Assessing the chemical contamination dynamics in a mixed land use stream system

    DEFF Research Database (Denmark)

    Sonne, Anne Thobo; McKnight, Ursula S.; Rønde, Vinni

    2017-01-01

    Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production......, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical...... stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality...

  5. Implementation of Geographical Information System for Bacteriological Contamination Analysis on Refill Drinking Water Depot (Study in Tembalang District)

    Science.gov (United States)

    Rahmitha, Amelia; Utami, Endang Sri; Sitohang, Marya Yenita

    2018-02-01

    People used refilled-drinking-water for household and food stall because its efficient and low cost. Based on Indonesian Health Ministry regulation, it should not have any coliform bacteria. This study aimed to describe the bacteriological contamination of refilled drinking water using geographical information system (GIS). In this research, it was used an analytic observational method. The samples were from all available (37) depots in Tembalang district, one form each depot took used a sterile bottle. Contamination of bacteria was identified by Most Probable Number (MPN) method lactose broth media, Mac Conkey media, and IMVIC media. The depot samples were then plotted on (GIS). This study showed 95% samples were not feasible to consume since they contamined coliform. All sub-district had one that contaminated by coliform, 75% sub-districts had depots that contaminated Escherichia coli, while 55% sub-districts had depots that contaminated with other bacteria. The internal risk factors of the contamination were the absence of hygiene-sanitation worthy certificate (95%), depots location near to pollution sources (5%), and the misused of UV light. The external risk factor was lack of quality control that was not as the sterilization from office health Semarang city. Policy reinforcement should be done to all of the depots.

  6. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  7. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    Science.gov (United States)

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  8. Performance of laboratories analysing welding fume on filter samples: results from the WASP proficiency testing scheme.

    Science.gov (United States)

    Stacey, Peter; Butler, Owen

    2008-06-01

    This paper emphasizes the need for occupational hygiene professionals to require evidence of the quality of welding fume data from analytical laboratories. The measurement of metals in welding fume using atomic spectrometric techniques is a complex analysis often requiring specialist digestion procedures. The results from a trial programme testing the proficiency of laboratories in the Workplace Analysis Scheme for Proficiency (WASP) to measure potentially harmful metals in several different types of welding fume showed that most laboratories underestimated the mass of analyte on the filters. The average recovery was 70-80% of the target value and >20% of reported recoveries for some of the more difficult welding fume matrices were welding fume trial filter samples. Consistent rather than erratic error predominated, suggesting that the main analytical factor contributing to the differences between the target values and results was the effectiveness of the sample preparation procedures used by participating laboratories. It is concluded that, with practice and regular participation in WASP, performance can improve over time.

  9. Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study.

    Science.gov (United States)

    Lehnert, M; Hoffmeyer, F; Gawrych, K; Lotz, A; Heinze, E; Berresheim, H; Merget, R; Harth, V; Van Gelder, R; Hahn, J-U; Hartwig, A; Weiß, T; Pesch, B; Brüning, T

    2015-01-01

    The association between exposure to welding fume and chronic obstructive pulmonary disease (COPD) has been insufficiently clarified. In this study we assessed the influence of exposure to welding fume on lung function parameters. We investigated forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and expiratory flow rates in 219 welders. We measured current exposure to respirable particles and estimated a worker's lifetime exposure considering welding techniques, working conditions and protective measures at current and former workplaces. Multiple regression models were applied to estimate the influence of exposure to welding fume, age, and smoking on lung function. We additionally investigated the duration of working as a welder and the predominant welding technique. The findings were that age- and smoking-adjusted lung function parameters showed no decline with increasing duration, current exposure level, and lifetime exposure to welding fume. However, 15% of the welders had FEV1/FVC below the lower limit of normal, but we could not substantiate the presence of an association with the measures of exposure. Adverse effects of cigarette smoking were confirmed. In conclusion, the study did not support the notion of a possible detrimental effect of exposure to welding fume on lung function in welders.

  10. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Science.gov (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  11. Exposure to Cooking Fumes and Acute Reversible Decrement in Lung Functional Capacity.

    Science.gov (United States)

    Neghab, Masoud; Delikhoon, Mahdieh; Norouzian Baghani, Abbas; Hassanzadeh, Jafar

    2017-10-01

    Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41), 0.13 (0.1), and 1.56 (0.41) mg/m 3 , respectively. The mean atmospheric concentrations of PM 1 , PM 2.5 , PM 7 , PM 10 , and total volatile organic compounds (TVOCs) was 3.31 (2.6), 12.21 (5.9), 44.16 (16.6), 57 (21.55) μg/m 3 , and 1.31 (1.11) mg/m 3 , respectively. All respiratory symptoms were significantly (pcooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.

  12. Formulation and characterization of date palm fibers mortar by addition of silica fume

    Science.gov (United States)

    Mokhtari, A.; Kriker, A.; Ouaggad, H.; Merad, N.

    2018-05-01

    This paper presents the results of experimental investigations of the formulated and characterization of date palm fibers mortar by addition of silica fume. The use of addition mineral is widely used in the production of cements through the world. The objective of this work is to bring our contribution to the recovery of local resources in the occurrence vegetable fibers of date palm to weak cost and from renewable source and integrate it in the filled of building. Date palm fiber are from Ouargla town in south of Algeria. Different mortar mixtures were prepared in which the cement was substitute by 10% of silica fume. The mechanical characteristics (compressive and flexural strength) of date palm fibers mortar by treatment of the matrix by the adding of silica fume were examined. The results obtained have shown that the mortar workability as well as the compressive and flexural strength decreases with increasing the silica fume replacement. The results showed that the use of silica fume enabled to evaluate the flexural strength. However, another treatment of fibers and matrix will be recommended for Improved the characteristics.

  13. An integrated system for conducting radiological surveys of contaminated sites - 16312

    International Nuclear Information System (INIS)

    McCown, Jay P.; Rogers, Donna M.; Waggoner, Charles A.

    2009-01-01

    This paper describes an integrated detection system that has been developed to conduct radiological surveys of sites suspected of contamination of materials such as depleted uranium. This system utilizes cerium activated lanthanum bromide and thallium activated sodium iodide gamma detectors and can be easily adapted to include units for detecting neutrons. The detection system includes software controlling the collection of radiological spectra and GPS data. Two different platforms are described for conducting surveys, a modified zero turn radius (ZTR) mower and a three-wheeled cart that is manually pushed. The detection system software controlling data collection has components that facilitate completing a grid-less survey on user specified spacings. Another package confirms that all data quality activities (calibrations, etc.) are conducted prior to beginning the survey and also reviews data to identify areas that have been missed for which data quality falls below user designated parameters. Advanced digital signal processing algorithms are used to enhance the interpretation of spectra for conducting background subtractions and for mapping. Data from radiation detection instruments and GPS antennae are merged and made compatible with mapping using Geosoft Oasis montaj software. A summary of system performance during field-testing is included in the paper. This includes survey rate, detection limits, duty cycle, supporting ancillary equipment/material, and manpower requirements. The rate of false positives and false negatives is discussed with the benefits of surveys conducted using synergetic detection systems such as electromagnetic induction imaging. (authors)

  14. An integrated logit model for contamination event detection in water distribution systems.

    Science.gov (United States)

    Housh, Mashor; Ostfeld, Avi

    2015-05-15

    The problem of contamination event detection in water distribution systems has become one of the most challenging research topics in water distribution systems analysis. Current attempts for event detection utilize a variety of approaches including statistical, heuristics, machine learning, and optimization methods. Several existing event detection systems share a common feature in which alarms are obtained separately for each of the water quality indicators. Unifying those single alarms from different indicators is usually performed by means of simple heuristics. A salient feature of the current developed approach is using a statistically oriented model for discrete choice prediction which is estimated using the maximum likelihood method for integrating the single alarms. The discrete choice model is jointly calibrated with other components of the event detection system framework in a training data set using genetic algorithms. The fusing process of each indicator probabilities, which is left out of focus in many existing event detection system models, is confirmed to be a crucial part of the system which could be modelled by exploiting a discrete choice model for improving its performance. The developed methodology is tested on real water quality data, showing improved performances in decreasing the number of false positive alarms and in its ability to detect events with higher probabilities, compared to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    Science.gov (United States)

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  16. Hot air vapor extraction system for remediation of petroleum contaminated sites

    International Nuclear Information System (INIS)

    Pal, D.; Karr, L.; Fann, S.; Mathews, A.P.; Price, P.A.; Linginemi, S.

    1996-01-01

    This paper describes the results of a demonstration of a technology entitled ''Hot Air Vapor Extraction (HAVE)'' at the Hydrocarbon National Test Site (HNTS), Port Hueneme, California. The demonstration of the HAVE technology at HNTS was conducted over a 3-month period between August 21, 1995 and November 22, 1995 and the lessons learned from the demonstration are discussed in details to guide the Department of Defense decision makers in analyzing the applicability of this technology to their contaminated sites. This technology demonstration was conducted under the Department of Defense Strategic Environmental Research and Development Program (SERDP) as part of the National Environmental Technology Demonstration Program (NETDP). The primary objectives of the demonstration were to (1) validate the efficacy of the HAVE technology to treat a wide range of hydrocarbons contaminated soils, (2) gather data to estimate treatment costs, and (3) develop engineering guidance needed to apply this remediation technology DoD-wide. Test runs were made on 5 different treatment cells containing various fuel hydrocarbons, ranging from gasoline to heavier petroleum fractions such as lubricating oil. Computer modeling was conducted to analyze the test results and also to optimize the HAVE system design. An economic analysis conducted for various remediation project sizes ranging from 750 to 9,000 cubic yards, the per cubic yard treatment costs are found to vary from $64.05 down to $36.54 respectively

  17. Decontamination effects of a simulated contaminated floor surface by a teleoperated mopping system

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kwon, Hyok Jo; Park, Jang Jin; Yang, Myung Seung

    2004-01-01

    A Tele Operated Mopping System (TOMS) was developed for use in the radioactive zone of the M6 hot-cell of the Irradiated Material Examination Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). TOMS was designed to remove contaminated dry particulates, dust, and smears existing on the floor surface of the M6 hot-cell by mopping it in a remote manner. TOMS has three subsystems - a mobile mopping slave located inside the hot-cell, and a mopping master and a control console located outside the hot-cell. The mobile mopping slave consists of a tracked mobile platform, a mopping tool, and a wet mopping cloth, which were constructed in modules to facilitate a maintenance. This paper aims at describing the mopping capability of the developed TOMS - decontamination capability. In this work the decontamination capability is defined by the ratio of the removed contaminated area when the mopping cloth was passed over. The experiment was carried out by varying the speeds of the mopping slave and the roller, while the mopping force driven by the operator was constant. The roller of the mopping tool mounted on the mopping slave was designed to collect the mopping cloth used. The experimental results showed that the speeds of the mopping slave and the roller influence the extent of the decontamination

  18. Information Management System Supporting a Multiple Property Survey Program with Legacy Radioactive Contamination.

    Science.gov (United States)

    Stager, Ron; Chambers, Douglas; Wiatzka, Gerd; Dupre, Monica; Callough, Micah; Benson, John; Santiago, Erwin; van Veen, Walter

    2017-04-01

    The Port Hope Area Initiative is a project mandated and funded by the Government of Canada to remediate properties with legacy low-level radioactive waste contamination in the Town of Port Hope, Ontario. The management and use of large amounts of data from surveys of some 4800 properties is a significant task critical to the success of the project. A large amount of information is generated through the surveys, including scheduling individual field visits to the properties, capture of field data laboratory sample tracking, QA/QC, property report generation and project management reporting. Web-mapping tools were used to track and display temporal progress of various tasks and facilitated consideration of spatial associations of contamination levels. The IM system facilitated the management and integrity of the large amounts of information collected, evaluation of spatial associations, automated report reproduction and consistent application and traceable execution for this project.x. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Development and Testing of an Air Fluorescence Imaging System for the Detection of Radiological Contamination

    International Nuclear Information System (INIS)

    Inrig, Elizabeth; Koslowsky, Vern; Andrews, Bob; Dick, Michael; Forget, Patrick; Ing, Harry; Hugron, Roger; Wong, Larry

    2011-01-01

    Detection of radionuclides emitting short-range radiation, such as α and low-energy β particles, has always presented a challenge, particularly when such radionuclides are dispersed over a wide area. In this situation, conventional detection methods require the area of interest to be surveyed using a fragile probe at very close range--a slow, error-prone, and potentially dangerous process that may take many hours for a single room. The instrument under development uses a novel approach by imaging radiation-induced fluorescence in the air surrounding a contaminated area, rather than detecting the radiation directly. A robust and portable system has been designed and built that will allow contaminated areas to be rapidly detected and delineated. The detector incorporates position-sensitive photo-multiplier tubes, UV filters, a fast electronic shutter and an aspherical phase mask that significantly increases the depth-of-field. Preliminary tests have been conducted using sealed 241 Am sources of varying activities and surface areas. The details of the instrument design will be described and the results of recent testing will be presented.

  20. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    Science.gov (United States)

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  1. Geophysical Monitoring of Hydrocarbon-Contaminated Soils Remediated with a Bioelectrochemical System.

    Science.gov (United States)

    Mao, Deqiang; Lu, Lu; Revil, André; Zuo, Yi; Hinton, John; Ren, Zhiyong Jason

    2016-08-02

    Efficient noninvasive techniques are desired for monitoring the remediation process of contaminated soils. We applied the direct current resistivity technique to image conductivity changes in sandbox experiments where two sandy and clayey soils were initially contaminated with diesel hydrocarbon. The experiments were conducted over a 230 day period. The removal of hydrocarbon was enhanced by a bioelectrochemical system (BES) and the electrical potentials of the BES reactors were also monitored during the course of the experiment. We found that the variation in electrical conductivity shown in the tomograms correlate well with diesel removal from the sandy soil, but this is not the case with the clayey soil. The clayey soil is characterized by a larger specific surface area and therefore a larger surface conductivity. In sandy soil, the removal of the diesel and products from degradation leads to an increase in electrical conductivity during the first 69 days. This is expected since diesel is electrically insulating. For both soils, the activity of BES reactors is moderately imaged by the inverted conductivity tomogram of the reactor. An increase in current production by electrochemically active bacteria activity corresponds to an increase in conductivity of the reactor.

  2. Sensor-enabled chem/bio contamination detection system dedicated to situational awareness of water distribution security status

    Science.gov (United States)

    Ginsberg, Mark D.; Smith, Eddy D.; VanBlaricum, Vicki; Hock, Vincent F.; Kroll, Dan; Russell, Kevin J.

    2010-04-01

    Both real events and models have proven that drinking water systems are vulnerable to deliberate and/or accidental contamination. Additionally, homeland security initiatives and modeling efforts have determined that it is relatively easy to orchestrate the contamination of potable water supplies. Such contamination can be accomplished with classic and non-traditional chemical agents, toxic industrial chemicals (TICs), and/or toxic industrial materials (TIMs). Subsequent research and testing has developed a proven network for detection and response to these threats. The method uses offthe- shelf, broad-spectrum analytical instruments coupled with advanced interpretive algorithms. The system detects and characterizes any backflow events involving toxic contaminants by employing unique chemical signature (fingerprint) response data. This instrumentation has been certified by the Office of Homeland Security for detecting deliberate and/or accidental contamination of critical water infrastructure. The system involves integration of several mature technologies (sensors, SCADA, dynamic models, and the HACH HST Guardian Blue instrumentation) into a complete, real-time, management system that also can be used to address other water distribution concerns, such as corrosion. This paper summarizes the reasons and results for installing such a distribution-based detection and protection system.

  3. Remediation of uranium-contaminated soil using the Segmented Gate System and containerized vat leaching techniques: a cost effectiveness study

    International Nuclear Information System (INIS)

    Cummings, M.; Booth, S.R.

    1996-01-01

    Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. Until now, volume reduction of radioactively contaminated soil depended upon manual screening and analysis of samples, a costly and impractical approach, particularly with large volumes of heterogeneously contaminated soil. The baseline approach for the remediation of soils containing radioactive waste is excavation, pretreatment, containerization, and disposal at a federally permitted landfill. However, disposal of low-level radioactive waste is expensive and storage capacity is limited. ThermoNuclean's Segmented Gate System (SGS) removes only the radioactively contaminated soil, in turn greatly reducing the volume of soils that requires disposal. After processing using the SGS, the fraction of contaminated soil is processed using the containerized vat leaching (CVL) system developed at LANL. Uranium is leached out of the soil in solution. The uranium is recovered with an ion exchange resin, leaving only a small volume of liquid low-level waste requiring disposal. The reclaimed soil can be returned to its original location after treatment with CVL

  4. Computational Fluid Dynamics (CFD) Investigation of Submerged Combustion Behavior in a Tuyere Blown Slag-fuming Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, G. A.; Reuter, M. A.; Matusewicz, R. W.

    2012-10-01

    A thin-slice computational fluid dynamics (CFD) model of a conventional tuyere blown slag-fuming furnace has been developed in Eulerian multiphase flow approach by employing a three-dimensional (3-D) hybrid unstructured orthographic grid system. The model considers a thin slice of the conventional tuyere blown slag-fuming furnace to investigate details of fluid flow, submerged coal combustion dynamics, coal use behavior, jet penetration behavior, bath interaction conditions, and generation of turbulence in the bath. The model was developed by coupling the CFD with the kinetics equations developed by Richards et al. for a zinc-fuming furnace. The model integrates submerged coal combustion at the tuyere tip and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with several user-defined subroutines in FORTRAN programming language were used to develop the model. The model predicted the velocity, temperature field of the molten slag bath, generated turbulence and vortex, and coal use behavior from the slag bath. The tuyere jet penetration length ( l P) was compared with the equation provided by Hoefele and Brimacombe from isothermal experimental work ( {{l_{{P}} }/{d_{o }} = 10.7( {N^' }_{Fr} } )^{0.46} ( {ρ_{{g}} /ρl } )^{0.35} } ) and found 2.26 times higher, which can be attributed to coal combustion and gas expansion at a high temperature. The jet expansion angle measured for the slag system studied is 85 deg for the specific inlet conditions during the simulation time studied. The highest coal penetration distance was found to be l/L = 0.2, where l is the distance from the tuyere tip along the center line and L is the total length (2.44 m) of the modeled furnace. The model also predicted that 10 pct of the injected coal bypasses the tuyere gas stream uncombusted and carried to the free surface by the tuyere gas stream, which

  5. Method and system for gas flow mitigation of molecular contamination of optics

    Science.gov (United States)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco; Harb, Salam; Klebanoff, Lennie; Garcia, Rudy; Tahmassebpur, Mohammed; Scott, Sarah

    2018-01-23

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.

  6. Effect of Saliva Contamination on Microleakage Beneath Bonded Brackets: A Comparison between Two Moisture-Tolerant Bonding Systems

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Toodehzaeim

    2016-03-01

    Full Text Available Objectives: This study aimed to evaluate the effects of saliva contamination on the metallic bracket microleakage bonded with two moisture-tolerant bonding systems.Materials and Methods:  Ninety freshly extracted premolar teeth were randomly divided into six groups of 15 with the following treatments: G1 (control: After acid etching, Assure primer and Assure adhesive were applied to non-contaminated enamel surfaces. G2 (contaminated after etching: The etched enamel surface was exposed to saliva, then Assure primer and Assure adhesive were applied. G3 (contaminated after priming: Saliva contamination was done after application of Assure primer. The exact same procedures were applied to groups G4 to G6 except that TIMP primer and Transbond Plus adhesive system were used.  To measure the microleakage score, the teeth were stained with 2% methylene blue for 24 hours, sectioned and examined under a stereomicroscope at ×16 magnification. Data analysis was performed using Fisher’s exact test.Results: In dry conditions, Assure and TMIP were not significantly different in terms of microleakage scores.  All contaminated groups exhibited higher microleakage score at the enamel/adhesive interface compared to the bracket/adhesive interface (P< 0.01. In wet conditions, Assure groups showed higher microleakage at the enamel-adhesive interface compared to the TMIP groups (P<0.05. At the bracket-adhesive interface, the microleakage scores were not significantly different in saliva contaminated groups compared to the controls. Conclusion: Saliva contamination caused greater microleakage at the enamel-adhesive interface compared to the adhesive-bracket interface.Keywords: Orthodontic Brackets; Adhesives; Saliva

  7. The potential for health risks from intrusion of contaminants into the distribution system from pressure transients.

    Science.gov (United States)

    LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E

    2003-03-01

    The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.

  8. PRANA - Geoinformation decision support system for rehabilitation of radioactively contaminated territories

    International Nuclear Information System (INIS)

    Yatsalo, B.I.; Mirzeabassov, O.A.; Okhrimenko, I.V.; Pichugina, I.A.

    2002-01-01

    The Applied Geographic Information System (GIS) PRANA (1998), is a Decision Support System (DSS) for countermeasure analysis in agriculture in the long-term period of mitigation the consequences of a nuclear accident. This system has been introduced at the Chernobyl Department (Ministry of Agriculture) and at the Bryansk Centre of Agrochemical Radiology for practical needs as GIS-system for monitoring network support and analysis of countermeasure scenarios. Developed electronic maps, databases of attributive information, the main tasks of PRANA implementation for assessing contamination of agricultural production, doses to the local population, results and effectiveness of countermeasure implementation along with examples of model assessments are pointed out. The tasks on local and regional analysis of various aspects under consideration within the PRANA and methods of their realisation are considerable different from other works/systems in this field of R and D.This work has been carried out by a group of Russian scientists and EU/Norway collaborators within the ISTC project No. 1224. (author)

  9. System calibration for air control of radioactive gases [contamination control]; Kalibracija sistema za kontrolu vazduha na radioaktivne gasove

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Milosevic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    Testing of the system for air contamination control at the RA reactor was done and calibrated by Ar{sup 41}. This report contains the report on testing and calibration. This activity was necessary in order to achieve its performance with existing dosimetry system in the RA reactor building.

  10. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    International Nuclear Information System (INIS)

    Monte, L.; Haakanson, L.; Gallego Diaz, E.

    1999-01-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration [it

  11. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  12. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system. Final report

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-01-01

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE's need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer trademark system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer trademark development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer trademark system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer trademark and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer trademark system in Section 6

  13. 30 CFR 71.700 - Inhalation hazards; threshold limit values for gases, dust, fumes, mists, and vapors.

    Science.gov (United States)

    2010-07-01

    ... gases, dust, fumes, mists, and vapors. 71.700 Section 71.700 Mineral Resources MINE SAFETY AND HEALTH... limit values for gases, dust, fumes, mists, and vapors. (a) No operator of an underground coal mine and... limit values adopted by the American Conference of Governmental Industrial Hygienists in “Threshold...

  14. The use of modern on-site bioremediation systems to reduce crude oil contamination on oilfield properties

    International Nuclear Information System (INIS)

    Hildebrandt, W.W.; Wilson, S.B.

    1991-01-01

    Oil-field properties frequently have areas in which the soil has been degraded with crude oil. Soil contaminated in this manner is often considered either a hazardous waste or designated waste under regulatory guidelines. As a result, there is often concern about an owner's liabilities and the financial institution's liabilities whenever oilfield properties are transferred to new operators, abandoned, or converted to other uses such as real estate. There is also concern about the methods and relative costs to remediate soil which has been contaminated with crude oil. Modern, well-designed, soil bioremediation systems are cost effective for the treatment of crude oil contamination, and these systems can eliminate an owner's subsequent liabilities. Compared to traditional land-farming practices, a modern on-site bioremediation system (1) requires significantly less surface area, (2) results in lower operating costs, and (3) provides more expeditious results. Compared to excavation and off-site disposal of the contaminated soil, on-site bioremediation will eliminate subsequent liabilities and is typically more cost effective. Case studies indicate that o-site bioremediation systems have been successful at reducing the crude oil contamination in soil to levels which are acceptable to regulatory agencies in less than 10 weeks. Total costs for on-site bioremediation has ranged from $35 to $40 per cubic yard of treated soil, including excavation

  15. Thermogravimetric analyses and mineralogical study of polymer modified mortar with silica fume

    Directory of Open Access Journals (Sweden)

    Alessandra Etuko Feuzicana de Souza Almeida

    2006-09-01

    Full Text Available Mineral and organic additions are often used in mortars to improve their properties. Microstructural investigation concerning the effects of styrene acrylic polymer and silica fume on the mineralogical composition of high-early-strength portland cement pastes after 28 days of hydration are presented in this paper. Thermogravimetry and derivative thermogravimetry were used to study the interaction between polymers and cement, as well as the extent of pozzolanic reaction of the mortars with silica fume. Differential scanning calorimetry and X ray diffraction were used to investigate the cement hydration and the effect of the additions. The results showed that the addition of silica fume and polymer reduces the portlandite formation due to delaying of Portland cement hydration and pozzolanic reaction.

  16. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2016-04-01

    Full Text Available Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure.

  17. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    International Nuclear Information System (INIS)

    Mulac, W.A.; McCreary, J.R.; Schmalz, H.

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated

  18. Performance of Portland cement mixes containing silica fume and mixed with lime-water

    Directory of Open Access Journals (Sweden)

    Metwally A.A. Abd Elaty

    2014-12-01

    Test results show that using lime-water in mixing enhances consistency degree compared to the corresponding control mixes. Furthermore, it delays both initial and final setting times compared with traditional water due to the common ion effect principles. Moreover, combined use of lime-water and silica fume enhances the pozzolanic reaction that was identified by the strength development at both early and later ages. The existence of CH crystals for higher percentages of silica fume (up to 30% for further reaction at later ages was observed by XRD results. Moreover, combined use of silica fume and lime-water ensures a high alkaline media around steel bars from the moment of ingredients mixing as long as later ages despite of pozzolanic reaction that was identified from results of chloride attack.

  19. Assesment of systemic exposure form a wound contaminated by radioactive products

    International Nuclear Information System (INIS)

    Piechowski, Jean; Menoux, Bernadette; Chaptinel, Yves

    1992-03-01

    Wound contamination may occur in case of accidental exposure of workers handling radioactive products. In order to operate radio-toxicological follow-up, a fairly general model must be able to apply to the various injuries and products involved. Some principles and their applications are developed to make it possible for physicians to set up a monitoring program relevant to the assessment of the systemic burden. Only the dosimetry relative to the activity passing through the cutaneous mucous barrier into the blood flow is considered. Local doses at the wound level are not considered. For the interpretation of the measurements, both retention and excretion curves and dosimetric factors are given for the most common radionuclides. (authors) [fr

  20. Assessing the Vulnerability of Public-Supply Wells to Contamination: Floridan Aquifer System Near Tampa, Florida

    Science.gov (United States)

    Jagucki, Martha L.; Katz, Brian G.; Crandall, Christy A.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Temple Terrace, Florida, northeast of Tampa. The well selected for study typically produces water at the rate of 700 gallons per minute from the Upper Floridan aquifer. Water samples were collected at the public-supply well and at monitoring wells installed in or near the simulated zone of contribution to the supply well. Samples of untreated water from the public-supply wellhead contained the undesirable constituents nitrate, arsenic, uranium, radon-222, volatile organic compounds (VOCs), and pesticides, although all were detected at concentrations less than established drinking-water standards, where such standards exist. Overall, study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well in Temple Terrace: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) short-circuiting of contaminated water through sinkholes; (3) natural geochemical processes within the aquifer; and (4) pumping stress. Although the public-supply well is completed in the Upper Floridan aquifer, it produces water with concentrations of nitrate, VOCs, and the natural contaminant radon that are intermediate between the typical composition of water from the Upper Floridan aquifer and that of the overlying surficial aquifer system. Mixing calculations show that the water produced by the public-supply well could consist of upwards of 50 percent water from the surficial aquifer system mixed with water from the Upper Floridan aquifer. Anthropogenically affected water from the surficial aquifer system travels rapidly to depth through sinkholes that must be directly connected to the cavernous zone intersected by the public-supply well (and several other production wells in the region). Such solution features serve as fast pathways to the well and circumvent the natural attenuation of nitrate and

  1. Cardiointervalography investigation of the nervous system of children from the radionuclide contaminated districts

    International Nuclear Information System (INIS)

    Nedvetskaya, V.V.; Lyalikov, S.A.

    1994-01-01

    Using cardiointervalography the vegetative status of 177 children living in the supervised Belarus regions (more 15 Ci/km 2 of 137 Cs) and of 1291 children from the areas which are not contaminated with radionuclides is assessed. It is stated that the most characteristic peculiarity common for children living on supervised territories is an increase of the subcortical nervous centers activity, reinforcement of the central regulation stability, bettering of relations between the central and peripheral regulation profiles at rest and damage of these relations under physical load. Changes in the vegetative regulation developing in children from these districts are more pronounced in girls as compared to boys and are characterized by the nervous system sympathetic section tone decrease, by the liability to hyporeactivity accompanied by the parasympathetic section compensatory mechanisms tension. (author). 4 refs., 2 tabs

  2. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    Science.gov (United States)

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  3. An improved technique for the detection of pilot contamination attacks in TDD wireless communication systems

    Directory of Open Access Journals (Sweden)

    Mihaylova Dimitriya

    2017-01-01

    Full Text Available One of the problems phasing the physical layer security of a wireless system is its vulnerability to pilot contamination attacks and hence schemes for its detection need to be applied. A method proposed in the literature consists of training with two N-PSK pilots. Although the method is effective in most of the cases, it is not able to discover an attack initiated during the transmission of the second pilot from the pair if both the legitimate and non-legitimate pilots coincide. In this current paper, an improvement to this method is proposed which detects an intruder who misses the first pilot transmission. The suggested improvement eliminates the usage of threshold values in the detection – a main drawback of previously existing solution.

  4. An interdisciplinary approach for groundwater management in area contaminated by fluoride in East African Rift System

    Science.gov (United States)

    Da Pelo, Stefania; Melis, M. Teresa; Dessì, Francesco; Pistis, Marco; Funedda, Antonio; Oggiano, Giacomo; Carletti, Alberto; Soler Gil, Albert; Barbieri, Manuela; Pittalis, Daniele; Ghiglieri, Giorgio

    2017-04-01

    Groundwater is the main source of fresh water supply for most of the rural communities in Africa (approximately 75% of Africans has confidence in groundwater as their major source of drinking water). Many African countries has affected by high fluoride concentration in groundwater (up to 90 mg/L), generating the contamination of waters, soils and food, in particular in the eastern part of the continent. It seems that fluoride concentration is linked to geology of the Rift Valley: geogenic occurrence of fluoride is often connected to supergenic enrichment due to the weathering of alkaline volcanic rocks, fumaric gases and presence of thermal waters. The H2020 project FLOWERED (de-FLuoridation technologies for imprOving quality of WatEr and agRo-animal products along the East African Rift Valley in the context of aDaptation to climate change) wish to address environmental and health (human and animal) issues associated to the fluoride contamination in the African Rift Valley, in particular in three case study area located in Ethiopia, Tanzania and Kenya. FLOWERED aims to develop an integrated, sustainable and participative water and agriculture management at a cross-boundary catchment scale through a strong interdisciplinary research approach. It implies knowledge of geology, hydrogeology, mineralogy, geochemistry, agronomy, crop and animal sciences, engineering, technological sciences, data management and software design, economics and communication. The proposed approach is based on a detailed knowledge of the hydrogeological setting, with the identification and mapping of the specific geological conditions of water contamination and its relation with the different land uses. The East African Rift System (EARS) groundwater circulation and storage, today already poorly understood, is characterized by a complex arrangement of aquifers. It depends on the type of porosity and permeability created during and after the rock formation, and is strongly conditioned by the

  5. Space Shuttle Thermal Protection System Repair Flight Experiment Induced Contamination Impacts

    Science.gov (United States)

    Smith, Kendall A.; Soares, Carlos E.; Mikatarian, Ron; Schmidl, Danny; Campbell, Colin; Koontz, Steven; Engle, Michael; McCroskey, Doug; Garrett, Jeff

    2006-01-01

    NASA s activities to prepare for Flight LF1 (STS-114) included development of a method to repair the Thermal Protection System (TPS) of the Orbiter s leading edge should it be damaged during ascent by impacts from foam, ice, etc . Reinforced Carbon-Carbon (RCC) is used for the leading edge TPS. The repair material that was developed is named Non- Oxide Adhesive eXperimental (NOAX). NOAX is an uncured adhesive material that acts as an ablative repair material. NOAX completes curing during the Orbiter s descent. The Thermal Protection System (TPS) Detailed Test Objective 848 (DTO 848) performed on Flight LF1 (STS-114) characterized the working life, porosity void size in a micro-gravity environment, and the on-orbit performance of the repairs to pre-damaged samples. DTO 848 is also scheduled for Flight ULF1.1 (STS-121) for further characterization of NOAX on-orbit performance. Due to the high material outgassing rates of the NOAX material and concerns with contamination impacts to optically sensitive surfaces, ASTM E 1559 outgassing tests were performed to determine NOAX condensable outgassing rates as a function of time and temperature. Sensitive surfaces of concern include the Extravehicular Mobility Unit (EMU) visor, cameras, and other sensors in proximity to the experiment during the initial time after application. This paper discusses NOAX outgassing characteristics, how the amount of deposition on optically sensitive surfaces while the NOAX is being manipulated on the pre-damaged RCC samples was determined by analysis, and how flight rules were developed to protect those optically sensitive surfaces from excessive contamination where necessary.

  6. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  7. Experimental investigation on high performance RC column with manufactured sand and silica fume

    Science.gov (United States)

    Shanmuga Priya, T.

    2017-11-01

    In recent years, the use High Performance Concrete (HPC) has increased in construction industry. The ingredients of HPC depend on the availability and characteristics of suitable alternative materials. Those alternative materials are silica fume and manufactured sand, a by products from ferro silicon and quarry industries respectively. HPC made with silica fume as partial replacement of cement and manufactured sand as replacement of natural sand is considered as sustainable high performance concrete. In this present study the concrete was designed to get target strength of 60 MPa as per guide lines given by ACI 211- 4R (2008). The laboratory study was carried out experimentally to analyse the axial behavior of reinforced cement HPC column of size 100×100×1000mm and square in cross section. 10% of silica fume was preferred over ordinary portland cement. The natural sand was replaced by 0, 20, 40, 60, 80 and 100% with Manufactured Sand (M-Sand). In this investigation, totally 6 column specimens were cast for mixes M1 to M6 and were tested in 1000kN loading frame at 28 days. From this, Load-Mid height deflection curves were drawn and compared. Maximum ultimate load carrying capacity and the least deflection is obtained for the mix prepared by partial replacement of cement with 10% silica fume & natural sand by 100% M-Sand. The fine, amorphous and pozzalonic nature of silica fume and fine mineral particles in M- Sand increased the stiffness of HPC column. The test results revealed that HPC can be produced by using M-Sand with silica fume.

  8. Stabilization of heavy metals in MSWI fly ash using silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinying; Chen, Quanyuan [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620 (China); Zhou, Yasu [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Tyrer, Mark [Mineral Industry Research Organisation, Solihull B37 7HB (United Kingdom); Yu, Yang [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  9. INFLUENCE OF SUBSTITUTION OF ORDINARY PORTLAND CEMENT BY SILICA FUME ON THE HYDRATION OF SLAG-PORTLAND CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    E.A. El-Alfi

    2011-06-01

    Full Text Available Effect of gradual substitution of ordinary Portland cement by a few percent of silica fume (0.0, 2.5, 5.0 and 7.5 wt.% on the hydration properties of slag-Portland cement pastes up to 12 months was investigated. The results show that the composite cement pastes containing silica fume give the higher physico-mechanical properties than that of the slag-Portland cement. Also, the XRD results reveal that the peak of Ca(OH2 shows higher intensity in the sample without silica fume and completely disappears in the sample containing 7.5 wt.% silica fume content. Also, the intensity peaks of C4AH13 sharply increase with silica fume content.

  10. A System Dynamics Approach for the Selection of Contaminated Land Management Options

    Science.gov (United States)

    McKnight, U. S.; Kuebert, M.; Finkel, M.; Bieg, M.

    2006-12-01

    Large-scale contaminated land and groundwater is a widespread problem that can severely impact human health, the environment and the economy at many urban sites all over the world. Usually a considerable number of potential management solutions exist at each of these sites. A detailed investigation of all these options, however, is not economically feasible which makes streamlining of the planning and decision process a mandatory requirement. Decisions to be taken should be made as early as possible in order to reduce expenditures on site investigation. Therefore, a tiered decision-making procedure is required, including (i) identification and prioritization of focal areas of risks, (ii) feasibility screening of remediation targets and available management alternatives to narrow the range of possible options for (iii) subsequent detailed investigations of only a select group of preferable options. For each of these elements, tailored decision and investigation concepts are required. These concepts and applied methods should be specifically adapted to the type and scale of the particular decision to be taken- more target-oriented, cost-efficient investigation programs, as well as model-based assessment methods are needed (Ruegner et al. 2006). A gap exists within this framework with respect to preliminary assessment methodologies representing the first decision level. To fill this gap, a new system dynamics approach has been developed that represents the system of source- pathway-receptor sequences by means of a mass flux model. The dynamics are governed by the effects of possible remedial actions, which are described as mass flux change over time (Serapiglia et al. 2005). This approach has been implemented in the preliminary evaluation tool CARO-plus (Cost-efficiency Assessment of Remediation Options) that models the effects of potential remedial actions, including tackling the contaminant source and managing the groundwater plume. The model represents the causal

  11. Water and saliva contamination effect on shear bond strength of brackets bonded with a moisture-tolerant light cure system.

    Science.gov (United States)

    Vicente, Ascensión; Mena, Ana; Ortiz, Antonio José; Bravo, Luis Alberto

    2009-01-01

    To evaluate the effects of water and saliva contamination on shear bond strength of brackets bonded with a moisture-tolerant light cure system. Brackets were bonded to 240 bovine lower incisors divided into 12 groups. Four bonding procedures were evaluated, including (1) TSEP/Transbond XT, (2) TMIP/ Transbond XT, (3) TSEP/Transbond PLUS, and (4) TMIP/Transbond PLUS, each under three different bonding conditions: without contamination, with water contamination, and with saliva contamination. Shear bond strength was measured with a universal testing machine. The adhesive remnant on the teeth was quantified with the use of image analyzing equipment. Without contamination, bond strengths for the four procedures were similar (P > .05). TSEP/Tranbond PLUS and TMIP/Transbond PLUS left significantly less adhesive on the teeth after debonding than TSEP/Transbond XT and TMIP/Transbond XT (P .017), although for TMIP/ Transbond XT, both variables showed significant reductions after contamination (P < .017). TSEP/Transbond PLUS, TMIP/Transbond PLUS, and TSEP/Transbond XT showed greater tolerance to wet conditions than was shown by TMIP/Transbond XT.

  12. The Relationship of Welding Fume Exposure, Smoking, and Pulmonary Function in Welders.

    Science.gov (United States)

    Roach, Laura L

    2018-01-01

    The purpose of this study was to explore the relationship between occupational exposure to welding fumes and pulmonary function in an effort to add supportive evidence and clarity to the current body of research. This study utilized a retrospective chart review of pulmonary function testing and pulmonary questionnaires already available in charts from preplacement physicals to the most recent test. When comparing smokers to nonsmokers, utilizing multiple regression and controlling for age and percentage of time using a respirator, years welding was statistically significant at p = .04. Data support that smoking has a synergistic effect when combined with welding fume exposure on pulmonary decline.

  13. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  14. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  15. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  16. Corrosion resistance of nickel alloys with chromium and silicon to the red fuming nitric acid

    International Nuclear Information System (INIS)

    Gurvich, L.Ya.; Zhirnov, A.D.

    1994-01-01

    Corrosion and electrochemical behaviour of binary Ni-Cr, Ni-Si nickel and ternary Ni-Cr-Si alloys in the red fuming nitric acid (RFNA) (8-% of HNO 3 +20% of N 2 O 4 ) is studied. It is shown that nickel alloying with chromium improves its corrosion resistance to the red fuming nitric acid. Nickel alloying with silicon in quantities of up to 5 % reduces, and up to 10%-increases abruptly the corrosion resistance with subsequent decrease of the latter after the further increase of concentration. Ni-15% of Cr alloy alloying with silicon increases monotonously the corrosion resistance. 10 refs., 7 figs., 3 tabs

  17. SU-E-T-20: Removal of Electron Contamination in Longitudinal Field MRI-Linac Systems: A Monte Carlo Study.

    Science.gov (United States)

    Oborn, B M; Metcalfe, P; Butson, M; Crozier, S; Keall, P

    2012-06-01

    The prototype inline MRI-linac system has some advantages over perpendicular models including avoiding the electron return effect. One of the disadvantages of the inline approach is the increased skin dose, estimated to be 400-1000% of the dmax dose. The purpose of this work was to design a feasible method to reduce this skin dose to acceptable levels. Magnetic modeling of proposed MRI-linac designs have been simulated with the inclusion of an optimized permanent magnet system to purge/deflect the electron contamination. The region of air above the phantom was also replaced with a helium bag (region of helium gas) and a beam scrapper below the deflector was added to collect deflected off-axis contamination. Monte Carlo simulations were then performed including the accurate 3D magnetic field maps. Surface dosimetry was recorded to verify the changes to the skin doses. Magnetic modelling showed that an optimized NdFeB permanent magnet system located outside the MRI coils (below the MLC's) can provide a strong enough region to purge/deflect a significant portion of the electron contamination from the x-ray beam. The impact on the MRI uniformity is around 100 ppm and hence is correctable via active/passive shimming of the MRI. The helium region also significantly limits the production of contamination traveling towards the phantom surface. Entry doses near CAX are predicted to be similar to the 0 T case. Magnetic and Monte Carlo modeling were performed to estimate the effect that a permanent magnet purging system, beam scrapper, and helium bag would have on lowering the skin doses in an inline MRI-Linac system. MRI non-uniformities introduced by the deflector could be corrected, contamination is mostly purged or blocked, and the helium bag minimizes air-generated contamination. As a result skin doses are comparable to having zero magnetic field. © 2012 American Association of Physicists in Medicine.

  18. Radionuclide activity and the immune system functioning in residents of radiation contaminated areas

    Directory of Open Access Journals (Sweden)

    V. L. Sokolenko

    2015-09-01

    Full Text Available The objective of this research is to assess the relation of radioactive contamination degree to immune system functioning, in the absence or presence of additional potential immunosuppressants. To achieve the objective, during the period of 1995–2015 we examined 250 people, students of Cherkasy State University, who lived in the areas of enhanced radiation monitoring before. Also we evaluated the additional impact of the emotional stress caused by examinations on examined students. Indicators of cellular immunity were determined by immunophenotyping and dyeing using Romanowsky-Giemsa method. The level of immunoglobulins in blood serum was determined by radial immunodiffusion (Mancini method. The level of cortisol in blood serum was determined by immunoenzyme method. We have found that in absence of the emotional stress among residents of the areas contaminated with radionuclides, cortisol level remained at the upper limit of homeostatic norm. There is an average positive correlation between the activity of radionuclides in the territories of residence and the level of cortisol. There are marked average positive correlations between the activity of radionuclides and the level of neutrophils, and low positive correlations with the levels of IgG and IgM in blood serum. Average negative correlations between the activity of radionuclides and the following parameters are also observed: absolute and relative number of functionally mature T-lymphocytes with phenotype CD3+, absolute and relative number of their helper subpopulation CD4+, absolute and relative number of natural killer cells with phenotype CD16+; and strong negative correlations with immunoregulatory index CD4+/CD8+. Cortisol level shows the similar correlation with the same parameters, but correlation coefficient is lower. Under conditions of additional stress, caused by emotional load during the examinations, cortisol level significantly increases. This enhanced previously discovered

  19. Study on properties of mortar using silica fume and ground blast furnace slag. Silica fume oyobi koro slag funmatsu wo mochiita mortar no tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shiiba, H; Honda, S; Araki, A [Fukuoka University, Fukuoka (Japan). Faculty of Engineering

    1992-09-01

    The effect of silica fume and ground blast furnace slag in concrete on the content of superplasticizer, and dynamic properties of hardened mortar with such admixtures were studied experimentally. Although the dependence of a flow value on the superplasticizer was dominated by kinds of superplasticizers, blast furnace slag enhanced the flow value resulting in a high fluidity. Adsorption of superplasticizers onto admixtures was dependent on kinds of superplasticizers, and adsorption onto blast furnace slag was 1.3-2 times that onto normal Portland cement (NPC). The compressive strength of mortar increased by mixing admixtures, while the bending strength was enhanced only by mixing silica fume. Mixing mortar was lower in dynamic elastic modulus than NPC mortar at the same compressive strength, and the velocity of supersonic wave in mortar was scarcely affected by mixing. 11 refs., 14 figs., 3 tabs.

  20. A new pumping strategy for petroleum product recovery from contaminated hydrogeologic systems: Laboratory and field evaluations

    International Nuclear Information System (INIS)

    Abdul, A.S.

    1992-01-01

    More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft 2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented (1) the oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) the rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100% of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site

  1. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    International Nuclear Information System (INIS)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H.; Ren, Zhiyong Jason

    2014-01-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m 2 . The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures

  2. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu; Yazdi, Hadi [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY (United States); Zuo, Yi [Chevron Energy Technology Company, San Ramon, CA (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO (United States); Department of Civil Engineering, University of Colorado Denver, Denver, CO (United States)

    2014-06-01

    Highlights: • Pilot bioelectrochemical system showed high-performance hydrocarbon remediation. • Radius of influence characterization demonstrated system efficacy. • Current serves as degradation indicator. - Abstract: Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1–89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1–34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m{sup 2}. The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11–12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures.

  3. Measurement of contaminant removal from skin using a portable fluorescence scanning system

    International Nuclear Information System (INIS)

    Hession, Helena; Byrne, Miriam; Cleary, S.; Andersson, K.G.; Roed, J.

    2006-01-01

    The residence time of particulate contamination on the human body is a factor that has an important impact on the accuracy of exposure assessment in the aftermath of an accidental release of radionuclides to the atmosphere. Measurements of particle clearance from human skin were made using an illumination system to excite fluorescence in labelled silica particles and a CCD camera and image processing system to detect this fluorescence. The illumination system consists of high-intensity light emitting diodes (LEDS) of suitable wavelengths arranged on a portable stand. The physically small size of the LEDs allows them to be positioned close to the fluorescing surface, thus maximising the fluorescent signal that can be obtained. The limit of detection was found to be 50 μg of tracer particle per cm 2 . Experiments were carried out to determine the clearance rates of 10 μm and 3 μm particles from the skin. Results show that, in the absence of any mechanical rubbing of the skin, the clearance of particles from the skin followed an approximately exponential decay with a half-time of 1.5-7.8 h. Skin hairiness and degree of human movement were found, in addition to particle size, to have an important influence on particle fall-off rate

  4. Multicenter evaluation of a new closed system drug-transfer device in reducing surface contamination by antineoplastic hazardous drugs.

    Science.gov (United States)

    Bartel, Sylvia B; Tyler, Timothy G; Power, Luci A

    2018-02-15

    Results of a study to evaluate the effectiveness of a recently introduced closed system drug-transfer device (CSTD) in reducing surface contamination during compounding and simulated administration of antineoplastic hazardous drugs (AHDs) are reported. Wipe samples were collected from 6 predetermined surfaces in compounding and infusion areas of 13 U.S. cancer centers to establish preexisting levels of surface contamination by 2 marker AHDs (cyclophosphamide and fluorouracil). Stainless steel templates were placed over the 6 previously sampled surfaces, and the marker drugs were compounded and infused per a specific protocol using all components of the CSTD. Wipe samples were collected from the templates after completion of tasks and analyzed for both marker AHDs. Aggregated results of wipe sampling to detect preexisting contamination at the 13 study sites showed that overall, 66.7% of samples (104 of 156) had detectable levels of at least 1 marker AHD; subsequent testing after CSTD use per protocol found a sample contamination rate of 5.8% (9 of 156 samples). In the administration areas alone, the rate of preexisting contamination was 78% (61 of 78 samples); with use of the CSTD protocol, the contamination rate was 2.6%. Twenty-six participants rated the CSTD for ease of use, with 100% indicating that they were satisfied or extremely satisfied. A study involving a rigorous protocol and 13 cancer centers across the United States demonstrated that the CSTD reduced surface contamination by cyclophosphamide and fluorouracil during compounding and simulated administration. Participants reported that the CSTD was easy to use. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. The effect of a loss of model structural detail due to network skeletonization on contamination warning system design: case studies

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert

    2018-05-01

    The effect of limitations in the structural detail available in a network model on contamination warning system (CWS) design was examined in case studies using the original and skeletonized network models for two water distribution systems (WDSs). The skeletonized models were used as proxies for incomplete network models. CWS designs were developed by optimizing sensor placements for worst-case and mean-case contamination events. Designs developed using the skeletonized network models were transplanted into the original network model for evaluation. CWS performance was defined as the number of people who ingest more than some quantity of a contaminant in tap water before the CWS detects the presence of contamination. Lack of structural detail in a network model can result in CWS designs that (1) provide considerably less protection against worst-case contamination events than that obtained when a more complete network model is available and (2) yield substantial underestimates of the consequences associated with a contamination event. Nevertheless, CWSs developed using skeletonized network models can provide useful reductions in consequences for contaminants whose effects are not localized near the injection location. Mean-case designs can yield worst-case performances similar to those for worst-case designs when there is uncertainty in the network model. Improvements in network models for WDSs have the potential to yield significant improvements in CWS designs as well as more realistic evaluations of those designs. Although such improvements would be expected to yield improved CWS performance, the expected improvements in CWS performance have not been quantified previously. The results presented here should be useful to those responsible for the design or implementation of CWSs, particularly managers and engineers in water utilities, and encourage the development of improved network models.

  6. Effects of asphalt fume condensate exposure on acute pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.Y.C.; Barger, M.W.; Castranova, V. [Health Effects Lab. Div., National Inst. for Occupational Safety and Health, Morgantown, WV (United States); Kriech, A.J. [Heritage Research Group, Indianapolis, IN (United States)

    2000-10-01

    The present study was carried out to characterize the effects of in vitro exposure to paving asphalt fume condensate (AFC) on alveolar macrophage (AM) functions and to monitor acute pulmonary responses to in vivo AFC exposure in rats. Methods: For in vitro studies, rat primary AM cultures were incubated with various concentrations of AFC for 24 h at 37 C. AM-conditioned medium was collected and assayed for lactate dehydrogenase (LDH) as a marker of cytotoxicity. Tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-1 (IL-1) production were assayed in AM-conditioned medium to monitor AM function. The effect of AFC on chemiluminescence (CL) generated by resting AM or AM in response to zymosan or PMA stimulation was also determined as a marker of AM activity. For in vivo studies, rats received either (1) a single intratracheal (IT) instillation of saline, or 0.1 mg or 0.5 mg AFC and were killed 1 or 3 days later; or (2) IT instillation of saline, or 0.1, 0.5, or 2 mg AFC for three consecutive days and were killed the following day. Differential counts of cells harvested by bronchoalveolar lavage were measured to monitor inflammation. Acellular LDH and protein content in the first lavage fluid were measured to monitor damage. CL generation, TNF-{alpha} and IL-1 production by AM were assayed to monitor AM function. Results: In vitro AFC exposure at <200 {mu}g/ml did not induce cytotoxicity, oxidant generation, or IL-1 production by AM, but it did cause a small but significant increase in TNF-{alpha} release from AM. In vitro exposure of AM to AFC resulted in a significant decline of CL in response to zymosan or PMA stimulation. The in vivo studies showed that AFC exposure did not induce significant neutrophil infiltration or alter LDH or protein content in acellular lavage samples. Macrophages obtained from AFC-exposed rats did not show significant differences in oxidant production or cytokine secretion at rest or in response to LPS in comparison with control

  7. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    Science.gov (United States)

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  8. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    Science.gov (United States)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data

  9. Development of Triad approach based system for ecological risk assessment for contaminated areas of Kyrgyzstan

    Science.gov (United States)

    Kydralieva, Kamilia; Uzbekov, Beksultan; Khudaibergenova, Bermet; Terekhova, Vera; Jorobekova, Sharipa

    2014-05-01

    This research is aimed to develop a high-effective system of an ecological risk assessment and risk-based decision making for anthropogenic ecosystems, with particular focus on the soils of the Kyrgyz Republic. The study is focused on the integration of Triad data including chemical, biological and ecotoxicological soil markers to estimate the potential risk from soils of highly anthropized areas impacted by deposition of different pollutants from mining operation. We focus on technogenic areas of Kyrgyzstan, the former uranium-producing province. Triad-based ecological risk assessment for technogenic sites are not currently used in Kyrgyzstan. However, the vitality of such research is self-evident. There are about 50 tailing dumps and more than 80 tips of radioactive waste which are formed as a result of uranium and complex ores (mercury, antimony, lead, cadmium and etc) mining around the unfavorable aforementioned places. According to the Mining Wastes' Tailings and Fills Rehabilitation Centre established in 1999 by a special Government's Resolution, one of the most ecologically dangerous uranium tailings resides in Kadzhi-Say. Although uranium processing is no longer practiced in Kadzhi-Say, a large number of open landfills and uranium ore storages still remain abandoned at the vicinity of this settlement. These neglected sites have enormous problems associated with soil erosion known as "technogenic deserts". The upper soil horizons are deprived of humus and vegetation, which favor the formation of low-buffer landscapes in the zones of maximum contamination. As a result, most of these areas are not re-cultivated and remain in critical environmental condition (Bykovchenko, et al., 2005; Tukhvatshin, 2005; Suranova, 2006). Triad data for assessing environmental risk and biological vulnerability at contaminated sites will be integrated. The following Triad-based parameters will be employed: 1) chemical soil analyses (revealing the presence of potentially dangerous

  10. Dietary intake of food contaminants in the Netherlands (Dutch Nutrition Surveillance System)

    NARCIS (Netherlands)

    Brussaard, J.H.; Dokkum, W. van; Paauw, C.G. van der; Vos, R.H. de; Kort, W.L.A.M. de; Löwik, M.R.H.

    1996-01-01

    To assess the level of exposure to food contaminants (cadmium, lead, PCBs, DDT, hexachlorobenzene, nitrate and malathion) a total-diet study was carried out. A total of 226 food products were analysed individually; the concentration of contaminants in products not selected for analysis was estimated

  11. Predicting the Spatial Distribution of Organic Contaminants in an Estuarine System using a Random Forest Approach

    Science.gov (United States)

    Modeling the magnitude and distribution of estuarine sediment contamination by pollutants of historic (e.g. PCB) and emerging concern (e.g., personal care products, PCP) is often limited by incomplete site knowledge and inadequate sediment contamination sampling. We tested a mode...

  12. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  13. Investigation of radiation safety management at nuclear medicine facilities in Japan. Contamination of radioactivity in the draining-water system

    International Nuclear Information System (INIS)

    Endo, Keigo; Koizumi, Mitsuru; Kinoshita, Fujimi; Nakazawa, Keiji

    1999-01-01

    Radiation-safety management condition in Japanese nuclear medicine facilities were investigated by the questionnaire method. The first questionnaire was asked in all Japanese 1,401 Nuclear Medicine facilities. Answers from 624 institutes (44.5%) were received and analyzed. The radiation-safety management in nuclear medicine institutes was considered to be very well performed everyday. Opinion for the present legal control of nuclear medicine institutes was that the regulation in Japan was too strict for the clinical use of radionuclides. The current regulation is based on the assumption that 1% of all radioactivity used in nuclear medicine institutes contaminates into the draining-water system. The second questionnaire detailing the contamination of radioactivity in the draining-water system was sent to 128 institutes, and 64 answers were received. Of them, 42 institutes were considered to be enough to evaluate the contamination of radioactivity in the draining-water system. There was no difference between 624 institutes answered to the first questionnaire and 42 institutes, where the radioactivity in the draining-water system measured, in the distribution of the institute size, draining-water system equipment and the radioactivity measuring method, and these 42 institutes seemed to be representative of Japanese nuclear medicine institutes. Contamination rate of radioactivity into the draining system was calculated by the value of radioactivity in the collecting tank divided by the amount of radionuclides used daily in each institute. The institutes were divided into two categories on the basis of nuclear medicine practice pattern; type A: in-vivo use only and type B: both in-vivo and in-vitro use. The contamination rate in 27 type A institutes did not exceed 0.01%, whereas in 15 type B institutes the contamination rate distributed widely from undetectable to above 1%. These results indicated that the present regulation for the draining-water system, which assumed

  14. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    International Nuclear Information System (INIS)

    Chambon, Frederic; CIZEL, Jean-Pierre; Blanchard, Samuel

    2013-01-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  15. Use of a commercial ranging system in field surveys of radioactively contaminated sites

    International Nuclear Information System (INIS)

    Worth, G.M.; Crowell, J.M.; Meddles, A.D.; Jarrett, J.D.; Wolf, M.A.; Umbarger, C.J.; Moyer, C.

    1984-01-01

    Now, the adaptation of a commercial ranging and tracking system interfaced to these instruments and to an advanced computer graphics system promises another major improvement to the automation of data collection. Contour maps with radiation isopleths and the x-y position of up to eight instrument operators superimposed thereon can be displayed in near real time. A bidirectional data link offers a further improvement in simulation of, and training for, field surveys since previously collected or computer simulated radiation data as a function of position can be transmitted back to the same survey instrument and displayed to the operator in a manner indistinguishable from real-time data. Additionally, simulated instrument malfunctions such as low battery, detector failure, or total failure can be commanded to occur to evaluate operator response to unusual occurrences under the stress of field conditions. This training mode will greatly improve the ability to simulate situations and to train and evaluate operations personnel while eliminating the need to use special sites and potentially hazardous contamination simulants as are used now

  16. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    Science.gov (United States)

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  17. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)

    2013-07-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  18. An integrated remediation system using synthetic and natural zeolites for treatment of wastewater and contaminated sediments

    International Nuclear Information System (INIS)

    Rios Reyes, Carlos; Appasamy, Danen; Clive, Roberts

    2011-01-01

    The major sources of water pollution can be classified as municipal, industrial, and agricultural. Different types of polluted aqueous effluents and sediments may be produced, which contain relatively high levels of heavy metals. During the 1990s, the large-scale development of constructed wetlands around the world drew much attention from public and environmental groups. The present study looks at the use of an integrated remediation system using zeolites for the treatment of wastewater and sediments. Zeolites have been widely studied in the past 10 years due to their attractive properties such as molecular-sieving, high cation exchange capacities, and their affinity for heavy metals. Coal industry by-products-based zeolites (faujasite type) have been tested as an effective and low-cost novel alternative for wastewater treatment, particularly their removing of heavy metals. On the other hand, a preliminary laboratory-scale experiment was conducted on the use of natural zeolites (clinoptilolite type) for the retention of heavy metals from canal sediments. Experimental work revealed promising results, which could be replicated on a bigger scale. Although this has been developed for canal sediments, the remediation strategy can be adapted to different waterways such as rivers. The development of the proposed remediation system in a specific experimental site as the major part of an innovation park can provide great benefits to a population living near contaminated effluents. It provides not only opportunities for the mitigation of environmental impact, improving water quality and landscape amenity, but also allows for several recreational opportunities

  19. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.M.; Huang, X.D.; Gurska, Y.; Gerhardt, K.E.; Wang, W.; Lampi, M.A.; Zhang, C.; Khalid, A.; Isherwood, D.; Chang, P.; Wang, H.; Dixon, D.G.; Glick, B.R. [Waterloo Univ., ON (Canada)

    2006-07-01

    A large number of aquatic and terrestrial environments are polluted with various levels of toxicants. Metals, organics and total petroleum hydrocarbons from anthropogenic sources pose a risk to both human health and the health of ecosystems. Although these persistent contaminants are difficult to remediate, several industrial sites throughout North America are being remediated as part of land reclamation and restoration programs. This paper addressed the issue of phytoremediation for removing contaminants from soils. Phytoremediation is considered to be a viable remediation strategy because the increased biomass of plants, relative to the biomass of soil microbes in the absence of plants, allows for higher throughput. Extensive root systems can infiltrate large volumes of soil, thus promoting degradation of contaminants over a wide area. This paper described a newly developed multi-process phytoremediation system with accelerated remediation kinetics to effectively remove polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH) and chlorinated hydrocarbons (CHC) from soils. The system combines land farming/sunlight exposure; inoculation of contaminant degrading bacteria; and, plant growth with plant growth promoting rhizobacteria which mitigates the effects of stress ethylene in plants. The primary factor for success was the interaction between the plant and the plant growth promoting rhizobacteria. Several field tests were conducted following successful greenhouse tests. Results at a TPH contaminated site in Sarnia, Ontario showed that over a 2 year period, 60 to 70 per cent remediation of 15 per cent TPH was achieved. At a site in Turner Valley, Alberta, 35 per cent remediation of 1 per cent recalcitrant TPH was achieved, while a DDT contaminated site near Simcoe, Ontario had nearly 30 per cent of CHC removed in a 3 month period. 34 refs., 2 tabs., 2 figs.

  20. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Huang, X.D.; Gurska, Y.; Gerhardt, K.E.; Wang, W.; Lampi, M.A.; Zhang, C.; Khalid, A.; Isherwood, D.; Chang, P.; Wang, H.; Dixon, D.G.; Glick, B.R.

    2006-01-01

    A large number of aquatic and terrestrial environments are polluted with various levels of toxicants. Metals, organics and total petroleum hydrocarbons from anthropogenic sources pose a risk to both human health and the health of ecosystems. Although these persistent contaminants are difficult to remediate, several industrial sites throughout North America are being remediated as part of land reclamation and restoration programs. This paper addressed the issue of phytoremediation for removing contaminants from soils. Phytoremediation is considered to be a viable remediation strategy because the increased biomass of plants, relative to the biomass of soil microbes in the absence of plants, allows for higher throughput. Extensive root systems can infiltrate large volumes of soil, thus promoting degradation of contaminants over a wide area. This paper described a newly developed multi-process phytoremediation system with accelerated remediation kinetics to effectively remove polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH) and chlorinated hydrocarbons (CHC) from soils. The system combines land farming/sunlight exposure; inoculation of contaminant degrading bacteria; and, plant growth with plant growth promoting rhizobacteria which mitigates the effects of stress ethylene in plants. The primary factor for success was the interaction between the plant and the plant growth promoting rhizobacteria. Several field tests were conducted following successful greenhouse tests. Results at a TPH contaminated site in Sarnia, Ontario showed that over a 2 year period, 60 to 70 per cent remediation of 15 per cent TPH was achieved. At a site in Turner Valley, Alberta, 35 per cent remediation of 1 per cent recalcitrant TPH was achieved, while a DDT contaminated site near Simcoe, Ontario had nearly 30 per cent of CHC removed in a 3 month period. 34 refs., 2 tabs., 2 figs

  1. ADAPTIVE MONITORING TO ENHANCE WATER SENSOR CAPABILITIES FOR CHEMICAL AND BIOLOGICAL CONTAMINANT DETECTION IN DRINKING WATER SYSTEMS

    Science.gov (United States)

    Optoelectronic and other conventional water quality sensors offer a potential for real-time online detection of chemical and biological contaminants in a drinking water supply and distribution system. The nature of the application requires sensors of detection capabilities at lo...

  2. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    Science.gov (United States)

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Effect of Silica fume and superplasticizer on steel-concrete bond

    International Nuclear Information System (INIS)

    Esfahani, M. R.

    2001-01-01

    This paper presents a study on the influence of silica fume and super plasticizer on bond strength. The study included tests of fifty short length pull-out specimens in five series. The effect of silica fume and super plasticizer on bond strength was evaluated separately by tests of specimens made of concretes with similar strengths but different admixtures. Test results showed that the addition of silica fume in the concrete mixture had not a negative effect on bond strength. Also, there was not a considerable decrease in bond strength of specimens made of concrete with super plasticizer. Comparing the measured bond strengths normalized with respect to the square root of the concrete compressive strength, it was seen that the normalized bond strength increased with the concrete strength. this result agrees with the model previously proposed by the author for local bond strength. For the specimens made of high strength concrete including silica fume and super plasticizer, the normalized bond strength did not increase with the concrete strength

  4. Effect of temperature on physical and mechanical properties of concrete containing silica fume

    International Nuclear Information System (INIS)

    Saad, M.; Hanna, G.B.; Abo-El-Enein, S.A.; Kotkata, M.F.

    1996-01-01

    Heat-resistant materials are usually used for structural purposes. The need for such building materials is particularly important in the chemical and metallurgical industries and for the thermal shieldings of nuclear power plants. Thus the effect of high temperatures on physical and mechanical properties of concrete was investigated. In this study ordinary Portland cement has been partially replaced by ratios of silica fume. The heat treatment temperature varied from 100 to 600 C by increments of 100 C for three hours without any load. Concrete specimens were treated at each temperature level. The specimens were heated under the same condition for each temperature level. Comparison between physical and mechanical properties during heat treatment were investigated. All specimens were moist-cured for 28 days after casting. Tests were carried out on specimens cooled slowly to room temperature after heating. Results of this investigation indicated that the replacement of ordinary Portland cement by 10% silica fume by weight improved the compressive strength by about 64.6%, but replacement of ordinary Portland cement by silica fume by ratios 20 and 30% improved the compressive strength by only 28% at 600 C. This could be attributed to the additional tobermorite gel (CSH phase) which formed due to the reaction of silica fume with Ca(OH) 2

  5. Effect Of Inhalation Exposure To Kerosene And Petrol-Fumes On ...

    African Journals Online (AJOL)

    Changes in total body weight, some anaemia-diagnostic indices (haematocrit or packed cell volume (PCV), haemoglobin (Hb) and total serum protein) were determined in rats (Wistar albino strain) after 2 weeks of 4 hours daily inhalation exposure to ungraded concentrations of kerosene and petrol fumes. The results ...

  6. Occupational exposure to solvents, metals and welding fumes and risk of Parkinson's disease

    NARCIS (Netherlands)

    van der Mark, Marianne; Vermeulen, Roel; Nijssen, Peter C G; Mulleners, Wim M; Sas, Antonetta M G; van Laar, Teus; Huss, Anke; Kromhout, Hans

    OBJECTIVES: The aim of this study was to investigate the potential association between occupational exposure to solvents, metals and/or welding fumes and risk of developing Parkinson's disease (PD). METHODS: Data of a hospital based case-control study including 444 PD patients and 876 age and sex

  7. Exposure of welders to fumes, Cr, Ni, Cu and gases in Dutch industries

    NARCIS (Netherlands)

    Wal, J.F. van der

    1985-01-01

    The exposure of welders in Dutch industries to total particulate, chromium, nickel and copper fume during the welding of unalloyed, stainless and high alloyed steels has been investigated. The exposure to the gases NO2, NO and ozone is also discussed. The results are presented in tables and graphs.

  8. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Science.gov (United States)

    LaVinka, Pamela Colleen; Park, Thomas J

    2012-01-01

    Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%), and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%), naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2).

  9. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Pamela Colleen LaVinka

    Full Text Available Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%, and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%, naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2.

  10. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  11. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    Science.gov (United States)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  12. Effect of gasoline fumes on reproductive function in male albino rats.

    Science.gov (United States)

    Owagboriaye, Folarin O; Dedeke, Gabriel A; Ashidi, Joseph S; Aladesida, Adeyinka A; Olooto, Wasiu E

    2018-02-01

    The increase in the frequency of exposure to gasoline fumes and the growing incidence of infertility among humans has been a major concern and subject of discussion over the years in Nigeria. We therefore present the reproductive effect of gasoline fumes on inhalation exposure in 40 male albino rats. The rats were randomized into five experimental treatments (T) with eight rats per treatment. T1 (control) was exposed to distilled water while T2, T3, T4, and T5 were exposed to gasoline fumes in exposure chambers for 1, 3, 5, and 9 h daily respectively for 12 weeks. Serum level of testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin, oxidative stress markers in the testicular tissue, epididymal sperm health assessment, and testicular histopathology of the rats were used as a diagnostic marker of reproductive dysfunction. Significant (p percentage motility in the exposed rats were observed. Significant (p < 0.05) increased in abnormal sperm cells characterized by damaged head, bent tail, damaged tail, and without head were also observed in the exposed rats. Histopathologically, severe degenerative testicular architectural lesions characterized by alterations in all the generations of sperm cells and reduction of interstitial cells were seen in the exposed rats. Gasoline fume is thus said to interfere with spermatogenesis and impair fertility in male gonad.

  13. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Maslehuddin, M.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman,; Raashid, M.

    2009-01-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  14. The Far Ultraviolet M-dwarf Evolution Survey (FUMES): Overview and Initial Results

    Science.gov (United States)

    Pineda, J. Sebastian; France, Kevin; Youngblood, Allison

    2018-01-01

    M-dwarf stars are prime targets for exoplanet searches because of their close proximity and favorable properties for both planet detection and characterization, with current searches around these targets having already discovered several Earth-sized planets within their star’s habitable zones. However, the atmospheric characterization and potential habitability of these exoplanetary systems depends critically on the high-energy stellar radiation environment from X-rays to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey provided the first comprehensive assessment of the high-energy radiation field around old, planet hosting M-dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high-energy spectrum of young M-dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, introduce the Far Ultraviolet M-dwarf Evolution Survey (FUMES), a new HST-STIS observing campaign targeting 10 early-mid M dwarfs with known rotation periods, including 6 targets with known ages, to assess the evolution of the FUV radiation, including Lyα, of M-dwarf stars with stellar rotation period. We present the initial results of our survey characterizing the FUV emission features of our targets and the implications of our measurements for the evolution of the entire high-energy radiation environment around M-dwarfs from youth to old age.

  15. PEMANFAATAN LIMBAH SERBUK MARMER PADA BETON SEBAGAI BAHAN PENGGANTI SEBAGIAN SEMEN DENGAN VARIASI PENGGUNAAN SILICA FUME

    Directory of Open Access Journals (Sweden)

    Agil Fitri Handayani

    2015-02-01

    Full Text Available The Utilization of Marble Powder Waste in Concrete Ma­­­­­­­­terials as a Partial Material Substitution of Cement  with the Variation Use of Silica Fume. The purpose of this study was to determine the effect of marble powder and silica fume on the mechanical pro­per­ties of concrete. This study used an experimental design using 16 group of testing materials with variety types of mixtures between marble powder and silica fume 0.00; 5.00; 10.00; and 15.00%. The wa­ter-cement ratio was 0.50 and a low dosage of superplasticizer, which was 0.50%. The behavior of fresh concrete were calculated and the mechanical properties of concrete were tested on con­crete age of 28 days. The results showed the marble powder main com­position was Silicon Dioxide (SiO2 17.63% and Calcium Carbonate (CaCO3 2.73%. Mar­ble powder was more appropriate to be used as fillers than to be used as a partial substitution of ce­ment. The optimum mechanical properties of concrete was produced by the mixtures of 5.00% mar­ble powder  and 6.22% silica fume which resulted in compressive strength of 29.04 MPa.   Tujuan penelitian ini adalah untuk mengetahui pengaruh peng­gunaan ser­buk marmer dan silica fume terhadap sifat mekanik beton. Penelitian ini meng­gu­na­kan desain eksperimen dengan 16 kelompok benda uji dengan variasi ser­buk marmer dan silica fume 0,00; 5,00; 10,00; dan 15,00%. Faktor air semen di­gu­nakan 0,50 dan superplasticizer dengan dosis rendah 0,50%. Perilaku beton segar di­perhitungkan dan sifat mekanik beton diuji pada umur beton 28 hari. Hasil analisis me­nunjukkan kom­posisi utama serbuk marmer adalah Silikon Dioksida (SiO2 17,63% dan Kalsium Kar­bonat (CaCO3 2,73%. Serbuk marmer lebih tepat digunakan se­bagai bahan pe­ng­isi atau filler dari pada sebagai pengganti semen. Sifat mekanik be­ton optimum di­ha­sil­kan pada campuran serbuk marmer 5,00% dan silica fume 6,22% dengan kuat tekan be­ton yang dihasilkan  mencapai 29

  16. Effects of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in integrated wastewater treatment systems.

    Science.gov (United States)

    Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui

    2017-12-01

    In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CARBON CYCLES, NITROGEN FIXATION AND THE LEGUME-RHIZOBIA SYMBIOSIS AS SOIL CONTAMINANT BIOTEST SYSTEM

    Directory of Open Access Journals (Sweden)

    Dietrich Werner

    2008-06-01

    Full Text Available The major pools and turnover  rates of the global carbon (C cycles are presented and compared to the human production of CO2  from the burning of fossil fuels (e.g. coal and oil and geothermal  fuels (natural  gases, both categorized as non-renewable energy resources which  in amount  reaches around  6.5 Gigatons C per year. These pools that serve as C-holding stallions  are in the atmosphere,  the land plant biomass, the organic soils carbon, the ocean carbon and the lithosphere. In another related case, the present focus in the area of nitrogen  fixation  is discussed with  data on world  production of grain  legumes  compared  to cereals production and nitrogen  fertilizer use. The focus to understand  the molecular  biology of the legume-rhizobia symbiosis as a major contributor to nitrogen  fixation  is in the areas of signal exchange between  host plants and rhizobia  in the rhizophere including  the nod factor signalling, the infection  and nodule compartmentation and the soils stress factors affecting the symbiosis. The use of the Legume-Rhizobia symbiosis as a biotest system for soil contaminants includes data for cadmium,  arsenate, atrazine,  lindane,  fluoranthene, phenantrene and acenaphthene and also results  on the mechanism,  why the symbiotic system is more sensitive  than test systems with plant growth  parameters.

  18. Influence of dentin contamination by temporary cements on the bond strength of adhesive systems

    Directory of Open Access Journals (Sweden)

    Josimeri Hebling

    2009-01-01

    Full Text Available Objective: The aim of this study was to assess the bond strength of adhesive systems to dentin contaminated by temporary cements with or without eugenol. Method: Flat dentin surfaces were obtained from twenty-four human third molars. With exception of the control group (n=8, the surfaces were covered with Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA or Cavit (3M ESPE, St. Paul, MN, USA and kept in an oven at 37oC for seven days. After removing the cements, the adhesive systems Adper Single Bond (3M ESPE, St. Paul, MN, USA or Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan were applied in accordance with the manufacturers’ recommendations, and then the crowns were constructed in of resin composite. The teeth were sectioned into specimens with a cross-sectional bond area of 0.81mm2, which were sub mitted to microtensile testing in a mechanical test machine at an actuator speed of 0.5mm/min. The data were analyzed by t- and ANOVA tests, complemented by Tukey tests (α=0.05. Results: For Adper Single Bond (3M ESPE, St. Paul, MN, USA, bond strength did not differ statistically (p>0.05 for all the experimental conditions. For Clearfil SE Bond (Kuraray Co. Ltd., Osaka, Japan, only the Interim Restorative Material (Caulk Dentsplay, Milford, DE, USA Group showed significantly lower bond strength (30.1±13.8 MPa in comparison with the other groups; control (38.9±13.5 MPa and Cavit (3M ESPE, St. Paul, MN, USA (42.1±11.0 MPa, which showed no significant difference between them.Conclusion: It was concluded that the previous covering of dentin with temporary cement containing eugenol had a deleterious effect on the adhesive performance of the self-etching system only.

  19. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Science.gov (United States)

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  20. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Science.gov (United States)

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  1. Exposure to Cooking Fumes and Acute Reversible Decrement in Lung Functional Capacity

    Directory of Open Access Journals (Sweden)

    Masoud Neghab

    2017-10-01

    Full Text Available Background: Being exposed to cooking fumes, kitchen workers are occupationally at risk of multiple respiratory hazards. No conclusive evidence exists as to whether occupational exposure to these fumes is associated with acute and chronic pulmonary effects and symptoms of respiratory diseases. Objective: To quantify the exposure levels and evaluate possible chronic and acute pulmonary effects associated with exposure to cooking fumes. Methods: In this cross-sectional study, 60 kitchen workers exposed to cooking fumes and 60 unexposed employees were investigated. The prevalence of respiratory symptoms among these groups was determined through completion of a standard questionnaire. Pulmonary function parameters were also measured before and after participants' work shift. Moreover, air samples were collected and analyzed to quantify their aldehyde, particle, and volatile organic contents. Results: The mean airborne concentrations of formaldehyde, acetaldehyde, and acrolein was 0.45 (SD 0.41, 0.13 (0.1, and 1.56 (0.41 mg/m3, respectively. The mean atmospheric concentrations of PM1, PM2.5, PM7, PM10, and total volatile organic compounds (TVOCs was 3.31 (2.6, 12.21 (5.9, 44.16 (16.6, 57 (21.55 μg/m3, and 1.31 (1.11 mg/m3, respectively. All respiratory symptoms were significantly (p<0.05 more prevalent in exposed group. No significant difference was noted between the pre-shift mean of spirometry parameters of exposed and unexposed group. However, exposed workers showed cross-shift decrease in most spirometry parameters, significantly lower than the pre-shift values and those of the comparison group. Conclusion: Exposure to cooking fumes is associated with a significant increase in the prevalence of respiratory symptoms as well as acute reversible decrease in lung functional capacity.

  2. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    International Nuclear Information System (INIS)

    Tsai, Su-Jung; Ada, Earl; Isaacs, Jacqueline A.; Ellenbecker, Michael J.

    2009-01-01

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  3. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  4. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  5. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Su-Jung, E-mail: candace.umass@gmail.com; Ada, Earl [University of Massachusetts Lowell, NSF Center for High-rate Nanomanufacturing (CHN) (United States); Isaacs, Jacqueline A. [Northeastern University, NSF Center for High-rate Nanomanufacturing (CHN) (United States); Ellenbecker, Michael J. [University of Massachusetts Lowell, NSF Center for High-rate Nanomanufacturing (CHN) (United States)

    2009-01-15

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face

  6. The influence of salivary contamination on shear bond strength of dentin adhesive systems.

    Science.gov (United States)

    Park, Jeong-won; Lee, Kyung Chae

    2004-01-01

    This study evaluated the influence of salivary contamination during dentin bonding procedures on shear bond strength and investigated the effect of contaminant-removing treatments on the recovery of bond strength for two dentin bonding agents. One hundred and ten human molars were embedded in cylindrical molds with self-curing acrylic resin. The occlusal dentin surface was exposed by wet grinding with #800 silicon carbide abrasive paper. The teeth were divided into five groups for One-step (OS) (BISCO, Inc) and six groups for Clearfil SE Bond (SE) (Kuraray Co, Ltd, Osaka, Japan). For One-step, the grinding surface was treated with 32% phosphoric acid; BAC (BISCO Inc) and divided into five groups: OS control group (uncontaminated), OS I (salivary contamination, blot dried), OS II (salivary contamination, completely dried), OS III (salivary contamination, wash and blot dried) and OS IV (salivary contamination, re-etching for 10 seconds, wash and blot dried). For SE bond, the following surface treatments were done: SE control group (primer applied to the fresh dentin surface), SE I (after salivary contamination, primer applied), SE II (primer, salivary contamination, dried), SE III (primer, salivary contamination, wash and dried), SE IV (after procedure of SE II, re-application of primer) and SE V (after procedure of SE III, re-application of primer). Each bonding agent was applied and light cured for 10 seconds. Clearfil AP-X (Kuraray Co, Ltd) composite was packed into the Ultradent mount jig mold and light cured for 40 seconds. The bonded specimens were stored for 24 hours in a 37 degrees C waterbath. The shear bond strengths were measured using an Instron testing machine (Model 4202, Instron Corp). The data for each group were subjected to one-way ANOVA followed by the Newman-Keuls test to make comparisons among the groups. The results were as follows: In the One-step groups, the OS II group showed statistically significant lower shear bond strength than the OS

  7. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    Science.gov (United States)

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  9. Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems.

    Science.gov (United States)

    Lu, Lu; Yazdi, Hadi; Jin, Song; Zuo, Yi; Fallgren, Paul H; Ren, Zhiyong Jason

    2014-06-15

    Two column-type bioelectrochemical system (BES) modules were installed into a 50-L pilot scale reactor packed with diesel-contaminated soils to investigate the enhancement of passive biodegradation of petroleum compounds. By using low cost electrodes such as biochar and graphite granule as non-exhaustible solid-state electron acceptors, the results show that 82.1-89.7% of the total petroleum hydrocarbon (TPH) was degraded after 120 days across 1-34 cm radius of influence (ROI) from the modules. This represents a maximum of 241% increase of biodegradation compared to a baseline control reactor. The current production in the BESs correlated with the TPH removal, reaching the maximum output of 70.4 ± 0.2 mA/m(2). The maximum ROI of the BES, deducting influence from the baseline natural attenuation, was estimated to be more than 90 cm beyond the edge of the reactor (34 cm), and exceed 300 cm should a non-degradation baseline be used. The ratio of the projected ROI to the radius of BES (ROB) module was 11-12. The results suggest that this BES can serve as an innovative and sustainable technology for enhanced in situ bioremediation of petroleum hydrocarbons in large field scale, with additional benefits of electricity production and being integrated into existing field infrastructures. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Inspection system of radioactive contamination in foods and its results in Yokohama City

    International Nuclear Information System (INIS)

    Morita, Masahiro

    1993-01-01

    Accompanying the Chernobyl nuclear power plant accident occurred on April 26, 1986, the radioactive contamination of the foods imported from Europe became problems. Consequently, the Ministry of Health and Welfare stipulated the temporary limit of radioactive concentration in imported foods in terms of the total of Cs-134 and Cs-137 at less than 370 becquerel per 1 kg of foods in November, 1986, and the inspection system was tightened. In Yokohama, in view of securing the safety of foods and eliminating the anxiety of citizen, the measuring instruments for radioactivity were installed in the Hygiene Laboratory in 1986 and in the Food Hygiene Inspection Stations in Central Wholesale Market in 1987, and the inspection was begun. So far 720 subjects were inspected, but there was none that exceeds the temporary limit. The period and the method of executing the inspection and the results of nuclide analysis, screening inspection and so on are reported. It was judged that at the present point of time, there is not much influence to the life of citizen. (K.I.)

  11. Bioremediation of soil and groundwater contaminated with stoddard solvent and mop oil using the PetroClean bioremediation system

    International Nuclear Information System (INIS)

    Schmitt, E.K.; Lieberman, M.T.; Caplan, J.A.; Blaes, D.; Keating, P.; Richards, W.

    1991-01-01

    This paper reports that Environmental Science and Engineering Inc. (ESE) was contracted by a confidential industrial client to perform a three-phased project. Phase I involved characterizing the site and delineating the extent of subsurface contamination. Phase II included biofeasibility and pilot-scale evaluations, determining remedial requirements, and designing the full-scale treatment system. Phase III involved implementing and operating the designed in situ bioremediation system (i.e., PetroClean 4000) to achieve site closure

  12. The Advanced Monitoring Systems Initiative--Performance Monitoring for DOE Environmental Remediation and Contaminant Containment

    Science.gov (United States)

    Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.

    2005-05-01

    The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and

  13. Derivation of the mass factors for decommissioning cost estimation of low contaminated auxiliary systems

    International Nuclear Information System (INIS)

    Poskas, G.

    2015-01-01

    Ignalina NPP was operating two RBMK-1500 reactors. Unit 1 was closed at the end of 2004, and Unit 2 - at the end of 2009. Now they are under decommissioning. Decommissioning has been started from the reactor's periphery, with dismantling of non-contaminated and low contaminated equipment and installations. This paper discusses a methodology for derivation of mass factors for preliminary decommissioning costing at NPP when the number of inventory items is significant, and separate consideration of each inventory item is impossible or impractical for preliminary decommissioning plan, especially when the level of radioactive contamination is very low. The methodology is based on detailed data analysis of building V1 taking into account period and inventory based activities, investment and consumables and other decommissioning approach- related properties for building average mass factors. The methodology can be used for cost estimation of preliminary decommissioning planning of NPP auxiliary buildings with mostly very low level contamination. (authors)

  14. Novel, Vacuum-Regenerable Trace Contaminant Control System for Advanced Spacesuit Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trace contaminants that are introduced into the ventilation loop of a spacesuit (primarily ammonia and formaldehyde) via metabolic processes, off-gassing of...

  15. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    DEFF Research Database (Denmark)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse...... experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA......), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met.Obtained degradation kinetics are in the order, BPA

  16. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    Science.gov (United States)

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  17. The fate of ammonium-nitrogen in leachate contaminated groundwater system

    Science.gov (United States)

    M, Atta; W, Yaacob W. Z.

    2015-09-01

    Hydrogeochemical conditions influences strongly on ammonium attenuation and ultimately its long-term fate in the subsurface. The purpose of this work was to identify the conditions influencing the persistence of ammonium-nitrogen in the contaminated groundwater system of Taman Beringin ex-landfill site in Malaysia. This study applies hydrogeochemical data extractions techniques of redox sensitive groundwater species from previously installed monitoring wells between February to August 2014. Electrochemical measurements of Oxidation Reduction Potential (ORP) were collected successively with several other physicochemical parameters including pH, Temperature, and DO in the landfill site. The result show that the mean concentration of NH4-N, NO2-N, and NO3-N are: (47.98±81.83 mg/L), (0.17±0.22 mg/L) and (6.11± 8.74 mg/L) respectively. The mean range of redox potentials (-10.25±128.28 mV) delineated areas of strongly reducing conditions. Based on the evaluation of the data, NH4-N, NO2-N and NO3-N accounts for 89.98%, 0.28% and 9.7% respectively of the groundwater concentration of total nitrogen, while a miniature proportion of oxidisable nitrogen concentrations (10.02%) are attributed t o biological process of nitrification. Relationship exist between data set NH4-N and ORP (r = -0.65009). It was concluded that although biological attenuation processes are effectively decreasing the ammonia concentrations in some of the wells, the processes are inhibited by chemical conditions that were attributed to Fe reducing conditions as observed in some of the wells. NH4-N will remain persistent and at elevated levels as much as the conditions persist and contributes in determining the fate of NH4-N in the Taman Beringin ground water system.

  18. AFLATOXIN B1 IN CORN: DIRECT VERIFICATION OF CONTAMINATION THROUGH AN AUTOMATIC COMPUTERIZED SYSTEM BASED ON THE FLUORESCENCE

    Directory of Open Access Journals (Sweden)

    L. Vallone

    2009-09-01

    Full Text Available “Aflaflesh” is a computer based instrument, designed combining a visual data acquisition system with a sophisticated software of acquisition and analysis of images. This system allows you to check on a representative sample (5/10 kg contamination of corn by AFB1, using fluorescence under UV light when the grain is contaminated. To optimize the use of this control equipment were analyzed in two phases, a total of 80 samples comparing the results obtained by chemical analysis (Hplc to those obtained using “Aflaflesh”. Initially the study was set to correlate the number of contaminated grains to the ppb read by the official method, Hplc; the second step was to correlate ppb values to the number of pixel of contaminated surface of the grains read by the “Aflaflesh” instrument. The apparatus was then calibrated through a statistical analysis of the results obtained, to allow a direct reading of the AFB1 concentrations in a short period of time (15 min without the assistance of specialized personnel.

  19. Particle contamination in gas-insulated systems: new control methods and optimum SF6/N2 mixtures

    International Nuclear Information System (INIS)

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    The feasibilities of two new separate techniques to control particle contamination in practical gas-insulated sytems were tested in a small-scale concentric cylinder geometry. In one technique an insulating coating was first formed on the particles in a contaminated system by low-pressure discharges in appropriate gases such as 1-C 3 F 6 and c-C 4 F 8 . When SF 6 was subsequently introduced into the same system at practical pressure as the operating insulation, the considerable harm ordinarily caused by particles was found to be eliminated. The nature of the coating formed also on the electrodes in this process was studied, with the conclusion that the observed benefits were primarily due to coating on particles, not on electrodes. In the second technique the particles, moved randomly by electrical stress, struck and adhered to the surface of a tacky insulating solid material; they were subsequently encapsulated in a melt-resolidify cycle without electrical stress. This trapping technique was also found to eliminate the harmful effects of particles in SF 6 at practical pressure. A technique for producing a trapping material with temperature characteristics appropriate for practical apparatus was devised. The effect of particle contamination on the dielectric strength of SF 6 /N 2 mixtures was studied as a function of total pressure and percentage of each gas. Optimum total pressure (approx. 6 atm) and optimum percentages (60% SF 6 /40% N 2 ) were observed in breakdown tests in particle-contaminated concentric cylinder geometry

  20. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  1. Effect of saliva contamination on the microshear bond strength of one-step self-etching adhesive systems to dentin.

    Science.gov (United States)

    Yoo, H M; Oh, T S; Pereira, P N R

    2006-01-01

    This study evaluated the effect of saliva contamination and decontamination methods on the dentin bond strength of one-step self-etching adhesive systems. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt) and one resin composite (Filtek Z-250) were used. Third molars stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to contamination methods: no contamination, which was the control (C); contamination of the adhesive surface with fresh saliva before light curing (A) and contamination of the adhesive surface with fresh saliva after light curing (B). Each contamination group was further subdivided into three subgroups according to the decontamination method: A1-Saliva was removed by a gentle air blast and the adhesive was light-cured; A2-Saliva was rinsed for 10 seconds, gently air-dried and the was adhesive light-cured; A3-Saliva was rinsed and dried as in A2, then the adhesive was re-applied to the dentin surface and light-cured; B1-Saliva was removed with a gentle air blast; B2-Saliva was rinsed and dried; B3-Saliva was rinsed, dried and the adhesive was re-applied and light cured. Tygon tubes filled with resin composite were placed on each surface and light cured. All specimens were stored in distilled water at 37 degrees C for 24 hours. Microshear bond strength was measured using a universal testing machine (EZ test), and data were analyzed by one-way ANOVA followed by the Duncan test to make comparisons among the groups (p0.05). Bond strengths of all B groups were significantly lower compared to the controls (pcontamination after adhesive curing. There was no statistically significant difference among the control groups (p>0.05).

  2. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Brittain, J.E. [Oslo Univ., Oslo (Norway); Zoological Museum, Oslo (Norway); Haakanson, L. [Uppsala Univ., Uppsala (Sweden). Inst. of Earth Science; Gallego Diaz, E. [Madrid Univ. Politecnica, Madrid (Spain). Dept. de Ingenieria Nuclear

    1999-07-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration. [Italian] Il rapporto contiene articoli preparati nell'ambito del progetto MOIRA (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas), che descrive alcuni modelli per la previsione del comportamento di radionuclidi in sistemi acquatici complessi e per la valutazione dell'effetto delle contromisure per il loro recupero.

  3. MOIRA models and methodologies for assessing the effectiveness of countermeasures in complex aquatic systems contaminated by radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente; Brittain, J E [Oslo Univ., Oslo (Norway); Zoological Museum, Oslo [Norway; Haakanson, L [Uppsala Univ., Uppsala (Sweden). Inst. of Earth Science; Gallego Diaz, E [Madrid Univ. Politecnica, Madrid (Spain). Dept. de Ingenieria Nuclear

    1999-07-01

    The present report is composed of a set of articles written by the partners of the MOIRA project (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas). The report describes models for predicting the behaviour of radionuclides in complex aquatic systems and the effects of countermeasures for their restoration. [Italian] Il rapporto contiene articoli preparati nell'ambito del progetto MOIRA (a model-based computerized system for management support to identify optimal remedial strategies for restoring radionuclide contaminated aquatic ecosystems and drainage areas), che descrive alcuni modelli per la previsione del comportamento di radionuclidi in sistemi acquatici complessi e per la valutazione dell'effetto delle contromisure per il loro recupero.

  4. A Computer System for CBRN Contamination Threats Analysis Support, Prediction Their Effects and Alarming the Population: Polish Case Study

    Directory of Open Access Journals (Sweden)

    Tarapata Zbigniew

    2017-01-01

    Full Text Available The article outlines a concept for the system supporting analyses of threats related to contamination and alarming (WAZkA, for the purpose of the National System for Detection of Contamination and Alarming (Krajowy System Wykrywania Skażeń i Alarmowania, KSWSiA in Poland. Additionally, the article presents the point of designing such system, its concept and components. The main objective of WAZkA is to support the following processes of the KSWSiA: information exchange between the system elements and coordination of the system operations, as well as to prepare assessment and expert analyses, needed by the decision-making bodies, with respect to risk emergency situations during natural disasters, technical failures or other events resulting in biological, chemical or radioactive contamination. The selected modules included in the WAZkA system: Event Tree Analyzer, visualization module (COP and emulators of the threats monitoring systems, were described as well as the idea of using the system for the purpose of training, including the designed emulators of the risk monitoring systems together with the scenario editor. The Event Tree Anlyzer is a graphical representation of a chronological sequence of events, significant from the point of view of the functioning of the object, which occur after a given event that initiates such sequence. COP is the GIS tool, which allows to present an operating situation on the basis of background maps. The application offers a possibility of enriching the presented operating situation with the risk data provided in the form of NATO ADat-P3 (CBRN reports. Emulators of the threats monitoring systems allow to generate, in an artificial and user-controlled manner, data on risks, which “pretend” to be real data obtained from the monitoring systems. The above approach significantly facilitates the organization of training and learning about rare situations or situations that have never occurred, but that are

  5. Development of nondestructive measurement system for quantifying radioactivity from crud, liquids and gases in a contaminated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Ito, Hirokuni; Wakayama, Naoaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1992-11-01

    A nondestructive measuring method was developed to quantify separately radioisotope concentrations of crud, liquids and gases in a contaminated pipe. For applying this method to practical in-situ measurement, a nondestructive measurement system was developed. The measurement system consists of an in-situ equipment for gamma-ray scanning measurements and a data-processing equipment for analysis of radioactivity. The communication between both equipments is performed by a wireless telemeter device. To construct the measurement system, a gas-cooled Ge detector of practical use, small-sized electronics circuits, a fast and reliable telemeter device and automatic measurement technics using a computer were developed. Through performance tests, it is confirmed that the measurement system is effective for in-situ measurements of radioactivity in a contaminated pipe. The measurement accuracy with this measurement system is 10 - 20 %, which was determined by comparison with solid and liquid radioisotope concentrations in a mock-up contaminated pipe that had been quantified in advance. (author).

  6. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Sauvain, Jean-Jacques; Suarez, Guillaume; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2016-06-10

    Tungsten inert gas (TIG) welding represents one of the most widely used metal joining processes in industry. It has been shown to generate a large majority of particles at the nanoscale and to have low mass emission rates when compared to other types of welding. Despite evidence that TIG fume particles may produce reactive oxygen species (ROS), limited data is available for the time course changes of particle-associated oxidative stress in exposed TIG welders. Twenty non-smoking male welding apprentices were exposed to TIG welding fumes for 60 min under controlled, well-ventilated settings. Exhaled breathe condensate (EBC), blood and urine were collected before exposure, immediately after exposure, 1 h and 3 h post exposure. Volunteers participated in a control day to account for oxidative stress fluctuations due to circadian rhythm. Biological liquids were assessed for total reducing capacity, hydrogen peroxide (H2O2), malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations at each time point. A linear mixed model was used to assess within day and between day differences. Significant increases in the measured biomarkers were found at 3 h post exposure. At 3 h post exposure, we found a 24 % increase in plasma-H2O2 concentrations ([95%CI: 4 % to 46 %], p = 0.01); a 91 % increase in urinary-H2O2 ([2 % to 258 %], p = 0.04); a 14 % increase in plasma-8-OHdG ([0 % to 31 %], p = 0.049); and a 45 % increase in urinary-8-OHdG ([3 % to 105 %], p = 0.03). Doubling particle number concentration (PNC) exposure was associated with a 22 % increase of plasma-8-OHdG at 3 h post exposure (p = 0.01). A 60-min exposure to TIG welding fume in a controlled, well-ventilated setting induced acute oxidative stress at 3 h post exposure in healthy, non-smoking apprentice welders not chronically exposed to welding fumes. As mass concentration of TIG welding fume particles is very low when compared to other types of welding, it is

  7. The Study Of Histopathological Effects Of Welding Fumes On Spermatogenesis In Rat

    Directory of Open Access Journals (Sweden)

    Arab M R

    2005-07-01

    Full Text Available Background: Fumes generated during electric welding are one of air pollutants of working place in industrial companies, which can cause some clinical signs and diseases in worker, including mucosal irritation, changing of semen quality and cancer. Chronic exposure of workers with these fumes can cause reduce sperm motility and forward penetration and decrease in normal sperm count. Although a lot of researches were done in this field up to now, there is little information about histopathological effects of these fumes on germinal epithelium. The aim of this study was to identify structural changes of germinal epithelium in Rat as an experimental model after exposure to fumes of electric welding in exposure chamber. Material and Methods: A total number of 60 Sprague Dawley Rats were chosen and divided into experimental (40 and control (20 groups. Each of groups was subdivided into 2, 4, 6 and 8-week subgroups. The number of Rat in each subgroup of experimental and control group was 10 and 5 respectively. Animals were housed in standard situation. After adaptation experimental group were exposed to fumes of electric welding (AMA 2000 electrode, 100 Ampere, 0.1 cm/s speed of electrode welding for 2 hour/day and 5 day/week. The rate of air turn over in exposure chamber was fixed to 12-15/hour. The amount of O3, CO, CO2, NO + NO2 and particulate matter were measured by Galtec detectors and Cellulose acetate filter respectively. According to time table animals were killed and specimens from testis were taken and fixed in formaline buffer solution and processed routinely. Sections with 5-7 micrometer in thickness were stained by H-E, PAS, PNA and Alcian blue pH=2.5. The thickness of germinal epithelium was measured and data were analyzed by Kruskall Wallis test. Results: The results of this study showed a few quantitative and qualitative changes in germinal epithelium. Vasodilatation of vessels in tunica albuginea and interstitial tissue, decreasing of

  8. Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems.

    Science.gov (United States)

    Cecconet, Daniele; Zou, Shiqiang; Capodaglio, Andrea G; He, Zhen

    2018-09-15

    Nitrate contamination of groundwater is a mounting concern for drinking water production due to its healthy and ecological effects. Bioelectrochemical systems (BES) are a promising method for energy efficient nitrate removal, but its energy consumption has not been well understood. Herein, we conducted a preliminary analysis of energy consumption based on both literature information and multiple assumptions. Four scenarios were created for the purpose of analysis based on two treatment approaches, microbial fuel cells (MFCs) and controlled biocathodic denitrification (CBD), under either in situ or ex situ deployment. The results show a specific energy consumption based on the mass of NO 3 - -N removed (SEC N ) of 0.341 and 1.602 kWh kg NO 3 - -N -1 obtained from in situ and ex situ treatments with MFCs, respectively; the main contributor was the extraction of the anolyte (100%) in the former and pumping the groundwater (74.8%) for the latter. In the case of CBD treatment, the energy consumption by power supply outcompeted all the other energy items (over 85% in all cases), and a total SEC N of 19.028 and 10.003 kWh kg NO 3 - -N -1 were obtained for in situ and ex situ treatments, respectively. The increase in the water table depth (from 10 to 30 m) and the decrease of the nitrate concentration (from 25 to 15 mg NO 3 - -N) would lead to a rise in energy consumption in the ex situ treatment. Although some data might be premature due to the lack of sufficient information in available literature, the results could provide an initial picture of energy consumption by BES-based groundwater treatment and encourage further thinking and analysis of energy consumption (and production). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Radiological characterisation on V1 NPP technological systems and buildings - Contamination

    International Nuclear Information System (INIS)

    Hanzel, Richard; Rapant, Tibor; Svitek, Jaroslav

    2012-01-01

    Since 2001, the preparation of V1 NPP practical decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund, under the administration of the European bank for Reconstruction and development. AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, performed BIDSF B.4 project - Decommissioning database development. The main purpose of the B6.4 project was to develop a comprehensive physical and radiological inventory database to support RAW management development of the decommissioning studies and decommissioning project of Bohunice V1 NPP. AMEC Nuclear Slovakia was responsible mainly for DDB design, planning documents and physical and radiological characterization including sampling and analyses of the plant controlled area. The objective of V1 NPP radiological characterization was summarisation of sampling and analyses results, description of methodology used for radiological characterization and determination of the V1 NPP radiological inventory. Results of the characterization survey included the identification and distribution of contamination in buildings, structures, and other site facilities or other impacted media. The characterization survey clearly identified those portions of the site that have been affected by site activities and are contaminated. The survey also identified the portions of the site that have not been affected by these activities and can be marked as 'not impacted'. Radiological data have been presented also on the basis of index RAI level, where 5 radiological classes have been defined. On the basis of sampling and analyses results following radiological parameters have been assigned to all impacted components and civil structures included in DDB: dose rate in contact, dose rate in distance 1 m, external surface contamination, internal surface contamination and volume/mass contamination. Each room in controlled area has been described by following radiological parameters

  10. Contamination control plan for prelaunch operations

    Science.gov (United States)

    Austin, J. D.

    1983-01-01

    A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.

  11. Performance of food safety management systems in poultry meat preparation processing plants in relation to Campylobacter spp. contamination.

    Science.gov (United States)

    Sampers, Imca; Jacxsens, Liesbeth; Luning, Pieternel A; Marcelis, Willem J; Dumoulin, Ann; Uyttendaele, Mieke

    2010-08-01

    A diagnostic instrument comprising a combined assessment of core control and assurance activities and a microbial assessment instrument were used to measure the performance of current food safety management systems (FSMSs) of two poultry meat preparation companies. The high risk status of the company's contextual factors, i.e., starting from raw materials (poultry carcasses) with possible high numbers and prevalence of pathogens such as Campylobacter spp., requires advanced core control and assurance activities in the FSMS to guarantee food safety. The level of the core FSMS activities differed between the companies, and this difference was reflected in overall microbial quality (mesophilic aerobic count), presence of hygiene indicators (Enterobacteriaceae, Staphylococcus aureus, and Escherichia coli), and contamination with pathogens such as Salmonella, Listeria monocytogenes, and Campylobacter spp. The food safety output expressed as a microbial safety profile was related to the variability in the prevalence and contamination levels of Campylobacter spp. in poultry meat preparations found in a Belgian nationwide study. Although a poultry meat processing company could have an advanced FSMS in place and a good microbial profile (i.e., lower prevalence of pathogens, lower microbial numbers, and less variability in microbial contamination), these positive factors might not guarantee pathogen-free products. Contamination could be attributed to the inability to apply effective interventions to reduce or eliminate pathogens in the production chain of (raw) poultry meat preparations.

  12. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    Science.gov (United States)

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London.

    Science.gov (United States)

    Otter, J A; French, G L

    2009-12-01

    To investigate bacterial contamination on hand-touch surfaces in the public transport system and in public areas of a hospital in central London. Dipslides were used to sample 118 hand-touch surfaces in buses, trains, stations, hotels and public areas of a hospital in central London. Total aerobic counts were determined, and Staphylococcus aureus isolates were identified and characterized. Bacteria were cultured from 112 (95%) of sites at a median concentration of 12 CFU cm(-2). Methicillin-susceptible Staph. aureus (MSSA) was cultured from nine (8%) of sites; no sites grew methicillin-resistant Staph. aureus (MRSA). Hand-touch sites in London are frequently contaminated with bacteria and can harbour MSSA, but none of the sites tested were contaminated with MRSA. Hand-touch sites can become contaminated with staphylococci and may be fomites for the transmission of bacteria between humans. Such sites could provide a reservoir for community-associated MRSA (CA-MRSA) in high prevalence areas but were not present in London, a geographical area with a low incidence of CA-MRSA.

  14. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Science.gov (United States)

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  15. Properties of silica fume procured from natural diatomite and its usage in the production of vacuum insulation panels

    OpenAIRE

    V.P. Selyaev; V.A. Neverov; O.G. Mashtaev; A.V. Kolotushkin

    2013-01-01

    The article shows the results of the research of silica fume particles procured from diatomite from Atemar deposit by means of separating silicic acid from colloidal dissolved state into the sediment. The objective of the work was to define thermal-physical and structural characteristics of the silica fume. The research included IR-spectrometry, granulometry, thermal gravimetric analysis, X-ray structural analysis, optical microscopy, and small angle X-Ray scattering. As a result of the resea...

  16. High Strength Lightweight Concrete Made with Ternary Mixtures of Cement-Fly Ash-Silica Fume and Scoria as Aggregate

    OpenAIRE

    YAŞAR, Ergül; ATIŞ, Cengiz Duran; KILIÇ, Alaettin

    2014-01-01

    This paper presents part of the results of an ongoing laboratory study carried out to design a structural lightweight high strength concrete (SLWHSC) made with and without ternary mixtures of cement-fly ash-silica fume. In the mixtures, lightweight basaltic-pumice (scoria) aggregate was used. A concrete mixture made with lightweight scoria, and another lightweight scoria concrete mixture incorporating 20% fly ash and 10% silica fume as a cement replacement, were prepared. Two normal...

  17. Development and Implementation of a Model-Driven Envelope Protection System for In-Flight Ice Contamination

    Science.gov (United States)

    Gingras, David R.; Barnhart, Billy P.; Martos, Borja; Ratvasky, Thomas P.; Morelli, Eugene

    2011-01-01

    Fatal loss-of-control (LOC) accidents have been directly related to in-flight airframe icing. The prototype system presented in this paper directly addresses the need for real-time onboard envelope protection in icing conditions. The combinations of a-priori information and realtime aerodynamic estimations are shown to provide sufficient input for determining safe limits of the flight envelope during in-flight icing encounters. The Icing Contamination Envelope Protection (ICEPro) system has been designed and implemented to identify degradations in airplane performance and flying qualities resulting from ice contamination and provide safe flight-envelope cues to the pilot. Components of ICEPro are described and results from preliminary tests are presented.

  18. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  19. Influence of a chronic {sup 90}Sr contamination by ingestion on the hematopoietic, immune and bone systems; Influence d'une contamination chronique par ingestion de {sup 90}Sr sur les systemes hematopoietique, immunitaire et osseux

    Energy Technology Data Exchange (ETDEWEB)

    Synhaeve, Nicholas

    2011-12-15

    Strontium 90 ({sup 90}Sr) is a radionuclide of anthropogenic origin released in large quantities in the environment as a result of nuclear atmospheric tests or accidents at nuclear facilities. {sup 90}Sr persists on a long-term basis in the environment, leading to chronic contamination by ingestion of populations living on contaminated territories. The induction of bone tumours associated with the fixation of {sup 90}Sr has been widely described. However, the occurrence of non-cancer effects is much less known. We used a mouse model with chronic contamination by ingestion of water containing 20 kBq/l of {sup 90}Sr. A bio-kinetic study confirmed the accumulation of {sup 90}Sr in the bones, with an increased rate of accumulation during bone growth. This accumulation was higher in the bones of females than in males. The whole-body absorbed doses ranged from 0.33 {+-} 0.06 mGy (birth) to 10.6 {+-} 0.1 mGy (20 weeks). The absorbed dose for the skeleton was up to 55 mGy. Ingestion of {sup 90}Sr induced a change in the expression of genes inducing an imbalance in favour of bone resorption, but without effect on bone morphology. No significant effect was observed for the hematopoietic system. On the other hand, minor modifications were observed for the immune system. To evaluate the functionality of the immune system, a vaccination test with TT and KLH antigens was used. Results showed in contaminated animals a significant decrease in the production of specific immunoglobulins, changes in the Th1/Th2 balance in the spleen and a disrupted B lymphocyte differentiation. These results improve the understanding of some of the noncancerous consequences of chronic exposure at low dose of radionuclides with a long half-life, which can be accidentally released. (author)

  20. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  1. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    Science.gov (United States)

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  2. A system for the study of molecular contamination. [experimental vacuum chambers

    Science.gov (United States)

    Dillow, C. F.; Allen, T. H.; Linford, R. M. F.; Richmond, R. G.

    1975-01-01

    An experimental vacuum chambers was designed and fabricated to provide a wide range of experimental capability. This work chamber assembly (WCA) was conceived to establish the proof-of-principle of various techniques for studying the kinetics of contaminants and their effects. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation.

  3. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  4. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    Science.gov (United States)

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  5. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Gopala N.; Jayaweera, Palitha; Perez, Jordi; Hornbostel, M.; Albritton, John R.; Gupta, Raghubir P.

    2007-10-31

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700° to 900°C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700°, 750°, and 800°C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800°C. The electrical performance of SOFC

  6. Controversial effects of fumed silica on the curing and thermomechanical properties of epoxy composites

    Directory of Open Access Journals (Sweden)

    2010-06-01

    Full Text Available The effect of fumed silica on the curing of a trimethylolpropane epoxy resin was investigated by thermal analysis methods like Differential Scanning Calorimetry (DSC, and Dynamic Mechanical Analysis (DMA. The fumed silica used here is a by-product of the silicon and ferrosilicon industry, consisting of micro and nanosized particles. Both the curing reaction and the properties of the obtained composites were affected by the filler content. Different trends were observed for filler contents above and below the 30 wt%. Up to 30 wt%, the behaviour can be explained as a predominantly agglomeration effect. For 30 wt% and higher filler contents, single particles seem to play a more important role.

  7. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population

    DEFF Research Database (Denmark)

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-01-01

    in their residence during pregnancy. The mothers were also asked about smoking habits and alcohol consumption during pregnancy, pre-pregnancy weight, height, parity and occupation. Information on birth weight and gestational age was obtained from national registers. We found that 45% of the mothers had been exposed......Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied...... associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint...

  8. Mass spectrometric investigation of synthetic glycoside of muramyl dipeptide immobilized on fumed silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, Tetiana V., E-mail: tanyakulyk@gala.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Azizova, Liana R., E-mail: liana_azizova@ukr.net [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Palyanytsya, Borys B. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 Generala Naumova Str., Kyiv 03164 (Ukraine); Zemlyakov, Alexander E.; Tsikalova, Victoria N. [Vernadsky Tauric National University, pr. Akademika Vernadskogo 4, Simferopol, 95007 (Ukraine)

    2010-05-25

    N-Acetylmuramyl-L-alanyl-D-isoglutamine or muramyl dipeptide is a cleavage product of peptidoglycan by lysozyme. This study explored the use of the temperature-programmed desorption mass spectrometry (TPDMS) in analysis of glycoside of muramyl dipeptide: O-{l_brace}(4-tert-butylcyclohexyl)-2-acetamido-2, 3-dideoxy-{beta}-D-glucopyranoside-3-yl{r_brace}-D-lactoyl-L-alanyl-D-isoglutamine (MDP) on the surface of fumed silica. Stages of pyrolysis of MDP in condensed state and on the silica surface have been determined. Three stages have been clear identified under pyrolysis of MDP on the silica surface. Kinetic parameters of thermal reactions on the fumed silica surface and in the condensed state have been calculated.

  9. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever

    Directory of Open Access Journals (Sweden)

    M Ahmadimanesh

    2014-04-01

    Full Text Available Occupational inhalation exposure to noxious agents is not uncommon. Herein, we present a 26-year-old male student who had accidental acute inhalation exposure to a large quantity of titanium ethanolate and hydrogen chloride in chemistry lab. He was referred to the emergency department of our hospital with low-grade fever, dyspnea, headache, fatigue and myalgia. After 24 hrs of symptomatic treatment (oxygen therapy and acetaminophen, the fever was subsided and the patient discharged home in a good clinical condition. The presented symptoms could be interpreted as a form of metal fume fever. It can therefore be concluded that organo-metallic compound of titanium metal may have the potential to produce metal fume fever in human.

  10. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2016-06-01

    Full Text Available Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement in concrete. Properties of hardened concrete such as compressive strength, flexural strength, and permeability have been assessed and analyzed. Cubic specimens and beams were produced and cured in a curing tank for 7 and 28 days. Testing results have shown that additions of silica fume to cement between 5% and 7%, which acts as a filler and cementations material, developed high flexural and compressive strength with reduction of permeability.

  11. Chloride accelerated test: influence of silica fume, water/binder ratio and concrete cover thickness

    Directory of Open Access Journals (Sweden)

    E. Pereira

    Full Text Available In developed countries like the UK, France, Italy and Germany, it is estimated that spending on maintenance and repair is practically the same as investment in new constructions. Therefore, this paper aims to study different ways of interfering in the corrosion kinetic using an accelerated corrosion test - CAIM, that simulates the chloride attack. The three variables are: concrete cover thickness, use of silica fume and the water/binder ratio. It was found, by analysis of variance of the weight loss of the steel bars and chloride content in the concrete cover thickness, there is significant influence of the three variables. Also, the results indicate that the addition of silica fume is the path to improve the corrosion protection of low water/binder ratio concretes (like 0.4 and elevation of the concrete cover thickness is the most effective solution to increase protection of high water/binder ratio concrete (above 0.5.

  12. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated aquatic ecosystems: the project MOIRA

    International Nuclear Information System (INIS)

    Appelgren, A.; Bergstrom, U.; Brittain, J.; Monte, L.

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems

  13. An outline of a model-based expert system to identify optimal remedial strategies for restoring contaminated acquatic ecosystems: The project ``moira``

    Energy Technology Data Exchange (ETDEWEB)

    Appelgren, A.; Bergstrom, U. [Studsvik Eco and AB, Nykoping (Sweden); Brittain, J. [Oslo Univ. (Norway). LFI Zoological Museum; Gallego Diaz, E. [Madrid Universidad Politecnica (Spain). Dept. de Ingenieria Nuclear; Hakanson, L. [KEMA Nuclear, Arnhem (Niger); Monte, L. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-10-01

    The present report describes the fundamental principles of the research programme MOIRA (a model based computerized system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) financed by the EC (European Community) (Contract N F14P-CT96-0036). The interventions to restore radionuclides contaminated aquatic systems may result in detrimental ecological, social and economical effects. Decision makers must carefully evaluate these impacts. The main aim of the MOIRA project is the development of an expert system based on validated models predicting the evolution of the radioactive contamination of fresh water systems following countermeasure applications and their relevant ecological, social and economical impacts. The expert system will help decision makers, that are not necessarily gifted with experience in environmental modeling, to identify optimal remedial strategies for restoring contaminated fresh water systems.

  14. Temporal Variability of Faecal Contamination from On-Site Sanitation Systems in the Groundwater of Northern Thailand

    Science.gov (United States)

    Chuah, C. Joon; Ziegler, Alan D.

    2018-06-01

    We investigated the impacts of on-site sanitation systems to local groundwater. In this year-long study, we monitored the response of faecal contamination levels to hydroclimatological factors including rainfall and groundwater table. Concentration of faecal indicators— E. coli (ESC), Enterococcus (ENT), nitrate—in thirteen pairs of shallow and deep wells were determined every 7-14 days. All samples from shallow wells were tested positive for faecal contamination (ESC and ENT > 1 MPN/100 mL) but concentration varies. A maximum of 24,000 MPN/100 mL were recorded in some shallow wells. Water from deep wells showed lower susceptibility to contamination with only 4 and 23% of samples tested positive for ESC and ENT, respectively. Concentrations of ESC and ENT were lower too, with a maximum of 5 MPN/100 mL and 28 MPN/100 mL, respectively. Fluctuation in contamination among the wells was described by four archetypal responses to hydroclimatological forcing: (i) flushing during the onset of wet season, (ii) dilution over the course of the wet season, (iii) concentration during the dry season, and (iv) synoptic response to storms. Previous studies attempting to link the prevalence of faecal/waterborne diseases and temporal factors (e.g., dry vs wet season) have produced differing outcomes. Our study may help explain the relevant hydrological mechanisms leading to these varying observations. Presently, most communities in Thailand have access to `improved' sanitation systems. However, due to the unsustainable implementation of these systems, the otherwise viable drinking-water resources in the form of the abundant local groundwater has become a genuine health hazard.

  15. Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

    KAUST Repository

    Zaib, Alam; Masood, Mudassir; Ali, Anum; Xu, Weiyu; Al-Naffouri, Tareq Y.

    2016-01-01

    of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze

  16. Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater

    International Nuclear Information System (INIS)

    Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

    1994-01-01

    The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater

  17. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    Science.gov (United States)

    Jin, Song [Fort Collins, CO; Fallgren, Paul H [Laramie, WY; Morris, Jeffrey M [Laramie, WY

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  18. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    Science.gov (United States)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  19. Transport from diffuse sources of contamination and its application to a coupled unsaturated - saturated system

    NARCIS (Netherlands)

    Ommen, van H.C.

    1988-01-01

    A simple theory to predict groundwater quality upon contamination from diffuse sources was developed. It appeared that an analogy exists between the predominant transport phenomena and the reaction of a reservoir, in which perfect mixing takes place. Such an analogy enables a simple

  20. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    International Nuclear Information System (INIS)

    Eiermann, D.R.; Bolliger, R.

    1995-01-01

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m 3 of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project

  1. A systems approach for detecting sources of Phytophthora contamination in nurseries

    Science.gov (United States)

    Jennifer L. Parke; Niklaus Grünwald; Carrie Lewis; Val Fieland

    2010-01-01

    Nursery plants are also important long-distance vectors of non-indigenous pathogens such as P. ramorum and P. kernoviae. Pre-shipment inspections have not been adequate to ensure that shipped plants are free from Phytophthora, nor has this method informed growers about sources of contamination in their...

  2. Utilizing waste materials to enhance mechanical and durability characteristics of concrete incorporated with silica fume

    Directory of Open Access Journals (Sweden)

    Hamza Ali

    2017-01-01

    Full Text Available Construction and demolition wastes are increasing significantly due to augmented boom of modern construction. Although the partial cement replacement materials do promote the idea of sustainable construction, the use of construction and demolition waste can also be considered to be viable option to advance the sustainability in modern construction practices. This paper investigates the use of industrial waste materials namely marble dust and crushed bricks as replacement of natural fine aggregates along with the use of silica fume as a partial cement replacement on the mechanical properties and durability characteristics of concrete. Partial replacement levels of waste materials were 10 and 20 percent by volume while the partial replacement level of silica fume was kept to 20 percent at all concrete samples. The results reported in this paper show that the use of marble dust as a replacement material to the natural fine aggregates resulted in an increase in the mechanical properties of concrete. However, the use of crushed bricks did not substantially contribute in the development of strength. Water permeability of concrete incorporated with both silica fume and waste materials (marble dust and crushed bricks decreased significantly. The decrease in water permeability of concrete was attributed to the pozzolanic reaction of silica fume with calcium hydroxide of cement and the filler effect of the waste materials of marble dust and crushed bricks. The use of waste materials also enhance the freeze and thaw resistance of concrete. Authors strongly suggest that the pozzolanic reaction and the development of the microstructure of the concrete through the use of waste materials are largely responsible from the advances in the durability of concrete.

  3. Performance of soft clay stabilized with sand columns treated by silica fume

    Directory of Open Access Journals (Sweden)

    Samueel Zeena

    2018-01-01

    Full Text Available In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7% and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%. All sand columns models were constructed at (R.D= 60%. Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04 and the settlement reduction ratio (0.09 after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.

  4. Increased levels of oxidative DNA damage attributable to cooking-oil fumes exposure among cooks.

    Science.gov (United States)

    Ke, Yuebin; Cheng, Jinquan; Zhang, Zhicheng; Zhang, Renli; Zhang, Zhunzhen; Shuai, Zhihong; Wu, Tangchun

    2009-07-01

    Previous investigations have indicated that cooks are exposed to polycyclic aromatic hydrocarbons (PAHs) from cooking-oil fumes. However, Emission of PAH and their carcinogenic potencies from cooking oil fumes sources have not been investigated among cooks. To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG), in different groups of cooks and different exposure groups, and to study the association between 8-OHdG and 1-hydroxypyrene(1-OHP), a biological marker for PAH exposure. Urine samples were collected from different groups of cooks (n = 86) and from unexposed controls (n = 36); all were male with similar age and smoking habits. The health status, occupational history, smoking, and alcohol consumption 24 h prior to sampling was estimated from questionnaires. The urine samples were frozen for later analyses of 8-OHdG and 1-OHP levels by high-performance liquid chromatography. Excretion in urine of 8-OHdG was similar for controls (mean 1.2micromol/mol creatinine, n = 36), and for those who had been in the kitchen with an exhaust-hood operating (mean 1.5micromol/mol creatinine, n = 45). Cooks exposed to cooking-oil fumes without exhaust-hood operation had significantly increased excretion of 8-OHdG (mean 2.3micromol/mol creatinine, n = 18), compared with controls. The urinary levels of ln 1-OHP and ln 8-OHdG were still significantly correlated in a multiple regression analysis. The results indicate that exposure to PAH or possibly other compounds in cooking-oil fumes may cause oxidative DNA damage.

  5. Upgrading offshore pipelines concrete coated by silica fume additive against aggressive mechanical laying

    OpenAIRE

    M.I. Abdou; Hesham Abuseda

    2016-01-01

    Studies have been carried out to investigate the possibility of utilizing a broad range of micro-silica partial additions with cement in the production of concrete coating. This study investigated the strength properties and permeability of micro-silica concrete to achieve resistance toward concrete cracking and damage during laying. The chemical composition of micro-silica (silica fume) was determined, and has been conducted on concrete mixes with additions of 3 up to 25% by weight of cement...

  6. A Review for Characterization of Silica Fume and Its Effects on Concrete Properties

    OpenAIRE

    Mohammad Panjehpour; Abang Abdullah Abang Ali; Ramazan Demirboga

    2011-01-01

    Mineral additions which are also known as mineral admixtures have been used in Portland cement for many years. There are two types of additions which are commonly mixed into the Portland clinker or blended directly with cement these days. They are crystalline, also known as hydraulically inactive additions and pozzolanic, which are hydraulically active additions. Silica fume is very reactive pozzolan, while it is used in concrete because of its fine particles, large surface area and high SiO2...

  7. Influence of silica fume on mechanical and physical properties of recycled aggregate concrete

    OpenAIRE

    Çakır, Özgür; Sofyanlı, Ömer Özkan

    2015-01-01

    Several studies related to sustainable concrete construction have encouraged development of composite binders, involving Portland cement, industrial by-products, and concrete mixes with partial replacement of natural aggregate with recycled aggregate. In this paper, the effects of incorporating silica fume (SF) in the concrete mix design to improve the quality of recycled aggregates in concrete are presented. Portland cement was replaced with SF at 0%, 5% and 10%. Specimens were manufactured ...

  8. Characteristics of PAHs from deep-frying and frying cooking fumes.

    Science.gov (United States)

    Yao, Zhiliang; Li, Jing; Wu, Bobo; Hao, Xuewei; Yin, Yong; Jiang, Xi

    2015-10-01

    Cooking fumes are an important indoor source of polycyclic aromatic hydrocarbons (PAHs). Because indoor pollution has a more substantial impact on human health than outdoor pollution, PAHs from cooking fumes have drawn considerable attention. In this study, 16 PAHs emitted through deep-frying and frying methods using rapeseed, soybean, peanut, and olive oil were examined under a laboratory fume hood. Controlled experiments were conducted to collect gas- and particulate-phase PAHs emitted from the cooking oil fumes, and PAH concentrations were quantified via high-performance liquid chromatography (HPLC). The results show that deep-frying methods generate more PAHs and benzo[a]pyrene (B[a]P) (1.3 and 10.9 times, respectively) because they consume greater volumes of edible oil and involve higher oil temperatures relative to those of frying methods. In addition, the total B[a]Peq concentration of deep-frying is 2.2-fold larger than that of frying. Regarding the four types of edible oils studied, rapeseed oil produced more PAH emission than the other three oil varieties. For all of the cooking tests, three- and four-ringed PAHs were the main PAH components regardless of the food and oil used. Concerning the PAH partition between gas and particulate phase, the gaseous compounds accounted for 59-96 % of the total. Meanwhile, the particulate fraction was richer of high molecular weight PAHs (five-six rings). Deep-frying and frying were confirmed as important sources of PAH pollution in internal environments. The results of this study provide additional insights into the polluting features of PAHs produced via cooking activities in indoor environments.

  9. In situ polymerization of L-Lactide in the presence of fumed silica

    International Nuclear Information System (INIS)

    Prebe, A.; Alcouffe, P.; Cassagnau, Ph.; Gerard, J.F.

    2010-01-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  10. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  11. In situ polymerization of L-Lactide in the presence of fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Prebe, A. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France); Alcouffe, P. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Cassagnau, Ph., E-mail: philippe.cassagnau@univ-lyon1.fr [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Gerard, J.F. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France)

    2010-11-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  12. Risk communication concerning welding fumes for the primary preventive care of welding apprentices in southern Brazil.

    Science.gov (United States)

    Cezar-Vaz, Marta Regina; Bonow, Clarice Alves; Vaz, Joana Cezar

    2015-01-19

    This study's aim was to assess the perceptions of welding apprentices concerning welding fumes being associated with respiratory and cardiovascular disorders and assess the implementation of risk communication as a primary prevention tool in the welding training process. This quasi-experimental, non-randomized study with before-and-after design was conducted with 84 welding apprentices in Southern Brazil. Poisson Regression analysis was used. Relative Risk was the measure used with a 95% confidence interval and 5% (p ≤ 0.05) significance level. Significant association was found between perceptions of worsened symptoms of respiratory disorders caused by welding fumes and educational level (p = 0.049), the use of goggles to protect against ultraviolet rays (p = 0.023), and access to services in private health facilities without insurance coverage (p = 0.001). Apprentices younger than 25 years old were 4.9 times more likely to perceive worsened cardiovascular symptoms caused by welding fumes after risk communication (RR = 4.91; CI 95%: 1.09 to 22.2). The conclusion is that risk communication as a primary preventive measure in continuing education processes implemented among apprentices, who are future welders, was efficacious. Thus, this study confirms that risk communication can be implemented as a primary prevention tool in welding apprenticeships.

  13. Influence of silica fume on the strength of high strength concrete

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.; Khan, S.A.

    2007-01-01

    HSC (High Strength Concrete) does not become evident by a sudden change in the behavior of 'ordinary strength' concrete. There is a gradual effect that becomes more noticeable when the strength level exceeds about 40-45 MPa. There cannot be a precise level of strength which defines this change in effect. The effects are on strength and workability, requiring us to take into account in our mix proportioning, the ramifications of fineness of cement on workability and of type of aggregate and aggregate/cement ratio on strength. In fact, the selection of materials becomes more critical as the concrete strength increases and that if very high strength is required (100 MPa and higher), relatively few materials may be suitable. An experimental investigation is carried out to evaluate the feasibility of producing HSC using locally available materials and to study the influence of silica fume on the strength of HSC. The main variables in this research is amount of silica fume. The parameters that are kept constant are the amount of cement equal to 580 kg/m3, dosage of HRWRA (High Range Water Reducing Admictures) equal to 4 % by weight of cementitious materials and the ratio of fine aggregate to coarse aggregate (1:2.3). Test results revealed that it is feasible to produce HSC using locally available materials. The optimum percentage of silica fume was found to be 15 % by weight of cement. (author)

  14. Effects of some anaesthetics on honeybees: nitrous oxide, carbon dioxide, ammonium nitrate smoker fumes

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J

    1954-08-01

    Honeybees were apparently unaffected by atmospheric oxygen concentrations between 7% and 100%, and only became motionless when the oxygen concentration was less than 2%. The effects of nitrous oxide-oxygen mixtures differed little, if at all, from those nitrogen-oxygen mixtures. Bees were not visibly affected by carbon dioxide concentrations up to 10-15% but they became motionless if the concentration exceeded 40-45%. Fumes produced by adding ammonium nitrate to the fuel in a beekeeper's smoker were found to contain hydrogen cyanide or cyanogen. Their effectiveness as an anaesthetic may be due to this or to some unidentified component, but not to nitrous oxide. All three anaesthetics caused foraging bees to stop collecting pollen, and accelerated the retrogression of the pharyngeal glands of young bees. Anaesthesia of a few bees in a colony with nitrous oxide, carbon dioxide, or ammonium nitrate smoker fumes did not appear to inhibit their drift back to the original site when their hive was moved, nor was any reduction in drifting observed when a whole colony was moved while anaesthetized with ammonium nitrate smoker fumes. 4 tables.

  15. Work-principle model for predicting toxic fumes of nonideal explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, Michael S. [National Institute of Occupational Safety and Health, Pittsburgh Research Center, P.O. Box 18070, Pittsburgh, PA 15236-0070 (United States)

    2004-08-01

    The work-principle from thermodynamics was used to formulate a model for predicting toxic fumes from mining explosives in underground chamber tests, where rapid turbulent combustion within the surrounding air noticeably changes the resulting concentrations. Two model constants were required to help characterize the reaction zone undergoing rapid chemical transformations in conjunction with heat transfer and work output: a stoichiometry mixing fraction and a reaction-quenching temperature. Rudimentary theory with an unsteady uniform concentration gradient was taken to characterize the combustion zone, yielding 75% for the mixing fraction. Four quenching temperature trends were resolved and compared to test results of ammonium nitrate compositions with different fuel-oil percentages (ANFO). The quenching temperature 2345 K was the optimum choice for fitting the two major components of fume toxicity: carbon monoxide (CO) and total nitrogen oxides (NO{sub X}). The resulting two-constant model was used to generate comparisons for test results of ANFO compositions with additives. Though respectable fits were usually found, charge formulations which reacted weakly could not be resolved numerically. The work-principle model yields toxic concentrations for a range of charge formulations, making it a useful tool for investigating the potential hazard of released fumes and reducing the risk of unwanted incidents. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  16. Effect of silica fume on the characterization of the geopolymer materials

    Science.gov (United States)

    Khater, Hisham M.

    2013-12-01

    The influence of silica fume (SF) addition on properties of geopolymer materials produced from alkaline activation of alumino-silicates metakaolin and waste concrete produced from demolition works has been studied through the measurement of compressive strength, Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy (SEM) analysis. Alumino-silicate materials are coarse aggregate included waste concrete and fired kaolin (metakaolin) at 800°C for 3 h, both passing a sieve of 90 μm. Mix specimens containing silica fume were prepared at water/binder ratios in a range of 0.30 under water curing. The used activators are an equal mix of sodium hydroxide and silicate in the ratio of 3:3 wt.%. The control geopolymer mix is composed of metakaolin and waste concrete in an equal mix (50:50, wt.%). Waste concrete was partially replaced by silica fume by 1 to 10 wt.%. The results indicated that compressive strengths of geopolymer mixes incorporating SF increased up to 7% substitution and then decreased up to 10% but still higher than that of the control mix. Results indicated that compressive strengths of geopolymer mixes incorporating SF increases up to 7% substitution and then decreases up to 10% but still higher than the control mix, where 7% SF-digested calcium hydroxide (CH) crystals, decreased the orientation of CH crystals, reduced the crystal size of CH gathered at the interface, and improved the interface more effectively.

  17. Comparison of Powder Dusting and Cyanoacrylate Fuming Techniques in Retrieving Latent Fingerprint Exposed to Environment Conditions

    International Nuclear Information System (INIS)

    Mayalvanan, Y.; Sri Pawita Albakri Amir Hamzah; Chuan, L.L.; Muhamad Hilmi Baba; Amidon Anan

    2014-01-01

    Latent fingerprints are one of the best evidence to prove the presence of an individuals presence at the crime scene. There are many techniques available for a successful fingerprint lifting. Two of the most common ones are fingerprint powder dusting and cyanoacrylate fuming. This research aims to compare both techniques and determine which has a higher success rate in retrieving fingerprints exposed to local environmental conditions for three days. Fingerprint samples were collected from 18 subjects on glass, perspex and aluminium slides. These samples were then exposed to local environmental conditions for three days. The fingerprints were then developed using the aforementioned techniques. Based on the results, it can be safely said that, fuming results in clearer fingerprints and more minutiae can be found from the retrieved fingerprints even with exposure to less than optimum local conditions. This proves that fuming is a better fingerprint lifting method to resolve latent fingerprint compared to powder dusting. Surface on which the fingerprint is retrieved from influences the quality of clarity of a latent fingerprint. (author)

  18. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species.

    Science.gov (United States)

    Aguirre-Rubí, Javier R; Luna-Acosta, Andrea; Etxebarría, Nestor; Soto, Manu; Espinoza, Félix; Ahrens, Michael J; Marigómez, Ionan

    2018-05-01

    This paper aims to contribute to the use of mangrove cupped oyster, Crassostrea rhizophorae, as a biomonitor species for chemical contamination assessment in mangrove-lined Caribbean coastal systems. Sampling was carried out in eight localities (three in Nicaragua and five in Colombia) with different types and levels of contamination. Oysters were collected during the rainy and dry seasons of 2012-2013 and the tissue concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) were determined. Low tissue concentrations of metals (except Hg) and PAHs; moderate-to-high tissue concentrations of Hg, hexachlorocyclohexanes (HCHs), and dichlorodiphenyl-trichloroethanes (DDTs); detectable levels of chlorpyrifos, polychlorinated biphenyls (PCBs) (mainly CB28, CB118, CB138 and CB 153) and brominated diphenyl ethers 85 (BDE85); and negligible levels of musks were recorded in Nicaraguan oysters. A distinct profile of POPs was identified in Colombia, where the tissue concentrations of PCBs and synthetic musk fragrances were low to moderate, and Ag, As, Cd, Pb, and PAHs ranged from moderate to extremely high. Overall, the values recorded for HCHs, DDTs and PCBs in Nicaraguan mangrove cupped oysters greatly exceeded the reference values in tissues of C. rhizophorae from the Wider Caribbean Region, whereas only the levels of PCBs were occasionally surpassed in Colombia. Different contaminant profiles were distinguished between oysters from Nicaragua and Colombia in radar plots constructed using the main groups of contaminants (metals, PAHs, musks, PCBs, and organochlorine pesticides (OCPs)). Likewise, integrated pollution indices revealed differences in the levels of contaminants. Moreover, the profiles and levels in oyster tissues also varied with season. Thus, principal component analysis clearly discriminated Nicaraguan and Colombian localities and, especially in Colombia, seasonal trends in chemical contamination and differences

  19. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film

    International Nuclear Information System (INIS)

    Wang, Jun; Luo, Yongming; Teng, Ying; Ma, Wenting; Christie, Peter; Li, Zhengao

    2013-01-01

    The concentrations of six priority phthalic acid esters (PAEs) in intensively managed suburban vegetable soils in Nanjing, east China, were analyzed using gas chromatography–mass spectrometry (GC–MS). The total PAE concentrations in the soils ranged widely from 0.15 to 9.68 mg kg −1 with a median value of 1.70 mg kg −1 , and di-n-butyl phthalate (DnBP), bis-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) were the most abundant phthalate esters. Soil PAE concentrations depended on the mode of use of plastic film in which PAEs were incorporated as plasticizing agents and both the plastic film and poultry manure appeared to be important sources of soil PAEs. Vegetables in rotation with flooded rice led to lower concentrations of PAEs in soil. The results indicate that agricultural plastic film can be an important source of soil PAE contamination and further research is required to fully elucidate the mechanisms of PAE contamination of intensive agricultural soils with different use modes of use of plastic film. -- Highlights: •Phthalate esters in soils from suburban intensive vegetable production systems were investigated. •Phthalate levels and risks of the vegetable soils with different plastic film use modes were examined. •Sources of phthalate esters in vegetable production soils were analyzed. -- PAE contamination of intensively managed vegetable soils varied widely depending on the mode of use of plastic film in different production systems

  20. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    Science.gov (United States)

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

  1. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  2. Groundwater contamination and the relationship between water chemistry and biotic components in a karst system (Bihor Mountains, Romania

    Directory of Open Access Journals (Sweden)

    Laura Epure

    2014-12-01

    Full Text Available The physical and chemical characteristics, microbial contaminat ion, and meiofauna of the Ocoale-Gheţar-Dobreşti karst system (Bihor Mountains, Romania were studied in order to assess the natural water quality by an interdisciplinary study. A total of 60 water samples were collected seasonally from 7 sites. Physico-chemical results showed a typical composition of karst waters, except for one site, where Ca2+ was absent, pH was very low, and the abundance and diversity of meiofauna were highest, demonstrating life support even for the most sensitive animals. No significant chemical pollution was found, but microbial contamination occurred in all samples, according to the national water quality standards of the analyzed springs. The Canonical Correlation Analysis and the Canonical Correspondence Analysis performed showed a strong connection between pH, nitrates and faecal pollution, indicating also a direct connection between microbial contaminants and dissolved oxygen.

  3. Demonstration of generic handbooks for assisting in the management of contaminated food production systems and inhabited areas in Europe

    DEFF Research Database (Denmark)

    Nisbet, A.F.; Andersson, Kasper Grann; Duranova, T.

    2010-01-01

    Two handbooks have been developed in conjunction with a wide range of stakeholders that provide assistance in the management of contaminated food production systems and inhabited areas following a radiological incident. Emergency centres in Member States not involved in the development...... of these handbooks were invited to take part in demonstration activities to establish whether the handbooks would be useful for the purposes of contingency planning and accident management. Some eight centres took part. Emergency exercises or similar events based on scenarios involving contamination of the foodchain...... and inhabited areas were used. Feedback from all of the demonstrations was positive with constructive criticism given on how to improve the navigation, structure and format of the handbooks. All of the key improvements highlighted during the demonstrations were taken into account and included in version 2...

  4. Effects of Surfactant Contamination on the Next Generation Gas Trap for the ISS Internal Thermal Control System

    Science.gov (United States)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    The current dual-membrane gas trap is designed to remove non-condensed gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Previous testing has shown that a hydrophobic-only design is capable of performing even better than the current dual-membrane design for both steady-state gas removal and gas slug removal in clean deionized water. This paper presents results of testing to evaluate the effects of surfactant contamination on the steady-state performance of the hydrophobic-only design.

  5. An in-line clean system for the solid-phase extraction of emerging contaminants in natural waters

    OpenAIRE

    Sodré, Fernando F.; Locatelli, Marco Antonio F.; Jardim, Wilson F.

    2010-01-01

    A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus i...

  6. Organization A Comprehensive System Of Insurance Coverage In The Potential Chemical And Biological Contamination Zone In Regions

    Directory of Open Access Journals (Sweden)

    Nina Vladimirovna Zaytseva

    2014-12-01

    Full Text Available The article provides a scientific rationale for an integrated approach to the provision of insurance coverage in the potential chemical and biological contamination zone. The following modern forms of chemical safety in the Russian Federation were considered: state reserve’s system, target program financing, state social insurance. The separate issue tackles the obligatory civil liability insurance for owners of dangerous objects. For improvement of the existing insurance protection system against emergency situations, risks were analyzed (shared on exogenous and endogenous. Among the exogenous risks including natural and climatic conditions of a region, its geographical arrangement, economic specialization, the seismic and terrorist risks were chosen and approaches to its solution were suggested. In endogenous risks’ group, the special focus is on wear and tear and obsolescence of hazardous chemical and biological object’s fixed assets. In case of high risk of an incident, it is suggested to increase in extent of insurance protection through self-insurance, a mutual insurance in the form of the organization of societies of a mutual insurance or the self-regulating organizations, and also development of voluntary insurance of a civil liability, both the owner of hazardous object, and regions of the Russian Federation and municipalities. The model of insurance coverage in the potential chemical and biological contamination zone is based on a differentiated approach to the danger level of the area. A matrix of adequate forms and types of insurance (required for insurance coverage of the population in the potential chemical and biological contamination zone was constructed. Proposed health risk management toolkit in the potential chemical and biological contamination zone will allow to use financial resources for chemical and biological safety in the regions more efficiently.

  7. Exposure Through Runoff and Ground Water Contamination Differentially Impact Behavior and Physiology of Crustaceans in Fluvial Systems.

    Science.gov (United States)

    Steele, Alexandra N; Belanger, Rachelle M; Moore, Paul A

    2018-06-19

    Chemical pollutants enter aquatic systems through numerous pathways (e.g., surface runoff and ground water contamination), thus associating these contaminant sources with varying hydrodynamic environments. The hydrodynamic environment shapes the temporal and spatial distribution of chemical contaminants through turbulent mixing. The differential dispersal of contaminants is not commonly addressed in ecotoxicological studies and may have varying implications for organism health. The purpose of this study is to understand how differing routes of exposure to atrazine alter social behaviors and physiological responses of aquatic organisms. This study used agonistic encounters in crayfish Orconectes virilis as a behavioral assay to investigate impact of sublethal concentrations of atrazine (0, 40, 80, and 160 µg/L) delivered by methods mimicking ground water and surface runoff influx into flow-through exposure arenas for a total of 23 h. Each experimental animal participated in a dyadic fight trial with an unexposed opponent. Fight duration and intensity were analyzed. Experimental crayfish hepatopancreas and abdominal muscle tissue samples were analyzed for cytochrome P450 and acetylcholinesterase levels to discern mechanism of detoxification and mode of action of atrazine. Atrazine delivered via runoff decreased crayfish overall fight intensity and contrastingly ground water delivery increased overall fight intensity. The behavioral differences were mirrored by increases in cytochrome P450 activity, whereas no differences were found in acetylcholinesterase activity. This study demonstrates that method of delivery into fluvial systems has differential effects on both behavior and physiology of organisms and emphasizes the need for the consideration of delivery pathway in ecotoxicological studies and water-impairment standards.

  8. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    Science.gov (United States)

    Jayamohan, Harikrishnan

    <