WorldWideScience

Sample records for fully frustrated josephson

  1. Fully frustrated Josephson junction ladders with Mobius boundary conditions as topologically protected qubits

    Cristofano, Gerardo; Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Via Cintia, Complesso Universitario M. Sant' Angelo, 80126 Napoli (Italy); Naddeo, Adele [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di Ricerca di Salerno, Via Salvador Allende, 84081 Baronissi (Saudi Arabia) (Italy)], E-mail: naddeo@sa.infn.it; Niccoli, Giuliano [LPTM, Universite de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise (France)

    2008-03-31

    We show how to realize a 'protected' qubit by using a fully frustrated Josephson junction ladder (JJL) with Mobius boundary conditions. Such a system has been recently studied within a twisted conformal field theory (CFT) approach [G. Cristofano, G. Maiella, V. Marotta, Mod. Phys. Lett. A 15 (2000) 1679; G. Cristofano, G. Maiella, V. Marotta, G. Niccoli, Nucl. Phys. B 641 (2002) 547] and shown to develop the phenomenon of flux fractionalization [G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, Eur. Phys. J. B 49 (2006) 83]. The relevance of a 'closed' geometry has been fully exploited in relating the topological properties of the ground state of the system to the presence of half flux quanta and the emergence of a topological order has been predicted [G. Cristofano, V. Marotta, A. Naddeo, J. Stat. Mech.: Theory Exp. (2005) P03006]. In this Letter the stability and transformation properties of the ground states under adiabatic magnetic flux change are analyzed and the deep consequences on the realization of a solid state qubit, protected from decoherence, are presented.

  2. Dynamical phase transition in a fully frustrated Josephson array on a square lattice

    Fisher, K. D.; Stroud, D.; Janin, L.

    1999-01-01

    We study dynamical phase transitions at temperature T=0 in a fully frustrated square Josephson junction array subject to a driving current density, which has nonzero components i x , i y parallel to both axes of the lattice. Our numerical results show clear evidence for three dynamical phases: a pinned vortex lattice characterized by zero time-averaged voltages x > t and y > t , a ''plastic'' phase in which both x > t and y > t are nonzero, and a moving lattice phase in which only one of the time-average voltage components is nonzero. The last of these has a finite transverse critical current: if a current is applied in the x direction, a nonzero transverse current density i y is required before y > t becomes nonzero. The voltage traces in the moving lattice phase are periodic in time. By contrast, the voltages in the plastic phase have continuous power spectra that are weakly dependent on frequency. This phase diagram is found numerically to be qualitatively unchanged by the presence of weak disorder. We also describe two simple analytical models that recover some, but not all, the characteristics of the three dynamical phases, and of the phase diagram calculated numerically. (c) 1999 The American Physical Society

  3. Transverse phase-locking in fully frustrated Josephson junction arrays: A new type of fractional giant steps

    Marconi, Veronica I.; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2003-05-01

    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied perpendicular to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IV curve with voltage noise, Lyapunov exponents and Poincare sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model. (author)

  4. Edge currents in frustrated Josephson junction ladders

    Marques, A. M.; Santos, F. D. R.; Dias, R. G.

    2016-09-01

    We present a numerical study of quasi-1D frustrated Josephson junction ladders with diagonal couplings and open boundary conditions, in the large capacitance limit. We derive a correspondence between the energy of this Josephson junction ladder and the expectation value of the Hamiltonian of an analogous tight-binding model, and show how the overall superconducting state of the chain is equivalent to the minimum energy state of the tight-binding model in the subspace of one-particle states with uniform density. To satisfy the constraint of uniform density, the superconducting state of the ladder is written as a linear combination of the allowed k-states of the tight-binding model with open boundaries. Above a critical value of the parameter t (ratio between the intra-rung and inter-rung Josephson couplings) the ladder spontaneously develops currents at the edges, which spread to the bulk as t is increased until complete coverage is reached. Above a certain value of t, which varies with ladder size (t = 1 for an infinite-sized ladder), the edge currents are destroyed. The value t = 1 corresponds, in the tight-binding model, to the opening of a gap between two bands. We argue that the disappearance of the edge currents with this gap opening is not coincidental, and that this points to a topological origin for these edge current states.

  5. Langevin dynamics simulations of large frustrated Josephson junction arrays

    Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.

    1991-01-01

    Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response

  6. Langevin dynamics simulations of large frustrated Josephson junction arrays

    Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.

    1991-01-01

    Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response

  7. A fully operational 1-kb variable threshold Josephson RAM

    Kurosawa, I.; Nakagawa, H.; Aoyagi, M.; Kosaks, S.; Takada, S.

    1991-01-01

    This paper describes the first fully operational Josephson RAM in LSI level integration. The chip was designed as a 4-b x 256-word data RAM unit for a 4-b Josephson computer, The variable threshold memory cell and the relating memory architecture were used. They are so simple in structure that the fabrication is satisfied by the current Josephson junction technology. A directly coupled driver gate for a resistive bit line applies an accurate and stable driving current to the memory cell array. The RAM chip was fabricated with a 3-μm Nb/Al-oxide/Nb junction technology. For obtaining reliable RAM chips, a plasma-enhanced CVD silicon dioxide layer was introduced for insulation between the ground plane and the base electrode. The thermal uniformity of the wafer was improved during the oxidation process for making a tunnel barrier in this work

  8. Devil's staircase in a fully frustrated superconducting array

    Kim, S.; Choi, M.Y.

    1993-01-01

    A two-dimensional fully frustrated superconducting array with a combined direct and alternating applied current is studied both analytically and numerically. At zero temperature equations of motion can be reduced through the use of the translational symmetry present in the system. Remarkably, we find a series of subharmonic steps in addition to standard integer and half-integer giant Shapiro steps, leading to devil's staircase structure. We also present results of detailed numerical simulations, which indeed reveal such subharmonic fine structure. (orig.)

  9. Dynamic critical phenomena in two-dimensional fully frustrated Coulomb gas model with disorder

    Zhang Wei; Luo Mengbo

    2008-01-01

    The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region E c /2 c . The scaling law of the depinning transition is also obtained from the scaling function

  10. Candidate for a fully frustrated square lattice in a verdazyl-based salt

    Yamaguchi, H.; Tamekuni, Y.; Iwasaki, Y.; Hosokoshi, Y.

    2018-05-01

    We present an experimental realization of an S =1 /2 fully frustrated square lattice (FFSL) composed of a verdazyl-based salt (p -MePy-V) (TCNQ ) .(CH3)2CO . Ab initio molecular orbital calculations indicate that there are four types of competing ferro- and antiferromagnetic nearest-neighbor interactions present in the system, which combine to form an S =1 /2 FFSL. Below room temperature, the magnetic susceptibility of the material can be considered to arise from the S =1 /2 FFSL formed by the p -MePy-V and indicates that the system forms a quantum valence-bond solid state whose excitation energy is gapped. Furthermore, we also observe semiconducting behavior arising from the one-dimensional chain structure of the TCNQ molecules.

  11. Josephson junction arrays

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  12. Exact solution of the Ising model in a fully frustrated two-dimensional lattice

    Silva, N.R. da; Medeiros e Silva Filho, J.

    1983-01-01

    A straightforward extension of the Onsager method allows us to solve exactly the Ising problem in a fully frustated square lattice in the absence of external magnetic field. It is shown there is no singularity in the thermodynamic functions for non-zero temperature. (Author) [pt

  13. Superconducting states and depinning transitions of Josephson ladders

    Barahona, M.; Strogatz, S.H.; Orlando, T.P.

    1998-01-01

    We present analytical and numerical studies of pinned superconducting states of open-ended Josephson ladder arrays, neglecting inductances but taking edge effects into account. Treating the edge effects perturbatively, we find analytical approximations for three of these superconducting states emdash the no-vortex, fully frustrated, and single-vortex states emdash as functions of the dc bias current I and the frustration f. Bifurcation theory is used to derive formulas for the depinning currents and critical frustrations at which the superconducting states disappear or lose dynamical stability as I and f are varied. These results are combined to yield a zero-temperature stability diagram of the system with respect to I and f. To highlight the effects of the edges, we compare this dynamical stability diagram to the thermodynamic phase diagram for the infinite system where edges have been neglected. We briefly indicate how to extend our methods to include self-inductances. copyright 1998 The American Physical Society

  14. Josephson technology

    Drangeid, K.E.

    1983-01-01

    The author presents an introduction to Josephson junctions. After an introduction to the physical principles of superconductivity and the Josephson effect some applications are described with special regards to the implementation in digital circuits. (HSI)

  15. Superconducting frustration bit

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  16. Vortex dynamics in Josephson ladders with II-junctions

    Kornev, Victor K.; Klenov, N. V.; Oboznov, V.A.

    2004-01-01

    Both experimental and numerical studies of a self-frustrated triangular array of pi-junctions are reported. The array of SFS Josephson junctions shows a transition to the pi-state and self-frustration with a decrease in temperature. This manifests itself in a half-period shift of the bias critica...

  17. A supersymmetric phase transition in Josephson-tunnel-junction arrays

    Foda, O.

    1988-01-01

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T I ≤T V , then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T I =T V . Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory. (orig.)

  18. Supersymmetric phase transition in Josephson-tunnel-junction arrays

    Foda, O.

    1988-08-31

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.

  19. Topologically protected qubits as minimal Josephson junction arrays with non-trivial boundary conditions: A proposal

    Cristofano, Gerardo; Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , and INFN, Sezione di Napoli, Via Cintia, Complesso Universitario M. Sant' Angelo, 80126 Napoli (Italy); Naddeo, Adele [Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno and CNISM, Unita di Ricerca di Salerno, Via Salvador Allende, 84081 Baronissi (Italy)], E-mail: naddeo@sa.infn.it; Niccoli, Giuliano [Theoretical Physics Group, DESY, NotkeStrasse 85, 22603 Hamburg (Germany)

    2008-11-17

    Recently a one-dimensional closed ladder of Josephson junctions has been studied [G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, Phys. Lett. A 372 (2008) 2464] within a twisted conformal field theory (CFT) approach [G. Cristofano, G. Maiella, V. Marotta, Mod. Phys. Lett. A 15 (2000) 1679; G. Cristofano, G. Maiella, V. Marotta, G. Niccoli, Nucl. Phys. B 641 (2002) 547] and shown to develop the phenomenon of flux fractionalization [G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, Eur. Phys. J. B 49 (2006) 83]. That led us to predict the emergence of a topological order in such a system [G. Cristofano, V. Marotta, A. Naddeo, J. Stat. Mech.: Theory Exp. (2005) P03006]. In this Letter we analyze the ground states and the topological properties of fully frustrated Josephson junction arrays (JJA) arranged in a Corbino disk geometry for a variety of boundary conditions. In particular minimal configurations of fully frustrated JJA are considered and shown to exhibit the properties needed in order to build up a solid state qubit, protected from decoherence. The stability and transformation properties of the ground states of the JJA under adiabatic magnetic flux changes are analyzed in detail in order to provide a tool for the manipulation of the proposed qubit.

  20. Long Josephson tunnel junctions with doubly connected electrodes

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-01-01

    of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply...... connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy...

  1. Frustrated spin systems

    2013-01-01

    This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated

  2. Josephson tunnel junction microwave attenuator

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...

  3. Y-junction of superconducting Josephson chains

    Giuliano, Domenico; Sodano, Pasquale

    2009-01-01

    We show that, for pertinent values of the fabrication and control parameters, an attractive finite coupling fixed point emerges in the phase diagram of a Y-junction of superconducting Josephson chains. The new fixed point arises only when the dimensionless flux f piercing the central loop of the network equals π and, thus, does not break time-reversal invariance; for f≠π, only the strongly coupled fixed point survives as a stable attractive fixed point. Phase slips (instantons) have a crucial role in establishing this transition: we show indeed that, at f=π, a new set of instantons-the W-instantons-comes into play to destabilize the strongly coupled fixed point. Finally, we provide a detailed account of the Josephson current-phase relationship along the arms of the network, near each one of the allowed fixed points. Our results evidence remarkable similarities between the phase diagram accessible to a Y-junction of superconducting Josephson chains and the one found in the analysis of quantum Brownian motion on frustrated planar lattices

  4. Frustration in biomolecules.

    Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G

    2014-11-01

    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature

  5. Frustration and quantum criticality

    Vojta, Matthias

    2018-06-01

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality.

  6. Frustration and quantum criticality.

    Vojta, Matthias

    2018-03-15

    This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.

  7. Quantum phase transition with dissipative frustration

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  8. Stochasticity in the Josephson map

    Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.

    1996-04-01

    The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)

  9. Josephson shift registers

    Przybysz, J.X.

    1989-01-01

    This paper gives a review of Josephson shift register circuits that were designed, fabricated, or tested, with emphasis on work in the 1980s. Operating speed is most important, since it often limits system performance. Older designs used square-wave clocks, but most modern designs use offset sine waves, with either two or three phases. Operating margins and gate bias uniformity are key concerns. The fastest measured Josephson shift register operated at 2.3 GHz, which compares well with a GaAs shift register that consumes 250 times more power. The difficulties of high-speed testing have prevented many Josephson shift registers from being operated at their highest speeds. Computer simulations suggest that 30-GHz operation is possible with current Nb/Al 2 O 3 /Nb technology. Junctions with critical current densities near 10 kA/cm 2 would make 100-GHz shift registers feasible

  10. Quasioptical Josephson oscillator

    Wengler, M.J.; Pance, A.; Liu, B.

    1991-01-01

    This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer

  11. Equivalent Josephson junctions

    Boyadzhiev, T.L.; ); Semerdzhieva, E.G.; Shukrinov, Yu.M.; Fiziko-Tekhnicheskij Inst., Dushanbe

    2008-01-01

    The magnetic field dependences of critical current are numerically constructed for a long Josephson junction with a shunt- or resistor-type microscopic inhomogeneities and compared to the critical curve of a junction with exponentially varying width. The numerical results show that it is possible to replace the distributed inhomogeneity of a long Josephson junction by an inhomogeneity localized at one of its ends, which has certain technological advantages. It is also shown that the critical curves of junctions with exponentially varying width and inhomogeneities localized at the ends are unaffected by the mixed fluxon-antifluxon distributions of the magnetic flux [ru

  12. Josephson junction arrays and superconducting wire networks

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  13. Momentum-Space Josephson Effects

    Hou, Junpeng; Luo, Xi-Wang; Sun, Kuei; Bersano, Thomas; Gokhroo, Vandna; Mossman, Sean; Engels, Peter; Zhang, Chuanwei

    2018-03-01

    The Josephson effect is a prominent phenomenon of quantum supercurrents that has been widely studied in superconductors and superfluids. Typical Josephson junctions consist of two real-space superconductors (superfluids) coupled through a weak tunneling barrier. Here we propose a momentum-space Josephson junction in a spin-orbit coupled Bose-Einstein condensate, where states with two different momenta are coupled through Raman-assisted tunneling. We show that Josephson currents can be induced not only by applying the equivalent of "voltages," but also by tuning tunneling phases. Such tunneling-phase-driven Josephson junctions in momentum space are characterized through both full mean field analysis and a concise two-level model, demonstrating the important role of interactions between atoms. Our scheme provides a platform for experimentally realizing momentum-space Josephson junctions and exploring their applications in quantum-mechanical circuits.

  14. HTSC-Josephson step contacts

    Herrmann, K.

    1994-03-01

    In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)

  15. Probing quantum frustrated systems via factorization of the ground state.

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  16. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    Harris, E. B.; Garland, J. C.

    1997-02-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=, where f is the magnetic frustration, while for 0tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N2 dependence, N being the number of series-connected junctions.

  17. Curved Josephson junction

    Dobrowolski, Tomasz

    2012-01-01

    The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.

  18. Josephson tunneling and nanosystems

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  19. Multipartite entanglement and frustration

    Facchi, P; Florio, G; Pascazio, S; Marzolino, U; Parisi, G

    2010-01-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  20. Multipartite entanglement and frustration

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2010-02-01

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  1. Multipartite entanglement and frustration

    Facchi, P [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); Florio, G; Pascazio, S [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Marzolino, U [Dipartimento di Fisica, Universita di Trieste, and Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste (Italy); Parisi, G [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, Centre for Statistical Mechanics and Complexity (SMC), CNR-INFM, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, 00185 Roma (Italy)], E-mail: paolo.facchi@ba.infn.it

    2010-02-15

    Some features of the global entanglement of a composed quantum system can be quantified in terms of the purity of a balanced bipartition, made up of half of its subsystems. For the given bipartition, purity can always be minimized by taking a suitable (pure) state. When many bipartitions are considered, the requirement that purity be minimal for all bipartitions can engender conflicts and frustration will arise. This unearths an interesting link between frustration and multipartite entanglement, defined as the average purity over all (balanced) bipartitions.

  2. Frustrated Lewis Pairs

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Frustrated Lewis Pairs : Enabling via inability. Sanjoy Mukherjee ... Author Affiliations. Sanjoy Mukherjee Pakkirisamy Thilagar1. Department of Inorgainic and Physical Chemistry Indian Institute of Science Bangalore 560 012, India.

  3. Tunable Nitride Josephson Junctions.

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  4. Phase dynamics of single long Josephson junction in MgB2 superconductor

    Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.

    2018-05-01

    A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.

  5. A Josephson radiation comb generator.

    Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F

    2015-07-20

    We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.

  6. Josephson comparator switching time

    Herr, Quentin P; Miller, Donald L; Przybysz, John X [Northrop Grumman, Baltimore, MD (United States)

    2006-05-15

    Comparator performance can be characterized in terms of both sensitivity and decision time. Delta-sigma analogue-to-digital converters are tolerant of sensitivity errors but require short decision time due to feedback. We have analysed the Josephson comparator using the numerical solution of the Fokker-Planck equation, which describes the time evolution of the ensemble probability distribution. At balance, the result is essentially independent of temperature in the range 5-20 K. There is a very small probability, 1 x 10{sup -14}, that the decision time will be longer than seven single-flux-quantum pulse widths, defined as Phi{sub 0}/(I{sub c}R{sub n}). For junctions with a critical current density of 4.5 kA, this decision time is only 20 ps. Decision time error probability decreases rapidly with lengthening time interval, at a rate of two orders of magnitude per pulse width. We conclude that Josephson comparator performance is quite favourable for analogue-to-digital converter applications.

  7. Josephson junctions array resonators

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  8. Manufacturing technology for practical Josephson voltage normals

    Kohlmann, Johannes; Kieler, Oliver

    2016-01-01

    In this contribution we present the manufacturing technology for the fabrication of integrated superconducting Josephson serial circuits for voltage normals. First we summarize some foundations for Josephson voltage normals and sketch the concept and the setup of the circuits, before we describe the manufacturing technology form modern practical Josephson voltage normals.

  9. User Frustrations as Opportunities

    Michael Weiss

    2012-04-01

    Full Text Available User frustrations are an excellent source of new product ideas. Starting with this observation, this article describes an approach that entrepreneurs can use to discover business opportunities. Opportunity discovery starts with a problem that the user has, but may not be able to articulate. User-centered design techniques can help elicit those latent needs. The entrepreneur should then try to understand how users are solving their problem today, before proposing a solution that draws on the unique skills and technical capabilities available to the entrepreneur. Finally, an in-depth understanding of the user allows the entrepreneur to hone in on the points of difference and resonance that are the foundation of a strong customer value proposition.

  10. Method of manufacturing Josephson junction integrated circuits

    Jillie, D.W. Jr.; Smith, L.N.

    1985-01-01

    Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

  11. Topics on frustrated spin systems and high-temperature superconductors

    Lu Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered is the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties were studied for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion. When fully frustrated, an interesting short-range order and some unusual scaling behavior were obtained. The other frustrated spin system studied is the magnetic phase of YBa 2 Cu 3 O 6+x via a classical spin model, with appropriate anisotropic exchange couplings and randomly located spins of distribution probability as a function of x. There is a first order boundary between Type 1 and Type 2 in the Ising case, while there is no real phase boundary in the cases of continuous spin. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  12. Topics on frustrated spin systems and high-temperature superconductors

    Lu, Yong.

    1990-01-01

    The numerical study of frustrated spin systems using the Monte Carlo simulation method and the analytic study of fluctuation phenomenon of the thermoelectric power near the superconducting transition using Green's function techniques are presented. The first frustrated system considered was the B-site antiferromagnetic (AF) spinel. Based on an Ising model, various thermodynamic and magnetic properties for both the fully frustrated structure and partially frustrated cases of a small tetragonal distortion were studied. When fully frustrated, an interesting short range order and some unusual scaling behavior were obtained. In the two tetragonally distorted cases, contracting and expanding in the crystallographic c-direction, AF long range orders and some hysteresis behavior were found. A general phase diagram was constructed as a function of the degree of the distortion. The other frustrated spin system that was studied is the magnetic phase of YBa2Cu3O(6+x). A classical spin model, was constructed, and various properties in its Ising, Heisenberg, and x-y versions were studied. The susceptibility was calculated as a function of temperature for various values of x. In the study on the thermopower fluctuation, the thermopower was determined by the linear response of the electric and heat currents to an electric field, and the linear responses were in turn calculated from correlation functions of the current

  13. Teaching Students to Overcome Frustration.

    Henley, Martin

    1997-01-01

    Offers concrete strategies for teaching students about frustration, reducing classroom stress, and integrating frustration-tolerance techniques into the regular curriculum. Discusses how to teach self-control within the curriculum with tips on relaxation, support, and acknowledging accomplishments. Claims that such steps will reduce related…

  14. Gravitation at the Josephson Junction

    Victor Atanasov

    2018-01-01

    Full Text Available A geometric potential from the kinetic term of a constrained to a curved hyperplane of space-time quantum superconducting condensate is derived. An energy conservation relation involving the geometric field at every material point in the superconductor is demonstrated. At a Josephson junction the energy conservation relation implies the possibility of transforming electric energy into geometric field energy, that is, curvature of space-time. Experimental procedures to verify that the Josephson junction can act as a voltage-to-curvature converter are discussed.

  15. Squeezed States in Josephson Junctions.

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  16. Frustration: A common user experience

    Hertzum, Morten

    2010-01-01

    % of their time redoing lost work. Thus, the frustrating experiences accounted for a total of 27% of the time, This main finding is exacerbated by several supplementary findings. For example, the users were unable to fix 26% of the experienced problems, and they rated that the problems recurred with a median....... In the present study, 21 users self-reported their frustrating experiences during an average of 1.72 hours of computer use. As in the previous studies the amount of time lost due to frustrating experiences was disturbing. The users spent 16% of their time trying to fix encountered problems and another 11...

  17. Long Josephson tunnel junctions with doubly connected electrodes

    Monaco, R.; Mygind, J.; Koshelets, V. P.

    2012-03-01

    In order to mimic the phase changes in the primordial Big Bang, several cosmological solid-state experiments have been conceived, during the last decade, to investigate the spontaneous symmetry breaking in superconductors and superfluids cooled through their transition temperature. In one of such experiments, the number of magnetic flux quanta spontaneously trapped in a superconducting loop was measured by means of a long Josephson tunnel junction built on top of the loop itself. We have analyzed this system and found a number of interesting features not occurring in the conventional case with simply connected electrodes. In particular, the fluxoid quantization results in a frustration of the Josephson phase, which, in turn, reduces the junction critical current. Further, the possible stable states of the system are obtained by a self-consistent application of the principle of minimum energy. The theoretical findings are supported by measurements on a number of samples having different geometrical configuration. The experiments demonstrate that a very large signal-to-noise ratio can be achieved in the flux quanta detection.

  18. Manufacturing technology for practical Josephson voltage normals; Fertigungstechnologie fuer praxistaugliche Josephson-Spannungsnormale

    Kohlmann, Johannes; Kieler, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.43 ' ' Josephson-Schaltungen' '

    2016-09-15

    In this contribution we present the manufacturing technology for the fabrication of integrated superconducting Josephson serial circuits for voltage normals. First we summarize some foundations for Josephson voltage normals and sketch the concept and the setup of the circuits, before we describe the manufacturing technology form modern practical Josephson voltage normals.

  19. Logic design of Josephson network. II

    Nakajima, K.; Onodera, Y.

    1978-01-01

    By numerical calculations of the differential-difference sine-Gordon equation, we have discussed the discrete Josephson-junction transmission lines which are constructed of a series of small-area Josephson junctions connected by superconducting strips. It is shown that the discrete Josephson lines containing D lines, N lines, T turning points, and S turning points are elementarily characterized by the discreteness parameter (2πLI/sub c//Phi 0 )/sup 1/2/. On the discrete Josephson logic circuits there exists a region of forbidden propagation in the (2πLI/sub c//Phi 0 )/sup 1/2/-γ (bias-current parameter) plane for single flux quanta. A single flux quantum can be stuffed in a small area of the discrete Josephson logic circuits. The discrete circuits can be conveniently and easily linked to each other, in a practical fabrication of a Josephson network

  20. Vertical Josephson Interferometer for Tunable Flux Qubit

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  1. Voltage splay modes and enhanced phase locking in a modified linear Josephson array

    Harris, E.B.; Garland, J.C.

    1997-01-01

    We analyze a modified linear Josephson-junction array in which additional unbiased junctions are used to greatly enhance phase locking. This geometry exhibits strong correlated behavior, with an external magnetic field tuning the voltage splay angle between adjacent Josephson oscillators. The array displays a coherent in-phase mode for f=(1)/(2), where f is the magnetic frustration, while for 0 p (f)=2aV dc /Φ 0 (1-2f). The locked splay modes are found to be tolerant of critical current disorder approaching 100%. The stability of the array has also been studied by computing Floquet exponents. These exponents are found to be negative for all array lengths, with a 1/N 2 dependence, N being the number of series-connected junctions. copyright 1996 The American Physical Society

  2. Josephson junctions and circle maps

    Bak, P; Bohr, T; Jensen, M H; Christiansen, P V

    1984-01-01

    The return map of a differential equation for the current driven Josephson junction, or the damped driven pendulum, is shown numerically to be a circle map. Phase locking, noise and hysteresis, can thus be understood in a simple and coherent way. The transition to chaos is related to the development of a cubic inflection point. Recent theoretical results on universal behavior at the transition to chaos can readily be checked experimentally by studying I-V characteristics. 17 references, 1 figure.

  3. Dynamics of Josephson junction arrays

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  4. Frustration in Condensed Matter and Protein Folding

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  5. Ultimately short ballistic vertical graphene Josephson junctions

    Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong

    2015-01-01

    Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386

  6. Extended Josephson Relation and Abrikosov lattice deformation

    Matlock, Peter

    2012-01-01

    From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.

  7. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  8. Josephson junctions with ferromagnetic interlayer

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  9. Miniaturization of Josephson logic circuits

    Ko, H.; Van Duzer, T.

    1985-01-01

    The performances of Current Injection Logic (CIL) and Resistor Coupled Josephson Logic (RCJL) have been evaluated for minimum features sizes ranging from 5 μm to 0.2 μm. The logic delay is limited to about 10 ps for both the CIL AND gate and the RCJL OR gate biased at 70% of maximum bias current. The maximum circuit count on an 6.35 x 6.35 chip is 13,000 for CIL gates and 20,000 for RCJL gates. Some suggestions are given for further improvements

  10. Deliberate exotic magnetism via frustration and topology

    Nisoli, Cristiano; Kapaklis, Vassilios; Schiffer, Peter

    2017-03-01

    Introduced originally to mimic the unusual, frustrated behaviour of spin ice pyrochlores, artificial spin ice can be realized in odd, dedicated geometries that open the door to new manifestations of a higher level of frustration.

  11. Shot noise in YBCO bicrystal Josephson junctions

    Constantinian, K.Y.; Ovsyannikov, G.A.; Borisenko, I.V.

    2003-01-01

    We measured spectral noise density in YBCO symmetric bicrystal Josephson junctions on sapphire substrates at bias voltages up to 100 mV and T 4.2 K. Normal state resistance of the Josephson junctions, R-N = 20-90 Omega and ICRN up to 2.2 mV have been observed in the experimental samples. Noise...... may explain the experimentally measured linewidth broadening of Josephson oscillations at mm and submm wave frequencies in high-Tc superconducting junctions. Experimental results are discussed in terms of bound states existing at surfaces of d-wave superconducting electrodes....

  12. Parametric frequency conversion in long Josephson junctions

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  13. Frustrations among graduates of athletic training education programs.

    Bowman, Thomas G; Dodge, Thomas M

    2013-01-01

    Although previous researchers have begun to identify sources of athletic training student stress, the specific reasons for student frustrations are not yet fully understood. It is important for athletic training administrators to understand sources of student frustration to provide a supportive learning environment. To determine the factors that lead to feelings of frustration while completing a professional athletic training education program (ATEP). Qualitative study. National Athletic Trainers' Association (NATA) accredited postprofessional education program. Fourteen successful graduates (12 women, 2 men) of accredited professional undergraduate ATEPs enrolled in an NATA-accredited postprofessional education program. We conducted semistructured interviews and analyzed data with a grounded theory approach using open, axial, and selective coding procedures. We negotiated over the coding scheme and performed peer debriefings and member checks to ensure trustworthiness of the results. Four themes emerged from the data: (1) Athletic training student frustrations appear to stem from the amount of stress involved in completing an ATEP, leading to anxiety and feelings of being overwhelmed. (2) The interactions students have with classmates, faculty, and preceptors can also be a source of frustration for athletic training students. (3) Monotonous clinical experiences often left students feeling disengaged. (4) Students questioned entering the athletic training profession because of the fear of work-life balance problems and low compensation. In order to reduce frustration, athletic training education programs should validate students' decisions to pursue athletic training and validate their contributions to the ATEP; provide clinical education experiences with graded autonomy; encourage positive personal interactions between students, faculty, and preceptors; and successfully model the benefits of a career in athletic training.

  14. Frustration influences impact of history and disciplinary attitudes on physical discipline decision making.

    Russa, Mary B; Rodriguez, Christina M; Silvia, Paul J

    2014-01-01

    Although intergenerational patterns of punitive physical punishment garner considerable research attention, the mechanisms by which historical, cognitive, and contextual factors interplay to influence disciplinary responding remains poorly understood. Disciplinary attitudes have been shown to mediate the association between disciplinary history and disciplinary responding. The present study investigated whether frustration influences these mediation effects. Half of a sample of 330 undergraduates was randomly assigned to frustration induction. Structural equation modeling confirmed that, for participants in the frustration condition, the relation between disciplinary history and physical discipline decision-making was fully mediated by attitudes approving physical discipline. In contrast, for respondents in the no-frustration condition, the pathway from disciplinary history to discipline decision-making was only partially mediated by attitudes. Under conditions of frustration, attitudes may become a more central means by which personal disciplinary history is associated with disciplinary decision-making. © 2013 Wiley Periodicals, Inc.

  15. Microwave integrated circuit for Josephson voltage standards

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  16. Coplanar strips for Josephson voltage standard circuits

    Schubert, M.; May, T.; Wende, G.; Fritzsch, L.; Meyer, H.-G.

    2001-01-01

    We present a microwave circuit for Josephson voltage standards. Here, the Josephson junctions are integrated in a microwave transmission line designed as coplanar strips (CPS). The new layout offers the possibility of achieving a higher scale of integration and to considerably simplify the fabrication technology. The characteristic impedance of the CPS is about 50 Ω, and this should be of interest for programmable Josephson voltage standard circuits with SNS or SINIS junctions. To demonstrate the function of the microwave circuit design, conventional 10 V Josephson voltage standard circuits with 17000 Nb/AlO x /Nb junctions were prepared and tested. Stable Shapiro steps at the 10 V level were generated. Furthermore, arrays of 1400 SINIS junctions in this microwave layout exhibited first-order Shapiro steps. Copyright 2001 American Institute of Physics

  17. Josephson effect far-infrared detector

    Shapiro, S.

    1971-01-01

    Four Josephson effect schemes for detection of far-infrared radiation are reviewed: Video broad-band detection, regenerative detection, conventional mixing for monochromatic signals, and self-mixing or frequency conversion. (U.S.)

  18. Fractional Solitons in Excitonic Josephson Junctions

    Hsu, Ya-Fen; Su, Jung-Jung

    2015-01-01

    The Josephson effect is especially appealing to physicists because it reveals macroscopically the quantum order and phase. In excitonic bilayers the effect is even subtler due to the counterflow of supercurrent as well as the tunneling between layers (interlayer tunneling). Here we study, in a quantum Hall bilayer, the excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ? 0 applied. The system is mapped into a pseudospin ferromagnet then described numeric...

  19. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-01-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential...

  20. Topology-induced critical current enhancement in Josephson networks

    Silvestrini, P.; Russo, R.; Corato, V.; Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M.; Cirillo, M.; Trombettoni, A.; Sodano, P.

    2007-01-01

    We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays

  1. Topology-induced critical current enhancement in Josephson networks

    Silvestrini, P. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy)], E-mail: p.silvestrini@cib.na.cnr.it; Russo, R. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Corato, V. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Cirillo, M. [Dipartimento di Fisica and INFM, Universita di Roma ' Tor Vergata' , 00173 Roma (Italy); Trombettoni, A. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Sodano, P. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Dipartimento di Fisica, Universita di Perugia, 06123 Perugia, and Sezione INFN, Perugia (Italy); Progetto Lagrange, Fondazione C.R.T. e Fondazione I.S.I., Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10124 Torino (Italy)

    2007-10-29

    We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays.

  2. Thermalization of a quenched Bose-Josephson junction

    Posazhennikova, Anna [Royal Holloway, University of London (United Kingdom); Trujillo-Martinez, Mauricio; Kroha, Johann [Universitaet Bonn (Germany)

    2015-07-01

    The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.

  3. Fractional Solitons in Excitonic Josephson Junctions

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  4. The pulse-driven AC Josephson voltage normal; Das pulsgetriebene AC-Josephson-Spannungsnormal

    Kieler, Oliver [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.43 ' ' Josephson-Schaltungen' '

    2016-09-15

    In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.

  5. Frustrated lattices of Ising chains

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  6. Spectroscopy of fractional Josephson vortex molecules

    Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-07-01

    Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.

  7. Neutron diffraction in a frustrated ferrite

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  8. On the geometry of fracture and frustration

    Koning, Vinzenz

    2014-01-01

    Geometric frustration occurs when local order cannot propagate through space. A common example is the surface of a soccer ball, which cannot be tiled with hexaganons only. Geometric frustration can also be present in materials. In fact, geometry can act as an instrument to design the mechanical,

  9. Frustration Tolerance in Youth With ADHD.

    Seymour, Karen E; Macatee, Richard; Chronis-Tuscano, Andrea

    2016-06-08

    The objective of this study was to compare children with ADHD with children without ADHD on frustration tolerance and to examine the role of oppositional defiant disorder (ODD) in frustration tolerance within the sample. Participants included 67 children ages 10 to 14 years-old with (n = 37) and without (n = 30) Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV) ADHD who completed the Mirror Tracing Persistence Task (MTPT), a validated computerized behavioral measure of frustration tolerance. Children with ADHD were more likely to quit this task than children without ADHD, demonstrating lower levels of frustration tolerance. There were no differences in frustration tolerance between children with ADHD + ODD and those with ADHD - ODD. Moreover, ODD did not moderate the relationship between ADHD and frustration tolerance. Our results suggest that low frustration tolerance is directly linked to ADHD and not better accounted for by ODD. This research highlights specific behavioral correlates of frustration in children with ADHD. © The Author(s) 2016.

  10. Loss models for long Josephson junctions

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1984-01-01

    A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement.......A general model for loss mechanisms in long Josephson junctions is presented. An expression for the zero-field step is found for a junction of overlap type by means of a perturbation method. Comparison between analytic solution and perturbation result shows good agreement....

  11. Dynamical properties of weakly coupled Josephson systems

    Lee, K.H.; Xia, T.K.; Stroud, D.

    1990-01-01

    This paper reviews recent work on the dynamical behavior of coupled resistively-shunted Josephson junctions, with emphasis on our own calculations. The authors present a model which allows for the inclusion of finite temperature, disorder, d.c. and a.c. applied currents, and applied magnetic fields. The authors discuss applications to calculations of critical currents and IV characteristics; harmonic generation and microwave absorption by finite clusters of Josephson junctions; critical energies for vortex depinning; and quantized voltage plateaus in arrays subjected to combined d.c. and a.c. currents. Possible connections to the behavior of granular high-temperature superconductors are briefly discussed

  12. Microscopic tunneling theory of long Josephson junctions

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  13. Flux Cloning in Josephson Transmission Lines

    Gulevich, D.R.; Kusmartsev, F.V.

    2006-01-01

    We describe a novel effect related to the controlled birth of a single Josephson vortex. In this phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The 'baby' vortex arises at the moment when a 'mother' vortex propagating in the adjacent transmission line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have enough kinetic energy. Its motion can also be supported by an externally applied driving current. We determine the critical velocity and the critical driving current for the creation of the baby vortices and briefly discuss the potential applications of the found effect

  14. Impedance metrology with Josephson voltage normals; Impedanzmetrologie mit Josephson-Spannungsnormalen

    Bauer, Stephan; Palafox, Luis [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe 2.63 ' ' Josephson-Effekt, Spannung' '

    2016-09-15

    This article first explains the fundamental principle of an impedance measurement bridge on the base of Josephson voltage normals, before both types of measurement bridges realized in the PTB are more precisely discussed.

  15. Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem

    Duzer, Theodore van; Feng Yijun; Meng Xiaofan; Whiteley, Stephen R; Yoshikawa, Nobuyuki

    2002-01-01

    The history of the development of superconductive memory for Josephson digital systems is presented along with the several current proposals. The main focus is on a proposed combination of the highly developed CMOS memory technology with Josephson peripheral circuits to achieve memories of significant size with subnanosecond access time. Background material is presented on the cryogenic operation of CMOS. Simulations and experiments on components of memory with emphasis on the important input interface amplifier are presented

  16. Ballistic Josephson junctions based on CVD graphene

    Li, Tianyi; Gallop, John; Hao, Ling; Romans, Edward

    2018-04-01

    Josephson junctions with graphene as the weak link between superconductors have been intensely studied in recent years, with respect to both fundamental physics and potential applications. However, most of the previous work was based on mechanically exfoliated graphene, which is not compatible with wafer-scale production. To overcome this limitation, we have used graphene grown by chemical vapour deposition (CVD) as the weak link of Josephson junctions. We demonstrate that very short, wide CVD-graphene-based Josephson junctions with Nb electrodes can work without any undesirable hysteresis in their electrical characteristics from 1.5 K down to a base temperature of 320 mK, and their gate-tuneable critical current shows an ideal Fraunhofer-like interference pattern in a perpendicular magnetic field. Furthermore, for our shortest junctions (50 nm in length), we find that the normal state resistance oscillates with the gate voltage, consistent with the junctions being in the ballistic regime, a feature not previously observed in CVD-graphene-based Josephson junctions.

  17. Cavity syncronisation of underdamped Josephson junction arrays

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  18. Josephson plasma resonance in superconducting multilayers

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....

  19. Josephson plasma resonance in superconducting multilayers

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  20. Transient chaos in weakly coupled Josephson junctions

    Koch, B P; Bruhn, B

    1988-01-01

    This paper considers periodic excitations and coupling of nonlinear Josephson oscillators. The Melnikov method is used to prove the existence of horseshoes in the dynamics. The coupling of two systems yields a reduction of the chaos threshold in comparison with the corresponding threshold of a single system. For some selected parameter values the theoretical predictions are checked by numerical methods.

  1. Fluxon density waves in long Josephson junctions

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  2. Dissipative current in SIFS Josephson junctions

    Vasenko, A.; Kawabata, S.; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu; Hekking, F.W.J.

    2010-01-01

    We investigate superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions in the dirty limit, using the quasiclassical theory. We consider the case of a strong tunnel barrier such that the left S layer and the right FS bilayer are decoupled. We calculate quantitatively the

  3. Meperidine addiction or treatment frustration?

    Hung, C I; Liu, C Y; Chen, C Y; Yang, C H; Yeh, E K

    2001-01-01

    There have been few studies of the psychiatric characteristics of analgesics addiction. The physician's perceptions that patients were addicted to analgesics might be partially attributable to frustration with poor response to treatment. In this retrospective study, we evaluated the medical records of 20 subjects (15 male and 5 female) who were perceived as having addiction to meperidine by general physicians. The most common medical diagnosis among these patients was chronic pancreatitis (7/20). Among them, five had a past history of suicide attempt and three had self-injury behavior during the index admission. The fact that subjects were perceived as being addicted might be attributable to a vicious cycle of the following factors: 1) chronic intractable pain; 2) poor staff-patient relationship; 3) lower pain threshold or tolerance due to anxiety or depression; 4) patients with a history or tendency of substance abuse; 5) placebo use and inadequate analgesics regimen. The findings of this study suggest that the importance of the following diagnostic and treatment procedures in these patients: 1) suicide risk should be evaluated; 2) comorbid psychiatric diseases should be treated; 3) factors that cause a vicious cycle in pain control should be identified; 4) misconceptions of opiate analgesics among medical staff should be discussed; 5) poor staff-patient relationship should be managed aggressively; and 6) "addiction" is a critical diagnosis that should be avoided if possible.

  4. Thermal excitations of frustrated XY spins in two dimensions

    Benakli, M.; Zheng, H.; Gabay, M.

    1996-11-01

    We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near T c : transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature T CG of the frustrated XY models. In particular, we find that T CG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs

  5. Markovian Dynamics of Josephson Parametric Amplification

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  6. Markovian Dynamics of Josephson Parametric Amplification

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  7. Neutron scattering studies on frustrated magnets

    Arima, Taka-hisa

    2013-01-01

    A lot of frustrated magnetic systems exhibit a nontrivial magnetic order, such as long-wavelength modulation, noncollinear, or noncoplanar order. The nontrivial order may pave the way for the novel magnetic function of matter. Neutron studies are necessary to determine the magnetic structures in the frustrated magnetic systems. In particular, spin-polarized neutron scattering is a useful technique for the investigation of the novel physical properties relevant to the nontrivial spin arrangement. Here some neutron studies on a multiferroic perovskite manganese oxide system are demonstrated as a typical case. The frustrated magnetic systems may also a playground of novel types of local magnetic excitations, which behave like particles in contrast to the magnetic waves. It is becoming a good challenge to study such particle-type magnetic excitations relevant to the magnetic frustration. (author)

  8. Common features of a vortex structure in long exponentially shaped Josephson junctions and Josephson junctions with inhomogeneities

    Boyadjiev, T.L.; Semerdjieva, E.G.; Shukrinov, Yu.M.

    2007-01-01

    We study the vortex structure in three different models of the long Josephson junction: the exponentially shaped Josephson junction and the Josephson junctions with the resistor and the shunt inhomogeneities in the barrier layer. For these three models the critical curves 'critical current-magnetic field' are numerically constructed. We develop the idea of the equivalence of the exponentially shaped Josephson junction and the rectangular junction with the distributed inhomogeneity and demonstrate that at some parameters of the shunt and the resistor inhomogeneities in the ends of the junction the corresponding critical curves are very close to the exponentially shaped one

  9. Phase-dependent noise in Josephson junctions

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  10. Josephson Circuits as Vector Quantum Spins

    Samach, Gabriel; Kerman, Andrew J.

    While superconducting circuits based on Josephson junction technology can be engineered to represent spins in the quantum transverse-field Ising model, no circuit architecture to date has succeeded in emulating the vector quantum spin models of interest for next-generation quantum annealers and quantum simulators. Here, we present novel Josephson circuits which may provide these capabilities. We discuss our rigorous quantum-mechanical simulations of these circuits, as well as the larger architectures they may enable. This research was funded by the Office of the Director of National Intelligence (ODNI) and the Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  11. Fractional flux quanta in Josephson junctions

    Goldobin, E.; Buckenmaier, K.; Gaber, T.; Kemmler, M.; Pfeiffer, J.; Koelle, D.; Kleiner, R. [Physikalisches Inst. - Experimentalphysik II, Univ. Tuebingen (Germany); Weides, M.; Kohlstedt, H. [Center of Nanoelectronic Systems for Information Technology (CNI), Research Centre Juelich (Germany); Siegel, M. [Inst. fuer Mikro- und Nanoelektronische Systeme, Univ. Karlsruhe (Germany)

    2007-07-01

    Fractional Josephson vortices may appear in the so-called 0-{kappa} Josephson junctions ({kappa} is an arbitrary number) and carry magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Their properties are very different from the usual integer fluxons: they are pinned, and often represent the ground state of the system with spontaneous circulating supercurrent. They behave as well controlled macroscopic spins and can be used to construct bits, qubits, tunable photonic crystals and to study the (quantum) physics of spin systems. In this talk we discuss recent advances in 0-{pi} junction technology and present recent experimental results: evidence of the spontaneous flux in the ground state, spectroscopy of the fractional vortex eigenfrequencies and observation of dynamics effects related to the flipping of the fractional vortices. (orig.)

  12. Josephson tunnel junctions in niobium films

    Wiik, Tapio.

    1976-12-01

    A method of fabricating stable Josephson tunnel junctions with reproducible characteristics is described. The junctions have a sandwich structure consisting of a vacuum evaporated niobium film, a niobium oxide layer produced by the glow discharge method and a lead film deposited by vacuum evaporation. Difficulties in producing thin-film Josephson junctions are discussed. Experimental results suggest that the lower critical field of the niobium film is the most essential parameter when evaluating the quality of these junctions. The dependence of the lower critical field on the film thickness and on the Ginzburg-Landau parameter of the film is studied analytically. Comparison with the properties of the evaporated films and with the previous calculations for bulk specimens shows that the presented model is applicable for most of the prepared samples. (author)

  13. Relaxation oscillation logic in Josephson junction circuits

    Fulton, T.A.

    1981-01-01

    A dc powered, self-resetting Josephson junction logic circuit relying on relaxation oscillations is described. A pair of Josephson junction gates are connected in series, a first shunt is connected in parallel with one of the gates, and a second shunt is connected in parallel with the series combination of gates. The resistance of the shunts and the dc bias current bias the gates so that they are capable of undergoing relaxation oscillations. The first shunt forms an output line whereas the second shunt forms a control loop. The bias current is applied to the gates so that, in the quiescent state, the gate in parallel with the second shunt is at V O, and the other gate is undergoing relaxation oscillations. By controlling the state of the first gate with the current in the output loop of another identical circuit, the invert function is performed

  14. Electrical analog of a Josephson junction

    Goldman, A.M.

    1979-01-01

    It is noted that a mathematical description of the phase-coupling of two oscillators synchronized by a phase-lock-loop under the influence of thermal white noise is analogous to that of the phase coupling of two superconductors in a Josephson junction also under the influence of noise. This analogy may be useful in studying threshold instabilities of the Josephson junction in regimes not restricted to the case of large damping. This is of interest because the behavior of the mean voltage near the threshold current can be characterized by critical exponents which resemble those exhibited by an order parameter of a continuous phase transition. As it is possible to couple a collection of oscillators together in a chain, the oscillator analogy may also be useful in exploring the dynamics and statistical mechanics of coupled junctions

  15. The Josephson effect in atomic contacts

    Chauvin, M.

    2005-11-01

    The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)

  16. Towards a 16 kilobit, subnanosecond Josephson RAM

    Herr, Q.P.; Eaton, L.

    1999-01-01

    A critical component of ultrahigh-speed Josephson logic systems is compatible memory. We are developing a fast Josephson memory that could be used as a small memory or first-level cache. Performance goals include sub-ns access and cycle time, 16 kbit cm -2 integration scale, low power consumption and appreciable yield. Initial test results on circuits fabricated in TRW's standard Nb integrated circuit process indicate that all these goals may be achieved. A 5 bit parallel decoder and 1 kbit memory array have been tested at 0.5 GHz. The maximum operating frequency of the memory array was limited by the test equipment. Circuit density is consistent with 16 kbit cm -2 . The top-level architecture has been chosen to achieve high throughput and low skew. The architecture is word organized, multiported and interleaved. (author)

  17. Fractional Josephson vortices in two-gap superconductor long Josephson junctions

    Kim, Ju

    2014-03-01

    We investigated the phase dynamics of long Josephson junctions (LJJ) with two-gap superconductors in the broken time reversal symmetry state. In this LJJ, spatial phase textures (i-solitons) can be excited due to the presence of two condensates and the interband Joesphson effect between them. The presence of a spatial phase texture in each superconductor layer leads to a spatial variation of the critical current density between the superconductor layers. We find that this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in Josephson vortices with fractional flux quanta. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, the fractionalization of a Josephson vortex arises as a response to either periodic or random excitation of i-solitions. This suggests that magnetic flux measurements may be used to probe i-soliton excitations in multi-gap superconductor LJJs.

  18. Accurate Control of Josephson Phase Qubits

    2016-04-14

    for Bits and Atoms and Department of Physics, MIT, Cambridge , Massachusetts 02139, USA 2Solid State and Photonics Laboratory, Stanford University...computing to simulate tun- neling effects in Josephson junction qubits, illustrating how quantum computing is useful in modeling and simulating the...Computation and Quantum Information ~ Cambridge University Press, Cambridge , 2000!. 2 J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 ~1995!. 3 Y

  19. Neutron induced permanent damage in Josephson junctions

    Mueller, G.P.; Rosen, M.

    1982-01-01

    14 MeV neutron induced permanent changes in the critical current density of Josephson junctions due to displacement damage in the junction barrier are estimated using a worst case model and the binary collision simulation code MARLOWE. No likelihood of single event hard upsets is found in this model. It is estimated that a fluence of 10 18 -10 19 neutrons/cm 2 are required to change the critical current density by 5%

  20. Defect formation in long Josephson junctions

    Gordeeva, Anna; Pankratov, Andrey

    2010-01-01

    We study numerically a mechanism of vortex formation in a long Josephson junction within the framework of the one-dimensional sine-Gordon model. This mechanism is switched on below the critical temperature. It is shown that the number of fluxons versus velocity of cooling roughly scales according...... to the power law with the exponent of either 0.25 or 0.5 depending on the temperature variation in the critical current density....

  1. Phase-locked Josephson soliton oscillators

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  2. Hysteresis development in superconducting Josephson junctions

    Refai, T.F.; Shehata, L.N.

    1988-09-01

    The resistively and capacitive shunted junction model is used to investigate hysteresis development in superconducting Josephson junctions. Two empirical formulas that relate the hysteresis width and the quasi-particle diffusion length in terms of the junctions electrical parameters, temperature and frequency are obtained. The obtained formulas provide a simple tool to investigate the full potentials of the hysteresis phenomena. (author). 9 refs, 3 figs

  3. Nonlinearity in superconductivity and Josephson junctions

    Lazarides, N.

    1995-01-01

    Within the framework of the Bardeen, Cooper and Schrieffers (BCS) theory, the influence of anisotropy on superconducting states are investigated. Crystal anisotropy exists in un-conventional low temperature superconductors as e.g. U 1-x Th x Be 13 and in high temperature superconductors. Starting from a phenomenological pairing interaction of the electrons or holes, the BCS approach is used to derive a set of coupled nonlinear algebraic equations for the momentum dependent gap parameter. The emphasis is put on bifurcation phenomena between s-, d-wave and mixed s- and d-wave symmetry and the influence on measurable quantities as the electron specific heat, spin susceptibility and Josephson tunnelling. Pitch-fork and perturbed pitch-fork bifurcations have been found separating s- and d-wave superconducting states from mixed s- and d-wave states. The additional superconducting states give rise to jumps in the electron specific heat below the transition temperature. These jumps are rounded in the case of perturbed pitch-fork bifurcations. An experiment to measure the sign of the interlayer interaction using dc SQUIDS is suggested. The Ambegaokar-Baratoff formalism has been used for calculating the quasiparticle current and the two phase coherent tunnelling currents in a Josephson junction made of anisotropic superconductors. It is shown that anisotropy can lead to a reduction in the product of the normal resistance and the critical current. For low voltages across the junction the usual resistively shunted Josephson model can be used. Finally, bunching in long circular Josephson junctions and suppression of chaos in point junctions have been investigated. (au) 113 refs

  4. Distributed amplifier using Josephson vortex flow transistors

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.

    1986-01-01

    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  5. Fractional Josephson vortices: oscillating macroscopic spins

    Gaber, T.; Buckenmaier, K.; Koelle, D.; Kleiner, R.; Goldobin, E. [Universitaet Tuebingen, Physikalisches Institut - Experimentalphysik II, Tuebingen (Germany)

    2007-11-15

    Fractional Josephson vortices carry a magnetic flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. We consider a fractional vortex which spontaneously appears at a phase discontinuity. Its properties are very different from the properties of the usual integer fluxon. In particular, a fractional vortex is pinned and may have one of two possible polarities - just like a usual spin 1/2 particle. The fractional vortex may also oscillate around its equilibrium position with an eigenfrequency which is expected to be within the Josephson plasma gap. Using microwave spectroscopy, we investigate the dependence of the eigenfrequency of a fractional Josephson vortex on its magnetic flux {phi} and on the bias current. The experimental results are in good agreement with theoretical predictions. Positive result of this experiment is a cornerstone for further investigation of more complex fractional vortex systems such as fractional vortex molecules and tunable bandgap materials. (orig.)

  6. Josephson cross-sectional model experiment

    Ketchen, M.B.; Herrell, D.J.; Anderson, C.J.

    1985-01-01

    This paper describes the electrical design and evaluation of the Josephson cross-sectional model (CSM) experiment. The experiment served as a test vehicle to verify the operation at liquid-helium temperatures of Josephson circuits integrated in a package environment suitable for high-performance digital applications. The CSM consisted of four circuit chips assembled on two cards in a three-dimensional card-on-board package. The chips (package) were fabricated in a 2.5-μm (5-μm) minimum linewidth Pb-alloy technology. A hierarchy of solder and pluggable connectors was used to attach the parts together and to provide electrical interconnections between parts. A data path which simulated a jump control sequence and a cache access in each machine cycle was successfully operated with cycle times down to 3.7 ns. The CSM incorporated the key components of the logic, power, and package of a prototype Josephson signal processor and demonstrated the feasibility of making such a processor with a sub-4-ns cycle time

  7. Maximal frustration as an immunological principle.

    de Abreu, F Vistulo; Mostardinha, P

    2009-03-06

    A fundamental problem in immunology is that of understanding how the immune system selects promptly which cells to kill without harming the body. This problem poses an apparent paradox. Strong reactivity against pathogens seems incompatible with perfect tolerance towards self. We propose a different view on cellular reactivity to overcome this paradox: effector functions should be seen as the outcome of cellular decisions which can be in conflict with other cells' decisions. We argue that if cellular systems are frustrated, then extensive cross-reactivity among the elements in the system can decrease the reactivity of the system as a whole and induce perfect tolerance. Using numerical and mathematical analyses, we discuss two simple models that perform optimal pathogenic detection with no autoimmunity if cells are maximally frustrated. This study strongly suggests that a principle of maximal frustration could be used to build artificial immune systems. It would be interesting to test this principle in the real adaptive immune system.

  8. Shapiro and parametric resonances in coupled Josephson junctions

    Gaafar, Ma A; Shukrinov, Yu M; Foda, A

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We compare the current-voltage characteristics for a stack of coupled Josephson junctions under external irradiation calculated in the framework of CCJJ and CCJJ+DC models.

  9. Long Josephson Junction Stack Coupled to a Cavity

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  10. Numerical simulations of flux flow in stacked Josephson junctions

    Madsen, Søren Peder; Pedersen, Niels Falsig

    2005-01-01

    We numerically investigate Josephson vortex flux flow states in stacked Josephson junctions, motivated by recent experiments trying to observe the vortices in a square vortex lattice when a magnetic field is applied to layered high-Tc superconductors of the Bi2Sr2CaCu2Ox type. By extensive...

  11. Critical current of Josephson contacts with accidental position of vortexes

    Fistul', M.V.

    1989-01-01

    Josephson contact critical current dependence on magnetic field under different concentrations of Abrikosov vortices (AV) in superconducting shores is found. Pinned vortex concentration as well as correlation in the vortex position can be determined by Josephson current dependence on magnetic field

  12. Effect of environment fluctuations on a Josephson current

    Galaktionov, A.V.

    2017-01-01

    Highlights: • Josephson current is influenced differently by environment fluctuations. • Two types of environment are studied: ohmic and resonant-mode one. • A crossover to a Josephson π-junction is possible for both of them. - Abstract: An influence of an electromagnetic environment on a Josephson current through a tunnel junction is studied with the aid of Ambegaokar-Eckern-Schön effective action. Two types of environment are investigated: one, characterized by a resonant mode, and an ohmic one. The crossover to a Josephson π-junction is possible for both of them. In addition the resonant-mode environment results in an increase of a Josephson current when the ratio of the doubled superconducting gap to the frequency of the mode is close to an integer number.

  13. Modern aspects of Josephson dynamics and superconductivity electronics

    Askerzade, Iman; Cantürk, Mehmet

    2017-01-01

    In this book new experimental investigations of properties of Josephson junctions and systems are explored with the help of recent developments in superconductivity. The theory of the Josephson effect is presented taking into account the influence of multiband and anisotropy effects in new superconducting compounds. Anharmonicity effects in current-phase relation on Josephson junctions dynamics are discussed. Recent studies in analogue and digital superconductivity electronics are presented. Topics of special interest include resistive single flux quantum logic in digital electronics. Application of Josephson junctions in quantum computing as superconducting quantum bits are analyzed. Particular attention is given to understanding chaotic behaviour of Josephson junctions and systems. The book is written for graduate students and researchers in the field of applied superconductivity.

  14. [French validation of the Frustration Discomfort Scale].

    Chamayou, J-L; Tsenova, V; Gonthier, C; Blatier, C; Yahyaoui, A

    2016-08-01

    Rational emotive behavior therapy originally considered the concept of frustration intolerance in relation to different beliefs or cognitive patterns. Psychological disorders or, to some extent, certain affects such as frustration could result from irrational beliefs. Initially regarded as a unidimensional construct, recent literature considers those irrational beliefs as a multidimensional construct; such is the case for the phenomenon of frustration. In order to measure frustration intolerance, Harrington (2005) developed and validated the Frustration Discomfort Scale. The scale includes four dimensions of beliefs: emotional intolerance includes beliefs according to which emotional distress is intolerable and must be controlled or avoided as soon as possible. The intolerance of discomfort or demand for comfort is the second dimension based on beliefs that life should be peaceful and comfortable and that any inconvenience, effort or hassle should be avoided. The third dimension is entitlement, which includes beliefs about personal goals, such as merit, fairness, respect and gratification, and that others must not frustrate those non-negotiable desires. The fourth dimension is achievement, which reflects demands for high expectations or standards. The aim of this study was to translate and validate in a French population the Frustration and Discomfort Scale developed by Harrington (2005), assess its psychometric properties, highlight the four factors structure of the scale, and examine the relationships between this concept and both emotion regulation and perceived stress. We translated the Frustration Discomfort Scale from English to French and back from French to English in order to ensure good quality of translation. We then submitted the scale to 289 students (239 females and 50 males) from the University of Savoy in addition to the Cognitive Emotional Regulation Questionnaire and the Perceived Stress Scale. The results showed satisfactory psychometric

  15. Frustration-Instigated Behavior and Learned Helplessness.

    Winefield, Anthony H.

    1979-01-01

    Compares M. E. P. Seligman's recent work on learned helplessness with N. R. F. Maier's 30-year-old work on frustration behavior. Notes striking similarities between the two approaches. Concludes that the learned helplessness model might explain the "abnormal fixations" that Maier reported. (Author/RL)

  16. Children, Hyperactivity and Low Frustration Tolerance.

    Shaughnessy, Michael F.; Scott, Patricia Carol

    This paper addresses issues regarding the hyperactive child, the impulsive child, and the low frustration tolerance child. It points out the subjectivity involved in identifying children as hyperactive, and outlines various forms of hyperactivity: the child who is in constant movement, the child who manages control in school but exhibits whirlwind…

  17. Frustrated Lewis pairs: Design and reactivity

    for FLP systems and their unique reactivity are discussed here. Keywords. Lewis .... we will concentrate on the design principles of such. FLPs and the ... Designs of frustrated Lewis pairs ..... 64 and neutral titanium (III) complex [Cp2TiOC6.

  18. Frustrated Lewis pairs-assisted tritium labeling

    Marek, Aleš; Široká, Sabina; Elbert, Tomáš

    2016-01-01

    Roč. 14, č. 5 (2016), s. 219 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * one-pot synthesis * tritium -labeling Subject RIV: CC - Organic Chemistry

  19. Josephson junctions with ferromagnetic alloy interlayer

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  20. Josephson junctions with ferromagnetic alloy interlayer

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  1. Josephson junctions of multiple superconducting wires

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  2. Ferromagnetic Josephson Junctions for Cryogenic Memory

    Niedzielski, Bethany M.; Gingrich, Eric C.; Khasawneh, Mazin A.; Loloee, Reza; Pratt, William P., Jr.; Birge, Norman O.

    2015-03-01

    Josephson junctions containing ferromagnetic materials are of interest for both scientific and technological purposes. In principle, either the amplitude of the critical current or superconducting phase shift across the junction can be controlled by the relative magnetization directions of the ferromagnetic layers in the junction. Our approach concentrates on phase control utilizing two junctions in a SQUID geometry. We will report on efforts to control the phase of junctions carrying either spin-singlet or spin-triplet supercurrent for cryogenic memory applications. Supported by Northorp Grumman Corporation and by IARPA under SPAWAR Contract N66001-12-C-2017.

  3. Phase locking between Josephson soliton oscillators

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1990-01-01

    We report observations of phase-locking phenomena between two Josephson soliton (fluxon) oscillators biased in self-resonant modes. The locking strength was measured as a function of bias conditions. A frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. Two coupled...... perturbed sine-Gordon equations were derived from an equivalent circuit consisting of inductively coupled, nonlinear, lossy transmission lines. These equations were solved numerically to find the locking regions. Good qualitative agreement was found between the experimental results and the calculations...

  4. A Josephson ternary associative memory cell

    Morisue, M.; Suzuki, K.

    1989-01-01

    This paper describes a three-valued content addressable memory cell using a Josephson complementary ternary logic circuit named as JCTL. The memory cell proposed here can perform three operations of searching, writing and reading in ternary logic system. The principle of the memory circuit is illustrated in detail by using the threshold-characteristics of the JCTL. In order to investigate how a high performance operation can be achieved, computer simulations have been made. Simulation results show that the cycle time of memory operation is 120psec, power consumption is about 0.5 μW/cell and tolerances of writing and reading operation are +-15% and +-24%, respectively

  5. Harmonic synchronization in resistively coupled Josephson junctions

    Blackburn, J.A.; Gronbech-Jensen, N.; Smith, H.J.T.

    1994-01-01

    The oscillations of two resistively coupled Josephson junctions biased only by a single dc current source are shown to lock harmonically in a 1:2 mode over a significant range of bias current, even when the junctions are identical. The dependence of this locking on both junction and coupling parameters is examined, and it is found that, for this particular two-junction configuration, 1:1 locking can never occur, and also that a minimum coupling coefficient is needed to support harmonic locking. Some issues related to subharmonic locking are also discussed

  6. delta-biased Josephson tunnel junctions

    Monaco, R.; Mygind, Jesper; Koshelet, V.

    2010-01-01

    Abstract: The behavior of a long Josephson tunnel junction drastically depends on the distribution of the dc bias current. We investigate the case in which the bias current is fed in the central point of a one-dimensional junction. Such junction configuration has been recently used to detect...... the persistent currents circulating in a superconducting loop. Analytical and numerical results indicate that the presence of fractional vortices leads to remarkable differences from the conventional case of uniformly distributed dc bias current. The theoretical findings are supported by detailed measurements...

  7. Exponentially tapered Josephson flux-flow oscillator

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    1996-01-01

    We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train...... of fluxons moving toward the unbiased smaller end, as in the standard flux-flow oscillator. An exponentially shaped junction provides several advantages over a rectangular junction including: (i) smaller linewidth, (ii) increased output power, (iii) no trapped flux because of the type of current injection...

  8. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Jevtic, Sania; Barnett, Ryan

    2017-01-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)

  9. Frustration-free Hamiltonians supporting Majorana zero edge modes

    Jevtic, Sania; Barnett, Ryan

    2017-10-01

    A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.

  10. Multifractal metal in a disordered Josephson junctions array

    Pino, M.; Kravtsov, V. E.; Altshuler, B. L.; Ioffe, L. B.

    2017-12-01

    We report the results of the numerical study of the nondissipative quantum Josephson junction chain with the focus on the statistics of many-body wave functions and local energy spectra. The disorder in this chain is due to the random offset charges. This chain is one of the simplest physical systems to study many-body localization. We show that the system may exhibit three distinct regimes: insulating, characterized by the full localization of many-body wave functions, a fully delocalized (metallic) one characterized by the wave functions that take all the available phase volume, and the intermediate regime in which the volume taken by the wave function scales as a nontrivial power of the full Hilbert-space volume. In the intermediate nonergodic regime the Thouless conductance (generalized to the many-body problem) does not change as a function of the chain length indicating a failure of the conventional single-parameter scaling theory of localization transition. The local spectra in this regime display the fractal structure in the energy space which is related with the fractal structure of wave functions in the Hilbert space. A simple theory of fractality of local spectra is proposed, and a scaling relationship between fractal dimensions in the Hilbert and energy spaces is suggested and numerically tested.

  11. Some chaotic features of intrinsically coupled Josephson junctions

    Kolahchi, M.R.; Shukrinov, Yu.M.; Hamdipour, M.; Botha, A.E.; Suzuki, M.

    2013-01-01

    Highlights: ► Intrinsically coupled Josephson junctions model a high-T c superconductor. ► Intrinsically coupled Josephson junctions can act as a chaotic nonlinear system. ► Chaos could be due to resonance overlap. ► Avoiding parameters that lead to chaos is important for the design of resonators. -- Abstract: We look for chaos in an intrinsically coupled system of Josephson junctions. This study has direct applications for the high-T c resonators which require coherence amongst the junctions

  12. The pulse-driven AC Josephson voltage normal

    Kieler, Oliver

    2016-01-01

    In this contribution quantum precise alternating-voltage sources are presented, which make the generation of arbitrary wave forms with highest spectral purity with a high bandwidth from DC up to the MHz range possible. Heartpiece of these Josephson voltage normals is a serial circuit of many thousand Josephson contacts, which make by irradiation with high-frequency radiation (microwaves) the generation of highly precise voltage values possible. Thereby in the current-voltage characteristics stages of constant voltage, so called Shapiro stages, occur. Illustratively these stages can be described by the transfer of a certain number of flux quanta through the Josephson contacts.

  13. Phase transition in nonuniform Josephson arrays: Monte Carlo simulations

    Lozovik, Yu. E.; Pomirchy, L. M.

    1994-01-01

    Disordered 2D system with Josephson interactions is considered. Disordered XY-model describes the granular films, Josephson arrays etc. Two types of disorder are analyzed: (1) randomly diluted system: Josephson coupling constants J ij are equal to J with probability p or zero (bond percolation problem); (2) coupling constants J ij are positive and distributed randomly and uniformly in some interval either including the vicinity of zero or apart from it. These systems are simulated by Monte Carlo method. Behaviour of potential energy, specific heat, phase correlation function and helicity modulus are analyzed. The phase diagram of the diluted system in T c-p plane is obtained.

  14. Anomalous Josephson effect controlled by an Abrikosov vortex

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  15. Organizational Frustration: A Model and Review of the Literature.

    Spector, Paul E.

    1978-01-01

    This discussion is divided into four parts: (1) the definition of frustration; (2) general behavioral reactions to frustration which have implications for organizations; (3) integration of the individual behavioral reactions into a model of organizational frustration; and (4) a review of the supporting evidence for the model. (Author)

  16. A semiconductor nanowire Josephson junction microwave laser

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  17. Josephson shift register design and layout

    Przybysz, J.X.; Buttyan, J.; Blaugher, R.D.

    1989-01-01

    Integrated circuit chips were designed and fabricated, based on Josephson shift register circuit that simulated operation at 25 GHz using the SPICE program. The 6.25 mm square chip featured a twelve-gate, four-stage shift register fabricated with Nb/AlO/sub x//Nb Josephson junctions with a design value of 2000 A/cm/sup 2/ critical current density. SUPERCOMPACT, a general program for the design of monolithic microwave integrated circuits, was used to model the effects of layout geometry on the uniformity and phase coherence of logic gate bias currents. Gate bias resistors were treated as resistive transmission lines. A layout geometry for the superconductive transmission lines and thin film bias resistors was developed. The original SPICE-designed circuit was modified as a result of these calculations. Modeling indicated that bias current variations could be limited to 3% for all possible logic states of the shift register, and phase coherence of the gates could be maintained to within 2 degrees of 10 Ghz. The fundamental soundness of the circuit design was demonstrated by the proper operation of fabricated shift registers

  18. Modeling Bloch oscillations in nanoscale Josephson junctions

    Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.

    2018-01-01

    Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106

  19. Josephson current in ballistic graphene Corbino disk

    Abdollahipour, Babak; Mohammadkhani, Ramin; Khalilzadeh, Mina

    2018-06-01

    We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation in a superconductor-normal graphene-superconductor (SGS) junction with Corbino disk structure to investigate the Josephson current through this junction. We find that the critical current Ic has a nonzero value at Dirac point in which the concentration of the carriers is zero. We show this nonzero critical current depends on the system geometry and it decreases monotonically to zero by decreasing the ratio of the inner to outer radii of the Corbino disk (R1 /R2), while in the limit of R1 /R2 → 1 it scales like a diffusive Corbino disk. The product of the critical current and the normal-state resistance IcRN increases by increasing R1 /R2 and attains the same value for the wide and short rectangular structure at the limit of R1 /R2 → 1 at zero doping. These results reveals the pseudodiffusive behavior of the graphene Corbino Josephson junction similar to the rectangular structure at the zero doping.

  20. Effects of frustration on explosive synchronization

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  1. The Josephson effect in atomic contacts; Effect Josephson dans les contacts atomiques

    Chauvin, M

    2005-11-15

    The Josephson effect appears when a weak-link establishes phase coherence between two superconductors. A unifying theory of this effect emerged in the 90's within the framework of mesoscopic physics. Based on two cornerstone concepts, conduction channels and Andreev reflection, it predicts the current-phase relation for the most basic weak-link: a single conduction channel of arbitrary transmission. This thesis illustrates this mesoscopic point of view with experiments on superconducting atomic size contacts. In particular, we have focused on the supercurrent peak around zero voltage, put into evidence the ac Josephson currents in a contact under constant bias voltage (Shapiro resonances and photon assisted multiple Andreev reflections), and performed direct measurements of the current-phase relation. (author)

  2. Quantum frustrated and correlated electron systems

    P Thalmeier

    2008-06-01

    Full Text Available  Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.

  3. Coherent Josephson radiation from an array of two Dayem bridges

    Lidelof, P.E.; Hansen, J.B.; Mygind, J.; Pedersen, N.F.; Soerensen, O.H.

    1977-01-01

    Phase-locking of two independently baised thin-film microbridge (Josephson)-oscillators separated by a short length of superconductor has been observed experimentally using a broad band microwave coupling of the bridges to the receiver. (Auth.)

  4. Modeling Bloch oscillations in ultra-small Josephson junctions

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  5. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented

  6. Josephson effects in a Bose–Einstein condensate of magnons

    Troncoso, Roberto E.; Núñez, Álvaro S.

    2014-01-01

    A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations

  7. Fluxons in long and annular intrinsic Josephson junction stacks

    Clauss, T; Moessle, M; Müller, A; Weber, A; Kölle, D; Kleiner, R

    2002-01-01

    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  8. Visualizing supercurrents in 0-{pi} ferromagnetic Josephson tunnel junctions

    Goldobin, Edward; Guerlich, Christian; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Weides, Martin; Kohlstedt, Hermann [Institute of Solid State Physics, Reserch Center Juelich (Germany)

    2009-07-01

    So-called 0 and {pi} Josephson junctions can be treated as having positive and negative critical currents. This implies that the same phase shift applied to a Josephson junction causes counterflow of supercurrents in 0 and in {pi} junctions connected in parallel provided they are short in comparison with Josephson penetration depth {lambda}{sub J}. We have fabricated several 0, {pi}, 0-{pi}, 0-{pi}-0 and 20 x (0-{pi}-) planar superconductor-insulator-ferromagnet-superconductor Josephson junctions and studied the spatial supercurrent density distribution j{sub s}(x,y) across the junction area using low temperature scanning electron microscopy. At zero magnetic field we clearly see counterflow of the supercurrents in 0 and {pi} regions. The picture also changes consistently in the applied magnetic field.

  9. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V. [State Research Center, Kiev (Ukraine)

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  10. Power spectrum of an injection-locked Josephson oscillator

    Stancampiano, C.V.; Shapiro, S.

    1975-01-01

    Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf

  11. Electromagnetic waves in single- and multi-Josephson junctions

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  12. Josephson effects in a Bose–Einstein condensate of magnons

    Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2014-07-15

    A phenomenological theory is developed, that accounts for the collective dynamics of a Bose–Einstein condensate of magnons. In terms of such description we discuss the nature of spontaneous macroscopic interference between magnon clouds, highlighting the close relation between such effects and the well known Josephson effects. Using those ideas, we present a detailed calculation of the Josephson oscillations between two magnon clouds, spatially separated in a magnonic Josephson junction. -- Highlights: •We presented a theory that accounts for the collective dynamics of a magnon-BEC. •We discuss the nature of macroscopic interference between magnon-BEC clouds. •We remarked the close relation between the above phenomena and Josephson’s effect. •We remark the distinctive oscillations that characterize the Josephson oscillations.

  13. Magnetic properties of slablike Josephson-junction arrays

    Chen, D.; Sanchez, A.; Hernando, A.

    1994-01-01

    Magnetic properties of infinitely long and wide slablike Josephson-junction arrays (JJA's) consisting of 2N+1 rows of grains are calculated for the dc Josephson effect with gauge-invariant phase differences. When N is large, the intergranular magnetization curve, M J (H), of the JJA's in low fields approaches that of uniform Josephson junctions with lengths equal to the thicknesses of the JJA's, but in a larger field interval, its amplitude is dually modulated with periods determined by the junction and void areas. M J (H) curves for small N are more complicated. The concept of Josephson vortices and the application of the results to high-T c superconductors are discussed

  14. Resonator coupled Josephson junctions; parametric excitations and mutual locking

    Jensen, H. Dalsgaard; Larsen, A.; Mygind, Jesper

    1991-01-01

    Self-pumped parametric excitations and mutual locking in systems of Josephson tunnel junctions coupled to multimode resonators are reported. For the very large values of the coupling parameter, obtained with small Nb-Al2O3-Nb junctions integrated in superconducting microstrip resonators, the DC I......-V characteristic shows an equidistant series of current steps generated by subharmonic pumping of the fundamental resonator mode. This is confirmed by measurement of frequency and linewidth of the emitted Josephson radiation...

  15. Critical current fluctuation in a microwave-driven Josephson junction

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  16. Transport properties of Josephson contacts with ferromagnetic tunnel barriers; Transporteigenschaften von Josephson-Kontakten mit ferromagnetischer Tunnelbarriere

    Sprungmann, Dirk

    2010-01-28

    The combination of the Josephson and the proximity effect is possible by the introduction of a ferromagnetic barrier into a Josephson contact resulting in a so called π coupling. The supra current through these contacts is flowing in the reverse direction. Specific new electronic circuits such as phase shifting devices are possible, for instance for high-speed analog-digital transducers. In the frame of this thesis SIFS Josephson contacts were studied, with a barrier consisting of a thin insulating Al2Ox barrier layer and a ferromagnetic thin film. For the ferromagnetic material weak ferromagnetic Ni(0.6)Cu(0.4), the strong ferromagnetic Fe(0.25)Co(0.75) and the ternary Heusler alloys Co2MnSn and Cu2MnAl were used. Josephson contacts with π coupling were realized with the NiCu alloy, triplet superconductivity seems to appear with the Heusler systems.

  17. Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.

  18. RF assisted switching in magnetic Josephson junctions

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  19. Vortices trapped in discrete Josephson rings

    Van der Zanta, H.S.J.; Orlando, T.P.; Watanabe, Shinya; Strogatz, S.H.

    1994-01-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.))

  20. Vortices trapped in discrete Josephson rings

    Van der Zanta, H.S.J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Orlando, T.P. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watanabe, Shinya [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Strogatz, S.H. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    1994-12-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.)).

  1. Simplifying the circuit of Josephson parametric converters

    Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George

    Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results

  2. Fabrication of Josephson Junction without shadow evaporation

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  3. Quantum synchronization effects in intrinsic Josephson junctions

    Machida, M.; Kano, T.; Yamada, S.; Okumura, M.; Imamura, T.; Koyama, T.

    2008-01-01

    We investigate quantum dynamics of the superconducting phase in intrinsic Josephson junctions of layered high-T c superconductors motivated by a recent experimental observation for the switching rate enhancement in the low temperature quantum regime. We pay attention to only the capacitive coupling between neighboring junctions and perform large-scale simulations for the Schroedinger equation derived from the Hamiltonian considering the capacitive coupling alone. The simulation focuses on an issue whether the switching of a junction induces those of the other junctions or not. The results reveal that the superconducting phase dynamics show synchronous behavior with increasing the quantum character, e.g., decreasing the junction plane area and effectively the temperature. This is qualitatively consistent with the experimental result

  4. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  5. Josephson tunnel junctions with ferromagnetic interlayer

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  6. High Tc Josephson Junctions, SQUIDs and magnetometers

    Clarke, J.

    1991-01-01

    There has recently been considerable progress in the state-of-the-art of high-T c magnetometers based on dc SQUIDs (Superconducting Quantum Interference Devices). This progress is due partly to the development of more manufacturable Josephson junctions, making SQUIDs easier to fabricate, and partly to the development of multiturn flux transformers that convert the high sensitivity of SQUIDs to magnetic flux to a correspondingly high sensitivity to magnetic field. Needless to say, today's high-T c SQUIDs are still considerably less sensitive than their low-T c counterparts, particularly at low frequencies (f) where their level of 1/f noise remains high. Nonetheless, the performance of the high-T c devices has now reached the point where they are adequate for a number of the less demanding applications; furthermore, as we shall see, at least modest improvements in performance are expected in the near future. In this article, the author outlines these various developments. This is far from a comprehensive review of the field, however, and, apart from Sec. 2, he describes largely his own work. He begins in Sec. 2 with an overview of the various types of Josephson junctions that have been investigated, and in Sec. 3, he describes some of the SQUIDs that have been tested, and assess their performance. Section 4 discuss the development of the multilayer structures essential for an interconnect technology, and, in particular, for crossovers and vias. Section 5 shows how this technology enables one to fabricate multiturn flux transformers which, in turn, can be coupled to SQUIDs to make magnetometers. The performance and possible future improvements in these magnetometers are assessed, and some applications mentioned

  7. Ising critical behaviour in the one-dimensional frustrated quantum XY model

    Granato, E.

    1993-06-01

    A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs

  8. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  9. Complexity due to disorder and frustration

    Sherrington, D.

    1990-01-01

    In these lectures the author aims to demonstrate that quenched disorder and frustrated interactions combine to produce rich and complex behavior, static and dynamic, in a wealth of situations ranging from solid-state physics, through NP-hard optimization (e.g., in operational research), to neural models for memory. The techniques employed draw heavily on statistical mechanics and automaton theory, but the conventional versions of these subjects require non-trivial extension to deal with the new phenomena, leading to the development of new concepts. 16 refs., 12 figs

  10. Gifts and exchanges problems, frustrations, and triumphs

    Katz, Linda S; Denning, Catherine

    2013-01-01

    This important book explores the many questions challenging librarians who work with gifts and exchanges (G&E) as part of their daily responsibilities. Too often, because of shrinking library budgets, library gifts are considered burdensome and unprofitable drains on both financial and personnel resources. However, Gifts and Exchanges: Problems, Frustrations, . . . and Triumphs gives you solutions that will allow you to embrace your library's gifts as rewards. In this book, you will discover the latest ways of disposing unwanted materials, planning and holding book sales and auctions, and oper

  11. Macroscopic weak superconductivity of an NXN Josephson junction array below the Kosterlitz-Thouless transition

    Shenoy, S.R.; Karlsruhe Univ.

    1983-07-01

    A two-dimensional NXN array of coupled Josephson junctions, each of size tau 0 and Josephson length lambdasub(JO)>>tau 0 , is shown to exhibit macroscopic weak superconductivity. The Josephson phase coherence here extends across the array, vanishing discontinuously at the Kosterlitz-Thouless transition temperature. The transverse size Ntau 0 must be smaller than a few times the effective Josephson screening length lambdasub(J)sup(eff) proportional to lambdasub(JO), for a sharp transition to be seen. (author)

  12. Multiwall carbon nanotube Josephson junctions with niobium contacts

    Pallecchi, Emiliano

    2009-01-01

    The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)

  13. Multiwall carbon nanotube Josephson junctions with niobium contacts

    Pallecchi, Emiliano

    2009-02-17

    The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)

  14. Packing frustration in dense confined fluids.

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  15. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  16. Approximate eigenvalue determination of geometrically frustrated magnetic molecules

    A.M. Läuchli

    2009-01-01

    Full Text Available Geometrically frustrated magnetic molecules have attracted a lot of interest in the field of molecular magnetism as well as frustrated Heisenberg antiferromagnets. In this article we demonstrate how an approximate diagonalization scheme can be used in order to obtain thermodynamic and spectroscopic information about frustrated magnetic molecules. To this end we theoretically investigate an antiferromagnetically coupled spin system with cuboctahedral structure modeled by an isotropic Heisenberg Hamiltonian.

  17. Magnetic phase diagram of a frustrated spin ladder

    Sugimoto, Takanori; Mori, Michiyasu; Tohyama, Takami; Maekawa, Sadamichi

    2018-04-01

    Frustrated spin ladders show magnetization plateaux depending on the rung-exchange interaction and frustration defined by the ratio of first and second neighbor exchange interactions in each chain. This paper reports on its magnetic phase diagram. Using the variational matrix-product state method, we accurately determine phase boundaries. Several kinds of magnetization plateaux are induced by the frustration and the strong correlation among quasiparticles on a lattice. The appropriate description of quasiparticles and their relevant interactions are changed by a magnetic field. We find that the frustration differentiates the triplet quasiparticle from the singlet one in kinetic energy.

  18. Versatile multi-layer Josephson junction process for vortex molecules

    Meckbach, Johannes Maximilian; Buehler, Simon; Merker, Michael; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, KIT (Germany); Buckenmaier, Kai; Gaber, Tobias; Kienzle, Uta; Neumaier, Benjamin; Goldobin, Edward; Kleiner, Reinhold; Koelle, Dieter [Physikalisches Institut - Experimentalphysik II, Universitaet Tuebingen (Germany)

    2012-07-01

    In long Josephson junctions magnetic flux may penetrate the barrier resulting in a so-called Josephson-Vortex carrying one flux quantum Φ{sub 0}. In recent years a new type of Josephson-Vortex became available, which carries any arbitrary fraction Φ = -Φ{sub 0}κ/2π of magnetic flux. These fractional vortices (p-vortices) spontaneously appear at discontinuities of the Josephson phase along the junction, which in turn are created using a pair of current injectors. We present a new Nb/Al-AlO{sub x}/Nb process for the fabrication of Josephson junctions of very high quality. Placing two injector pairs along the strongly underdamped long junctions allows the investigation of fractional vortex molecules. The topological charge of each vortex and their interaction can be altered even during experiment by changing the individual injector currents. Vortex molecule states have been measured using asymmetric DC-SQUIDs coupled to the vortices by overlying pick-up loops. To uphold the p-vortices we use persistent currents, which can be altered using heat switches. Fractional vortex molecules are promising candidates for a new type of qubits.

  19. The critical current of point symmetric Josephson tunnel junctions

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  20. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    Wang, L.Z.; Duncan, R.V.

    1992-01-01

    The Josephson relation V=nhν/2e has been verified experimentally to 3 parts in 10 19 [A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)]. Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model [W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)] of Josephson junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 μm [D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)]. The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step

  1. Zero-temperature entropy of fully frustrated generalized Sierpiński gaskets

    Chang, C. Y.; Hui, P. M.; Yu, K. W.

    1993-01-01

    The Ising model with antiferromagnetic couplings on a family of generalized Sierpiński gaskets is studied using an exact technique developed recently by Stinchcombe [Phys. Rev. B 41 (1990) 2510]. A general expression of the zero-temperature entropy per spin, SAFMb(0), is given for general b, where b is a rescaling factor characterizing the fractals. Exact expressions for SAFMb (0) are derived for the cases b = 2,3,4,5,6. These expressions are evaluated numerically and results are compared to those obtained previously by numerical iterations of renormalization-group equations. The asymptotic behavior of SAFMb(0) in the limit of large b is discussed.

  2. Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions

    Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.

    2000-01-01

    The combination of narrow linewidth and wide band tunability makes the Josephson flux flow oscillator (FFO) a perfect on-chip local oscillator for integrated sub-mm wave receivers for, e.g., spectral radio astronomy. The feasibility of phase locking the FFO to an external reference oscillator......-running tunnel junction. The results of residual FFO phase noise measurements are also presented. Finally, we propose a single-chip fully superconductive receiver with two superconductor–insulator–superconductor mixers and an integrated phase-locked loop. ©2000 American Institute of Physics....

  3. Quantum logical states and operators for Josephson-like systems

    Faoro, Lara; Raffa, Francesco A; Rasetti, Mario

    2006-01-01

    We give a formal algebraic description of Josephson-type quantum dynamical systems, i.e., Hamiltonian systems with a cos θ-like potential term. The two-boson Heisenberg algebra plays for such systems the role that the h(1) algebra does for the harmonic oscillator. A single Josephson junction is selected as a representative of Josephson systems. We construct both logical states (codewords) and logical (gate) operators in the superconductive regime. The codewords are the even and odd coherent states of the two-boson algebra: they are shift-resistant and robust, due to squeezing. The logical operators acting on the qubit codewords are expressed in terms of operators in the enveloping of the two-boson algebra. Such a scheme appears to be relevant for quantum information applications. (letter to the editor)

  4. Possible resonance effect of axionic dark matter in Josephson junctions.

    Beck, Christian

    2013-12-06

    We provide theoretical arguments that dark-matter axions from the galactic halo that pass through Earth may generate a small observable signal in resonant S/N/S Josephson junctions. The corresponding interaction process is based on the uniqueness of the gauge-invariant axion Josephson phase angle modulo 2π and is predicted to produce a small Shapiro steplike feature without externally applied microwave radiation when the Josephson frequency resonates with the axion mass. A resonance signal of so far unknown origin observed by C. Hoffmann et al. [Phys. Rev. B 70, 180503(R) (2004)] is consistent with our theory and can be interpreted in terms of an axion mass m(a)c2=0.11  meV and a local galactic axionic dark-matter density of 0.05  GeV/cm3. We discuss future experimental checks to confirm the dark-matter nature of the observed signal.

  5. A nanoscale gigahertz source realized with Josephson scanning tunneling microscopy

    Jäck, Berthold, E-mail: b.jaeck@fkf.mpg.de; Eltschka, Matthias; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Hardock, Andreas [Institut für Theoretische Elektrotechnik, Technische Universität Hamburg-Harburg, 21079 Hamburg (Germany); Kern, Klaus [Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart (Germany); Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2015-01-05

    Using the AC Josephson effect in the superconductor-vacuum-superconductor tunnel junction of a scanning tunneling microscope (STM), we demonstrate the generation of GHz radiation. With the macroscopic STM tip acting as a λ/4-monopole antenna, we first show that the atomic scale Josephson junction in the STM is sensitive to its frequency-dependent environmental impedance in the GHz regime. Further, enhancing Cooper pair tunneling via excitations of the tip eigenmodes, we are able to generate high-frequency radiation. We find that for vanadium junctions, the enhanced photon emission can be tuned from about 25 GHz to 200 GHz and that large photon flux in excess of 10{sup 20 }cm{sup −2} s{sup −1} is reached in the tunnel junction. These findings demonstrate that the atomic scale Josephson junction in an STM can be employed as a full spectroscopic tool for GHz frequencies on the atomic scale.

  6. High-quality planar high-Tc Josephson junctions

    Bergeal, N.; Grison, X.; Lesueur, J.; Faini, G.; Aprili, M.; Contour, J.P.

    2005-01-01

    Reproducible high-T c Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 μm wide) is firstly designed by ion irradiating a c-axis-oriented YBa 2 Cu 3 O 7-δ film through a gold mask such as the nonprotected part becomes insulating. A lower T c part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits

  7. Response of high Tc superconducting Josephson junction to nuclear radiation

    Ding Honglin; Zhang Wanchang; Zhang Xiufeng

    1992-10-01

    The development of nuclear radiation detectors and research on high T c superconducting nuclear radiation detectors are introduced. The emphases are the principle of using thin-film and thick-film Josephson junctions (bridge junction) based on high T c YBCO superconductors to detect nuclear radiation, the fabrication of thin film and thick-film Josephson junction, and response of junction to low energy gamma-rays of 59.5 keV emitted from 241 Am and beta-rays of 546 keV. The results show that a detector for measuring nuclear radiation spectrum made of high T c superconducting thin-film or thick-film, especially, thick-film Josephson junction, certainly can be developed

  8. Microwave oscillator using arrays of long Josephson junctions

    Pagano, S.; Monaco, R.; Costabile, G.

    1989-01-01

    The authors report on measurements performed on integrated superconducting devices based on arrays of long Josephson tunnel junctions operating in the resonant fluxon oscillation regime (i.e. biased on the Zero Field Steps). The electromagnetic coupling among the junction causes a mutual phase-locking of the fluxon oscillations with a corresponding increase of the emitted power and a decrease of the signal linewidth. This phase-locked state can be controlled by means of an external dc bias current and magnetic field. The effect of the generated microwave signal has been observed on a small Josephson tunnel junction coupled to the array via a microstrip transmission line. The feasibility of the reported devices as local oscillators in an integrated microwave Josephson receiver is discussed

  9. Quantum dynamics of a strongly driven Josephson Junction

    Gosner, Jennifer; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems, University of Ulm (Germany)

    2015-07-01

    A Josephson Junction embedded in a dissipative circuit can be driven to exhibit non-linear oscillations. Classically the non-linear oscillator shows under sufficient strong driving and weak damping dynamical bifurcations and a bistable region similar to the conventional Duffing-oscillator. These features depend sensitively on initial conditions and parameters. The sensitivity of this circuit, called Josephson Bifurcation Amplifier, can be used to amplify an incoming signal, to form a sensing device or even for measuring a quantum system. The quantum dynamics can be described by a dissipative Lindblad master equation. Signatures of the classical bifurcation phenomena appear in the Wigner representation, used to characterize and visualize the resulting behaviour. In order to compare this quantum dynamics to that of the conventional Duffing-oscillator, the complete cosine-nonlinearity of the Josephson Junction is kept for the quantum description while going into a rotating frame.

  10. Towards quantum signatures in a swept-bias Josephson junction

    Losert, Harald; Vogel, Karl; Schleich, Wolfgang P. [Institut fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universitaet Ulm, D-89069 Ulm (Germany)

    2016-07-01

    Josephson junctions are one of the best examples for the observation of macroscopic quantum tunneling. The phase difference in a current-biased Josephson junction behaves like the position of a particle in a tilted washboard potential. The escape of this phase-particle corresponds to the voltage switching of the associated junction. Quantum mechanically, the escape from the washboard potential can be explained as tunneling from the ground state, or an excited state. However, it has been shown, that in the case of periodic driving the experimental data for quantum mechanical key features, e.g. Rabi oscillations or energy level quantization, can be reproduced by a completely classical description. Motivated by this discussion, we investigate a swept-bias Josephson junction in the case of a large critical current. In particular, we contrast the switching current distributions resulting from a quantum mechanical and classical description of the time evolution.

  11. Observation of supercurrent in graphene-based Josephson junction

    Wang, Libin; Li, Sen; Kang, Ning [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Xu, Chuan; Ren, Wencai [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-07-01

    Josephson junctions with a normal metal region sandwiched between two superconductors (S) are known as superconductor- normal-superconductor (SNS) structures. It has attracted significant attention especially when changing the normal metal with graphene, which allow for high tunability with the gate voltage and to study the proximity effect of the massless Dirac fermions. Here we report our work on graphene-based Josephson junction with a new two dimensional superconductor crystal, which grown directly on graphene, as superconducting electrodes. At low temperature, we observer proximity effect induced supercurrent flowing through the junction. The temperature and the magnetic field dependences of the critical current characteristics of the junction are also studied. The critical current exhibits a Fraunhofer-type diffraction pattern against magnetic field. Our experiments provided a new route of fabrication of graphene-based Josephson junction.

  12. Domain wall motion in magnetically frustrated nanorings

    Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.

    2012-06-01

    We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.

  13. Terahertz Josephson spectral analysis and its applications

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  14. Directional Amplification with a Josephson Circuit

    Baleegh Abdo

    2013-07-01

    Full Text Available Nonreciprocal devices perform crucial functions in many low-noise quantum measurements, usually by exploiting magnetic effects. In the proof-of-principle device presented here, on the other hand, two on-chip coupled Josephson parametric converters (JPCs achieve directionality by exploiting the nonreciprocal phase response of the JPC in the transmission-gain mode. The nonreciprocity of the device is controlled in situ by varying the amplitude and phase difference of two independent microwave pump tones feeding the system. At the desired working point and for a signal frequency of 8.453 GHz, the device achieves a forward power gain of 15 dB within a dynamical bandwidth of 9 MHz, a reverse gain of -6  dB, and suppression of the reflected signal by 8 dB. We also find that the amplifier adds a noise equivalent to less than 1.5 photons at the signal frequency (referred back to the input. It can process up to 3 photons at the signal frequency per inverse dynamical bandwidth. With a directional amplifier operating along the principles of this device, qubit and readout preamplifier could be integrated on the same chip.

  15. Perturbation treatment of mixing in Josephson junctions

    Levinsen, M.T.; Ulrich, B.T.

    1975-01-01

    A current biased, resistively shunted Josephson Junction irradiated at two frequencies is considered. The perturbation technique introduced by Aslamasov and Larkin is used in the calculations, and both signals are treated as perturbations. The second order calculation yields the size of the mixing steps at V/sub +-/ = h(ω 1 +- ω 2 )/2e. As in the case of a single frequency, subharmonic mixing steps are absent. The amplitude of the voltage oscillation at the difference and sum frequencies is shown to be non-zero at all voltages. The microwave resistance is calculated for one frequency ω 2 to third order in the perturbation. There are negative resistance regions near V/sub +-/ (as well as near V 2 = hω 2 /2e). Near V/sub -/, the negative resistance region appears for bias voltage V just above V/sub -/, while near V the region appears for V just below V/sub +/. This means that when an incident frequency mixes with a cavity mode, the mixing step at V/sub -/ will be inverted compared to the cavity step itself

  16. Josephson effects in Nb3Sn microbridges

    Lee, T.W.; Falco, C.M.

    1981-01-01

    Josephson effects in long narrow Nb/sub 3/Sn microbridges at temperatures up to 17 K were studied. These microbridges are formed by photolithographic techniques and subsequently subjected to controlled electrical discharges to modifY the intrinsic T/sub c/ of the bridge region. The bridges exhibit 10 GHz microwave steps in their I-V characteristics whose amplitudes are in agreement with the Resistively Shunted Junction (RSJ) model. I-V characteristics can be fit assuming an effective temperature approximately 15 K above the bath temperature. Structures in the I-V characteristics in the absence of microwaves were also investigated. It was demonstrated that phase-slip centers are induced at weak superconducting positions along the bridge when the S-N boundarY of an expanding hot spot reaches within a thermal healing distance. The critical current of the phase-slip center thus formed exhibits a temperature dependence (1-T/T/sub c/)/one-half/ insteady of the usual mean field result (1-T/T/sub c/)/sup 3/2/. 12 refs

  17. Josephson tunneling in bilayer quantum Hall system

    Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.

    2012-01-01

    A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.

  18. Soliton excitations in Josephson tunnel junctions

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1982-01-01

    A detailed numerical study of a sine-Gordon model of the Josephson tunnel junction is compared with experimental measurements on junctions with different L / λJ ratios. The soliton picture is found to apply well on both relatively long (L / λJ=6) and intermediate (L / λJ=2) junctions. We find good...... agreement for the current-voltage characteristics, power output, and for the shape and height of the zero-field steps (ZFS). Two distinct modes of soliton oscillations are observed: (i) a bunched or congealed mode giving rise to the fundamental frequency f1 on all ZFS's and (ii) a "symmetric" mode which...... on the Nth ZFS yields the frequency Nf1 Coexistence of two adjacent frequencies is found on the third ZFS of the longer junction (L / λJ=6) in a narrow range of bias current as also found in the experiments. Small asymmetries in the experimental environment, a weak magnetic field, e.g., is introduced via...

  19. THz detectors using surface Josephson plasma waves in layered superconductors

    Savel'ev, Sergey; Yampol'skii, Valery; Nori, Franco

    2006-01-01

    We describe a proposal for THz detectors based on the excitation of surface waves, in layered superconductors, at frequencies lower than the Josephson plasma frequency ω J . These waves propagate along the vacuum-superconductor interface and are attenuated in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). The surface Josephson plasma waves are also important for the complete suppression of the specular reflection from a sample (Wood's anomalies, used for gratings) and produce a huge enhancement of the wave absorption, which can be used for the detection of THz waves

  20. Implementation of the Grover search algorithm with Josephson charge qubits

    Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang

    2007-01-01

    A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology

  1. Spectrum of resonant plasma oscillations in long Josephson junctions

    Holst, T.

    1996-01-01

    An analysis is presented for the amplitude of the plasma oscillations in the zero-voltage state of a long and narrow Josephson tunnel junction. The calculation is valid for arbitrary normalized junction length and arbitrary bias current. The spectrum of the plasma resonance is found numerically as solutions to an analytical equation. The low-frequency part of the spectrum contains a single resonance, which is known to exist also in the limit of a short and narrow junction. Above a certain cutoff frequency, a series of high-frequency standing wave plasma resonances is excited, a special feature of long Josephson junctions. copyright 1996 The American Physical Society

  2. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  3. Phase-locked flux-flow Josephson oscillator

    Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.

    1992-01-01

    We report on the observation of large rf induced steps due to phase-locking of unidirectional flux-flow motion in long quasi-one-dimensional Josephson junctions. The external microwave irradiation in the frequency range 62–77 GHz was applied from the edge of the junction at which the fluxons enter....... The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...

  4. Josephson soliton oscillators in a superconducting thin film resonator

    Holm, J.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    Josephson soliton oscillators integrated in a resonator consisting of two closely spaced coplanar superconducting microstrips have been investigated experimentally. Pairs of long 1-D Josephson junctions with a current density of about 1000 A/cm2 were made using the Nb-AlOx-Nb trilayer technique....... Different modes of half-wave resonances in the thin-film structure impose different magnetic field configurations at the boundaries of the junctions. The DC I-V characteristic shows zero-field steps with a number of resonator-induced steps. These structures are compared to RF-induced steps generated...

  5. Josephson junction analog and quasiparticle-pair current

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current....... A simple picture of the quasiparticle-pair current, which gives the right dependences, is obtained by assuming a junction cutoff frequency to be at the energy gap. ©1973 American Institute of Physics...

  6. Superconducting Coset Topological Fluids in Josephson Junction Arrays

    Diamantini, M C; Trugenberger, C A; Sodano, Pasquale; Trugenberger, Carlo A.

    2006-01-01

    We show that the superconducting ground state of planar Josephson junction arrays is a P- and T-invariant coset topological quantum fluid whose topological order is characterized by the degeneracy 2 on the torus. This new mechanism for planar superconductivity is the P- and T-invariant analogue of Laughlin's quantum Hall fluids. The T=0 insulator-superconductor quantum transition is a quantum critical point characterized by gauge fields and deconfined degrees of freedom. Experiments on toroidal Josephson junction arrays could provide the first direct evidence for topological order and superconducting quantum fluids.

  7. Terahertz Responses of Intrinsic Josephson Junctions in High TC Superconductors

    Wang, H. B.; Wu, P. H.; Yamashita, T.

    2001-01-01

    High frequency responses of intrinsic Josephson junctions up to 2.5THz, including the observation of Shapiro steps under various conditions, are reported and discussed in this Letter. The sample was an array of intrinsic Josephson junctions singled out from inside a high T C superconducting Bi 2 Sr 2 CaCu 2 O 8+x single crystal, with a bow-tie antenna integrated to it. The number of junctions in the array was controllable, the junctions were homogeneous, the distribution of applied irradiation among the junctions was even, and the junctions could synchronously respond to high frequency irradiation

  8. Microwave phase locking of Josephson-junction fluxon oscillators

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.

    1990-01-01

    Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two-dimensional fun......Application of the classic McLaughlin-Scott soliton perturbation theory to a Josephson-junction fluxon subjected to a microwave field that interacts with the fluxon only at the junction boundaries reduces the problem of phase locking of the fluxon oscillation to the study of a two...

  9. Microwave Josephson generation in thin film superconducting bridges

    Gubankov, V.N.; Koshelets, V.P.; Ovsyannikov, G.A.

    1975-01-01

    Thin-film bridges have some advantage over other types of superconducting weak links: good definition of electromagnetic parameters and of weak region geometry. Up to now Josephson properties of bridges have been investigated by using indirect methods (the effect of magnetic field on the critical current I 0 , the bridge behavior in a microwave field, etc.). Direct experimental observation of Josephson radiation from autonomous thin film bridges is reported. Microwave radiation in tin bridges of 'variable' thickness has been investigated where the thickness of the film forming the bridge is far less than the thickness of the bank films. (Auth.)

  10. Planar Josephson tunnel junctions in a transverse magnetic field

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  11. Fluxon dynamics in long annular Josephson tunnel junctions

    Martucciello, N.; Mygind, Jesper; Koshelets, V.P.

    1998-01-01

    Single-fluxon dynamics has been experimentally investigated in high-quality Nb/Al-AlOx/Nb annular Josephson tunnel junctions having a radius much larger than the Josephson penetration depth. Strong evidence of self-field effects is observed. An external magnetic field in the barrier plane acts...... on the fluxon as a periodic potential and lowers its average speed. Further, the results of perturbative calculations do not fit the experimental current-voltage profile and, provided the temperature is low enough, this profile systematically shows pronounced deviations from the smooth predicted form...

  12. Low frequency noise in resonant Josephson soliton oscillators

    Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.

    1991-01-01

    The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...

  13. Characterizing and quantifying frustration in quantum many-body systems.

    Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F

    2011-12-23

    We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.

  14. Josephson junctions in high-T/sub c/ superconductors

    Falco, C.M.; Lee, T.W.

    1981-01-14

    The invention includes a high T/sub c/ Josephson sperconducting junction as well as the method and apparatus which provides the junction by application of a closely controlled and monitored electrical discharge to a microbridge region connecting two portions of a superconducting film.

  15. Chaos controlling problems for circuit systems with Josephson junction

    Gou, X-F; Wang, X; Xie, J-L

    2008-01-01

    The complex dynamical characters of the Josephson junction circuit system are studied and the tunnel effect is considered. The dynamical equation of the system is established. The route from periodic motion to chaos is illustrated using bifurcation diagram. An adscititious coupling controller is constructed to control the chaos

  16. Flux flow in high-Tc Josephson junctions

    Filatrella, G.; Pedersen, Niels Falsig

    1993-01-01

    The possibility of achieving fluxon nucleation in nonhysteretic high-T(c) Josephson junctions due to the presence of inhomogeneities is investigated numerically. For a large range of parameters the I- V characteristics in presence of such discontinuities show a strong similarity with those obtain...

  17. Aspects of stochastic resonance in Josephson junction, bimodal

    We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the mechanism ...

  18. Micromagnetic modeling of critical current oscillations in magnetic Josephson junctions

    golovchanskiy, I.A.; Bol'ginov, V.V.; Stolyarov, V.S.; Abramov, N.N.; Ben Hamida, A.; Emelyanova, O.V.; Stolyarov, B.S.; Kupriyanov, M..Y.; Golubov, Alexandre Avraamovitch; Ryazanov, V.V.

    2016-01-01

    In this work we propose and explore an effective numerical approach for investigation of critical current dependence on applied magnetic field for magnetic Josephson junctions with in-plane magnetization orientation. This approach is based on micromagnetic simulation of the magnetization reversal

  19. The two Josephson junction flux qubit with large tunneling amplitude

    Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.

    2008-01-01

    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution

  20. Magnetic Field Dependence and Q of the Josephson Plasma Resonance

    Pedersen, Niels Falsig; Finnegan, T. F.; Langenberg, D. N.

    1972-01-01

    of supercurrent density which is not observed in conventional measurements of the field-dependent critical current. The frequency and field dependence of the plasma-resonance linewidth are interpreted as evidence that the previously unobserved quasiparticle-pair-interference tunnel current predicted by Josephson...

  1. Negative differential resistance in Josephson junctions coupled to a cavity

    Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.

    2014-01-01

    or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find...

  2. Effect of surface losses on soliton propagation in Josephson junctions

    Davidson, A.; Pedersen, Niels Falsig; Pagano, S.

    1986-01-01

    We have explored numerically the effects on soliton propagation of a third order damping term in the modified sine-Gordon equation. In Josephson tunnel junctions such a term corresponds physically to quasiparticle losses within the metal electrodes of the junction. We find that this loss term pla...

  3. Josephson flux-flow oscillators in nonuniform microwave fields

    Salerno, Mario; Samuelsen, Mogens Rugholm

    2000-01-01

    We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...

  4. The Josephson and Quantum Hall effect in metrology

    Lifka, E.

    1990-01-01

    This first generation of DC voltage standards based upon the Josephson effect made use of one tunnel junction coupled with microwaves via an external resonator. The needed output voltage level of 1 V was derived either by means of room temperature resistive divider or the cryogenic current comparator from the quantized microwave-induced voltage drop on the Josephson tunnel junction. In order to increase the accuracy of th standard, series arrays of Josephson tunnel junctions, in which the quantized voltage drops are added together thus providing reference voltage of several hundreds mV, are commonly used in some national laboratories. As the radiating frequency used is 70 GHz or higher the actual sample containing tunnel junction array takes form of an millimeter wave integrated circuit feeded by the thin film fin-line. This improved DC voltage standard has relative uncertainty lower by an amount which equals to the contribution of the resistive divider and allied measuring circuitry. This paper traces the present and future of studies involving the use of the Josephson and Quantum Hall Effect in meteorology

  5. Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy

    Miroshnichenko, A. E.; Flach, S.; Fistul, M.

    2001-01-01

    We present a theoretical study of the resonant interaction between dynamical localized states (discrete breathers) and linear electromagnetic excitations (EE's) in Josephson junction ladders. By making use of direct numerical simulations we find that such an interaction manifests itself by resonant...

  6. Switching between dynamic states in intermediate-length Josephson junctions

    Pagano, S.; Sørensen, Mads Peter; Parmentier, R. D.

    1986-01-01

    The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber backgroun...

  7. Aspects of stochastic resonance in Josephson junction, bimodal ...

    Abstract. We present the results of extensive numerical studies on stochastic resonance and its characteristic features in three model systems, namely, a model for Josephson tunnel junctions, the bistable cubic map and a coupled map lattice formed by coupling the cubic maps. Some interesting features regarding the ...

  8. Phenomenological approach to bistable behavior of Josephson junctions

    Nishi, K.; Nara, S.; Hamanaka, K.

    1985-01-01

    The interaction of unbiased Josephson junction with external electromagnetic field in the presence of externally applied uniform magnetic field is theoretically examined by means of phenomenological treatment. It is proposed that an irradiated junction with suitably chosen parameters shows a bistable behavior of voltage across the junction as a function of the radiation intensity

  9. Josephson tunnel junctions in a magnetic field gradient

    Monaco, R.; Mygind, Jesper; Koshelets, V.P.

    2011-01-01

    We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer...

  10. Josephson current through a molecular transistor in a dissipative environment

    Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten

    2005-01-01

    We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find...

  11. Shrink, twist, ripple and melt: Studies of frustrated liquid crystals

    Fernsler, Jonathan G.

    Complex structures can arise out of a simple system with more than one competing influence on its behavior. The protypical example of this is the two-dimensional triangular lattice Ising model. The ferromagnetic model has two simple degenerate ground states of all spins up or down, but the antiferromagnetic model is a frustrated system. Its geometry does not allow satisfaction of the antiferro condition everywhere, which produces complex ordered structures with dimerization of the spins [1]. Without frustration, the complex structures and phase behavior are lost. All of the topics discussed in this thesis concern smectic liquid crystals. Liquid crystals are perhaps uniquely adept at manifesting frustrated phases. Their combination of periodicity in one or more dimensions allows ordered structures, yet their fluid nature in remaining dimensions allows creation of defects and extraordinarily complex structures in ways that a normal crystal could not tolerate. Liquid crystals contain a huge menagerie of frustrated phases and effects including the polarization modulated [2], vortex lattice [3], twist grain boundary [4], and blue [5] phases, as well as frustrated structures such as cholesteric or SmC* helix unwinding [6], defect lattices in thin films [7], and bend melted grain boundary defects [8], arising from boundary conditions and field effects. In this thesis, we study four liquid crystal systems that show unusual phase behavior or complex structures, deriving from the effects of frustration. Frustration, despite some human prejudices against the word, leaves nature all the more interesting and beautiful.

  12. Nonlinear optical control of Josephson coupling in cuprates

    Casandruc, Eliza

    2017-03-15

    In High-T{sub C} cuprates superconducting Cu-O planes alternate with insulating layers along the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in series. The most intriguing consequence is that the out-of-plane superconducting transport occurs via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson tunneling equations. Nonlinear interaction between light fields and the superconducting carriers serves as a powerful dynamical probe of cuprates, while offering opportunities for controlling them in an analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this thesis work is to use intense transient light fields to control the interlayer superconducting transport on ultrafast time scales. This was achieved by tuning the wavelength of such light pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in certain cuprates quenches the Josephson tunneling at equilibrium. In a first study, I have utilized strong field terahertz transients with frequencies tuned to the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were excited with narrow-band multi-cycle pulses in La{sub 1.84}Sr{sub 0.16}CuO{sub 4} while broad-band half-cycle pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in La{sub 1.905}Ba{sub 0.095}CuO{sub 4}. These experiments are supported by extensive modeling, showing exceptional agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects near the JPR frequency. Then, I turned to investigate the competition between

  13. Superconductor-Insulator transition in a single Josephson junction

    Sonin, E.B.; PenttilA, J.S.; Parts, O.; Hakonen, P.J.; Paalanen, M.A.

    1999-01-01

    For ultra small Josephson junctions, when quantum effects become important, dissipative phase transition (DPT) has been predicted. The physical origin of this transition is the suppression of macroscopic quantum tunneling of the phase by tile interaction with dissipative quantum-mechanical environment. Macroscopic quantum tunneling destroys superconductivity of a junction, whereas suppression of tunneling restores superconductivity. Hence, this transition is often called a superconductor-insulator transition (SIT). SIT was predicted for various systems, but its detection in a single Josephson junction is of principal importance since it is the simplest system where this transition is expected, without any risk of being masked by other physical processes, as is possible in more complicated systems like regular or' random Josephson junction arrays. In this Letter we present results of our measurements on R = dV/dI vs. I curves, for a variety of single small isolated Josephson junctions, shunted and un shunted, with different values of capacitance C and normal state tunneling resistance RT. We have detected a crossover. between two types of RI-curves with an essentially different behavior at small currents. On the basis of this crossover, we are able to map out the whole phase diagram for a Josephson junction. The position of the observed phase boundary did not agree with that expected from the original theory. However, the theory revised to take into account a finite accuracy of our voltage measurements (viz., the minimum voltage which we are able to detect), explains well the observed phase diagram. Our important conclusion is that the concept of dissipative phase transition (DPT) and superconductor-insulator transition (SIT) are not completely identical as assumed before. Both are accompanied by the sign change of the thermo resistance, which is traditionally considered as a signature of SIT. Thus any DPT is SIT, but not vice versa. We argue that the real signature

  14. Transition by breaking of analyticity in the ground state of Josephson junction arrays as a static signature of the vortex jamming transition

    Nogawa, Tomoaki

    2012-05-22

    We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.

  15. Complexation of Nitrous Oxide by Frustrated Lewis Pairs

    Otten, Edwin; Neu, Rebecca C.; Stephan, Douglas W.

    2009-01-01

    Frustrated Lewis pairs comprised of a basic yet sterically encumbered phosphine with boron Lewis acids bind nitrous oxide to give intact PNNOB linkages. The synthesis, structure, and bonding of these species are described.

  16. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  17. Low Tolerance for Frustration: Target Group for Reading Disabilities

    Orlow, Maria

    1974-01-01

    Presents findings which can aid in the prevention and remediation of reading disabilities in children who have a low tolerance for frustration, many of whom often become acute reading disability cases. (TO)

  18. Repulsive fluxons in a stack of Josephson junctions perturbed by a cavity

    Madsen, Søren; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2008-01-01

    The BSCCO type intrinsic Josephson junction has been modeled as a stack of inductively coupled long Josephson junctions, which were described by a system of coupled sine-Gordon equations. In a system of 10 long Josephson junctions coupled to a linear cavity, we numerically investigate how...... of the inductive coupling strength, we investigate the cavity current, fluxon phase difference, and current–voltage characteristic. The stack-cavity system with in-phase fluxon motion may be utilized as a THz oscillator....

  19. Magnetic domains and frustration in metallic CePdAl

    Lucas, Stefan; Huesges, Zita; Huang, Chien-Lung; Stockert, Oliver [Max Planck Institute CPfS, Dresden (Germany); Fritsch, Veronika; Sakai, Akito [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Grube, Kai; Taubenheim, Christian; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany)

    2016-07-01

    Magnetic frustration is an exciting topic in condensed matter physics, since it can lead to new ground states of materials, e.g. a spin liquid or spin glass state. Effects of magnetic frustration have been investigated intensively for insulating materials. However, the existence of magnetic frustration in metallic systems is still under debate. CePdAl is a metallic Kondo system, where geometric magnetic frustration arises from the formation of Ce ions on a distorted Kagome lattice. Neutron scattering experiments revealed, that only two thirds of the magnetic Ce moments order antiferromagnetically below T{sub N}=2.7 K, whereas the other third remains mainly disordered. Thermodynamic as well as neutron scattering measurements are presented to verify the existence of partial magnetic frustration in CePdAl. Recently neutron diffraction experiments under magnetic fields applied along two orthogonal directions in the magnetically hard basal plane were performed. They show opposite effects on the magnetic intensity of a selected magnetic domain depending on the field direction with respect to the propagation vector. If this is only an effect of different domain population or also due to a change in magnetic frustration shall be discussed.

  20. Signatures of granular superconductivity and Josephson effects in macroscopic measurements: the case of new superconductors

    S Senoussi

    2006-09-01

    Full Text Available   We report systematic investigations of the magnetic superconducting properties of the new superconducting materials (NS: New high temperature superconductors (HTS, Organic superconductors (OS, fullerenes, carbon nanotubes, MgB2 etc. We show that, contrary to conventional superconductors where the superconducting state can be coherent over several tenths of km, the macroscopic coherence range lc of the NS is often as short as 0.1 to 10 µm typically. As a consequence, the magnetic properties are dominated by granular-like effects as well as Josephson coupling between grains. Here, we concentrate on HTS ceramics and organic superconductors exclusively. In the first case we observe three distinct regimes: (i At very low field (H < 5 Oe to say all the grains are coupled via Josephson effect and lc can be considered as infinite. (2 At intermediate field (5 < H < 50 Oe, typically the grains are gradually decoupled by H and/or T. (iii At higher fields all the grains are decoupled and lc roughly coincides with the diameter of the metallurgical grains. The case of OS is more subtle and is connected with a kind of order-disorder transition that occurs in most of them. For instance, in this study, we exploit quenched disorder (after crossing such a transition in the -(BEDT-TTF2Cu[N(CN2]Br layered organic superconductor to get new insights on both the superconducting state (T £ 11.6 K and the glassy transition at Tg, by studying the superconducting properties as functions of annealing time and annealing temperature around the glassy transition. Our main result is that the data can be described by a percolation molecular cluster model in which the topology and the growth of the molecular clusters obey an Ising spin-glass-like model with Tg ≈ 80 K for the hydrogenated compound and Tg ≈ 55 K for the fully deuterated one.

  1. The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction

    Pahlavanias, Hassan

    2018-03-01

    The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.

  2. Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.

    1990-01-01

    The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined

  3. Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-01-08

    The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.

  4. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  5. Phase transition in one Josephson junction with a side-coupled magnetic impurity

    Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang

    2018-04-01

    This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.

  6. Critical current of the nonuniform Josephson transition at intergranular boundary with random dislocation distribution

    Mejlikhov, E.Z.; Farzetdinova, R.M.

    1997-01-01

    Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution

  7. Vortex dynamics in Josephson junctions arrays

    Shalom, Diego Edgar

    2005-01-01

    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  8. Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques

    Chasse, Dominique

    L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous

  9. Josephson effect in point contacts between 'f-wave' superconductors

    Mahmoodi, R.; Shevchenko, S.N.; Kolesnichenko, Yu.A

    2002-01-01

    A stationary Josephson effect in point contacts between triplet superconductors is analyzed theoretically for most probable models of the order parameter in UPt 3 and Sr 2 RuO 4 . The consequence of misorientation of crystals in the superconducting banks on this effect is considered. We show that different models for the order parameter lead to quit different current-phase relations. For certain angles of misorientation a boundary between superconductors can generate a spontaneous current parallel to the surface. In a number of cases the state with a zero Josephson current and minimum of the free energy corresponds to a spontaneous phase difference. This phase difference depends on the misorientation angle and may possess any value. We conclude that experimental investigations of the current-phase relations of small junctions can be used for determination of the order parameter symmetry in the superconductors mentioned above

  10. Anisotropic Josephson-vortex dynamics in layered organic superconductors

    Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.

    2010-01-01

    To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET) 2 Cu(NCS) 2 and β-(BDA-TTP) 2 SbF 6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET) 2 Cu(NCS) 2 , in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP) 2 SbF 6 . The different anisotropic behavior is discussed in terms of the interlayer coupling strength.

  11. Anisotropic Josephson-vortex dynamics in layered organic superconductors

    Yasuzuka, S., E-mail: yasuzuka@chem.tsukuba.ac.j [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0003 (Japan); Koga, H.; Yamamura, Y.; Saito, K. [Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Akutsu, H.; Yamada, J. [Department of Material Science, Graduate School of Material Science, University of Hyogo, Ako-gun, Hyogo 678-1297 (Japan)

    2010-06-01

    To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {beta}-(BDA-TTP){sub 2}SbF{sub 6} under magnetic fields precisely parallel to the conducting planes. For {kappa}-(ET){sub 2}Cu(NCS){sub 2}, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for {beta}-(BDA-TTP){sub 2}SbF{sub 6}. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.

  12. Josephson oscillation and self-trapping in momentum space

    Zheng, Yi; Feng, Shiping; Yang, Shi-Jie

    2018-04-01

    The Creutz ladder model is studied in the presence of unconventional flux induced by complex tunneling rates along and between the two legs. In the vortex phase, the double-minima band structure is regarded as a double well. By introducing a tunable coupling between the two momentum minima, we demonstrate a phenomenon of Josephson oscillations in momentum space. The condensate density locked in one of the momentum valleys is referred to as macroscopic quantum self-trapping. The on-site interaction of the lattice provides an effective analogy to the double-well model within the two-mode approximation which allows for a quantitative understanding of the Josephson effect and the self-trapping in momentum space.

  13. Majorana splitting from critical currents in Josephson junctions

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  14. Thin film hybrid Josephson junctions with Co doped Ba-122

    Schmidt, Stefan; Doering, Sebastian; Schmidl, Frank; Tympel, Volker; Grosse, Veit; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany); Haindl, Silvia; Iida, Kazumasa; Kurth, Fritz; Holzapfel, Bernhard [IFW Dresden, Institut fuer Metallische Werkstoffe, Helmholtzstrasse 20, 01069 Dresden (Germany); Moench, Ingolf [IFW Dresden, Institut fuer Integrative Nanowissenschaften, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2011-07-01

    Josephson junctions are a strong tool to investigate fundamental superconducting properties, such as gap behaviour, dependencies from external fields and the order parameter symmetry. Finding secure values enables the possibility of theoretical descriptions to understand the physical processes within the new iron-based superconductors. Based on Co-doped BaFe{sub 2}As{sub 2} (Ba-122) layers produced via pulsed laser deposition (PLD) on (La,Sr)(Al,Ta)O{sub 3} substrates, we manufactured superconductor-normal conductor-superconductor (S-N-S) junctions structures by using photolithography, ion beam etching as well as insulating SiO{sub 2} layers. We present working Ba-122/Au/PbIn thin film Josephson junctions with different contact areas and barrier thicknesses, their temperature dependence and response to microwave irradiation. The calculated I{sub c}R{sub N} product is in the range of a couple of microvolts.

  15. Quantum and thermal phase escape in extended Josephson systems

    Kemp, A.

    2006-01-01

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  16. Thermal and quantum depinning of a fractional Josephson vortex

    Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalische Institut, University of Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Meckbach, Max; Kaiser, Christoph; Il' in, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, University of Karlsruhe, Hertzstrasse 16, 76187, Karlsruhe (Germany)

    2011-07-01

    We investigate the bias current induced depinning of a fractional Josephson vortex in a 0-{kappa} Josephson junction, where the {kappa}-discontinuity of the phase is induced by current injectors. At high temperatures T>or similar 100 mK the depinning is governed by thermal fluctuations. By measuring a depinning current histogram and extracting the effective barrier height vs. {kappa}, one can see the signatures of fractional vortex escape. At low T

  17. Spatially resolved detection of mutually locked Josephson junctions in arrays

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  18. Quantum and thermal phase escape in extended Josephson systems

    Kemp, A.

    2006-07-12

    In this work I examine phase escape in long annular Josephson tunnel junctions. The sine-Gordon equation governs the dynamics of the phase variable along the junction. This equation supports topological soliton solutions, which correspond to quanta of magnetic flux trapped in the junction barrier. For such Josephson vortices an effective potential is formed by an external magnetic field, while a bias current acts as a driving force. Both together form a metastable potential well, which the vortex is trapped in. When the driving force exceeds the pinning force of the potential, the vortex escapes and the junction switches to the voltage state. At a finite temperature the driving force fluctuates. If the junction's energy scale is small, the phase variable can undergo a macroscopic quantum tunneling (MQT) process at temperatures below the crossover temperature. Without a vortex trapped, the metastable state is not a potential minimum in space, but a potential minimum at zero phase difference. (orig.)

  19. Josephson junction in superconducting oxides thick films. Jonction Josephson en couche epaisse d'oxydes supraconducteurs

    Gunther, C; Monfort, Y; Lam Chok Sing, M; Bloyet, D; Brousse, T; Provost, J; Raveau, B [Institut des Sciences de la Matiere du Rayonnement, 14 - Caen (FR)

    1992-02-01

    Constrictions engraved in YBaCuO thick films fabricated by screen printing on YSZ substrate (J{sub c} > 3 000 A/cm{sup 2} at 77 K) have been studied. Microwave irradiation of the devices at LN{sub 2} showed distinct Shapiro steps demonstrating the presence intrinsic Josephson junctions. The latter have an I{sub c}(T) dependence fitting (1 - T/T{sub c}){sup 2} characteristic of SNS junctions. Furthermore, dc SQUID effects have also been observed with a peak-to-peak response {approx equal} 0.2 {mu}V and with a magnetic field periodicity extending through several hundred of {phi}{sub o}. An energy resolution close to 3 x 10{sup -29} J/Hz is estimated for our constriction operating in the white noise frequency range (f > 50 Hz) at 77 K. This sensitivity is adequate to use this flux sensor in many applications: geomagnetism, magnetocardiology,... 19 refs; 7 figs.

  20. Shunted-Josephson-junction model. I. The autonomous case

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model: the parallel combination of a capacitance, a phase-dependent conductance, and an ideal junction element biased by a constant current, is discussed for arbitrary values of the junction parameters. The main objective is to provide a qualitative understanding...... current-voltage curves are presented. The case with a time-dependent monochromatic bias current is treated in a similar fashion in the companion paper....

  1. Onset of chaos in Josephson junctions with intermediate damping

    Yao, X.; Wu, J.Z.; Ting, C.S.

    1990-01-01

    By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed

  2. Memory states in small arrays of Josephson junctions

    Braiman, Yehuda [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Neschke, Brendan [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Nair, Niketh S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Science Directorat; Glowinski, R. [Univ. of Houston, TX (United States). Dept. of Mathematics

    2017-11-30

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  3. Using ion irradiation to make high-Tc Josephson junctions

    Bergeal, N.; Lesueur, J.; Sirena, M.; Faini, G.; Aprili, M.; Contour, J. P.; Leridon, B.

    2007-01-01

    In this article we describe the effect of ion irradiation on high-T c superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-T c film and a mesa one defined in a trilayer structure

  4. Multiple frequency generation by bunched solitons in Josephson tunnel junctions

    Lomdahl, P. S.; Sørensen, O. H.; Christiansen, Peter Leth

    1981-01-01

    A detailed numerical study of a long Josephson tunnel junction modeled by a perturbed sine-Gordon equation demonstrates the existence of a variety of bunched soliton configurations. Thus, on the third zero-field step of the V-I characteristic, two simultaneous adjacent frequencies are generated...... in a narrow bias current range. The analysis of the soliton modes provides an explanation of recent experimental observations....

  5. Field modulation of the critical current in magnetic Josephson junctions

    Blamire, M G; Smiet, C B; Banerjee, N; Robinson, J W A

    2013-01-01

    The dependence of the critical current of a simple Josephson junction on the applied magnetic field is well known and, for a rectangular junction, gives rise to the classic ‘Fraunhofer’ modulation with periodic zeros at the fields that introduce a flux quantum into the junction region. Much recent work has been performed on Josephson junctions that contain magnetic layers. The magnetization of such layers introduces additional flux into the junction and, for large junction areas or strong magnetic materials, can significantly distort the modulation of the critical current and strongly suppress the maximum critical current. The growing interest in junctions that induce odd-frequency triplet pairing in a ferromagnet, and the need to make quantitative comparisons with theory, mean that a full understanding of the role of magnetic barriers in controlling the critical current is necessary. This paper analyses the effect of magnetism and various magnetic configurations on Josephson critical currents; the overall treatment applies to junctions of general shape, but the specific cases of square and rectangular junctions are considered. (paper)

  6. Josephson supercurrent in a topological insulator without a bulk shunt

    Snelder, M; Molenaar, C G; Golubov, A A; Van der Wiel, W G; Hilgenkamp, H; Golden, M S; Brinkman, A; Pan, Y; Wu, D; Huang, Y K; De Visser, A

    2014-01-01

    A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . We show that the transport in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced superconductivity. We prepared Josephson junctions with widths in the order of 40 nm and lengths in the order of 50–80 nm on several Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 flakes and measured down to 30 mK. The Fraunhofer patterns unequivocally reveal that the supercurrent is a Josephson supercurrent. The measured critical currents are reproducibly observed on different devices and upon multiple cooldowns, and the critical current dependence on temperature as well as magnetic field can be well explained by diffusive transport models and geometric effects. (paper)

  7. Branching in current-voltage characteristics of intrinsic Josephson junctions

    Shukrinov, Yu M; Mahfouzi, F

    2007-01-01

    We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented

  8. Search for a correlation between Josephson junctions and gravity

    Robertson, Glen A.

    2000-01-01

    Woodward's transient mass shift (TMS) formula has commonality with Modanese's anomalous coupling theory (ACT) and Woodward's capacitor experiment has commonality with Podkletnov's layered superconductor disk experiment. The TMS formula derives a mass fluctuation from a time-varying energy density. The ACT suggests that the essential ingredient for the gravity phenomenon is the presence of strong variations or fluctuations of the Cooper pair density (a time-varying energy density). Woodward's experiment used a small array of capacitors whose energy density was varied by an applied 11 kHz signal. Podkletnov's superconductor disk contained many Josephson junctions (small capacitive like interfaces), which were radiated with a 3-4 MHz signal. This paper formulates a TMS for superconductor Josephson junctions. The equation was compared to the 2% mass change claimed by Podkletnov in his gravity shielding experiments. The TMS is calculated to be 2% for a 2-kg superconductor with an induced total power to the multiple Josephson junctions of about 3.3-watts. A percent mass change equation is then formulated based on the Cavendish balance equation where the superconductor TMS is used for the delta change in mass. An experiment using a Cavendish balance is then discussed

  9. Fabrication-process-induced variations of Nb/Al/AlOx/Nb Josephson junctions in superconductor integrated circuits

    Tolpygo, Sergey K; Amparo, Denis

    2010-01-01

    Currently, superconductor digital integrated circuits fabricated at HYPRES, Inc. can operate at clock frequencies approaching 40 GHz. The circuits present multilayered structures containing tens of thousands of Nb/Al/AlO x /Nb Josephson junctions (JJs) of various sizes interconnected by four Nb wiring layers, resistors, and other circuit elements. In order to be fully operational, the integrated circuits should be fabricated such that the critical currents of the JJs are within the tight design margins and the proper relationships between the critical currents of JJs of different sizes are preserved. We present experimental data and discuss mechanisms of process-induced variations of the critical current and energy gap of Nb/Al/AlO x /Nb JJs in integrated circuits. We demonstrate that the Josephson critical current may depend on the type and area of circuit elements connected to the junction, on the circuit pattern, and on the step in the fabrication process at which the connection is made. In particular, we discuss the influence of (a) the junction base electrode connection to the ground plane, (b) the junction counter electrode connection to the ground plane, and (c) the counter electrode connection to the Ti/Au or Ti/Pd/Au contact pads by Nb wiring. We show that the process-induced changes of the properties of Nb/Al/AlO x /Nb junctions are caused by migration of impurity atoms (hydrogen) between the different layers comprising the integrated circuits.

  10. Realization of φ Josephson junctions with a ferromagnetic interlayer

    Sickinger, Hanna Sabine

    2014-01-01

    In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.

  11. High-Tc SNS Junctions: A New Generation of Proximity-Coupled Josephson Devices

    Kleinsasser, A. W.

    1997-01-01

    This paper reviews this evolution of proximity - coupled Josephson jucntion from the early investigations on low temperature superconductor-normal -superconductor junctions through the introduction of hybrid superconductor-semiconductor devices and the resulting interest in mesoscopic Josephson junctions, to the recent development of high temperature devices.

  12. Josephson plasma resonance in vortex filament state of high temperature superconductors

    Matsuda, Yuji; Gaifullin, M.B.

    1996-01-01

    High temperature superconductors have the crystalline structure in which two-dimensional CuO 2 planes are piled in layers, consequently, the anisotropy of electroconductivity arises, and this brings about stable and low energy Josephson plasma in superconducting state. Also as to the vortex filament state of high temperature superconductors, the effect of thermal fluctuation due to low dimensionality, short coherence length and high transition temperature becomes conspicuous. In reality, these plasma and vortex filament state are related closely. Light reflection and plasma edge in superconducting state, Josephson plasma resonance in the vortex filament state of BiO 2 Sr 2 CaCu 2 O 8+δ , the plasma vibration in Josephson junction, Josephson plasma in magnetic field, Josephson plasma in the liquid state of vortex filament, Josephson plasma in the solid state of vortex filament, and Josephson plasma in parallel magnetic field are reported. The Josephson plasma resonance is the experimental means for exploring vortex filament state from microscopic standpoint, and its development hereafter is expected. (K.I.)

  13. Collective modes and radiation from gliding Josephson vortex lattice in layered superconductors

    Artemenko, S.N.; Remizov, S.V.

    1999-01-01

    We found that stability of moving lattice of Josephson vortices driven by the transport current is limited by the critical velocity which agrees with the maximum velocity observed in BSCCO in the flux-flow regime. We also predict a peak of the radiation at Josephson plasma frequency which may be observed in high magnetic field. (orig.)

  14. Bifurcation and chaos in a dc-driven long annular Josephson junction

    Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm

    1991-01-01

    Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...

  15. Self-field effects in window-type Josephson tunnel junctions

    Monaco, Roberto; Koshelets, Valery P; Mukhortova, Anna

    2013-01-01

    The properties of Josephson devices are strongly affected by geometrical effects such as those associated with the magnetic field induced by the bias current. The generally adopted analysis of Owen and Scalapino (1967 Phys. Rev. 164, 538) for the critical current, Ic, of an in-line Josephson tunnel...

  16. Direct detection of the parametrically generated half-harmonic voltage in a Josephson tunnel junction

    Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.

    1976-01-01

    The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...

  17. Perfect synchronization in networks of phase-frustrated oscillators

    Kundu, Prosenjit; Hens, Chittaranjan; Barzel, Baruch; Pal, Pinaki

    2017-11-01

    Synchronizing phase-frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first- and second-order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase-frustrated environment.

  18. Acid-base chemistry of frustrated water at protein interfaces.

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  19. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  20. Ordering due to disorder in frustrated quantum magnetic system

    Yildirim, T.

    1999-01-01

    The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S

  1. Josephson effect in high-Tc superconductors and in structures using them

    Kupriyanov, M.Yu.; Likharev, K.K.

    1990-01-01

    A review of the investigations of the Josephson effect in HTS materials and HTS Josephson structures is represented. The influence of the synthesis conditions and a surface etching on the surface properties of the HTS/Ag(Au) are briefly discussed. On the basis of these results the experimental data obtained in various types of the Josephson junctions (point contacts, tunnel junctions, weak links, break and bulk junctions and crystal type break junctions) are considered. These data are compared with theoretical results obtained from different BCS models of the Josephson junctions. It is concluded that now it is impossible to make either the conclusion on the applicability of the BCS theory for HTS superconductors or the unambiguous identification of the principal physical structure of the junctions. The directions of the future experimental investigations of the Josephson effect in HTS tunnel junctions and weak links are discussed

  2. Psychometric properties of Frustration Discomfort Scale in a Turkish sample.

    Ozer, Bilge Uzun; Demir, Ayhan; Harrington, Neil

    2012-08-01

    The present study assessed the psychometric properties of the Frustration Discomfort Scale for Turkish college students. The Frustration Discomfort Scale (FDS), Procrastination Assessment Scale-Student, and Rosenberg Self-Esteem Scale were administered to a sample of 171 (98 women, 73 men) Turkish college students. The results of the confirmatory factor analysis yielded fit index values demonstrating viability of the four-dimensional solution as in the original. Findings also revealed that, as predicted, the Discomfort Intolerance subscale of Turkish FDS was most strongly correlated with procrastination. Overall results provided evidence for the factor validity and reliability of the Turkish version of the scale for use in a Turkish population.

  3. Two-dimensional frustrated spin systems in high magnetic fields

    Schmidt, B; Shannon, N; Thalmeier, P

    2006-01-01

    We discuss our numerical results on the properties of the S = 1/2 frustrated J 1 -J 2 Heisenberg model on a square lattice as a function of temperature and frustration angle φ = tan -1 (J 2 /J 1 ) in an applied magnetic field. We cover the full phase diagram of the model in the range π ≤ φ ≤ π. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally

  4. How Is Frustration Related to Online Gamer Loyalty? A Synthesis of Multiple Theories.

    Huang, Han-Chung; Liao, Gen-Yih; Chiu, Kay-Ling; Teng, Ching-I

    2017-11-01

    Online games can frustrate their gamers, but little was known about how such frustration impacts gamer loyalty. Because novice and experienced gamers may respond differently to frustration, this study investigates how gamers' frustration influences their loyalty and how this influence may differ between novice and experienced gamers. Because of the complexity of this issue, multiple theories were synthesized to develop the theoretical model. This study collected responses from 558 online gamers. Findings indicate that frustration is positively related to novice gamers' participation in task teams, and subsequently their loyalty. However, frustration is negatively related to the self-efficacy of experienced gamers and to their loyalty.

  5. Frustrated antiferromagnets at high fields: Bose-Einstein condensation in degenerate spectra

    Jackeli, G.; Zhitomirsky, M.E.

    2004-01-01

    Quantum phase transition at the saturation field is studied for a class of frustrated quantum antiferromagnets. The considered models include (i) the J 1 -J 2 frustrated square-lattice antiferromagnet with J 2 =(1/2)J 1 and (ii) the nearest-neighbor Heisenberg antiferromagnet on a face centered cubic lattice. In the fully saturated phase the magnon spectra for the two models have lines of degenerate minima. Transition into a partially magnetized state is treated via a mapping to a dilute gas of hard-core bosons and by complementary spin-wave calculations. Momentum dependence of the exact four-point boson vertex removes the degeneracy of the single-particle excitation spectra and selects the ordering wave vectors at (π,π) and (π,0,0) for the two models. We predict a unique form for the magnetization curve ΔM=S-M≅μ (d-1)/2 (logμ) (d-1) , where μ is a distance from the quantum critical point

  6. Influence of job frustration, narcissism and demographic variables ...

    The study examines the hypothesised relationship among job frustration, narcissism, demographic variables and professional ethical behaviour among Nigerian Police officers. One hundred policemen drawn from four police divisions of Benin Area Command of Edo State participated in the study. There were 18 females ...

  7. More Opportunities than Wealth. A Network of Power and Frustration

    Mahault, Benoit Alexandre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Saxena, Avadh Behari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nisoli, Cristiano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-17

    We introduce a minimal agent-based model to qualitatively conceptualize the allocation of limited wealth among more abundant opportunities. We study the interplay of power, satisfaction and frustration in the problem of wealth distribution, concentration, and inequality. This framework allows us to compare subjective measures of frustration and satisfaction to collective measures of fairness in wealth distribution, such as the Lorenz curve and the Gini index. We find that a completely libertarian, law-of-the-jungle setting, where every agent can acquire wealth from, or lose wealth to, anybody else invariably leads to a complete polarization of the distribution of wealth vs. opportunity, only minimally ameliorated by disorder in a non-optimized society. The picture is however dramatically modified when hard constraints are imposed over agents, and they are forced to share wealth with neighbors on a network. We discuss the case of random networks and scale free networks. We then propose an out of equilibrium dynamics of the networks, based on a competition of power and frustration in the decision-making of agents that leads to network evolution. We show that the ratio of power and frustration controls different dynamical regimes separated by kinetic transition and characterized by drastically different values of the indices of equality.

  8. 41 CFR 101-26.311 - Frustrated shipments.

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  9. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Marek, Aleš; Pedersen, M. H. F.

    2015-01-01

    Roč. 71, č. 6 (2015), s. 917-921 ISSN 0040-4020 Institutional support: RVO:61388963 Keywords : frustrated Lewis pairs * hydrogen activation * benzyl alcohol * tritium labeling * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  10. Academic Culture in Malaysia: Sources of Satisfaction and Frustration

    Da Wan, Chang; Chapman, David W.; Zain, Ahmad Nurulazam Md; Hutcheson, Sigrid; Lee, Molly; Austin, Ann E.

    2015-01-01

    This paper examines the sources of satisfaction and frustration among Malaysian academics across three types of higher education institutions (HEIs)--public research university, public comprehensive university and private non-profit university. Based on interview with 67 academics across six HEIs, there is a clear pattern and relationship between…

  11. Getting Frustrated: Modelling Emotion Contagion in Stranded Passengers

    van der Wal, C. Natalie; Couwenberg, Maik; Bosse, T.

    2017-01-01

    Train passengers can get stranded due to a variety of events, such as a delay, technical malfunctioning or a natural disaster. Stranded passengers can get frustrated, which could escalate in misbehaviours. Examples are verbal and physical violence or dangerous behaviours such as opening emergency

  12. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  13. 0-π phase-controllable thermal Josephson junction

    Fornieri, Antonio; Timossi, Giuliano; Virtanen, Pauli; Solinas, Paolo; Giazotto, Francesco

    2017-05-01

    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current that depends on the phase difference ϕ between the superconducting condensates. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows opposite to the thermal gradient for |ϕ| heat currents can be inverted by adding a π shift to ϕ. In the static electrical case, this effect has been obtained in a few systems, for example via a ferromagnetic coupling or a non-equilibrium distribution in the weak link. These structures opened new possibilities for superconducting quantum logic and ultralow-power superconducting computers. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 0 to π. This is obtained thanks to a superconducting quantum interferometer that allows full control of the direction of the coherent energy transfer through the junction. This possibility, in conjunction with the completely superconducting nature of our system, provides temperature modulations with an unprecedented amplitude of ∼100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components such as thermal transistors, switches and memory devices. These elements, combined with heat interferometers and diodes, would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.

  14. Internal resonances in periodically modulated long Josephson junctions

    Larsen, Britt Hvolbæk; Mygind, Jesper; Ustinov, Alexey V.

    1995-01-01

    Current-voltage (I-V) characteristics of long Josephson junctions with a periodic lattice of localized inhomogeneities are studied. The interaction between the moving fluxons and the inhomogeneities causes resonant steps in the IV-curve. Some of these steps are due to a synchronization to resonant...... Fiske modes in the sub-junctions formed between the inhomogeneities. The voltage positions of the resonant steps oscillate as function of the applied magnetic field with a period corresponding to the inclusion of one magnetic flux quantum, Φ0=h/2e, per sub-junction. A qualitative explanation that takes...

  15. Images of interlayer Josephson vortices in single-layer cuprates

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  16. Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations

    Huard, B.

    2006-07-01

    This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.

  17. A novel ternary logic circuit using Josephson junction

    Morisue, M.; Oochi, K.; Nishizawa, M.

    1989-01-01

    This paper describes a novel Josephson complementary ternary logic circuit named as JCTL. This fundamental circuit is constructed by combination of two SQUIDs, one of which is switched in the positive direction and the other in the negative direction. The JCTL can perform the fundamental operations of AND, OR, NOT and Double NOT in ternary form. The principle of the operation and design criteria are described in detail. The results of the simulation show that the reliable operations of these circuits can be achieved with a high performance

  18. Measurements of a vortex transitional ndro Josephson memory cell

    Tahara, S.; Ishida, I.; Hidaka, M.; Nagasawa, S.; Ajisawa, Y.; Wada, Y.

    1988-01-01

    A novel vortex transitional NDRO Jospehson memory cell has been successfully fabricated and tested. The memory cell consists of two superconducting loops and a two-junction interferometer gate as a sense gate. The superconducting loop contains one Josephson junction and inductances, and stores single flux quantum. The memory cell employs vortex transitions in the superconducting loops for writing and reading data. The memory cell chips have been fabricated using niobium planarization process. The +-21 percent address signal current margin and the +-33 percent sense gate current margin have been obtained experimentally. The memory operation of the cell driven by the two-junction interferometer gates has been accurately demonstrated

  19. Double-well potential in annular Josephson junction

    Shaju, P.D.; Kuriakose, V.C.

    2004-01-01

    A double-well potential suitable for quantum-coherent vortex tunnelling can be created in an annular Josephson junction by inserting a microshort in the junction and by applying an in-plane dc magnetic field. Analysis shows that the intensity of the magnetic field determines the depth of the potential well and the strength of the microshort controls the potential barrier height while a dc bias across the junction tilts the potential well. At milli-Kelvin temperatures, the system is expected to behave as a quantum two-level system and may be useful in designing vortex qubits

  20. Several alternative approaches to the manufacturing of HTS Josephson junctions

    Villegier , J.; Boucher , H.; Ghis , A.; Levis , M.; Méchin , Laurence; Moriceau , H.; Pourtier , F.; Vabre , M.; Nicoletti , S.; Correra , L.

    1994-01-01

    In this work we describe comparatively the fabrication and the characterization of various types of HTS Josephson junctions manufactured using different processes : grain boundary junctions have been studied both by the way of junctions on bicrystal substrates and of bi-epitaxial junctions. Ramp-edge types have been elaborated and characterized using mainly N-YBaCuO thin film as a barrier while the trilayer approach has been investigated through a-axis structures. YBaCuO or GdBaCuO supercondu...

  1. Fluoride barriers in Nb/Pb Josephson junctions

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  2. Phase transition in a modified square Josephson-junction array

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  3. Steady-state properties of Josephson junctions with direct conductivity

    Zubkov, A.A.; Kupriyanov, M.Y.; Semenov, V.K.

    1981-01-01

    A new criterion for determining the kinetic inductance of Josephson junctions is introduced. The effects of temperature T, the critical temperatures of the superconducting electrodes T/sub c/1 and T/sub c/2, and the weak-link length on the kinetic inductance of ''dirty'' junctions with direct conductivity are analyzed within the framework of the Usadel equations. Numerical calculations show that both a large characteristic voltage and a nearly harmonic dependence of the current on the phase difference of the superconducting-electrode wave functions cannot be obtained by varying the junction parameters

  4. Transition behaviours in two coupled Josephson junction equations

    Wang Jiazeng; Zhang Xuejuan; You Gongqiang; Zhou Fengyan

    2007-01-01

    The dynamics of two coupled Josephson junction equations are investigated via mathematical reasoning and numerical simulations. We show that for a fixed coupling K, the whole parameter space can be comparted into three regions: a quenching region, a synchronized running periodic region and a region where these two states coexist. It is further shown that with the increase of the coupling K, the system may transit from a synchronizing state to a quenching state. The characteristic of the critical line K*(b) which separates these two states is mathematically analysed

  5. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2015-07-01

    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  6. Dynamical behavior of RF-biased Josephson junctions (I)

    Zi-Dan, Wang; Xi-Xian, Yao

    1985-09-01

    A lot of numerical investigation of equations of RF-biased Josephson junctions is carried out, in which the interference term is included in current-phase relation. Chaotic behavior, sequence of period-doubling bifurcations, inverse sequence of chaotic band and intermittent chaos are found separately in various parameter regions. The convergent factor delta n of 2/sup /P sequence and the ratio Phi(k)/Phi(k+1) are calculated, where Phi(k) is the average height of the peaks corresponding to 2/sup k/P in the power spectrum. We also study the symmetry possessed by period solutions and its relation to the nature of approach to chaos.

  7. High-Tc superconducting Josephson mixers for terahertz heterodyne detection

    Malnou, M.; Feuillet-Palma, C.; Olanier, L.; Lesueur, J.; Bergeal, N.; Ulysse, C.; Faini, G.; Febvre, P.; Sirena, M.

    2014-01-01

    We report on an experimental and theoretical study of the high-frequency mixing properties of ion-irradiated YBa 2 Cu 3 O 7 Josephson junctions embedded in THz antennas. We investigated the influence of the local oscillator power and frequency on the device performances. The experimental data are compared with theoretical predictions of the general three-port model for mixers in which the junction is described by the resistively shunted junction model. A good agreement is obtained for the conversion efficiency in different frequency ranges, spanning above and below the characteristic frequencies f c of the junctions

  8. Relaxation towards phase-locked dynamics in long Josephson junctions

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with direct...... numerical experiments performed both on the map and on the perturbed sine-Gordon equation. As an interesting result we find that very close to a bifurcation the relaxation frequency is exactly equal to the half of the step frequency, i.e., the frequency characterizing the period-one solution....

  9. Laminar phase flow for an exponentially tapered Josephson oscillator

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    2000-01-01

    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...

  10. Strong environmental coupling in a Josephson parametric amplifier

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.

    2014-01-01

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  11. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  12. Generation of cluster states with Josephson charge qubits

    Zheng, Xiao-Hu; Dong, Ping; Xue, Zheng-Yuan; Cao, Zhuo-Liang

    2007-01-01

    A scheme for the generation of the cluster states based on the Josephson charge qubits is proposed. The two-qubit generation case is introduced first, and then generalized to multi-qubit case. The successful probability and fidelity of current multi-qubit cluster state are both 1.0. The scheme is simple and can be easily manipulated, because any two charge qubits can be selectively and effectively coupled by a common inductance. More manipulations can be realized before decoherence sets in. All the devices in the scheme are well within the current technology

  13. Graphene-Based Josephson-Junction Single-Photon Detector

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  14. Atomic scale 0-π transition and pairing symmetry in a Josephson junction with a ferromagnetic insulator

    Kawabata, S.; Kashiwaya, S.; Tanaka, Y.; Golubov, A. A.; Asano, Y.

    2011-01-01

    Full text: A superconducting ring with a π-junction made from superconductor (S) / ferromagnetic- metal (FM) / superconductor (S) exhibits a spontaneous current without an external magnetic field and the corresponding magnetic flux is half a flux quantum in the ground state. Such a π-ring provides so-called 'quiet qubit' that can be efficiently decoupled from the fluctuation of the external field. However, the usage of FM gives rise to strong Ohmic dissipation. Therefore, the realization of π-junctions without FM is highly desired for qubit applications. We theoretically consider the possibility of the π-junction formation in the mesoscopic Josephson junctions with ferromagnetic insulators (FI) by taking into account the band structure of such materials explicitly. In the case of the fully polarized FIs, e.g., La 2 BaCuO 5 (LBCO) and K 2 CuF 4 , we found the formation of a π-junction and a novel atomic-scale 0-π transition induced by increasing the FI thickness LF. In this talk, I will discuss a thermal stability and material-parameter dependences of the atomic-scale 0-π transition as well as possibility of the odd-frequency pairing in such systems. (author)

  15. Quantum dynamics of small Josephson junctions: an application to superconductivity in granular films

    Fisher, M.P.A.

    1986-01-01

    This thesis is devoted to a study of the quantum dynamics of small Josephson junctions. Of interest are those features of the junction's behavior which depend explicitly on the quantum mechanical nature of the phase difference phi between the superconductors. In Chapters I and II several calculations are described which focus on the junction's DC resistance. A fully quantum mechanical Hamiltonian is employed that incorporates the dissipative effects due to the unpaired electrons by coupling to a bath of harmonic oscillators. It is shown that the model exhibits a novel zero temperature phase transition as a function of the strength of the dissipation. In the low dissipation regime the phase is free to tunnel quantum mechanically and the junction's resistance is finite; in response to an external current, tunnelling induces successive 2π phase slips leading to a finite voltage state. In contrast, in the high dissipation regime, tunnelling is suppressed and the junction behaves as a superconductor carrying current with no resistive losses. In Chapters III and IV, these results are applied in an attempt to explain the recent observation that in ultra thin Sn films there is apparently a universal normal state sheet resistance above which superconductivity cannot be established

  16. fNIRS Evidence of Prefrontal Regulation of Frustration in Early Childhood

    Perlman, Susan B.; Luna, Beatriz; Hein, Tyler C.; Huppert, Theodore J.

    2013-01-01

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3–5 year-old children, who are not readily adaptable for typical neu...

  17. Logic delays of 5-μm resistor coupled Josephson logic

    Sone, J.; Yoshida, T.; Tahara, S.; Abe, H.

    1982-01-01

    Logic delays of resistor coupled Josephson logic (RCJL) have been investigated. An experimental circuit with a cascade chain of ten RCJL OR gates was fabricated using Pb-alloy Josephson IC technology with 5-μm minimum linewidth. Logic delay was measured to be as low as 10.8 ps with power dissipation of 11.7 μW. This demonstrates a switching operation faster than those reported for other Josephson gate designs. Comparison with computer-simulation results is also presented

  18. Effective boundary field theory for a Josephson junction chain with a weak link

    Giuliano, Domenico; Sodano, Pasquale

    2005-01-01

    We show that a finite Josephson junction (JJ) chain, ending with two bulk superconductors, and with a weak link at its center, may be regarded as a condensed matter realization of a two-boundary sine-Gordon model. Computing the partition function yields a remarkable analytic expression for the DC Josephson current as a function of the phase difference across the chain. We show that, in a suitable range of the chain parameters, there is a crossover of the DC Josephson current from a sinusoidal to a sawtooth behavior, which signals a transition from a regime where the boundary term is an irrelevant operator to a regime where it becomes relevant

  19. Linewidth of Josephson oscillations in YBa2Cu3O7-x grain-boundary junctions

    Divin, Yu. Ya.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    The AC Josephson effect in YBa2Cu3O7-x grain-boundary junctions (GBJs) was studied in the temperature range from 4 K to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured, and it is shown that the derived effective noise temperature of GBJ mig...... Josephson oscillations observed at 77 K was equal to 380 MHz, which demonstrates the applicability of GBJ, particularly in the field of radiation spectroscopy, even at liquid nitrogen temperatures...

  20. Josephson current at atomic scale: Tunneling and nanocontacts using a STM

    Rodrigo, J.G.; Crespo, V.; Vieira, S.

    2006-01-01

    Using a scanning tunneling microscope, STM, with a superconducting tip, we have measured the Josephson current in atomic size tunnel junctions and contacts with a small number of quantum channels of conduction. We analyze our results in terms of the Ivanchenko and Zil'berman model for phase diffusion. The effect of the thermal energy and the electromagnetic environment on the Josephson current is discussed in terms of the transmissions of the individual quantum channels. These results suppose an initial step to the control of Scanning Josephson Spectroscopy at atomic level

  1. Berry's phase, Josephson's equation, and the dynamics of weak link superconductors and their vortices

    Gaitan, F.; Shenoy, S.R.

    1995-05-01

    We examine the dynamical consequences of Berry's phase for Josephson junctions, junction arrays, and their vortices. Josephson's equation and the related phase slip voltages are shown to be unaffected by Berry's phase. In an annular Josephson junction, Berry's phase is seen to generate a new current drive on a vortex. In the continuum limit, vortex is expected in a 2D array is shown to map onto that of a 2D film. A Hall sing anomaly is expected arrays; and the merits of arrays for studies of disorder on vortex motion is discussed. (author). 12 refs

  2. Propagation and generation of Josephson radiation in superconductor/insulator superlattices

    Auvil, P.R.; Ketterson, J.B.

    1987-01-01

    The wave propagation and generation characteristics of a metal-insulator superlattice are calculated in a low-field Landau--Ginzburg model, including Josephson coupling through the insulating layers. It is shown that a significant increase in the phase velocity of the electromagnetic waves propagating in the superlattice occurs when the thickness of the superconducting layers becomes much less than the London penetration depth, suggesting that increased output of Josephson radiation may be achieved from such structures. Wave generation via the ac Josephson effect (in the presence of applied dc electric and magnetic fields) is studied for both parallel and series driven multilayer structures

  3. Static properties of small Josephson tunnel junctions in a transverse magnetic field

    Monaco, R.; Aarøe, Morten; Mygind, Jesper

    2008-01-01

    The magnetic field distribution in the barrier of small planar Josephson tunnel junctions is numerically simulated in the case when an external magnetic field is applied perpendicular to the barrier plane. The simulations allow for heuristic analytical solutions for the Josephson static phase...... profile from which the dependence of the maximum Josephson current on the applied field amplitude is derived. The most common geometrical configurations are considered and, when possible, the theoretical findings are compared with the experimental data. ©2008 American Institute of Physics...

  4. Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    Flowers-Jacobs, Nathan E.; Fox, Anna E.; Dresselhaus, Paul D.; Schwall, Robert E.; Benz, Samuel P.

    2016-01-01

    The root-mean-square (rms) output voltage of the NIST Josephson arbitrary waveform synthesizer (JAWS) has been doubled from 1 V to a record 2 V by combining two new 1 V chips on a cryocooler. This higher voltage will improve calibrations of ac thermal voltage converters and precision voltage measurements that require state-of-the-art quantum accuracy, stability, and signal-to-noise ratio. We achieved this increase in output voltage by using four on-chip Wilkinson dividers and eight inner-outer dc blocks, which enable biasing of eight Josephson junction (JJ) arrays with high-speed inputs from only four high-speed pulse generator channels. This approach halves the number of pulse generator channels required in future JAWS systems. We also implemented on-chip superconducting interconnects between JJ arrays, which reduces systematic errors and enables a new modular chip package. Finally, we demonstrate a new technique for measuring and visualizing the operating current range that reduces the measurement time by almost two orders of magnitude and reveals the relationship between distortion in the output spectrum and output pulse sequence errors. PMID:27453676

  5. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  6. What happens in Josephson junctions at high critical current densities

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  7. Spin-triplet supercurrent in Co-based Josephson junctions

    Khasawneh, Mazin A; Khaire, Trupti S; Klose, Carolin; Pratt, William P Jr; Birge, Norman O

    2011-01-01

    In the past year several groups have reported experimental evidence for spin-triplet supercurrents in Josephson junctions containing strong ferromagnetic materials. In this paper we present several new experimental results that follow up on our previous work. We study Josephson junctions of the form S/X/N/SAF/N/X/S, where S is a superconductor (Nb), N is a normal metal, SAF is a synthetic antiferromagnet of the form Co/Ru/Co and X is an ferromagnetic layer necessary to induce spin-triplet correlations in the structure. Our work is distinguished by the fact that the generation of spin-triplet correlations is tuned by the type and thickness of the X layers. The most important new result reported here is the discovery that a conventional, strong ferromagnetic material, Ni, performs well as the X layer, if it is sufficiently thin. This discovery rules out our earlier hypothesis that out-of-plane magnetocrystalline anisotropy is an important attribute of the X layers. These results suggest that the spin-triplet correlations are most likely induced by noncollinear magnetization between the X layers and adjacent Co layers.

  8. Two Superconducting Charge Qubits Coupled by a Josephson Inductance

    Watanabe, Michio; Yamamoto, Tsuyoshi; Pashkin, Yuri A.; Astafiev, Oleg; Nakamura, Yasunobu; Tsai, Jaw-Shen

    2007-03-01

    When the quantum oscillations [Pashkin et al., Nature 421, 823 (2003)] and the conditional gate operation [Yamamoto et al., Nature 425, 941 (2003)] were demonstrated using superconducting charge qubits, the charge qubits were coupled capacitively, where the coupling was always on and the coupling strength was not tunable. This fixed coupling, however, is not ideal because for example, it makes unconditional gate operations difficult. In this work, we aimed to tunably couple two charge qubits. We fabricated circuits based on the theoretical proposal by You, Tsai, and Nori [PRB 68, 024510 (2003)], where the inductance of a Josephson junction, which has a much larger junction area than the qubit junctions, couples the qubits and the coupling strength is controlled by the external magnetic flux. We confirmed by spectroscopy that the large Josephson junction was indeed coupled to the qubits and that the coupling was turned on and off by the external magnetic flux. In the talk, we will also discuss the quantum oscillations in the circuits.

  9. Q factor and resonance amplitude of Josephson tunnel junctions

    Broom, R.F.; Wolf, P.

    1977-01-01

    The surface impedance of the superconducting films comprising the electrodes of Josephson tunnel junctions has been derived from the BCS theory in the extreme London limit. Expressions have been obtained for (i) the dependence of the penetration depth lambda on frequency and temperature, and (ii) the quality factor Q of the junction cavity, attributable to surface absorption in the electrodes. The effect of thin electrodes (t 9 or approx. = lambda) is also included in the calculations. Comparison of the calculated frequency dependence of lambda with resonance measurements on Pb-alloy and all-Nb tunnel junctions yields quite good agreement, indicating that the assumptions made in the theory are reasonable. Measurements of the (current) amplitude of the resonance peaks of the junctions have been compared with the values obtained from inclusion of the calculated Q in the theory by Kulik. In common with observations on microwave cavities by other workers, we find that a small residual conductivity must be added to the real part of the BCS value. With its inclusion, good agreement is found between calculation and experiment, within the range determined by the simplifying assumptions of Kulik's theory. From the results, we believe the calculation of Q to be reasonably accurate for the materials investigated. It is shown that the resonance amplitude of Josephson junctions can be calculated directly from the material constants and a knowledge of the residual conductivity

  10. Effect of colored noise on an overdamped Josephson junction

    Genchev, Z. D.

    2001-03-01

    In this paper my attention is restricted to stochastic differential equation in phase function φ(t), describing an overdamped Josephson junction. I accept the RSJ (resistively shunted junction) modeling, when the contact characterized by resistance R and critical current I c is under the action of a given direct current I and stochastic current source Ĩ(t) (=0) : {ℏ}/{2 eR }{dφ }/{dt }+I csinφ=I+ Ĩ(t). In our case the thermal noise is a Gaussian process and obeys the Johnson-Nyquistr correlation law C(t)== {ℏ}/{2πR}∫ -∞∞dω ω coth{ℏω}/{2k BT }cosωt. The effective Fokker-Planck equation is derived and the current-voltage characteristics (CVCs) of the Josephson junction are calculated for weakly colored noise. In the limit limℏ→0C(t)= {2k BT }/{R}δ(t) the well-known results for white noise are recovered.

  11. Thermal and quantum escape of fractional Josephson vortices

    Poehler, Hanna; Kienzle, Uta; Buckenmaier, Kai; Gaber, Tobias; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut, Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Universitaet Karlsruhe (Germany)

    2009-07-01

    By using a pair of tiny current injectors one can create an arbitrary {kappa} discontinuity of the phase in a long Josephson junction (LJJ) and a fractional Josephson vortex (FJV), carrying a fraction {phi}/{phi}{sub 0}={kappa}/2{pi}{<=}1 of the magnetic flux quantum {phi}{sub 0}{approx}2.07 .10{sup -15} Wb, which is pinned at the discontinuity. If a bias current I, exceeds the critical value I{sub c}({kappa}), an integer fluxon is torn off the discontinuity and the LJJ switches to the voltage state. Due to thermal or quantum fluctuations this escape event may occur at I

  12. Phase dynamics of low critical current density YBCO Josephson junctions

    Massarotti, D., E-mail: dmassarotti@na.infn.it [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Stornaiuolo, D. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); Rotoli, G. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); Carillo, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Galletti, L. [Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli (Italy); CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Longobardi, L. [Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy); American Physical Society, 1 Research Road, Ridge, NY 11961 (United States); Beltram, F. [Nest, Scuola Normale Superiore, Piazza San Silvestro 12, 56126 Pisa (Italy); Tafuri, F. [CNR-SPIN UOS Napoli, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, Via Roma 29, 81031 Aversa (CE) (Italy)

    2014-08-15

    Highlights: • We study the phase dynamics of YBaCuO Josephson junctions using various tools. • We derive information on the dissipation in a wide range of transport parameters. • Dissipation in such devices can be described by a frequency dependent damping model. • The use of different substrates allows us to tune the shell circuit. - Abstract: High critical temperature superconductors (HTS) based devices can have impact in the study of the phase dynamics of Josephson junctions (JJs) thanks to the wide range of junction parameters they offer and to their unconventional properties. Measurements of current–voltage characteristics and of switching current distributions constitute a direct way to classify different regimes of the phase dynamics and of the transport, also in nontrivial case of the moderately damped regime (MDR). MDR is going to be more and more common in JJs with advances in nanopatterning superconductors and synthesizing novel hybrid systems. Distinctive signatures of macroscopic quantum tunneling and of thermal activation in presence of different tunable levels of dissipation have been detected in YBCO grain boundary JJs. Experimental data are supported by Monte Carlo simulations of the phase dynamics, in a wide range of temperatures and dissipation levels. This allows us to quantify dissipation in the MDR and partially reconstruct a phase diagram as guideline for a wide range of moderately damped systems.

  13. Dynamics of fractional vortices in long Josephson junctions

    Gaber, Tobias

    2007-01-01

    In this thesis static and dynamic properties of fractional vortices in long Josephson junctions are investigated. Fractional vortices are circulating supercurrents similar to the well-known Josephson fluxons. Yet, they show the distinguishing property of carrying only a fraction of the magnetic flux quantum. Fractional vortices are interesting non-linear objects. They spontaneously appear and are pinned at the phase discontinuity points of so called 0-κ junctions but can be bend or flipped by external forces like bias currents or magnetic fields. 0-κ junctions and fractional vortices are generalizations of the well-known 0-π junctions and semifluxons, where not only phase jumps of pi but arbitrary values denoted by kappa are considered. By using so-called artificial 0-κ junctions that are based on standard Nb-AlO x -Nb technology the classical dynamics of fractional vortices has been investigated experimentally for the very first time. Here, half-integer zero field steps could be observed. These voltage steps on the junction's current-voltage characteristics correspond to the periodic flipping/hopping of fractional vortices. In addition, the oscillatory eigenmodes of fractional vortices were investigated. In contrast to fluxons fractional vortices have an oscillatory eigenmode with a frequency within the plasma gap. Using resonance spectroscopy the dependence of the eigenmode frequency on the flux carried by the vortex and an applied bias current was determined. (orig.)

  14. Majorana zero modes in Dirac semimetal Josephson junctions

    Li, Chuan; de Boer, Jorrit; de Ronde, Bob; Huang, Yingkai; Golden, Mark; Brinkman, Alexander

    We have realized proximity-induced superconductivity in a Dirac semimetal and revealed the topological nature of the superconductivity by the observation of Majorana zero modes. As a Dirac semimetal, Bi0.97Sb0.03 is used, where a three-dimensional Dirac cone exists in the bulk due to an accidental touching between conduction and valence bands. Electronic transport measurements on Hall-bars fabricated out of Bi0.97Sb0.03 flakes consistently show negative magnetoresistance for magnetic fields parallel to the current, which is associated with the chiral anomaly. In perpendicular magnetic fields, we see Shubnikov-de Haas oscillations that indicate very low carrier densities. The low Fermi energy and protection against backscattering in our Dirac semimetal Josephson junctions provide favorable conditions for a large contribution of Majorana zero modes to the supercurrent. In radiofrequency irradiation experiments, we indeed observe these Majorana zero modes in Nb-Bi0.97Sb0.03-Nb Josephson junctions as a 4 π periodic contribution to the current-phase relation.

  15. Manipulating Josephson junctions in thin-films by nearby vortices

    Kogan, V.G.; Mints, R.G.

    2014-01-01

    Highlights: • Vortex located in a bank of a planar Josephson junction changes its character. • Vortex located at some discreet positions in thin strip bank suppresses to zero the zero-field current. • The number of these positions is equal to the number of vortices trapped. • Critical current-field patterns are strongly affected by the vortex position. - Abstract: It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I c (H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I c (H) has zero at H=0 instead of the traditional maximum of ‘0-type’ junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction–vortex separation exceeds ∼W, the strip width, I c (H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges

  16. Fully portable blood irradiator

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1980-01-01

    A fully portable blood irradiator was developed using the beta emitter thulium-170 as the radiation source and vitreous carbon as the body of the irradiator, matrix for isotope encapsulation, and blood interface material. These units were placed in exteriorized arteriovenous shunts in goats, sheep, and dogs and the effects on circulating lymphocytes and on skin allograft retention times measured. The present work extends these studies by establishing baseline data for skin graft rejection times in untreated animals

  17. Emergent reduced dimensionality by vertex frustration in artificial spin ice

    Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter

    2016-02-01

    Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.

  18. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  19. Social comparison mediates chimpanzees' responses to loss, not frustration

    Hopper, Lydia M; Lambeth, Susan P; Schapiro, Steve

    2014-01-01

    Why do chimpanzees react when their partner gets a better deal than them? Do they note the inequity or do their responses reflect frustration in response to unattainable rewards? To tease apart inequity and contrast, we tested chimpanzees in a series of conditions that created loss through...... individual contrast, through inequity, or by both. Chimpanzees were tested in four social and two individual conditions in which they received food rewards in return for exchanging tokens with an experimenter. In conditions designed to create individual contrast, after completing an exchange, the chimpanzees...... were given a relatively less-preferred reward than the one they were previously shown. The chimpanzees' willingness to accept the less-preferred rewards was independent of previously offered foods in both the social and individual conditions. In conditions that created frustration through inequity...

  20. VHA Chaplains: challenges, roles, rewards, and frustrations of the work.

    Beder, Joan; Yan, Grace W

    2013-01-01

    Chaplains working in the Veterans Health Administration have numerous roles and challenges. They work closely with other behavioral health professionals, especially social workers, to address the multiplicity of needs of the Veteran population. They are essentially an understudied subset of the military Chaplaincy service (most studies focus on those engaged in combat areas). In this exploratory qualitative study, VHA Chaplains responded to a survey to determine how they defined their role and professional challenges, what they felt were the rewards and frustrations of their work and their unique function within the VHA system. Findings showed that role differences between Chaplains and social workers and other behavioral health providers are clearly defined; rewards and challenges were diverse and frustrations were common to those working in a bureaucratic structure.

  1. Theoretical and experimental investigations of frustrated pyrochlore magnets

    Champion, John Dickon Mathison

    2001-01-01

    This thesis describes the investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Monte Carlo simulations and analytical calculations have been performed on a pyrochlore ferromagnet with local (111) easy-axis anisotropy related to the problem of 'spin ice'. The anisotropy-temperature-magnetic field phase diagram was determined. It contained a tricritical point as well as features related to some real ferroelectrics. A pyrochlore antiferromagnet with local (111) easy-plane anisotropy was studied by Monte Carlo simulation. A general expression for its degenerate ground states was discovered and normal- modes out of the ground states were calculated. Both systems are frustrated yet have a long-range ordered state at low temperature. The degeneracy lifting observed is discussed as well as the reasons for its presence. The rare-earth titanate series Ln 2 Ti 2 O 7 (Ln = rare earth), crystallizes in the Fd3-barm space group, with the magnetic ions situated on the 16c sites which constitute the pyrochlore lattice. Crystal-field effects are known to play a significant role in the frustration observed in these compounds. Powder neutron diffraction was performed on gadolinium and erbium titanate. Both systems are frustrated antiferromagnets yet show long-range magnetic order at ∼ 1 K and ∼ 1.2 K respectively. The magnetic structures of both these compounds have been determined by powder neutron diffraction techniques and related to other theoretical results as well as the theoretical results of the author. Further neutron scattering experiments on the 'spin ice' materials Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 are also described. (author)

  2. Field-controlled spin current in frustrated spin chains

    A.K. Kolezhuk

    2009-01-01

    Full Text Available We study states with spontaneous spin current, emerging in frustrated antiferromagnetic spin-S chains subject to a strong external magnetic field. As a numerical tool, we use a non-Abelian symmetry realization of the density matrix renormalization group. The field dependence of the order parameter and the critical exponents are presented for zigzag chains with S=1/2, 1, 3/2, and 2.

  3. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  4. Level of Ethics, Ethical Frustration and Accountant Discretionary Practices

    Tamminen, Rauno; Leskinen, Markku

    1996-01-01

    In this paper it is shown with the help of a small sample that accounting is ethically loaded; that there exists ethical frustration caused by situational factors related to accounting; and that most probably the situational pressures may also change the level of ethics in the Kohlbergian sense; and that in studying accounting-related ethical problems empirically, the paper-and pencil tests and interviewing may give biased results. The accountant's model of the world is supplemented with ...

  5. Chaos synchronization in a Josephson junction system via active sliding mode control

    Zhao Yang; Wang Wei

    2009-01-01

    In this letter, two types of active siding control methods are proposed and applied to achieve chaotic synchronization in a Josephson junction system. Numerical simulations are used to verify the proposed control techniques.

  6. AC Josephson effect in YBa2Cu3O7-δ bicrystal grain boundary junctions

    Fischer, G.M.; Andreev, A.V.; Divin, Y.Ya.; Freltoft, T.; Mygind, J.; Pedersen, N.F.; Shen Yueqiang; Vase, P.

    1994-01-01

    The ac Josephson effect in YBa 2 Cu 3 O 7-δ bicrystal grain boundary junctions was studied in the temperature range from 4K to 90K. Junctions with widths from 0.2 to 50 μm were made on SrTiO 3 bicrystal substrates by laser ablation and e-beam lithography. The linewidth of the Josephson oscillations is derived from the shape of the dc voltage response to low-intensity, f = 70 GHz radiation at voltages V ≅ (h/2e) f, assuming the RSJ model. The effect of the size on the Josephson behavior of this type of high-T c junctions was studied. Close to T c the linewidth of the Josephson oscillations was shown to be determined by thermal fluctuations. (orig.)

  7. Influence of thermal fluctuations on Cherenkov radiation from fluxons in dissipative Josephson systems

    Antonov, A. A.; Pankratov, A. L.; Yulin, A. V.

    2000-01-01

    The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is analyzed using the "quasiparticle" approach to investigate the influence of noise on the Cherenkov radiation effect. Analytical expressions for the stationary amplitude of the emitted radiation...

  8. Experimental relationship between damping and stability of Sine-Gordon solitons in Josephson junctions

    Davidson, A.; Pedersen, N.F.; Dueholm, B.

    1985-01-01

    We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity Sine-Gordon solitons in real Josephson tunnel junctions

  9. Pinning of Josephson vortex chain in periodically heterogeneous junctions: theory and experiment

    Malomed, B.A.; Ustinov, A.V.

    1989-01-01

    Critical values of the density of extrinsic current of rigid Josephson vortex chain depinning in a long Josephson junction are calculated in terms of the perturbation theory. The dynamics of the chain is considered. In particular, a minimum value of the current density is estimated which permits the chain free motion through the transition on dissipation. The dependence of critical current, Jc, on external magnetic field H is measured for long Josephson junctions Nb-NbO x -Pb with artificial spatially periodic heterogeneities of dielectric barrier. For multiple values of H, the curve Jc(H) is found to display some peaks which, by the theory, are responsible for by an increase in the force of Josephson vortex chain and the heterogeneity lattice are commensurate

  10. Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm

    Ghaemi, Pouyan; Nair, V. P.

    2016-01-01

    In this Letter we study the effect of time-reversal symmetric impurities on the Josephson supercurrent through two-dimensional helical metals such as on a topological insulator surface state. We show that, contrary to the usual superconducting-normal metal-superconducting junctions, the suppression of the supercurrent in the superconducting-helical metal-superconducting junction is mainly due to fluctuations of impurities in the junctions. Our results, which are a condensed matter realization of a part of the Mikheyev-Smirnov-Wolfenstein effect for neutrinos, show that the relationship between normal state conductance and the critical current of Josephson junctions is significantly modified for Josephson junctions on the surface of topological insulators. We also study the temperature dependence of the supercurrent and present a two fluid model which can explain some of the recent experimental results in Josephson junctions on the edge of topological insulators.

  11. Coordinate transformation in the model of long Josephson contacts: geometrically equivalent contacts

    Semerdzhieva, E.G.; Boyadzhiev, T.L.; ); Shukrinov, Yu.M.; Physical Technical Institute Dushanbe, 734063

    2005-01-01

    The transition from model of long Josephson variable-width contact to the contact model with coordinate-dependent Josephson current amplitude is realized by transforming the coordinates. This sets up a correspondence between Josephson contacts of variable width and quasi-one-dimensional contacts of variable thickness barrier layer. It is shown, that for contacts of exponentially varying width the barrier layer of the corresponding quasi-one-dimensional contact contains the distributed resistive inhomogeneity which is an attractor to magnetic flux vortices. With numerical experiments, a 'critical current-magnetic field' dependence for a resistive microinhomogeneity Josephson contact was plotted, and its comparison with the critical curve for a contact of exponentially varying width was made. Thus, this demonstrates that the distributed inhomogeneity may be replaced by a local one at the JC end what technologically, may offer definite advantages

  12. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Adiabatic cooling processes in frustrated magnetic systems with pyrochlore structure

    Jurčišinová, E.; Jurčišin, M.

    2017-11-01

    We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable antiferromagnetic spin-1/2 Ising model in the presence of the external magnetic field on an approximate lattice with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization is investigated and the central role of the macroscopically degenerated ground states in cooling processes is explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly in the situations with nonzero final values of the magnetic field.

  14. Android Fully Loaded

    Huddleston, Rob

    2012-01-01

    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  15. Negative Differential Resistance due to Nonlinearities in Single and Stacked Josephson Junctions

    Filatrella, Giovanni; Pierro, Vincenzo; Pedersen, Niels Falsig

    2014-01-01

    Josephson junction systems with a negative differential resistance (NDR) play an essential role for applications. As a well-known example, long Josephson junctions of the BSCCO type have been considered as a source of terahertz radiation in recent experiments. Numerical results for the dynamics...... shapes of NDR region are considered, and we found that it is essential to distinguish between current bias and voltage bias....

  16. Instanton glass generated by noise in a Josephson-junction array.

    Chudnovsky, E M

    2009-09-25

    We compute the correlation function of a superconducting order parameter in a continuous model of a two-dimensional Josephson-junction array in the presence of a weak Gaussian noise. When the Josephson coupling is large compared to the charging energy, the correlations in the Euclidian space decay exponentially at low temperatures regardless of the strength of the noise. We interpret such a state as a collective Cooper-pair insulator and argue that it resembles properties of disordered superconducting films.

  17. The role of magnetic fields for curvature effects in Josephson junction

    Jarmoliński, A.; Dobrowolski, T., E-mail: dobrow@up.krakow.pl

    2017-06-01

    The large area Josephson junction is considered. On the basis of Maxwell equations the influence of the magnetic field on fluxion dynamics is considered. The presented studies show that assumptions presumed in the literature do not restrict experimental settings adopted in the considerations of the fluxion movement in the Josephson junction. It is shown that the particular orientation of the magnetic fields is not needed in order to study physical effects of curvature and therefore they do not restrict the experimental arrangements.

  18. Observation of nonresonant vortex motion in a long Josephson tunnel junction

    Rajeevakumar, T.V.; Przybysz, J.X.; Chen, J.T.; Langenberg, D.N.

    1980-01-01

    We have observed resistive branches in the I-V characteristics of long Josephson junctions which can be simply understood in terms of the motion of individual Josephson fluxoids with reflection as antifluxoids at the junction edges. The characteristics of these resistive branches differ qualitatively from those of the current singularities previously reported by Chen et al. and by Fulton and Dynes. Our results indicate that the current singularities are not simply related to the motion of individual fluxoids

  19. Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations

    Fistul, M. V.

    2001-01-01

    We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing three small Josephson junctions. The current-voltage characteristics of such a system display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that...

  20. Effect of quasi-particle injection on retrapping current of Josephson junction

    Utsunomiya, K.; Yagi, Ryuta

    2006-01-01

    We report that the energy dissipation of Josephson junction can be controlled by quasi-particle injection. We fabricated two Josephson junctions on the narrow aluminum wire and controlled the energy dissipation of one junction by quasi-particle injection from the other. We observed the retrapping current increased as the quasi-particles were injected. We also studied the heating effect of our measurement.

  1. Experimental relationship between damping and stability of sine-Gordon solitons in Josephson junctions

    Davidson, A.; Pedersen, Niels Falsig; Dueholm, B.

    1985-01-01

    We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions.......We show some experimental results which suggest that total damping, including surface loss, plays a fundamental role in limiting the stability of high-velocity sine-Gordon solitons in real Josephson tunnel junctions....

  2. Pumping $ac$ Josephson current in the Single Molecular Magnets by spin nutation

    Abdollahipour, B.; Abouie, J.; Rostami, A. A.

    2012-01-01

    We demonstrate that an {\\it ac} Josephson current is pumped through the Single Molecular Magnets (SMM) by the spin nutation. The spin nutation is generated by applying a time dependent magnetic field to the SMM. We obtain the flowing charge current through the junction by working in the tunneling limit and employing Green's function technique. At the resonance conditions some discontinuities and divergencies are appeared in the normal and Josephson currents, respectively. Such discontinuities...

  3. Fractional Josephson vortices at YBa$_2$Cu$_3$O$_{7-x}$ grain boundaries

    Mints, R. G.; Papiashvili, Ilya

    2001-01-01

    We report numerical simulations of magnetic flux patterns in asymmetric 45$^{\\circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density $j_c(x)$ alternating along the junctions. We demonstrate the existence of Josephson vortices with fractional flux quanta for both periodic and random $j_c(x)$. A method is proposed to extract fractional vortices from experimental flux patterns.

  4. USER FRUSTRATION IN HIT INTERFACES: EXPLORING PAST HCI RESEARCH FOR A BETTER UNDERSTANDING OF CLINICIANS' EXPERIENCES.

    Opoku-Boateng, Gloria A

    2015-01-01

    User frustration research has been one way of looking into clinicians' experience with health information technology use and interaction. In order to understand how clinician frustration with Health Information Technology (HIT) use occurs, there is the need to explore Human-Computer Interaction (HCI) literature that addresses both frustration and HIT use. In the past three decades, HCI frustration research has increased and expanded. Researchers have done a lot of work to understand emotions, end-user frustration and affect. This paper uses a historical literature review approach to review the origins of emotion and frustration research and explore the research question; Does HCI research on frustration provide insights on clinicians' frustration with HIT interfaces? From the literature review HCI research on emotion and frustration provides additional insights that can indeed help explain user frustration in HIT. Different approaches and HCI perspectives also help frame HIT user frustration research as well as inform HIT system design. The paper concludes with a suggested directions on how future design and research may take.

  5. fNIRS evidence of prefrontal regulation of frustration in early childhood.

    Perlman, Susan B; Luna, Beatriz; Hein, Tyler C; Huppert, Theodore J

    2014-01-15

    The experience of frustration is common in early childhood, yet some children seem to possess a lower tolerance for frustration than others. Characterizing the biological mechanisms underlying a wide range of frustration tolerance observed in early childhood may inform maladaptive behavior and psychopathology that is associated with this construct. The goal of this study was to measure prefrontal correlates of frustration in 3-5-year-old children, who are not readily adaptable for typical neuroimaging approaches, using functional near infrared spectroscopy (fNIRS). fNIRS of frontal regions were measured as frustration was induced in children through a computer game where a desired and expected prize was "stolen" by an animated dog. A fNIRS general linear model (GLM) was used to quantify the correlation of brain regions with the task and identify areas that were statistically different between the winning and frustrating test conditions. A second-level voxel-based ANOVA analysis was then used to correlate the amplitude of each individual's brain activation with measure of parent-reported frustration. Experimental results indicated increased activity in the middle prefrontal cortex during winning of a desired prize, while lateral prefrontal cortex activity increased during frustration. Further, activity increase in lateral prefrontal cortex during frustration correlated positively with parent-reported frustration tolerance. These findings point to the role of the lateral prefrontal cortex as a potential region supporting the regulation of emotion during frustration. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Understanding the Impact of User Frustration Intensities on Task Performance Using the OCC Theory of Emotions

    Washington, Gloria

    2012-01-01

    Have you heard the saying "frustration is written all over your falce"? Well this saying is true, but that is not the only place. Frustration is written all over your face and your body. The human body has various means to communicate an emotion without the utterance of a single word. The Media Equation says that people interact with computers as if they are human: this includes experiencing frustration. This research measures frustration by monitoring human body-based measures such as heart rate, posture, skin temperature. and respiration. The OCC Theory of Emotions is used to separate frustration into different levels or intensities. The results of this study showed that individual intensities of frustration exist, so that task performance is not degraded. Results from this study can be used by usability testers to model how much frustration is needed before task performance measures start to decrease.

  7. Josephson effect in SIFS junctions at arbitrary scattering

    Pugach, N. G.; Kupriyanov, M. Yu.; Goldobin, E.; Koelle, D.; Kleiner, R.

    2011-01-01

    Full text: The interplay between dirty and clean limits in Superconductor-Ferromagnet-Superconductor (SFS) Josephson junctions is a subject of intensive theoretical studies. SIFS junctions, containing an additional insulator (I) barrier are interesting as potential logic elements in superconducting circuits, since their critical current I c can be tuned over a wide range, still keeping a high I c R N product, where R N is the normal resistance of the junction. They are also a convenient model system for a comparative study of the 0-π transitions for arbitrary relations between characteristic lengths of the F-layer: the layer thickness d, the mean free path l, the magnetic length ξ H =v F /2H, and the nonmagnetic coherence length ξ 0 =v F /2πT, where v F is the Fermi velocity, H is the exchange magnetic energy, and T is the temperature. The spatial variations of the order parameter are described by the complex coherent length in the ferromagnet ξ F -1 = ξ 1 -1 + iξ 2 -1 . It is well known, that in the dirty limit (l 1,2 ) described by the Usadel equations both ξ 1 2 = ξ 2 2 = v F l/3H. In this work the spatial distribution of the anomalous Green's functions and the Josephson current in the SIFS junction are calculated. The linearized Eilenberger equations are solved together with the Zaitsev boundary conditions. This allows comparing the dirty and the clean limits, investigating a moderate disorder, and establishing the applicability limits of the Usadel equations for such structures. We demonstrate that for an arbitrary relation between l, ξ H , and d the spatial distribution of the anomalous Green's function can be approximated by a single exponent with reasonable accuracy, and we find its effective decay length and oscillation period for several values of ξ H , l and d. The role of different types of the FS interface is analyzed. The applicability range of the Usadel equation is established. The results of calculations have been applied to the

  8. Dynamics of a nanoscale Josephson junction probed by scanning tunneling microscopy

    Ast, Christian R.; Jaeck, Berthold; Eltschka, Matthias; Etzkorn, Markus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Institut de Physique de la Matiere Condensee, EPFL, Lausanne (Switzerland)

    2015-07-01

    The Josephson effect is an intriguing phenomenon as it presents an interplay of different energy scales, such as the Josephson energy ε{sub J} (critical current), charging energy ε{sub C}, and temperature T. Using a scanning tunneling microscope (STM) operating at a base temperature of 15 mK, we create a nanoscale superconductor-vacuum-superconductor tunnel junction in an extremely underdamped regime (Q>>10). We observe extremely small retrapping currents also owing to strongly reduced ohmic losses in the well-developed superconducting gaps. While formally operating in the zero temperature limit, i.e. the temperature T is smaller than the Josephson plasma frequency ω{sub J} (k{sub B}T<<ℎω{sub J}=√(8ε{sub J}ε{sub C})), experimentally other phenomena, such as stray photons, may perturb the Josephson junction, leading to an effectively higher temperature. The dynamics of the Josephson junction can be addressed experimentally by looking at characteristic parameters, such as the switching current and the retrapping current. We discuss the dynamics of the Josephson junction in the context of reaching the zero temperature limit.

  9. Shunted-Josephson-junction model. II. The nonautonomous case

    Belykh, V. N.; Pedersen, Niels Falsig; Sørensen, O. H.

    1977-01-01

    The shunted-Josephson-junction model with a monochromatic ac current drive is discussed employing the qualitative methods of the theory of nonlinear oscillations. As in the preceding paper dealing with the autonomous junction, the model includes a phase-dependent conductance and a shunt capacitance....... The mathematical discussion makes use of the phase-space representation of the solutions to the differential equation. The behavior of the trajectories in phase space is described for different characteristic regions in parameter space and the associated features of the junction IV curve to be expected are pointed...... out. The main objective is to provide a qualitative understanding of the junction behavior, to clarify which kinds of properties may be derived from the shunted-junction model, and to specify the relative arrangement of the important domains in the parameter-space decomposition....

  10. Magnetic field behavior of current steps in long Josephson junctions

    Costabile, G.; Cucolo, A.M.; Pace, S.; Parmentier, R.D.; Savo, B.; Vaglio, R.

    1980-01-01

    The zero-field steps, or dc current singularities, in the current-voltage characteristics of long Josephson tunnel junctions, first reported by Chen et al., continue to attract research interest both because their study can provide fundamental information on the dynamics of fluxons in such junctions and because they are accompanied by the emission of microwave radiation from the junction, which may be exploitable in practical oscillator applications. The purpose of this paper is to report some experimental observations of the magnetic field behavior of the steps in junctions fabricated in our Laboratory and to offer a qualitative explanation for this behavior. Measurements have been made both for very long (L >> lambdasub(J)) and for slightly long (L approx. >= lambdasub(J)) junctions with a view toward comparing our results with those of other workers. (orig./WRI)

  11. High-performance passive microwave survey on Josephson junctions

    Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M.

    1994-01-01

    The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case

  12. Towards local oscillators based on arrays of niobium Josephson junctions

    Galin, M A; Klushin, A M; Kurin, V V; Seliverstov, S V; Finkel, M I; Goltsman, G N; Müller, F; Scheller, T; Semenov, A D

    2015-01-01

    Various applications in the field of terahertz technology are in urgent need of compact, wide-tunable solid-state continuous wave radiation sources with a moderate power. However, satisfactory solutions for the THz frequency range are scarce yet. Here we report on coherent radiation from a large planar array of Josephson junctions (JJs) in the frequency range between 0.1 and 0.3 THz. The external resonator providing the synchronization of JJ array is identified as a straight fragment of a single-strip-line containing the junctions themselves. We demonstrate a prototype of the quasioptical heterodyne receiver with the JJ array as a local oscillator and a hot-electron bolometer mixer. (paper)

  13. Two coupled Josephson junctions: dc voltage controlled by biharmonic current

    Machura, L; Spiechowicz, J; Kostur, M; Łuczka, J

    2012-01-01

    We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt resistance, a dc voltage across the second junction can be generated. By variation of system parameters such as the relative phase or frequency of two harmonics, one can conveniently manipulate both voltages with high efficiency, e.g. changing the dc voltages across the first and second junctions from positive to negative values and vice versa. (paper)

  14. Doubled Shapiro steps in a topological Josephson junction

    Li, Yu-Hang; Song, Juntao; Liu, Jie; Jiang, Hua; Sun, Qing-Feng; Xie, X. C.

    2018-01-01

    We study the transport properties of a superconductor-quantum spin Hall insulator-superconductor hybrid system in the presence of microwave radiation. Instead of adiabatic analysis or use of the resistively shunted junction model, we start from the microscopic Hamiltonian and calculate the d.c. current directly with the help of the nonequilibrium Green's function method. The numerical results show that (i) the I-V curves of background current due to multiple Andreev reflections exhibit a different structure from those in the conventional junctions, and (ii) all Shapiro steps are visible and appear one by one at high frequencies, while at low frequencies, the steps evolve exactly as the Bessel functions and the odd steps are completely suppressed, implying a fractional Josephson effect.

  15. Possible magneto-optic readout for Josephson technology

    Schmidt, R.; Kratz, H.A.

    1993-01-01

    Operation of Josephson circuits at Gbit/s data rates may be a difficult task if a larger number of fast metallic transmission lines from and to the room temperature electronic are needed. These difficulties are caused by increasing ground level feedthrough, crosstalk and picked-up electromagnetic noise. Furthermore, since metallic lines have finite thermal conductivities which can be high if high quality low loss lines are required, an unacceptable amount of heat may be fed to the cryogenic circuit. There are still other problems, e.g. the requirement, that fast transmission lines must be proper terminated in order to avoid multiple reflections, hence broadband terminating resistors of 50 Ohms should be used, which produce thermal noise according to their operating temperature. (orig.)

  16. Phase-locking transition in a chirped superconducting Josephson resonator.

    Naaman, O; Aumentado, J; Friedland, L; Wurtele, J S; Siddiqi, I

    2008-09-12

    We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.

  17. Spectroscopy of the eigenfrequencies of a fractional Josephson vortex molecule

    Kienzle, Uta; Gaber, Tobias; Buckenmaier, Kai; Koelle, Dieter; Kleiner, Reinhold; Goldobin, Edward [Physikalisches Institut - Experimentalphysik II and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Universitaet Karlsruhe (Germany)

    2008-07-01

    Using a pair of tiny current injectors one can create an arbitrary {kappa} discontinuity of the phase in a long Josephson junction (LJJ). To compensate this discontinuity a {kappa} vortex spontaneously appears. This vortex carries an arbitrary fraction {proportional_to}{kappa} of the magnetic flux quantum {phi}{sub 0} and is a generalization of a semifluxon observed in 0-{pi} LJJs. Such a vortex is pinned at the discontinuity point, but in an underdamped system it is able to oscillate around its equilibrium position with an eigenfrequency. In annular LJJs with two injector pairs two coupled {kappa} vortices, forming a molecule, can be studied. The dependence of the eigenfrequency on temperature and {kappa} of one and two coupled vortices was measured in the range from 300 mK up to 4.2 K. We discuss the results and compare them with simulations based on the perturbed sine-Gordon equation.

  18. High-performance passive microwave survey on Josephson junctions

    Denisov, A.G.; Radzikhovsky, V.N.; Kudeliya, A.M. [State Research Center of Superconductive Radioelectronics, Kiev (Ukraine)

    1994-12-31

    The quasi-optical generations of image of objects with their internal structure in millimeter (MM) and submillimeter (SMM) bands is one of the prime problems of modern radioelectronics. The main advantage of passive MM imaging systems in comparison with visible and infrared (IR) systems is small attenuation of signals in fog, cloud, smoke, dust and other obscurants. However at a panoramic scanning of space the observation time lengthens and thereby the information processing rate becomes restricted. So that single-channel system cannot image in real time. Therefore we must use many radiometers in parallel to reduce the observation time. Such system must contain receiving sensors as pixels in multibeam antenna. The use of Josephson Junctions (JJ) for this purpose together with the cryoelectronic devices like GaAs FET or SQUIDS for signal amplifications after JJ is of particular interest in this case.

  19. Multi-path interferometric Josephson directional amplifier for qubit readout

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.

    2018-04-01

    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  20. NbCN Josephson junctions with AlN barriers

    Thomasson, S.L.; Murduck, J.M.; Chan, H.

    1991-01-01

    This paper reports on niobium carbonitride (NbCN) Josephson circuits which operate over a wider temperature range than either niobium or niobium nitride circuits. Higher operating temperature places NbCN technology more comfortably within the range of closed cycle refrigerators, a key factor in aerospace applications. We have fabricated tunnel junctions from NbCN films with transition temperatures up to 18 Kelvin. High quality NbCN tunnel junction fabrication generally requires low stress films with roughness less than the barrier thickness (∼20 Angstrom). We have developed scanning tunneling microscopy as a tool for measuring and optimizing film smoothness. Junctions formed in situ with AIN tunneling barriers show reproducible I-V characteristics

  1. High quality factor HTS Josephson junctions on low loss substrates

    Stornaiuolo, D; Longobardi, L; Massarotti, D; Barone, A; Tafuri, F [CNR-SPIN Napoli, Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Papari, G; Carillo, F [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Cennamo, N [Dipartimento Ingegneria dell' Informazione, Seconda Universita degli Studi di Napoli, via Roma 29, 81031 Aversa (Italy)

    2011-04-15

    We have extended the off-axis biepitaxial technique to produce YBCO grain boundary junctions on low loss substrates. Excellent transport properties have been reproducibly found, with remarkable values of the quality factor I{sub c}R{sub n} (with I{sub c} the critical current and R{sub n} the normal state resistance) above 10 mV, far higher than the values commonly reported in the literature for high temperature superconductor (HTS) based Josephson junctions. The outcomes are consistent with a picture of a more uniform grain boundary region along the current path. This work supports a possible implementation of grain boundary junctions for various applications including terahertz sensors and HTS quantum circuits in the presence of microwaves.

  2. Circulation and Directional Amplification in the Josephson Parametric Converter

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  3. Dynamics of underdamped Josephson arrays in a magnetic field

    Octavio, M.; Whan, C.B.; Geigenmueller, U.; Lobb, C.J.

    1994-01-01

    We present simulations of the dynamics of underdamped classical Josephson arrays for values of the flux quanta per unit cell f=1/2. We find the dynamics of this system to be quite rich. The I-V characteristics are found to have two distinct regime as the damping is increased. At low voltages the current-voltage characteristics exhibit a regime which we characterize as flux-flow-like since it is dominated by the motion of the vortex superlattice. This regime may exhibit chaotic-like behavior as the damping parameter is increased. At high voltages the characteristics jump to an ohmic-like state in which the junctions are all oscillating. We present a potential model which is quite useful in understanding the dynamics of the system. (orig.)

  4. Dynamical behavior of RF-biased Josephson junctions (II)

    Xi-Dan, Wang; Xi-Xian, Yao

    1985-09-01

    Numerical investigations of a differential equation describing a rf-biased Josephson junction, in which the interference term current is included, are carried out in some parameter region. The existence of the intermittant transition to chaos is obtained and the critical exponent of the scaling law is determined in agreement with theoretical predictions. Furthermore, the Lyapunov exponent is calculated for several parameters, then the fractal dimension of strange attractor d/sub L/ is obtained, its dependence on the Lyapunov exponent is defined by Kaplan and Yorke. In addition, the Kolmogorov capacity of strange attractor d/sub c/ is also calculated by box-counting algorithm. Such calculated values of d/sub L/ and d/sub c/ are close to each other as expected.

  5. High-efficiency thermal switch based on topological Josephson junctions

    Sothmann, Björn; Giazotto, Francesco; Hankiewicz, Ewelina M.

    2017-02-01

    We propose theoretically a thermal switch operating by the magnetic-flux controlled diffraction of phase-coherent heat currents in a thermally biased Josephson junction based on a two-dimensional topological insulator. For short junctions, the system shows a sharp switching behavior while for long junctions the switching is smooth. Physically, the switching arises from the Doppler shift of the superconducting condensate due to screening currents induced by a magnetic flux. We suggest a possible experimental realization that exhibits a relative temperature change of 40% between the on and off state for realistic parameters. This is a factor of two larger than in recently realized thermal modulators based on conventional superconducting tunnel junctions.

  6. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  7. Subharmonic frequency locking in the resistive Josephson thermometer

    van Veldhuizen, M.; Fowler, H.A.

    1985-01-01

    Phase-locked oscillatory solutions are examined as a basis for the dc impedance of the resistive superconducting quantum-interference device Josephson thermometer. The calculations are based on the resistively shunted junction model in the limit 2πL/sub s/I/sub c//Phi 0 > or =1, where L/sub s/ is the loop inductance and I/sub c/ is the junction critical current, and for a junction resistance large compared with the external shunt resistance. An algorithm for representing frequency entrainment in (kappa,ω) space (drive amplitude, frequency) leads to zones with rotation number p/q having the form of leaf-shaped regions joined and overlapping at their tips. High-resonance zones are very thin and locally similar. No chaotic behavior has been observed. The model can simulate the ''rising'' curves of dc impedance as a function of drive amplitude

  8. Synchronisation of Josephson vortices in multi-junction systems

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2006-01-01

    , is modified by the coupling among the junctions, so the motion of the flux quanta in the various layers is affected by the flux dynamics in all other layers. Two basic states are possible: a synchronous motion, where all junctions are reflected at the edge at the same instant, and an out-of-phase motion......, that is mainly to retrieve the above described synchronous motion. We discuss the physics behind synchronization of nonlinear elements and we review applications to Josephson arrays. We discuss in the framework of a general model for synchronization, the Kuramoto model, a mechanism that can possibly enhance...... synchronization, such as coupling to a resonant cavity. We present a version of the Kuramoto model that might include the effects of the strong interaction between the oscillators and the cavity. (c) 2005 Elsevier B.V. All rights reserved....

  9. Spin supercurrent in Josephson contacts with noncollinear ferromagnets

    Shomali, Zahra; Zareyan, Malek; Belzig, Wolfgang

    2011-01-01

    We present a theoretical study of the Josephson coupling of two superconductors that are connected through a diffusive contact consisting of noncollinear ferromagnetic domains. The leads are conventional s-wave superconductors with a phase difference of ψ. Firstly, we consider a contact with two domains with magnetization vectors misoriented by an angle θ. Using the quantum circuit theory, we found that in addition to the charge supercurrent, which shows a 0-π transition relative to the angle θ, a spin supercurrent with a spin polarization normal to the magnetization vectors flows between the domains. While the charge supercurrent is odd in ψ and even in θ, the spin supercurrent is even in ψ and odd in θ. Furthermore, with asymmetric insulating barriers at the interfaces of the junction, the system may experience an antiferromagnetic-ferromagnetic phase transition for ψ=π. Secondly, we discuss the spin supercurrent in an extended magnetic texture with multiple domain walls. We find the position-dependent spin supercurrent. While the direction of the spin supercurrent is always perpendicular to the plane of the magnetization vectors, the magnitude of the spin supercurrent strongly depends on the phase difference between the superconductors and the number of domain walls. In particular, our results reveal the high sensitivity of spin- and charge-transport in the junction to the number of domain walls in the ferromagnet. We show that superconductivity in coexistence with noncollinear magnetism can be used in a Josephson nanodevice to create a controllable spin supercurrent acting as a spin transfer torque on a system. Our results demonstrate the possibility of coupling the superconducting phase to the magnetization dynamics and, hence, constituting a quantum interface, for example between the magnetization and a superconducting qubit.

  10. High-performance DC SQUIDs with submicrometer niobium Josephson junctions

    de Waal, V.J.; Klapwijk, T.M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 ..mu..m tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 ..mu..A and the resistances are about 100 ..cap omega... With SQUIDs having an inductance of 1 nH the voltage modulation is a least 60 ..mu..V. An intrinsic energy resolution of 4 x 10/sup -32/ J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2 x 10/sup -30/ J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3 x 10/sup -12/ Tm/sup -1/. The gradiometer has a size of 12 mm x 17 mm, is simple to fabricate, an is suitable for biomedical applications.

  11. High-performance dc SQUIDs with submicrometer niobium Josephson junctions

    de Waal, V. J.; Klapwijk, T. M.; van den Hamer, P.

    1983-11-01

    We report on the fabrication and performance of low-noise, all-niobium, thin-film planar dc SQUIDs with submicrometer Josephson junctions. The junctions are evaporated obliquely through a metal shadow evaporation mask, which is made using optical lithography with 0.5 µm tolerance. The Josephson junction barrier is formed by evaporating a thin silicon film and with a subsequent oxidation in a glow discharge. The junction parameters can be reproduced within a factor of two. Typical critical currents of the SQUIDs are about 3 µA and the resistances are about 100 Ω. With SQUIDs having an inductance of 1 nH the voltage modulation is at least 60 µV. An intrinsic energy resolution of 4×10-32 J/Hz has been reached. The SQUIDs are coupled to wire-wound input coils or with thin-film input coils. The thin-film input coil consists of a niobium spiral of 20 turns on a separate substrate. In both cases the coil is glued onto a 2-nH SQUID with a coupling efficiency of at least 0.5. Referred to the thin-film input coil, the best coupled energy resolution achieved is 1.2×10-30 J/Hz measured in a flux-locked loop at frequencies above 10 Hz. As far as we know, this is the best figure achieved with an all-refractory-metal thin-film SQUID. The fabrication technique used is suited for making circuits with SQUID and pickup coil on the same substrate. We describe a compact, planar, first-order gradiometer integrated with a SQUID on a single substrate. The gradient noise of this device is 3×10-12 T m-1. The gradiometer has a size of 12 mm×17 mm, is simple to fabricate, and is suitable for biomedical applications.

  12. Chaos and related nonlinear noise phenomena in Josephson tunnel junctions

    Miracky, R.F.

    1984-07-01

    The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10 6 K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10 3 K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ω/sub p/ and a mode at the half harmonic ω/sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references

  13. Chaos and related nonlinear noise phenomena in Josephson tunnel junctions

    Miracky, R.F.

    1984-07-01

    The nonlinear dynamics of Josephson tunnel junctions shunted by a resistance with substantial self-inductance have been thoroughly investigated. The current-voltage characteristics of these devices exhibit stable regions of negative differential resistance. Very large increases in the low-frequency voltage noise with equivalent noise temperatures of 10/sup 6/ K or more, observed in the vicinity of these regions, arise from switching, or hopping, between subharmonic modes. Moderate increases in the noise, with temperatures of about 10/sup 3/ K, arise from chaotic behavior. Analog and digital simulations indicate that under somewhat rarer circumstances the same junction system can sustain a purely deterministic hopping between two unstable subharmonic modes, accompanied by excess low-frequency noise. Unlike the noise-induced case, this chaotic process occurs over a much narrower range in bias current and is destroyed by the addition of thermal noise. The differential equation describing the junction system can be reduced to a one-dimensional mapping in the vicinity of one of the unstable modes. A general analytical calculation of switching processes for a class of mappings yields the frequency dependence of the noise spectrum in terms of the parameters of the mapping. Finally, the concepts of noise-induced hopping near bifurcation thresholds are applied to the problem of the three-photon Josephson parametric amplifier. Analog simulations indicate that the noise rise observed in experimental devices arises from occasional hopping between a mode at the pump frequency ..omega../sub p/ and a mode at the half harmonic ..omega../sub p//2. The hopping is induced by thermal noise associated with the shunt resistance. 71 references.

  14. PREFACE: The International Conference on Highly Frustrated Magnetism HFM2008

    Eremin, Ilya; Brenig, Wolfram; Kremer, Reinhard; Litterst, Jochen

    2009-01-01

    The International Conference on Highly Frustrated Magnetism 2008 (HFM2008) took place on 7-12 September 2008 at the Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany. This conference was the fourth event in a series of meetings, which started in Waterloo, Canada (HFM 2000), followed by the second one in Grenoble, France (HFM 2003), and the third meeting in Osaka, Japan (HFM 2006). HFM2008 attracted more than 220 participants from all over the world. The number of participants of the HFM conference series has been increasing steadily, from about 80 participants at HFM 2000, to 120 participants at HFM 2003, and 190 participants at HFM 2006, demonstrating that highly frustrated magnetism remains a rapidly growing area of research in condensed matter physics. At the end of HFM2008 it was decided that the next International Conference on Highly Frustrated Magnetism will be held in Baltimore, USA in 2010. HFM2008 saw four plenary talks by R Moessner, S Nakatsuji, S-W Cheong, and S Sachdev, 18 invited presentations, 30 contributed talks and about 160 poster presentations from all areas of frustrated magnetism. The subjects covered by the conference included: Kagome systems Itinerant frustrated systems Spinels and pyrochlore materials Triangular systems Unconventional order and spin liquids Chain systems Chain systems Novel frustrated systems This volume of Journal of Physics: Conference Series contains the proceedings of HFM2008 with 83 papers that provide a scientific record of the scientific topics covered by the conference. All articles have been refereed by experts in the field. It is our hope that the reader will enjoy and profit from the HFM2008 Proceedings. Ilya Eremin Proceedings Editor Wolfram Brenig, Reinhard Kremer, and Jochen Litterst Co-Editors International Advisory Board L Balents (USA) F Becca (Italy) S Bramwell (UK) P Fulde (Germany) B D Gaulin (Canada) J E Greedan (Canada) A Harrison (France) Z Hiroi (Japan) H Kawamura (Japan) A Keren

  15. Phase-space networks of geometrically frustrated systems.

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  16. Proposed frustrated-total-reflection acoustic sensing method

    Hull, J.R.

    1981-01-01

    Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves

  17. Fully electric waste collection

    Anaïs Schaeffer

    2015-01-01

    Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region!   Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...

  18. Onset of chaos and dc current-voltage characteristics of rf-driven Josephson junctions in the low-frequency regime

    Chi, C.C.; Vanneste, C.

    1990-01-01

    A comprehensive picture of the dc current-voltage (I-V) characteristics of rf-driven Josephson junctions in the low-frequency regime is presented. The boundary of the low-frequency regime is roughly defined by the junction characteristic frequency for overdamped junctions, and by the inverse of the junction damping time for underdamped junctions. An adiabatic model valid for the low-frequency regime is used to describe the overall shapes of the I-V curves, which is in good agreement with both the numerical simulations and the experimental results. For underdamped junctions, the Shapiro steps are the prominent features on the I-V curves if the rf frequency is sufficiently below the boundary. As the rf frequency is increased towards the boundary, large negatively-going tails on top of the Shapiro steps are observed both experimentally and numerically. Numerical simulations using the resistively- and capacitively-shunted-junction model (RCSJ model) reveal that the negatively-going tail is a signature of the low-frequency boundary of the junction chaotic regime. With use of the adiabatic model and the existence of plasma oscillations for underdamped junctions, the onset of chaos and its effect on the Shapiro steps can be fully explained. The high-frequency limit of the adiabatic model and the chaotic behavior of the Josephson junctions beyond the low-frequency regime are also briefly discussed

  19. Frustration in the pattern formation of polysyllabic words

    Hayata, Kazuya

    2016-12-01

    A novel frustrated system is given for the analysis of (m + 1)-syllabled vocal sounds for languages with the m-vowel system, where the varieties of vowels are assumed to be m (m > 2). The necessary and sufficient condition for observing the sound frustration is that the configuration of m vowels in an m-syllabled word has a preference for the ‘repulsive’ type, in which there is no duplication of an identical vowel. For languages that meet this requirement, no (m + 1)-syllabled word can in principle select the present type because at most m different vowels are available and consequently the duplicated use of an identical vowel is inevitable. For languages showing a preference for the ‘attractive’ type, where an identical vowel aggregates in a word, there arises no such conflict. In this paper, we first elucidate for Arabic with m = 3 how to deal with the conflicting situation, where a statistical approach based on the chi-square testing is employed. In addition to the conventional three-vowel system, analyses are made also for Russian, where a polysyllabic word contains both a stressed and an indeterminate vowel. Through the statistical analyses the selection scheme for quadrisyllabic configurations is found to be strongly dependent on the parts of speech as well as the gender of nouns. In order to emphasize the relevance to the sound model of binary oppositions, analyzed results of Greek verbs are also given.

  20. An exact method for computing the frustration index in signed networks using binary programming

    Aref, Samin; Mason, Andrew J.; Wilson, Mark C.

    2016-01-01

    Computing the frustration index of a signed graph is a key step toward solving problems in many fields including social networks, physics, material science, and biology. The frustration index determines the distance of a network from a state of total structural balance. Although the definition of the frustration index goes back to 1960, its exact algorithmic computation, which is closely related to classic NP-hard graph problems, has only become a focus in recent years. We develop three new b...

  1. Frustration of contract e impossibility of performance en el common law inglés

    José Félix Chamie

    2009-01-01

    Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  2. Frustration of contract e impossibility of performance en el common law inglés

    José Félix Chamie

    2009-06-01

    Full Text Available Sumario: i. Premisa. Formación de la doctrina de la frustration of contract. ii. Implied term theory. iii. Just and reasonable solution theory. iv. Foundation of contract theory. v. Radical change in the obligation: The “Construction theory”. vi. Efectos de la aplicación de la doctrine of frustration. vii. Límites de la jurisprudencia a la aplicación de la doctrine of frustration of contract

  3. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  4. Effect of Frustration on Brain Activation Pattern in Subjects with Different Temperament

    Bierzynska, Maria; Bielecki, Maksymilian; Marchewka, Artur; Debowska, Weronika; Duszyk, Anna; Zajkowski, Wojciech; Falkiewicz, Marcel; Nowicka, Anna; Strelau, Jan; Kossut, Malgorzata

    2016-01-01

    In spite of the prevalence of frustration in everyday life, very few neuroimaging studies were focused on this emotional state. In the current study we aimed to examine effects of frustration on brain activity while performing a well-learned task in participants with low and high tolerance for arousal. Prior to the functional magnetic resonance imaging session, the subjects underwent 2 weeks of Braille reading training. Frustration induction was obtained by using a novel highly difficult tact...

  5. [Tolerance for frustration as a reliability factor in the work of the human operator].

    Makarevich, O F

    1986-01-01

    Frustration tolerance is a personality trait that contributes to the reliable performance of an air traffic controller. This paper presents the results of a psychological examination of air traffic controllers using the Rosenzweig frustration test and emphasizes a correlation between the predominant behavior type in frustrating circumstances and professional success. The paper contains examples of realistic observations over air traffic controllers which confirm experimental data.

  6. The regulation of induced depression during a frustrating situation: benefits of expressive suppression in Chinese individuals.

    Yuan, Jiajin; Liu, Yingying; Ding, Nanxiang; Yang, Jiemin

    2014-01-01

    Studies from European-American cultures consistently reported that expressive suppression was associated with worse emotional consequence (e.g. depression) in comparison with acceptance. However, this conclusion may not apply to Chinese, as suppressing emotional displays to maintain relational harmony is culturally valued in East Asian countries. Thus, the present study examined the effects of suppression and acceptance on the depressive mood induced by a frustrating task in a Chinese sample. Sixty-four subjects were randomly assigned to one of three instructions: suppression, acceptance or no-regulation during a frustrating arithmetic task. The experience of depressive emotion and skin conductance response (SCR) were recorded during pre-frustration baseline, frustration induction and post-frustration recovery phases, respectively. Compared with the control and acceptance instructions, suppression instruction was associated with decreased depressive experiences and smaller SCR activity during frustration. There were no significant differences between acceptance and control groups in both subjective depression and SCR activity during frustration. Moreover, the suppression group showed a better emotional recovery after the frustrating task, in comparison with the acceptance and control groups. Correlation analyses verified that SCR reactivity was a reliable index of experienced depression during the frustration. Expressive suppression is effective in reducing depressive experiences and depression-related physiological activity (SCR) when Chinese people are involved. By contrast, the acceptance of depressive emotion in Chinese people does not produce a similar regulation effect. These findings suggest that cultural context should be considered in understanding the emotional consequences of suppression and acceptance strategies.

  7. Anger under control: neural correlates of frustration as a function of trait aggression.

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  8. The association between Internet addiction and belief of frustration intolerance: the gender difference.

    Ko, Chih-Hung; Yen, Ju-Yu; Yen, Cheng-Fang; Chen, Chung-Sheng; Wang, Shing-Yaw

    2008-06-01

    This study evaluated the association between Internet addiction and frustration intolerance, the gender difference of frustration intolerance, and the gender differences of the association between Internet addiction and frustration intolerance. Participants were 2,114 students (1,204 male and 910 female) who were recruited to complete the Chen Internet Addiction Scale and Frustration Discomfort scale. Females had higher scores on the subscale of entitlement and emotional intolerance and the total scale of the frustration intolerance. There was a significant gender difference on the association between Internet addiction and frustration intolerance. The association was higher in male adolescents. Regression analysis revealed male adolescents with Internet addiction had higher intolerance to frustration of entitlement and emotional discomfort, and female adolescents with it had higher intolerance to emotional discomfort and lower tolerance to frustration of achievement. Frustration intolerance should be evaluated for adolescents with Internet addiction, especially for males. Rational emotive behavior therapy focusing on different irrational beliefs should be provided to male and female adolescents with Internet addiction.

  9. Two-dimensional macroscopic quantum tunneling in multi-gap superconductor Josephson junctions

    Asai, Hidehiro; Kawabata, Shiro; Ota, Yukihiro; Machida, Masahiko

    2014-01-01

    Low-temperature characters of superconducting devices yield definite probes for different superconducting phenomena. We study the macroscopic quantum tunneling (MQT) in a Josephson junction, composed of a single-gap superconductor and a two-gap superconductor. Since this junction has two kinds to the superconducting phase differences, calculating the MQT escape rate requires the analysis of quantum tunneling in a multi-dimensional configuration space. Our approach is the semi-classical approximation along a 1D curve in a 2D potential- energy landscape, connecting two adjacent potential (local) minimums through a saddle point. We find that this system has two plausible tunneling paths; an in-phase path and an out-of-phase path. The former is characterized by the Josephson-plasma frequency, whereas the latter is by the frequency of the characteristic collective mode in a two-band superconductor, Josephson- Leggett mode. Depending on external bias current and inter-band Josephson-coupling energy, one of them mainly contributes to the MQT. Our numerical calculations show that the difference between the in-phase path and the out-of-phase path is manifest, with respect to the bias- current-dependence of the MQT escape rate. This result suggests that our MQT setting be an indicator of the Josephson-Leggett mode

  10. NbN-AlN-NbN Josephson junctions on different substrates

    Merker, Michael; Bohn, Christian; Voellinger, Marvin; Ilin, Konstantin; Siegel, Michael [KIT, Karlsruhe (Germany)

    2016-07-01

    Josephson junction technology is important for the realization of high quality cryogenic devices such as SQUIDs, RSFQ or SIS-mixers. The material system based on NbN/AlN/NbN tri-layer has gained a lot of interest, because it offers higher gap voltages and critical current densities compared to the well-established Nb/Al-AlOx/Nb technology. However, the realization of high quality Josephson junctions is more challenging. We developed a technology of Josephson junctions on a variety of substrates such as Silicon, Sapphire and Magnesium oxide and compared the quality parameters of these junctions at 4.2 K. The gap voltages achieved a range from 4 mV (for the junctions on Si) to 5.8 mV (in case of MgO substrates) which is considerably higher than those obtained from Nb based Josephson junctions. Another key parameter is the ratio of the subgap resistance to the normal state resistance. This so-called subgap ratio corresponds to the losses in a Josephson junction which have to be minimized. So far, subgap ratios of 26 have been achieved. Further careful optimization of the deposition conditions is required to maximize this ratio, The details of the optimization of technology and of characterization of NbN/AlN/NbN junctions will be presented and discussed.

  11. Is there a relationship between curvature and inductance in the Josephson junction?

    Dobrowolski, T.; Jarmoliński, A.

    2018-03-01

    A Josephson junction is a device made of two superconducting electrodes separated by a very thin layer of isolator or normal metal. This relatively simple device has found a variety of technical applications in the form of Superconducting Quantum Interference Devices (SQUIDs) and Single Electron Transistors (SETs). One can expect that in the near future the Josephson junction will find applications in digital electronics technology RSFQ (Rapid Single Flux Quantum) and in the more distant future in construction of quantum computers. Here we concentrate on the relation of the curvature of the Josephson junction with its inductance. We apply a simple Capacitively Shunted Junction (CSJ) model in order to find condition which guarantees consistency of this model with prediction based on the Maxwell and London equations with Landau-Ginzburg current of Cooper pairs. This condition can find direct experimental verification.

  12. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  13. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  14. PECVD SiO2 dielectric for niobium Josephson IC process

    Lee, S.Y.; Nandakumar, V.; Murdock, B.; Hebert, D.

    1991-01-01

    PECVD SiO 2 dielectric has been evaluated as an insulator for a Nb-based, all-refractory Josephson integrated circuit process. First, the properties of PECVD SiO 2 films were measured and compared with those of evaporated SiO films. Second, the PECVD SiO 2 dielectric film was used in our Nb-based Josephson integrated circuit process. The main problem was found to be the deterioration of the critical temperature of the superconducting niobium adjacent to the SiO 2 . The cause and a solution of the problem were investigated. Finally, a Josephson integrated sampler circuit was fabricated and tested. This paper shows acceptable junction I-V characteristics and a measured time resolution of a 4.9 ps pulse in liquid helium

  15. Hybrid Josephson-CMOS Memory in Advanced Technologies and Larger Sizes

    Liu, Q; Van Duzer, T; Fujiwara, K; Yoshikawa, N

    2006-01-01

    Recent progress on demonstrating components of the 64 kb Josephson-CMOS hybrid memory has encouraged exploration of the advancement possible with use of advanced technologies for both the Josephson and CMOS parts of the memory, as well as considerations of the effect of memory size on access time and power dissipation. The simulations to be reported depend on the use of an approximate model for 90 nm CMOS at 4 K. This model is an extension of the one we developed for 0.25 μm CMOS and have already verified. For the Josephson parts, we have chosen 20 kA/cm 2 technology, which was recently demonstrated. The calculations show that power dissipation and access time increase rather slowly with increasing size of the memory

  16. R.f.-induced steps in mutually coupled, two-dimensional distributed Josephson tunnel junctions

    Klein, U.; Dammschneider, P.

    1991-01-01

    This paper reports on the amplitudes of the current steps in the I-V characteristics of mutually coupled two-dimensional distributed Josephson tunnel junctions driven by microwaves. For this purpose we use a numerical computation algorithm based on a planar resonator model for the individual Josephson tunnel junctions to calculate the d.c. current density distribution. In addition to the fundamental microwave frequency, harmonic contents of the tunneling current are also considered. The lateral dimensions of the individual junctions are small compared to the microwave wavelength and the Josephson penetration depth, giving an almost constant current density distribution. Therefore, the coupled junctions can give much greater step amplitudes than a single junction with an equal tunneling area, because of their nonuniform current density distribution

  17. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco

    2014-01-01

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate

  18. Spin transport in diffusive ferromagnetic Josephson junctions with noncollinear magnetization

    Shomali, Zahra; Zareyan, Malek [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195 (Iran, Islamic Republic of); Belzig, Wolfgang [Fachbereich Physik, Universitaet Konstanz, D-78457 Konstanz (Germany)

    2011-07-01

    We numerically study the Josephson coupling of two s-wave superconductors which are connected through a diffusive contact made of two ferromagnetic domains with the magnetization vectors misoriented by an angle {theta}. The assumed superconducting leads are conventional s-wave type with the phase difference of {phi}. Using the quantum circuit theory, we find that in addition to the charge supercurrent, which shows a 0-{pi} transition relative to the angle {theta}, the spin supercurrent with a spin polarization normal to the magnetization vectors will flow through the contact. Our results present a 0-{pi} quantum phase transition as a function of the wave vector, Q{xi}. Finally, we investigate the spin supercurrent in an extended magnetic texture with multiple domain walls. We find the behavior of spin supercurrent is highly sensitive to the barrier. When asymmetric barriers don't change the value of the spin supercurrent, the symmetric ones decrease the value of it notably. We also investigate some other interesting effects for these systems. In addition, we present when Q{xi} is the even multiple of {pi}, the spin-current which is penetrated into the nonhomogeneous ferromagnets is nearly zero, how ever the odd ones show the large amount of penetrated spin supercurrent.

  19. Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing

    Brevik, Justus A.; Flowers-Jacobs, Nathan E.; Fox, Anna E.; Golden, Evan B.; Dresselhaus, Paul D.; Benz, Samuel P.

    2017-01-01

    We describe the implementation of new commercial pulse-bias electronics that have enabled an improvement in the generation of quantum-accurate waveforms both with and without low-frequency compensation biases. We have used these electronics to apply a multilevel pulse bias to the Josephson arbitrary waveform synthesizer and have generated, for the first time, a quantum-accurate bipolar sinusoidal waveform without the use of a low-frequency compensation bias current. This uncompensated 1 kHz waveform was synthesized with an rms amplitude of 325 mV and maintained its quantum accuracy over a1.5 mA operating current range. The same technique and equipment was also used to synthesize a quantum-accurate 1 MHz sinusoid with a 1.2 mA operating margin. In addition, we have synthesized a compensated 1 kHz sinusoid with an rms amplitude of 1 V and a 2.7 mA operating margin. PMID:28736494

  20. Invariant submanifold for series arrays of Josephson junctions.

    Marvel, Seth A; Strogatz, Steven H

    2009-03-01

    We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current, and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of N-3 constants of motion, the choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.

  1. Coherent current states in mesoscopic four-terminal Josephson junction

    Zareyan, M.; Omelyanchouk, A.N.

    1999-01-01

    A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consist of a mesoscopic two-dimensional normal rectangular layer which is attached on each side to the bulk superconducting banks (terminals). A relation is obtained between the currents through the different terminals, that is valid for arbitrary temperatures and junction sizes. The nonlocal coupling of the supercurrent leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The 'interference pattern' for the anomalous average inside the two-dimensional region cam be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and two-dimensional phase slip center appear

  2. Suppression and enhancement of decoherence in an atomic Josephson junction

    Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay

    2016-05-01

    We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).

  3. Josephson frequency meter for millimeter and submillimeter wavelengths

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I.

    1994-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process

  4. Josephson frequency meter for millimeter and submillimeter wavelengths

    Anischenko, S.E.; Larkin, S.Y.; Chaikovsky, V.I. [State Research Center, Kiev (Ukraine)] [and others

    1994-12-31

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoff for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decreases with the increase of wavelength due to diffraction losses. That requires the apriori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is the one based on frequency conversion, resonance and interferrometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain panoramic display of the results as well as full automation of the measuring process.

  5. Experiments on phase retrapping in φ Josephson junctions

    Goldobin, Edward; Menditto, Rosina; Koelle, Dieter; Kleiner, Reinhold [University of Tuebingen, Tuebingen (Germany); Weides, Martin [KIT, Karlsruhe (Germany)

    2015-07-01

    We experimentally study retrapping of the phase in φ Josephson junctions (JJs) based on superconductor-insulator-ferromagnet-superconductor (SIFS) 0-π heterostructures. Such φ JJs have a doubly degenerate ground state (two potential energy wells) with the phases ±φ (0 < φ < π). We study in which of these two wells the phase is trapped upon return of the JJ to the zero voltage state. We find that for T>T* ∼ 2.4 K (large damping) the phase is always trapped in the +φ state. However, for lower T (small damping) the trapping result is a statistical mixture of the +φ and the -φ states due to the presence of noise in the system. The probability for retrapping to the -φ state increases and oscillates as T is decreasing below T*, reaching a saturation value of ∝ 30% for T

  6. Structured chaos in a devil's staircase of the Josephson junction.

    Shukrinov, Yu M; Botha, A E; Medvedeva, S Yu; Kolahchi, M R; Irie, A

    2014-09-01

    The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.

  7. Magnetic properties of strip-like Josephson-junction arrays

    Chen, D.-X; Moreno, J.J.; Hernando, A.; Sanchez, A.

    2000-01-01

    Zero-field-cooled (ZFC) and field-cooled (FC) magnetic properties of strip-like Josephson-junction (JJ) arrays with very strong demagnetizing effects are calculated from basic laws. Similar to slab-like JJ arrays without considering demagnetizing effects, a vortex state evolves to a critical state (CS) with increasing maximum JJ currents in the ZFC case, and a vortex state always remains with a negative low-field susceptibility in the FC case. However, the strong demagnetizing effects cause qualitative changes in the CS, where the overall feature of the field and current profiles turns out to be similar to that in type-II superconducting strips, but not like the ordinary Bean CS in slab-like JJ arrays, the CS current profile is never flat and the critical current is no longer a step function of the maximum JJ current as in slab-like JJ arrays. The calculated results of different types of JJ arrays indicate that although the intergranular CS in granular superconductors may have a common origin, the discovered paramagnetic Meissner effect in them is still difficult to explain. (author)

  8. A spin-frustrated cobalt(II) carbonate pyrochlore network.

    Zheng, Yanzhen; Ellern, Arkady; Kögerler, Paul

    2011-11-01

    The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO(3))(2)Na(3)Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co(4)(μ(3)-CO(3))(4)} tetrahedral building blocks, in which the Co(II) centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO(2))(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na(+) and Cl(-) ions. Antiferromagnetic coupling between adjacent Co(II) centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position 3, one Na atom on position 2 and a carbonate C atom on position 3.

  9. The dynamics of the Frustrated Ising Lattice Gas

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  10. Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet

    Žukovič Milan

    2014-07-01

    Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.

  11. Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides

    Xiao-Dong, Liu; Masato, Hagihala; Xu-Guang, Zheng; Dong-Dong, Meng; Wan-Jun, Tao; Sen-Lin, Zhang; Qi-Xin, Guo

    2011-01-01

    The mid-infrared absorption spectra of geometrically frustrated hydroxyl cobalt halogenides Co 2 (OH) 3 Cl and Co 2 (OH) 3 Br are measured by FTIR spectrometers, and the stretching vibrational modes of hydroxyl groups are found to be 3549cm −1 and 3524cm −1 respectively. Through finding their true terminal O-H group stretching vibration frequencies, we obtain 107cm −1 and 99cm −1 red shift caused by the corresponding O-H···Cl and O-H···Br hydrogen bonds. Rarely reported trimeric hydrogen bonds (Co 3 ≡O-H) 3 ···Cl/Br are pointed out to demonstrate the relative weakness of this kind of hydrogen bond which may have a critical effect on the lattice symmetry and magnetic structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Localized-magnon states in strongly frustrated quantum spin lattices

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  13. Visualization of the current density in Josephson junctions with 0- and π-facets

    Guerlich, Christian

    2010-01-01

    With Low-Temperature-Electron-Microscopy (LTSEM) it is possible to analyse the transport properties of solids at low temperatures. In particular it is possible to image the supercurrent density j s in Josephson junctions. This was demonstrated by comparing TTREM-images with calculated values for j s . In this thesis ramp-type Nd 2-x Ce x CuO 4-y /Nb-Josephson-junctions (NCCO/Nb) and Josephson junctions with a ferromagnetic interlayer Nb/Al-Al 2 O 3 /NiCu/Nb, so-called SIFS (superconductor-insulator-ferromagnet-superconductor) Josephson junctions were studied.It was demonstrated that LTSEM provides direct imaging of the sign change of the order parameter in superconductors with d x 2 -y 2 -symmetry. This was a controversial issue over the last decade. A step like variation in the thickness of the F-layer allows the fabrication of linear and annular Josephson junctions with different numbers of 0 and π facets. With the LTSEM 0-, π-, 0-π-, 0-π-0-, 0/2-π-0/2-, 20 x (0-π)- as well as square-shaped-, circular- and annular-Josephson-junctions were studied. It was demonstrated, that these junctions are of good quality and have critical current densities up to 42 A/cm 2 at T=4.2 K, which is a record value for SIFS junctions with a NiCu F-layer so far. By comparing the measurements with simulations a first indication of a semifluxon at the 0-π-boundary was found. (orig.)

  14. Origin of ferroelectricity and exotic magnetism in frustrated LiCuVO4

    Mourigal, Martin

    2013-03-01

    The spin-1/2 Heisenberg chain with competing ferromagnetic nearest-neighbor (J1) and antiferromagnetic next-nearest neighbor (J2) interactions is probably one the simplest, yet richest model in frustrated magnetism. It is experimentally realized in a diversity of Mott insulators, in particular in copper-oxide materials built-up from edge-sharing CuO6 octahedra. The quasi-1D compound LiCuVO4 stands out for the diverse emergent magnetic and multiferroic phenomena it displays, its simple crystal structure and its availability as high-quality single crystals. I will review recent elastic neutron scattering works on LiCuVO4 which elucidate the nature of its ground-state as a function of applied electric field and magnetic field up to 14 T. Below 3.5 T, a model long-range ordered ferroelectric spin-cycloid is unveiled, its chirality fully controlled by an applied electric field, and the corresponding magnetoelectric coupling in excellent agreement with the predictions of a purely electronic mechanism based on spin currents. Above 8 T, a transition to a new quantum state is observed. This new phase resembles the longitudinal density-wave of magnon-pairs (p=2 SDW) predicted in the purely 1D case but is characterized by the intriguing absence of long-ranged dipolar correlations. Work performed at the Institut Laue-Langevin in Grenoble and in collaboration with M. Enderle, B. Fåk, R. K. Kremer and J. Law.

  15. On the Josephson effect between superconductors in singlet and triplet spin-pairing states

    Pals, J.A.; Haeringen, W. van

    1977-01-01

    An expression is derived for the Josephson current between two weakly coupled superconductors of which one or both have pairs in a spin-triplet state. It is shown that there can be no Josephson effect up to second order in the transition matrix elements between a superconductor with spin-triplet pairs and one with spin-singlet pairs if the coupling between the two superconductors can be described with a spin-conserving tunnel hamiltonian. This is shown to offer a possibility to investigate experimentally whether a particular superconductor has spin-triplet pairs by coupling it weakly to a well-known spin-singlet pairing superconductor. (Auth.)

  16. High temperature superconducting Josephson transmission lines for pulse and step sharpening

    Martens, J.S.; Wendt, J.R.; Hietala, V.M.; Ginley, D.S.; Ashby, C.I.H.; Plut, T.A.; Vawter, G.A.; Tigges, C.P.; Siegal, M.P.; Hou, S.Y.; Phillips, J.M.; Hohenwarter, G.K.G.

    1992-01-01

    An increasing number of high speed digital and other circuit applications require very narrow impulses or rapid pulse edge transitions. Shock wave transmission lines using series or shunt Josephson junctions are one way to generate these signals. Using two different high temperature superconducting Josephson junction processes (step-edge and electron beam defined nanobridges), such transmission lines have been constructed and tested at 77 K. Shock wave lines with approximately 60 YBaCuO nanobridges, have generated steps with fall times of about 10 ps. With step-edge junctions (with higher figures of merit but lower uniformity), step transition times have been reduced to an estimated 1 ps

  17. Stationary Josephson effect in a weak-link between nonunitary triplet superconductors

    Rashedi, G; Kolesnichenko, Yu.A.

    2005-01-01

    A stationary Josephson effect in a weak-link between misorientated nonunitary triplet superconductors is investigated theoretically. The non-self-consistent quasiclassical Eilenberger equation for this system has been solved analytically. As an application of this analytical calculation, the current-phase diagrams are plotted for the junction between two nonunitary bipolar f-wave superconducting banks. A spontaneous current parallel to the interface between superconductors has been observed. Also, the effect of misorientation between crystals on the Josephson and spontaneous currents is studied. Such experimental investigations of the current-phase diagrams can be used to test the pairing symmetry in the above-mentioned superconductors

  18. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity

    Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig

    1997-01-01

    Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...

  19. Quantitative analysis of Josephson-quasiparticle current in superconducting single-electron transistors

    Nakamura, Y.; Chen, C.D.; Tsai, J.S.

    1996-01-01

    We have investigated Josephson-quasiparticle (JQP) current in superconducting single-electron transistors in which charging energy E C was larger than superconducting gap energy Δ and junction resistances were much larger than R Q ≡h/4e 2 . We found that not only the shapes of the JQP peaks but also their absolute height were reproduced quantitatively with a theory by Averin and Aleshkin using a Josephson energy of Ambegaokar-Baratoff close-quote s value. copyright 1996 The American Physical Society

  20. Modulated microwave absorption spectra from Josephson junctions on a scratched niobium wire

    Rubins, R.S.; Hutton, S.L.; Ravindran, K.; Subbaraman, K.; Drumheller, J.E.

    1997-01-01

    Modulated microwave absorption (MMA) spectra from Josephson junction formations on a scratched Nb wire have been studied at 9.3 GHz and 4 K. The peak-to-peak separation, δH of the Josephson lines was found to vary linearly with P 1/2 , where P is the applied microwave power, in contrast to a recent interpretation of junction formation in pressed lead pieces by Rubins, Drumheller, and Trybula. The interpretation of the MMA data on Nb are given in terms of the theory of Vichery, Beuneu, and Lejay for superconducting loops containing weak links. copyright 1997 The American Physical Society

  1. Search for the in-phase Flux Flow mode in stacked Josephson junctions

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2006-01-01

    Josephson vortex flux flow states in stacked Josephson junctions are investigated numerically. The aim of the work is to understand the mechanisms behind the formation of triangular (anti-phase) and square (in-phase) vortex lattices, and is motivated by recent experiments on layered BSCCO type high......-T-c superconductors in a magnetic field. In order to keep the problem as simple as possible we consider in detail only the case with two junctions in the stack. (c) 2006 Elsevier B.V. All rights reserved....

  2. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.

    Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix

    2016-12-23

    We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.

  3. Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials

    Kline, Jeffrey S; Oh, Seongshik; Pappas, David P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Wang Haohua; Martinis, John M [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: klinej@nist.gov

    2009-01-15

    We have found that crystalline Josephson junctions have problems with the control of critical current density that decrease the circuit yield. We present a superconducting quantum bit circuit designed to accommodate a factor of five variation in critical current density from one fabrication run to the next. The new design enables the evaluation of advanced tunnel barrier materials for superconducting quantum bits. Using this circuit design, we compare the performance of Josephson phase qubits fabricated with MgO and Al{sub 2}O{sub 3} advanced crystalline tunnel barriers to AlO{sub x} amorphous tunnel barrier qubits.

  4. Symmetry of trapped-field profiles in square columnar Josephson-junction arrays

    Moreno, J.J.; Chen, D.; Hernando, A.

    1995-01-01

    The remanence of NxN square-columnar Josephson-junction arrays with normalized maximum junction current i max is calculated from the dc and ac Josephson equations, the Ampere theorem, and the gauge invariance. A transition line on the i max- N plane is obtained, on the high-i max side of which the remanence is nonzero. It is found that in the nonzero remanence state the symmetry degree of field profile can be lower than expected by intuition. The meaning and importance of this finding are discussed

  5. Improving ion irradiated high Tc Josephson junctions by annealing: The role of vacancy-interstitial annihilation

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2007-01-01

    The authors have studied the annealing effect in the transport properties of high T c Josephson junctions (JJs) made by ion irradiation. Low temperature annealing (80 deg. C) increases the JJ coupling temperature (T J ) and the I c R n product, where I c is the critical current and R n the normal resistance. They have found that the spread in JJ characteristics can be reduced by sufficient long annealing times, increasing the reproducibility of ion irradiated Josephson junctions. The characteristic annealing time and the evolution of the spread in the JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one

  6. Experimental study of macroscopic quantum tunnelling in Bi2212 intrinsic Josephson junctions

    Matsumoto, Tetsuro; Kashiwaya, Hiromi; Shibata, Hajime; Kashiwaya, Satoshi; Kawabata, Shiro; Eisaki, Hiroshi; Yoshida, Yoshiyuki; Tanaka, Yukio

    2007-01-01

    The quantum dynamics of Bi 2 Sr 2 CaCu 2 O 8+δ intrinsic Josephson junctions (IJJs) is studied based on escape rate measurements. The saturations observed in the escape temperature and in the width of the switching current below 0.5 K (= T * ) indicate the transition of the switching mechanism from thermal activation to macroscopic quantum tunnelling. It is shown that the switching properties are consistently explained in terms of the underdamped Josephson junction with a quality factor of 70 ± 20 in spite of possible damping due to the nodal quasiparticles of d-wave superconductivity. The present result gives the upper limit of the damping of IJJs

  7. Fine structures on zero-field steps in low-loss Josephson tunnel junctions

    Monaco, Roberto; Barbara, Paola; Mygind, Jesper

    1993-01-01

    The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....

  8. Developmental Changes in the Rosenzweig Picture--Frustration Study, Children's Form.

    Graybill, Daniel

    1987-01-01

    Study examined the validity of 1948 norms of the Picture-Frustration Study, Children's Form. Instrument was administered to 140 children, grades 2 through 6, as part of a project investigating effects of video games. Though findings differed from the 1948 norms, they supported the validity of the Children's Form of the Picture-Frustration Study.…

  9. Effects of Frustration on the Response Rate of Skid Row Alcoholics on a Performance Task

    Scorzelli, James F.; Reinke-Scorzelli, Mary

    1976-01-01

    Determines the changes that may occur in the response rates of 14 skid row alcoholics on a performance task after the introduction of a frustration operation. Results suggest a possible relationship between low frustration tolerance and the method by which these individuals tend to motivate themselves. (Author)

  10. Multipartite fully nonlocal quantum states

    Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio

    2010-01-01

    We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.

  11. Coherent terahertz emission from Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks

    Rudau, Fabian; Gross, Boris; Wieland, Raphael; Judd, Thomas; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut and Center for Collective Quantum Phenomena in LISA" +, Universitaet Tuebingen, Tuebingen (Germany); Kinev, Nickolay; Koshelets, Valery [Kotel' nikov Institute of Radio Engineering and Electronics, Moscow (Russian Federation); Tsujimoto, Manabu [Kyoto University, Kyoto (Japan); Ji, Min; Huang, Ya; Zhou, Xianjing; An, Deyue; Wang, Huabing [National Institute for Materials Science, Tsukuba (Japan); Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Wu, Peiheng [Research Institute of Superconductor Electronics, Nanjing University, Nanjing (China); Hatano, Takeshi [National Institute for Materials Science, Tsukuba (Japan)

    2015-07-01

    Stacks of intrinsic Josephson junctions, made of the high temperature superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, are promising candidates to be used as generators of electromagnetic waves in the terahertz regime, in principle allowing frequencies up to ∝10 THz. Ranging from 0.4 to 1 THz, coherent emission was detected from large, rectangular stacks, producing several tens of microwatt in power. Despite of several years of research, the mechanism of synchronizing all the junctions in the stack is still not fully understood. We investigated the heat distribution and electromagnetic standing waves in such stacks, as well as the generation of terahertz radiation, using a combination of electric transport measurements, direct radiation detection and low temperature scanning laser microscopy. Recent experimental results from our collaboration will be presented and compared to numerical simulations.

  12. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  13. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. The classification of idiopathic spasmodic torticollis: three types based on social adaptation and frustration tolerance.

    Kashiwase, H; Kato, M

    1997-12-01

    In this study, idiopathic spasmodic torticollis (ST) has been classfied into three types from the opinion of social adaptation and the differences of frustration tolerance. The three types were as follows: type I (overadaptive type), type II (maladaptive type), and type III (compatible type). Type I is a typical psychosomatic with high frustration tolerance. Type II is personality disorder with low frustration tolerance. In type III, frustration tolerance varies depending on social circumstances (i.e., different at home and at the office). In type I, the prognosis of ST is generally unfavorable, since it is associated with recurrence and prolongation of the symptoms. In type II, the prognosis of ST is generally favorable. However, type II patients experience relationship or social difficulties. One characteristic of type III is that the onset of symptoms is usually found in an older person because of proper use of frustration tolerance at home and at the office.

  15. Electron-beam damaged high-temperature superconductor Josephson junctions

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  16. Spatiotemporal chaos in rf-driven Josephson junction series arrays

    Dominguez, D.; Cerdeira, H.A.

    1995-01-01

    We study underdamped Josephson junction series arrays that are globally coupled through a resistive shunting load and driven by an rf bias current. They can be an experimental realization of many phenomena currently studied in globally coupled logistic maps. We study their spatiotemporal dynamics and we find coherent, ordered, partially ordered, turbulent, and quasiperiodic phases. The ordered phase corresponds to giant Shapiro steps in the IV characteristics. In the turbulent phase there is a saturation of the broad-band noise for a large number of junctions. This corresponds to a breakdown of the law of large numbers as seen in globally coupled maps. Coexisting with this phenomenon, we find an emergence of pseudosteps in the IV characteristics. This effect can be experimentally distinguished from the true Shapiro steps, which do not have broad-band noise emission. We study the stability of the breakdown of the law of large numbers against thermal fluctuations. We find that it is stable below a critical temperature T c1 . A measurement of the broad-band noise as a function of temperature T will show three different regimes: below T c1 the broad-band noise decreases when increasing T, and there is turbulence and the breakdown of the law of large numbers. Between T c1 and a second critical temperature T c2 the broad-band noise is constant and the dynamics is dominated by the chaos of the individual junctions. Finally above T c2 all the broad-band noise is due to thermal fluctuations, since it increases linearly with T

  17. Complex dynamics in Josephson system with two external forcing terms

    Yang Jianping; Feng Wei; Jing Zhujun

    2006-01-01

    Josephson system with two external forcing terms is investigated. By applying Melnikov method, we prove that criterion of existence of chaos under periodic perturbation. By second-order averaging method and Melnikov method, we obtain the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 =ω 1 +εν, and cannot prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 =nω 1 +εν (n>=2 and n-bar N), where ν is not rational to ω 1 . We also study the effects of the parameters of system on dynamical behaviors by using numerical simulation. The numerical simulations, including bifurcation diagram of fixed points, bifurcation diagram of system in three- and two-dimensional space, homoclinic and heteroclinic bifurcation surface, Maximum Lyapunov exponent, phase portraits, Poincare map, are also plotted to illustrate theoretical analysis, and to expose the complex dynamical behaviors, including the period-n (n=1,2,5,7) orbits in different chaotic regions, cascades of period-doubling bifurcation from period-1, 2 and 5 orbits, reverse period-doubling bifurcation, onset of chaos which occurs more than once for two given external frequencies and chaos suddenly converting to periodic orbits, transient chaos with complex periodic windows and crisis, reverse period-5 bubble, non-attracting chaotic set and nice attracting chaotic set. In particular, we observe that the system can leave chaotic region to periodic motion by adjusting damping α, amplitude f 1 and frequency ω 2 of external forcing which can be considered as a control strategy

  18. Flux-flow drag in coupled Josephson junctions

    Parmentier, R.D.; Barbara, P.; Costabile, G.; DAnna, A.; Malomed, B.A.; Soriano, C.

    1997-01-01

    We present a detailed analysis of the interaction between two fluxon chains in parallel magnetically coupled long Josephson junctions, one of which is biased (open-quotes generatorclose quotes) while another is unbiased (open-quotes detectorclose quotes). The main effect is that the driven fluxon chain in the generator may drag the chain in the detector. We note that five different regimes of the interaction are possible: both chains may be pinned by the external magnetic field; both may move in a locked state, inducing the same dc voltage in both junctions; in an unlocked state they may move at different velocities; the chain in the detector may remain pinned while the one in the generator is moving; and, finally, in a limited range of parameters the mean detector voltage may be negative, which implies that the detector chain is moving in the direction opposite to that of the chain in the generator. We consider a simplified model based on the assumptions that the fluxon chains are dense and rigid, and that their motion is nonrelativistic. In this model, each chain is represented by a single degree of freedom (its coordinate). Numerical and analytical consideration of the simplified model demonstrates that it is able to reproduce correctly all the dynamical regimes except for the negative-voltage one. To explain the existence of the latter regime, we introduce another model, suggested by the simulations, which is based on the presence of two fluxons and one antifluxon in the generator, and a single fluxon in the detector. The negative voltage is produced by motion of the antifluxon in a bound state with the detector close-quote s fluxon. The existence region of this state is limited by its collisions with free fluxons in the generator. copyright 1997 The American Physical Society

  19. Gaussian tunneling model of c-axis twist Josephson junctions

    Bille, A.; Klemm, R.A.; Scharnberg, K.

    2001-01-01

    We calculate the critical current density J c J ((var p hi) 0 ) for Josephson tunneling between identical high-temperature superconductors twisted an angle (var p hi) 0 about the c axis. Regardless of the shape of the two-dimensional Fermi surface and for very general tunneling matrix elements, an order parameter (OP) with general d-wave symmetry leads to J c J (π/4)=0. This general result is inconsistent with the data of Li et al. [Phys. Rev. Lett. 83, 4160 (1999)] on Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212), which showed J c J to be independent of (var p hi) 0 . If the momentum parallel to the barrier is conserved in the tunneling process, J c J should vary substantially with the twist angle (var p hi) 0 when the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely isotropic. We quantify the degree of momentum nonconservation necessary to render J c J ((var p hi) 0 ) constant within experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using five specific models to describe the momentum dependence of the tunneling matrix element squared. From the data of Li et al., we conclude that the c-axis tunneling in Bi2212 must be very nearly incoherent, and that the OP must have a nonvanishing Fermi-surface average for T c . We further show that the apparent conventional sum-rule violation observed by Basov et al. [Science 283, 49 (1999)] can be consistent with such strongly incoherent c-axis tunneling.

  20. Intrinsic line shape of electromagnetic radiation from a stack of intrinsic Josephson junctions synchronized by an internal cavity resonance

    Koshelev, Alexei

    2013-03-01

    Stacks of intrinsic Josephson-junctions are realized in mesas fabricated out of layered superconducting single crystals, such as Bi2Sr2CaCu2O8 (BSCCO). Synchronization of phase oscillations in different junctions can be facilitated by the coupling to the internal cavity mode leading to powerful and coherent electromagnetic radiation in the terahertz frequency range. An important characteristic of this radiation is the shape of the emission line. A finite line width appears due to different noise sources leading to phase diffusion. We investigated the intrinsic line shape caused by the thermal noise for a mesa fabricated on the top of a BSCCO single crystal. In the ideal case of fully synchronized stack the finite line width is coming from two main contributions, the quasiparticle-current noise inside the mesa and the fluctuating radiation in the base crystal. We compute both contributions and conclude that for realistic mesa's parameters the second mechanism typically dominates. The role of the cavity quality factor in the emission line spectrum is clarified. Analytical results were verified by numerical simulations. In real mesa structures part of the stack may not be synchronized and chaotic dynamics of unsynchronized junctions may determine the real line width. Work supported by UChicago Argonne, LLC, under contract No. DE-AC02-06CH11357.

  1. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  2. Anomalous Josephson Effect between Even-and Odd-Frequency Superconductors

    Tanaka, Yukio; Golubov, Alexandre Avraamovitch; Kashiwaya, Satoshi; Ueda, Masahito

    2007-01-01

    We demonstrate that, contrary to standard wisdom, the lowest-order Josephson coupling is possible between odd- and even-frequency superconductors. The origin of this effect is the induced odd- (even-)frequency pairing component at the interface of bulk even- (odd-)frequency superconductors. The

  3. Kink propagation and trapping in a two-dimensional curved Josephson junction

    Gorria, Carlos; Gaididei, Yuri Borisovich; Sørensen, Mads Peter

    2004-01-01

    for Josephson junctions of overlap type. A collective variable approach based on the kink position and the kink width depending on the transversal coordinate is developed. The latter allows to take into account both longitudinal and centrifugal forces which act on the nonlinear excitation moving in a region...

  4. The submm wave Josephson flux flow oscillator; Linewidth measurements and simple theory

    Mygind, Jesper; Koshelets, V. P.; Samuelsen, Mogens Rugholm

    2005-01-01

    The Flux Flow Oscillator (FFO) is a long Josephson junction in which a DC bias current and a DC magnetic field maintain a unidirectional viscous flow of magnetic flux quanta. The theoretical linewidth of the electromagnetic radiation generated at the end boundary is due to internal current...

  5. Imaging of the dynamic magnetic structure in a parallel array of shunted Josephson junctions

    Doderer, T.; Kaplunenko, V. K.; Mygind, Jesper

    1994-01-01

    A one-dimensional (1D) parallel array of shunted Josephson junctions is one of the basic elements in the family of rapid single-flux quantum logic circuits. It was found recently that current steps always show up in the current-voltage curve of the generator junction when an additional bias current...

  6. Josephson magnetization of Y--Ba--Cu--O superconductors near the critical temperature

    Ivanchenko, Y.M.; Lisyansky, A.A.; Tsindlekht, M.I.

    1991-01-01

    Experimental and theoretical data for the rectifying properties in a ceramic Y--Ba--Cu--O cylindrical sample are presented. A sample is subjected to the influence of a very small perturbation just to have the linear rectifying regime. Theoretical analysis using the Josephson medium concept gives qualitative agreement with the observed experimental results

  7. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  8. Experimental Evidence for Phase-Locked States in Stacked Long Josephson Junctions

    Carapella, Giovanni; Costabile, Giovanni; Mancher, Martin

    1997-01-01

    We fabricated and tested samples consisteing of two long stacked Josephson junctions with direct access to the intermediate electrode, whose thickness is smaller than the London penetration depth $\\lambda _L$. The electrodes are patterned so that the junctions can be idependently biased in the ov...

  9. Characterization and Modeling of Superconducting Josephson Junction Arrays at Low Voltage and Liquid Helium Temperatures

    2016-09-01

    both from SSC Pacific) and Marc Tukeman, Chuck Vinson and Mr. Mark Flemon with the procurement process . We acknowledge Deep Gupta, Saad Sarwana, and...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices

  10. Experiments on Josephson mixers for heterodyne reception at 0.3 mm wavelength

    Blaney, T.G.; Knight, D.J.E.

    1974-01-01

    A point contact Josephson junction was investigated as a heterodyne mixer at 337 μm. The conversion efficiency reached about -32 dB using a laser local oscillator and about -42 dB using 9th or 12th harmonic mixing with a klystron

  11. Radio-frequency properties of stacked long Josephson junctions with nonuniform bias current distribution

    Filatrella, G; Pedersen, Niels Falsig

    1999-01-01

    We have numerically investigated the behavior of stacks of long Josephson junctions considering a nonuniform bias profile. In the presence of a microwave field the nonuniform bias, which favors the formation of fluxons, can give rise to a change of the sequence of radio-frequency induced steps...

  12. Period doubling and chaos in large area Josephson junctions induced by rf signals

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1985-01-01

    The influence of an applied rf signal on the emitted radiation from a large area Josephson junction is examined. A model of the system is presented in the framework of the one-dimensional sine-Gordon equation. The model linearizes for small and large values of the amplitude of the applied signal...

  13. Influence of the cos-phi conductance on fluxons propagating in long Josephson junctions

    Olsen, O. H.; Samuelsen, Mogens Rugholm

    1982-01-01

    The influence of a cosφ conductance on the motion of fluxons in long and narrow Josephson junctions is investigated by numerical computations and by a perturbation analysis. It turns out that the presence of the cosφ term will have opposite effects on the motion of a fluxon and on plasma waves or...

  14. Measured Temperature Dependence of the cos-phi Conductance in Josephson Tunnel Junctions

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1977-01-01

    The temperature dependence of the cosϕ conductance in Sn-O-Sn Josephson tunnel junctions has been measured just below the critical temperature, Tc. From the resonant microwave response at the junction plasma frequency as the temperature is decreased from Tc it is deduced that the amplitude of the...

  15. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    Yokoyama, T.; Eto, M.; Nazarov, Y.V.

    2012-01-01

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the

  16. Josephson effect in superfluid helium 3 during flow through small hole

    Kopnin, N.B.

    1986-01-01

    The Josephson current flowing in helium 3 through a small hole near the critical temperature is calculated. In diffusion particle reflection from vessel walls the critical current is proportional to (T c -T) 2 , and in mirror reflection it is proportional to (T c -T)

  17. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators

    Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.

    1997-01-01

    Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect...

  18. Quantitative description of hysteresis loops induced by rf radiation in long Josephson junctions

    Olsen, Ole H.; Samuelsen, Mogens Rugholm

    1991-01-01

    The effect of an applied rf signal on the radiation emitted from a long Josephson junction is examined by means of a model based on the sine-Gordon equation. This system exhibits a variety of interesting phenomena, e.g., chaos and hysteresis. The hysteresis loop is examined in detail. These simple...

  19. High-qualitative face Josephson transitions Nb-Sisup(ast)-Nb

    Gudkov, A.L.; Likharev, K.K.; Makhov, V.I.

    1985-01-01

    Preliminary results of investigation into characteristics of face transitions on the basis of refractory materials (niobium and polycrystalline silicon) are reported. Measured values of characteristic voltage and normal resistance are given; typical current-voltage characteristics of Josephson transitions Nb-Sisub(*)-Nb are presented too

  20. Experiments on the interaction between long Josephson junctions and a coplanar strip resonator

    Davidson, A.; Pedersen, Niels Falsig

    1992-01-01

    Experiments are reported on a new geometry designed to couple long Josephson junction fluxon oscillators to a resonant cavity. The junctions were made with a niobium-aluminum oxide-niobium trilayer process with a critical-current density of around 1000 A/cm2. Various numbers of such junctions wer...