WorldWideScience

Sample records for fully thermally coupled

  1. A fully coupled thermal-mechanical-fluid flow model for nonlinear geologic systems

    Science.gov (United States)

    Hart, R. D.

    1981-02-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior.

  2. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  3. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Directory of Open Access Journals (Sweden)

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  4. Electromagnetic-mechanical-thermal fully coupled model for Terfenol-D devices

    Science.gov (United States)

    Huang, Wenmei; Deng, Zhangxian; Dapino, Marcelo J.; Weng, Ling; Wang, Bowen

    2015-05-01

    This paper presents a fully coupled, nonlinear electromagnetic-mechanical-thermal model for Terfenol-D devices which include active magnetostrictive materials and passive components. The model includes two parts: (1) a material-level discrete energy-averaged model (DEAM) to describe the magnetomechanical coupling and thermal effect of Terfenol-D and (2) a system-level finite element model formulated in weak form using Maxwell's equations, Newton's law, and heat transfer equations. The objective is to describe the electromagnetic, mechanical, and thermal dynamics of the device. The system finite element model is constructed in COMSOL Multiphysics, and the nonlinear behavior of Terfenol-D is coupled through lookup tables generated by the DEAM. Preliminary results of the output capacity of a Terfenol-D actuator with respect to ambient temperature are presented in terms of blocked force, free displacement, and output power. The blocked force and free displacement decrease by 8.0% and 29.8%, respectively, for a 12 A (RMS) excitation current, as the temperature increases from 20 °C to 180 °C. One of the key contributions of this study is that it accounts for both the temperature-dependent Terfenol-D properties and the thermal effects of surrounding passive systems.

  5. Coupled fully 3D neutron kinetics thermal-hydraulic computations for DNB analysis on PWRs

    International Nuclear Information System (INIS)

    Pitot, Samuel; Alborghetti, Nicolas

    2007-01-01

    Departure from Nucleate Boiling (DNB) is one of the major limiting factors of Pressurized Water Reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. To perform Main Steam Line Break (MSLB) accident calculations EDF have developed its own numerical tool OSCARD based on: the thermal-hydraulic THYC code for DNB analysis, the neutron kinetics COCCINELLE code for power distribution computations, the thermal-hydraulic CATHARE code to provide boundary conditions analysis with system scale computation. With OSCARD a fully three-dimensional (3D) representation of the core is proposed in conjunction with a two-phase flow porous-body approach (THYC) and two-group diffusion equations in the axial and lateral directions with Doppler and void reactivity feedback effects (COCCINELLE). OSCARD provides EDF with an alternative and independent way of evaluating fuel performance and safety margins. In the licensed approach, the coupled 3D neutron kinetics and thermal-hydraulic part of OSCARD steady computations is used to produce 3D power distribution in the reactor core at the most penalizing moment of the transient. Then this distribution is used as an input for THYC to perform thermal-hydraulic subchannel analysis. This 3 steps approach is used with simple conservative and bounding analysis assumptions, that can not occur in reality. In a prospective approach, OSCARD enables to combine thermal-hydraulic subchannel analysis with the neutron kinetics radial average channel model using a nodalization of one quarter of fuel assembly in order to perform one step DNB analysis. (author)

  6. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  7. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    Science.gov (United States)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  8. Modeling thermal dynamics of active layer soils and near-surface permafrost using a fully coupled water and heat transport model

    Science.gov (United States)

    Jiang, Yueyang; Zhuang, Qianlai; O'Donnell, Jonathan A.

    2012-01-01

    Thawing and freezing processes are key components in permafrost dynamics, and these processes play an important role in regulating the hydrological and carbon cycles in the northern high latitudes. In the present study, we apply a well-developed soil thermal model that fully couples heat and water transport, to simulate the thawing and freezing processes at daily time steps across multiple sites that vary with vegetation cover, disturbance history, and climate. The model performance was evaluated by comparing modeled and measured soil temperatures at different depths. We use the model to explore the influence of climate, fire disturbance, and topography (north- and south-facing slopes) on soil thermal dynamics. Modeled soil temperatures agree well with measured values for both boreal forest and tundra ecosystems at the site level. Combustion of organic-soil horizons during wildfire alters the surface energy balance and increases the downward heat flux through the soil profile, resulting in the warming and thawing of near-surface permafrost. A projection of 21st century permafrost dynamics indicates that as the climate warms, active layer thickness will likely increase to more than 3 meters in the boreal forest site and deeper than one meter in the tundra site. Results from this coupled heat-water modeling approach represent faster thaw rates than previously simulated in other studies. We conclude that the discussed soil thermal model is able to well simulate the permafrost dynamics and could be used as a tool to analyze the influence of climate change and wildfire disturbance on permafrost thawing.

  9. Fully Coupled FE Analyses of Buried Structures

    Directory of Open Access Journals (Sweden)

    James T. Baylot

    1994-01-01

    Full Text Available Current procedures for determining the response of buried structures to the effects of the detonation of buried high explosives recommend decoupling the free-field stress analysis from the structure response analysis. A fully coupled (explosive–soil structure finite element analysis procedure was developed so that the accuracies of current decoupling procedures could be evaluated. Comparisons of the results of analyses performed using this procedure with scale-model experiments indicate that this finite element procedure can be used to effectively evaluate the accuracies of the methods currently being used to decouple the free-field stress analysis from the structure response analysis.

  10. Fully Depleted Charge-Coupled Devices

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.

    2006-05-15

    We have developed fully depleted, back-illuminated CCDs thatbuild upon earlier research and development efforts directed towardstechnology development of silicon-strip detectors used inhigh-energy-physics experiments. The CCDs are fabricated on the same typeof high-resistivity, float-zone-refined silicon that is used for stripdetectors. The use of high-resistivity substrates allows for thickdepletion regions, on the order of 200-300 um, with corresponding highdetection efficiency for near-infrared andsoft x-ray photons. We comparethe fully depleted CCD to thep-i-n diode upon which it is based, anddescribe the use of fully depleted CCDs in astronomical and x-ray imagingapplications.

  11. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    Holland, Stephen E.

    2006-01-01

    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  12. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  13. Study of thermally coupled distillation systems for energy-efficient ...

    Indian Academy of Sciences (India)

    but also helps reduce emissions associated with the use of the fossil fuels [2]. Thermally coupled distillation system. (TCDS) is one of such configurations. TCDS was first pro- posed by Wright [3] as a divided wall column and later the- oretical studies were performed by Petlyuk et al [4]. The fully thermally coupled distillation ...

  14. Study of thermally coupled distillation systems for energy-efficient ...

    Indian Academy of Sciences (India)

    ponent mixtures. Int. J. Chem. Eng. 5(3): 555–561. [5] Fidkowski Z and Krolikowski L 1987 Minimum energy requirements for thermally coupled distillation systems. AIChE J. 33(4): 643–653. [6] Amminudin K A, Smith R, Thong D Y C and Towler G. P 2001 Design and optimization of fully thermally coupled distillation columns ...

  15. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  16. Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle

    Science.gov (United States)

    Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.

    2017-01-01

    A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match

  17. Simplified approach of predictions of thermal performance for counterflow fully-wet cooling coil

    Science.gov (United States)

    Mansour, M. Khamis; Hassab, M. A.

    2017-06-01

    An innovative correlation associating the effectiveness (ɛ) of the fully-wet cooling coil with its number of transfer unit and vice versa is presented in this work. The thermal performance and design of fully-wet cooling coil can be predicted simply through those correlations. The analytical model was constructed on a basis of solving heat and mass transfer equation "enthalpy potential method" simultaneously coupled with the energy equations. The validity of the new correlations was tested by experimental reported in the available literature. A good agreement with deviation less than 10% was found during the comparison between the output results of the new correlations and those obtained from the literature. The main benefits of those new correlations (1) Its simplicity to be implemented through simple calculations of input parameters (2) It provides helpful guidelines for optimization of wet cooling coil performance during its operation coupling with the thermal system at which the coil is integrated.

  18. A Fully Coupled Computational Model of the Silylation Process

    Energy Technology Data Exchange (ETDEWEB)

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  19. Modelling blast induced damage from a fully coupled explosive charge

    Science.gov (United States)

    Onederra, Italo A.; Furtney, Jason K.; Sellers, Ewan; Iverson, Stephen

    2015-01-01

    This paper presents one of the latest developments in the blasting engineering modelling field—the Hybrid Stress Blasting Model (HSBM). HSBM includes a rock breakage engine to model detonation, wave propagation, rock fragmentation, and muck pile formation. Results from two controlled blasting experiments were used to evaluate the code’s ability to predict the extent of damage. Results indicate that the code is capable of adequately predicting both the extent and shape of the damage zone associated with the influence of point-of-initiation and free-face boundary conditions. Radial fractures extending towards a free face are apparent in the modelling output and matched those mapped after the experiment. In the stage 2 validation experiment, the maximum extent of visible damage was of the order of 1.45 m for the fully coupled 38-mm emulsion charge. Peak radial velocities were predicted within a relative difference of only 1.59% at the nearest history point at 0.3 m from the explosive charge. Discrepancies were larger further away from the charge, with relative differences of −22.4% and −42.9% at distances of 0.46 m and 0.61 m, respectively, meaning that the model overestimated particle velocities at these distances. This attenuation deficiency in the modelling produced an overestimation of the damage zone at the corner of the block due to excessive stress reflections. The extent of visible damage in the immediate vicinity of the blasthole adequately matched the measurements. PMID:26412978

  20. Fully coupled numerical simulation of fire in tunnels: From fire scenario to structural response

    Directory of Open Access Journals (Sweden)

    Pesavento F.

    2013-09-01

    Full Text Available In this paper we present an efficient tool for simulation of a fire scenario in a tunnel. The strategy adopted is based on a 3D-2D coupling technique between the fluid domain and the solid one. So, the thermally driven CFD part is solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections normal to the tunnel axis, at appropriate intervals. The heat flux and temperature values, which serve as coupling terms between the fluid and the structural problem, are interpolated between the sections. Between the solid and the fluid domain an interface layer is created for the calculation of the heat flux exchange based on a “wall law”. In the analysis of the concrete structures, concrete is treated as a multiphase porous material. Some examples of application of this fully coupled tool will be shown.

  1. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Trembacki, Bradley L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murthy, Jayathi Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  2. Fluid-structure thermal coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, J. [Adtech, N3S, Tokyo (Japan); Gasser, D. [Simulog, N3S, Estet, Simail, 78 - Saint Quentin en Yvelyne (France)

    1997-12-31

    On many occasions thermal exchange takes place between a structure and a fluid flowing in its neighbourhood. Such phenomena can be very complex, and numerical simulation is then an interesting means to understand them better. In that context, SIMULOG simulated the air flow around a radiator using the coupled numerical codes N3S and SYRTHES, which are developed at EDF/LNH. While N3S computes the air flow and thermal convection around the radiator`s fins, SYRTHES computes heat conduction in the radiator. The N3S-SYRTHES coupling process takes into account the heat transfer at the fluid/solid interface. Two computations were performed, corresponding to air flow rates values between the fins of 0.0518 m{sup 3}/s and 0.0865 m{sup 3}/s, and a radiator temperature of 40 deg C, the air flows along the Z axis from the bottom to the top of the radiator. A rise in temperature, along the Z axis, takes place in the air and in the radiator. The maximum temperature reached inside the radiator is 55 deg C for the lowest flow and 51 deg C for the highest one. The average decrease of the air and radiator temperature is about 5 deg C when the flow rate raises from 0.0518 m{sup 3}/s to 0.0865 m{sup 3}/s. Such a simulation gives important information for the conception and the performance evaluation of this process where the main objective is to control the maximum temperature. (authors)

  3. Study of gap conductance model for thermo mechanical fully coupled finite element model

    International Nuclear Information System (INIS)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2012-01-01

    A light water reactor (LWR) fuel rod consists of zirconium alloy cladding and uranium dioxide pellets, with a slight gap between them. Therefore, the mechanical integrity of zirconium alloy cladding is the most critical issue, as it is an important barrier for fission products released into the environment. To evaluate the stress and strain of the cladding during operation, fuel performance codes with a one-dimensional (1D) approach have been reported since the 1970s. However, it is difficult for a 1D model to simulate the stress and strain of the cladding accurately owing to a lack of degree of freedom. A LWR fuel performance code should include thermo-mechanical coupled model owing to the existence of the fuel-cladding gap. Generally, the gap that is filled with helium gas results in temperature drop along radius direction. The gap conductance that determines temperature gradient within the gap is very sensitive to gap thickness. For instance, once the gap size increases up to several microns in certain region, difference of surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Consequently, the Finite Element (FE) module, which can simulate a higher degree of freedom numerically, is an indispensable requirement to understand the thermomechanical behavior of cladding. FRAPCON-3, which is reliable performance code, has iterative loop for thermo-mechanical coupled calculation to solve 1D gap conductance model. In FEMAXI-III, 1D thermal analysis module and FE module for stress-strain analysis were separated. 1D thermal module includes iterative analysis between them. DIONISIO code focused on thermal contact model as function of surface roughness and contact pressure when the gap is closed. In previous works, gap conductance model has been developed only for 1D model or hybrid model (1D and FE). To simulate temperature, stress and strain

  4. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models

    Science.gov (United States)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.

    2017-12-01

    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W

  5. Thermo-elasto-visco-plastic constitutive equations fully coupled with ductile damage. Application to metal cutting by chip formation

    International Nuclear Information System (INIS)

    Lestriez, P.; Cherouat, A.; Saanouni, K.; Mariage, J.F.

    2004-01-01

    A fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning either the local integration scheme as well as the global resolution strategy are discussed. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine. Applications are made to the orthogonal metal cutting by chip formation and segmentation. The interaction between hardening plasticity, ductile damage and thermal effects are carefully analyzed. The numerical results obtained with this procedure based on the damage coupling are compared with those obtained with the classical procedure neglecting the damage effect

  6. Fully-Coupled Metallic Fuel Performance Simulations using BISON

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-27

    This document is a set of slides intended to accompany a talk at a meeting. The first topic taken up is zirconium redistribution. The rod edge Zr increase is evidently due to the Soret term and temperature gradient. Then metallic fission gas release modeling is considered. Based on a GRSIS/FEAST model, the approach of generating fission gas in the fuel matrix is described. A sensitivity study on parameters is presented, including sodium bond & diffusion coefficient sensitivity along with dt sensitivity. Finally, results of some coupled simulations are shown, with ideas about future work.

  7. Fully Coupled Michigan MHD - Rice Convection Model for a Northward Turning

    Science.gov (United States)

    de Zeeuw, D.; Sazykin, S.; Wolf, R.; Gombosi, T.; Powell, K.

    2003-04-01

    The Rice Convection Model (RCM) has been successfully coupled to the Michigan MHD model (BATSRUS). This fully coupled code allows us to self-consistently simulate the physics in the inner and outer magnetosphere. Results will be presented for a fully coupled-code run for idealized inputs, steady Southward IMF followed by a Northward turning of the IMF. Discussion will include details of the coupling and choices that can be made for different types of coupling. Analysis will include region-2 currents, shielding of the inner magnetosphere, polar cap potential drop, partial and symmetric ring currents, pressure distribution, magnetic field inflation, and distribution of pVegamma.

  8. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model

    OpenAIRE

    Ivy, D; Solomon, S; Kinnison, D; Mills, M; Schmidt, A; Neely III, RR

    2017-01-01

    Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We presen...

  9. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  10. Thermal Conductivity Measurement and Analysis of Fully Ceramic Microencapsulated fuel

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J.; Lee, S. J.

    2015-01-01

    FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix in comparison with the current commercial UO2 fuel system of LWR. In addition to a safety enhancement of FCM fuel, thermal conductivity of SiC ceramic matrix is better than that of UO2 fuel. Because the centerline temperature of FCM fuel is lower than that of the current UO2 fuel due to the difference of thermal conductivity of fuel, an operational release of fission products from the fuel can be reduced. SiC ceramic has attracted for nuclear fuel application due to its high thermal conductivity properties with good radiation tolerant properties, a low neutron absorption cross-section and a high corrosion resistance. Thermal conductivity of ceramic matrix composite depends on the thermal conductivity of each component and the morphology of reinforcement materials such as fibers and particles. There are many results about thermal conductivity of fiber-reinforced composite like as SiCf/SiC composite. Thermal conductivity of SiC ceramics and FCM pellets with the volume fraction of TRISO particles were measured and analyzed by analytical models. Polycrystalline SiC ceramics and FCM pellets with TRISO particles were fabricated by hot press sintering with sintering additives. Thermal conductivity of the FCM pellets with TRISO particles of 0 vol.%, 10 vol.%, 20 vol.%, 30 vol.% and 40 vol.% show 68.4, 52.3, 46.8, 43.0 and 34.5 W/mK, respectively. As the volume fraction of TRISO particles increased, the measured thermal conductivity values closely followed the prediction of Maxwell's equation

  11. Embedding complex hydrology in the climate system - Towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, Michael; Rasmussen, Søren H.; Ridler, Marc

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  13. A Comparison of Ultimate Loads from Fully and Sequentially Coupled Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-14

    This poster summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between two modeling approaches (fully coupled and sequentially coupled) through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  14. Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup

    Directory of Open Access Journals (Sweden)

    Camelia Stanciu

    2017-01-01

    Full Text Available A simple effect one stage ammonia-water absorption cooling system fueled by solar energy is analyzed. The considered system is composed by a parabolic trough collector concentrating solar energy into a tubular receiver for heating water. This is stored in a fully mixed thermal storage tank and used in the vapor generator of the absorption cooling system. Time dependent cooling load is considered for the air conditioning of a residential two-storey house. A parametric study is performed to analyze the operation stability of the cooling system with respect to solar collector and storage tank dimensions. The results emphasized that there is a specific storage tank dimension associated to a specific solar collector dimension that could ensure the longest continuous startup operation of the cooling system when constant mass flow rates inside the system are assumed.

  15. Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.......A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm....

  16. Fully coupled simulation of cosmic reionization. II. Recombinations, clumping factors, and the photon budget for reionization

    International Nuclear Information System (INIS)

    So, Geoffrey C.; Norman, Michael L.; Reynolds, Daniel R.; Wise, John H.

    2014-01-01

    We use a fully coupled cosmological simulation including dark matter dynamics, multispecies hydrodynamics, nonequilibrium chemical ionization, flux-limited diffusion radiation transport, and a parameterized model of star formation and feedback (thermal and radiative) to investigate the epoch of hydrogen reionization in detail. In this paper, the first of several application papers, we investigate the mechanics of reionization from stellar sources forming in high-z galaxies, the utility of various formulations for the gas clumping factor on accurately estimating the effective recombination time in the intergalactic medium (IGM), and the photon budget required to achieve reionization. We also test the accuracy of the static and time-dependent models of Madau et al. as predictors of reionization completion/maintenance. We simulate a WMAP7 ΛCDM cosmological model in a 20 comoving Mpc cube, resolved with 800 3 uniform fluid cells and dark matter particles. By tuning our star formation recipe to approximately match the observed high-redshift star formation rate density and galaxy luminosity function, we have created a fully coupled radiation hydrodynamical realization of hydrogen reionization, which begins to ionize at z ≈ 10 and is completed at z ≈ 5.8 without further tuning. We find that roughly two ionizing photons per H atom are required to convert the neutral IGM to a highly ionized state. After reionization concludes, we find that the quantity n-dot ion ×(1 Gyr)/n H is ∼9 at z = 5, in rough agreement with measurements of the ionizing emissivity by Becker and Bolton. The complicated events during reionization that lead to this number can be generally described as inside-out, but in reality, the narrative depends on the level of ionization of the gas one attributes as being ionized. We find that the formula for the ionizing photon production rate needed to maintain the IGM in an ionized state derived by Madau et al. should not be used to predict the epoch of

  17. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  18. A fully coupled air foil bearing model considering friction – Theory & experiment

    DEFF Research Database (Denmark)

    von Osmanski, Alexander Sebastian; Larsen, Jon Steffen; Santos, Ilmar

    2017-01-01

    The dynamics of air foil bearings (AFBs) are not yet fully captured by any model. The recent years have, however, seen promising results from nonlinear time domain models, and simultaneously coupled formulations are now available, avoiding the previous requirements for undesirably small time steps...

  19. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    Science.gov (United States)

    Way, M.J; Del Genio, A.D.; Kelley, M.; Aleinov, I.; Clune, T.

    2015-01-01

    The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone.

  20. Thermal coupling at aqueous and biomolecular interfaces

    Science.gov (United States)

    Shenogina, Natalia B.

    Heat flow in the materials with nanoscopic features is dominated by thermal properties of the interfaces. While thermal properties of the solid-solid and solid-liquid interfaces are well studied, research of the thermal transport properties across soft (liquid-liquid) interfaces is very limited. Such interfaces are, however, plentiful in biological systems. In such systems the temperature control is of a great importance, because biochemical reactions, conformation of biomolecules as well as processes in biological cells and membranes have strong temperature sensitivity. The critical ingredient to temperature control in biological systems is the understanding of heat flow and thermal coupling across soft interfaces. To investigate heat transfer across biological and aqueous interfaces we chose to study a number of soft interfacial systems by means of molecular dynamic simulations. One of the interfaces under our investigation is the interface between protein (specifically green fluorescent protein) and water. Using this model we concentrated on the importance of vibrational frequency on coupling between water and proteins, and on significant differences between the roles of low and high frequency vibrations. Our thermal interfacial analysis allowed us to shed new light on to the issue of protein to water slaving, i.e., the concept of water controlling protein dynamics. Considering that the surface of the protein is composed of a complicated mixture of the hydrophobic and hydrophilic domains, to systematically explore the role of interfacial interactions we studied less complicated models with homogenous interfaces whith interfacial chemistry that could be changed in a controlled manner. We demonstrated that thermal transport measurements can be used to probe interfacial environments and to quantify interfacial bonding strength. Such ability provides a unique opportunity to characterize a variety of interfaces, which can be difficult to achieve with more direct

  1. Synthesis report on thermally driven coupled processes

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  2. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    Science.gov (United States)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  3. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  4. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.

  5. Fully-Coupled Fluid/Structure Vibration Analysis Using MSC/NASTRAN

    Science.gov (United States)

    Fernholz, Christian M.; Robinson, Jay H.

    1996-01-01

    MSC/NASTRAN's performance in the solution of fully-coupled fluid/structure problems is evaluated. NASTRAN is used to perform normal modes (SOL 103) and forced-response analyses (SOL 108, 111) on cylindrical and cubic fluid/structure models. Bulk data file cards unique to the specification of a fluid element are discussed and analytic partially-coupled solutions are derived for each type of problem. These solutions are used to evaluate NASTRAN's solutions for accuracy. Appendices to this work include NASTRAN data presented in fringe plot form, FORTRAN source code listings written in support of this work, and NASTRAN data file usage requirements for each analysis.

  6. Fully implicit, coupled procedures in computational fluid dynamics an engineer's resource book

    CERN Document Server

    Mazhar, Zeka

    2016-01-01

    This book introduces a new generation of superfast algorithms for the treatment of the notoriously difficult velocity-pressure coupling problem in incompressible fluid flow solutions. It provides all the necessary details for the understanding and implementation of the procedures. The derivation and construction of the fully-implicit, block-coupled, incomplete decomposition mechanism are given in a systematic, but easy fashion. Worked-out solutions are included, with comparisons and discussions. A complete program code is included for faster implementation of the algorithm. A brief literature review of the development of the classical solution procedures is included as well. .

  7. Fully Coupled Mean-Field Forward-Backward Stochastic Differential Equations and Stochastic Maximum Principle

    Directory of Open Access Journals (Sweden)

    Hui Min

    2014-01-01

    Full Text Available We discuss a new type of fully coupled forward-backward stochastic differential equations (FBSDEs whose coefficients depend on the states of the solution processes as well as their expected values, and we call them fully coupled mean-field forward-backward stochastic differential equations (mean-field FBSDEs. We first prove the existence and the uniqueness theorem of such mean-field FBSDEs under some certain monotonicity conditions and show the continuity property of the solutions with respect to the parameters. Then we discuss the stochastic optimal control problems of mean-field FBSDEs. The stochastic maximum principles are derived and the related mean-field linear quadratic optimal control problems are also discussed.

  8. A fully-coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape of the lubr...... of the lubricant from the pocket by means of MicroPlasto HydroDynamic Lubrication (MPHDL) and Micro Plasto HydroStatic Lubrication (MPHSL) mechanisms....

  9. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage

    Science.gov (United States)

    2017-03-21

    EW-201135) Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage March 2017 This document has been cleared for...09/2011-03/2017 4. TITLE AND SUBTITLE Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a...v ACRONYMS AND ABBREVIATIONS AGWT American Ground Water Trust AHU Air Handling Unit ATES Aquifer Thermal Energy Storage BTES Borehole

  10. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  11. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    International Nuclear Information System (INIS)

    Cai, Xiao-Chuan; Yang, Chao; Pernice, Michael

    2014-01-01

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  12. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    Science.gov (United States)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2018-02-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  13. A coupled electro-thermal Discontinuous Galerkin method

    Science.gov (United States)

    Homsi, L.; Geuzaine, C.; Noels, L.

    2017-11-01

    This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.

  14. A fully coupled thermo-hydro-mechanical model associated with inertia and slip effects

    Directory of Open Access Journals (Sweden)

    Xue Yi

    2017-01-01

    Full Text Available The inertia and slip effects have a significant impact on the coal seam gas extraction. A fully coupled thermo-hydro-mechanical model is established in this study, which takes into account the influence of non-Darcy gas flow and Klinkenberg effect on the coal seam deformation and coalbed methane migration. The numerical result shows that the coalbed methane migration and transport evolution coal bed methane reservoir is not only dependent on the coal matrix deformation, gas pressure and gas adsorption, but also closely related to inertia effect and slip effect.

  15. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  16. A Unified Macro- and Micromechanics Constitutive Model of Fully Coupled Fields

    Science.gov (United States)

    Sun, Z.; Niu, X.; Huang, Sh.; Song, Y.

    2014-05-01

    A unified macro- and micromechanics constitutive model of fully coupled electro-magneto-thermo-elastic multiphase functional composites is developed. The model is based on the hypothesis of periods, the theory of uniformity, and the finite-volume direct averaging micromechanics (FVDAM). By introducing quadratic displacements and electric and magnetic potentials into the constitutive model, its accuracy is improved. The efficiency of the model is also raised by adopting surface-averaged quantities to be the primary variables of the original FVDAM. A numerical example is presented, and a relation between material constants and the fiber volume fraction is obtained.

  17. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate...... simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  18. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Mark [Department of Engineering, CERN, 1211 Geneva (Switzerland); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, Benevento (Italy); Giustiniani, Alessandro; Masi, Alessandro [Department of Engineering, CERN, 1211 Geneva (Switzerland)

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  19. submitter An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    CERN Document Server

    Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro

    2016-01-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  20. Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

    Science.gov (United States)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming

    2017-12-01

    This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

  1. A Well-Balanced and Fully Coupled Noncapacity Model for Dam-Break Flooding

    Directory of Open Access Journals (Sweden)

    Zhiyuan Yue

    2015-01-01

    Full Text Available The last two decades have seen great progress in mathematical modeling of fluvial processes and flooding in terms of either approximation of the physical processes or dealing with the numerical difficulties. Yet attention to simultaneously taking advancements of both aspects is rarely paid. Here a well-balanced and fully coupled noncapacity model is presented of dam-break flooding over erodible beds. The governing equations are based on the complete mass and momentum conservation laws, implying fully coupled interactions between the dam-break flow and sediment transport. A well-balanced Godunov-type finite volume method is used to solve the governing equations, facilitating satisfactory representation of the complex flow phenomena. The well-balanced property is attained by using the divergence form of matrix related to the static force for the bottom slope source term. Existing classical tests, including idealized dam-break flooding over irregular topography and experimental dam-break flooding with/without sediment transport, are numerically simulated, showing a satisfactory quantitative performance of this model.

  2. Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Prasad K.V.

    2017-02-01

    Full Text Available The effect of thermal radiation and viscous dissipation on a combined free and forced convective flow in a vertical channel is investigated for a fully developed flow regime. Boussinesq and Roseseland approximations are considered in the modeling of the conduction radiation heat transfer with thermal boundary conditions (isothermal-thermal, isoflux-thermal, and isothermal-flux. The coupled nonlinear governing equations are also solved analytically using the Differential Transform Method (DTM and regular perturbation method (PM. The results are analyzed graphically for various governing parameters such as the mixed convection parameter, radiation parameter, Brinkman number and perturbation parameter for equal and different wall temperatures. It is found that the viscous dissipation enhances the flow reversal in the case of a downward flow while it counters the flow in the case of an upward flow. A comparison of the Differential Transform Method (DTM and regular perturbation method (PM methods shows the versatility of the Differential Transform Method (DTM. The skin friction and the wall temperature gradient are presented for different values of the physical parameters and the salient features are analyzed.

  3. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Randal Scott [Univ. of Arizona, Tucson, AZ (United States)

    1990-01-01

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (SN) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and SN regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor SN is well suited for by themselves. The fully coupled Monte Carlo/SN technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an SN calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary SN region. The Monte Carlo and SN regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the SN code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the SN code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating SN calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  4. Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-01-01

    Full Text Available There has been a growing consensus that preexisting natural fractures play an important role during stimulation. A novel fully coupled hydromechanical model using extended finite element method is proposed. This directly coupled scheme avoids the cumbersome process during calculating the fluid pressure in complicated fracture networks and translating into an equivalent nodal force. Numerical examples are presented to simulate the hydraulic fracture propagation paths for simultaneous multifracture treatments with properly using the stress shadow effects for horizontal wells and to reveal the deformation response and interaction mechanism between hydraulic induced fracture and nonintersected natural fractures at orthotropic and nonorthotropic angles. With the stress shadow effects, the induced hydraulic flexural fracture deflecting to wellbore rather than transverse fracture would be formed during the progress of simultaneous fracturing for a horizontal well. The coupled hydromechanical simulation reveals that the adjacent section to the intersection is opened and the others are closed for orthogonal natural fracture, while the nonorthogonal natural fracture is activated near the intersection firstly and along the whole section with increasing perturbed stresses. The results imply that the induced hydraulic fracture tends to cross orthotropic natural fracture, while it is prior to being arrested by the nonorthotropic natural fracture.

  5. Fully coupled-channels complex scaling method for the K-p p system

    Science.gov (United States)

    Doté, Akinobu; Inoue, Takashi; Myo, Takayuki

    2017-06-01

    We have developed a fully coupled-channels complex scaling method (ccCSM) for the study of the simplest (and thus most important) kaonic nucleus, ``K-p p ", which is a resonant state of a K ¯N N -π Σ N -π Λ N coupled-channel system based on theoretical viewpoint. By employing the ccCSM and imposing the correct boundary condition for a resonance, the coupled-channel problem is solved using a phenomenological energy-independent potential. As a result of the ccCSM calculation of ``K-p p ", in which all three channels are treated explicitly, we have obtained a three-body resonance as a Gamow state. The resonance pole indicates that the binding energy of ``K-p p " and the half value of its mesonic decay width are 51 and 16 MeV, respectively. In the analysis of the ccCSM resonant wave function, we clarify the spatial configuration and channel composition of ``K-p p ". Compared with past single-channel calculations based on effective K ¯N potentials, the current study provides a guideline for the determination of the K ¯N energy to be used in such effective potentials.

  6. Fully etched apodized grating coupler on the SOI platform with −058 dB coupling efficiency

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon- on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity andcoupling angle dependence are experimentally...

  7. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling

    Science.gov (United States)

    Ming, Yi; Li, Hui-Min; Ding, Ze-Jun

    2016-03-01

    Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.

  8. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  9. A fully coupled finite element model for stress distribution in buried gas pipeline

    International Nuclear Information System (INIS)

    Yahya Sukirman; Zainal Zakaria; Woong Soon Yue

    2001-01-01

    The study of stress-strain relationship is very important in many designs of buried structures over the years. The behavior and mechanism between the interaction of soil and buried structures such as a natural pipeline will mostly contributes to the integrity of the pipeline. This paper presents a fully coupled finite element of consolidation analysis model to study the stress-strain distribution along a buried pipeline before it excess its maximum deformation limit. The behavior of the soil-pipeline system can be modelled by a non-linear elasto-plastic based on Mohr-Coulomb and critical state yield surfaces. The deformation and deflection of the pipeline due to drained and external loading condition will be considered here. Finally the stress-strain distribution of the buried pipeline will be utilised to obtain the maximum deformation limit and the deflection of the buried pipeline. (Author)

  10. Total synthesis of fully tritiated Leu-enkephalin by enzymatic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hellio, F.; Lecocq, G.; Morgat, J.L.; Gueguen, P. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Biochimie)

    1990-09-01

    This paper describes the total enzymatic synthesis of Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) in which all residues were labelled with tritium. Carboxypeptidase Y from Saccharomyces cerevisiae was the coupling enzyme. ({sup 3}H)-Tyr-NH{sub 2}, ({sup 3}H)-Gly-Oet, ({sup 3}H)-Phe-NH{sub 2} and ({sup 3}H)-Leu-NH{sub 2} were prepared with specific radioactivities ranging between 20 and 60 Ci/mmol (740 to 2220 GBq/mmol). Using a microscale procedure, we obtained a fully tritiated hormone having a specific radioactivity equal to 139 Ci/mmol (5143 GBq/mmol), in agreement with the summation of the specific radioactivities of constituting residue. The radioactive hormone had antigenic properties identical to those of native Leu-enkephalin. It also bound to rat brain opiate receptors like the parental hormone. (author).

  11. A fully coupled variable properties thermohydraulic model for a cryogenic hydrostatic journal bearing

    Science.gov (United States)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.

  12. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  13. A Comparison of Fully-Coupled 3D In-Stent Restenosis Simulations to In-vivo Data

    NARCIS (Netherlands)

    Zun, P.S.; Anikina, T.; Svitenkov, A.I.; Hoekstra, A.G.

    We describe our fully-coupled 3D multiscale model of in-stent restenosis, with blood flow simulations coupled to smooth muscle cell proliferation, and report results of numerical simulations performed with this model. This novel model is based on several previously reported 2D models. We study the

  14. Fully-coupled hydro-mechanical modelling of the D-holes and validation drift inflow

    International Nuclear Information System (INIS)

    Monsen, K.; Barton, N.; Makurat, A.

    1992-02-01

    This report presents the results from fully-coupled hydro-mechanical modelling of the D-hole and drift inflows. Joints represented in Harwells stochastically generated 8m x 8m x 8m cubes were used to select two possible joint geometries for two-dimensional rock mechanics simulations of the 2.8 x 2.2m validation drift, and the rock mass response to its excavation. The joints intersecting the four end faces of these cubes were set up in distinct element UDEC-BB models and loaded with boundary stresses of 10 MPa vertically and 14 MPa horizontally. In numerical models 5 and 8, which were run first as mechanical response (M) models (TR 91-05), full H-M coupling was performed, with calculations of inflow. In general, response to excavation was a little stronger than in hte un-coupled mechanical response (M) modelling. In the D-hole simulations, however, channel development int he disturbed zone could not occur due to less displacement taking place in the rock mass. For this reason, the stress levels were also generally much more moderate, preventing the joints from closing as much as in the drift simulations. Consequently, the D-hole model had a much better radial connectivity. It was possible to observe that the radial inflow to the D-holes was significantly higher than the flow into the drift models. However, due to the extremely small joint apertures involved (<1μm), time steps and calculation times were very slow in the H-M models, and although mechanical behaviour appeared to have reached equilibrium, there was evidence of continued transients in some of the flow regions. The drift excavation caused nearly total closing of critical joints due to local normal stress inceases. Near-blockage of fluid transportation routes was demonstrated. (au)

  15. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  16. Sound transmission through a finite perforated panel set in a rigid baffle: A fully coupled analysis

    Science.gov (United States)

    Akkoorath Mana, Anoop; Sonti, Venkata R.

    2018-02-01

    Sound transmission through a fluid-loaded finite perforated panel set in an infinite unperforated rigid baffle is considered. Using a fully coupled formulation in the 2-D wavenumber domain, the transmitted pressure due to an incident plane wave is obtained. The change in the panel resonances caused by the perforations is accounted for. The formulation also takes into account the self- and inter-modal coupling coefficients arising due to the fluid-loading effect. The derivation is almost entirely analytical with numerical computations done at the very end. Transmission loss (TL) curves are plotted for various cases and the physics is discussed. Along the way an uncoupled calculation is also done for the sake of comparison. The results are mainly for a light medium like air. For a light medium, in general, the perforate impedance is lower than the panel impedance. Thus, most of the transmission happens through the perforations. The panel velocity contribution is insignificant and hence the uncoupled calculation is adequate. In general, the absolute perforate impedance increases with increasing frequency. So does the TL. At low frequencies, because the resistive component of the hole impedance increases, the absolute perforate impedance rises. Thus, the TL curves rise at the lower frequencies. This effect is prominent for sub-millimeter hole radii, i.e., for micro-perforations. An important issue with the TL values for perforated panels is that they sometimes acquire negative values at low frequencies. This apparent anomaly is resolved by showing that at low frequencies there is an additional power component that flows from the baffle region onto the panel. Upon inclusion of this additional term, the TL values remain positive at all frequencies.

  17. Inserts thermal coupling analysis in hexagonal honeycomb plates used for satellite structural design

    International Nuclear Information System (INIS)

    Boudjemai, A.; Mankour, A.; Salem, H.; Amri, R.; Hocine, R.; Chouchaoui, B.

    2014-01-01

    Mechanical joints and fasteners are essential elements in joining structural components in mechanical systems. The thermal coupling effect between the adjacent inserts depends to a great extent on the thermal properties of the inserts and the clearance. In this paper the Finite-Element Method (FEM) has been employed to study the insert thermal coupling behaviour of the hexagonal honeycomb panel. Fully coupled thermal analysis was conducted in order to predict thermal coupling phenomena caused by the adjacent inserts under extreme thermal loading conditions. Detailed finite elements models for a honeycomb panel are developed in this study including the insert joints. New approach of the adhesive joint is modelled. Thermal simulations showed that the adjacent inserts cause thermal interference and the adjacent inserts are highly sensitive to the effect of high temperatures. The clearance and thermal interference between the adjacent inserts have an important influence on the satellite equipments (such as the electronics box), which can cause the satellite equipments failures. The results of the model presented in this analysis are significant in the preliminary satellites structural dimensioning which present an effective approach of development by reducing the cost and the time of analysis. - Highlights: •In this work we perform thermal analysis of honeycomb plates using finite element method. •Detailed finite elements models for honeycomb panel are developed in this study including the insert joints. •New approach of the adhesive joint is modelled. •The adjacent inserts cause the thermal interference. •We conclude that this work will help in the analysis and the design of complex satellite structures

  18. The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model

    Science.gov (United States)

    Ivy, Diane J.; Solomon, Susan; Kinnison, Doug; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.

    2017-03-01

    Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We present simulations of the impact of the 2015 Calbuco eruption on the stratosphere using the Whole Atmosphere Community Climate Model with interactive dynamics and temperatures. Comparisons of the interactive and specified dynamics simulations indicate that chemical ozone depletion due to volcanic aerosols played a key role in establishing the record-sized ozone hole of October 2015. The analysis of an ensemble of interactive simulations with and without volcanic aerosols suggests that the forced response to the eruption of Calbuco was an increase in the size of the ozone hole by 4.5 × 106 km2.

  19. Asymptotical construction of a fully coupled, Reissner–Mindlin model for piezoelectric composite plates

    International Nuclear Information System (INIS)

    Liao Lin; Yu Wenbin

    2008-01-01

    The variational asymptotic method is used to construct a fully coupled Reissner–Mindlin model for piezoelectric composite plates with some surfaces parallel to the reference surface coated with electrodes. Taking advantage of the smallness of the plate thickness, we asymptotically split the original three-dimensional electromechanical problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The through-the-thickness analysis serves as a link between the original three-dimensional analysis and the plate analysis by providing a constitutive model for the plate analysis and recovering the three-dimensional field variables in terms of two-dimensional plate global responses. The present theory is implemented into the computer program VAPAS (variational asymptotic plate and shell analysis). The resulting model is as simple as an equivalent single-layer, first-order shear deformation theory with accuracy comparable to higher-order layerwise theories. Various numerical examples have been used to validate the present model

  20. electrical-thermal coupling of induction machine for improved

    African Journals Online (AJOL)

    user

    This paper summarizes the electrical-thermal coupling of induction machine for improved thermal performance. The interaction of its electrical and mechanical parts leads to an increase in temperature which if not properly monitored may lead to breakdown of the machine. The paper therefore, set out to study the effect of ...

  1. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  2. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  3. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  4. Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency.

    Science.gov (United States)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan; Yvind, Kresten

    2014-09-15

    We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon-on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity and coupling angle dependence are experimentally investigated. A record ultrahigh CE of -0.58 dB with a 3 dB bandwidth of 71 nm and low back reflection are demonstrated.

  5. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Anders, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  6. Testing and Modeling of a 3-MW Wind Turbine Using Fully Coupled Simulation Codes (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    LaCava, W.; Guo, Y.; Van Dam, J.; Bergua, R.; Casanovas, C.; Cugat, C.

    2012-06-01

    This poster describes the NREL/Alstom Wind testing and model verification of the Alstom 3-MW wind turbine located at NREL's National Wind Technology Center. NREL,in collaboration with ALSTOM Wind, is studying a 3-MW wind turbine installed at the National Wind Technology Center(NWTC). The project analyzes the turbine design using a state-of-the-art simulation code validated with detailed test data. This poster describes the testing and the model validation effort, and provides conclusions about the performance of the unique drive train configuration used in this wind turbine. The 3-MW machine has been operating at the NWTC since March 2011, and drive train measurements will be collected through the spring of 2012. The NWTC testing site has particularly turbulent wind patterns that allow for the measurement of large transient loads and the resulting turbine response. This poster describes the 3-MW turbine test project, the instrumentation installed, and the load cases captured. The design of a reliable wind turbine drive train increasingly relies on the use of advanced simulation to predict structural responses in a varying wind field. This poster presents a fully coupled, aero-elastic and dynamic model of the wind turbine. It also shows the methodology used to validate the model, including the use of measured tower modes, model-to-model comparisons of the power curve, and mainshaft bending predictions for various load cases. The drivetrain is designed to only transmit torque to the gearbox, eliminating non-torque moments that are known to cause gear misalignment. Preliminary results show that the drivetrain is able to divert bending loads in extreme loading cases, and that a significantly smaller bending moment is induced on the mainshaft compared to a three-point mounting design.

  7. Report Viewgraphs for IC Project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in pre-industrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model.

  8. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction

    Science.gov (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John

    2014-05-01

    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  9. On the determination of optimized, fully quadratic, coupled state quasidiabatic Hamiltonians for determining bound state vibronic spectra.

    Science.gov (United States)

    Zhu, Xiaolei; Yarkony, David R

    2009-06-21

    The quasidiabatic, coupled electronic state, fully quadratic Hamiltonian (H(d)), suitable for the simulation of spectra exhibiting strong vibronic couplings and constructed using a recently introduced pseudonormal equations approach, is studied. The flexibility inherent in the normal equations approach is shown to provide a robust means for (i) improving the accuracy of H(d), (ii) extending its domain of utility, and (iii) determining the limits of the fully quadratic model. The two lowest electronic states of pyrrolyl which are coupled by conical intersections are used as a test case. The requisite ab initio data are obtained from large multireference configuration interaction expansions comprised of 108.5x10(6) configuration state functions and based on polarized triple zeta quality atomic orbital bases.

  10. Thermally-driven Coupled THM Processes in Shales

    Science.gov (United States)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  11. A three-dimensional mixed-domain PEM fuel cell model with fully-coupled transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Hua [Center for Engineering and Scientific Computation, College of Computer Science, P.O. Box 1455, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2007-02-10

    A three-dimensional mixed-domain PEM fuel cell model with fully-coupled transport phenomena has been developed in this paper. In this model, after fully justified simplifications, only one set of interfacial boundary conditions is required to connect the water content equation inside the membrane and the equation of the water mass fraction in the other regions. All the other conservation equations are still solved in the single-domain framework. Numerical results indicate that although the fully-coupled transport phenomena produce only minor effects on the overall PEM fuel cell performance, i.e. average current density, they impose significant effects on current distribution, net water transfer coefficient, velocity and density variations, and species distributions. Intricate interactions of the mass transfer across the membrane, electrochemical kinetics, density and velocity variations, and species distributions dictate the detailed cell performances. Therefore, for accurate PEM fuel cell modeling and simulation, the effects of the fully-coupled transport phenomena could not be neglected. (author)

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...

  13. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  14. D-brane disformal coupling and thermal dark matter

    Science.gov (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne

    2017-11-01

    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  15. Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes

    International Nuclear Information System (INIS)

    Tortora, P.; Descrovi, E.; Aeschimann, L.; Vaccaro, L.; Herzig, H.-P.; Daendliker, R.

    2007-01-01

    We report computational and experimental investigations on injection and transmission of light in microfabricated fully Aluminum-coated quartz probes. In particular, we show that a selective coupling of either the HE 11 or the TM 01 mode can be carried out by injecting focused linearly or radially polarized beams into the probe. Optical fields, emitted by the probe after a controlled injection, are characterized in intensity and phase with the help of an interferometric technique. With the help of near-field measurement, we finally demonstrate that a longitudinally polarized spot localized at the tip apex is actually produced when the TM 01 mode is coupled into the probe

  16. Fully coupled fluid-structure interaction model of reed valves in a multi-cylinder reciprocating piston compressor

    Science.gov (United States)

    Xie, F.; Nieter, J.; Lifson, A.; Reba, R.; Sishtla, V.

    2017-08-01

    For years compressor researchers have tried to account for the fluid interaction effect of the working fluid on valve motion in displacement compressors. In recent years, the computing capacities and available CFD and FEA programs have allowed fully coupled interaction of fluids and moving structures to be modelled more comprehensively. This paper describes our experience and results from developing a model of a multi-cylinder reciprocating piston compressor with suction and discharge valve systems that are fully coupled with the pressure pulsation in the adjacent plenum. Valve dynamics are captured by the model that affects compressor performance. The results show that higher running speed causes more discharge valve delay on closing due to higher pressure pulsation in discharge plenum. The acoustic property of the discharge plenum as it relates to valve motion is studied by the developed cost-effective standalone model.

  17. Study of thermally coupled distillation systems for energy-efficient ...

    Indian Academy of Sciences (India)

    Distillation is one of the most widely used separation unit operations in process industries, although it is quite energy intensive. In many cases, the enormous energy requirements for distillation make it economically infeasible to carry out the separation. Thermally coupled distillation system (TCDS) is an advanced distillation ...

  18. Evidence of weak land-atmosphere coupling under varying bare soil conditions: Are fully coupled Darcy/Navier-Stokes models necessary for simulating soil moisture dynamics?

    Science.gov (United States)

    Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.

    2017-12-01

    It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution

  19. High Fidelity Aeroelasticity Simulations of Aircraft and Turbomachinery with Fully-Coupled Fluid-Structure Interaction

    Science.gov (United States)

    Gan, Jiaye

    The purpose of this research is to develop high fidelity numerical methods to investigate the complex aeroelasticity fluid-structural problems of aircraft and aircraft engine turbomachinery. Unsteady 3D compressible Navier-Stokes equations in generalized coordinates are solved to simulate the complex fluid dynamic problems in aeroelasticity. An efficient and low diffusion E-CUSP (LDE) scheme designed to minimize numerical dissipation is used as a Riemann solver to capture shock waves in transonic and supersonic flows. An improved hybrid turbulence modeling, delayed detached eddy simulation (DDES), is implemented to simulate shock induced separation and rotating stall flows. High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. To resolve the nonlinear interaction between flow and vibrating blade structures, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. A rotor/stator sliding interpolation technique is developed to accurately capture the blade rows interaction at the interface with general grid distribution. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are applied to consider the effect of phase difference for a sector of annulus simulation. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI methodology. The accuracy and robustness of RANS, URANS and DDES turbulence models with high order schemes for predicting the lift and drag of the DLR-F6 configuration are verified. The DDES predicts the drag very well whereas the URANS model significantly over predicts the drag. DDES of a finned projectile base flows is conducted to further validate the high fidelity methods with vortical flow. The

  20. Numerical Simulation of Hydraulic Fracture Propagation using Fully-Coupled Peridynamics, Thin-Film Flow, and Darcian Flow

    Science.gov (United States)

    Queiruga, A. F.; Moridis, G. J.

    2016-12-01

    A numerical model is presented for the simulation of the evolution of hydraulic fracture in general geological media that couples a peridynamic mechanical model and finite element models for porous flow and fracture flow. The two-dimensional model captures porous flow through rock; thin-film flow through hydraulic fractures; mechanical deformation due to applied loads, pore pressure, and fracture pressure; and fracture growth and deformation. The fracture mesh is built dynamically as the fracture grows, connecting broken peridynamic bonds. While a simple finite element model of Darcian flow is employed in the presented results, the formulation and implementation of the peridynamic and fracture models allows the code to be easily coupled to any other hydrogeological code. The dynamic evolution of the system is solved by implicit Runge-Kutta integration. The mechanical deformation, matrix pore pressure, and fracture pressure fields are solved fully-coupled in staggered nonlinear iterations at each Runge-Kutta stage, and the damage field is updated sequentially at each time step. The accuracy and convergence rates of the peridynamic model is studied by comparing numerical results to analytical solutions in linear mechanics, and the fully-coupled model is benchmarked against Terzhaghi's consolidation problem. Applications of the model to simulating pressure-driven hydraulic fracture extension of a lone fracture and a fracture interacting with preexisting natural fractures are presented.

  1. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    Energy Technology Data Exchange (ETDEWEB)

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  2. Coupled lattice Boltzmann method for numerical simulations of fully coupled heart and torso bidomain system in electrocardiology

    OpenAIRE

    Corre , Samuel; Belmiloudi , Aziz

    2016-01-01

    International audience; In this work, a modified coupling Lattice Boltzmann Model (LBM) in simulation of cardiac electrophysiology is developed in order to capture the detailed activities of macro- to micro-scale transport processes. The propagation of electrical activity in the human heart through torso is mathematically modeled by bidomain type systems. As transmembrane potential evolves, we take into account domain anisotropical properties using intracellular and extracellular conductivity...

  3. VHTR core modeling: coupling between neutronic and thermal-hydraulics

    International Nuclear Information System (INIS)

    Limaiem, I.; Damian, F.; Raepsaet, X.; Studer, E.

    2005-01-01

    Following the present interest in the next generation nuclear power plan (NGNP), Cea is deploying special effort to develop new models and qualify its research tools for this next generation reactors core. In this framework, the Very High Temperature Reactor concept (VHTR) has an increasing place in the actual research program. In such type of core, a strong interaction exists between neutronic and thermal-hydraulics. Consequently, the global core modelling requires accounting for the temperature feedback in the neutronic models. The purpose of this paper is to present the new neutronic and thermal-hydraulics coupling model dedicated to the High Temperature Reactors (HTR). The coupling model integrates a new version of the neutronic scheme calculation developed in collaboration between Cea and Framatome-ANP. The neutronic calculations are performed using a specific calculation processes based on the APOLLO2 transport code and CRONOS2 diffusion code which are part of the French reactor physics code system SAPHYR. The thermal-hydraulics model is characterised by an equivalent porous media and 1-D fluid/3-D thermal model implemented in the CAST3M/ARCTURUS code. The porous media approach involves the definition of both homogenous and heterogeneous models to ensure a correct temperature feedback. This study highlights the sensitivity of the coupling system's parameters (radial/axial meshing and data exchange strategy between neutronic and thermal-hydraulics code). The parameters sensitivity study leads to the definition of an optimal coupling system specification for the VHTR. Besides, this work presents the first physical analysis of the VHTR core in steady-state condition. The analysis gives information about the 3-D power peaking and the temperature coefficient. Indeed, it covers different core configurations with different helium distribution in the core bypass. (authors)

  4. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites

    International Nuclear Information System (INIS)

    Lee, Hyeon-Geun; Kim, Daejong; Lee, Seung Jae; Park, Ji Yeon; Kim, Weon-Ju

    2017-01-01

    Highlights: • Thermal conductivity of SiC ceramics and FCM pellets was measured and discussed. • Thermal conductivity of FCM pellets was analyzed by the Maxwell-Eucken equation. • Effective thermal conductivity of TRISO particles applied in this study was assumed. - Abstract: The thermal conductivity of SiC ceramics and FCM fuel composites, consisting of a SiC matrix and TRISO coated particles, was measured and analyzed. SiC ceramics and FCM pellets were fabricated by hot press sintering with Al 2 O 3 and Y 2 O 3 sintering additives. Several factors that influence thermal conductivity, specifically the content of sintering additives for SiC ceramics and the volume fraction of TRISO particles and the matrix thermal conductivity of FCM pellets, were investigated. The thermal conductivity values of samples were analyzed on the basis of their microstructure and the arrangement of TRISO particles. The thermal conductivity of the FCM pellets was compared to that predicted by the Maxwell-Eucken equation and the thermal conductivity of TRISO coated particles was calculated. The thermal conductivity of FCM pellets in various sintering conditions was in close agreement to that predicted by the Maxwell-Eucken equation with the fitted thermal conductivity value of TRISO particles.

  5. Flow Field Analysis of Fully Coupled Computations of a Flexible Wing undergoing Stall Flutter

    Science.gov (United States)

    2016-01-01

    instantaneously measure the wing deformation . Clearly, these sensors rely upon the structural deformation for determining the extent of the defor...Torsion Figure 3. Modal structural model containing both bending and torsional modes. which can be simplified to Cµ = U2j A j U2∞Are f (6) since the...orthogonal decomposition (POD) was used on the pressure in the flow field.? Because the mesh is deforming due to the fluid-structure coupling and the

  6. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  7. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-01-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  8. Coupled fast-thermal system at the 'RB' nuclear reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  9. Linearly coupled oscillations in fully degenerate pair and warm pair-ion astrophysical plasmas

    Science.gov (United States)

    Khan, S. A.; Ilyas, M.; Wazir, Z.; Ehsan, Zahida

    2014-08-01

    In this paper we study the coexisting low frequency oscillations in strongly degenerate, magnetized, (electron-positron) pair and warm pair-ion plasma. The dispersion relations are obtained for both the cases in macroscopic quantum hydrodynamics approximation. In pair-ion case, the dispersion equation shows coupling of electrostatic and (shear) electromagnetic modes under certain circumstances with important role of ion temperature. Domain of existence of such waves and their relevance to dense degenerate astrophysical plasmas is pointed out. Results are analyzed numerically for typical systems with variation of ion concentration and ion temperature.

  10. The impact on climate of groundwater induced soil moisture memory : a study with a fully coupled WRF-LEAFHYDRO system

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Martínez-de la Torre, Alberto

    2014-05-01

    Groundwater dynamics and its interactions with the land-atmosphere system are increasingly being taking into consideration in climate and ecosystem modeling studies. A shallow water table slows down drainage and affects soil moisture and potentially evapotranspiration (ET) and climate, particularly in water-limited environments. Our area of interest, the Iberian Peninsula, with a typical Mediterranean climate of dry growing season, is one of such regions where ET is largely constrained by water availability. We investigate how the induced memory on soil moisture by groundwater affects spring precipitation and summer temperatures there using a fully coupled WRF-LEAFHYDRO system. The LEAFHYDRO Land Surface Model includes groundwater dynamics with a realistic water table validated with hundreds of observations over Spain and Portugal. We perform two sets of long-term offline simulations, with and without groundwater forced by ERA-Interim and detailed precipitation analyses for the Iberian Peninsula. The corresponding fully coupled simulations with the Weather Research and Forecasting model (WRF), using exactly the same grid, take initial conditions from the off-line simulations at the end of the winter and are run for spring and summer, when we expect the impact of ET on climate to be largest. After a dry winter, in the run with groundwater soils are considerably wetter in regions with shallow water table and WRF results indicate that during spring the impact on precipitation can be sizeable when synoptic conditions are favorable for convection. Increased ET in the summer due also to more moisture availability in the run with groundwater leads in general to cooler temperatures. These preliminary results highlight the important role of groundwater on climate and the advantages of a fully coupled hydrology-atmospheric modeling system.

  11. Gauge coupling unification and nonequilibrium thermal dark matter.

    Science.gov (United States)

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  12. Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra.

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Dohm, Sebastian; Hansen, Andreas; Pisarek, Jana; Pracht, Philipp; Seibert, Jakob; Neese, Frank

    2017-11-13

    We present a composite procedure for the quantum-chemical computation of spin-spin-coupled 1 H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight-binding method GFN-xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR-specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin-spin couplings are computed at state-of-the-art DFT levels with continuum solvation. A few (in)organic and transition-metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100-150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Fully coupled heat conduction and deformation analyses of nonlinear viscoelastic composites

    KAUST Repository

    Khan, Kamran

    2012-05-01

    This study presents an integrated micromechanical model-finite element framework for analyzing coupled heat conduction and deformations of particle-reinforced composite structures. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermomechanical properties and micro-macro field variables due to coupled heat conduction and nonlinear thermoviscoelastic deformation of a particulate composite that takes into account the dissipation of energy from the viscoelastic constituents. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic homogeneous materials is developed. The algorithm is then integrated to the proposed micromechanical model. A significant temperature generation due to the dissipation effect in the viscoelastic matrix was observed when the composite body is subjected to cyclic mechanical loadings. Heat conduction due to the dissipation of the energy cannot be ignored in predicting the factual temperature and deformation fields within the composite structure, subjected to cyclic loading for a long period. A higher creep resistant matrix material or adding elastic particles can lower the temperature generation. Our analyses suggest that using particulate composites and functionally graded materials can reduce the heat generation due to energy dissipation. © 2012 Elsevier Ltd.

  14. Report Viewgraphs for IC project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.

  15. On performance of Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Paul T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shadid, John N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States). Department of Mathematics and Statistics,; Tsuji, Paul H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered in an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.

  16. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    Science.gov (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  17. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  18. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  19. Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope

    Directory of Open Access Journals (Sweden)

    Wang Zhengjun

    2015-01-01

    Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.

  20. Geometric nonlinear formulation for thermal-rigid-flexible coupling system

    Science.gov (United States)

    Fan, Wei; Liu, Jin-Yang

    2013-10-01

    This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.

  1. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  2. Coupling between water chemistry and thermal output at unsaturated repositories

    International Nuclear Information System (INIS)

    Walton, J.; LeMone, D.; Casey, D.

    1995-01-01

    This paper summarizes issues in predicting thermohydrology in the near field of a deep geological repository and the implications for performance assessment. Predicted thermohydrology depends on waste package design, and particularly on backfill materials. The coupling between solute concentrations and thermal gradients leads to a prediction of highly variable water chemistry in the near field which is radically different than the initial, undisturbed water chemistry; however, most analyses to date assume that waste package chemistry is approximately the same as initial pore water chemistry. Several alternative, simplified approaches for performance assessment are discussed

  3. Coupled heat conduction and thermal stress formulation using explicit integration

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kulak, R.F.

    1982-06-01

    The formulation needed for the conductance of heat by means of explicit integration is presented. The implementation of these expressions into a transient structural code, which is also based on explicit temporal integration, is described. Comparisons of theoretical results with code predictions are given both for one-dimensional and two-dimensional problems. The coupled thermal and structural solution of a concrete crucible, when subjected to a sudden temperature increase, shows the history of cracking. The extent of cracking is compared with experimental data

  4. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  5. Coupled neutronics - thermal-hydraulics programs for SCWRS

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, T. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Muegyetem rkp. 9., 1111 Budapest (Hungary)

    2010-07-01

    The Supercritical Water Cooled Reactor (SCWR) was chosen as one of the Generation IV reactors by GIF. At the moment, a number of concepts - thermal as well as fast ones - exist. The reference parameters for a thermal SCWR have been taken from the European High Performance Light Water Reactor (HPLWR). Since the pressure is higher than the critical pressure (22.1 MPa) there is no change in the phase of the water in the core. On the other hand, due to the significant changes in the physical properties of water at supercritical pressure, the system is susceptible to local temperature, density and power oscillations. This inclination is increased by the pseudo-critical transformation of the water used as coolant. Thus, for modelling a system of this type coupled neutronics - thermal-hydraulics programs are required. Such a program system has been developed with the following main features: great modularity which allows for easy modifications, thus several SCWR concepts can be studied; detailed assembly calculations (with MCNP) and full-core analysis (with SCALE) are supported; the differential equations of xenon poisoning are implemented to study xenon oscillations. The program system was used to examine the assembly of the HPLWR, to design the assembly and the core of the Simplified Supercritical Water Cooled Reactor (SSCWR) and to model xenon oscillations in SCWRs. (authors)

  6. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2014-01-01

    Highlights: • Two-temperature homogenized model is applied to thermal analysis of fully ceramic microencapsulated (FCM) fuel. • Based on the results of Monte Carlo calculation, homogenized parameters are obtained. • 2-D FEM/1-D FDM hybrid method for the model is used to obtain 3-D temperature profiles. • The model provides the fuel-kernel and SiC matrix temperatures separately. • Compared to UO 2 fuel, the FCM fuel shows ∼560 K lower maximum temperatures at steady- and transient states. - Abstract: The fully ceramic microencapsulated (FCM) fuel, one of the accident tolerant fuel (ATF) concepts, consists of TRISO particles randomly dispersed in SiC matrix. This high heterogeneity in compositions leads to difficulty in explicit thermal calculation of such a fuel. For thermal analysis of a fuel element of very high temperature reactors (VHTRs) which has a similar configuration to FCM fuel, two-temperature homogenized model was recently proposed by the authors. The model was developed using particle transport Monte Carlo method for heat conduction problems. It gives more realistic temperature profiles, and provides the fuel-kernel and graphite temperatures separately. In this paper, we apply the two-temperature homogenized model to three-dimensional single-channel thermal analysis of the FCM fuel element for steady- and transient-states using 2-D FEM/1-D FDM hybrid method. In the analyses, we assume that the power distribution is uniform in radial direction at steady-state and that in axial direction it is in the form of cosine function for simplicity. As transient scenarios, we consider (i) coolant inlet temperature transient, (ii) inlet mass flow rate transient, and (iii) power transient. The results of analyses are compared to those of conventional UO 2 fuel having the same geometric dimension and operating conditions

  7. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  8. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Science.gov (United States)

    Bouret, Yann; Argentina, Médéric; Counillon, Laurent

    2014-01-01

    We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  9. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  10. A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO2 storage simulations

    Science.gov (United States)

    Fan, Yaqing; Durlofsky, Louis J.; Tchelepi, Hamdi A.

    2012-06-01

    A numerical simulation framework for coupled multiphase flow, multicomponent transport and geochemical reactions in porous media is presented. The approach is an element-based formulation that combines the compositional modeling capabilities used in oil reservoir simulation with the treatment of chemical reactions used in groundwater modeling. The procedure employs a conservative finite-volume method with a fully-implicit treatment in time in order to preserve the nonlinear coupling of flow, transport, reactions, and mass transfer across phases. Phase behavior is described using cubic equations of state. In this framework, all the governing equations and associated constraints are cast in discrete residual form, such that any variable, or coefficient, can depend on any other variable in the problem. Prior to linearization, which is applied to construct the Jacobian matrix, no algebraic or analytic manipulation need be performed to reduce the nonlinear sets of equations and unknowns. Once the complete Jacobian matrix is assembled, a series of algebraic reductions (Schur complements), of the type used in compositional reservoir simulation, are performed to reduce the number of discrete equations that must be solved simultaneously. A GMRES solution strategy with CPR (Constrained Pressure Residual) preconditioning is applied to solve the reduced linear system. We demonstrate the formulation using two CO2 sequestration problems, one of which involves chemical reactions. The simulations demonstrate the efficiency and applicability of the overall procedure for modeling the long-term fate of sequestered CO2.

  11. Thermal design of a fully equipped solar-powered desert home

    KAUST Repository

    Serag-Eldin, M.A.

    2010-03-01

    The paper presents a conceptual design and thermodynamic analysis of a solar-powered desert home. The home is airconditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof mounted photovoltaic modules. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. A dynamic heat balance for a typical Middle-Eastern desert site, reveals that indeed such a design is feasible with present day technology; and should be even more attractive with future advances in technology.

  12. Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage (EW-201135)

    Science.gov (United States)

    2017-03-01

    FINAL REPORT Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage ESTCP Project EW-201135 MARCH 2017...TITLE AND SUBTITLE Coupling Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a. CONTRACT NUMBER 5b...LIST OF FIGURES Page Figure 2.1. Borehole Thermal Energy Storage (BTES) Overview ............................................................ 8

  13. Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads

    International Nuclear Information System (INIS)

    Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae

    2014-01-01

    Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints . This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects

  14. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system

    International Nuclear Information System (INIS)

    Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Sohn, Dong Kee; Yeo, Taejung

    2016-01-01

    Highlights: • Three-dimensional electrochemical thermal model of Li-ion battery pack using computational fluid dynamics (CFD). • Novel pack design for compact liquid cooling based thermal management system. • Simple temperature estimation algorithm for the cells in the pack using the results from the model. • Sensitivity of the thermal performance to contact resistance has been investigated. - Abstract: Thermal management system is of critical importance for a Li-ion battery pack, as high performance and long battery pack life can be simultaneously achieved when operated within a narrow range of temperature around the room temperature. An efficient thermal management system is required to keep the battery temperature in this range, despite widely varying operating conditions. A novel liquid coolant based thermal management system, for 18,650 battery pack has been introduced herein. This system is designed to be compact and economical without compromising safety. A coupled three-dimensional (3D) electrochemical thermal model is constructed for the proposed Li-ion battery pack. The model is used to evaluate the effects of different operating conditions like coolant flow-rate and discharge current on the pack temperature. Contact resistance is found to have the strongest impact on the thermal performance of the pack. From the numerical solution, a simple and novel temperature correlation of predicting the temperatures of all the individual cells given the temperature measurement of one cell is devised and validated with experimental results. Such coefficients have great potential of reducing the sensor requirement and complexity in a large Li-ion battery pack, typical of an electric vehicle.

  15. Theory of mode coupling in spin torque oscillators coupled to a thermal bath of magnons

    Science.gov (United States)

    Zhou, Yan; Zhang, Shulei; Li, Dong; Heinonen, Olle

    Recently, numerous experimental investigations have shown that the dynamics of a single spin torque oscillator (STO) exhibits complex behavior stemming from interactions between two or more modes of the oscillator. Examples are the observed mode-hopping and mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In this work, we rigorously derive such a theory starting with the generalized Landau-Lifshitz-Gilbert equation in the presence of the current-driven spin transfer torques. We will first show, in general, that how a linear mode coupling would arise through the coupling of the system to a thermal bath of magnons, which implies that the manifold of orbits and fixed points may shift with temperature. We then apply our theory to two experimentally interesting systems: 1) a STO patterned into nano-pillar with circular or elliptical cross-sections and 2) a nano-contact STO. For both cases, we found that in order to get mode coupling, it would be necessary to have either a finite in-plane component of the external field or an Oersted field. We will also discuss the temperature dependence of the linear mode coupling. Y. Zhou acknowledges the support by the Seed Funding Program for Basic Research from the University of Hong Kong, and University Grants Committee of Hong Kong (Contract No. AoE/P-04/08).

  16. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  17. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Claudio Vásquez Záldivar

    2013-12-01

    Full Text Available This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception.  Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed.  Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace.The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  18. Thermal and lighting perception in four fully glazed office buildings in Santiago, Chile

    Directory of Open Access Journals (Sweden)

    Claudio Vásquez

    2013-12-01

    Full Text Available Corresponding author: Claudio Vásquez, School of Architecture, Catholic University of Chile. 1916 El Comendador str. Providencia, Santiago, ZIP: 7530091, Chile. Tel.: +56 9 92826305; E-mail: clvasque@uc.cl This paper is part of a general research project whose main objective is to establish a baseline for post-occupancy energy consumption and indoor environmental quality for office buildings in Santiago, Chile. This study aims at understanding how architectonical variables relate to, and can even determine, user comfort perception. Thus, one-year continuous monitoring in several floors at four office buildings was performed and seasonal surveys were completed. Survey participants were asked a series of questions regarding spatial orientation and comfort perception in their workspace. The data from the comfort survey and onsite measurements such as season of the year, case study, type of workspace and possibility of an outdoor view from the workstation were contrasted with the components obtained by a Principal Component Analysis (PCA. Three components were selected from the PCA, and three Maps of Perception (MP were produced. These maps were then analyzed and interpreted so as to obtain information on the general perception of thermal and lighting comfort at workspaces within several office buildings in Santiago.

  19. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    Science.gov (United States)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  20. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  1. Control volume analyses of glottal flow using a fully-coupled numerical fluid-structure interaction model

    Science.gov (United States)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2013-11-01

    Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.

  2. Impacts of future radiation management scenarios on terrestrial carbon dynamics simulated with fully coupled NorESM

    Science.gov (United States)

    Ekici, Altug; Tjiputra, Jerry; Grini, Alf; Muri, Helene

    2017-04-01

    We have simulated 3 different radiation management geoengineering methods (CCT - cirrus cloud thinning; SAI - stratospheric aerosol injection; MSB - marine sky brightening) on top of future RCP8.5 scenario with the fully coupled Norwegian Earth System Model (NorESM). A globally consistent cooling in both atmosphere and soil is observed with all methods. However, precipitation patterns are dependent on the used method. Globally CCT and MSB methods do not affect the vegetation carbon budget, while SAI leads to a loss compared to RCP8.5 simulations. Spatially the most sensitive region is the tropics. Here, the changes in vegetation carbon content are related to the precipitation changes. Increase in soil carbon is projected in all three methods, the biggest change seen in SAI method. Simulations with CCT method leads to twice as much soil carbon retention in the tropics compared to the MSB method. Our findings show that there are unforeseen regional consequences of such geoengineering methods in the biogeochemical cycles and they should be considered with care in future climate policies.

  3. Four-phase fully-coupled mold-filling and solidification simulation for gas porosity prediction in aluminum sand casting

    Science.gov (United States)

    Jakumeit, J.; Jana, S.; Waclawczyk, T.; Mehdizadeh, A.; Sadiki, A.; Jouani, J.

    2012-07-01

    The impact of mold-filling and oxide film enclosure on gas porosity in A356 was investigated using a three-phase, fully-coupled, mold-filling and solidification simulation. For the prediction of gas porosity, a fourth hydrogen phase was added. At the solidification front hydrogen is rejected from the solid and accumulates in the melt. Pores nucleate if the solute gas exceeds the solubility limit. Air and melt are separated by a volume of fluid interface and special treatment of the hydrogen phase convection was necessary to limit the hydrogen to the melt. Folding of the melt surface was used as a source for oxide film entrainment. These oxide films were transported with the melt and used as nucleation sites for gas porosity formation. The influence of melt flow due to filling and oxide film distribution was analyzed using a simple 3-block test geometry. The test geometry was cast in A356 and analyzed by computer tomography to validate the porosity prediction.

  4. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO{sub 3} interface (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, G., E-mail: greta.radaelli@gmail.com; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R. [LNESS Center - Dipartimento di Fisica del Politecnico di Milano, Como 22100 (Italy)

    2014-05-07

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO{sub 3} (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures.

  5. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO3 interface (invited)

    International Nuclear Information System (INIS)

    Radaelli, G.; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R.

    2014-01-01

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO 3 (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures

  6. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  7. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction

    Science.gov (United States)

    Wu, Bin; Lu, Wei

    2017-08-01

    This paper develops a multi-scale mechanical-electrochemical model which enables fully coupled mechanics and electrochemistry at both particle and electrode levels. At the particle level, solid diffusion is modeled using a generalized chemical potential to capture the effects of mechanical stress and phase transformation. At the electrode level, the stress arising from particle interaction is incorporated in a continuum model. This particle interaction stress is in addition to the traditional concept of intercalation stress inside isolated particles. The particle and continuum electrode levels are linked by the particle interaction stress as loads on the particle surface, and by consideration of stress on the electrochemical reaction rate on the particle surface. The effect of mechanical stress on electrochemical reaction results in a stress-dependent over-potential between particle and electrolyte. Stress gradient in an electrode leads to inhomogeneous intercalation/deintercalation currents for particles depending on their interaction stress with neighbors, resulting in stress gradient induced inhomogeneous state of charge. Conversely, non-uniform intercalation/deintercalation currents in an electrode lead to stress between particles. With this model we have an important finding: an electrochemically inactive region in an electrode causes stress built-up. This model provides a powerful tool to address various problems such as fracture in-between particles.

  8. Influence of layout design and on-wafer heatspreaders on the thermal behavior of fully-isolated bipolar transistors: Part I - Static analysis

    Science.gov (United States)

    Russo, Salvatore; Spina, Luigi La; d'Alessandro, Vincenzo; Rinaldi, Niccolò; Nanver, Lis K.

    2010-08-01

    The impact of layout parameters on the steady-state thermal behavior of bipolar junction transistors (BJTs) with full dielectric isolation is extensively analyzed by accurate DC measurements and 3-D numerical simulations. The influence of the aspect ratio of the emitter stripe, as well as the consequences of device scaling, are investigated from a thermal viewpoint. Furthermore, the beneficial effect of implementing aluminum nitride (AlN) thin-film heatspreaders is examined. It is shown that the silicon area surrounding the heat source, as well as the distance to high-thermal-conductivity regions, can have a significant impact on the thermal behavior. A recently proposed scaling rule for the thermal resistance - fully compatible with advanced transistor models - is successfully applied to a series of test BJT structures provided that a simple parameter optimization is carried out. Based on this, some generally applicable guidelines are given to effectively downscale fully-isolated bipolar transistors without significantly worsening the thermal issues.

  9. TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-08-01

    Full Text Available REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility. Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

  10. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  11. Forecasting of rain-on-snow events in alpine region using a fully coupled atmosphere/snowpack/hydrology model

    Science.gov (United States)

    Vionnet, V.; Fortin, V.; Dimitrijevic, M.; Abrahamowicz, M.; Gauthier, N.; Garnaud, C.; Bélair, S.; Milbrandt, J.; Pomeroy, J. W.

    2017-12-01

    development of a fully coupled hydro-meteorological forecasting system over the Canadian Rockies.

  12. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2018-01-23

    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the G-actin transport was spatiotemporally modeled. We also for the first time modeled the effect of variable volume fraction of the moving F-actin porous network on solute transport in the cytosolic fluid. Our novel fully-coupled mathematical model provides a better understanding of intracellular dynamics of fast-migrating Keratocytes; such as the F-actin centripetal and cytosolic fountain-like flows, free-active myosin distribution, distribution sequence of the G-actin, F-actin, and myosin, and myosin-induced pressure flied of cytoplasm as well as the map of intracellular forces like myosin contraction and adhesion traction. All these results are qualitatively and quantitatively in good agreement with experimental observations. According to a range of value of parameters used in this model, our steady state of moving Keratocyte finds fan-like shape with the same aspect ratio as wide category of fish Keratocytes. This new model can predict shape of Keratocytes in other range of parameter values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermal DBI action for the D3-brane at weak and strong coupling

    DEFF Research Database (Denmark)

    Grignani, Gianluca; Harmark, Troels; Marini, Andrea

    2014-01-01

    We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...

  14. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences

  15. Thermalization and confinement in strongly coupled gauge theories

    Directory of Open Access Journals (Sweden)

    Ishii Takaaki

    2016-01-01

    Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.

  16. Holographic thermalization in [Formula: see text] super Yang-Mills theory at finite coupling.

    Science.gov (United States)

    Stricker, Stefan A

    We investigate the behavior of energy-momentum tensor correlators in holographic [Formula: see text] super Yang-Mills plasma, taking finite coupling corrections into account. In the thermal limit we determine the flow of quasinormal modes as a function of the 't Hooft coupling. Then we use a specific model of holographic thermalization to study the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the plasma constituents approach their thermal distribution as the coupling constant decreases from the infinite coupling limit. All obtained results point towards the weakening of the usual top-down thermalization pattern.

  17. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  18. Coupling Geothermal Heat Pumps (GHP) With Underground Seasonal Thermal Energy Storage (USTES)

    Science.gov (United States)

    2017-03-21

    TECHNICAL GUIDANCE Coupling Geothermal Heat Pumps (GHP) With Underground Seasonal Thermal Energy Storage (USTES) ESTCP Project EW-201135 MARCH...Geothermal Heat Pumps with Underground Seasonal Thermal Energy Storage 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Geothermal Heat Pumps, thermal , energy storage Page Intentionally Left Blank i TECHNICAL & ENVIRONMENTAL

  19. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  20. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Science.gov (United States)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  1. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Directory of Open Access Journals (Sweden)

    J. Schwinger

    2017-08-01

    Full Text Available We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %. The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by −0. 041 K per 1 Tg S yr−1 change in sea–air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea–air DMS fluxes by about 9 % (15 %, which counteracts the reduction due to ocean acidification.

  2. Thermal tides and Martian dust storms: Direct evidence for coupling

    International Nuclear Information System (INIS)

    Leovy, C.B.; Zurek, R.W.

    1979-01-01

    Observations of surface pressure oscillations at the Viking 1 and Viking 2 lander sites on Mars indicate that the thermally driven global atmospheric tides were closely coupled to the dust content of the Martian atmosphere, especially during northern fall and winter, when two successive global dust storms occurred. The onset of each of these global storms was marked by substantial, nearly simultaneous increases in the dust opacity and in the range of the daily surface pressure variation observed at both lander sites. Although both the diurnal and semidiurnal tidal surface pressure components were amplified at Lander 1 during the onset of a global dust storm, the semidiurnal component was greatly enhanced in relation to the diurnal tide. Semidiurnal wind components were prominent at both lander sites during the height of the global dust storm. We have attempted to interpret these observations using simplified dynamical models. In particular, the semidiurnal wind component can be successfully related to the observed surface pressure variation using a simplified model of a semidiurnally forced Ekman boundary layer. On the other hand, a classical atmospheric tidal model shows that the preferential enhancement of the semidiurnal surface pressure oscillation at Lander 1 can be produced by a tidal heating distribution which places most of the heating (per unit mass) above 10-km altitude. Furthermore, when a dust storm expands to global scale, it does so rather quickly, and the total atmospheric heating at the peak of the dust storm can represent more than 50% of the available insolation. The Viking observations suggest that a number of mechanisms are important for the generation and decay of these episodic Martian global dust storms

  3. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    Science.gov (United States)

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  4. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    Science.gov (United States)

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  5. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  6. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  7. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid–structure interaction scheme

    CSIR Research Space (South Africa)

    Malan, AG

    2012-09-01

    Full Text Available dual-time-stepping temporal dis- cretisation [16] is employed such that second-order temporal accuracy is achieved while ensuring that all equations are iteratively solved simultaneously in an im- plicit fashion. This results in a strongly coupled... ? ?) (? K/?0 + ? ?/?0 ) . (36) 4.5. Solution Procedure To achieve simultaneous solution of the discretised fluid-solid equations in a manner which effects strong coupling, the following solution sequence is em- ployed in an iterative fashion: 1...

  8. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  9. Coupled Aeroheating and Ablative Thermal Response Simulation Tool

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal protection system (TPS) performance requirements for atmospheric entry vehicles on current and future NASA missions preclude the use of heritage reusable...

  10. Single-electron thermal devices coupled to a mesoscopic gate

    Science.gov (United States)

    Sánchez, Rafael; Thierschmann, Holger; Molenkamp, Laurens W.

    2017-11-01

    We theoretically investigate the propagation of heat currents in a three-terminal quantum dot engine. Electron–electron interactions introduce state-dependent processes which can be resolved by energy-dependent tunneling rates. We identify the relevant transitions which define the operation of the system as a thermal transistor or a thermal diode. In the former case, thermal-induced charge fluctuations in the gate dot modify the thermal currents in the conductor with suppressed heat injection, resulting in huge amplification factors and the possible gating with arbitrarily low energy cost. In the latter case, enhanced correlations of the state-selective tunneling transitions redistribute heat flows giving high rectification coefficients and the unexpected cooling of one conductor terminal by heating the other one. We propose quantum dot arrays as a possible way to achieve the extreme tunneling asymmetries required for the different operations.

  11. PCB-level Electro thermal Coupling Simulation Analysis

    Science.gov (United States)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  12. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    OpenAIRE

    Flores-Niño, Cuautli; Olivares-Robles, Miguel; Loboda, Igor

    2015-01-01

    In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs) connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE) properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The p...

  13. Implementation of Fully Coupled Heat and Mass Transport Model to Determine Temperature and Moisture State at Elevated Temperatures

    DEFF Research Database (Denmark)

    Pecenko, R.; Hozjan, Tomaz; Svensson, Staffan

    2014-01-01

    The aim of this study is to present precise numerical formulation to determine temperature and moisture state of timber in the situation prior pyrolysis. The strong formulations needed for an accurate description of the physics are presented and discussed as well as their coupling terms. From the...

  14. Investigation of the Fluid-Solid Thermal Coupling for Rolling Bearing under Oil-Air Lubrication

    Directory of Open Access Journals (Sweden)

    Baohong Tong

    2015-02-01

    Full Text Available An excellent oil-air lubrication system helps to improve rolling bearing's working conditions and thus extend its service life span. Flowing and heat dissipating characteristics of oil-air media inside bearing chamber are very complicated due to the fluid-solid thermal coupling. Effects of fluid-solid thermal coupling are neglected in all previous simulation efforts. A numerical model for simulating the flowing inside bearing chamber is developed here based on an analytical fluid-solid thermal coupling method under oil-air lubrication. The effects of the coupling of air-oil flowing and heat dissipating in bearing chamber are predicted. The simulation results indicate that the coupling is influential in the performances of the flowing in rolling bearing under oil-air lubrication. With consideration of the coupling, the turbulence intensity, the turbulent kinetic energy, and the temperature of the rollers are predicted to be lower because part of the heat is carried out by the flow due to the heat transfer. On the contrary, the turbulent dissipation rate gets higher when considering the coupling effects. It is also interesting that the coupling effects have little influence on the flow pressure and the velocity, which is manifested by a little higher predicted value when considering the coupling.

  15. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other...... with large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules....... It is concluded that the heat coupling between IGBT and diode chips strongly influence the temperature distribution inside IGBT module, and this effect can be properly modeled/predicted by the proposed thermal impedance model....

  16. Finite-element analysis of elastic sound-proof coupling thermal state

    Science.gov (United States)

    Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu

    2018-01-01

    The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.

  17. Analysis Of Electrical – Thermal Coupling Of Induction Machine ...

    African Journals Online (AJOL)

    The interaction of the Electrical and mechanical parts of Electrical machines gives rise to the heating of the machine's constituent parts. This consequently leads to an increase in temperature which if not properly monitored may lead to the breakdown of the machine. This paper therefore presents the Electrical and thermal ...

  18. Self-similar solution for coupled thermal electromagnetic model ...

    African Journals Online (AJOL)

    An investigation into the existence and uniqueness solution of self-similar solution for the coupled Maxwell and Pennes Bio-heat equations have been done. Criteria for existence and uniqueness of self-similar solution are revealed in the consequent theorems. Journal of the Nigerian Association of Mathematical Physics ...

  19. Implementation of fully coupled heat and mass transport model to determine the behaviour of timber elements in fire

    DEFF Research Database (Denmark)

    Pečenko, Robert; Huč, Sabina; Turk, Goran

    2014-01-01

    In this paper we present results of numerical analysis of timber beam exposed to fire. The numerical procedure is divided into two physically separated but closely related phases. In the first phase coupled problem of moisture and heat transfer over the timber beam is numerically solved using the...... the enhanced finite element method. The results of the first computational stage were used as the input data for the numerical analysis of mechanical response of timber element....

  20. Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations

    International Nuclear Information System (INIS)

    Liao Jieqiao; Huang Jinfeng; Kuang Leman

    2011-01-01

    We study analytically the quantum thermalization of two coupled two-level systems (TLSs), which are connected with either two independent heat baths (IHBs) or a common heat bath (CHB). We understand the quantum thermalization in eigenstate and bare-state representations when the coupling between the two TLSs is stronger and weaker than the TLS-bath couplings, respectively. In the IHB case, we find that, when the two IHBs have the same temperatures, the two coupled TLSs in eigenstate representation can be thermalized with the same temperature as those of the IHBs. However, in the case of two IHBs at different temperatures, just when the energy detuning between the two TLSs satisfies a special condition, the two coupled TLSs in eigenstate representation can be thermalized with an immediate temperature between those of the two IHBs. In bare-state representation, we find a counterintuitive phenomenon that, under some conditions, the temperature of the TLS connected with the high-temperature bath is lower than that of the other TLS, which is connected with the low-temperature bath. In the CHB case, the coupled TLSs in eigenstate representation can be thermalized with the same temperature as that of the CHB in nonresonant cases. In bare-state representation, the TLS with a larger energy separation can be thermalized to a thermal equilibrium with a lower temperature. In the resonant case, we find a phenomenon of antithermalization. We also study the steady-state entanglement between the two TLSs in both the IHB and CHB cases.

  1. Neutronic and thermal-hydraulic coupling for 3D reactor core modeling combining MCB and fluent

    Directory of Open Access Journals (Sweden)

    Królikowski Igor P.

    2015-09-01

    Full Text Available Three-dimensional simulations of neutronics and thermal hydraulics of nuclear reactors are a tool used to design nuclear reactors. The coupling of MCB and FLUENT is presented, MCB allows to simulate neutronics, whereas FLUENT is computational fluid dynamics (CFD code. The main purpose of the coupling is to exchange data such as temperature and power profile between both codes. Temperature required as an input parameter for neutronics is significant since cross sections of nuclear reactions depend on temperature. Temperature may be calculated in thermal hydraulics, but this analysis needs as an input the power profile, which is a result from neutronic simulations. Exchange of data between both analyses is required to solve this problem. The coupling is a better solution compared to the assumption of estimated values of the temperatures or the power profiles; therefore the coupled analysis was created. This analysis includes single transient neutronic simulation and several steady-state thermal simulations. The power profile is generated in defined points in time during the neutronic simulation for the thermal analysis to calculate temperature. The coupled simulation gives information about thermal behavior of the reactor, nuclear reactions in the core, and the fuel evolution in time. Results show that there is strong influence of neutronics on thermal hydraulics. This impact is stronger than the impact of thermal hydraulics on neutronics. Influence of the coupling on temperature and neutron multiplication factor is presented. The analysis has been performed for the ELECTRA reactor, which is lead-cooled fast reactor concept, where the coolant fl ow is generated only by natural convection

  2. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  3. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  4. Selective coupling of HE{sub 11} and TM{sub 01} modes into microfabricated fully metal-coated quartz probes

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, P. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)]. E-mail: piero.tortora@unine.ch; Descrovi, E. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)]. E-mail: emiliano.descrovi@polito.it; Aeschimann, L. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Vaccaro, L. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Herzig, H.-P. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Daendliker, R. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)

    2007-02-15

    We report computational and experimental investigations on injection and transmission of light in microfabricated fully Aluminum-coated quartz probes. In particular, we show that a selective coupling of either the HE{sub 11} or the TM{sub 01} mode can be carried out by injecting focused linearly or radially polarized beams into the probe. Optical fields, emitted by the probe after a controlled injection, are characterized in intensity and phase with the help of an interferometric technique. With the help of near-field measurement, we finally demonstrate that a longitudinally polarized spot localized at the tip apex is actually produced when the TM{sub 01} mode is coupled into the probe.

  5. A fully integrated Earth System Model: focus on dynamical coupling of climatic and cryospheric model sub-systems

    Science.gov (United States)

    Morozova, Polina; Volodin, Evgeny; Rybak, Oleg; Huybrechts, Philippe; Korneva, Irina; Kaminskaia, Mariia

    2017-04-01

    Earth system models (ESMs) have been widely used in the recent years for complex studies of the climate system of the planet in the context of interactions between the atmosphere, oceans, ice sheets and the biosphere. Incorporation of the Earth syb-systems with very different spatial and temporal scales and response times into one model is really a challenging task. In particular, coupling of an AO GCM and ice sheet models of Greenland and Antarctic ice sheets (GrIS and AIS) requires application of special downscaling procedures. Within the frameworks of our research study, we implemented several coupling strategies. The choice of a strategy is dictated mostly by two factors - by the purpose of the research and by spatial resolution of an AO GCM. Several versions of the latter (called INMCM) were developed in the Institute of Numerical Mathematics (Moscow, Russia). For instance, the version aimed primarily for the relatively long numerical experiments (for e.g. palaeostudies) has spatial resolution of 5°×4°, 21 vertical layers in the atmospheric block, 2.5°×2°, 33 vertical layers in the oceanic block. To provide proper data exchange between the INMCM and GrIS and AIS models (spatial resolution 20×20 km), we employ rather simple buffer (sub-) models, describing regional heat and moisture diffusion. Applying buffer models enables to avoid systematic shifts in INMCM-generated precipitation fields and to much more realistically describe influence orographically driven precipitation (in Greenland) and elevation-temperature dependence. Novel versions of the INMCM with the spatial resolution of 2,5°×2° and higher generate much more realistic climatic fields, therefore the coupling procedure can be simplified to just averaging, resampling and remapping data from the AO GCM global domain to regional domains enclosing ice sheets. Increase in spatial resolution inevitably causes additional computational cost and reduces the area of the ESM application to

  6. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  7. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  8. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...

  9. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    KAUST Repository

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  10. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    Science.gov (United States)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  11. Fully automated system for the gas chromatographic characterization of polar biopolymers based on thermally assisted hydrolysis and methylation

    NARCIS (Netherlands)

    Kaal, E.; de Koning, S.; Brudin, S.; Janssen, H.-G.

    2008-01-01

    Pyrolysis-gas chromatography (Py-GC) is a powerful tool for the detailed compositional analysis of polymers. A major problem of Py-GC is that polar (bio)polymers yield polar pyrolyzates which are not easily accessible to further GC characterization. In the present work, a newly developed fully

  12. Lifetime prediction of LED lighting systems considering thermal coupling between LED sources and drivers

    DEFF Research Database (Denmark)

    Alfarog, Azzarn Orner; Qu, Xiaohui; Wang, Huai

    2017-01-01

    The lifetime prediction of LED lighting system is important to guide the designers to fulfill the design specifications and to benchmark the cost-competitiveness of different lighting technologies. Currently, the lifetime of LED system is usually predicted from the source part and the driver part...... separately, and then the thermal design is also optimized independently. In practice, the LED source and driver are usually compacted in a single fixture. The heat dissipated from LED source and driver will be coupled together and affect the heat transfer performance, which may degrade the whole system...... and accelerate the failure. In this paper, a new thermal model concerning the thermal coupling is proposed with Finite Element Method (FEM) simulation for parameter acquirement. The proposed model has a better estimation of the thermal stresses of key components in the LED lamps and therefore an improved...

  13. Ferromagnetic and Antiferromagnetic Coupling of Spin Molecular Interfaces with High Thermal Stability.

    Science.gov (United States)

    Avvisati, Giulia; Cardoso, Claudia; Varsano, Daniele; Ferretti, Andrea; Gargiani, Pierluigi; Betti, Maria Grazia

    2018-03-26

    We report an advanced organic spin-interface architecture with magnetic remanence at room temperature, constituted by metal phthalocyanine molecules magnetically coupled with Co layer(s), mediated by graphene. Fe- and Cu-phthalocyanines assembled on graphene/Co have identical structural configurations, but FePc couples antiferromagnetically with Co up to room temperature, while CuPc couples ferromagnetically with weaker coupling and thermal stability, as deduced by element-selective X-ray magnetic circular dichroic signals. The robust antiferromagnetic coupling is stabilized by a superexchange interaction, driven by the out-of-plane molecular orbitals responsible of the magnetic ground state and electronically decoupled from the underlying metal via the graphene layer, as confirmed by ab initio theoretical predictions. These archetypal spin interfaces can be prototypes to demonstrate how antiferromagnetic and/or ferromagnetic coupling can be optimized by selecting the molecular orbital symmetry.

  14. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    Science.gov (United States)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-09-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory's BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release.

  15. Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations

    International Nuclear Information System (INIS)

    Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard

    2013-01-01

    Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release

  16. Investigation on coupling characteristics of neutronics/thermal-hydraulics of PWR NPP core

    International Nuclear Information System (INIS)

    Zheng Yong; Peng Minjun; Xia Genglei; Liu Xinkai

    2014-01-01

    In this paper, an integrated neutronics/thermal-hydraulic model for the reactor of Qinshan Phase n NPP project was developed, using the RELAP5-HD as core coupled computational code. Based on the coupled model, the steady state calculation and the rod drop transient simulation were performed. The results show that the values obtained from RELAP5-HD calculation agree well with the available measured data, and the calculated accident curves can predict all major parameters trends of the transient with good accuracy. Both steady state and transient calculation results are in accordance with the theoretical analysis from the feedback aspect of coupled reactor neutronics/thermal-hydraulics, this demonstrates that a successful coupled model of Qinshan Phase n NPP core has been developed, and the established model provides a good foundation for further simulation analysis of the nuclear power plant system. (authors)

  17. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  18. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J.; Mousseau, V.A.; Ebert, D.D.

    1999-01-01

    A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model

  19. Extension of a semi-implicit shock-capturing algorithm for 3-D fully coupled, chemically reacting flows in generalized coordinates

    International Nuclear Information System (INIS)

    Shinn, J.L.; Yee, H.C.; Uenishi, K.; NASA, Ames Research Center, Moffett Field, CA; Vigyan Research Associates, Inc., Hampton, VA)

    1987-01-01

    A semiimplicit high-resolution shock-capturing method for multidimensional systems of hyperbolic conservation laws with stiff source terms has been developed by Yee and Shinn (1987). The goal of this work is to extend this method to solve the three-dimensional fully coupled Navier-Stokes equations for a hypersonic chemically reacting flow in generalized coordinates. In this formulation, the global continuity equation was replaced by all the species continuity equations. The shock-capturing technique is a second-order-accurate, symmetric total-variation-diminishing method which accounts fully and directly for the coupling among the fluid and all the species. To verify the current approach, it was implemented into an existing computer code which contained the MacCormack method. Test results for a five-species reacting flow are shown to be oscillation-free around the shock, and the time spent per iteration only doubles when compared to the result using classical way of supplying numerical dissipation. The extra computation is more than justified by the elimination of spurious oscillation and nonlinear instability associated with the classical shock-capturing schemes in computing hypersonic reacting flows. 27 references

  20. The thermal coupling constant and the gap equation in the λ φ 4D model

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1998-05-01

    By the concurrent use of two different resummation methods, the composite operator formalism and the Dyson-Schwinger equation, we re-examine the behaviour at finite temperature of the O(N)-symmetric λψ 4 model in a generic D-dimensional Euclidean space. In the cases D = 3 and D = 4, an analysis of the thermal behaviour of the renormalized squared mass and coupling constant are done for all temperatures. It results that the thermal renormalized squared mass is positive and increases monotonically with the temperature. The behavior of the thermal coupling constant is quite different in odd or even dimensional space. In D = 3, the thermal coupling constant decreases up to a minimum value different from zero and ten grows up monotonically as the temperature increases. In the case D = 4, it is found that the thermal renormalized coupling constant tends in the high temperature limit to a constant asymptotic value. Also for general D-dimensional Euclidean space, we are able to obtain a formula for the critical temperature of the second order phase transition. This formula agrees with previous known values at D = 3 and D 4. (author)

  1. A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems

    OpenAIRE

    Eugenio Aulisa; Sandro Manservisi; Padmanabhan Seshaiyer

    2009-01-01

    Solving complex coupled processes involving fluid-structure-thermal interactions is a challenging problem in computational sciences and engineering. Currently there exist numerous public-domain and commercial codes available in the area of Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD) and Computational Thermodynamics (CTD). Different groups specializing in modelling individual process such as CSD, CFD, CTD often come together to solve a complex coupled ap...

  2. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-01-01

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  3. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  4. A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period

    Directory of Open Access Journals (Sweden)

    Florence Sevault

    2014-11-01

    Full Text Available A fully coupled regional climate system model (CNRM-RCSM4 dedicated to the Mediterranean region is described and evaluated using a multidecadal hindcast simulation (1980–2012 driven by global atmosphere and ocean reanalysis. CNRM-RCSM4 includes the regional representation of the atmosphere (ALADIN-Climate model, land surface (ISBA model, rivers (TRIP model and the ocean (NEMOMED8 model, with a daily coupling by the OASIS coupler. This model aims to reproduce the regional climate system with as few constraints as possible: there is no surface salinity, temperature relaxation, or flux correction; the Black Sea budget is parameterised and river runoffs (except for the Nile are fully coupled. The atmospheric component of CNRM-RCSM4 is evaluated in a companion paper; here, we focus on the air–sea fluxes, river discharges, surface ocean characteristics, deep water formation phenomena and the Mediterranean thermohaline circulation. Long-term stability, mean seasonal cycle, interannual variability and decadal trends are evaluated using basin-scale climatologies and in-situ measurements when available. We demonstrate that the simulation shows overall good behaviour in agreement with state-of-the-art Mediterranean RCSMs. An overestimation of the shortwave radiation and latent heat loss as well as a cold Sea Surface Temperature (SST bias and a slight trend in the bottom layers are the primary current deficiencies. Further, CNRM-RCSM4 shows high skill in reproducing the interannual to decadal variability for air–sea fluxes, river runoffs, sea surface temperature and salinity as well as open-sea deep convection, including a realistic simulation of the Eastern Mediterranean Transient. We conclude that CNRM-RCSM4 is a mature modelling tool allowing the climate variability of the Mediterranean regional climate system to be studied and understood. It is used in hindcast and scenario modes in the HyMeX and Med-CORDEX programs.

  5. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    Science.gov (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  6. Design of a Protection Thermal Energy Storage Using Phase Change Material Coupled to a Solar Receiver

    Science.gov (United States)

    Verdier, D.; Falcoz, Q.; Ferrière, A.

    2014-12-01

    Thermal Energy Storage (TES) is the key for a stable electricity production in future Concentrated Solar Power (CSP) plants. This work presents a study on the thermal protection of the central receiver of CSP plant using a tower which is subject to considerable thermal stresses in case of cloudy events. The very high temperatures, 800 °C at design point, impose the use of special materials which are able to resist at high temperature and high mechanical constraints and high level of concentrated solar flux. In this paper we investigate a TES coupling a metallic matrix drilled with tubes of Phase Change Material (PCM) in order to store a large amount of thermal energy and release it in a short time. A numerical model is developed to optimize the arrangement of tubes into the TES. Then a methodology is given, based from the need in terms of thermal capacity, in order to help the choice of the geometry.

  7. Irradiation of diffusion couples U-Mo/Al. Thermal calculation

    International Nuclear Information System (INIS)

    Fortis, Ana M.; Mirandou, Monica; Denis, Alicia C.

    2004-01-01

    The development of new low enrichment fuel elements for research reactors has lead to obtaining a number of compounds and alloys where the decrease in the enrichment is compensated by a higher uranium density in the fuel material. This has been achieved in particular with the uranium silicides dispersed in an aluminum matrix, where uranium densities about 4.8 g/cm 3 have been reached. Among the diverse candidate alloys, those of U-Mo with molybdenum content in the range 6 to 10 w % can yield, upon dispersion, to uranium densities of about 8 g/cm 3 . The first irradiation experiments employing these alloys in fuel plates, either dispersed in Al or monolithic revealed certain phenomena which are worthy of further studies. Failures have been detected apparently due to the formation of reaction products between the fissile material and the aluminum matrix, which exhibit a poor irradiation behavior. An experiment was designed which final purpose is to irradiate diffusion couples U-Mo/Al in the RA-3 reactor and to analyze the interaction zone at the working temperatures of the fuel elements. A simple device was built consisting of two Al 6063 blocks which press the U-Mo sample in between, located in an Al capsule. The ensemble is placed in a tube, which can be filled with different gases and introduced in the reactor. For safety reasons temperature predictions are necessary before performing the experiment. To this end, the COSMOS code was used. As a preliminary step and in order to test to exactness of the numerical estimations, two irradiations were performed in the RA-1 reactor with He and N 2 as transference gases. The agreement between the measured and calculated temperatures was good, particularly in the case of He and, along with the numerical predictions for the RA-3 reactor, provides a reliable basis to proceed with the following steps. (author)

  8. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model.

    Directory of Open Access Journals (Sweden)

    Wenbin Mao

    Full Text Available In this study, we present a fully-coupled fluid-structure interaction (FSI framework that combines smoothed particle hydrodynamics (SPH and nonlinear finite element (FE method to investigate the coupled aortic and mitral valves structural response and the bulk intraventricular hemodynamics in a realistic left ventricle (LV model during the entire cardiac cycle. The FSI model incorporates valve structures that consider native asymmetric leaflet geometries, anisotropic hyperelastic material models and human material properties. Comparison of FSI results with subject-specific echocardiography data demonstrates that the SPH-FE approach is able to quantitatively predict the opening and closing times of the valves, the mitral leaflet opening and closing angles, and the large-scale intraventricular flow phenomena with a reasonable agreement. Moreover, comparison of FSI results with a LV model without valves reveals substantial differences in the flow field. Peak systolic velocities obtained from the FSI model and the LV model without valves are 2.56 m/s and 1.16 m/s, respectively, compared to the Doppler echo data of 2.17 m/s. The proposed SPH-FE FSI framework represents a further step towards modeling patient-specific coupled LV-valve dynamics, and has the potential to improve our understanding of cardiovascular physiology and to support professionals in clinical decision-making.

  9. Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with -0.78 dB coupling efficiency using photonic crystals and bonded Al mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2014-01-01

    We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated.......We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated....

  10. Model of natural ventilation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2012-01-01

    This article presents a model of natural ventilation of buildings at the stage of design and a consequence of the behaviour of the occupants. An evaluation is made by coupling multizone air modelling and thermal building simulation using a deterministic set of input factors comprising among others...

  11. Statistical properties of the energy exchanged between two heat baths coupled by thermal fluctuations

    DEFF Research Database (Denmark)

    Ciliberto, S.; Imparato, A.; Naert, A.

    2013-01-01

    We study both experimentally and theoretically the statistical properties of the energy exchanged between two electrical conductors, kept at different temperatures by two different heat reservoirs, and coupled by the electrical thermal noise. Such a system is ruled by the same equations as two...

  12. Coupled large-eddy simulation of thermal mixing in a T-junction

    International Nuclear Information System (INIS)

    Kloeren, D.; Laurien, E.

    2011-01-01

    Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)

  13. Development of MCATHAS system of coupled neutronics/thermal-hydraulics in supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, P.; Yao, D. [Science and Tech. on Reactor System Design Tech. Laboratory, Chengdu (China)

    2011-07-01

    The MCATHAS system of coupled neutronics/Thermal-hydraulics in supercritical water reactor is described, which considers the mutual influence between the obvious axial and radial evolution of material temperature, water density and the relative power distribution. This system can obtain the main neutronics and thermal parameters along with burn-up. MCATHAS system is parallel processing coupling. The MCNP code is used for neutronics analysis with the continuous cross section library at any temperature calculated by interpolation algorithm; The sub-channel code ATHAS is for thermal-hydraulics analysis and the ORIGEN Code for burn-up calculation. We validate the code with the assembly of HPLWR and analyze the assembly SCLWR- H. (author)

  14. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  15. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  16. Improving Neutron Kinetics and Thermal Hydraulics coupled tools for BEPU calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pericas, R.; Reventós, F.; Batet, Il.

    2015-07-01

    The BEPU methodology is capable of providing a solution in terms of increasing the nuclear power production without compromising the safety margins. This study presents different improvements performed using tools available at UPC in the field of Neutron Kinetics and Thermal Hydraulics coupled systems. The paper describes a comparison between the BEPU methodology and the Conservative Bounding methodology within the framework of the Neutron Kinetics and Thermal Hydraulics coupled systems. To perform such comparison the following tools have been selected: TRACE for thermal-hydraulic system calculations, PARCS for reactor kinetics core simulator code. A Main Steam Line Break (MSLB) in a Pressurized Water Reactor (PWR) is the selected simulated transient to show the improvements performed. (Author)

  17. An approach to validation of coupled CFD and system thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Jeltsov, M.; Cadinu, F.; Villanueva, W.; Karbojian, A.; Koop, K.; Kudinov, P.

    2011-01-01

    This paper discusses the development of approach and experimental facility for the validation of coupled Computational Fluid Dynamics (CFD) and System Thermal Hydraulics (STH) codes. The validation of a coupled code requires experiments which feature two way feedback between the component (CFD sub-domain) and the system (STH sub-domain). We present results of CFD analysis that are used in the development of a flexible design for the TALL-3D experimental facility. The facility consists of a lead-bismuth thermal-hydraulic loop operating in forced and natural circulation regimes with a heated pool-type 3D test section. The goal of the design is to achieve a feedback between mixing and stratification phenomena in the 3D tests section and forced / natural circulation flow conditions in the loop. Finally, we discuss the development of an experimental validation matrix for validation of coupled STH and CFD codes that considers the key physical phenomena of interest. (author)

  18. Simulation and optimization of ammonia removal at low temperature for a double channel oxidation ditch based on fully coupled activated sludge model (FCASM): a full-scale study.

    Science.gov (United States)

    Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi

    2013-09-01

    An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. An Integrative, Multi-Scale Computational Model of a Swimming Lamprey Fully Coupled to Its Fluid Environment and Incorporating Proprioceptive Feedback

    Science.gov (United States)

    Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.

    2016-02-01

    The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.

  20. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    International Nuclear Information System (INIS)

    Alameri, Saeed A.; King, Jeffrey C.

    2013-01-01

    Nuclear power plants operate most economically at a constant power level, providing base load electric power. In an energy grid containing a high fraction of renewable power sources, nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling a nuclear reactor to a large thermal energy storage block will allow the reactor to better respond to variable power demands. In the system described in this paper, a Prismatic core Advanced High Temperature Reactor supplies constant power to a lithium chloride molten salt thermal energy storage block that provides thermal power as needed to a closed Brayton cycle energy conversion system. During normal operation, the thermal energy storage block stores thermal energy during the night for use in the times of peak demand during the day. In this case, the nuclear reactor stays at a constant thermal power level. After a loss of forced circulation, the reactor reaches a shut down state in less than half an hour and the average fuel, graphite and coolant temperatures remain well within the design limits over the duration of the transient, demonstrating the inherent safety of the coupled system. (author)

  1. A flexible coupling scheme for Monte Carlo and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Ivanov, Aleksandar; Sanchez, Victor; Diop, Cheikh

    2011-01-01

    A coupling scheme between a Monte Carlo code and a thermal-hydraulics code is being developed within the European NURISP project for comprehensive and validated reactor analysis. The scheme is flexible as it allows different Monte Carlo codes and different thermal-hydraulics codes to be used. At present the MCNP and TRIPOLI4 Monte Carlo codes can be used and the FLICA4 and SubChanFlow thermal-hydraulics codes. For all these codes only an original executable is necessary. A Python script drives the iterations between Monte Carlo and thermal-hydraulics calculations. It also calls a conversion program to merge a master input file for the Monte Carlo code with the appropriate temperature and coolant density data from the thermal-hydraulics calculation. Likewise it calls another conversion program to merge a master input file for the thermal-hydraulics code with the power distribution data from the Monte Carlo calculation. Special attention is given to the neutron cross section data for the various required temperatures in the Monte Carlo calculation. Results are shown for an infinite lattice of PWR fuel pin cells and a 3 x 3 fuel BWR pin cell cluster. Various possibilities for further improvement and optimization of the coupling system are discussed. (author)

  2. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    International Nuclear Information System (INIS)

    Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.

    2015-01-01

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the

  3. Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe-Pt-Ag-B bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Nicula, R., E-mail: radu.nicula@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Crisan, O.; Crisan, A.D.; Mercioniu, I. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Stir, M. [University of Berne, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012 Berne (Switzerland); Vasiliu, F. [National Institute for Materials Physics, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2015-02-15

    Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1{sub 0} FePt and soft magnetic L1{sub 2} Fe{sub 3}Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe{sub 48}Pt{sub 28}Ag{sub 6}B{sub 18} alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe{sub 3}Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1{sub 0} unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1{sub 0} phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T{sub C} = 477 °C. This non-linear behavior above T{sub C} is tentatively linked to a diffusion/segregation mechanism of Ag

  4. Machine-Thermal Coupling Stresses Analysis of the Fin-Type Structural Thermoelectric Generator

    Science.gov (United States)

    Zhang, Zheng; Yue, Hao; Chen, Dongbo; Qin, Delei; Chen, Zijian

    2017-05-01

    The design structure and heat-transfer mechanism of a thermoelectric generator (TEG) determine its body temperature state. Thermal stress and thermal deformation generated by the temperature variation directly affect the stress state of thermoelectric modules (TEMs). Therefore, the rated temperature and pressing force of TEMs are important parameters in TEG design. Here, the relationships between structural of a fin-type TEG (FTEG) and these parameters are studied by modeling and "machine-thermal" coupling simulation. An indirect calculation method is adopted in the coupling simulation. First, numerical heat transfer calculations of a three-dimensional FTEG model are conducted according to an orthogonal simulation table. The influences of structural parameters for heat transfer in the channel and outer fin temperature distribution are analyzed. The optimal structural parameters are obtained and used to simulate temperature field of the outer fins. Second, taking the thermal calculation results as the initial condition, the thermal-solid coupling calculation is adopted. The thermal stresses of outer fin, mechanical force of spring-angle pressing mechanism, and clamping force on a TEM are analyzed. The simulation results show that the heat transfer area of the inner fin and the physical parameters of the metal materials are the keys to determining the FTEG temperature field. The pressing mechanism's mechanical force can be reduced by reducing the outer fin angle. In addition, a corrugated cooling water pipe, which has cooling and spring functionality, is conducive to establishing an adaptable clamping force to avoid the TEMs being crushed by the thermal stresses in the body.

  5. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries

    Science.gov (United States)

    Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848

  6. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  7. Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries.

    Science.gov (United States)

    Sun, Ze; Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo

    2018-02-01

    Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries.

  8. Modeling coupled thermal, flow, transport and geochemical processes controlling near field long-term evolution

    International Nuclear Information System (INIS)

    Zhou, W.; Arthur, R.; Xu, T.; Pruess, K.

    2005-01-01

    Full text of publication follows: Bentonite is planned for use as a buffer material in the Swedish nuclear waste disposal concept (KBS-3). Upon emplacement, the buffer is expected to experience a complex set of coupled processes involving heating, re-saturation, reaction and transport of groundwater imbibed from the host rock. The effect of these processes may eventually lead to changes in desirable physical and rheological properties of the buffer, but these processes are not well understood. In this paper, a new quantitative model is evaluated to help improve our understanding of the long-term performance of buffer materials. This is an extension of a previous study [1] that involved simple thermal and chemical models applied to a fully saturated buffer. The thermal model in the present study uses heating histories for spent fuel in a single waste package [2]. The model uses repository dimensions, such as borehole and tunnel spacings [2], which affect the temperature distribution around the waste package. At the time of emplacement, bentonite is partially saturated with water having a different composition than the host-rock groundwater. The present model simulates water imbibition from the host rock into the bentonite under capillary and hydraulic pressure gradients. The associated chemical reactions and solute transport are simulated using Aespoe water composition [3]. The initial mineralogy of bentonite is assumed to be dominated by Na-smectite with much smaller amounts of anhydrite and calcite. Na-smectite dissolution is assumed to be kinetically-controlled while all other reactions are assumed to be at equilibrium controlled. All equilibrium and kinetic constants are temperature dependent. The modeling tool used is TOUGHREACT, developed by Lawrence Berkeley National Laboratory [4]. TOUGHREACT is a numerical model that is well suited for near-field simulations because it accounts for feedback between porosity and permeability changes from mineral

  9. Med-CORDEX: a first coordinated inter-comparison of high-resolution and fully coupled regional climate models for the Mediterranean

    Science.gov (United States)

    Somot, Samuel

    2015-04-01

    Due to its geographical, meteorological and oceanographic features, the Mediterranean region can be considered as one of the best place to test and use regional climate modelling tools. It has been chosen as one of the CORDEX sub-domain (MED) leading to the Med-CORDEX initiative. This open and voluntary initiative, financially supported by MISTRALS/HyMeX, has been proposed by the Mediterranean climate modelling research community as a follow-up of previous initiatives. In addition to the CORDEX-like simulations (Atmosphere-RCM, 50 km, ERA-Interim and GCM driven runs), Med-CORDEX includes additional simulations to experiment some of the regional climate modelling current challenges. We present here the status and results of these additional simulations dedicated to the use of (1) very high-resolution Regional Climate Models (RCM, up to 10 km) and (2) fully coupled Regional Climate System Models (RCSM), coupling the various components of the regional climate (atmosphere, land surface and hydrology, river and ocean). Today, Med-CORDEX gathers 23 different modelling groups from 9 different countries (France, Italy, Spain, Serbia, Turkey, Greece, Tunisia, Germany, Hungary) in Europe, Middle-East and North-Africa. They use 12 different atmosphere RCMs including land-surface representation, 4 river models, 10 regional ocean models and 12 different Regional Climate System Models. Almost all the simulations planned (Evaluation, Historical and Scenarios modes) have been completed by the modelling teams. More than half of the runs are archived and freely available for non-commercial use through a dedicated database hosted at ENEA at www.medcordex.eu in common and standardized netcdf format (265,000 files and 3.6 Tb uploaded). This includes atmosphere-only, ocean-only and fully coupled regional climate models. In particular multi-model regional ocean simulations have been archived in a common and standardized format for the first time in the history of the Mediterranean Sea

  10. Thermal coupling and effect of subharmonic synchronization in a system of two VO2 based oscillators

    Science.gov (United States)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-03-01

    We explore a prototype of an oscillatory neural network (ONN) based on vanadium dioxide switching devices. The model system under study represents two oscillators based on thermally coupled VO2 switches. Numerical simulation shows that the effective action radius RTC of coupling depends both on the total energy released during switching and on the average power. It is experimentally and numerically proved that the temperature change ΔT commences almost synchronously with the released power peak and T-coupling reveals itself up to a frequency of about 10 kHz. For the studied switching structure configuration, the RTC value varies over a wide range from 4 to 45 μm, depending on the external circuit capacitance C and resistance Ri, but the variation of Ri is more promising from the practical viewpoint. In the case of a "weak" coupling, synchronization is accompanied by attraction effect and decrease of the main spectra harmonics width. In the case of a "strong" coupling, the number of effects increases, synchronization can occur on subharmonics resulting in multilevel stable synchronization of two oscillators. An advanced algorithm for synchronization efficiency and subharmonic ratio calculation is proposed. It is shown that of the two oscillators the leading one is that with a higher main frequency, and, in addition, the frequency stabilization effect is observed. Also, in the case of a strong thermal coupling, the limit of the supply current parameters, for which the oscillations exist, expands by ∼10%. The obtained results have a universal character and open up a new kind of coupling in ONNs, namely, T-coupling, which allows for easy transition from 2D to 3D integration. The effect of subharmonic synchronization hold promise for application in classification and pattern recognition.

  11. DECOVALEX III PROJECT. Thermal-Hydro-Mechanical Coupled Processes in Safety Assessments. Report of Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-02-15

    A part (Task 4) of the International DECOVALEX III project on coupled thermo-hydro-mechanical (T-H-M) processes focuses on T-H-M modelling applications in safety and performance assessment of deep geological nuclear waste repositories. A previous phase, DECOVALEX II, saw a need to improve such modelling. In order to address this need Task 4 of DECOVALEX III has: Analysed two major T-H-M experiments (Task 1 and Task 2) and three different Bench Mark Tests (Task 3) set-up to explore the significance of T-H-M in some potentially important safety assessment applications. Compiled and evaluated the use of T-H-M modelling in safety assessments at the time of the year 2000. Organised a forum a forum of interchange between PA-analysts and THM modelers at each DECOVALEX III workshop. Based on this information the current report discusses the findings and strives for reaching recommendations as regards good practices in addressing coupled T-H-M issues in safety assessments. The full development of T-H-M modelling is still at an early stage and it is not evident whether current codes provide the information that is required. However, although the geosphere is a system of fully coupled processes, this does not directly imply that all existing coupled mechanisms must be represented numerically. Modelling is conducted for specific purposes and the required confidence level should be considered. It is necessary to match the confidence level with the modelling objective. Coupled THM modelling has to incorporate uncertainties. These uncertainties mainly concern uncertainties in the conceptual model and uncertainty in data. Assessing data uncertainty is important when judging the need to model coupled processes. Often data uncertainty is more significant than the coupled effects. The emphasis on the need for THM modelling differs among disciplines. For geological radioactive waste disposal in crystalline and other similar hard rock formations DECOVALEX III shows it is essential to

  12. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    Science.gov (United States)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to

  13. Effects of coupled thermal, hydrological and chemical processes on nuclide transport

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1987-03-01

    Coupled thermal, hydrological and chemical processes can be classified in two categories. One category consists of the ''Onsager'' type of processes driven by gradients of thermodynamic state variables. These processes occur simultaneously with the direct transport processes. In particular, thermal osmosis, chemical osmosis and ultrafiltration may be prominent in semipermeable materials such as clays. The other category consists of processes affected indirectly by magnitudes of thermodynamic state variables. An important example of this category is the effect of temperature on rates of chemical reactions and chemical equilibria. Coupled processes in both categories may affect transport of radionuclides. Although computational models of limited extent have been constructed, there exists no model that accounts for the full set of THC-coupled processes. In the category of Onsager coupled processes, further model development and testing is severely constrained by a deficient data base of phenomenological coefficients. In the second category, the lack of a general description of effects of heterogeneous chemical reactions on permeability of porous media inhibits progress in quantitative modeling of hydrochemically coupled transport processes. Until fundamental data necessary for further model development have been acquired, validation efforts will be limited necessarily to testing of incomplete models of nuclide transport under closely controlled experimental conditions. 34 refs., 2 tabs

  14. Thermal Phase Transitions of Strongly Correlated Bosons with Spin-Orbit Coupling

    Science.gov (United States)

    Hickey, Ciarán; Paramekanti, Arun

    2014-12-01

    Experiments on ultracold atoms have started to explore lattice effects and thermal fluctuations for two-component bosons with spin-orbit coupling (SOC). Motivated by this, we derive and study a t J model for lattice bosons with equal Rashba-Dresselhaus SOC and strong Hubbard repulsion in a uniform Zeeman magnetic field. Using the Gutzwiller ansatz, we find strongly correlated ground states with stripe superfluid (SF) order. We formulate a finite temperature generalization of the Gutzwiller method, and show that thermal fluctuations in the doped Mott insulator drive a two-step melting of the stripe SF, revealing a wide regime of a stripe normal fluid.

  15. Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, M.; Borgesson, L.; Fujita, T.; Jussila, P.; Nguyen, S.; Rutqvist, J.; Jing, L.; Hernelind, J.

    2009-02-01

    In Task A of the international DECOVALEX-THMC project, five research teams study the influence of thermal-hydro-mechanical (THM) coupling on the safety of a hypothetical geological repository for spent fuel. In order to improve the analyses, the teams calibrated their bentonite models with results from laboratory experiments, including swelling pressure tests, water uptake tests, thermally gradient tests, and the CEA mock-up THM experiment. This paper describes the mathematical models used by the teams, and compares the results of their calibrations with the experimental data.

  16. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  17. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented.

  18. Coherent oscillation in a linear quantum system coupled to a thermal bath

    International Nuclear Information System (INIS)

    Bell, N.F.; Volkas, R.R.; Sawyer, R.F.

    2000-01-01

    We consider the time development of the density matrix for a system coupled to a thermal bath, in models that go beyond the standard two-level systems through addition of an energy excitation degree of freedom and through the possibility of the replacement of the spin algebra by a more complex algebra. We find conditions under which increasing the coupling to the bath above a certain level decreases the rate of entropy production, and in which the limiting behavior is a dissipationless sinusoidal oscillation that could be interpreted as the synchronization of many modes of the uncoupled system

  19. Effects of the plastic deformation and thermal cycles on the mechanical properties of fully recrystallized Zircaloy-4

    International Nuclear Information System (INIS)

    Litvack, Nicolas

    2005-01-01

    The development of crystallographic texture in a product depends, for a given material, of its fabrication history. In our case, the evolution of that texture results from a combination of cold working and thermal cycles applied together or separately. In the present work, cold working levels ranging from 50 % to approximately 90 % and different heat treatment cycles has been applied to Zircaloy-4 sheets and tubes. Using X-ray diffraction techniques and the direct pole figure method, the evolution of crystallographic texture has been analyzed for each fabrication route. We observed that cold working levels up to 90 % without intermediate annealing heat treatment do not change significantly the classic angle between basal pole and the normal/radial direction of the product (φ ≅ ± 25 degrees). Furthermore, the application of intermediate cold working levels (50 % - 60 %) and more than two intermediate annealing heat treatments exhibits a marked modification of the basal pole orientation. The basal poles appear now parallel to the normal direction (φ ≅ 0 degrees) of the product. Additionally, the crystallographic texture change observed with X-ray procedures was evaluated by the measure of anisotropic parameters R and P. The results here obtained will be use in the future as a basis for the design of a fabrication route capable to obtain in a HPTR process, seamless calandria tubes strengthened by crystallographic texture. (author) [es

  20. A UPS study of the thermal reduction of fully oxidized V2O5/TiO2(001-anatase) model catalysts

    International Nuclear Information System (INIS)

    Silversmit, G.; Poelman, H.; Depla, D.; Poelman, D.; DE Gryse, R.; Marin, G.B.; Barrett, N.

    2004-01-01

    Full text: Vanadium oxides are important catalysts in various industrial processes. Supported vanadium oxides have enhanced catalytic properties as compared to unsupported vanadium oxides. Model systems, consisting of a thin vanadium oxide layer deposited on a crystalline support, are used to study supported vanadium oxides. As calcined industrial powder systems contain V 5+ , representative model systems should also have fully oxidized vanadium oxide layers. DC magnetron sputtering in a pure O 2 atmosphere is used as deposition technique in order to develop fully oxidized V 2 O 5 /TiO 2 (001-anatase) model catalysts. Vanadium oxide layers deposited with magnetron sputtering on mineral TiO 2 (001-anatase) supports were examined with UPS (hv=150 eV) at the SA73 beamline of the S.ACO storage ring (LURE, France) by recording the valence band and the V3p, Ti3p and O2s core line spectra. Ex-situ depositions did not yield fully oxidized vanadium oxide layers. Fully oxidized vanadium oxide layers on TiO 2 (001-anatase) can be obtained by in-situ depositions. The in-situ deposited layers are gradually reduced upon irradiation with the monochromated synchrotron beam. The thermal behaviour of the V 2 O 5 /TiO 2 (001-anatase) system was studied up to approximately 240 deg C for a layer thickness of 16 Angstroms. The heating induced a reduction of the vanadium oxide layer. Furthermore, the thickness of the layers diminished by the heating: more than 8 Angstroms vanadium oxide disappeared. A re-oxidation did not restore the vanadium oxide layer completely to the V 5+ oxidation state

  1. Implementation and verification of a coupled fire model as a thermal boundary condition within P3/THERMAL

    International Nuclear Information System (INIS)

    Hensinger, D.M.; Gritzo, L.A.; Koski, J.A.

    1996-01-01

    A user-defined boundary condition subroutine has been implemented within P3/THERMAL to represent the heat flux between a noncombusting object and an engulfing fire. The heat flux calculations includes a simple 2D fire model in which energy and radiative heat transport equations are solved to produce estimates of the heat fluxes at the fire-object interface. These estimates reflect radiative coupling between a cold object and the flow of hot combustion gases which has been observed in fire experiments. The model uses a database of experimental pool fire measurements for far field boundary conditions and volumetric heat release rates. Taking into account the coupling between a structure and the fire is an improvement over the σT 4 approximation frequently used as a boundary condition for engineered system response and is the preliminary step in the development of a fire model with a predictive capability. This paper describes the implementation of the fire model as a P3/THERMAL boundary condition and presents the results of a verification calculation carried out using the model

  2. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  3. Development of coupled neutronics/thermal-hydraulics test case for HPLWR

    Science.gov (United States)

    Pham, P.; Gamtsemlidze, I. D.; Bahdanovich, R. B.; Nikonov, S. P.; Smirnov, A. D.

    2017-01-01

    The High-Performance Light Water Reactor (HPLWR) is the European concept of a supercritical water reactor (SCWR) which is one of the most promising and innovative designs of the Generation IV nuclear reactor concepts. The thermal-hydraulics behavior of supercritical water is significantly different from water at sub-critical pressure because of the difference in the specific heat value. Coupled analysis of HPLWR assembly neutronics and thermal-hydraulics has become important because of the strong influence of the water density on the neutron spectrum and power distribution. Programs MCU (Monte-Carlo Universal) and ATHLET (Analysis of Thermal-hydraulics of Leaks and Transients) were used for better estimation of power and temperature distribution in HPLWR assembly.

  4. Turbulence, chaos and thermal noise in globally coupled Josephson junction arrays

    International Nuclear Information System (INIS)

    Dominguez, D.

    1995-03-01

    We discuss the effects of thermal noise in underdamped Josephson junction series arrays that are globally coupled through a resistive load and driven by an rf current. We study the breakdown of the law of large numbers in the turbulent phase of the Josephson arrays. This corresponds to a saturation of the broad band noise S 0 for a large number N of junctions. We find that this phenomenon is stable against thermal fluctuations below a critical temperature T cl . The behaviour of S 0 vs. T, for large N, shows three different regimes. For 0 cl , S 0 decreases when increasing T, and there is turbulence and the breakdown of the law of large numbers. For T cl c2 , S 0 is constant and the dynamics is dominated by the chaos of the individual junctions. Finally for T > T c2 , S 0 in mainly due to thermal fluctuations, since it increases linearly with T. (author). 23 refs, 6 figs

  5. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei

    2015-01-01

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  6. Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE

    International Nuclear Information System (INIS)

    Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa

    2009-01-01

    The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)

  7. A computational domain decomposition approach for solving coupled flow-structure-thermal interaction problems

    Directory of Open Access Journals (Sweden)

    Eugenio Aulisa

    2009-04-01

    Full Text Available Solving complex coupled processes involving fluid-structure-thermal interactions is a challenging problem in computational sciences and engineering. Currently there exist numerous public-domain and commercial codes available in the area of Computational Fluid Dynamics (CFD, Computational Structural Dynamics (CSD and Computational Thermodynamics (CTD. Different groups specializing in modelling individual process such as CSD, CFD, CTD often come together to solve a complex coupled application. Direct numerical simulation of the non-linear equations for even the most simplified fluid-structure-thermal interaction (FSTI model depends on the convergence of iterative solvers which in turn rely heavily on the properties of the coupled system. The purpose of this paper is to introduce a flexible multilevel algorithm with finite elements that can be used to study a coupled FSTI. The method relies on decomposing the complex global domain, into several local sub-domains, solving smaller problems over these sub-domains and then gluing back the local solution in an efficient and accurate fashion to yield the global solution. Our numerical results suggest that the proposed solution methodology is robust and reliable.

  8. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    International Nuclear Information System (INIS)

    Chen, W.C.; Wang, Y.T.; Shih, C.J.

    2010-01-01

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 o C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol -1 . The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  9. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.C. [School of Dentistry, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Y.T. [Department of Medical Research and Education, Chen Hsin General Hospital, 45 Cheng-Hsin Street, Pai-Tou, Taipei 11220, Taiwan (China); Shih, C.J., E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-02-04

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 {sup o}C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol{sup -1}. The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  10. A Pore-Scale Simulation on Thermal-Hydromechanical Coupling Mechanism of Rock

    Directory of Open Access Journals (Sweden)

    Rui Song

    2017-01-01

    Full Text Available Thermal-hydromechanical (THM coupling process is a key issue in geotechnical engineering emphasized by many scholars. Most existing studies are conducted at macroscale or mesoscale. This paper presents a pore-scale THM coupling study of the immiscible two-phase flow in the perfect-plastic rock. Assembled rock matrix and pore space models are reconstructed using micro-CT image. The rock deformation and fluid flow are simulated using ANSYS and CFX software, respectively, in which process the coupled physical parameters will be exchanged by ANSYS multiphysics platform at the end of each iteration. Effects of stress and temperature on the rock porosity, permeability, microstructure, and the displacing mechanism of water flooding process are analyzed and revealed.

  11. Southern Ocean Open Ocean Polynyas in Observations and from a Low- and a High-Resolution Fully-Coupled Earth System Model Simulation

    Science.gov (United States)

    Veneziani, C.; Kurtakoti, P. K.; Weijer, W.; Stoessel, A.

    2016-12-01

    In contrast to their better known coastal counterpart, open ocean polynyas (OOPs) form through complex driving mechanisms, involving pre-conditioning of the water column, external forcing and internal ocean dynamics, and are therefore much more elusive and less predictable than coastal polynyas. Yet, their impact on bottom water formation and the Meridional Overturning Circulation could prove substantial. Here, we characterize the formation of Southern Ocean OOPs by analyzing the full satellite NASA microwave imager and radiometer (SSMI/SMMR) data record from 1972 to present day. We repeat the same analysis within the low-resolution (LR) and high-resolution (HR) fully-coupled Earth System Model simulations that are part of the Accelerated Climate Model for Energy (ACME) v0 baseline experiments. The focus is on two OOPs that are more consistently seen in observations: the Maud Rise and the Weddell Sea polynyas. Results show that the LR simulation is unable to reproduce any OOP over the 195 years of its duration, while both Maud Rise and Weddell Sea polynyas are seen in the HR simulation, with extents similar to observations'. We explore possible mechanisms that would explain the asymmetric behavior, including topographic processes, eddy shedding events, and different water column stratification between the two simulations.

  12. Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture

    KAUST Repository

    Iloeje, Chukwunwike

    2015-04-01

    © 2015 Elsevier Ltd. A number of CO2 capture-enabled power generation technologies have been proposed to address the negative environmental impact of CO2 emission. One important barrier to adopting these technologies is the associated energy penalty. Chemical-looping Combustion (CLC) is an oxy-combustion technology that can significantly lower this penalty. It utilizes an oxygen carrier to transfer oxygen from air/oxidizing stream in an oxidation reactor to the fuel in a reduction reactor. Conventional CLC reactor designs employ two separate reactors, with metal/metal oxide particles circulating pneumatically in-between. One of the key limitations of these designs is the entropy generation due to reactor temperature difference, which lowers the cycle efficiency. Zhao et al. (Zhao et al., 2014; Zhao and Ghoniem, 2014) proposed a new CLC rotary reactor design, which overcomes this limitation. This reactor consists of a single rotating wheel with micro-channels designed to maintain thermal equilibrium between the fuel and air sides. This study uses three thermodynamic models of increasing fidelity to demonstrate that the internal thermal coupling in the rotary CLC reactor creates the potential for improved cycle efficiency. A theoretical availability model and an ideal thermodynamic cycle model are used to define the efficiency limits of CLC systems, illustrate the impact of reactor thermal coupling and discuss relevant criteria. An Aspen Plus® model of a regenerative CLC cycle is then used to show that this thermal coupling raises the cycle efficiency by up to 2% points. A parametric study shows that efficiency varies inversely with pressure, with a maximum of 51% at 3bar, 1000C and 60% at 4bar, 1400C. The efficiency increases with CO2 fraction at high pressure ratios but exhibits a slight inverse dependence at low pressure ratios. The parametric study shows that for low purge steam demand, steam generation improves exhaust heat recovery and increases efficiency

  13. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  14. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    International Nuclear Information System (INIS)

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-01-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  15. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    Science.gov (United States)

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-01-01

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370

  16. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Eckert

    2016-03-01

    Full Text Available This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  17. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    Science.gov (United States)

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  18. Enhanced thermal photon and dilepton production in strongly coupled = 4 SYM plasma in strong magnetic field

    Science.gov (United States)

    Mamo, Kiminad A.

    2013-08-01

    We calculate the DC conductivity tensor of strongly coupled = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B ≫ T 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in the presence of the strong external magnetic field B ≫ T 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

  19. Modeling of thermal coupling in VO2-based oscillatory neural networks

    Science.gov (United States)

    Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim; Perminov, Valentin; Pergament, Alexander

    2018-01-01

    In this study, we have demonstrated the possibility of using the thermal coupling to control the dynamics of operation of coupled VO2 oscillators. Based on the example of a 'switch-microheater' pair, we have explored the synchronization and dissynchronization modes of a single oscillator with respect to an external harmonic heat impact. The features of changes in the spectra are shown, in particular, the effect of the natural frequency attraction to the affecting signal frequency and the self-oscillation noise reduction effects at synchronization. The time constant of the temperature effect for the considered system configuration is in the range 7-140 μs, which allows operation in the oscillation frequency range of up to ∼70 kHz. A model estimate of the minimum temperature sensitivity of the switch is δTswitch ∼ 0.2 K, and the effective action radius RTC of the switch-to-switch thermal coupling is not less than 25 μm. Nevertheless, as the simulation shows, the frequency range can be significantly extended up to the values of 1-30 GHz if using nanometer-scale switches (heaters). article>

  20. Strong coupling of a building thermal model with a controlled electical heater for an hybrid energy simulation

    OpenAIRE

    Gaaloul, Sana; Delinchant, Benoît; Wurtz, Frédéric; Thiers, Stéphane; Peuportier, Bruno

    2011-01-01

    International audience; The context of this study is the coupling of thermal and electrical models in order to efficiently simulate energy consumption in buildings, which requires managing interoperability problems between simulation environments. The coupling is accomplished in MATLAB™ tool between a thermal model of a building envelope using COMFIE software and an electrical heater model. Our purpose is to study and generalize the interoperability between these two domains governed by pheno...

  1. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pannala, S; D' Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  2. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current

    Science.gov (United States)

    Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera

    2015-11-01

    -1990s from anchovy to sardine dominance. Simulated averaged weights- and lengths-at-age did not vary much across decades, and movement patterns showed anchovy located close to the coast while sardine were more dispersed and farther offshore. Albacore predation on anchovy and sardine was concentrated near the coast in two pockets near the Monterey Bay area and equatorward of Cape Mendocino. Predation mortality from fishing boats was concentrated where sardine age-1 and older individuals were located close to one of the five ports. We demonstrated that it is feasible to perform multi-decadal simulations of a fully-coupled end-to-end model, and that this can be done for a model that follows individual fish and boats on the same 3-dimensional grid as the hydrodynamics. Our focus here was on proof of principle and our results showed that we solved the major technical, bookkeeping, and computational issues. We discuss the next steps to increase computational speed and to include important biological differences between anchovy and sardine. In a companion paper (Fiechter et al., 2015), we further analyze the historical simulation in the context of the various hypotheses that have been proposed to explain the sardine and anchovy cycles.

  3. Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a fully-coupled numerical, stochastic approach.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Kollet, S J

    2007-08-23

    The impact of three-dimensional subsurface heterogeneity on hillslope runoff generated by excess infiltration (so called Hortonian runoff) is examined. A fully-coupled, parallel subsurface overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty and variability (i.e. structure) due to subsurface heterogeneity. A large number of cases are simulated in a parametric manner with variance of the hydraulic conductivity varied over two orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical considerations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show three-dimensional features (particularly in the vertical dimension) in the hydraulic conductivity distributions that create shallow perching, which has an important effect on runoff behavior that is fundamentally different in character than previous two dimensional analyses. The simple theories are shown to be very poor predictors of the saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales ({approx}30) and not for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity.

  4. Modeling of Hydraulic Fracture Propagation at the kISMET Site Using a Fully Coupled 3D Network-Flow and Quasi- Static Discrete Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-01

    Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.

  5. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  6. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power...

  7. General Approach for Composite Thermoelectric Systems with Thermal Coupling: The Case of a Dual Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Cuautli Yanehowi Flores-Niño

    2015-06-01

    Full Text Available In this work, we show a general approach for inhomogeneous composite thermoelectric systems, and as an illustrative case, we consider a dual thermoelectric cooler. This composite cooler consists of two thermoelectric modules (TEMs connected thermally in parallel and electrically in series. Each TEM has different thermoelectric (TE properties, namely thermal conductance, electrical resistance and the Seebeck coefficient. The system is coupled by thermal conductances to heat reservoirs. The proposed approach consists of derivation of the dimensionless thermoelectric properties for the whole system. Thus, we obtain an equivalent figure of merit whose impact and meaning is discussed. We make use of dimensionless equations to study the impact of the thermal conductance matching on the cooling capacity and the coefficient of the performance of the system. The equivalent thermoelectric properties derived with our formalism include the external conductances and all intrinsic thermoelectric properties of each component of the system. Our proposed approach permits us changing the thermoelectric parameters of the TEMs and the working conditions of the composite system. Furthermore, our analysis shows the effect of the number of thermocouples on the system. These considerations are very useful for the design of thermoelectric composite systems. We reproduce the qualitative behavior of a commercial composite TEM connected electrically in series.

  8. Electrical and thermal transport in the quasiatomic limit of coupled Luttinger liquids

    Science.gov (United States)

    Szasz, Aaron; Ilan, Roni; Moore, Joel E.

    2017-02-01

    We introduce a new model for quasi-one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them is the "quasiatomic limit." We find integral expressions for the (interchain) transport coefficients, including the electrical and thermal conductivities and the thermopower, and we extract their power law dependencies on temperature. Luttinger liquid physics is manifested in a violation of the Wiedemann-Franz law; the Lorenz number is larger than the Fermi liquid value by a factor between γ2 and γ4, where γ ≥1 is a measure of the electron-electron interaction strength in the system.

  9. Role of temperature and composition on the thermal-hydro-mechanical coupling of concretes

    International Nuclear Information System (INIS)

    Brue, Flore

    2009-01-01

    The French project of the storage of nuclear wastes, which is managed by the Andra, needs some experimental data on the durability of the concrete. Loadings which are taken into account are the desaturation/re-saturation processes, the heat load and the mechanical evolution. Hence this study focuses on the coupling thermo-hydro-mechanical on concretes of the research program of Andra, made with CEM I and CEM V/A cement type. The water saturation degree and shrinkages of materials, which are subjected to desiccation or re-saturation, are dependent on the imposed thermal and hydrous conditions and on their microstructural characteristics. Moreover the study of the mechanical evolution is gone further at 20 C in function of the water saturation degree. Different short-term tests highlight a hydrous damage, which determine the mechanical behaviour. The long-term study of desiccation creep shows the coupling between the durability, the mechanical evolution and the desiccation. (author)

  10. Uncertainty propagation applied to multi-scale thermal-hydraulics coupled codes. A step towards validation

    Energy Technology Data Exchange (ETDEWEB)

    Geffray, Clotaire Clement

    2017-03-20

    The work presented here constitutes an important step towards the validation of the use of coupled system thermal-hydraulics and computational fluid dynamics codes for the simulation of complex flows in liquid metal cooled pool-type facilities. First, a set of methods suited for uncertainty and sensitivity analysis and validation activities with regards to the specific constraints of the work with coupled and expensive-to-run codes is proposed. Then, these methods are applied to the ATHLET - ANSYS CFX model of the TALL-3D facility. Several transients performed at this latter facility are investigated. The results are presented, discussed and compared to the experimental data. Finally, assessments of the validity of the selected methods and of the quality of the model are offered.

  11. A One-Structure-Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal, Solar, and Mechanical Energies.

    Science.gov (United States)

    Ji, Yun; Zhang, Kewei; Yang, Ya

    2018-02-01

    Rapid advances in various energy harvesters impose the challenge on integrating them into one device structure with synergetic effects for full use of the available energies from the environment. Here, a multieffect coupled nanogenerator based on ferroelectric barium titanate is reported. It promotes the ability to simultaneously scavenging thermal, solar, and mechanical energies. By integration of a pyroelectric nanogenerator, a photovoltaic cell, and a triboelectric-piezoelectric nanogenerator in one structure with only two electrodes, multieffects interact with each other to alter the electric output, and a complementary power source with peak current of ≈1.5 µA, peak voltage of ≈7 V, and platform voltage of ≈6 V is successfully achieved. Compared with traditional hybridized nanogenerators with stacked architectures, the one-structure-based multieffects coupled nanogenerator is smaller, simpler, and less costly, showing prospective in practical applications and represents a new trend of all-in-one multiple energy scavenging.

  12. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  13. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  14. Thermal vacuum state for the two-coupled-oscillator model at finite temperature: Derivation and application

    International Nuclear Information System (INIS)

    Xu Xue-Xiang; Hu Li-Yun; Guo Qin; Fan Hong-Yi

    2013-01-01

    Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann—Feynman theorem and the entroy variation in the context of the TVS. (general)

  15. Ventilated buildings optimisation by using a coupled thermal-airflow simulation program

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg; Remmen, Arne

    2011-01-01

    This work shows the optimization of natural ventilation within buildings at the stage of design and behaviour of the occupants. An evaluation is done by coupled multizone air modelling and thermal building simulation by using a deterministic set of input factors comprising among others climate......, local environment, building characteristics, building systems, behaviour of occupants, heat loads. Selected deterministic input factors were varied to generate additional information applied in an optimization loop. With that, it is found that the optimal solution depends to a great deal...

  16. Thermal spectral functions of strongly coupled N = 4 supersymmetric Yang-Mills theory.

    Science.gov (United States)

    Kovtun, Pavel; Starinets, Andrei

    2006-04-07

    We use the gauge-gravity duality conjecture to compute spectral functions of the stress-energy tensor in finite-temperature N = 4 supersymmetric Yang-Mills theory in the limit of large N(c) and large 't Hooft coupling. The spectral functions exhibit peaks characteristic of hydrodynamic modes at small frequency, and oscillations at intermediate frequency. The nonperturbative spectral functions differ qualitatively from those obtained in perturbation theory. The results may prove useful for lattice studies of transport processes in thermal gauge theories.

  17. Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR

    International Nuclear Information System (INIS)

    Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid

    2014-01-01

    Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section

  18. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power...

  19. Coupled neutronic-thermal-hydraulics analysis in a coolant subchannel of a PWR using CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Felipe P.; Su, Jian, E-mail: sujian@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The high capacity of Computational Fluid Dynamics code to predict multi-dimensional thermal-hydraulics behaviour and the increased availability of capable computer systems are making that method a good tool to simulate phenomena of thermal-hydraulics nature in nuclear reactors. However, since there are no neutron kinetics models available in commercial CFD codes to the present day, the application of CFD in the nuclear reactor safety analyses is still limited. The present work proposes the implementation of the point kinetics model (PKM) in ANSYS - Fluent to predict the neutronic behaviour in a Westinghouse Sequoyah nuclear reactor, coupling with the phenomena of heat conduction in the rod and thermal-hydraulics in the cooling fluid, via the reactivity feedback. Firstly, a mesh convergence and turbulence model study was performed, using the Reynolds-Average Navier-Stokes method, with square arrayed rod bundle featuring pitch to diameter ratio of 1:32. Secondly, simulations using the k-! SST turbulence model were performed with an axial distribution of the power generation in the fuel to analyse the heat transfer through the gap and cladding, and its in fluence on the thermal-hydraulics behaviour of the cooling fluid. The wall shear stress distribution for the centre-line rods and the dimensionless velocity were evaluated to validate the model, as well as the in fluence of the mass flow rate variation on the friction factor. The coupled model enabled to perform a dynamic analysis of the nuclear reactor during events of insertion of reactivity and shutdown of primary coolant pumps. (author)

  20. A Proposal to Develop and Test a Fibre-Optic Coupled Solar Thermal Propulsion System for Microsatellites

    Science.gov (United States)

    2006-03-01

    b) Figure 2.2: (a) Parabolic solar cooker . (b) Fresnel solar cooker Fibre Optic Solar Thermal Propulsion Demonstration Technology 8 external...Proposal to Develop and Test a Fibre-Optic Coupled Solar Thermal Propulsion System for Microsatellites 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT...report results from a contract tasking University of Surrey. Solar Thermal Propulsion (STP) previously envisioned for large spacecraft and capable of

  1. A novel integrated thermally coupled moving bed reactors for naphtha reforming process with hydrodealkylation of toluene

    International Nuclear Information System (INIS)

    Iranshahi, Davood; Saeedi, Reza; Azizi, Kolsoom; Nategh, Mahshid

    2017-01-01

    Highlights: • A novel thermally coupled reactor in CCR naphtha reforming process is modeled. • The required heat of Naphtha process is attained with toluene hydrodealkylation. • A new kinetic model involving 32 pseudo-component and 84 reactions is proposed. • The aromatics and hydrogen production increase 19% and 23%, respectively. - Abstract: Due to the importance of catalytic naphtha reforming process in refineries, development of this process to attain the highest yield of desired products is crucial. In this study, continuous catalyst regeneration naphtha reforming process with radial flow is coupled with hydrodealkylation of toluene to prevent energy loss while enhancing aromatics and hydrogen yields. In this coupled process, heat is transferred between hot and cold sections (from hydrodealkylation of toluene to catalytic naphtha reforming process) using the process integration method. A steady-state two-dimensional model, which considers coke formation on the catalyst pellets, is developed and 32 pseudo-components with 84 reactions are investigated. Kinetic model utilized for HDA process is homogeneous and non-catalytic. The modeling results reveal an approximate increase of 19% and 23% in aromatics and hydrogen molar flow rates, respectively, in comparison with conventional naphtha reforming process. The improvement in aromatics production evidently indicates that HDA is a suitable process to be coupled with naphtha reforming.

  2. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  3. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  4. Modeling and temperature regulation of a thermally coupled reactor system via internal model control strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Coronella, C.J.; Bhadkamkar, A.S.; Seader, J.D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    1993-12-01

    A two-stage, thermally coupled fluidized-bed reactor system has been developed for energy-efficient conversion of tar-sand bitumen to synthetic crude oil. Modeling and temperature control of a system are addressed in this study. A process model and transfer function are determined by a transient response technique and the reactor temperature are controlled by PI controllers with tuning settings determined by an internal model control (IMC) strategy. Using the IMC tuning method, sufficiently good control performance was experimentally observed without lengthy on-line tuning. It is shown that IMC strategy provides a means to directly use process knowledge to make a control decision. Although this control method allows for fine tuning by adjusting a single tuning parameter, it is not easy to determine the optimal value of this tuning parameter, which must be specified by the user. A novel method is presented to evaluate that parameter, which must be specified by the user. A novel method is presented to evaluate that parameter in this study. It was selected based on the magnitude of elements on the off-diagonal of the relative gain array to account for the effect of thermal coupling on control performance. It is shown that this method provides stable and fast control of reactor temperatures. By successfully decoupling the system, a simple method of extending the IMC tuning technique to multiinput/multioutput systems is obtained.

  5. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    Science.gov (United States)

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  6. Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stability

    KAUST Repository

    Gnoli, Andrea

    2014-10-02

    The assembly and the orientation of functionalized pentacene at the interface with inorganics strongly influence both the electric contact and the charge transport in organic electronic devices. In this study electronic spectroscopies and theoretical modeling are combined to investigate the properties of the bis(triisopropylsilylethynyl)pentacene (TIPS-Pc)/Au(111) interface as a function of the molecular coverage to compare the molecular state in the gas phase and in the adsorbed phase and to determine the thermal stability of TIPS-Pc in contact with gold. Our results show that in the free molecule only the acene atoms directly bonded to the ligands are affected by the functionalization. Adsorption on Au(111) leads to a weak coupling which causes only modest binding energy shifts in the TIPS-Pc and substrate core level spectra. In the first monolayer the acene plane form an angle of 33 ± 2° with the Au(111) surface at variance with the vertical geometry reported for thicker solution-processed or evaporated films, whereas the presence of configurational disorder was observed in the multilayer. The thermal annealing of the TIPS-Pc/Au(111) interface reveals the ligand desorption at ∼470 K, which leaves the backbone of the decomposed molecule flat-lying on the metal surface as in the case of the unmodified pentacene. The weak interaction with the metal substrate causes the molecular dissociation to occur 60 K below the thermal decomposition taking place in thick drop-cast films.

  7. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  8. ARCADIAR - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    International Nuclear Information System (INIS)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-01-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA R and concludes on customer benefits. ARCADIA R is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA R system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  9. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  10. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording)

    Science.gov (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2015-09-01

    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  11. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    Science.gov (United States)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  12. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Breitkreutz, Harald

    2011-03-04

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X{sup 2}', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50

  13. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    International Nuclear Information System (INIS)

    Breitkreutz, Harald

    2011-01-01

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X 2 ', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50% enriched disperse UMo core with

  14. Horizontal ground coupled heat pump: Thermal-economic modeling and optimization

    International Nuclear Information System (INIS)

    Sanaye, Sepehr; Niroomand, Behzad

    2010-01-01

    The modeling and optimizing processes of a Ground Coupled Heat Pump (GCHP) with closed Horizontal Ground Heat eXchanger (HGHX) are presented in this paper. After thermal modeling of GCHP including HGHX, the optimum design parameters of the system were estimated by minimizing a defined objective function (total of investment and operation costs) subject to a list of constraints. This procedure was performed applying Genetic Algorithm technique. For given heating/cooling loads and various climatic conditions, the optimum values of saturated temperature/pressure of condenser and evaporator as well as inlet and outlet temperatures of the water source in cooling and heating modes were predicted. Then, for our case study, the design parameters as well as the configuration of HGHX were obtained. Furthermore, the sensitivity analysis of change in the total annual cost of the system and optimum design parameters with the climatic conditions, cooling/heating capacity, and soil type were discussed.

  15. Development of a scanning microscopy by total internal reflection coupled with thermal lens spectroscopy.

    Science.gov (United States)

    Shimosaka, Takuya; Iwamoto, Kazutoshi; Izako, Masakazu; Suzuki, Asa; Uchiyama, Katsumi; Hobo, Toshiyuki

    2004-01-01

    Non-destructive measurement of a small region on a solid/liquid interface is of great importance in physical chemistry and biochemistry, especially in the research of thin films and cell membranes. Optical methods for surface analysis with high lateral resolution are suitable methods for monitoring them. We now report a new scanning optical microscopic method to which total internal reflection coupled with a thermal lens technique was introduced. Its lateral resolution was estimated both experimentally and theoretically. To experimentally estimate the resolution, the grid patterns of thin photoresist films with well-defined lateral structures were measured. The experimental resolution was about 45 microm, which was almost same as the diameter of the excitation beam at a glass/sample interface. From this result, it was verified that this new scanning microscopy ideally worked.

  16. Coupling analysis of frictional heat of fluid film and thermal deformation of mechanical seal end faces

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Gu Boqin

    2007-01-01

    The heat transfer model of the rotating ring and the stationary ring of mechanical seal was built. The method to calculate the frictional heat that transferred by the rings was given. the coupling analysis of the frictional heat of fluid film and thermal deformation of end faces was carried out by using FEA and BP ANN, and the relationship among the rotational speed ω, the fluid film thickness h i on the inner diameter of sealing face and the radial separation angle β of deformed end faces was obtained. Corresponding to a given ω, h i and β can be obtained by the equilibrium condition between the closing force and the bearing force of fluid film. The relationship between the leakage rate and the closing force was analyzed, and the fundamental of controlling the leakage rate by regulating the closing force was also discussed. (authors)

  17. MCNP5 study on kinetics parameters of coupled fast-thermal system HERBE

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2011-01-01

    Full Text Available New validation of the well-known Monte Carlo code MCNP5 against measured criticality and kinetics data for the coupled fast-thermal HERBE System at the Reactor B critical assembly is shown in this paper. Results of earlier calculations of these criticality and kinetics parameters, done by combination of transport and diffusion codes using two-dimension geometry model are compared to results of new calculations carried out by the MCNP5 code in three-dimension geometry. Satisfactory agreements in comparison of new results with experimental data, in spite complex heterogeneous composition of the HERBE core, are achieved confirming that MCNP5 code could apply successfully to study on HERBE kinetics parameters after uncertainties in impurities in material compositions and positions of fuel elements in fast zone were removed.

  18. Hollow cathode modeling: I. A coupled plasma thermal two-dimensional model

    Science.gov (United States)

    Sary, Gaétan; Garrigues, Laurent; Boeuf, Jean-Pierre

    2017-05-01

    A two-dimensional axisymmetric quasi-neutral fluid model of an emissive hollow cathode that includes neutral xenon, single charge ions and electrons has been developed. The gas discharge is coupled with a thermal model of the cathode into a self-consistent generic model applicable to any hollow cathode design. An exhaustive description of the model assumptions and governing equations is given. Boundary conditions for both the gas discharge and thermal model are clearly specified as well. A new emissive sheath model that is valid for any emissive material and in both space charge and thermionic emission limited regimes is introduced. Then, setting the emitter temperature to an experimentally measured profile, we compare simulation results of the plasma model to measurements available in the literature for NASA NSTAR barium oxide cathode. Qualitative discrepancies between simulation results and measurements are noted in the cathode plume regarding the simulated plasma potential. Motivated by experimental evidence supporting the occurrence of ion acoustic instabilities in the cathode plume, an enhanced model of electron transport in the plume is presented and its consequences analyzed. Using the obtained plasma model, simulated quantities in the plume are qualitatively comparable with measurements. Inside the cathode, the simulated plasma density agrees well with measurements and is within the +/- 50 % experimental uncertainty associated with these measurements. A comparison of simulation results of the full coupled cathode model for the NASA NSTAR cathode with experimental measurements is presented in a companion paper, as well as a physical analysis of the cathode behavior and a parametric study of the influence of the operating point and key design choices.

  19. Interface requirements to couple thermal-hydraulic codes to severe accident codes: ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Trambauer, K. [GRS, Garching (Germany)

    1997-07-01

    The system code ATHLET-CD is being developed by GRS in cooperation with IKE and IPSN. Its field of application comprises the whole spectrum of leaks and large breaks, as well as operational and abnormal transients for LWRs and VVERs. At present the analyses cover the in-vessel thermal-hydraulics, the early phases of core degradation, as well as fission products and aerosol release from the core and their transport in the Reactor Coolant System. The aim of the code development is to extend the simulation of core degradation up to failure of the reactor pressure vessel and to cover all physically reasonable accident sequences for western and eastern LWRs including RMBKs. The ATHLET-CD structure is highly modular in order to include a manifold spectrum of models and to offer an optimum basis for further development. The code consists of four general modules to describe the reactor coolant system thermal-hydraulics, the core degradation, the fission product core release, and fission product and aerosol transport. Each general module consists of some basic modules which correspond to the process to be simulated or to its specific purpose. Besides the code structure based on the physical modelling, the code follows four strictly separated steps during the course of a calculation: (1) input of structure, geometrical data, initial and boundary condition, (2) initialization of derived quantities, (3) steady state calculation or input of restart data, and (4) transient calculation. In this paper, the transient solution method is briefly presented and the coupling methods are discussed. Three aspects have to be considered for the coupling of different modules in one code system. First is the conservation of masses and energy in the different subsystems as there are fluid, structures, and fission products and aerosols. Second is the convergence of the numerical solution and stability of the calculation. The third aspect is related to the code performance, and running time.

  20. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    Science.gov (United States)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  1. Measurement of spectrum for thermal neutrons produced from H2O moderator coupled with mercury target

    International Nuclear Information System (INIS)

    Meigo, S.; Maekawa, F.; Kasugai, Y.; Nakashima, H.; Ikeda, Y.; Watanabe, N.

    2001-01-01

    In order to obtain fundamental data for the design of pulsed spallation neutron source, the slowing-down and thermalized neutrons from an H 2 O moderator coupled with the mercury target were measured using GeV proton beams at AGS (Alternative Gradient Synchrotron) in BNL (Brookhaven National Laboratory) under the ASTE (AGS-Spallation Target Experiment) collaboration. The mercury target (φ 20 cm x L 130 cm) was surrounded by a lead reflector (1 x 1 x 1 m 3 ) was irradiated by 1.94-, 12- and 24-GeV protons. The spectral intensities of thermal neutrons from the moderator are measured by the current-mode time-of-flight technique using enriched 6 Li and 7 Li glass scintillators. By this technique, only several incident pulses were needed to obtain sufficient statistics for incident energy. The results have shown that the neutron spectral intensity per proton integrated over the Maxwellian region was almost proportional to the proton energy. By moving the target along the beam direction within 15 cm, the dependence of the relative moderator position to the target on the neutron flux was also measured. With this position change, the difference with flux was found within 10%. (author)

  2. Coupled neutronics and thermal hydraulics modelling in reactor dynamics codes TRAB-3D and HEXTRAN

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.; Raety, H.

    1999-01-01

    The reactor dynamics codes for transient and accident analyses inherently include the coupling of neutronics and thermal hydraulics modelling. In Finland a number of codes with 1D and 3D neutronic models have been developed, which include models also for the cooling circuits. They have been used mainly for the needs of Finnish power plants, but some of the codes have also been utilized elsewhere. The continuous validation, simultaneous development, and experiences obtained in commercial applications have considerably improved the performance and range of application of the codes. The fast operation of the codes has enabled realistic analysis of 3D core combined to a full model of the cooling circuit even in such long reactivity scenarios as ATWS. The reactor dynamics methods are developed further and new more detailed models are created for tasks related to increased safety requirements. For thermal hydraulics calculations, an accurate general flow model based on a new solution method has been developed. Although mainly intended for analysis purposes, the reactor dynamics codes also provide reference solutions for simulator applications. As computer capability increases, these more sophisticated methods can be taken into use also in simulator environments. (author)

  3. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating

    International Nuclear Information System (INIS)

    Xi, Chen; Hongxing, Yang; Lin, Lu; Jinggang, Wang; Wei, Liu

    2011-01-01

    This paper presents experimental studies on a solar-assisted ground coupled heat pump (SAGCHP) system for space heating. The system was installed at the Hebei Academy of Sciences in Shijiazhuang (lat. N38 o 03', long. E114 o 26'), China. Solar collectors are in series connection with the borehole array through plate heat exchangers. Four operation modes of the system were investigated throughout the coldest period in winter (Dec 5th to Dec 27th). The heat pump performance, borehole temperature distributions and solar colleting characteristics of the SAGCHP system are analyzed and compared when the system worked in continuous or intermittent modes with or without solar-assisted heating. The SAGCHP system is proved to perform space heating with high energy efficiency and satisfactory solar fraction, which is a promising substitute for the conventional heating systems. It is also recommended to use the collected solar thermal energy as an alternative source for the heat pump instead of recharging boreholes for heat storage because of the enormous heat capacity of the earth. -- Highlights: → We study four working modes of a solar-assisted ground coupled heat pump. → The heating performance is in direct relation with the borehole temperature. → Solar-assisted heating elevates borehole temperature and system performance. → The system shows higher efficiency over traditional heating systems in cold areas. → Solar heat is not suggested for high temperature seasonal storage.

  4. Neutronic / thermal-hydraulic coupling with the code system Trace / Parcs

    International Nuclear Information System (INIS)

    Mejia S, D. M.; Del Valle G, E.

    2015-09-01

    The developed models for Parcs and Trace codes corresponding for the cycle 15 of the Unit 1 of the Laguna Verde nuclear power plant are described. The first focused to the neutronic simulation and the second to thermal hydraulics. The model developed for Parcs consists of a core of 444 fuel assemblies wrapped in a radial reflective layer and two layers, a superior and another inferior, of axial reflector. The core consists of 27 total axial planes. The model for Trace includes the vessel and its internal components as well as various safety systems. The coupling between the two codes is through two maps that allow its intercommunication. Both codes are used in coupled form performing a dynamic simulation that allows obtaining acceptably a stable state from which is carried out the closure of all the main steam isolation valves (MSIVs) followed by the performance of safety relief valves (SRVs) and ECCS. The results for the power and reactivities introduced by the moderator density, the fuel temperature and total temperature are shown. Data are also provided like: the behavior of the pressure in the steam dome, the water level in the downcomer, the flow through the MSIVs and SRVs. The results are explained for the power, the pressure in the steam dome and the water level in the downcomer which show agreement with the actions of the MSIVs, SRVs and ECCS. (Author)

  5. Effect of electron thermal motion on plasma heating in a magnetized inductively coupled plasma

    International Nuclear Information System (INIS)

    Aman-ur-Rehman; Pu Yikang

    2007-01-01

    Power absorbed inside the magnetized inductively coupled plasma (MICP) is calculated using three different warm MICP models and is then compared with the result of the cold MICP model. The comparison shows that in the propagating region (ω e vertical bar), under the cavity resonance conditions, warm plasma heating S warm is significantly less than the cold plasma heating S cold , unless the distance traveled by the electrons due to their thermal motion, during the effective wave period, becomes significantly less than the wavelength of the cavity wave. Furthermore, in the propagating region, when ω≅ vertical bar Ω e vertical bar, there appears a valley on the plot of η(ω)=S warm /S cold versus ω showing the negative effect of electron thermal motion on plasma heating. This valley widens and gets smoother with an increase in the plasma length. In the nonpropagating region (ω> vertical bar Ω e vertical bar), the maximum value of η(ω) exists when ω- vertical bar Ω e vertical bar ≅v th /δ, showing that, in the presence of the external magnetic field, the thermal motion of the electrons leads to a Doppler shift of the frequencies, at which collisionless heating is the dominant mode of electron heating. Furthermore, in the nonpropagating region, when ω≅ vertical bar Ω e vertical bar, the skin depth of the right circularly polarized electric field decreases with magnetic field. This decrease in the skin depth results in an increase of collisionless heating under the Doppler-shifted wave particle resonant condition of ω- vertical bar Ω e vertical bar ≅v th /δ. It is also observed that, for large plasma length, the results of all the three warm MICP models are consistent with each other

  6. Multi-scale, coupled Reactor Physics / Thermal-Hydraulics system and applications to the HPLWR 3 Pass Core

    OpenAIRE

    Monti, Lanfranco

    2009-01-01

    The HPLWR is an innovative reactor concept cooled with water at supercritical pressure. The pronounced changes of water properties with the heat-up demands advanced analyses tools which have been developed and successfully applied. Coupled neutronic/thermal-hydraulic analyses have been performed for the whole core and the coupled solution has been successively investigated at sub-channel resolution evaluating local quantities. The obtained results represent a new quality in core analyses.

  7. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.

    2003-01-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  8. A coupled magneto-thermo-elastic problem in a perfectly conducting elastic half-space with thermal relaxation

    Directory of Open Access Journals (Sweden)

    S. K. Roy-Choudhuri

    1990-01-01

    Full Text Available In the present paper we consider the magneto-thermo-elastic wave produced by a thermal shock in a perfectly conducting elastic half-space. Here the Lord-Shulman theory of thermoelasticity [1] is used to account for the interaction between the elastic and thermal fields. The solution obtained in analytical form reduces to those of Kaliski and Nowacki [2] when the coupling between the temperature and strain fields and the relaxation time are neglected. The results also agree with those of Massalas and DaLamangas [3] in absence of the thermal relaxation time.

  9. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  10. Development of a 'Coupling-by-Closure' approach between CFD and system thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Cadinu, Francesco; Kudinov, Pavel

    2009-01-01

    The variety of scenarios in nuclear reactor safety analysis creates a diversity of approaches to the problem of coupling Computational Fluid Dynamics (CFD) and System Thermal-Hydraulics (STH) codes. In this paper, we focus on the development of a 'Coupling by Closure' (CC) technique. In this approach, a CFD code is used to provide closures as an input into an STH code. The STH solution defines the 'macrostate' conditions where the CFD-generated closure is needed. This technique aims to provide a solution for a class of problems where the standard closure used in STH is not valid (e.g. because of their transient nature). The water hammer phenomenon is a typical example of a transient where unsteady friction (or heat transfer) plays an important role. We demonstrate different aspects of the 'Coupling by Closure' technique on a test problem: the transient laminar flow through a sudden expansion driven by a time-dependent gradient of pressure. Unsteadiness, with its effect on friction, and the presence of 3D effects are some features this flow shares with many reactor transients. Furthermore, despite being conceptually simple, this transient cannot be reliably simulated by a STH code because of the lack of appropriate closures (unsteady loss coefficient). We show that it is possible to get around this difficulty by complementing the STH analysis with CFD simulations. By developing the CC methodology, we achieve the goal of calculating the correct mass flow rate through the system as a function of time, at a much lower computational cost than the one required by a full transient CFD simulation. Starting point of our coupling strategy is the analysis of the interplay between mass flow rate and loss coefficient in a transient flow. We show how to identify time intervals, during the transient, when no expensive unsteady CFD closure is required because the solution is not sensitive to the loss coefficient or because the latter can be calculated by steady state CFD

  11. Numerical stability analysis of coupled neutronics and thermal-hydraulics schemes and new neutronic feedback-reactions model

    International Nuclear Information System (INIS)

    Guertin, Chantal

    1995-01-01

    This thesis is part of the validation process of using coupled 3D neutronics and thermal-hydraulics codes for studying accidental situations with boiling. First part is dedicated to a numerical stability analysis of neutronics and thermal-hydraulics coupled schemes. Both explicit and semi-implicit coupling schemes were applied to solve the set of equations describing the linearized neutronics and thermal-hydraulics of point reactor. Point reactor modelling was preferred to obtain analytical expressions of eigenvalues of the discretized Systems. Stability criteria, based on eigenvalues, was calculated as well as neutronic and thermalhydraulic responses of the System following insertion of a reactivity step. Results show no severe restriction of time domain, stability wise. Actual transient calculations using coupled neutronics and thermal-hydraulics codes, like COCCINELLE and THYC developed at Electricite de France, do not show stability problems. Second part introduces surface spline as a new neutronic feedback model. The cross influences of feedback parameters is now taken into account. Moderator temperature and density were modeled. This method, simple and accurate, allows an homogeneous description of cross-sections overall operating reactor situations including accidents with boiling. (author) [fr

  12. A methodology for the coupling of RAMONA-3B neutron kinetics and TRAC-BF1 thermal-hydraulics

    International Nuclear Information System (INIS)

    Lopez, Arsenio Procopio; Morales Sandoval, Jaime B.

    2005-01-01

    The initial objective of this project was to directly couple the RAMONA and TRAC codes running on different PCs. The idea was to use the best part of each one and eliminate some of their limitations and widen the applicability of these codes to simulate different BWR and system components. It was required to try to minimize the amount of changes to present code subroutines and calculation procedures. If possible, just substitute values obtained in the parallel code. Preliminary results indicated that using a CHAN component of TRAC to model thermal-hydraulic phenomena for each neutronic channel modeled in RAMONA is rather difficult. Large amounts of CPU time consumption are obtained and lots of PCs would make this solution difficult, besides considerable large transients are introduced by the differences in thermal-hydraulic results of these codes. The substitution of the thermal-hydraulics of RAMONA, by the TRAC channel calculations, is possible but simulation of a null transient on both codes must be planed and a gradual change must be controlled by an additional supervisory subroutine. An indirect coupling of these codes, it is therefore proposed, in order to eliminate most of these limitations. In this indirect coupling, a thermal-hydraulic model of the average tube in a bundle and the global channel cooling fluid dynamics is programmed for each neutronic channel while the global reactor vessel and core is modeled by TRAC with just four channels and four rings. Results are more reliable, coupling is simpler and faster simulations are possible

  13. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  14. How Do Icebergs Affect The Greenland Ice Sheet Under Pre-Industrial Conditions? – A Model Study With A Fully Coupled Ice Sheet – Climate Model

    NARCIS (Netherlands)

    Bügelmayer, M.; Roche, D.M.V.A.P.; Renssen, H.

    2015-01-01

    Icebergs have a potential impact on climate since they release freshwater over a widespread area and cool the ocean due to the take-up of latent heat. Yet, so far, icebergs have never been modelled using an ice-sheet model coupled to a global climate model. Thus, in climate models their impact on

  15. Numerical modeling of coupled thermal chemical reactive transport: simulation of a heat storage system

    Science.gov (United States)

    Shao, H.; Watanabe, N.; Singh, A. K.; Nagel, T.; Linder, M.; Woerner, A.; Kolditz, O.

    2012-12-01

    As a carbon-free energy supply technology, the operation time and final energy output of thermal solar power plants can be greatly extended if efficient thermal storage systems are applied. One of the proposed design of such system is to utilize reversible thermochemical reactions and its embedded reaction enthalpy, e.g. the Ca(OH)2/CaO hydration circle, in a fixed-bed gas-solid reactor (Schaube et al. 2011) The modeling of such a storage system involves multiple strongly-coupled physical and chemical processes. Seepage velocity is calculated by the nonlinear Forchheimer law. Gas phase density and viscosity are temperature, pressure and composition dependent. Also, heat transfer between gas and solid phases is largely influenced by the exothermal heat produced by the hydration of calcium oxide. Numerical solution of four governing PDEs include the mass balance, reactive transport, heat balance equations for gas and solid phases, which are implemented into the open source scientific software OpenGeoSys in a monolithic way. Based on it, a 2D numerical model, considering the boundary heat loss of the system, was set up to simulate the energy-storage and release circle. The high performance computing techniques were employed in two stages. First, the dynamic behavior of the heat storage system is simulated on a parallel platform. Second, a large number of processors are employed to perform sensitivity analysis, whereas the reaction rates and efficiency factor of heat transfer are parameterized so that the measured and simulated temperature profile fit with each other. The model showed that heat transfer coefficient between solid and gas phase, grain size of the filling material will influence the final performance greatly. By varying these factors, the calibrated model will be further applied to optimize the design of such energy storage system.

  16. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J. [Univ. of Virginia, Charlottesville, VA (United States)

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcation occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.

  17. PVT Panels. Fully renewable and competitive

    International Nuclear Information System (INIS)

    Bakker, M.; Strootman, K.J.; Jong, M.J.M.

    2003-10-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. PVT panels generate more solar energy per unit surface area than a combination of separate PV panels and solar thermal collectors, and share the aesthetic advantage of PV. After several years of research, PVT panels have been developed into a product that is now ready for market introduction. One of the most promising system concepts, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS, and has been found to be able to fully cover both the building related electricity and heat consumption, while keeping the long-term average ground temperature constant. The cost and payback time of such a system have been determined; it has been found that the payback time of this system is approximately two-thirds of the payback time of an identical system but with 21 m 2 of PV panels and 4 m 2 of solar thermal collectors. Finally, by looking at the expected growth in the PV and solar thermal collector market, the market potential for for PVT panels has been found to be very large

  18. Optimization of Borehole Thermal Energy Storage System Design Using Comprehensive Coupled Simulation Models

    Science.gov (United States)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Formhals, Julian; Bär, Kristian; Sass, Ingo

    2017-04-01

    Large-scale borehole thermal energy storage (BTES) is a promising technology in the development of sustainable, renewable and low-emission district heating concepts. Such systems consist of several components and assemblies like the borehole heat exchangers (BHE), other heat sources (e.g. solarthermics, combined heat and power plants, peak load boilers, heat pumps), distribution networks and heating installations. The complexity of these systems necessitates numerical simulations in the design and planning phase. Generally, the subsurface components are simulated separately from the above ground components of the district heating system. However, as fluid and heat are exchanged, the subsystems interact with each other and thereby mutually affect their performances. For a proper design of the overall system, it is therefore imperative to take into account the interdependencies of the subsystems. Based on a TCP/IP communication we have developed an interface for the coupling of a simulation package for heating installations with a finite element software for the modeling of the heat flow in the subsurface and the underground installations. This allows for a co-simulation of all system components, whereby the interaction of the different subsystems is considered. Furthermore, the concept allows for a mathematical optimization of the components and the operational parameters. Consequently, a finer adjustment of the system can be ensured and a more precise prognosis of the system's performance can be realized.

  19. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    Science.gov (United States)

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  20. Elimination of Thermally Generated Charge in Charged Coupled Devices Using Bayesian Estimator

    Directory of Open Access Journals (Sweden)

    J. Svihlik

    2008-06-01

    Full Text Available This paper deals with advanced methods for elimination of thermally generated charge in astronomical images, which were acquired by a Charged Coupled Device (CCD sensor. There exist a number of light images acquired by telescope, which were not corrected by dark frame. The reason is simple: the dark frame doesn't exist, because it was not acquired. This situation may for instance come when sufficient memory space is not available. Correction methods based on the modeling of the light and dark image in the wavelet domain will be discussed. As the model for the dark frame image and for the light image the generalized Laplacian was chosen. The model parameters were estimated using moment method, whereas an extensive measurement on an astronomical camera was proposed and done. This measurement simplifies estimation of the dark frame model parameters. Finally a set of astronomical testing images was corrected and then the objective criteria for an image quality evaluation based on the aperture photometry were applied.

  1. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  2. Electromagnetic-thermal-structural coupling analysis of the ITER edge localized mode coil with flexible supports

    Science.gov (United States)

    Zhang, Shanwen; Song, Yuntao; Tang, Linlin; Wang, Zhongwei; Ji, Xiang; Du, Shuangsong

    2017-05-01

    In a fusion reactor, the edge localized mode (ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature, high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil (with flexible supports) of ITER (the International Thermonuclear Fusion Reactor), an electromagnetic-thermal-structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.

  3. Heat Rate Enhancement of IGCC Power Plant Coupled with Solar thermal power plant

    OpenAIRE

    Kotdawala, Rasesh R; V., Jyothi; Kanaujia, Gaurav; Adapa, Bharath

    2016-01-01

    Integrated gasification  combined cycle power plant (IGCC) has shown the potential of having higher operating thermal efficiency, than supercritical thermal power plants as it combines the advantages of coal gasification and combined cycle power plant. Solar thermal plant has shown great promise to augment the thermal efficiency of the fossil based power plants and reducing CO2 emissions. In this research paper, impact of integrating solar thermal power plant utilizing linear Fresnel collecto...

  4. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    Science.gov (United States)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims

  5. Final Report: Improving the understanding of the coupled thermal-mechanical-hydrologic behavior of consolidating granular salt

    Energy Technology Data Exchange (ETDEWEB)

    Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States); Lampe, Brandon [Univ. of New Mexico, Albuquerque, NM (United States); Mills, Melissa [Univ. of New Mexico, Albuquerque, NM (United States); Paneru, Laxmi [Univ. of New Mexico, Albuquerque, NM (United States); Lynn, Timothy [Univ. of New Mexico, Albuquerque, NM (United States); Piya, Aayush [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-09-09

    The goal of this project is to improve the understanding of key aspects of the coupled thermal-mechanical-hydrologic response of granular (or crushed) salt used as a seal material for shafts, drifts, and boreholes in mined repositories in salt. The project is organized into three tasks to accomplish this goal: laboratory measurements of granular salt consolidation (Task 1), microstructural observations on consolidated samples (Task 2), and constitutive model development and evaluation (Task 3). Task 1 involves laboratory measurements of salt consolidation along with thermal properties and permeability measurements conducted under a range of temperatures and stresses expected for potential mined repositories in salt. Testing focused on the role of moisture, temperature and stress state on the hydrologic (permeability) and thermal properties of consolidating granular salt at high fractional densities. Task 2 consists of microstructural observations made on samples after they have been consolidated to interpret deformation mechanisms and evaluate the ability of the constitutive model to predict operative mechanisms under different conditions. Task 3 concerns the development of the coupled thermal-mechanical-hydrologic constitutive model for granular salt consolidation. The measurements and observations in Tasks 1 and 2 were used to develop a thermal-mechanical constitutive model. Accomplishments and status from each of these efforts is reported in subsequent sections of this report

  6. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    Science.gov (United States)

    Fainberg, J.; Schaefer, W.

    2015-06-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples.

  7. IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Weiss, Frank-Peter; Dietze, Klaus; Jacqmin, Robert; Ishikawa, Makoto

    2003-01-01

    1 - Description: The RRR-SEG-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactor RRG-SEG (at RC Rossendorf / Germany) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in Note Technique SPRC/LEPh/93-230 (SEG) The SEG experiments are considered 'clean' integral experiments, simple and clear in geometry and well suited for calculation. In all SEG configurations only a few materials were used, most of these were standards. Due to the designed adjoint function (energy-independent or monotonously rising), the capture or scattering effect was dominant, convenient to check separately capture or scattering data. At first, analyses of the experiments have been performed in Rossendorf. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and

  8. IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Dietze, Klaus; Klippel, Henk Th.; Koning, Arjan; Jacqmin, Robert

    2003-01-01

    1 - Description: The STEK-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactors STEK (ECN Petten/ Netherlands) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in RCN-209, ECN-10 The 5 STEK configurations cover a broad energy range due to their increasing softness. The experiments are very valuable because of the extensive program of sample reactivity measurements with many fission product nuclides important in reactor burn-up calculations. At first, analyses of the experiments have been performed in Petten. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and JENDL-3.2) are compared in JEF/DOC-861. It contains the following documents: 31 Reports, 2 publications, 5 JEF documents, 4 conferences. 2 - Related or auxiliary programs

  9. Thermal-hydraulics/thermal-mechanics temporal coupling for unprotected loss of flow accidents simulations on a SFR

    Directory of Open Access Journals (Sweden)

    Patricot Cyril

    2016-01-01

    Full Text Available In the frame of ASTRID designing, unprotected loss of flow (ULOF accidents are considered. As the reactor is not scrammed, power evolution is driven by neutronic feedbacks, among which Doppler effect, linked to fuel temperature, is prominent. Fuel temperature is calculated using thermal properties of fuel pins (we will focus on heat transfer coefficient between fuel pellet and cladding, Hgap, and on fuel thermal conductivity, λfuel which vary with irradiation conditions (neutronic flux, mass flow and history for instance and during transient (mainly because of dilatation of materials with temperature. In this paper, we propose an analysis of the impact of spatial variation and temporal evolution of thermal properties of fuel pins on a CFV-like core [M.S. Chenaud et al., Status of the ASTRID core at the end of the pre-conceptual design phase 1, in Proceedings of ICAPP 2013, Jeju Island, Korea (2013] behavior during an ULOF accident. These effects are usually neglected under some a priori conservative assumptions. The vocation of our work is not to provide a best-estimate calculation of ULOF transient, but to discuss some of its physical aspects. To achieve this goal, we used TETAR, a thermal-hydraulics system code developed by our team to calculate ULOF transients, GERMINAL V1.5, a CEA code dedicated to SFR pin thermal-mechanics calculations and APOLLO3®, a neutronic code in development at CEA.

  10. Effects of Drake Passage on the Ocean's Thermal and Mechanical Energy Budget in a Coupled AOGCM

    Science.gov (United States)

    von der Heydt, A. S.; Viebahn, J. P.

    2016-12-01

    During the Cenozoic Earth's climate has undergone a major long-term transition from `greenhouse' to `icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The gradual cooling may be seen as response to the overall slowly decreasing atmospheric CO2-concentration due to weathering processes in the Earth System, however, continental geometry has changed considerably over this period and the long-term gradual trend was interrupted, by several rapid transitions and periods where temperature and greenhouse gas concentrations seem to be decoupled. The Eocene-Oligocene boundary ( 34 Ma, E/O) and mid-Miocene climatic transition ( 13 Ma, MCT) reflect major phases of Antarctic ice sheet build-up and global climate cooling, while Northern Hemisphere ice sheets developed much later ( 2.7Ma). Thresholds in atmospheric CO2-concentration together with feedback mechanisms related to land ice formation are among the favoured mechanisms of these climatic transitions, while the long-proposed ocean circulation changes caused by opening of tectonic gateways seem to play a less direct role. The opening of the Southern Ocean gateways, however, has eventually led to the development of today's strongest ocean current, the Antarctic Circumpolar Current, playing a major role in the transport properties of the global ocean circulation. The overall state of the global ocean circulation, therefore, must precondition the climate system to dramatic events such as major ice sheet formation. Closing Drake Passage in ocean-only and coupled climate models under otherwise present-day boundary conditions has become a classic experiment, indicating that there exists a considerable uncertainty in the climate response of those models to a closed Drake Passage. Here we quantify the climate response to a closed Drake Passage in a state-of-the-art coupled climate model (CESM). We show that the ocean gateway mechanism is robust in the sense that the equatorward expansion of

  11. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    Science.gov (United States)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p temperature sensitivity is incorporated into our previous asymptotic analyses. This entails a coupling of the energy equation to the previous purely hydrodynamic problem, and leads to a significant modification of the pulsating boundary such that, for sufficiently large values of the temperature-sensitivity parameter, liquid-propellant combustion can become intrinsically unstable to this alternative form of hydrodynamic instability. For simplicity, further attention is confined here to the inviscid version

  12. INFLATING AND DEFLATING HOT JUPITERS: COUPLED TIDAL AND THERMAL EVOLUTION OF KNOWN TRANSITING PLANETS

    International Nuclear Information System (INIS)

    Miller, N.; Fortney, J. J.; Jackson, B.

    2009-01-01

    We examine the radius evolution of close in giant planets with a planet evolution model that couples the orbital-tidal and thermal evolution. For 45 transiting systems, we compute a large grid of cooling/contraction paths forward in time, starting from a large phase space of initial semimajor axes and eccentricities. Given observational constraints at the current time for a given planet (semimajor axis, eccentricity, and system age), we find possible evolutionary paths that match these constraints, and compare the calculated radii to observations. We find that tidal evolution has two effects. First, planets start their evolution at larger semimajor axis, allowing them to contract more efficiently at earlier times. Second, tidal heating can significantly inflate the radius when the orbit is being circularized, but this effect on the radius is short-lived thereafter. Often circularization of the orbit is proceeded by a long period while the semimajor axis slowly decreases. Some systems with previously unexplained large radii that we can reproduce with our coupled model are HAT-P-7, HAT-P-9, WASP-10, and XO-4. This increases the number of planets for which we can match the radius from 24 (of 45) to as many as 35 for our standard case, but for some of these systems we are required to be viewing them at a special time around the era of current radius inflation. This is a concern for the viability of tidal inflation as a general mechanism to explain most inflated radii. Also, large initial eccentricities would have to be common. We also investigate the evolution of models that have a floor on the eccentricity, as may be due to a perturber. In this scenario, we match the extremely large radius of WASP-12b. This work may cast some doubt on our ability to accurately determine the interior heavy element enrichment of normal, noninflated close in planets, because of our dearth of knowledge about these planets' previous orbital-tidal histories. Finally, we find that the end

  13. Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix

    International Nuclear Information System (INIS)

    Givord, Dominique; Skumryev, Vassil; Nogues, Josep

    2005-01-01

    A model providing a semi-quantitative account of the magnetic behavior of Co nanoparticles embedded in a CoO matrix is presented. The results confirm that exchange coupling at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) nanostructures could provide an extra source of magnetic anisotropy, leading to thermal stability of the FM nanoparticles. It is shown that perpendicular coupling between the AFM and FM moments may result in large coercivities. The energy barrier, which works against reversal is due to the AFM susceptibility anisotropy. The experimentally observed exchange bias is tentatively ascribed to pre-existing intrinsic canting of the AFM moments at the interface

  14. Amine modification of thermally carbonized porous silicon with silane coupling chemistry.

    Science.gov (United States)

    Mäkilä, Ermei; Bimbo, Luis M; Kaasalainen, Martti; Herranz, Barbara; Airaksinen, Anu J; Heinonen, Markku; Kukk, Edwin; Hirvonen, Jouni; Santos, Hélder A; Salonen, Jarno

    2012-10-02

    Thermally carbonized porous silicon (TCPSi) microparticles were chemically modified with organofunctional alkoxysilane molecules using a silanization process. Before the silane coupling, the TCPSi surface was activated by immersion in hydrofluoric acid (HF). Instead of regeneration of the silicon hydride species, the HF immersion of silicon carbide structure forms a silanol termination (Si-OH) on the surface required for silanization. Subsequent functionalization with 3-aminopropyltriethoxysilane provides the surface with an amine (-NH(2)) termination, while the SiC-type layer significantly stabilizes the functionalized structure both mechanically and chemically. The presence of terminal amine groups was verified with FTIR, XPS, CHN analysis, and electrophoretic mobility measurements. The overall effects of the silanization to the morphological properties of the initial TCPSi were analyzed and they were found to be very limited, making the treatment effects highly predictable. The maximum obtained number of amine groups on the surface was calculated to be 1.6 groups/nm(2), corresponding to 79% surface coverage. The availability of the amine groups for further biofunctionalization was confirmed by successful biotinylation. The isoelectric point (IEP) of amine-terminated TCPSi was measured to be at pH 7.7, as opposed to pH 2.6 for untreated TCPSi. The effects of the surface amine termination on the cell viability of Caco-2 and HT-29 cells and on the in vitro fenofibrate release profiles were also assessed. The results indicated that the surface modification did not alter the loading of the drug inside the pores and also retained the beneficial enhanced dissolution characteristics similar to TCPSi. Cellular viability studies also showed that the surface modification had only a limited effect on the biocompatibility of the PSi.

  15. Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production

    International Nuclear Information System (INIS)

    Wang, Zhe; Fan, Weiyu; Zhang, Guangqing; Dong, Shuang

    2016-01-01

    Highlights: • A novel MC–CLC process for H 2 production is proposed. • Energy utilisation of three MC processes is analysed by exergy analysis. • MC–CLC has the highest exergy efficiency compared with MC-CH 4 and MC-H 2. • MC-H 2 provides an advantage of absence of CO 2 generation. - Abstract: This paper proposes a novel hydrogen production process by Methane Cracking thermally coupled with Chemical Looping Combustion (MC–CLC) which provides an advantage of inherent capture of CO 2 . The energy utilisation performance of the MC–CLC process is compared with that of conventional Methane Cracking with combusting CH 4 (MC-CH 4 ) and Methane Cracking with combusting H 2 (MC-H 2 ) using exergy analysis, with focus on exergy flows, destruction and efficiency. The three MC processes are simulated using Aspen Plus software with detailed heat integration. In these processes, the majority of the exergy destruction occurs in the combustors or CLC mostly due to the high irreversibility of combustion. The CO 2 capture unit has the lowest exergy efficiency in the MC-CH 4 process, leading to a lower overall exergy efficiency of the process. The combustor in the MC-H 2 process has a much higher energy efficiency than that in the MC-CH 4 process or the CLC in the MC–CLC process. Although the use of H 2 as fuel decreases the H 2 production rate, the MC-H 2 process provides the advantage of an absence of CO 2 generation, and stores more chemical exergy in the solid carbon which can be utilised appropriately. The MC–CLC process obtains the highest exergy efficiency among the three models and this is primarily due to the absence of a CO 2 capture penalty and the CLC’s higher fuel utilization efficiency than the conventional combustion process.

  16. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Austregesilo, H.; Velkov, K. [GRS, Garching (Germany)] [and others

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  17. Flow resistance of orifices and spacers of BWR thermal-hydraulic and neutronic coupling loop

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Asaka, Hideaki; Nakamura, Hideo

    2002-03-01

    Authors are performing THYNC experiments to study thermal-hydraulic instability under neutronic and thermal-hydraulic coupling. In THYNC experiments, the orifices are installed at the exit of the test section and the spacers are installed in the test section, in order to properly simulate in-core thermal-hydraulics in the reactor core. It is necessary to know the flow resistance of the orifices and spacers for the analysis of THYNC experimental results. Consequently, authors measured the flow resistance of orifice and spacer under single-phase and two-phase flows. Using the experimental results, authors investigated the dependency of the flow resistances on the parameters, such as pressure, mass flux, an geometries. Furthermore, authors investigated the applicability of the basic two-phase flow models, for example the separate flow model, to the two-phase flow multiplier. As the result of the investigation on the single-phase flow experiment, it was found (1) that the effects of pressure and mass flux flow resistance are described by a function of Reynolds number, and (2) that flow resistances of the orifice and the spacer are calculated with the previous prediction methods. However, it was necessary to introduce an empirical coefficient, since it was difficult to predict accurately the flow resistance only with the previous prediction method due to the complicated geometry dependency, for example a flow area blockage ratio. On the other hand, according to the investigation on two-phase flow experiment, the followings were found. (1) Relation between the two-phase flow multiplier and the quality is regarded to be linear under pressure of 2MPa - 7MPa. The relation is dependent on pressure and geometry, and is little dependent on mass flux. (2) Relation between the two-phase flow multiplier and void fraction is little dependent on pressure, mass flux, and geometry under pressure of 0.2MPa - 7MPa and void fraction less than 0.6. The relation is less dependent on

  18. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite

    OpenAIRE

    Greco, Angelo; Jiang, Xi

    2016-01-01

    Lithium-ion (Li-ion) battery cooling using a phase change material (PCM)/compressed expanded natural graphite (CENG) composite is investigated, for a cylindrical battery cell and for a battery module scale. An electrochemistry model (average model) is coupled to the thermal model, with the addition of a one-dimensional model for the solution and solid diffusion using the nodal network method. The analysis of the temperature distribution of the battery module scale has shown that a two-dimensi...

  19. Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 2. Impact of heterogeneous chemistry on the global aerosol distributions

    Science.gov (United States)

    Pozzoli, L.; Bey, I.; Rast, S.; Schultz, M. G.; Stier, P.; Feichter, J.

    2008-04-01

    We use the ECHAM5-HAMMOZ aerosol-chemistry-climate model to quantify the influence of trace gas-aerosol interactions on the regional and global distributions and optical properties of aerosols for present-day conditions. The model includes fully interactive simulations of gas phase and aerosol chemistry including a comprehensive set of heterogeneous reactions. We find that as a whole, the heterogeneous reactions have only a small effect on the SO2 and sulfate burden because of competing effects. The uptake of SO2 on dust and sea salt decreases the SO2 concentrations while the decrease in OH (that results from the uptake of HO2, N2O5, and O3) tends to increase SO2 (because of reduced oxidation). The sulfate formed in sea salt aerosols from SO2 uptake accounts for 3.7 Tg(S) a-1 (5%) of the total sulfate production. Uptake and subsequent reaction of SO2 on mineral dust contributes to a small formation of sulfate (0.55 Tg(S) a-1, coating of mineral dust particles, resulting in an extra 300 Tg a-1 of dust being transferred from the insoluble to the soluble mixed modes. The burden of dust in the insoluble modes is reduced by 44%, while the total burden is reduced by 5% as a result of enhanced wet deposition efficiency. Changes in the sulfur cycle affect the H2SO4 concentrations and the condensation of H2SO4 on black carbon. Accounting for heterogeneous reactions enhances the global mean burden of hydrophobic black carbon particles by 4%. The changes in aerosol mixing state result only in a small change in the global and annual aerosol optical depth (AOD) and absorption optical depth (ABS), but have significant implications on regional and seasonal scale. For example, in the main polluted regions of the Northern Hemisphere, AOD and ABS increase by 10-30% and up to 15%, respectively, in winter.

  20. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket

    Science.gov (United States)

    Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin

    2015-12-01

    Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  1. Parametric studies by means of uncertainty and sensitivity methods for coupled thermal-hydraulic/neutron-physics application

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, W.; Sanchez, V.; Cheng, X. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Neutron Physics and Reactor Technology; Monti, L. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear and Energy Technologies; Hurtado, A. [Technical Univ. of Dresden (Germany). Inst. of Power Engineering

    2011-07-01

    At the Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT), the development and validation of coupled codes systems is one major activity. In this paper, a 2-step method is proposed to perform uncertainty and sensitivity analysis of a nuclear fuel bundle. At first, the SUSA package (Software system for Uncertainty and Sensitivity Analysis), 2 is applied to the thermal hydraulic results of the TRACE (TRACE/RELAP Advanced Computational Engine) code to identify crucial thermal hydraulic parameter combinations which are successively used in the TH/NP coupled system TRACEERANOS to account for the neutronic feedbacks. This 2-step method was applied since the TRACE-ERANOS system runs 1 input in approximately 1 day (depending on the computer configurations). Since the uncertainty and sensitivity analysis requires about 100 runs of the thermal hydraulic input (with altered parameters, running within minutes) an integral TRACE-SUSA-ERANOS analysis would need around 100 days. For this analysis a fuel assembly model of the HPLWR (High Performance Light Water Reactor) was selected. Due to the general structure of the coupling and code communication scripts, the system can be used for any kind of reactor/system which can be described with TRACE and ERANOS (e.g., fast systems) while SUSA can be applied to anything. (orig.)

  2. Thermal-orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around M stars

    International Nuclear Information System (INIS)

    Shoji, D.; Kurita, K.

    2014-01-01

    M-type stars are good targets in the search for habitable extrasolar planets. Due to their low effective temperatures, the habitable zone of M stars is very close to the stars themselves. For planets that are close to their stars, tidal heating plays an important role in thermal and orbital evolutions, especially when the planet's orbit has a relatively large eccentricity. Although tidal heating interacts with the thermal state and the orbit of the planet, such coupled calculations for extrasolar planets around M stars have not been conducted. We perform coupled calculations using simple structural and orbital models and analyze the thermal state and habitability of a terrestrial planet. Considering this planet to be Martian-sized, the tide heats up and partially melts the mantle, maintaining an equilibrium state if the mass of the star is less than 0.2 times the mass of the Sun and the initial eccentricity of the orbit is more than 0.2. The reduction of heat dissipation due to the melted mantle allows the planet to stay in the habitable zone for more than 10 Gyr even though the orbital distance is small. The surface heat flux at the equilibrium state is between that of Mars and Io. The thermal state of the planet mainly depends on the initial value of the eccentricity and the mass of the star.

  3. Fully automated ionic liquid-based headspace single drop microextraction coupled to GC-MS/MS to determine musk fragrances in environmental water samples.

    Science.gov (United States)

    Vallecillos, Laura; Pocurull, Eva; Borrull, Francesc

    2012-09-15

    A fully automated ionic liquid-based headspace single drop microextraction (IL-HS-SDME) procedure has been developed for the first time to preconcentrate trace amounts of ten musk fragrances extensively used in personal care products (six polycyclic musks, three nitro musks and one polycyclic musk degradation product) from wastewater samples prior to analysis by gas chromatography and ion trap tandem mass spectrometry (GC-IT-MS/MS). Due to the low volatility of the ILs, a large internal diameter liner (3.4 mm i.d.) was used to improve the ILs evaporation. Furthermore, a piece of glass wool was introduced into the liner to avoid the entrance of the ILs in the GC column and a guard column was used to prevent analytical column damages. The main factors influencing the IL-HS-SDME were optimized. For all species, the highest enrichments factors were achieved using 1 μL of 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF(6)]) ionic liquid exposed in the headspace of 10 mL water samples containing 300 g L(-1) of NaCl and stirred at 750 rpm and 60 °C for 45 min. All compounds were determined by direct injection GC-IT-MS/MS with a chromatographic time of 19 min. Method detection limits were found in the low ng mL(-1) range between 0.010 ng mL(-1) and 0.030 ng mL(-1) depending on the target analytes. Also, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations varying between 3% and 6% and 5% and 11%, respectively (n=3, 1 ng mL(-1)). The applicability of the method was tested with different wastewater samples from influent and effluent urban wastewater treatment plants (WWTPs) and one potable treatment plant (PTP). The analysis of influent urban wastewater revealed the presence of galaxolide and tonalide at concentrations of between 2.10 ng mL(-1) and 0.29 ng mL(-1) and 0.32 ng mL(-1) and MQL (Method Quantification Limit), respectively; while the remaining

  4. An angular acceleration sensor inspired by the vestibular system with a fully circular fluid-channel and thermal read-out

    NARCIS (Netherlands)

    Groenesteijn, Jarno; Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2014-01-01

    We report on an angular accelerometer based on the semicircular channels of the vestibular system. The accelerometer consists of a water-filled circular tube, wherein the fluid flow velocity is measured thermally as a representation for the external angular acceleration. Measurements show a linear

  5. The Med-CORDEX initiative: towards fully coupled Regional Climate System Models to study the Mediterranean climate variability, change and impact

    Science.gov (United States)

    Somot, S.; Ruti, P.

    2012-04-01

    The Mediterranean region is considered as particularly vulnerable to climate variability and change (Giorgi, 2006; IPCC, 2007), in particular, to changes in its regional water cycle. This climate vulnerability is a key issue for the 500 million inhabitants living in the 30 Mediterranean countries. In addition, the Mediterranean basin is a good case study for climate regionalization. It is indeed surrounded by various and complex topography channelling regional winds (Mistral, Tramontane, Bora, Etesian, Sirocco) than defined local climate. Many small-size islands limit the low-level air flow and its coastline is particularly complex. Strong land-sea contrast, land-atmosphere feedback, intense air-sea coupling and aerosol-radiation interaction are also among the regional characteristics to take into account when dealing with the Mediterranean climate modeling. What is true for the Mediterranean climate is also true for the Mediterranean Sea that show complex bathymetry including narrow and shallow straits, a strong eddy activity and various distinct and interacting water masses. For all these reasons, the Mediterranean area has been chosen as a CORDEX sub-domain (MED) leading to the Med-CORDEX initiative endorsed by Med-CLIVAR and HyMeX. In addition to the core CORDEX framework (Atmosphere-RCM, 50 km, ERA-Interim, RCP4.5, RCP8.5), two more tiers have been defined for Med-CORDEX. The first one would like to assess the added-value of higher-resolution RCMs pushing the horizontal resolution up to 10 km. The second one will serve to test new regional climate modeling tools called Regional Climate System Models (RCSM) including a high-resolution and coupled representation of all the physical components of the regional climate system: atmosphere, land surface, vegetation, surface hydrology, rivers and ocean. In addition, the Med-CORDEX initiative is strongly coordinated with the HyMeX program that plans large field campaigns within the area of interest, development of new

  6. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    that blade bend-twist coupling plays a central role in the elastic responses of the blades to atmospheric turbulence, impacting turbine power.

  7. Results From an International Simulation Study on Coupled Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    International Nuclear Information System (INIS)

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-01-01

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level

  8. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-01-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts. (Author)

  9. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  10. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-03-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts

  11. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  12. Near-field coupling of gold plasmonic antennas for sub-100 nm magneto-thermal microscopy

    Directory of Open Access Journals (Sweden)

    Jonathan C. Karsch

    2017-08-01

    Full Text Available The development of spintronic technology with increasingly dense, high-speed, and complex devices will be accelerated by accessible microscopy techniques capable of probing magnetic phenomena on picosecond time scales and at deeply sub-micron length scales. A recently developed time-resolved magneto-thermal microscope provides a path towards this goal if it is augmented with a picosecond, nanoscale heat source. We theoretically study adiabatic nanofocusing and near-field heat induction using conical gold plasmonic antennas to generate sub-100 nm thermal gradients for time-resolved magneto-thermal imaging. Finite element calculations of antenna-sample interactions reveal focused electromagnetic loss profiles that are either peaked directly under the antenna or are annular, depending on the sample’s conductivity, the antenna’s apex radius, and the tip-sample separation. We find that the thermal gradient is confined to 40 nm to 60 nm full width at half maximum for realistic ranges of sample conductivity and apex radius. To mitigate this variation, which is undesirable for microscopy, we investigate the use of a platinum capping layer on top of the sample as a thermal transduction layer to produce heat uniformly across different sample materials. After determining the optimal capping layer thickness, we simulate the evolution of the thermal gradient in the underlying sample layer and find that the temporal width is below 10 ps. These results lay a theoretical foundation for nanoscale, time-resolved magneto-thermal imaging.

  13. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-04-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  14. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.; Montenegro, L.

    2011-01-01

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO 2 (g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO 3 - and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.

  15. Thermal hydraulic and neutron kinetic simulation of the Angra 2 reactor using a RELAP5/PARCS coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Hamers, Adolfo R.; Pereira, Claubia; Rodrigues, Thiago D.A.; Mantecon, Javier G.; Veloso, Maria A.F., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: adolforomerohamers@hotmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: thiagodanielbh@gmail.com, E-mail: mantecon1987@gmail.com, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Belo Horizonte (Brazil); Miro, Rafael; Verdu, Gumersindo, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear

    2015-07-01

    The computational advances observed in the last two decades have been provided direct impact on the researches related to nuclear simulations, which use several types of computer codes, including coupled between them, allowing representing with very accuracy the behavior of nuclear plants. Studies of complex scenarios in nuclear reactors have been improved by the use of thermal-hydraulic (TH) and neutron kinetics (NK) coupled codes. This technique consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into codes, mainly to simulate transients that involve asymmetric core spatial power distributions and strong feedback effects between neutronics and reactor thermal-hydraulics. Therefore, this work presents preliminary results of TH RELAP5 and the NK PARCS calculations applied to model of the Angra 2 reactor. The WIMSD-5B code has been used to generate the macroscopic cross sections used in the NK code. The results obtained are satisfactory and represent important part of the development of this methodology. The next step is to couple the codes. (author)

  16. Mathematical modeling of a multi-stage naphtha reforming process using novel thermally coupled recuperative reactors to enhance aromatic production

    Energy Technology Data Exchange (ETDEWEB)

    Iranshahi, Davood; Bahmanpour, Ali Mohammad; Pourazadi, Ehsan; Rahimpour, Mohammad Reza [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, P.O. Box 71345, Shiraz (Iran)

    2010-10-15

    In this study, a novel thermally coupled reactor containing the naphtha reforming process in the endothermic side and the hydrogenation of nitrobenzene to aniline in the exothermic side has been investigated. Considering the higher thermal efficiency as well as the smaller size of the reactor, utilizing the recuperative coupled reactor is given priority. In this novel configuration, the first and the second reactor of the conventional naphtha reforming process have been substituted by the recuperative coupled reactors which contain the naphtha reforming reactions in the shell side, and the hydrogenation reaction in the tube side. The achieved results of this simulation have been compared with the results of the conventional fixed-bed naphtha reforming reactors. Acceptable enhancement can be noticed in the performance of the reactors. The production rate of the high octane aromatics and the consumption rate of the paraffins have improved 17% and 72%, respectively. The conversion of the nitrobenzene is acceptable and the effect of the number of the tubes also has been taken into account. However, the performance of the new configuration needs to be tested experimentally over a range of parameters under practical operating conditions. (author)

  17. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Coufalík, Pavel; Zvěřina, O.; Komárek, J.

    2016-01-01

    Roč. 118, APR (2016), s. 1-5 ISSN 0584-8547 Institutional support: RVO:68081715 Keywords : mercury * HgS * thermal desorption Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  18. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    Science.gov (United States)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  19. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    International Nuclear Information System (INIS)

    Camous, F.; Jacq, F.; Chatelard, P.

    1997-01-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling

  20. Interface requirements to couple thermal hydraulics codes to severe accident codes: ICARE/CATHARE

    Energy Technology Data Exchange (ETDEWEB)

    Camous, F.; Jacq, F.; Chatelard, P. [IPSN/DRS/SEMAR CE-Cadarache, St Paul Lez Durance (France)] [and others

    1997-07-01

    In order to describe with the same code the whole sequence of severe LWR accidents, up to the vessel failure, the Institute of Protection and Nuclear Safety has performed a coupling of the severe accident code ICARE2 to the thermalhydraulics code CATHARE2. The resulting code, ICARE/CATHARE, is designed to be as pertinent as possible in all the phases of the accident. This paper is mainly devoted to the description of the ICARE2-CATHARE2 coupling.

  1. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  2. Design optimization of an axial-field eddy-current magnetic coupling based on magneto-thermal analytical model

    Directory of Open Access Journals (Sweden)

    Fontchastagner Julien

    2018-03-01

    Full Text Available This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.

  3. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Waata, C.L.

    2006-07-15

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  4. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    International Nuclear Information System (INIS)

    Waata, C.L.

    2006-07-01

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  5. TISKTH-3: a couple neutronics/thermal-hydraulics code for the transient analysis of light water reactors

    International Nuclear Information System (INIS)

    Peng Muzhang; Zhang Quan; Wang Guoli; Zhang Yuman

    1988-01-01

    TISKTH-3 is a coupled neutronics/thermal-hydraulics code for the transient analysis. A 3-dimensional neutron kinetics equation solved by the Nodal Green's Function Method is used for the neutronics model of the code. A homogeneous equilibrium model with a complete boiling curve and two numerical solutions of the implicit and explicit scheme is used for the thermal-hydraulics model of the code. A 2-dimensional heat conduction equation with variable conductivity solved by the method of weighted residuals is used for the fuel rod heat transfer model of the code. TISKTH-3 is able to analyze the fast transient process and complicate accident situations in the core. The initative applications have shown that the stability and convergency in the calculations with the code are satisfactory

  6. Thermal degradation assessment of canola and olive oil using ultra-fast gas chromatography coupled with chemometrics.

    Science.gov (United States)

    Majchrzak, Tomasz; Lubinska, Martyna; Różańska, Anna; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-01

    Oil blending is often used to enhance the properties of vegetable oils. The admixture of a more thermally stable oil makes the resulting blend more suitable for use in frying. A new method of quality assessment of vegetable oils used in frying is presented in this paper. In this method, ultra-fast gas chromatography coupled with flame ionization detector and chemometrics is employed. Principal component analysis was used for data processing. The results obtained with this method were compared with the results of the Rancimat test and sensory evaluation. It is demonstrated that the addition of olive oil improves the stability of rapeseed oil, and also changes its flavour and aroma profile. In addition, it was found that ultra-fast GC coupled with chemometrics is an effective tool for the assessment of the quality of edible oils. The proposed method does not require sample preparation, and the total time of analysis is less than 2 min.

  7. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    OpenAIRE

    Rais, A.; Siefman, D.; Girardin, G.; Hursin, M.; Pautz, A.

    2015-01-01

    In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear...

  8. Development of a coupled neutronic/thermal-hydraulic tool with multi-scale capabilities and applications to HPLWR core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monti, Lanfranco, E-mail: lanfranco.monti@gmail.co [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany); Starflinger, Joerg, E-mail: joerg.starflinger@ike.uni-stuttgart.d [Universitaet Stuttgart, Institut fuer Kernenergetik und Energiesysteme, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Schulenberg, Thomas, E-mail: schulenberg@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2011-05-15

    Highlights: Advanced analysis and design techniques for innovative reactors are addressed. Detailed investigation of a 3 pass core design with a multi-physics-scales tool. Coupled 40-group neutron transport/equivalent channels TH core analyses methods. Multi-scale capabilities: from equivalent channels to sub-channel pin-by-pin study. High fidelity approach: reduction of conservatism involved in core simulations. - Abstract: The High Performance Light Water Reactor (HPLWR) is a thermal spectrum nuclear reactor cooled and moderated with light water operated at supercritical pressure. It is an innovative reactor concept, which requires developing and applying advanced analysis tools as described in the paper. The relevant water density reduction associated with the heat-up, together with the multi-pass core design, results in a pronounced coupling between neutronic and thermal-hydraulic analyses, which takes into account the strong natural influence of the in-core distribution of power generation and water properties. The neutron flux gradients within the multi-pass core, together with the pronounced dependence of water properties on the temperature, require to consider a fine spatial resolution in which the individual fuel pins are resolved to provide precise evaluation of the clad temperature, currently considered as one of the crucial design criteria. These goals have been achieved considering an advanced analysis method based on the usage of existing codes which have been coupled with developed interfaces. Initially neutronic and thermal-hydraulic full core calculations have been iterated until a consistent solution is found to determine the steady state full power condition of the HPLWR core. Results of few group neutronic analyses might be less reliable in case of HPLWR 3-pass core than for conventional LWRs because of considerable changes of the neutron spectrum within the core, hence 40 groups transport theory has been preferred to the usual 2 groups

  9. Coupled CFD-Thermal Analysis of Erosion Patterns Resulting from Nozzle Wedgeouts on the SRTMV-N2

    Science.gov (United States)

    Ables, Catherine; Davis, Philip

    2014-01-01

    The objective of this analysis was to study the effects of the erosion patterns from the introduction of nozzle flaws machined into the nozzle of the SRTMV-N2 (Solid Rocket Test Motor V Nozzle 2). The SRTMV-N2 motor was a single segment static subscale solid rocket motor used to further develop the RSRMV (Redesigned Solid Rocket Motor V Segment). Two flaws or "wedgeouts" were placed in the nozzle inlet parallel to the ply angles of that section to study erosion effects. One wedgeout was placed in the nose cap region and the other placed in the inlet ring on the opposite side of the bondline, separated 180 degrees circumferentially. A coupled CFD (Computational Fluid Analysis)-thermal iterative analytical approach was utilized at the wedgeouts to analyze the erosion profile during the burn time. The iterative CFD thermal approach was applied at five second intervals throughout the motor burn. The coupled fluid thermal boundary conditions were derived from a steady state CFD solution at the beginning of the interval. The derived heat fluxes were then applied along the surface and a transient thermal solution was developed to characterize the material response over the specified interval. Eroded profiles of each of the nozzle's wedgeouts and the original contour were created at each of the specified intervals. The final iteration of the erosion profile showed that both wedgeouts were "washedout," indicating that the erosion profile of the wedgeout had rejoined the original eroded contour, leaving no trace of the wedgeouts post fire. This analytical assessment agreed with post-fire observations made of the SRTMV-N2 wedgeouts, which noted a smooth eroded contour.

  10. Development and Applications of a General Coupled Thermal-hydraulic/Neutronic Model for the Ringhals-3 Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Staalek, Mathias

    2008-03-01

    Coupled calculations are important for the simulation of nuclear power plants when there is a strong feedback between the neutron kinetics and the thermal-hydraulics. A general coupled model of the Ringhals-3 Pressurized Water Reactor has been developed for this purpose. The development is outlined in the thesis with details given in the appended papers. A PARCS model was developed for the core calculations and a RELAP5 model for the thermal-hydraulic calculations. The RELAP5 model has 157 channels for modelling the flow in the fuel assemblies. This means that there is a one-one correspondence radially between the neutronic and thermal-hydraulic nodalization. This detailed mapping between the neutron kinetics and the thermal-hydraulics makes it possible to use the model for all kinds of transient. To provide realistic material data to the PARCS model, a cross-section interface was developed. With this interface one can import material data from a binary CASMO-4 library file into PARCS. Due to the one-to-one mapping, any any core loading can easily be considered. The PARCS model was benchmarked against measurements of the steady-state power distribution of Ringhals-3. The power shape was well reproduced by the model. Validational work for steady-state conditions of the thermal-hydraulic was also successfully performed. The most challenging part of the validation of a coupled model is for transients. This is much more difficult since the dynamics of the system becomes very important. Two transients that occurred at Ringhals-3 were chosen for the validational work. The first transient was a Load Rejection Transient. In general the model gave good results but some problems were experienced, e.g. the pressurizer pressure turned out to be more difficult to be correctly simulated. The second transient was a Loss of Feed Water transient. A malfunctioning feed water control valve closed, and therefore shut down the feed water supply to the steam generator in one of the

  11. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    Science.gov (United States)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  12. Optimization of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Science.gov (United States)

    Nijhuis, A.; van Lanen, E. P. A.; Rolando, G.

    2012-01-01

    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain-sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. At present, this is a great challenge for the ITER central solenoid (CS) CICCs and the solution presented here could be a breakthrough for not only the ITER CS but also for CICC applications in general. After proposing longer twist pitches in 2006 and successful confirmation by short sample tests later on, the ITER toroidal field (TF) conductor cable pattern was improved accordingly. As the restrictions for coupling loss are more demanding for the CS conductors than for the TF conductors, it was believed that longer pitches would not be applicable for the conductors in the CS coils. In this paper we explain how, with the use of the TEMLOP model and the newly developed models JackPot-ACDC and CORD, the design of a CICC can be improved appreciably, particularly for the CS conductor layout. For the first time a large improvement is predicted not only providing very low sensitivity to electromagnetic load and thermal axial cable stress variations but at the same time much lower AC coupling loss. Reduction of the transverse load and warm-up-cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3% with practically no degradation from bending. This is probably explained by

  13. Electrically Isolating Thermally Coupled Device for Noise Suppression of Circuits in Deep Space

    Science.gov (United States)

    Mantooth, A.; McNutt, T.; Mojarradi, M.; Li, H.; Blalock, B.

    2001-01-01

    Mixed mode rad hard avionics Systems on a Chip (SoC) designed for deep space applications such as Europa orbiters and Europa Landers will require data isolation circuits to block noise. This paper presents the simulation performance for a novel rad hard SOI CMOS compatible thermal transducer used for on-chip data isolation in SoC. The research presented involves the use of commercially available computer aided design tools to model the transient electrothermal behavior of the transducer. Both one- and two-dimensional analyses of a prototype thermal transducer were performed. Results indicate that thermal-based data isolator technology can pass a data bit in under a microsecond and, as a measurement of feasibility, I(exp 2)C bus specifications can be met.

  14. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2018-03-27

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  15. Current status of the international DECOVALEX project: thermal-hydraulic-mechanical couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C. H.; Hwang, Y. S.; Kim, J

    1998-01-01

    THM coupling is an important issue to assess the safety of the HLW repositories. In this art report the current status of the international DECOVALEX project was reviewed to understand the most updated R and D direction on the groundwater flow assessment coupled with the decay heat and mechanical stress around a repository. Important progresses of DECOVALEX I, II, III and 2 were studied. Results show that even though there are good agreements on the predictions of stress and temperature, still the prediction of flow in discrete fracture network is incomplete. (author). 21 refs., 28 tabs., 33 figs

  16. Air-ground temperature coupling: analysis by means of Thermal Orbits

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 112-122 ISSN 2160-0414 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : Thermal Orbits * temperature monitoring * air temperature vs ground temperature Subject RIV: DG - Athmosphere Sciences, Meteorology

  17. Modeling and experimental investigation of thermal-mechanical-electric coupling dynamics in a standing wave ultrasonic motor

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao

    2017-09-01

    Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.

  18. Coupling of electromagnetic and thermal codes. Induction heating; Couplage des codes electromagnetique et thermique. Le chauffage par induction

    Energy Technology Data Exchange (ETDEWEB)

    Colombani, M. [CEDRAT, (France)

    1997-12-31

    The development and adjustment of induction heating systems is quite delicate because two different subjects of physics are involved: magnetism (Foucault currents) and thermal engineering. Moreover, the magnetic and electrical properties depends on the temperature and the dissipated power depends on the magnetic and electrical properties and on the electrical excitation sources (geometry, intensity, frequency). The CEDRAT company has been involved since several years in the development of modeling softwares which allow to analyze these kind of problems. The most used is the FLUX2D software, developed by CEDRAT RECHERCHE in collaboration with the LEG (CNRS-INPG) and EdF, and which is used in several domains of applications (electric motors, actuators, high-voltage devices, magnetic recording, induction heating etc..). This software is based on a finite-element calculation method and, in the case of induction heating, it can perform different types of modeling: magnetic, thermal, temperature-dependant properties, weak and strong coupling, coupling with the electric circuit equations etc.. (J.S.)

  19. Distillate yield improvement using a parabolic dish reflector coupled single slope basin solar still with thermal energy storage using beeswax

    Directory of Open Access Journals (Sweden)

    Aondoyila KUHE

    2016-07-01

    Full Text Available A single slope solar still, integrated with latent heat thermal energy storage system coupled to a parabolic concentrator was designed with the aim of improving productivity. 14 kg of beeswax was used as phase change material (PCM between the absorber plate and the bottom of the still to keep the operating temperature of the still high enough to produce distilled water even during the sunset hours. The bottom of the still is covered by 0.2 m aluminum sheet painted black on the side facing the parabolic concentrator to help in absorbing solar radiation reflected from the parabolic concentrator and conducting same to the PCM. To determine the effect of PCM, a solar still without PCM was used to compare with the solar still with PCM. The temperature of water, air temperature, inner surface glass temperature and outer surface glass temperature were measured. Experimental results show that the effect of thermal storage in the parabolic concentrator-coupled single slope solar still increased the productivity by 62%.

  20. Thermal hydraulic studies of spallation target for one-way coupled ...

    Indian Academy of Sciences (India)

    1Laser and Plasma Technology Division; 2Nuclear Physics Division, Bhabha Atomic. Research Centre ... Abstract. BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically ~1 GeV proton beam with 2 mA of current. Approximately 8 kW of .... The overall target module dimensions and flow ...

  1. Extension of BEPU methods to Sub-channel Thermal-Hydraulics and to Coupled Three-Dimensional Neutronics/Thermal-Hydraulics Codes

    International Nuclear Information System (INIS)

    Avramova, M.; Ivanov, K.; Arenas, C.

    2013-01-01

    The principles that support the risk-informed regulation are to be considered in an integrated decision-making process. Thus, any evaluation of licensing issues supported by a safety analysis would take into account both deterministic and probabilistic aspects of the problem. The deterministic aspects will be addressed using Best Estimate code calculations and considering the associated uncertainties i.e. Plus Uncertainty (BEPU) calculations. In recent years there has been an increasing demand from nuclear research, industry, safety and regulation for best estimate predictions to be provided with their confidence bounds. This applies also to the sub-channel thermal-hydraulic codes, which are used to evaluate local safety parameters. The paper discusses the extension of BEPU methods to the sub-channel thermal-hydraulic codes on the example of the Pennsylvania State University (PSU) version of COBRA-TF (CTF). The use of coupled codes supplemented with uncertainty analysis allows to avoid unnecessary penalties due to incoherent approximations in the traditional decoupled calculations, and to obtain more accurate evaluation of margins regarding licensing limit. This becomes important for licensing power upgrades, improved fuel assembly and control rod designs, higher burn-up and others issues related to operating LWRs as well as to the new Generation 3+ designs being licensed now (ESBWR, AP-1000, EPR-1600 and etc.). The paper presents the application of Generalized Perturbation Theory (GPT) to generate uncertainties associated with the few-group assembly homogenized neutron cross-section data used as input in coupled reactor core calculations. This is followed by a discussion of uncertainty propagation methodologies, being implemented by PSU in cooperation of Technical University of Catalonia (UPC) for reactor core calculations and for comprehensive multi-physics simulations. (authors)

  2. Demonstration of the Performance of an Air-Type Photovoltaic Thermal (PVT System Coupled with a Heat-Recovery Ventilator

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2016-09-01

    Full Text Available A heat-recovery ventilator (HRV effectively conducts ventilation by recovering waste heat from indoors to outdoors during heating periods. However, dew condensation associated with the HRV system may arise due to the difference between the indoor temperature and the very low outdoor temperature in winter, and this can decrease the heat exchange efficiency. These problems can be solved by the pre-heating of the incoming air, but additional energy is required when pursuing such a strategy. On the other hand, an air-type photovoltaic thermal (PVT system produces electricity and thermal energy simultaneously using air as the heat transfer medium. Moreover, the heated air from the air-type PVT system can be connected to the HRV to pre-heat the supply air instead of taking in the cold outdoor air. Thus, the ventilation efficiency can be improved and the problems arising during the heating period can be resolved. Consequentially, the heating energy required in a building can be reduced, with additional electricity acquired as well. In this paper, the performance of an air-type PVT system coupled with an HRV is assessed. To do this, air-type PVT collectors operating at 1 kWp were installed in an experimental house and coupled to an HRV system. Thermal performance and heating energy required during the winter season were analyzed experimentally. Furthermore, the electrical performances of the air-type PVT system with and without ventilation at the back side of the PV during the summer season were analyzed.

  3. Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept.

    Science.gov (United States)

    Horstkotte, Burkhard; Fikarová, Kateřina; Cocovi-Solberg, David J; Sklenářová, Hana; Solich, Petr; Miró, Manuel

    2017-10-01

    A proof of concept of a novel automatic sample cleanup approach for metal assays in troublesome matrixes as a front-end sample pre-treatment to inductively coupled plasma optical emission spectroscopy - ICP-OES - is herein presented. Target metals, namely, copper, lead, and cadmium were complexed in-system quantitatively using ammonium pyrrolidine dithiocarbamate (APDC) and transferred into a minute volume of toluene as extractant employing lab-in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (LIS-MSA-DLLME). After discharge of the sample, the analytes were back-extracted into nitric acid and injected on-line into ICP-OES. To promote and expedite this process in-syringe, advantage was taken from oxidative decomposition of the chelate by potassium iodate, reported in this article for the first time. Experimental conditions for LIS-MSA-DLLME were optimized by Box-Benkhen multivariate analysis using the geometric mean of analyte recoveries as the desirability function. Times of extraction and back-extraction of 300s and 100s, respectively, pH 5.5 at 30mmol/L acetate, 300µL of extraction solvent, and 600µmol/L of APDC were finally applied. Online interfacing to ICP-OES for back-extract analysis yielded average repeatabilities for Cd, Cu, and Pb of 2.9%, 3.5%, and 3.5% with limits of detections (3s) of 1.9, 1.4, and 5.6ng/mL, respectively. Oxidative back-extraction was proven reliable for the determination of metal species in coastal seawater, surrogate digestive fluids and soil leachates with recovery values for Cd, Cu, and Pb ranging from 90% to 118%, 68% to 104%, and 86% to 112%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    Science.gov (United States)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  5. Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion.

    Science.gov (United States)

    Heping, Wang; Xingguo, Geng; Xiaoguang, Li; Duyang, Zang

    2016-10-01

    This paper presents an exploration of the separation behavior and pattern formation in a shear binary fluid with dynamic temperature after slow cooling via coupled lattice Boltzmann method. The phase separation procedure can be divided into three different stages: spinodal decomposition, domain growth, and domain stretch. The effect of thermal diffusion was observed to be more significant than that of shear convection in the spinodal decomposition stage, while the opposite was observed in the domain growth stage. The slow cooling temperature field significantly prolonged the spinodal decomposition stage, and decreased the separated domain size in domain growth stage. The phase behavior and pattern formation from the disordered state into the coexistence state after slow cooling was investigated during the domain stretch stage. Two typical length scales were obtained according to the equilibrium of two phases, where the number of layers in the corresponding domains was controllable by adjusting the Prandtl number for systems of different scales. The manner in which various viscosities and thermal diffusivities influence the morphologies and kinetic characterizations of the materials was also demonstrated: numerical results indicated that decrease in viscosity can cause increase in the growth exponents of separation fronts and velocity of domain growth, as well as increase in thermal diffusion.

  6. Thermal Entanglement in XXZ Heisenberg Model for Coupled Spin-Half and Spin-One Triangular Cell

    Science.gov (United States)

    Najarbashi, Ghader; Balazadeh, Leila; Tavana, Ali

    2018-01-01

    In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.

  7. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    Science.gov (United States)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  8. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    International Nuclear Information System (INIS)

    Jing, L.; Stephansson, O.; Kautzky, F.

    2005-02-01

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project. The

  9. The failure models of Sn-based solder joints under coupling effects of electromigration and thermal cycling

    Science.gov (United States)

    Ma, Limin; Zuo, Yong; Liu, Sihan; Guo, Fu; Wang, Xitao

    2013-01-01

    Currently, the main concerns of Pb-free solder joints are focusing on electromigration (EM) and thermomechanical fatigue (TMF) problems. Many models have been established to understand the failure mechanisms of the joint under such single test conditions. Based on the fact that almost all microelectronic devices serve in combination conditions of fluctuated temperature and electric current stressing, the coupling effects of EM and TMF on evolution of microstructure and resistance of solder joint had been investigated. The failure models of binary SnBi alloy and ternary SnAgCu (SAC) solder under the coupling stressing were divided into four and three different stages, respectively. The failure mechanisms were dominant by the relationship of phase segregation, polarity effect, phase coarsening, and the coefficient of thermal expansion mismatch. Cracks tend to form and propagate along the interface between intermetallic compound layers and solder matrix in SAC solder. However, grain boundary was considered as the nucleation sites for microcracks in SnBi solder. High current density alleviates the deterioration of solder at the beginning stage of coupling stressing through Joule heating effect. An abrupt jump of resistance could be observed before the failure of the joint. The failure molds were determined by interactions of EM behaviors and TMF damages.

  10. Neutronic and thermal-hydraulic coupling using Milonga and OpenFOAM codes: an approach using free software

    International Nuclear Information System (INIS)

    Silva, Vitor Vasconcelos Araújo

    2016-01-01

    The development of a fine mesh coupled neutronics/thermal-hydraulics framework mainly using open source software is presented. The contributions proposed go in two different directions: one, is the focus on the open software development, a concept widely spread in many fields of knowledge but rarely explored in the nuclear engineering field; the second, is the use of operating system shared memory as a fast and reliable storage area to couple the computational fluid dynamics (CFD) software OpenFOAM to the free and flexible reactor core analysis code Milonga. This concept was applied to simulate the behavior of the TRIGA Mark 1 IPR-R1 reactor fuel pin in steady-state mode. The macroscopic cross-sections for the model, a set of two-group cross-sections data, were generated using WIMSD-5B code. The results show that this innovative coupled system gives consistent results, encouraging system further development and its use for complex nuclear systems. (author)

  11. GCFR Coupled Neutronic and Thermal-Fluid-Dynamics Analyses for a Core Containing Minor Actinides

    Directory of Open Access Journals (Sweden)

    Diego Castelliti

    2009-01-01

    Full Text Available Problems about future energy availability, climate changes, and air quality seem to play an important role in energy production. While current reactor generations provide a guaranteed and economical energy production, new nuclear power plant generation would increase the ways and purposes in which nuclear energy can be used. To explore these new technological applications, several governments, industries, and research communities decided to contribute to the next reactor generation, called “Generation IV.” Among the six Gen-IV reactor designs, the Gas Cooled Fast Reactor (GCFR uses a direct-cycle helium turbine for electricity generation and for a CO2-free thermochemical production of hydrogen. Additionally, the use of a fast spectrum allows actinides transmutation, minimizing the production of long-lived radioactive waste in an integrated fuel cycle. This paper presents an analysis of GCFR fuel cycle optimization and of a thermal-hydraulic of a GCFR-prototype under steady-state and transient conditions. The fuel cycle optimization was performed to assess the capability of the GCFR to transmute MAs, while the thermal-hydraulic analysis was performed to investigate the reactor and the safety systems behavior during a LOFA. Preliminary results show that limited quantities of MA are not affecting significantly the thermal-fluid-dynamics behavior of a GCFR core.

  12. Global Effects of SuperParameterization on Hydro-Thermal Land-Atmosphere Coupling on Multiple Timescales and an Amplification of the Bowen Ratio

    Science.gov (United States)

    Qin, H.; Pritchard, M. S.; Kooperman, G. J.; Parishani, H.

    2017-12-01

    Conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce overly strong Land-Atmosphere coupling (L-A coupling) strength. We investigate the effects of cloud SuperParameterization (SP) on L-A coupling on timescales longer than the diurnal where it has been previously shown to have a strong effect. Using the Community Atmosphere Model v3.5 (CAM3.5) and its SuperParameterized counterpart SPCAM3.5, we conducted experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. On synoptic-to-subseasonal timescales, SP significantly mutes hydrologic L-A coupling on a global scale, through the atmospheric segment. But on longer seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two regional effects of SP on thermal L-A coupling are also discovered and explored. Over the Arabian Peninsula, SP strikingly reduces thermal L-A coupling due to a control by mean regional rainfall reduction. Over the Southwestern US and Northern Mexico, however, SP remarkably enhances the thermal L-A coupling independent of rainfall or soil moisture. We argue that the cause may be a previously unrecognized effect of SP to amplify the simulated Bowen ratio. Not only does this help reconcile a puzzling local enhancement of thermal L-A coupling over the Southwestern US, but it is also demonstrated to be a robust, global effect of SP over land that is independent of model version and experiment design, and that has important consequences for climate change prediction.

  13. FRAPTRAN Fuel Rod Code and its Coupled Transient Analysis with the GENFLO Thermal-Hydraulic Code

    International Nuclear Information System (INIS)

    Valtonen, Keijo; Hamalainen, Anitta; Cunningham, Mitchel E.

    2002-01-01

    The FRAPTRAN computer code has been developed for the U.S. Nuclear Regulatory Commission (NRC) to calculate fuel behavior during power and/or cooling transients at burnup levels up to 65 MWd/kgM. FRAPTRAN has now been assessed and peer reviewed. STUK/VTT have coupled GENFLO to FRAPTRAN for calculations with improved coolant boundary conditions and prepared example calculations to show the effect of improving the coolant boundary conditions.

  14. FRAPTRAN Fuel Rod Code and its Coupled Transient Analysis with the GENFLO Thermal-Hydraulic Code

    Energy Technology Data Exchange (ETDEWEB)

    Valtonen, Keijo (Radiation and Nuclear Safety Authority, Finland); Hamalainen, Anitta (VTT Energy, Finland); Cunningham, Mitchel E.(BATTELLE (PACIFIC NW LAB))

    2002-05-01

    The FRAPTRAN computer code has been developed for the U.S. Nuclear Regulatory Commission (NRC) to calculate fuel behavior during power and/or cooling transients at burnup levels up to 65 MWd/kgM. FRAPTRAN has now been assessed and peer reviewed. STUK/VTT have coupled GENFLO to FRAPTRAN for calculations with improved coolant boundary conditions and prepared example calculations to show the effect of improving the coolant boundary conditions.

  15. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  16. Thermal Phenomena in the Friction Process of the TG15 - Hard Anodic Coating Couple

    Directory of Open Access Journals (Sweden)

    Służałek G.

    2016-09-01

    Full Text Available The paper presents a one-dimensional model of heat conduction in a couple consisting of a cylinder made of a sliding plastic material, TG15, and a cuboid made of alloy AW 6061 coated with a hard anodic coating, where the couple is heated with the heat generated during friction. TG15 is a composite material based on polytetrafluoroethylene (PTFE with a 15% graphite filler, used for piston rings in oil-free air-compressors. Measurement of temperature in the friction zone is extremely important for the understanding and analysis of the phenomena occurring therein. It is practically impossible to introduce a temperature sensor in such a place. Therefore, the interaction taking place in such a couple was modelled using numerical methods. In order to simplify and accelerate the calculations, a one-dimensional model and constant thermophysical parameters of the materials participating in friction were adopted. To solve the proposed model, the finite difference method was used (FDM. The resultant system of equations was solved by means of an explicit scheme.

  17. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Georg C Ganzenmüller

    Full Text Available We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.

  18. Consistent temperature coupling with thermal fluctuations of smooth particle hydrodynamics and molecular dynamics.

    Science.gov (United States)

    Ganzenmüller, Georg C; Hiermaier, Stefan; Steinhauser, Martin O

    2012-01-01

    We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain - internal energy and heat capacity versus particle velocity - are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance.

  19. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Los Alamos National Laboratory; Uddin, Rizwan [UNIV OF ILLINIOS

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  20. New aspects of electronic excitations at the bismuth surface: Topology, thermalization and coupling to coherent phonons

    Energy Technology Data Exchange (ETDEWEB)

    Perfetti, L., E-mail: luca.perfetti@polytechnique.edu [Laboratoire des Solides Irradiés, Ecole Polytechnique – CEA/DSM – CNRS UMR 7642, 91128 Palaiseau (France); Faure, J. [Laboratoire d’Optique Appliquée, Ecole Polytechnique – ENSTA – CNRS UMR 7639, 91761 Palaiseau (France); Papalazarou, E.; Mauchain, J.; Marsi, M.; Goerbig, M.O. [Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Sud, F-91405 Orsay (France); Taleb-Ibrahimi, A.; Ohtsubo, Y. [Synchrotron SOLEIL, Saint-Aubin-BP 48, F-91192 Gif sur Yvette (France)

    2015-05-15

    We review measurements of angle and time resolved photoelectron spectroscopy on the surface states of the Bi(1 1 1) surface. The work covers several aspects of these surface states, discussing the topological properties, the strong anisotropy of the spin–orbit splitting and the dynamical relaxation of photoexcited electrons. Since time resolved experiments disentagle interaction processes in real time, the reported data offer a novel perspective on the motion of charge carriers in surface states and will serve as an unuseful reference for other systems with strong spin–orbit coupling.

  1. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  2. Numerical Methods for an Analysis of Hydrogen Behaviors Coupled with Thermal Hydraulics in a NPP Containment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Park, Rae-Joon; Hong, Seong-Wan; Kim, Gun-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In a containment safety analysis, multi-dimensional characteristics in thermal hydraulics are very important because the flow paths are not confined in a large free volume of the containment. The analysis is difficult because of a difference in length scales between a characteristic length of the flow and representative length of the containment. In order to simulate hydrogen and steam behaviors in a containment during postulated severe accidents, the GASFLOW code as a multi-dimensional analysis tool for NPP containment has been used for years because of its computational efficiency. Though GASFLOW is well developed for a real NPP containment analysis, there exist shortcomings in nodalization, two-phase and turbulence models. It is based on a Cartesian or cylindrical coordinate mesh, so it is impractical to refine a mesh locally in a region with a physical or geometrical complication. In this paper, the importance of the hydrogen safety in an NPP containment and requirements of the analysis tool was described. And physical models necessary for the hydrogen safety analysis code were listed. As a member of international collaborative project HYMERES for containment thermal hydraulics, KAERI is actively participating in an analytic working group. As an analysis tool for blind benchmarkes, the analysis code described in this paper was used. From the blind benchmark analyses, it was found that the code is very promising for hydrogen safety analysis. Currently, it is proposed to develop the code collaboratively in a hydrogen safety community based on an open-source strategy.

  3. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection

    Science.gov (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.

    2015-11-01

    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  4. Thermal coupling in low fields between the nuclear and electronic spins in Tm2+ doped CaF2

    International Nuclear Information System (INIS)

    Urbina, Cristian.

    1977-01-01

    It is shown that in a CaF 2 crystal doped with divalent thulium ions there is in low fields, a thermal coupling between the electron magnetic moments of Tm 2+ and the nuclear moments of 19 F. When these ones have been lowered down to temperature through dynamical high-field polarization and adiabatic demagnetization in succession the resulting polarisation of the formed ones can overstep their original polarization in high field. A trial is given to explain this Zeeman electronic energy cooling through nuclear Zeeman energy with invoking a thermal coupling between both systems through the spin-spin electronic interaction but no theoretical model is developed in view of a quantitative explanation of the dynamics of such a process. The magnetic resonance spectrum of Tm 2 + in low field is also investigated: an important shift and narrowing of the electron resonance line in low field are obtained when 19 F nuclei are very cold. This special spectral characters are explained as due to magnetic interactions between electronic impurities and the neighbouring 19 F nuclei and a theoretical model is developed (based on the local Weiss field approximation) which explains rather well the changes in the spectral shift as a function of the 19 F nucleus temperature. A second theoretical model has also been developed in view of a quantitative explanation of both the narrowing and shift of the spectrum, but its prediction disagree with the experimental results. It is shown that in low fieldsx it is possible to get rid of paramagnetic impurities after they have been reused as reducing agents for 19 F nucleus entropy populating at about 80%, a non magnetic metastable state with these impurities [fr

  5. Monitoring Soil Hydraulic and Thermal Properties using Coupled Inversion of Time-lapse Temperature and Electrical Resistance Data

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Kowalsky, M. B.; Tokunaga, T. K.; Faybishenko, B.; Long, P.

    2014-12-01

    Evaluation of spatiotemporal dynamics of heat transport and water flow in terrestrial environments is essential for understanding hydrological and biogeochemical processes. Electrical resistance tomography has been increasingly well used for monitoring subsurface hydrological processes and estimating soil hydraulic properties through coupled hydrogeophysical inversion. However, electrical resistivity depends on a variety of factors such as temperature, which may limit the accuracy of hydrogeophysical inversion. The main objective of this study is to develop a hydrogeophysical inversion framework to enable the incorporation of nonisothermal processes into the hydrogeophysical inversion procedure, and use of this procedure to investigate the effect of hydrological controls on biogeochemical cycles in terrestrial environments. We developed the coupled hydro-thermal-geophysical inversion approach, using the iTOUGH2 framework. In this framework, the heat transport and water flow are simultaneously modeled with TOUGH2 code, which effectively accounts for the multiphase, multi-component and nonisothermal flow in porous media. A flexible approach is used to incorporate petrophysical relationships and uncertainty to link soil moisture and temperature with the electrical resistivity. The developed approach was applied to both synthetic and field case studies. At the DOE subsurface biogeochemistry field site located near Rifle CO, seasonal snowmelt delivers a hydrological pulse to the system, which in turn influences the cycles of nitrogen, carbon and other critical elements. Using the new approach, we carried out numerical inversion of electrical resistance data collected along a 100 m transect at the Rifle site, and compared the results with field investigations of the soil, vadose zone, including the capillary fringe, and groundwater, as well as temperature and tensiometer measurements. Preliminary results show the importance of accounting for nonisothermal conditions to

  6. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  7. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  8. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling

    Science.gov (United States)

    Chandrasekar, M.; Senthilkumar, T.

    2016-07-01

    A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.

  9. Relaxation of a coherent, magnetic s–p model system coupled to one and two thermal baths and a laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lefkidis, G. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany); School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Sold, S.; Hübner, W. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Box 3049, 67653 Kaiserslautern (Germany)

    2017-06-15

    We study an s–p model magnetic system with a triplet ground state coupled to two temperature baths. By varying the temperatures we both generate non-thermal electronic distributions and create additional coherences in the density matrix of the system. Thus the thermally-induced magnetic response goes beyond the simple picture of majority-minority population dynamics. Furthermore, we discuss the influence of temperature induced relaxation effects on the dynamics induced by an optical perturbation for this quantum system.

  10. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite

    Science.gov (United States)

    Greco, Angelo; Jiang, Xi

    2016-05-01

    Lithium-ion (Li-ion) battery cooling using a phase change material (PCM)/compressed expanded natural graphite (CENG) composite is investigated, for a cylindrical battery cell and for a battery module scale. An electrochemistry model (average model) is coupled to the thermal model, with the addition of a one-dimensional model for the solution and solid diffusion using the nodal network method. The analysis of the temperature distribution of the battery module scale has shown that a two-dimensional model is sufficient to describe the transient temperature rise. In consequence, a two-dimensional cell-centred finite volume code for unstructured meshes is developed with additions of the electrochemistry and phase change. This two-dimensional thermal model is used to investigate a new and usual battery module configurations cooled by PCM/CENG at different discharge rates. The comparison of both configurations with a constant source term and heat generation based on the electrochemistry model showed the superiority of the new design. In this study, comparisons between the predictions from different analytical and computational tools as well as open-source packages were carried out, and close agreements have been observed.

  11. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  12. Technical basis and programmatic requirements for large block testing of coupled thermal-mechanical-hydrological-chemical processes

    International Nuclear Information System (INIS)

    Lin, Wunan.

    1993-09-01

    This document contains the technical basis and programmatic requirements for a scientific investigation plan that governs tests on a large block of tuff for understanding the coupled thermal- mechanical-hydrological-chemical processes. This study is part of the field testing described in Section 8.3.4.2.4.4.1 of the Site Characterization Plan (SCP) for the Yucca Mountain Project. The first, and most important objective is to understand the coupled TMHC processes in order to develop models that will predict the performance of a nuclear waste repository. The block and fracture properties (including hydrology and geochemistry) can be well characterized from at least five exposed surfaces, and the block can be dismantled for post-test examinations. The second objective is to provide preliminary data for development of models that will predict the quality and quantity of water in the near-field environment of a repository over the current 10,000 year regulatory period of radioactive decay. The third objective is to develop and evaluate the various measurement systems and techniques that will later be employed in the Engineered Barrier System Field Tests (EBSFT)

  13. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    Science.gov (United States)

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  14. The Effects of Coupling Agents on the Mechanical and Thermal Properties of Eucalyptus Flour/HDPE Composite

    Directory of Open Access Journals (Sweden)

    Metanawin Siripan

    2015-01-01

    Full Text Available The aim of this research was to study the effects of the coupling agents, FusabondTM E-528 (polyethylene-grafted maleic anhydride; PE-g-MA, MA and Amino Silane (Si, on the thermal properties, and mechanical properties of Eucalyptus flour-HDPE composite. Variation of the Eucalyptus flour contents in the HDPE resulted in properties of the composite. With increasing in the contents of Eucalyptus flour in polymer matrix, the mechanical properties of the HDPE composite decreased in EU-MA series samples while they were gradually decreased in EU-Si series samples. SEM micrographs showed the fracture surface of the HDPE/Eucalyptus composite at different ratios of Eucalyptus flour. SEM micrograpgh exhibited the dispersion of EU flour in polymer matrix. The samples of both coupling agents showed an increase in interfacial adhesion, observed for the considerable decreased of gaps between the matrix and the dispersed phase. However, the EU-MA sample appeared to be more uniformly than the EU-Si sample.

  15. Techno-economic study of hydrogen production by high temperature electrolysis and coupling with different thermal energy sources

    International Nuclear Information System (INIS)

    Rivera-Tinoco, R.

    2009-03-01

    This work focuses on the techno-economic study of massive hydrogen production by the High Temperature Electrolysis (HTE) process and also deals with the possibility of producing the steam needed in the process by using different thermal energy sources. Among several sources, those retained in this study are the biomass and domestic waste incineration units, as well as two nuclear reactors (European Pressurised water Reactor - EPR and Sodium Fast Reactor - SFR). Firstly, the technical evaluation of the steam production by each of these sources was carried out. Then, the design and modelling of the equipments composing the process, specially the electrolysers (Solid Oxides Electrolysis Cells), are presented. Finally, the hydrogen production cost for each energy sources coupled with the HTE process is calculated. Moreover, several sensibility studies were performed in order to determine the process key parameter and to evaluate the influence of the unit size effect, the electric energy cost, maintenance, the cells current density, their investment cost and their lifespan on the hydrogen production cost. Our results show that the thermal energy cost is much more influent on the hydrogen production cost than the steam temperature at the outlet stream of the thermal source. It seems also that the key parameters for this process are the electric energy cost and the c ells lifespan. The first one contributes for more than 70% of the hydrogen production cost. From several cell lifespan values, it seems that a 3 year value, rather than 1 year, could lead to a hydrogen production cost reduced on 34%. However, longer lifespan values going from 5 to 10 years would only lead to a 8% reduction on the hydrogen production cost. (author)

  16. Development and application of the coupled thermal-hydraulics and neutron-kinetics code ATHLET/BIPR-VVER for safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lizorkin, M.; Nikonov, S. [Kurchatov Institute for Atomic Energy, Moscow (Russian Federation); Langenbuch, S.; Velkov, K. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2006-07-01

    The coupled thermal-hydraulics and neutron-kinetics code ATHLET/BIPR-VVER was developed within a co-operation between the RRC Kurchatov Institute (KI) and GRS. The modeling capability of this coupled code as well as the status of validation by benchmark activities and comparison with plant measurements are described. The paper is focused on the modeling of flow mixing in the reactor pressure vessel including its validation and the application for the safety justification of VVER plants. (authors)

  17. Numerical and experimental investigations of coupled electromagnetic and thermal fields in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Mierau, Anna

    2013-01-01

    The new international facility for antiproton and ion research FAIR will be built in Darmstadt (Germany). The existing accelerator facility of GSI Helmholtzzentrum for Heavy Ion Research will serve as a pre-accelerator for the new facility. FAIR will provide high-energy antiproton and ion beams with unprecedented intensity and quality for fundamental research of states of matter and the evolution of the universe. The central component of FAIR's accelerator and storage rings complex is a double-ring accelerator consisting of two heavy ion synchrotrons SIS100 and SIS300. The SIS100 is the primary accelerator of FAIR. The desired beam properties of SIS100 require a design of the machine much more challenging than the conventional design of existing proton and ion synchrotrons. The key technical components of each synchrotron are the special electromagnets, which allow guiding the charged particles on their orbits in the synchrotron during the acceleration processes. For a stable operation of the SIS100's the magnets have to produce extremely homogeneous magnetic fields. Furthermore, the SIS100 high-intensity ion beam modes, for example with U 28+ ions, require an ultra-high vacuum in the beam pipe of the synchrotron, which can be generated effectively only at low temperatures below 15 K. Due to the field quality requirements for the magnets, the properties of the dynamic vacuum in the beam pipe but also in order to minimise future operating costs, fast ramped superconducting magnets will be used to guide the beam in SIS100. These magnets have been developed at GSI within the framework of the FAIR project. Developing a balanced design of a superconducting accelerator magnet requires a sound understanding of the interaction between its thermal and electromagnetic fields. Of special importance in this case are the magnetic field properties such as the homogeneity of the static magnetic field in the aperture of the magnet, and the dynamic heat losses of the whole magnet

  18. 3D Coupled Thermal-Hydraulic Model of the Lower Yarmouk Gorge, Jordan Rift Valley

    Science.gov (United States)

    Walther, M.; Magri, F.; Inbar, N.; Möller, P.; Raggad, M.; Rödiger, T.; Rosenthal, E.; Shentsis, I.; Siebert, C.; Volpi, G.

    2017-12-01

    It is supposed that the Lower Yarmouk Gorge (LYG), in the Jordan Rift Valley acts as the mixing zone of two crossing flow pathways: N-S from the Hermon Mountains and from the Ajlun Dome, and E-W from Jebel al Arab Mountain in Syria (also known as Huran Plateau or Yarmouk drainage basin). As a result, several springs can be found within the gorge. These are characterized by widespread temperatures (20 - 60 °C) which indicate that, beside the complex regional flow, also ascending thermal waters control the hydrologic behavior of the LYG. Previous simulations based on a conceptual simplified 3D model (Magri et al., 2016) showed that crossing flow paths result from the coexistence of convection, that can develop for example along NE-SW oriented faults within the gorge or in permeable aquifers below Maastrichtian aquiclude, and additional flow fields that are induced by the N-S topographic gradients. Here we present the first 3D hydrogeological model of the entire LYG that includes structural features based on actual logs and interpreted seismic lines from both Israeli and Jordanian territories. The model distinguishes seven units from upper Eocene to the Lower Triassic, accounting for major aquifers, aquicludes and deep-cutting faults. Recharges are implemented based on the numerical representation developed by Shentsis (1990) that considers relationships between mean annual rain and topographic elevation. The model reveals that topography-driven N-S and E-W flows strongly control the location of discharge areas while the anomalous spring temperature is not necessarily linked to the presence of fault convection. Local permeability anisotropy due to aquifers folding or facies changes are features sufficient for the rising of hot fluids. Shentsis, I., 1990. Mathematical models for long-term prediction of mountainous river runoff: methods, information and results, Hydrological Sciences Journal, 35:5, 487-500 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., R

  19. Thermal entanglement in an orthogonal dimer-plaquette chain with alternating Ising–Heisenberg coupling

    International Nuclear Information System (INIS)

    Paulinelli, H G; De Souza, S M; Rojas, Onofre

    2013-01-01

    In this paper we explore the entanglement in an orthogonal dimer-plaquette Ising–Heisenberg chain, assembled between plaquette edges, also known as orthogonal dimer plaquettes. The quantum entanglement properties involving an infinite chain structure are quite important, not only because the mathematical calculation is cumbersome but also because real materials are well represented by infinite chains. Using the local gauge symmetry of this model, we are able to map onto a simple spin-1 like Ising and spin-1/2 Heisenberg dimer model with single effective ion anisotropy. Thereafter this model can be solved using the decoration transformation and transfer matrix approach. First, we discuss the phase diagram at zero temperature of this model, where we find five ground states, one ferromagnetic, one antiferromagnetic, one triplet–triplet disordered and one triplet–singlet disordered phase, beside a dimer ferromagnetic–antiferromagnetic phase. In addition, we discuss the thermodynamic properties such as entropy, where we display the residual entropy. Furthermore, using the nearest site correlation function it is possible also to analyze the pairwise thermal entanglement for both orthogonal dimers. Additionally, we discuss the threshold temperature of the entangled region as a function of Hamiltonian parameters. We find a quite interesting thin reentrance threshold temperature for one of the dimers, and we also discuss the differences and similarities for both dimers. (paper)

  20. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst

    International Nuclear Information System (INIS)

    Zhu, T.; Li, J.; Jin, Y. Q.; Liang, Y. H.; Ma, G. D.

    2009-01-01

    Synergistic effect of atmospheric non-thermal plasma generated by dielectric barrier discharge and nano titania photo catalyst for benzene decomposition was tested. The paper indicated the effect of photo catalyst on removal efficiency of benzene, the compare of photo catalyst characteristic in different high temperatures by heat treatment, analysis of by-products. The results showed that the effect of degradation was visible by added photo catalyst in the plasma reactor. When concentration of benzene was 600 mg/m 3 and electric field strength was 10 kV/cm, the removal efficiency of benzene was increased up to 81 % without photo catalyst. At the same condition, the removal efficiency was increased to 15 % higher with photo catalyst. Nano titania crystal was anatase crystal in 450 d eg C heat treatment which is best for benzene removal. The plasma reactor packed with photo catalyst shows a better selectivity of carbon dioxide than that without photo catalyst. By-products are mostly carbon dioxide, water and a small quantity of carbon monoxide

  1. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd³⁺.

    Science.gov (United States)

    Tian, Xiuna; Wei, Xiantao; Chen, Yonghu; Duan, Changkui; Yin, Min

    2014-12-01

    NaYF4: Nd³⁺ microprisms were synthesized by a hydrothermal method. The bands of near-infrared (NIR) luminescence originating from the 4F3/2, 4F5/2 and 4F7/2 levels of Nd³⁺ ions in NaYF4: Nd³⁺ microcrystals were measured under 574.8 nm excitation at various temperatures from 323 to 673 K. The fluorescence intensity ratios (FIRs) between any two of the three bands change monotonically with temperature and agree with the prediction assuming thermal couplings. A large relative temperature sensitivity of 1.12% K⁻¹ at 500K is reached with the FIR of 4F7/2 to 4F3/2 levels. In addition, anti-Stokes fluorescence from 4F5/2 level (740 nm) and 4F5/2,7/2 levels (740 nm and 803 nm) of Nd³⁺ ions was studied meticulously under 793.8 nm and 864.2 nm excitations, respectively. The intensities were shown to be greatly enhanced as temperature increases, and the 740 nm band from 4F7/2 level at 458 K increases in intensity by 170 fold relative to that at 298 K under the 793.8 nm excitation.

  2. Coupling Metallic Nanostructures to Thermally Responsive Polymers Allows the Development of Intelligent Responsive Membranes

    Directory of Open Access Journals (Sweden)

    J. Rubén Morones-Ramírez

    2014-01-01

    Full Text Available Development of porous membranes capable of controlling flow or changing their permeability to specific chemical entities, in response to small changes in environmental stimuli, is an area of appealing research, since these membranes present a wide variety of applications. The synthesis of these membranes has been mainly approached through grafting of environmentally responsive polymers to the surface walls of polymeric porous membranes. This synergizes the chemical stability and mechanical strength of the polymer membrane with the fast response times of the bonded polymer chains. Therefore, different composite membranes capable of changing their effective pore size with environmental triggers have been developed. A recent interest has been the development of porous membranes responsive to light, since these can achieve rapid, remote, noninvasive, and localized flow control. This work describes the synthesis pathway to construct intelligent optothermally responsive membranes. The method followed involved the grafting of optothermally responsive polymer-metal nanoparticle nanocomposites to polycarbonate track-etched porous membranes (PCTEPMs. The nanoparticles coupled to the polymer grafts serve as the optothermal energy converters to achieve optical switching of the pores. The results of the paper show that grafting of the polymer and in situ synthesis of the metallic particles can be easily achieved. In addition, the composite membranes allow fast and reversible switching of the pores using both light and heat permitting control of fluid flow.

  3. Thermal Behaviors and Lubrication Properties in Rotary Blade Coupling of Sports Utility Vehicles

    Science.gov (United States)

    Huang, Kuohsiu David; Tzeng, Sheng-Chung; Ma, Wei-Ping; Wu, Tai-Sheng

    This study attempts to improve the local high temperature distributions in rotary-blade-coupling (RBC), which is the source of motive power for sport-utility-vehicles (SUV). The experiment takes RBC with forced convection and circumferential ribs for the research on heat transfer enhancement. During rotation, RBC produces centrifugal fluid flow, convection phenomenon and temperature distributions that differ with rotational speed. Simultaneously, rotation enhances the turbulence intensity of the flow field, promoting heat transfer and destabilizing Taylor vortices. This instability influences the local heat transfer distribution and damages the machine parts because of overheating. To analyze the actual convection of the rotary flow field, the experiment testing section is designed based on the actual size of the RBC. In the experiment, the RBC is cooled via forced exterior oil supply, and ring-shaped turbulence ribs of three aspect ratios (AR=5/3, 2.5, and 10/3) are added to augment the heat transfer area, for discussing the axial temperature distributions at the top and bottom of the RBC. The experiment adopts major physical parameters within 2.856 × 105 ≤Ta≤2.031 × 106 and 0.053 ≤Re ≤1.054 to discuss the heat transfer effect in the interior rotary flow distribution groove of RBC in the four-wheel-drive (4WD) vehicle. Finally, based on the relevant experimental results, an empirical correlation is established for the reference of 4WD vehicle designers.

  4. Coupled thermal-optic effects and electrical modulation mechanism of birefringence crystal with Gaussian laser incidence

    International Nuclear Information System (INIS)

    Zhou Ji; He Zhi-Hong; Ma Yu; Dong Shi-Kui

    2015-01-01

    We study the Gaussian laser transmission in lithium niobate crystal (LiNbO 3 ) by using the finite element method to solve the electromagnetic field’s frequency domain equation and energy equation. The heat generated is identified by calculating the transmission loss of the electromagnetic wave in the birefringence crystal, and the calculated value of the heat generated is substituted into the energy equation. The electromagnetic wave’s energy losses induced by its multiple refractions and reflections along with the resulting physical property changes of the lithium niobate crystal are considered. Influences of ambient temperature and heat transfer coefficient on refraction and walk-off angles of O-ray and E-ray in the cases of different incident powers and crystal thicknesses are analyzed. The E-ray electrical modulation instances, in which the polarized light waveform is adjusted to the rated condition via an applied electrical field in the cases of different ambient temperatures and heat transfer coefficients, are provided to conclude that there is a correlation between ambient temperature and applied electrical field intensity and a correlation between surface heat transfer coefficient and applied electrical field intensity. The applicable electrical modulation ranges without crystal breakdown are proposed. The study shows that the electrical field-adjustable heat transfer coefficient range becomes narrow as the incident power decreases and wide as the crystal thickness increases. In addition, it is pointed out that controlling the ambient temperature is easier than controlling the heat transfer coefficient. The results of the present study can be used as a quantitative theoretical basis for removing the adverse effects induced by thermal deposition due to linear laser absorption in the crystal, such as depolarization or wave front distortion, and indicate the feasibility of adjusting the refractive index in the window area by changing the heat transfer

  5. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  6. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  7. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  8. Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2002-01-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degree C of the measured mean temperatures through the first two years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13 percent of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes

  9. The axial power distribution validation of the SCWR fuel assembly with coupled neutronics-thermal hydraulics method

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Xiao, Zejun, E-mail: fabulous_2012@sina.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yan, Xiao; Li, Yongliang; Huang, Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China)

    2013-05-15

    Highlights: ► CFX and MCNP codes are suitable to calculate the axial power profile of the FA. ► The partition method in the calculation will affect the final result. ► The density feedback has little effect on the axial power profile of CSR1000 FA. -- Abstract: SCWR (super critical water reactor) is one of the IV generation nuclear reactors in the world. In a typical SCWR the water enters the reactor from the cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change in temperature, there is a huge density change of the water along the axial direction of the fuel assembly (FA), which will affect the moderating power of the water. So the axial power distribution of the SCWR FA could be different from the traditional PWR FA.In this paper, it is the first time that the thermal hydraulics code CFX and neutronics code MCNP are used to analyze the axial power distribution of the SCWR FA. First, the factors in the coupled method which could affect the result are analyzed such as the initialization value or the partition method especially in the MCNP code. Then the axial power distribution of the Europe HPLWR FA is obtained by the coupled method with the two codes and the result is compared with that obtained by Waata and Reiss. There is a good agreement among the three kinds of results. At last, this method is used to calculate the axial power distribution of the Chinese SCWR (CSR1000) FA. It is found the axial power profile of the CSR1000 FA is not so sensitive to the change of the moderator density.

  10. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Fuel Performance and Design; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Process and Decision Systems; Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  11. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  12. Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

    Science.gov (United States)

    Greene, Benton R.; Clemens, Noel T.; Varghese, Philip L.; Bouslog, Stanley A.; Del Papa, Steven V.

    2017-01-01

    With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 50 kW. In the present configuration the flow issues from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Preliminary measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 6,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The operation envelope was measured, and heat flux measured for every point within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/sq cm.

  13. Analysis of Control Rod Drop Accidents for the Canadian SCWR Using Coupled 3-Dimensional Neutron Kinetics and Thermal Hydraulics

    Directory of Open Access Journals (Sweden)

    Frederic Salaun

    2018-01-01

    Full Text Available The Canadian Supercritical Water-cooled Reactor (SCWR, a GEN IV reactor design, is a hybrid design of the well-established CANDU™ and Boiling Water Reactor with water above its thermodynamic critical point. Given the batch fueled design, control rods are used to manage the reactivity throughout the fuel cycle. This paper examines the consequences of a control rod drop accident (CRDA for the Canadian SCWR. The asymmetry generated by the dropped rod requires an accurate 3-dimensional neutron kinetics calculation coupled to a detailed thermal-hydraulic model. Before simulating the CRDAs, the proper implementation of the 3D reactivity feedback was verified and various sensitivity studies were performed. This work demonstrates that the proposed safety systems for the SCWR core are capable of terminating the CRDA sequence prior to exceeding maximum sheath and centerline temperatures. In one instance involving a rod on the periphery of the core, the proposed trip setpoint (115% FP was not exceeded and a new steady state was reached. Therefore it is recommended that the design also include provisions for a high-log rate and/or local Neutron Overpower Protection (NOP trips, similar to existing CANDU designs such that reactor shutdown can be assured for such spatial anomalies.

  14. Coupled fluid-thermal analysis of low-pressure sublimation and condensation with application to freeze-drying

    Science.gov (United States)

    Ganguly, Arnab

    Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of bio-pharmaceuticals for removal of solvents by sublimation. The goal of the process is to provide a stable dosage form by removing the solvent in such a way that the sensitive molecular structure of the active substance is least disturbed. The vacuum environment presents unique challenges for understanding and controlling heat and mass transfer in the process. As a result, the design of equipment and associated processes has been largely empirical, slow and inefficient. A comprehensive simulation framework to predict both, process and equipment performance is critical to improve current practice. A part of the dissertation is aimed at performing coupled fluid-thermal analysis of low-pressure sublimation-condensation processes typical of freeze-drying technologies. Both, experimental and computational models are used to first understand the key heat transfer modes during the process. A modeling and computational framework, validated with experiments for analysis of sublimation, water-vapor flow and condensation in application to pharmaceutical freeze-drying is developed. Augmented with computational fluid dynamics modeling, the simulation framework presented here allows to predict for the first time, dynamic product/process conditions taking into consideration specifics of equipment design. Moreover, by applying the modeling framework to process design based on a design-space approach, it has demonstrated that there is a viable alternative to empiricism.

  15. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  16. Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

    Directory of Open Access Journals (Sweden)

    A. Rais

    2015-01-01

    Full Text Available In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.

  17. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    Science.gov (United States)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  18. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define and comp...

  19. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define and comp...

  20. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  1. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  2. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  3. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marguet, S.D. [Electricite de France (EDF), 92 - Clamart (France)

    1997-12-31

    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF`s neutronic code COCCINELLE uses the Rowland`s formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission`s products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on `low` configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.) 7 refs.

  4. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    International Nuclear Information System (INIS)

    Marguet, S.D.

    1997-01-01

    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF's neutronic code COCCINELLE uses the Rowland's formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission's products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on 'low' configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.)

  5. A Novel 3D Thermal Impedance Model for High Power Modules Considering Multi-layer Thermal Coupling and Different Heating/Cooling Conditions

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2015-01-01

    accurate temperature estimation either vertically or horizontally inside the power devices is still hard to identify. This paper investigates the thermal behavior of high power module in various operating conditions by means of Finite Element Method (FEM). A novel 3D thermal impedance network considering......Thermal management of power electronic devices is essential for reliable performance especially at high power levels. One of the most important activities in the thermal management and reliability improvement is acquiring the temperature information in critical points of the power module. However...

  6. Characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode-pumped Nd:YAG ceramic laser

    International Nuclear Information System (INIS)

    Kim, Duck-Lae; Kim, Byung-Tai

    2010-01-01

    The characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode Nd:YAG ceramic laser were investigated. The thermal lensing effect was compensated for by using a compensator, which was 25 mm away from the laser rod, with a focal length of 30 mm and an effective clear aperture of 22 mm. Using a compensator, the divergence and the beam propagation factor M 2 of the output beam were 5.5 mrad and 2.4, respectively, under a pump power of 12W. The high-frequency components in the compensated laser beam were removed.

  7. Coupling Monte Carlo simulations with thermal analysis for correcting microdosimetric spectra from a novel micro-calorimeter

    Science.gov (United States)

    Fathi, K.; Galer, S.; Kirkby, K. J.; Palmans, H.; Nisbet, A.

    2017-11-01

    The high uncertainty in the Relative Biological Effectiveness (RBE) values of particle therapy beam, which are used in combination with the quantity absorbed dose in radiotherapy, together with the increase in the number of particle therapy centres worldwide necessitate a better understating of the biological effect of such modalities. The present novel study is part of performance testing and development of a micro-calorimeter based on Superconducting QUantum Interference Devices (SQUIDs). Unlike other microdosimetric detectors that are used for investigating the energy distribution, this detector provides a direct measurement of energy deposition at the micrometre scale, that can be used to improve our understanding of biological effects in particle therapy application, radiation protection and environmental dosimetry. Temperature rises of less than 1μK are detectable and when combined with the low specific heat capacity of the absorber at cryogenic temperature, extremely high energy deposition sensitivity of approximately 0.4 eV can be achieved. The detector consists of 3 layers: tissue equivalent (TE) absorber, superconducting (SC) absorber and silicon substrate. Ideally all energy would be absorbed in the TE absorber and heat rise in the superconducting layer would arise due to heat conduction from the TE layer. However, in practice direct particle absorption occurs in all 3 layers and must be corrected for. To investigate the thermal behaviour within the detector, and quantify any possible correction, particle tracks were simulated employing Geant4 (v9.6) Monte Carlo simulations. The track information was then passed to the COMSOL Multiphysics (Finite Element Method) software. The 3D heat transfer within each layer was then evaluated in a time-dependent model. For a statistically reliable outcome, the simulations had to be repeated for a large number of particles. An automated system has been developed that couples Geant4 Monte Carlo output to COMSOL for

  8. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  9. The Coupled Thermal and Mechanical Influence on a Glassy Thermoplastic Polyamide: Nylon 6, 6 Under Vibro-Creep

    Science.gov (United States)

    Liu, Z. Y.; Beniwal, S.; Jenkins, C. H. M.; Winter, R. M.

    2004-09-01

    The vibro-creep behavior of pure Nylon 6, 6 samples subjected to tensile-tensile cyclic loading conditions within the linear elastic region (25% of yield stress at 30 °C) was studied by examining their viscoelastic response. All tests were performed at controlled temperatures, and humidity was kept as low as possible. The test protocol included three frequencies and two amplitudes. The results from all tests show that vibro-creep behavior may be divided into three stages: (a) Primary thermally dominated regime (b) Transition or coupled regime (c) Tertiary damage dominated regime. The sample temperature was observed to rise 2 2.5 °C during the cyclic loading process, which significantly contributed to the early mechanical response of the sample. Two sets of quasi-static tests were completed at 30 °C and 32.5 °C to give references for vibro-creep effects. The relationship between engineering strain for the cyclic loading process (at 30 °C) and the quasi-static creep at 32.5 °C suggests the boundaries for different mechanisms dominating the vibro-creep behavior. This is also evident from the postmortem analyses of sample surfaces using AFM. Both the exterior sample surfaces and the interior cross-sectional surfaces were checked for the evolving damage. Mean roughness and dimensions of the cracks were measured in the damaged samples. Cracks of dimensions 2 4 μm on the exterior surface and 1 2 μm on the interior cross-sectional surface were observed in pure Nylon 6, 6 samples subjected up to 2 × 106 cycles.

  10. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    Science.gov (United States)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  11. Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes

    International Nuclear Information System (INIS)

    D'Auria, Francesco; Moreno, Jose Luis Gago; Galassi, Giorgio Maria; Grgic, Davor; Spadoni, Antonino

    2003-01-01

    A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions

  12. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Van Hove, W.; Van Laeken, K.; Bartsoen, L. [Belgatom, Brussels (Belgium)] [and others

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with time dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.

  13. A fully operational 1-kb variable threshold Josephson RAM

    International Nuclear Information System (INIS)

    Kurosawa, I.; Nakagawa, H.; Aoyagi, M.; Kosaks, S.; Takada, S.

    1991-01-01

    This paper describes the first fully operational Josephson RAM in LSI level integration. The chip was designed as a 4-b x 256-word data RAM unit for a 4-b Josephson computer, The variable threshold memory cell and the relating memory architecture were used. They are so simple in structure that the fabrication is satisfied by the current Josephson junction technology. A directly coupled driver gate for a resistive bit line applies an accurate and stable driving current to the memory cell array. The RAM chip was fabricated with a 3-μm Nb/Al-oxide/Nb junction technology. For obtaining reliable RAM chips, a plasma-enhanced CVD silicon dioxide layer was introduced for insulation between the ground plane and the base electrode. The thermal uniformity of the wafer was improved during the oxidation process for making a tunnel barrier in this work

  14. Coupled transfers; Transferts couples

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, X.; Lauriat, G.; Jimenez-Rondan, J. [Universite de Marne-la-Vallee, Lab. d' Etudes des Transferts d' Energie et de Matiere (LETEM), 77 (France); Bouali, H.; Mezrhab, A. [Faculte des Sciences, Dept. de Physique, Lab. de Mecanique et Energetique, Oujda (Morocco); Abid, C. [Ecole Polytechnique Universitaire de Marseille, IUSTI UMR 6595, 13 Marseille (France); Stoian, M.; Rebay, M.; Lachi, M.; Padet, J. [Faculte des Sciences, Lab. de Thermomecanique, UTAP, 51 - Reims (France); Mladin, E.C. [Universitaire Polytechnique Bucarest, Faculte de Genie Mecanique, Bucarest (Romania); Mezrhab, A. [Faculte des Sciences, Lab. de Mecanique et Energetique, Dept. de Physique, Oujda (Morocco); Abid, C.; Papini, F. [Ecole Polytechnique, IUSTI, 13 - Marseille (France); Lorrette, C.; Goyheneche, J.M.; Boechat, C.; Pailler, R. [Laboratoire des Composites ThermoStructuraux, UMR 5801, 33 - Pessac (France); Ben Salah, M.; Askri, F.; Jemni, A.; Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Lab. d' Etudes des Systemes Thermiques et Energetiques (Tunisia); Grine, A.; Desmons, J.Y.; Harmand, S. [Laboratoire de Mecanique et d' Energetique, 59 - Valenciennes (France); Radenac, E.; Gressier, J.; Millan, P. [ONERA, 31 - Toulouse (France); Giovannini, A. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2005-07-01

    This session about coupled transfers gathers 30 articles dealing with: numerical study of coupled heat transfers inside an alveolar wall; natural convection/radiant heat transfer coupling inside a plugged and ventilated chimney; finite-volume modeling of the convection-conduction coupling in non-stationary regime; numerical study of the natural convection/radiant heat transfer coupling inside a partitioned cavity; modeling of the thermal conductivity of textile reinforced composites: finite element homogenization on a full periodical pattern; application of the control volume method based on non-structured finite elements to the problems of axisymmetrical radiant heat transfers in any geometries; modeling of convective transfers in transient regime on a flat plate; a conservative method for the non-stationary coupling of aero-thermal engineering codes; measurement of coupled heat transfers (forced convection/radiant transfer) inside an horizontal duct; numerical simulation of the combustion of a water-oil emulsion droplet; numerical simulation study of heat and mass transfers inside a reactor for nano-powders synthesis; reduction of a combustion and heat transfer model of a direct injection diesel engine; modeling of heat transfers inside a knocking operated spark ignition engine; heat loss inside an internal combustion engine, thermodynamical and flamelet model, composition effects of CH{sub 4}H{sub 2} mixtures; experimental study and modeling of the evolution of a flame on a solid fuel; heat transfer for laminar subsonic jet of oxygen plasma impacting an obstacle; hydrogen transport through a A-Si:H layer submitted to an hydrogen plasma: temperature effects; thermal modeling of the CO{sub 2} laser welding of a magnesium alloy; radiant heat transfer inside a 3-D environment: application of the finite volume method in association with the CK model; optimization of the infrared baking of two types of powder paints; optimization of the emission power of an infrared

  15. Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site

    Science.gov (United States)

    Barrere, Mathieu; Domine, Florent; Decharme, Bertrand; Morin, Samuel; Vionnet, Vincent; Lafaysse, Matthieu

    2017-09-01

    Climate change projections still suffer from a limited representation of the permafrost-carbon feedback. Predicting the response of permafrost temperature to climate change requires accurate simulations of Arctic snow and soil properties. This study assesses the capacity of the coupled land surface and snow models ISBA-Crocus and ISBA-ES to simulate snow and soil properties at Bylot Island, a high Arctic site. Field measurements complemented with ERA-Interim reanalyses were used to drive the models and to evaluate simulation outputs. Snow height, density, temperature, thermal conductivity and thermal insulance are examined to determine the critical variables involved in the soil and snow thermal regime. Simulated soil properties are compared to measurements of thermal conductivity, temperature and water content. The simulated snow density profiles are unrealistic, which is most likely caused by the lack of representation in snow models of the upward water vapor fluxes generated by the strong temperature gradients within the snowpack. The resulting vertical profiles of thermal conductivity are inverted compared to observations, with high simulated values at the bottom of the snowpack. Still, ISBA-Crocus manages to successfully simulate the soil temperature in winter. Results are satisfactory in summer, but the temperature of the top soil could be better reproduced by adequately representing surface organic layers, i.e., mosses and litter, and in particular their water retention capacity. Transition periods (soil freezing and thawing) are the least well reproduced because the high basal snow thermal conductivity induces an excessively rapid heat transfer between the soil and the snow in simulations. Hence, global climate models should carefully consider Arctic snow thermal properties, and especially the thermal conductivity of the basal snow layer, to perform accurate predictions of the permafrost evolution under climate change.

  16. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid–Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase

    OpenAIRE

    Sánchez, Raquel; Horstkotte, Burkhard; Fikarová, Kateřina; Sklenářová, Hana; Maestre, Salvador E.; Miró, Manuel; Todolí Torró, José Luis

    2017-01-01

    A proof of concept study involving the online coupling of automatic dispersive liquid–liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used ...

  17. Investigation of Future Thermal Comforts in a Tropical Megacity Using Coupling of Energy Balance Model and Large Eddy Simulation

    Science.gov (United States)

    Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.

    2017-12-01

    Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate

  18. High-voltage-compatible, fully depleted CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  19. Android Fully Loaded

    CERN Document Server

    Huddleston, Rob

    2012-01-01

    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  20. Fully nonlinear elliptic equations

    CERN Document Server

    Caffarelli, Luis A

    1995-01-01

    The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equa

  1. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  2. The influence of starch oxidization and aluminate coupling agent on interfacial interaction, rheological behavior, mechanical and thermal properties of poly(propylene carbonate)/starch blends

    Science.gov (United States)

    Jiang, Guo; Zhang, Shui-Dong; Huang, Han-Xiong; The Key Laboratory of Polymer Processing Engineering of the Ministry of Education Team

    Poly(propylene carbonate) (PPC) is a kind of new biodegradable polymer that is synthesized by copolymerization of propylene oxide and carbon dioxide. In this work, PPC end-capped with maleic anhydride (PPCMA)/thermoplastic starch (TPS), PPCMA/thermoplastic oxidized starch (TPOS) and PPCMA/AL-TPOS (TPOS modified by aluminate coupling agent) blends were prepared by melt blending to improve its thermal and mechanical properties. FTIR results showed that there existed hydrogen-bonding interaction between PPCMA and starch. SEM observation revealed that the compatibility between PPCMA and TPOS was improved by the oxidation of starch. The enhanced interfacial interactions between PPCMA and TPOS led to a better performance of PPC blends such as storage modulus (G'), loss modulus (G''), complex viscosity (η*), tensile strength and thermal properties. Furthermore, the modification of TPOS by aluminate coupling agent (AL) facilitated the dispersion of oxidized starch in PPC matrix, and resulted in increasing the tensile strength and thermal stability. National Natural Science Foundation of China, National Science Fund of Guangdong Province.

  3. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  4. A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Paluszny, Adriana; Nick, Hamidreza M.

    2018-01-01

    A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled to a mec......A fully coupled thermal-hydraulic-mechanical (THM) finite element model is presented for fractured geothermal reservoirs. Fractures are modelled as surface discontinuities within a three-dimensional matrix. Non-isothermal flow through the rock matrix and fractures are defined and coupled....... The model has been validated against several analytical solutions, and applied to study the effects of the deformable fractures on the injection of cold water in fractured geothermal systems. Results show that the creation of flow channelling due to the thermal volumetric contraction of the rock matrix...

  5. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad; Sahraei, Elham; Wierzbicki, Tom

    2016-06-14

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  6. Neutronics and thermal-hydraulics coupling: some contributions toward an improved methodology to simulate the initiating phase of a severe accident in a sodium fast reactor

    International Nuclear Information System (INIS)

    Guyot, Maxime

    2014-01-01

    This project is dedicated to the analysis and the quantification of bias corresponding to the computational methodology for simulating the initiating phase of severe accidents on Sodium Fast Reactors. A deterministic approach is carried out to assess the consequences of a severe accident by adopting best estimate design evaluations. An objective of this deterministic approach is to provide guidance to mitigate severe accident developments and re-criticalities through the implementation of adequate design measures. These studies are generally based on modern simulation techniques to test and verify a given design. The new approach developed in this project aims to improve the safety assessment of Sodium Fast Reactors by decreasing the bias related to the deterministic analysis of severe accident scenarios. During the initiating phase, the subassembly wrapper tubes keep their mechanical integrity. Material disruption and dispersal is primarily one-dimensional. For this reason, evaluation methodology for the initiating phase relies on a multiple-channel approach. Typically a channel represents an average pin in a subassembly or a group of similar subassemblies. In the multiple-channel approach, the core thermal-hydraulics model is composed of 1 or 2 D channels. The thermal-hydraulics model is coupled to a neutronics module to provide an estimate of the reactor power level. In this project, a new computational model has been developed to extend the initiating phase modeling. This new model is based on a multi-physics coupling. This model has been applied to obtain information unavailable up to now in regards to neutronics and thermal-hydraulics models and their coupling. (author) [fr

  7. Coupling of aerosol behaviour and thermal-hydraulics. Reinforced concerted action on reactor safety source term project

    International Nuclear Information System (INIS)

    Bieder, U.; Fynbo, P.; Jokiniemi, J.; Paller, A.; Schatz, A.

    1993-12-01

    The status of the experimental work (LACE, KAEUER, FALCON test facilities, DEMONA and VANAM experiments) and the new generation of computer codes (eg. CONTAIN, FIPLOC-M, ITHACA, GOTHIC-M) for a coupled calculation of thermohydraulic and aerosol processes is reviewed and the lack of the present state of knowledge is summarized. The role of the coupled calculations with respect to advanced reactor design and to operating LWRs is also considered. (HP)

  8. Projecting range limits with coupled thermal tolerance - climate change models: an example based on gray snapper (Lutjanus griseus along the U.S. east coast.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65% to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species.

  9. Projecting range limits with coupled thermal tolerance - climate change models: an example based on gray snapper (Lutjanus griseus) along the U.S. east coast.

    Science.gov (United States)

    Hare, Jonathan A; Wuenschel, Mark J; Kimball, Matthew E

    2012-01-01

    We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65%) to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species.

  10. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    Science.gov (United States)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  11. Combining structural-thermal coupled field FE analysis and the Taguchi method to evaluate the relative contributions of multi-factors in a premolar adhesive MOD restoration.

    Science.gov (United States)

    Lin, Chun-Li; Chang, Yen-Hsiang; Lin, Yi-Feng

    2008-08-01

    The aim of this study was to determine the relative contribution of changes in restorative material, cavity dimensions, adhesive layer adaptation, and load conditions on the biomechanical response of an adhesive Class II MOD restoration during oral temperature changes. A validated finite-element (FE) model was used to perform the structural-thermal coupled field analyses and the Taguchi method was employed to identify the significance of each design factor in controlling the stress. The results indicated that thermal expansion in restorative material amplified the thermal effect and dominated the tooth stress value (69%) at high temperatures. The percentage contributions of the load conditions, cavity depth, and cement modulus increased the effect on tooth stress values 46%, 32%, and 14%, respectively, when the tooth temperature was returned to 37 degrees C. Load conditions were also the main factor influencing the resin cement stress values, irrespective of temperature changes. Increased stress values occurred with composite resin, lateral force, a deeper cavity, and a higher luting cement modulus. The combined use of FE analysis and the Taguchi method efficiently identified that a deeper cavity might increase the risk of a restored tooth fracture, as well as a ceramic inlay with a lower thermal expansion, attaining a proper occlusal adjustment to reduce the lateral occlusal force and low modulus luting material application to obtain a better force-transmission mechanism are recommended.

  12. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  13. Fully Quantum Fluctuation Theorems

    Directory of Open Access Journals (Sweden)

    Johan Åberg

    2018-02-01

    Full Text Available Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce “conditional” fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  14. Fully electric waste collection

    CERN Document Server

    Anaïs Schaeffer

    2015-01-01

    Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region!   Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...

  15. Fully reflective photon sieve

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G.; Kim, Hyun Jung; Weimer, Carl; Baize, Rosemary R.

    2018-02-01

    Photon sieves (PS) have many applications and various designs in focusing light. However, a traditional PS only has a light transmissivity up to ∼25% and a focusing efficiency up to ∼7%, which hinder the application of them in many fields, especially for satellite remote sensing. To overcome these inherent drawbacks of traditional PSs, a concept of reflective photon sieve is developed in this work. This reflective photon sieve is based on a transparent membrane backed by a mirror. The transparent membrane is optimally a fully transparent material sheet with given refractive index and designed geometric thickness which has an optical thickness of a quarter incident wavelength (i.e. an anti-reflective coating). The PS-patterned pinholes are made on the transparent membrane. The design makes the light reflected from pinholes and that from zones of membrane material have 180° phase difference. Thus, light incident on this optical device is reflected and focused on its focal point. This device can have a reflectivity of ∼100% and a focusing efficiency of ∼50% based on numerical simulation. This device functions similar to a concave focusing mirror but can preserve the phase feature of light (such as that for the light with orbital angular momentum). It also has excellent wavelength-dependent property, which can exclude most of the undesired light from the focal point. A thin sheet of this component can perform the joint function of lenses and gratings/etalons in the optical path of a remote sensing system, thus is suitable for controling/filtering light in compact instruments such as satellite sensors. This concept is validated by the finite-difference time domain (FDTD) modeling and a lab prototype in this study.

  16. Fully differential cross sections for heavy particle impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-15

    We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.

  17. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2015-12-01

    Full Text Available This study uses the melt compounding method to produce polypropylene (PP/short glass fibers (SGF composites. PP serves as matrix while SGF serves as reinforcement. Two coupling agents, maleic anhydride grafted polypropylene, (PP-g-MA and maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA are incorporated in the PP/SGF composites during the compounding process, in order to improve the interfacial adhesion and create diverse desired properties of the composites. According to the mechanical property evaluations, increasing PP-g-MA as a coupling agent provides the composites with higher tensile, flexural, and impact properties. In contrast, increasing SEBS-g-MA as a coupling agent provides the composites with decreasing tensile and flexural strengths, but also increasing impact strength. The DSC results indicate that using either PP-g-MA or SEBS-g-MA as the coupling agent increases the crystallization temperature. However, the melting temperature of PP barely changes. The spherulitic morphology results show that PP has a smaller spherulite size when it is processed with PP-g-MA or SEBS-g-MA as the coupling agent. The SEM results indicate that SGF is evenly distributed in PP matrices, but there are distinct voids between these two materials, indicating a poor interfacial adhesion. After PP-g-MA or SEBS-g-MA is incorporated, SGF can be encapsulated by PP, and the voids between them are fewer and indistinctive. This indicates that the coupling agents can effectively improve the interfacial compatibility between PP and SGF, and as a result improves the diverse properties of PP/SGF composites.

  18. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase.

    Science.gov (United States)

    Sánchez, Raquel; Horstkotte, Burkhard; Fikarová, Kateřina; Sklenářová, Hana; Maestre, Salvador; Miró, Manuel; Todolí, Jose-Luis

    2017-03-21

    A proof of concept study involving the online coupling of automatic dispersive liquid-liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 μL of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as model analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively. Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.

  19. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  20. A two-dimensional nodal model with turbulent effects for the synthesis of Si nano-particles by inductively coupled thermal plasmas

    International Nuclear Information System (INIS)

    Colombo, V; Ghedini, E; Gherardi, M; Sanibondi, P; Shigeta, M

    2012-01-01

    Nano-particle synthesis by means of inductively coupled plasma torches is a material process of large technological interest. Numerous parameters are involved in the optimization of this process; hence the development of numerical models for the prediction of thermal and magneto-fluid dynamics fields, precursor powder trajectories and thermal history, as well as nano-particle formation and growth, is necessary for the up-scaling of these devices from laboratory batch production to an industrial continuous process. In this work, a two-dimensional (2D) discrete-type model (nodal model) for the analysis of nano-powder nucleation and growth is presented, taking into account convection, diffusion and turbulent effects on particle formation. Discrete-type models feature high precision and reveal a great deal of information useful for clarifying the nano-particle formation process. Using Si as the precursor material, 2D simulations of a nano-particle synthesis RF plasma apparatus with a reaction chamber are carried out. Good agreement is found when comparing results obtained with this model with those coming from a well-established nucleation-coupled moment method. Moreover, the extended amount of obtainable information that characterizes the nodal model is underlined. (paper)

  1. Spin transfer torque switching in exchange-coupled amorphous GdFeCo/TbFe bilayers for thermally assisted MRAM application

    Science.gov (United States)

    Dai, Bing; Guo, Yong; Zhu, Jiaqi; Kato, Takeshi; Iwata, Satoshi; Tsunashima, Shigeru; Yang, Lei; Han, Jiecai

    2017-04-01

    Exchange-coupled amorphous GdFeCo/TbFe memory layers in giant magneto-resistance (GMR) devices for spin transfer torque (STT) switching have been studied, and temperature dependence of the critical current density of the GMR devices was measured to discuss the effect of exchange-coupled bilayers as a memory layer of the thermally assisted magnetic random access memory (MRAM). The GMR devices having amorphous GdFeCo and TbFe memory bilayers with various thicknesses were prepared by magnetron sputtering and subsequent micro-fabrication processes. A pulsed current was applied to the GMR devices in order to investigate the spin transfer torque (STT) switching. The maximum magneto-resistance (MR) ratio was around 0.15%, and the coercivity of the memory bilayer increased with the TbFe thickness and decreased with elevating temperature. The critical current densities J c to switch the memory bilayer with structure of Gd21.4 (Fe90Co10)78.6(9 nm)/Tb16Fe84 (1 nm) as low as 2.2  ×  107 A cm-2 was obtained. The J c reduced with increasing the temperature and was found to scale with the effective anisotropy K eff of GdFeCo/TbFe bilayer, which is believed to be suitable for the application of thermally assisted STT-MRAM.

  2. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR to monitor chemical properties and thermal stability of fulvic and humic acids.

    Directory of Open Access Journals (Sweden)

    Patrycja Boguta

    Full Text Available Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere and chemical properties of natural polymers, fulvic (FA and humic acids (HA, isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss. Weight loss (ΔM estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1, volatile and labile functional groups (at R2 as well as recalcitrant and refractory structures (at R3. QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44, DSC (MaxDSC and TG (ΔM at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to

  3. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids.

    Science.gov (United States)

    Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil

    2017-01-01

    Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their

  4. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal Models for Battery Crush; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram; Sahraei, Elham; Wierzbiki, Tom

    2015-06-15

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. The challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.

  5. Modeling the Structural-Thermal-Electrical Coupling in an Electrostatically Actuated MEMS Switch and Its Impact on the Switch Stability

    Directory of Open Access Journals (Sweden)

    Hassen M. Ouakad

    2013-01-01

    Full Text Available Modeling and analysis for the static behavior and collapse instabilities of a MEMS cantilever switch subjected to both electrical and thermal loadings are presented. The thermal loading forces can be as a result of a huge amount of switching contact of the microswitch. The model considers the microbeam as a continuous medium and the electric force as a nonlinear function of displacement and accounts for its fringing-field effect. The electric force is assumed to be distributed over specific lengths underneath the microbeam. A boundary-value solver is used to study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We have found negligible influence of the temperature on the static stability of the switch. We then investigate the effect of the thermal heating due to the current flow on the cantilever switch while it is in the on position (adhered position. We also found slight effect on the static stability of the switch.

  6. Mechanical properties, morphology and thermal degradation of a biocomposite of polypropylene and curaua fibers: coupling agent effect

    Directory of Open Access Journals (Swed