WorldWideScience

Sample records for full wave analysis

  1. Local full-wave energy and quasilinear analysis in nonuniform plasmas

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1989-01-01

    The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetic analysis. An extension is presented to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character, it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern over the question of local energy for r.f.-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the r.f.-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities. (author)

  2. Full-Wave Techniques for the Analysis of Electrodynamics and Coherent Quantum Transport in Graphene Nanodevices.

    Directory of Open Access Journals (Sweden)

    Luca Pierantoni

    2012-11-01

    Full Text Available We report on full-wave techniques in the frequency (energy-domain and the time-domain, aimed at the investigation of the combined electromagnetic-coherent transport problem in carbon based nanostructured materials and devices viz. graphene nanoribbons. The frequency-domain approach is introduced in order to describe a Poisson-Schrödinger / Dirac system in a quasi static framework. Thetime-domain approach deals with the full-wave solution of the combined Maxwell-Schrödinger / Dirac system of equations. From the above theoretical platforms, home-made solvers are provided, aimed atdealing with challenging problems in realistic devices / systems environments, typical of the area of radio-frequency nanoelectronics.

  3. Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Koichi Narahara

    2012-01-01

    Full Text Available Nonlinear transmission lines, which define transmission lines periodically loaded with nonlinear devices such as varactors, diodes, and transistors, are modeled in the framework of finite-difference time-domain (FDTD method. Originally, some root-finding routine is needed to evaluate the contributions of nonlinear device currents appropriately to the temporally advanced electrical fields. Arbitrary nonlinear transmission lines contain large amount of nonlinear devices; therefore, it costs too much time to complete calculations. To reduce the calculation time, we recently developed a simple model of diodes to eliminate root-finding routines in an FDTD solver. Approximating the diode current-voltage relation by a piecewise-linear function, an extended Ampere's law is solved in a closed form for the time-advanced electrical fields. In this paper, we newly develop an FDTD model of field-effect transistors (FETs, together with several numerical examples that demonstrate pulse-shortening phenomena in a traveling-wave FET.

  4. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y.

    1996-01-01

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R 0 = 0.67 m, B 0 ≤ 9.0 T, κ ≤ 1.8, δ ≤ 0.8, and 1.0 x 10 20 m -3 n e (0) ≤ 1.0 x 10 21 m -3 . Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f 0 = 2f CH ) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f 0 = f CH ) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ( 3 He) (f 0 = f C 3 He ) at 7.9 T in a D-( 3 He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-( 3 He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study open-quotes single passclose quotes damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-( 3 He) indicates improved wave focussing and 3 He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of 3 He tail power to the background deuterium is also found for PEP-mode plasmas

  5. Full-Wave Analysis of Microstrip Antennas in Three-Layered Spherical Media

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2013-01-01

    Full Text Available A model of three-layered spherical microstrip antenna has been analyzed based on Rao-Wilton-Glisson (RWG triangular basis functions using mixed potential integral equation (MPIE. Firstly, the model of antenna and the dyadic Green’s function in spherical microstrip antennas are given at the beginning of this paper. Then, due to the infinite series convergence problem, asymptotic extraction approach is presented to accelerate the Green’s functions convergence speed when source and field points are located in the same layer and different layers. The convergence speed can be accelerated observably by using this method. Finally, in order to simplify impedance matrix elements calculation at the junction of the probe and patch, a novel division fashion of pair of triangles is adopted in this paper. The input impedance result obtained shows the validity and effectiveness of the analysis method comparing with published data.

  6. Analysis of an inverter-supplied multi-winding transformer with a full-wave rectifier at the output

    International Nuclear Information System (INIS)

    Klopcic, Beno; Dolinar, Drago; Stumberger, Gorazd

    2008-01-01

    This paper deals with the magnetic analysis of an inverter-supplied multi-winding transformer frequently used in resistance spot welding applications. The basic structure of the analyzed system consists of an inverter, a single-phase transformer with two secondary windings and a full-wave rectifier mounted at the output of the transformer, which assure a very short rise time of the welding current. The disturbing current spikes often appear in the transformer's primary in the steady-state operation, which can activate the over-current protection switch-off of the system. The results of numerical analysis performed on the nonlinear model of the discussed system have shown that very strong magnetic saturation of the transformer's iron core, caused by the interaction among the different ohmic resistances of secondary windings and different characteristics of the output rectifier diodes, provokes unwanted current spikes. Magnetic saturation could be efficiently eliminated using very simple passive method proposed in this paper. All findings are confirmed by systematic analysis numerically and experimentally

  7. Full closure strategic analysis.

    Science.gov (United States)

    2014-07-01

    The full closure strategic analysis was conducted to create a decision process whereby full roadway : closures for construction and maintenance activities can be evaluated and approved or denied by CDOT : Traffic personnel. The study reviewed current...

  8. Source Estimation by Full Wave Form Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Sjögreen, Björn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Petersson, N. Anders [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing

    2013-08-07

    Given time-dependent ground motion recordings at a number of receiver stations, we solve the inverse problem for estimating the parameters of the seismic source. The source is modeled as a point moment tensor source, characterized by its location, moment tensor components, the start time, and frequency parameter (rise time) of its source time function. In total, there are 11 unknown parameters. We use a non-linear conjugate gradient algorithm to minimize the full waveform misfit between observed and computed ground motions at the receiver stations. An important underlying assumption of the minimization problem is that the wave propagation is accurately described by the elastic wave equation in a heterogeneous isotropic material. We use a fourth order accurate finite difference method, developed in [12], to evolve the waves forwards in time. The adjoint wave equation corresponding to the discretized elastic wave equation is used to compute the gradient of the misfit, which is needed by the non-linear conjugated minimization algorithm. A new source point moment source discretization is derived that guarantees that the Hessian of the misfit is a continuous function of the source location. An efficient approach for calculating the Hessian is also presented. We show how the Hessian can be used to scale the problem to improve the convergence of the non-linear conjugated gradient algorithm. Numerical experiments are presented for estimating the source parameters from synthetic data in a layer over half-space problem (LOH.1), illustrating rapid convergence of the proposed approach.

  9. Full wave simulations of lower hybrid wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Wright, J. C.; Bonoli, P. T.; Phillips, C. K.; Valeo, E.; Harvey, R. W.

    2009-01-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)xv te , where v te ≡ (2T e /m e ) 1/2 is the electron thermal speed. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off-axis (r/a≥0.60) current profile control in reactor grade plasmas. Established techniques for computing wave propagation and absorption use WKB expansions with non-Maxwellian self-consistent distributions.In typical plasma conditions with electron densities of several 10 19 m -3 and toroidal magnetic fields strengths of 4 Telsa, the perpendicular wavelength is of the order of 1 mm and the parallel wavelength is of the order of 1 cm. Even in a relatively small device such as Alcator C-Mod with a minor radius of 22 cm, the number of wavelengths that must be resolved requires large amounts of computational resources for the full wave treatment. These requirements are met with a massively parallel version of the TORIC full wave code that has been adapted specifically for the simulation of LH waves [J. C. Wright, et al., Commun. Comput. Phys., 4, 545 (2008), J. C. Wright, et al., Phys. Plasmas 16 July (2009)]. This model accurately represents the effects of focusing and diffraction that occur in LH propagation. It is also coupled with a Fokker-Planck solver, CQL3D, to provide self-consistent distribution functions for the plasma dielectric as well as a synthetic hard X-ray (HXR) diagnostic for direct comparisons with experimental measurements of LH waves.The wave solutions from the TORIC-LH zero FLR model will be compared to the results from ray tracing from the GENRAY/CQL3D code via the synthetic HXR diagnostic and power deposition.

  10. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  11. Cross-wind fatigue analysis of a full scale offshore wind turbine in the case of wind–wave misalignment

    DEFF Research Database (Denmark)

    Koukoura, Christina; Brown, Cameron; Natarajan, Anand

    2016-01-01

    Wind–wave misalignment is often necessary to consider during the design of offshore wind turbines due to excitation of side–side vibration and the low aerodynamic damping in that direction. The measurements from a fully instrumented 3.6 MW pitch regulated-variable speed offshore wind turbine were...

  12. Computational study on full-wave inversion based on the elastic wave-equation; Dansei hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1997-05-27

    Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.

  13. Numerical experiment for nonlinear full-wave tomography. 3; Hisenkei full wave tomography no suchi jikken

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, T [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.

  14. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    Science.gov (United States)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  15. Source inversion in the full-wave tomography; Full wave tomography ni okeru source inversion

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-10-22

    In order to consider effects of characteristics of a vibration source in the full-wave tomography (FWT), a study has been performed on a method to invert vibration source parameters together with V(p)/V(s) distribution. The study has expanded an analysis method which uses as the basic the gradient method invented by Tarantola and the partial space method invented by Sambridge, and conducted numerical experiments. The experiment No. 1 has performed inversion of only the vibration source parameters, and the experiment No. 2 has executed simultaneous inversion of the V(p)/V(s) distribution and the vibration source parameters. The result of the discussions revealed that and effective analytical procedure would be as follows: in order to predict maximum stress, the average vibration source parameters and the property parameters are first inverted simultaneously; in order to estimate each vibration source parameter at a high accuracy, the property parameters are fixed, and each vibration source parameter is inverted individually; and the derived vibration source parameters are fixed, and the property parameters are again inverted from the initial values. 5 figs., 2 tabs.

  16. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  17. Computational study on full-wave inversion based on the acoustic wave-equation; Onkyoha hado hoteishiki full wave inversion no model keisan ni yoru kento

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-01

    The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.

  18. Full-wave current conveyor precision rectifier

    Directory of Open Access Journals (Sweden)

    Đukić Slobodan R.

    2008-01-01

    Full Text Available A circuit that provides precision rectification of small signal with low temperature sensitivity for frequencies up to 100 kHz without waveform distortion is presented. It utilizes an improved second type current conveyor based on current-steering output stage and biased silicon diodes. The use of a DC current source to bias the rectifying diodes provides higher temperature stability and lower DC offset level at the output. Proposed design of the precision rectifier ensures good current transfer linearity in the range that satisfy class A of the amplifier and good voltage transfer characteristic for low level signals. Distortion during the zero crossing of the input signal is practically eliminated. Design of the proposed rectifier is realized with standard components.

  19. Full-waveform inversion of surface waves in exploration geophysics

    Science.gov (United States)

    Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.

    2017-12-01

    Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for

  20. The essential theory of fast wave current drive with full wave method

    International Nuclear Information System (INIS)

    Liu Yan; Gong Xueyu; Yang Lei; Yin Chenyan; Yin Lan

    2007-01-01

    The full wave numerical method is developed for analyzing fast wave current drive in the range of ion cyclotron waves in tokamak plasmas, taking into account finite larmor radius effects and parallel dispersion. the physical model, the dispersion relation on the assumption of Finite Larmor Radius (FLR) effects and the form of full wave be used for computer simulation are developed. All of the work will contribute to further study of fast wave current drive. (authors)

  1. 2D full wave simulation on electromagnetic wave propagation in toroidal plasma

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Uruta, Go; Nakayama, Kazunori; Mase, Atsushi

    2002-01-01

    Global full-wave simulation on electromagnetic wave propagation in toroidal plasma with an external magnetic field imaging a tokamak configuration is performed in two dimensions. The temporal behavior of an electromagnetic wave launched into plasma from a wave-guiding region is obtained. (author)

  2. Design and Control of Full Scale Wave Energy Simulator System

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Hansen, Anders Hedegaard; Hansen, Rico Hjerm

    2012-01-01

    For wave energy to become feasible it is a requirement that the efficiency and reliability of the power take-off (PTO) systems are significantly improved. The cost of installing and testing PTO-systems at sea are however very high, and the focus of the current paper is therefore on the design...... of a full scale wave simulator for testing PTO-systems for point absorbers. The main challenge is here to design a system, which mimics the behavior of a wave when interacting with a given PTO-system. The paper includes a description of the developed system, located at Aalborg University......, and the considerations behind the design. Based on the description a model of the system is presented, which, along with a description of the wave theory applied, makes the foundation for the control strategy. The objective of the control strategy is to emulate not only the wave behavior, but also the dynamic wave...

  3. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  4. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    International Nuclear Information System (INIS)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.

    2010-01-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.

  5. A two-phase full-wave superconducting rectifier

    International Nuclear Information System (INIS)

    Ariga, T.; Ishiyama, A.

    1989-01-01

    A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed

  6. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  7. Full-wave solution of short impulses in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Ferencz, Orsolya E.

    2005-01-01

    In this paper the problem of real impulse propagation in arbitrarily inhomogeneous media will be presented on a fundamentally new, general, theoretical way. The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened. The earlier theoretical models for spatial inhomogeneities have some errors regarding the structure of the resultant signal originated from backward and forward propagating parts. The application of the method of inhomogeneous basic modes (MIBM) and the complete full-wave solution of arbitrarily shaped non-monochromatic plane waves in plasmas made it possible to obtain a better description of the problem, on a fully analytical way, directly from Maxwell's equations. The model investigated in this paper is inhomogeneous of arbitrary order (while the wave pattern can exist), anisotropic (magnetized), linear, cold plasma, in which the gradient of the one-dimensional spatial inhomogeneity is parallel to the direction of propagation. (author)

  8. Modelling and Testing of Wave Dragon Wave Energy Converter Towards Full Scale Deployment

    DEFF Research Database (Denmark)

    Parmeggiani, Stefano

    -commercial stage in which it has proven difficult to secure the necessary funding for the deployment of a full-scale demonstrator unit. The work presented aims at easing this process, by increasing public and scientific knowledge of the device, as well as by showing the latest progress in its development. Research....... This is mainly due to the development of an updated overtopping model specifically suited to Wave Dragon, which allows greater quality to predictions of the primary energy absorption of the device compared to previous versions. At the same time an equitable approach has been described and used in the performance......, the research has also provided a deeper insight into the physics of the overtopping process by individually assessing the influence of related device configuration and wave features, which goes beyond the present application and may be used for other overtopping WECs as well. Comprehensive analysis...

  9. Realistic full wave modeling of focal plane array pixels.

    Energy Technology Data Exchange (ETDEWEB)

    Campione, Salvatore [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Warne, Larry K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Jorgenson, Roy E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Electromagnetic Theory Dept.; Davids, Paul [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.; Peters, David W. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Applied Photonic Microsystems Dept.

    2017-11-01

    Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

  10. 2D full-wave simulation of waves in space and tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Kim Eun-Hwa

    2017-01-01

    Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  11. AORSA full wave calculations of helicon waves in DIII-D and ITER

    Science.gov (United States)

    Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.

    2018-06-01

    Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.

  12. Benchmarking ICRF Full-wave Solvers for ITER

    International Nuclear Information System (INIS)

    Budny, R.V.; Berry, L.; Bilato, R.; Bonoli, P.; Brambilla, M.; Dumont, R.J.; Fukuyama, A.; Harvey, R.; Jaeger, E.F.; Indireshkumar, K.; Lerche, E.; McCune, D.; Phillips, C.K.; Vdovin, V.; Wright, J.

    2011-01-01

    Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by six full-wave solver groups to simulate the ICRF electromagnetic fields and heating, and by three of these groups to simulate the current-drive. Approximate agreement is achieved for the predicted heating power for the DT and He4 cases. Factor of two disagreements are found for the cases with second harmonic He3 heating in bulk H cases. Approximate agreement is achieved simulating the ICRF current drive.

  13. Full Dynamic Analysis of Mooring Solution Candidates - First Iteration

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Ferri, Francesco

    This report covers an initial full dynamic analysis of the mooring solutions for the four wave energy converters in the project “Mooring Solutions for Large Wave Energy Converters”. The analysis tends to provide the first understanding of the layouts and provide discussion on what parameters that...

  14. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard

    2016-01-01

    is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO...

  15. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  16. Full-wave calculation of fast-wave current drive in tokamaks including kparallel upshifts

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.

    1991-01-01

    Numerical calculations of fast-wave current drive (FWCD) efficiency have generally been of two types: ray tracing or global wave calculations. Ray tracing shows that the projection of the wave number (k parallel) along the magnetic field can vary greatly over a ray trajectory, particularly when the launch point is above or below the equatorial plane. As the wave penetrates toward the center of the plasma, k parallel increases, causing a decrease in the parallel phase speed and a corresponding decrease in the current drive efficiency, γ. But the assumptions of geometrical optics, namely short wavelength and strong single-pass absorption, are not greatly applicable in FWCD scenarios. Eigenmode structure, which is ignored in ray tracing, can play an important role in determining electric field strength and Landau damping rates. In such cases, a full-wave or global solution for the wave fields is desirable. In full-wave calculations such as ORION k parallel appear as a differential operator (rvec B·∇) in the argument of the plasma dispersion function. Since this leads to a differential system of infinite order, such codes of necessity assume k parallel ∼ k var-phi = const, where k var-phi is the toroidal wave number. Thus, it is not possible to correctly include effects of the poloidal magnetic field on k parallel. The problem can be alleviated by expressing the electric field as a superposition of poloidal modes, in which case k parallel is purely algebraic. This paper describes a new full-wave calculation, Poloidal Ion Cyclotron Expansion Solution, which uses poloidal and toroidal mode expansions to solve the wave equation in general flux coordinates. The calculation includes a full solution for E parallel and uses a reduced-order form of the plasma conductivity tensor to eliminate numerical problems associated with resolution of the very short wavelength ion Bernstein wave

  17. 2D full-wave simulation of waves in space and tokamak plasmas

    Science.gov (United States)

    Kim, Eun-Hwa; Bertelli, Nicola; Johnson, Jay; Valeo, Ernest; Hosea, Joel

    2017-10-01

    Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF) waves in the scape-off layer (SOL) of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  18. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...

  19. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    Science.gov (United States)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  20. Whistler Observations on DEMETER Compared with Full Electromagnetic Wave Simulations

    Science.gov (United States)

    Compston, A. J.; Cohen, M.; Lehtinen, N. G.; Inan, U.; Linscott, I.; Said, R.; Parrot, M.

    2014-12-01

    Terrestrial Very Low Frequency (VLF) electromagnetic radiation, which strongly impacts the Van Allen radiation belt electron dynamics, is injected across the ionosphere into the Earth's plasmasphere from two primary sources: man-made VLF transmitters and lightning discharges. Numerical models of trans-ionospheric propagation of such waves remain unvalidated, and early models may have overestimated the absorption, hindering a comprehensive understanding of the global impact of VLF waves in the loss of radiation belt electrons. In an attempt to remedy the problem of a lack of accurate trans-ionospheric propagation models, we have used a full electromagnetic wave method (FWM) numerical code to simulate the propagation of lightning-generated whistlers into the magnetosphere and compared the results with whistlers observed on the DEMETER satellite and paired with lightning stroke data from the National Lightning Detection Network (NLDN). We have identified over 20,000 whistlers occuring in 14 different passes of DEMETER over the central United States during the summer of 2009, and 14,000 of those occured within the 2000 km x 2000 km simulation grid we used. As shown in the attached figure, which shows a histogram of the ratio of the simulated whistler energy to the measured whistler energy for the 14,000 whistlers we compared, the simulation tends to slightly underestimate the total whistler energy injected by about 5 dB. However, the simulation underestimates the DEMETER measurements more as one gets further from the source lightning stroke, so since the signal to noise ratio of more distant whistlers will be smaller, possibly additive noise in the DEMETER measurements (which of course is not accounted for in the model) may explain some of the observed discrepancy.

  1. Electromagnetic waves in irregular multilayered spheroidal structures of finite conductivity: full wave solutions

    International Nuclear Information System (INIS)

    Bahar, E.

    1976-01-01

    The propagation of electromagnetic waves excited by electric dipoles oriented along the axis of multilayered spheroidal structures of finite conductivity is investigated. The electromagnetic parameters and the thickness of the layers of the structure are assumed to be functions of the latitude. In the analysis, electric and magnetic field transforms that constitute a discrete and a continuous spectrum of spherical waves are used to provide a suitable basis for the expansion of the electromagnetic fields at any point in the irregular spheroidal structure. For spheroidal structures with good conducting cores, the terms in the solutions associated with the continuous part of the wave spectrum vanish. In general, however, when the skin depth for the core is large compared to its dimensions or when the sources are located in the core of the structure and propagation in the core is of special interest, the contribution from the continuous part of the wave spectrum cannot be neglected. At each interface between the layers of the irregular spheroidal structure, exact boundary conditions are imposed. Since the terms of the field expansions in the irregular structure do not individually satisfy the boundary conditions, Maxwell's equations are reduced to sets of coupled ordinary first-order differential equations for the wave amplitudes. The solutions are shown to satisfy the reciprocity relationships in electromagnetic theory. The analysis may be applied to problems of radio wave propagation in a nonuniform model of the earth-ionosphere waveguide, particularly when focusing effects at the antipodes are important

  2. Full-Wave Analysis of Field-to-Line Coupling Effects Using 1D FDTD Method under Exciting Source with Different Bandwidths

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-01-01

    Full Text Available With the aim to analyze field-to-line coupling effects based on energy spectrum, parallel finite-difference time-domain (FDTD method is applied to calculate the induced voltage on overhead lines under high-power electromagnetic (HPEM environment. Firstly, the energy distribution laws of HEMP (IEC 61000-2-9, HEMP (Bell Laboratory, HEMP (Paulino et al., 2010, and LEMP (IEC61000-4-5 are given. Due to the air-earth stratified medium, both the absorbing boundary and the connecting boundary applied to scattering by finite-length objects are separately set in aerial and underground parts. Moreover, the influence of line length on induced voltage is analyzed and discussed. The results indicate that the half-peak width is wider with the increase of the line length. But the steepness of induced voltage on the overhead line is invariable. There is no further increase in the peak of induced voltage especially when the line length increases to be equivalent to the wavelength of the frequency bands with the maximum energy.

  3. Full-Wave Analysis of the Shielding Effectiveness of Thin Graphene Sheets with the 3D Unidirectionally Collocated HIE-FDTD Method

    Directory of Open Access Journals (Sweden)

    Arne Van Londersele

    2017-01-01

    Full Text Available Graphene-based electrical components are inherently multiscale, which poses a real challenge for finite-difference time-domain (FDTD solvers due to the stringent time step upper bound. Here, a unidirectionally collocated hybrid implicit-explicit (UCHIE FDTD method is put forward that exploits the planar structure of graphene to increase the time step by implicitizing the critical dimension. The method replaces the traditional Yee discretization by a partially collocated scheme that allows a more accurate numerical description of the material boundaries. Moreover, the UCHIE-FDTD method preserves second-order accuracy even for nonuniform discretization in the direction of collocation. The auxiliary differential equation (ADE approach is used to implement the graphene sheet as a dispersive Drude medium. The finite grid is terminated by a uniaxial perfectly matched layer (UPML to permit open-space simulations. Special care is taken to elaborate on the efficient implementation of the implicit update equations. The UCHIE-FDTD method is validated by computing the shielding effectiveness of a typical graphene sheet.

  4. Analysis of flexural wave cloaks

    Directory of Open Access Journals (Sweden)

    Alfonso Climente

    2016-12-01

    Full Text Available This work presents a comprehensive study of the cloak for bending waves theoretically proposed by Farhat et al. [see Phys. Rev. Lett. 103, 024301 (2009] and later on experimentally realized by Stenger et al. [see Phys. Rev. Lett. 108, 014301 (2012]. This study uses a semi-analytical approach, the multilayer scattering method, which is based in the Kirchoff-Love wave equation for flexural waves in thin plates. Our approach was unable to reproduce the predicted behavior of the theoretically proposed cloak. This disagreement is here explained in terms of the simplified wave equation employed in the cloak design, which employed unusual boundary conditions for the cloaking shell. However, our approach reproduces fairly well the measured displacement maps for the fabricated cloak, indicating the validity of our approach. Also, the cloak quality has been here analyzed using the so called averaged visibility and the scattering cross section. The results obtained from both analysis let us to conclude that there is room for further improvements of this type of flexural wave cloak by using better design procedures.

  5. High-efficiency passive full wave rectification for electromagnetic harvesters

    Science.gov (United States)

    Yilmaz, Mehmet; Tunkar, Bassam A.; Park, Sangtak; Elrayes, Karim; Mahmoud, Mohamed A. E.; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2014-10-01

    We compare the performance of four types of full-wave bridge rectifiers designed for electromagnetic energy harvesters based on silicon diodes, Schottky diodes, passive MOSFETs, and active MOSFETs. Simulation and experimental results show that MOSFET-type rectifiers are more efficient than diode-type rectifiers, reaching voltage and power efficiency of 99% for ideal voltage source with input amplitudes larger than 800 mV. Since active MOSFETs require extra components and an external DC power supply, we conclude that passive MOSFETs are superior for micro-power energy harvesting systems. We demonstrate passive MOSFET rectifiers implemented using discrete, off-shelf components and show that they outperform all electromagnetic harvester rectifiers hitherto reported obtaining a power efficiency of 95%. Furthermore, we show that passive MOSFET rectifiers do not affect the center frequency, harvesting bandwidth, or optimal resistance of electromagnetic harvesters. We demonstrate a complete power management module by adding a capacitor to the rectifier output terminal. We found that this configuration changed the optimal resistive load from 40 Ω to 55 Ω and decreased output power efficiency to 86%.

  6. Full wave simulation of waves in ECRIS plasmas based on the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)

    2014-02-12

    This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.

  7. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  8. Full-wave solution of short impulses in inhomogeneous plasma

    Indian Academy of Sciences (India)

    ... in arbitrarily inhomogeneous media will be presented on a fundamentally new, ... The general problem of wave propagation of monochromatic signals in inhomogeneous media was enlightened in [1]. ... Pramana – Journal of Physics | News.

  9. Full-wave simulations of current profiles for fast magnetosonic wave current drive

    International Nuclear Information System (INIS)

    Dmitrieva, M.V.; Eriksson, L.-G.; Gambier, D.J.

    1992-12-01

    Numerical simulations of current drive in tokamaks by fast waves (FWCD) have been performed in the range of the ion cyclotron and at lower frequencies via 3-Dimensional numerical code ICTOR. Trapped particles effects were taken into account in the calculation of the fast wave current drive efficiency and the bootstrap current generation. The global efficiency of FWCD if found to be γ∼ 0.1 x 10 20 AW -1 m -2 for the Joint European Torus tokamak (JET) parameters at a central electron temperature of ∼ 10 kev. The efficiency of FWCD for reactor-like plasmas is found to be γ∼0.3 x 10 20 AW -1 m -2 for ∼ 100% of FWCD and γ∼ 1 x 10 20 AW -1 m -2 for FWCD and ∼ 65% of bootstrap in a total current of ∼ 25MA at a 25kev central temperature with a density of ∼10 20 m -3 and major radius R ∼ 8m. Non-inductive current density profiles are studied. Broad FWCD current profiles are obtained for flat reactor temperature and density profiles with bootstrap current concentrated at the plasma edge. The possibility of a steady-state reactor on full wave (FW) with a large fraction of bootstrap current is discussed. It appears to be impractical to rely on such an external current driven (CD) scheme for a reactor as long a γ is less than 2 x 10 20 AW -1 m -2 . (Author)

  10. Extreme Wave Analysis by Integrating Model and Wave Buoy Data

    Directory of Open Access Journals (Sweden)

    Fabio Dentale

    2018-03-01

    Full Text Available Estimating the extreme values of significant wave height (HS, generally described by the HS return period TR function HS(TR and by its confidence intervals, is a necessity in many branches of coastal science and engineering. The availability of indirect wave data generated by global and regional wind and wave model chains have brought radical changes to the estimation procedures of such probability distribution—weather and wave modeling systems are routinely run all over the world, and HS time series for each grid point are produced and published after assimilation (analysis of the ground truth. However, while the sources of such indirect data are numerous, and generally of good quality, many aspects of their procedures are hidden to the users, who cannot evaluate the reliability and the limits of the HS(TR deriving from such data. In order to provide a simple engineering tool to evaluate the probability of extreme sea-states as well as the quality of such estimates, we propose here a procedure based on integrating HS time series generated by model chains with those recorded by wave buoys in the same area.

  11. Resolution analysis in full waveform inversion

    NARCIS (Netherlands)

    Fichtner, A.; Trampert, J.

    2011-01-01

    We propose a new method for the quantitative resolution analysis in full seismic waveform inversion that overcomes the limitations of classical synthetic inversions while being computationally more efficient and applicable to any misfit measure. The method rests on (1) the local quadratic

  12. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    International Nuclear Information System (INIS)

    Valeo, Ernest; Johnson, Jay R.; Kim, Eun-Hwa; Phillips, Cynthia

    2012-01-01

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  13. Full-wave Simulation of Doppler Reflectometry in the Presence of Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Lechte, C. [Institut fur Plasmaforschung, Universitat Stuttgart, Stuttgart (Germany)

    2011-07-01

    Doppler reflectometry is a microwave plasma diagnostic well suited for density fluctuation measurement. A meaningful interpretation of Doppler reflectometry measurements necessitates the analysis of the wave propagation in the plasma using simulations methods. While the beam path can usually be reconstructed with beam tracing methods, the modeling of the scattering process demands the use of wave simulation codes. Furthermore, in the presence of strong density fluctuations, the response from the plasma is dominated by dispersion and multiple scattering, and hence becomes non-linear. IPF-FD3D is the finite difference time domain code used to investigate the dependence of the scattering efficiency on the various plasma conditions. It uses the full set of Maxwell equations and the electron equation of motion in a cold plasma. First results in slab geometry indicate a strong dependence of the scattering efficiency on the density gradient, the incident angle, and the wave polarisation. Further complications arise with the introduction of broadband turbulent fluctuations, where additional knowledge of the radial spectrum is necessary to reconstruct the full fluctuation spectrum from Doppler reflectometry measurements. This paper presents the reconstruction of the turbulent fluctuation spectrum from simulated Doppler reflectometry measurements in slab geometry. Two cases of analytical turbulence in slab geometry are presented where the fluctuation wavenumber spectrum was recovered. It is planned to extend these investigations to X mode polarization and to supplement actual fusion experiments

  14. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  15. Full spectrum analysis in environmental monitoring

    International Nuclear Information System (INIS)

    Reinhardt, Sascha; Hartmann, Soeren; Pimpl, Richard

    2015-01-01

    In the environmental monitoring spectroscopic gamma detectors are frequently used. The motivation to use spectroscopic gamma detectors is the higher sensitivity and specific spectral information. For the analysis often the photo peaks of the gamma spectrum are used to identify the nuclide. These methods are very reliable, robust and well developed but using only the photo peak means also to use only a fraction of the available information. Doing a full spectrum analysis based on principle components obtained from NASVD for description of the radiation background and adjustment calculations are a possible analysis method which may provide advantages compared to a peak based analysis when used for a continuous environmental monitoring. An analysis example is shown and discussed with a measured time series of gamma spectra obtained from a spectroscopic gamma detector SARA IGS710 with a NaI(Tl) scintillator as it is used in the environmental monitoring.

  16. Full spectrum analysis in environmental monitoring

    International Nuclear Information System (INIS)

    Reinahrdt, S.; Hartmann, S.; Pimpl, R.

    2014-01-01

    In the environmental monitoring spectroscopic gamma detectors are frequently used. The motivation to use spectroscopic gamma detectors is the higher sensitivity and specific spectral information. For the analysis often the photo peaks of the gamma spectrum are used to identify the nuclide. These methods are very reliable, robust and well developed but using only the photo peak means also to use only a fraction of the available information. Doing a full spectrum analysis based on principal components obtained from NASVD for description of the radiation background and adjustment calculations are a possible analysis method, which may provide advantages compared to a peak based analysis when used for a continuous environmental monitoring. An analysis example is shown and discussed with a measured time series of gamma spectra obtained from a spectroscopic gamma detector SARA IGS710 with a NaI(Tl) scintillator as it is used in the environmental monitoring. (authors)

  17. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  18. A full wave code for ion cyclotron waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1996-02-01

    The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in arbitrary axisymmetric toroidal geometry. The model used describes the compressional and torsional Alfven waves (or, depending on the parallel phase velocity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode conversion near the first ion cyclotron harmonic. In the ion response the broadening of the absorption regions due to the finite width of the cyclotron resonance of individual ions in toroidal geometry is taken into account. The parallel component of the wave electric field is evaluated on the same footing as the transverse ones; the response of the electrons includes Landau damping, Transit Time damping and the mixed term. The numerical approach uses a spectral representation of the solution in the poloidal angle θ, and cubic finite elements in the radial variable ψ. Great flexibility is provided in the way ion Bernstein waves excited by mode conversion are damped when their wavelength becomes comparable with the ion Larmor radius, in the regularization of Alfven resonances, and in the treatment of the outer plasma layers. As an option, we have also implemented the Order Reduction Algorithm, which provides a particularly fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. Thee present report describes the model and its numerical implementation, and provides the information needed to use the code. A few examples illustrating applications of TORIC are also included. (orig.)

  19. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  20. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method

  1. Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations

    Science.gov (United States)

    Li, Lin-an; Wang, Teng; Wang, Yi

    2018-05-01

    We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.

  2. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  3. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier

  4. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    Science.gov (United States)

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  5. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun

    2017-01-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy

  6. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali; Tsvankin, Ilya; Wang, Hui; Alkhalifah, Tariq

    2016-01-01

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations

  7. JUNO E/J/SS WAVES CALIBRATED SURVEY FULL RESOLUTION V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Juno Waves calibrated full resolution survey data set includes all low rate science electric spectral densities from 50Hz to 41MHz and magnetic spectral...

  8. On the tunneling of full-vector X-Waves through a slab under frustrated total reflection condition

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2012-01-01

    Tunneling of full-vector X-Waves through a dielectric slab under frustrated total reflection condition is investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of reflection and transmission at the dielectric interfaces is carried out analytically in a straightforward fashion using vector Bessel beam expansion. Investigation of the fields propagating away from the farther end of the slab (transmitted fields) shows an advanced (superluminal) transmission of the X-Wave peak. Additionally, a similar advanced reflection is also observed. The apparent tunneling of the peak is shown to be due to the phase shift in the fields' spectra and not to be causally related to the incident peak. © 2012 IEEE.

  9. On the tunneling of full-vector X-Waves through a slab under frustrated total reflection condition

    KAUST Repository

    Salem, Mohamed

    2012-07-01

    Tunneling of full-vector X-Waves through a dielectric slab under frustrated total reflection condition is investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of reflection and transmission at the dielectric interfaces is carried out analytically in a straightforward fashion using vector Bessel beam expansion. Investigation of the fields propagating away from the farther end of the slab (transmitted fields) shows an advanced (superluminal) transmission of the X-Wave peak. Additionally, a similar advanced reflection is also observed. The apparent tunneling of the peak is shown to be due to the phase shift in the fields\\' spectra and not to be causally related to the incident peak. © 2012 IEEE.

  10. On the Extreme Wave Height Analysis

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1994-01-01

    The determination of the design wave height is usually based on the statistical analysis of long-term extreme wave height measurements. After an introduction to the procedure of the extreme wave height analysis, the paper presents new development concerning various aspects of the extreme wave...... height analysis. Finally, the paper gives a practical example based on a data set of the hindcasted wave heights for a deep water location in the Mediterranean Sea....

  11. Reflection and transmission of normally incident full-vector X waves on planar interfaces

    KAUST Repository

    Salem, Mohamed

    2011-12-23

    The reflection and transmission of full-vector X waves normally incident on planar half-spaces and slabs are studied. For this purpose, X waves are expanded in terms of weighted vector Bessel beams; this new decomposition and reconstruction method offers a more lucid and intuitive interpretation of the physical phenomena observed upon the reflection or transmission of X waves when compared to the conventional plane-wave decomposition technique. Using the Bessel beam expansion approach, we have characterized changes in the field shape and the intensity distribution of the transmitted and reflected full-vector X waves. We have also identified a novel longitudinal shift, which is observed when a full-vector X wave is transmitted through a dielectric slab under frustrated total reflection condition. The results of our studies presented here are valuable in understanding the behavior of full-vector X waves when they are utilized in practical applications in electromagnetics, optics, and photonics, such as trap and tweezer setups, optical lithography, and immaterial probing. © 2011 Optical Society of America.

  12. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1985-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to vector Bis assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in vertical barBvertical bar along vectorB are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that vectorB . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybird resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where vectorB . delB approx. 0(1) + 11

  13. ICRF wave propagation and absorption in tokamak and mirror magnetic fields: a full-wave calculation

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Batchelor, D.B.; Weitzner, H.; Whealton, J.H.

    1986-01-01

    Global solutions for the ion cyclotron resonant frequency (ICRF) wave fields in a straight tokamak with rotational transform and in a poloidally symmetric mirror are calculated in the cold plasma limit. The component of the wave electric field parallel to B vector is assumed zero. Symmetry in each problem allows Fourier decomposition in one ignorable coordinate, and the remaining set of two coupled, two-dimensional partial differential equations is solved by finite differencing. Energy absorption and antenna impedance are calculated using a simple collisional absorption model. When large gradients in absolute value B along B vector are present in either geometry, ICRF heating at the fundamental ion cyclotron resonance is observed. For the mirror, such gradients are always present. But for the tokamak, the rotational transform must be large enough that B vector . delB greater than or equal to 0(1). For smaller transforms more typical of real tokamaks, only heating at the two-ion hybrid resonance is observed. This suggests that direct resonant absorption at the fundamental ion cyclotron resonance may be possible in stellarators where B vector . delB approx. 0(1) naturally. 13 refs., 23 figs

  14. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    International Nuclear Information System (INIS)

    Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.

    2007-01-01

    The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions

  15. Pelamis wave energy converter. Verification of full-scale control using a 7th scale model

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Pelamis Wave Energy Converter is a new concept for converting wave energy for several applications including generation of electric power. The machine is flexibly moored and swings to meet the water waves head-on. The system is semi-submerged and consists of cylindrical sections linked by hinges. The mechanical operation is described in outline. A one-seventh scale model was built and tested and the outcome was sufficiently successful to warrant the building of a full-scale prototype. In addition, a one-twentieth scale model was built and has contributed much to the research programme. The work is supported financially by the DTI.

  16. Nouvelles méthodes d'identification des fractures par diagraphie acoustique en full wave form New Methods of Identifying Fractures by Full Wave Form Acoustic Logging

    Directory of Open Access Journals (Sweden)

    Denis A.

    2006-11-01

    Full Text Available Les outils acoustiques de dernière génération permettent maintenant d'enregistrer l'ensemble des ondes générées par une source acoustique à l'intérieur d'une géométrie cylindrique telle qu'un puits de sondage. Le train d'onde qu'il est alors possible d'analyser se compose successivement de trois composantes majeures (l'onde de compression, de cisaillement et de Stoneley dont nous avons une représentation pour chaque position de la sonde à l'intérieur du puits. Nous présentons, dans ce texte, trois méthodes originales et rapides (calculs possibles sur le site même pour identifier, à partir du traitement de l'onde de Stoneley, les fractures ouvertes recoupées par un forage. Nous donnons, dans un premier temps, nos motivations pour le choix unique du traitement de l'onde de Stoneley pour, dans un deuxième temps, exposer les trois méthodes développées et montrer pour chacune d'entre elles une application pratique. Interest in recognizing and identifying fractures in a coherent formation for the petroleum, geothermal and storage (oil and gas, wastes sectors has led to the development of indirect prospection methods inside boreholes such as acoustic logging. The latest acoustic tools are capable of recording all waves generated by an acoustic logging tool inside a cyclindrical geometry such as a borehole. The wavetrain that can then be analyzed is successively made up of three major components (the P compression wave, the S shear wave and the Stoneley wave for which we have a representation for each position of the logging tool in the borehole. An example of a recording is shown in Fig. 1. Because of its specific features (high amplitudes, low frequency, high signal-to-noise ratio, the Stoneley wave is recognized to be a good indicator of open fractures. Therefore, we use simple digital processing to quantify the influence of fracturing on the propagation of the Stoneley wave. Three methods stemming from the digital processing of

  17. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  18. A Novel Current-Mode Full-Wave Rectifier Based on One CDTA and Two Diodes

    Directory of Open Access Journals (Sweden)

    F. Khateb

    2010-09-01

    Full Text Available Precision rectifiers are important building blocks for analog signal processing. The traditional approach based on diodes and operational amplifiers (OpAmps exhibits undesirable effects caused by limited OpAmp slew rate and diode commutations. In the paper, a full-wave rectifier based on one CDTA and two Schottky diodes is presented. The PSpice simulation results are included.

  19. ICRF Mode Conversion Studies with Phase Contrast Imaging and Comparisons with Full-Wave Simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Porkolab, M.; Jaeger, E. F.; Harvey, R. W.

    2011-01-01

    Waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat toka-mak plasmas. In a multi-ion-species plasma, the FW converts to ion cyclotron waves (ICW) and ion Bernstein waves (IBW) around the ion-ion hybrid resonance (mode conversion). The mode converted wave is of interest as an actuator to optimise plasma performance through flow drive and current drive. Numerical simulations are essential to describe these processes accurately, and it is important that these simulation codes be validated. On Alcator C-Mod, direct measurements of the mode converted waves have been performed using Phase Contrast Imaging (PCI), which measures the line-integrated electron density fluctuations. The results were compared to full-wave simulations AORSA and TORIC. AORSA is coupled to a Fokker-Planck code CQL3D for self-consistent simulation of the wave electric field and the minority distribution function. The simulation results are compared to PCI measurements using synthetic diagnostic. The experiments were performed in D-H and D- 3 He plasmas over a wide range of ion species concentrations. The simulations agreed well with the measurements in the strong absorption regime. However, the measured fluctuation intensity was smaller by 1-2 orders of magnitudes in the weakly abosorbing regime, and a realistic description of the plasma edge including dissipation and antenna geometry may be required in these cases.

  20. Gravitational wave emission from a bounded source: A treatment in the full nonlinear regime

    International Nuclear Information System (INIS)

    Oliveiral, H.P. de; Damiao Soares, I.

    2004-03-01

    The dynamics of a bounded gravitational collapsing configuration emitting gravitational waves is studied. The exterior spacetime is described by Robinson-Trautman geometries and have the Schwarzschild black hole as its final gravitational configuration, when the gravitational wave emission ceases. The full nonlinear regime is examined by using the Galerkin method that allows us to reduce the equations governing the dynamics to a finite-dimensional dynamical system, after a proper truncation procedure. Gravitational wave emission patterns from given initial configurations are exhibited for several phases of the collapse and the mass-loss ratio that characterizes the amount of mass extracted by the gravitational wave emission is evaluated. We obtain that the smaller initial mass M init of the configuration, the more rapidly the Schwarzschild solution is attained and a larger fraction of M init is lost in the process of gravitational wave emission. Within all our numerical experiments, the distribution of the mass fraction extracted by gravitational wave emission is shown to satisfy the distribution law of nonextensive statistics and this result is independent of the initial configurations considered. (author)

  1. Trend analysis of wave storminess: wave direction and its impact on harbour agitation

    Directory of Open Access Journals (Sweden)

    M. Casas-Prat

    2010-11-01

    Full Text Available In the context of wave climate variability, long-term alterations in the wave storminess pattern of the Catalan coast (northwestern Mediterranean Sea are analysed in terms of wave energy content and wave direction, on the basis of wave hindcast data (from 44-year time series. In general, no significant temporal trends are found for annual mean and maximum energy. However, the same analysis carried out separately for different wave directions reveals a remarkable increase in the storm energy of events from the south, which is partly due to a rise in the annual percentage of such storms. A case study of Tarragona Port (on the southern Catalan coast highlights the importance of including changes in wave direction in the study of potential impacts of climate change. In particular, an increase in the frequency of storms from the south leads to greater agitation inside the Port.

  2. Full wave dc-to-dc converter using energy storage transformers

    Science.gov (United States)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  3. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfven Wave (FW) Damping on Resonant Ions in Tokamaks

    International Nuclear Information System (INIS)

    Choi, M.; Chan, V.S.; Pinsker, R.I.; Tang, V.; Bonoli, P.; Wright, J.

    2005-01-01

    To simulate the resonant interaction of fast Alfven wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement

  4. Efficient full wave code for the coupling of large multirow multijunction LH grills.

    Czech Academy of Sciences Publication Activity Database

    Preinhaelter, Josef; Hillairet, J.; Milanesio, D.; Maggiora, R.; Urban, Jakub; Vahala, L.; Vahala, G.

    2017-01-01

    Roč. 57, č. 11 (2017), č. článku 116060. ISSN 0029-5515 R&D Projects: GA MŠk(CZ) 8D15001; GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : lower hybrid waves * coupling * large multirow multijunction grills * tokamak * full-wave Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa7f4f/meta

  5. Neutral axis determination of full size concrete structures using coda wave measurements

    Science.gov (United States)

    Jiang, Hanwan; Zhan, Hanyu; Zhuang, Chenxu; Jiang, Ruinian

    2018-03-01

    Coda waves experiencing multiple scattering behaviors are sensitive to weak changes occurring in media. In this paper, a typical four-point bending test with varied external loads is conducted on a 30-meter T-beam that is removed from a bridge after being in service for 15 years, and the coda wave signals are collected with a couple of sources-receivers pairs. Then the observed coda waves at different loads are compared to calculate their relative velocity variations, which are utilized as the parameter to distinct the compression and tensile zones as well as determine the neutral axis position. Without any prior knowledge of the concrete beam, the estimated axis position agrees well with the associated strain gage measurement results, and the zones bearing stress and tension behaviors are indicated. The presented work offers significant potential for Non-Destructive Testing and Evaluation of full-size concrete structures in future work.

  6. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region

    Science.gov (United States)

    Sun, A.; Zhao, L.; Chen, Q.

    2008-12-01

    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  7. Time-domain full waveform inversion using the gradient preconditioning based on transmitted waves energy

    KAUST Repository

    Zhang, Xiao-bo

    2017-06-01

    The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.

  8. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  9. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  10. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  11. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  12. Modeling of EAST ICRF antenna performance using the full-wave code TORIC

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E. M., E-mail: eedlund@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Bonoli, P. T.; Porkolab, M.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2015-12-10

    Access to advanced operating regimes in the EAST tokamak will require a combination of electron-cyclotron resonance heating (ECRH), neutral beam injection (NBI) and ion cyclotron range frequency heating (ICRF), with the addition of lower-hybrid current drive (LHCD) for current profile control. Prior experiments at the EAST tokamak facility have shown relatively weak response of the plasma temperature to application of ICRF heating, with typical coupled power about 2 MW out of 12 MW source. The launched spectrum, at n{sub φ} = 34 for 0-π -0-π phasing and 27 MHz, is largely inaccessible at line-averaged densities of approximately 2 × 10{sup 19} m{sup −3}. However, with variable antenna phasing and frequency, this system has considerable latitude to explore different heating schemes. To develop an ICRF actuator control model, we have used the full-wave code TORIC to explore the physics of ICRF wave propagation in EAST. The results presented from this study use a spectrum analysis using a superposition of n{sub φ} spanning −50 to +50. The low density regime typical of EAST plasmas results in a perpendicular wavelength comparable to the minor radius which results in global cavity resonance effects and eigenmode formation when the single-pass absorption is low. This behavior indicates that improved performance can be attained by lowering the peak of the k{sub ||} spectrum by using π/3 phasing of the 4-strap antenna. Based on prior studies conducted at Alcator C-Mod, this phasing is also expected to have the advantage of nearly divergence-free box currents, which should result in reduced levels of impurity production. Significant enhancements of the loading resistance may be achieved by using low k{sub ||} phasing and a combination of magnetic field and frequency to vary the location of the resonance and mode conversion regions. TORIC calculations indicate that the significant power may be channeled to the electrons and deuterium majority. We expect that

  13. Ion cyclotron emission calculations using a 2D full wave numerical code

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Jaeger, E.F.; Colestock, P.L.

    1987-01-01

    Measurement of radiation in the HF band due to cyclotron emission by energetic ions produced by fusion reactions or neutral beam injection promises to be a useful diagnostic on large devices which are entering the reactor regime of operation. A number of complications make the modelling and interpretation of such measurements difficult using conventional geometrical optics methods. In particular the long wavelength and lack of high directivity of antennas in this frequency regime make observation of a single path across the plasma into a viewing dump impractical. Pickup antennas effectively see the whole plasma and wall reflection effects are important. We have modified our 2D full wave ICRH code 2 to calculate wave fields due to a distribution of energetic ions in tokamak geometry. The radiation is modeled as due to an ensemble of localized source currents distributed in space. The spatial structure of the coherent wave field is then calculated including cyclotron harmonic damping as compared to the usual procedure of incoherently summing powers of individual radiators. This method has the advantage that phase information from localized radiating currents is globally retained so the directivity of the pickup antennas is correctly represented. Also standing waves and wall reflections are automatically included

  14. Trend analysis of the wave storminess: the wave direction

    Science.gov (United States)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.

  15. Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

    Directory of Open Access Journals (Sweden)

    Josef Burian

    2012-12-01

    Full Text Available This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

  16. Current and Voltage Conveyors in Current- and Voltage-Mode Precision Full-Wave Rectifiers

    Directory of Open Access Journals (Sweden)

    J. Koton

    2011-04-01

    Full Text Available In this paper new versatile precision full-wave rectifiers using current and/or voltage conveyors as active elements and two diodes are presented. The performance of these circuit solutions is analysed and compared to the opamp based precision rectifier. To analyze the behavior of the functional blocks, the frequency dependent RMS error and DC transient value are evaluated for different values of input voltage amplitudes. Furthermore, experimental results are given that show the feasibilities of the conveyor based rectifiers superior to the corresponding operational amplifier based topology.

  17. Data analysis techniques for gravitational wave observations

    Indian Academy of Sciences (India)

    Astrophysical sources of gravitational waves fall broadly into three categories: (i) transient and bursts, (ii) periodic or continuous wave and (iii) stochastic. Each type of source requires a different type of data analysis strategy. In this talk various data analysis strategies will be reviewed. Optimal filtering is used for extracting ...

  18. Visco-elastic controlled-source full waveform inversion without surface waves

    Science.gov (United States)

    Paschke, Marco; Krause, Martin; Bleibinhaus, Florian

    2016-04-01

    We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.

  19. Full-waveform inversion with reflected waves for 2D VTI media

    KAUST Repository

    Pattnaik, Sonali

    2016-09-06

    Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.

  20. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II: Inclusion of Exchange

    Science.gov (United States)

    Shertzer, Janine; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.

  1. Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II

    Science.gov (United States)

    Shertzer, J.; Temkin, A.

    2003-01-01

    As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.

  2. Two-dimensional full-wave code for reflectometry simulations in TJ-II

    International Nuclear Information System (INIS)

    Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.

    2004-01-01

    A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained

  3. Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-08-15

    The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.

  4. CFD Analysis of Water Solitary Wave Reflection

    Directory of Open Access Journals (Sweden)

    K. Smida

    2011-12-01

    Full Text Available A new numerical wave generation method is used to investigate the head-on collision of two solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as a source line within the computational domain for the generation of these non linear waves. This model was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series code. The collision of two counter-propagating solitary waves is similar to the interaction of a soliton with a vertical wall. This wave generation method allows the saving of considerable time for this collision process since the counter-propagating wave is generated directly without reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to experimental measurement. The simulated wave profiles during the collision are in good agreement with experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants show that this problem is equivalent to the collision process.

  5. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  6. Full polarimetric millimetre wave radar for stand-off security screening

    Science.gov (United States)

    Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew

    2017-10-01

    The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.

  7. Synthetic Diagnostic for Doppler Backscattering (DBS) Turbulence Measurements based on Full Wave Simulations

    Science.gov (United States)

    Ernst, D. R.; Rhodes, T. L.; Kubota, S.; Crocker, N.

    2017-10-01

    Plasma full-wave simulations of the DIII-D DBS system including its lenses and mirrors are developed using the GPU-based FDTD2D code, verified against the GENRAY ray-tracing code and TORBEAM paraxial beam code. Our semi-analytic description of the effective spot size for a synthetic diagnostic reveals new focusing and defocusing effects arising from the combined effects of the curvature of the reflecting surface and that of the Gaussian beam wavefront. We compute the DBS transfer function from full-wave simulations to verify these effects. Using the synthetic diagnostic, nonlinear GYRO simulations closely match DBS fluctuation spectra with and without strong electron heating, without adjustment or change in normalization, while both GYRO and GENE also match fluxes in all transport channels. Density gradient driven TEMs that are observed by the DBS diagnostic on DIII-D are reproduced by simulations as a band of discrete toroidal mode numbers which intensify during strong electron heating. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-08ER54984.

  8. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  9. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    Science.gov (United States)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  10. Full wave field recording of the vertical strain at SAFOD from local, regional and teleseismic earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.

    2017-12-01

    The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.

  11. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura; Ferreira, Ana M.G.

    2016-01-01

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface

  12. Crack Detection with Lamb Wave Wavenumber Analysis

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  13. First experiences of full-profile analysis with GUISDAP

    Directory of Open Access Journals (Sweden)

    M. S. Lehtinen

    Full Text Available In this paper we summarize the theory behind full-profile analysis of IS measurements and report first practical experiences with the GUISDAP (Grand Unified Incoherent Scatter Design and Analysis Package system designed to perform full-profile analysis of any IS measurements efficiently. By fitting whole plasma parameter profiles over the ionosphere, instead of point values of the parameters supposed to be approximately constant over small range intervals, full-profile analysis is free of underlying assumptions about the slow variation of the plasma parameters as a function of range. We define full-profile analysis as a mathematical inversion problem formalism and explain how it differs from the traditional gated analysis. Moreover, we study the bias introduced to traditional analysis results using realistic model ionospheres. By applying the full-profile method to data generated from the model ionospheres, we demonstrate that full-profile analysis is free from this kind of bias. Lastly, an example of analysis of real data by full-profile and gated analyses is shown.

  14. First experiences of full-profile analysis with GUISDAP

    Directory of Open Access Journals (Sweden)

    M. S. Lehtinen

    1996-12-01

    Full Text Available In this paper we summarize the theory behind full-profile analysis of IS measurements and report first practical experiences with the GUISDAP (Grand Unified Incoherent Scatter Design and Analysis Package system designed to perform full-profile analysis of any IS measurements efficiently. By fitting whole plasma parameter profiles over the ionosphere, instead of point values of the parameters supposed to be approximately constant over small range intervals, full-profile analysis is free of underlying assumptions about the slow variation of the plasma parameters as a function of range. We define full-profile analysis as a mathematical inversion problem formalism and explain how it differs from the traditional gated analysis. Moreover, we study the bias introduced to traditional analysis results using realistic model ionospheres. By applying the full-profile method to data generated from the model ionospheres, we demonstrate that full-profile analysis is free from this kind of bias. Lastly, an example of analysis of real data by full-profile and gated analyses is shown.

  15. Generation and Analysis of Random Waves

    DEFF Research Database (Denmark)

    Liu, Zhou; Frigaard, Peter

    applied to hydrology, wind mechanics, ice mechanics, etc., not to mention the fact that spectral analysis comes originally from optics and electronics. The book intents to be a textbook for senior and graduate students who have interest in coastal and offshore structures. The only pre......Sea waves are the most important phenomenon to be considered in the design of coastal and offshore structures. It should be stressed that, even though all contents in the book are related to sea waves, they have a broader application in practice. For example, the extreme theory has also been......-requirement for the book is the knowledge of linear wave theory....

  16. A Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces

    Directory of Open Access Journals (Sweden)

    Mehdi Raoofian Naeeni

    2016-12-01

    Full Text Available The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations for potential functions. In this paper, the secular equations for determination of body and surface wave velocities are derived in terms of both elasticity coefficients and the direction of propagation. In particular, the longitudinal, transverse and Rayleigh wave velocities are determined in explicit forms. It is also shown that in transversely isotropic materials, a Rayleigh wave may propagate in different manner from that of isotropic materials. Some numerical results for synthetic transversely isotropic materials are also illustrated to show the behavior of wave motion due to anisotropic nature of the problem.

  17. Risk analysis of breakwater caisson under wave attack using load surface approximation

    Science.gov (United States)

    Kim, Dong Hyawn

    2014-12-01

    A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.

  18. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  19. FISIC - a full-wave code to model ion cyclotron resonance heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Kruecken, T.

    1988-08-01

    We present a user manual for the FISIC code which solves the integrodifferential wave equation in the finite Larmor radius approximation in fully toroidal geometry to simulate ICRF heating experiments. The code models the electromagnetic wave field as well as antenna coupling and power deposition profiles in axisymmetric plasmas. (orig.)

  20. Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity

    International Nuclear Information System (INIS)

    Shibata, Masaru; Sekiguchi, Yu-ichirou

    2004-01-01

    Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are solved in Cartesian coordinates and the axisymmetric condition is imposed around the y=0 plane, is adopted. The hydrodynamic equations are solved in cylindrical coordinates (on the y=0 plane in Cartesian coordinates) using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and Mueller. It is found that the evolution of the central density during the collapse, bounce, and formation of protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mueller in which an approximate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good agreement with those by Dimmelmeier, Font, and Mueller. However, quantitatively, two waveforms do not agree well. The possible reasons for the disagreement are discussed

  1. Characterization of an SRF gun: a 3D full wave simulation

    International Nuclear Information System (INIS)

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-01-01

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE(trademark)).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180 o . In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE(trademark) also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  2. Variational full wave calculation of fast wave current drive in DIII-D using the ALCYON code

    International Nuclear Information System (INIS)

    Becoulet, A.; Moreau, D.

    1992-04-01

    Initial fast wave current drive simulations performed with the ALCYON code for the 60 MHz DIII-D experiment are presented. Two typical shots of the 1991 summer campaign were selected with magnetic field intensities of 1 and 2 teslas respectively. The results for the wave electromagnetic field in the plasma chamber are displayed. They exhibit a strong enrichment of the poloidal mode number m-spectrum which leads to the upshift of the parallel wavenumber, κ perpendicular, and to the wave absorption. The m-spectrum is bounded when the local poloidal wavenumber reaches the Alfven wavenumber and the κ perpendicular upshifts do not destroy the wave directionality. Linear estimations of the driven current are made. The current density profiles are found to be peaked and we find that about 88 kA can be driven in the 1 tesla/1.7 keV phase with 1.7 MW coupled to the electrons. In the 2 tesla/3.4 keV case, 47 kA are driven with a total power of 1.5 MW, 44% of which are absorbed on the hydrogen minority, through the second harmonic ion cyclotron resonance. The global efficiency is then 0.18 x 10 19 A m -2 W -1 if one considers only the effective power going to the electrons

  3. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the incident waves upon a wave device allows the possibility of accurately tuning the power-take off mechanism (the hydro-turbines for the Wave Dragon) to capture more energy. A digital filter method for performing this prediction in real-time with minimal computational effort is presented. Construction...... of digital filters is well known within signal processing, but their use for this application in Wave Energy is new. The filter must be designed carefully as the frequency components of waves travel at different speeds. Research presented in this thesis has advanced the development of the Wave Dragon device...

  4. Geodesics analysis of colliding gravitational shock waves

    International Nuclear Information System (INIS)

    Pozdeeva, E.

    2011-01-01

    Full text: (author)We consider collision of charged gravitational shock waves with infinite transverse extension (charged gravitational walls). We study the influence of the charges on the trapped surface formation in the charged walls collision. This consideration has applications in the in heavy ion collisions using a holographic approach in which the charge plays the role of the chemical potential

  5. Unstructured Navier-Stokes Analysis of Full TCA Configuration

    Science.gov (United States)

    Frink, Neal T.; Pirzadeh, Shahyar Z.

    1999-01-01

    This paper presents an Unstructured Navier-Stokes Analysis of Full TCA (Technology Concept Airplane) Configuration. The topics include: 1) Motivation; 2) Milestone and approach; 3) Overview of the unstructured-grid system; 4) Results on full TCA W/B/N/D/E configuration; 5) Concluding remarks; and 6) Future directions.

  6. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong

    2009-03-01

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.

  7. Effects of half-wave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ximei [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)], E-mail: wangximei126@126.com; Zhu Liqun; Li Weiping; Liu Huicong; Li Yihong [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

    2009-03-15

    Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na{sub 2}SiO{sub 3} with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg{sub 2}SiO{sub 4} and amorphous SiO{sub 2}.

  8. Analytic perturbation theory for screened Coulomb potential: full continuum wave function

    International Nuclear Information System (INIS)

    Bechler, A.; Ennan, Mc J.; Pratt, R.H.

    1979-01-01

    An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)

  9. Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA

    Science.gov (United States)

    Flinders, Ashton; Shen, Yang

    2015-04-01

    Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.

  10. Statistical analysis on extreme wave height

    Digital Repository Service at National Institute of Oceanography (India)

    Teena, N.V.; SanilKumar, V.; Sudheesh, K.; Sajeev, R.

    -294. • WAFO (2000) – A MATLAB toolbox for analysis of random waves and loads, Lund University, Sweden, homepage http://www.maths.lth.se/matstat/wafo/,2000. 15    Table 1: Statistical results of data and fitted distribution for cumulative distribution...

  11. Manual for wave generation and analysis

    DEFF Research Database (Denmark)

    Jakobsen, Morten Møller

    This Manual is for the included wave generation and analysis software and graphical user interface. The package is made for Matlab and is meant for educational purposes. The code is free to use under the GNU Public License (GPL). It is still in development and should be considered as such. If you...

  12. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs

    International Nuclear Information System (INIS)

    Ellis, T.; Petroski, R.; Hejzlar, P.; Zimmerman, G.; McAlees, D.; Whitmer, C.; Touran, N.; Hejzlar, J.; Weave, K.; Walter, J. C.; McWhirter, J.; Ahlfeld, C.; Burke, T.; Odedra, A.; Hyde, R.; Gilleland, J.; Ishikawa, Y.; Wood, L.; Myhrvold, N.; Gates Iii, W. H.

    2010-01-01

    Rising environmental and economic concerns have signaled a desire to reduce dependence on hydrocarbon fuels. These concerns have brought the world to an inflection point and decisions made today will dictate what the global energy landscape will look like for the next half century or more. An optimal energy technology for the future must meet stricter standards than in the past; in addition to being economically attractive, it now must also be environmentally benign, sustainable and scalable to global use. For stationary energy, only one existing resource comes close to fitting all of the societal requirements for an optimal energy source: nuclear energy. Its demonstrated economic performance, power density, and emissions-free benefits significantly elevate nuclear electricity generation above other energy sources. However, the current nuclear fuel cycle has some attributes that make it challenging to expand on a global scale. Traveling-wave reactor (TWR) technology, being developed by TerraPower, LLC, represents a potential solution to these limitations by offering a nuclear energy resource which is truly sustainable at full global scale for the indefinite future and is deployable in the near-term. TWRs are capable of offering a ∼40-fold gain in fuel utilization efficiency compared to conventional light-water reactors burning enriched fuel. Such high fuel efficiency, combined with an ability to use uranium recovered from river water or sea-water (which has been recently demonstrated to be technically and economically feasible) suggests that enough fuel is readily available for TWRs to generate electricity for 10 billion people at United States per capita levels for million-year time-scales. Interestingly, the Earth's rivers carry into the ocean a flux of uranium several times greater than that required to replace the implied rate-of-consumption, so that the Earth's slowly-eroding crust will provide a readily-accessible flow of uranium sufficient for all of

  13. Analysis of Different Methods for Wave Generation and Absorption in a CFD-Based Numerical Wave Tank

    Directory of Open Access Journals (Sweden)

    Adria Moreno Miquel

    2018-06-01

    Full Text Available In this paper, the performance of different wave generation and absorption methods in computational fluid dynamics (CFD-based numerical wave tanks (NWTs is analyzed. The open-source CFD code REEF3D is used, which solves the Reynolds-averaged Navier–Stokes (RANS equations to simulate two-phase flow problems. The water surface is computed with the level set method (LSM, and turbulence is modeled with the k-ω model. The NWT includes different methods to generate and absorb waves: the relaxation method, the Dirichlet-type method and active wave absorption. A sensitivity analysis has been conducted in order to quantify and compare the differences in terms of absorption quality between these methods. A reflection analysis based on an arbitrary number of wave gauges has been adopted to conduct the study. Tests include reflection analysis of linear, second- and fifth-order Stokes waves, solitary waves, cnoidal waves and irregular waves generated in an NWT. Wave breaking over a sloping bed and wave forces on a vertical cylinder are calculated, and the influence of the reflections on the wave breaking location and the wave forces on the cylinder is investigated. In addition, a comparison with another open-source CFD code, OpenFOAM, has been carried out based on published results. Some differences in the calculated quantities depending on the wave generation and absorption method have been observed. The active wave absorption method is seen to be more efficient for long waves, whereas the relaxation method performs better for shorter waves. The relaxation method-based numerical beach generally results in lower reflected waves in the wave tank for most of the cases simulated in this study. The comparably better performance of the relaxation method comes at the cost of larger computational requirements due to the relaxation zones that have to be included in the domain. The reflections in the NWT in REEF3D are generally lower than the published results for

  14. Partial wave analysis using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Niklaus; Liu Beijiang; Wang Jike, E-mail: nberger@ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Lu, Shijingshan, 100049 Beijing (China)

    2010-04-01

    Partial wave analysis is an important tool for determining resonance properties in hadron spectroscopy. For large data samples however, the un-binned likelihood fits employed are computationally very expensive. At the Beijing Spectrometer (BES) III experiment, an increase in statistics compared to earlier experiments of up to two orders of magnitude is expected. In order to allow for a timely analysis of these datasets, additional computing power with short turnover times has to be made available. It turns out that graphics processing units (GPUs) originally developed for 3D computer games have an architecture of massively parallel single instruction multiple data floating point units that is almost ideally suited for the algorithms employed in partial wave analysis. We have implemented a framework for tensor manipulation and partial wave fits called GPUPWA. The user writes a program in pure C++ whilst the GPUPWA classes handle computations on the GPU, memory transfers, caching and other technical details. In conjunction with a recent graphics processor, the framework provides a speed-up of the partial wave fit by more than two orders of magnitude compared to legacy FORTRAN code.

  15. Analysis of critically refracted longitudinal waves

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ning, E-mail: npei@iastate.edu; Bond, Leonard J., E-mail: npei@iastate.edu [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011 (United States)

    2015-03-31

    Fabrication processes, such as, welding, forging, and rolling can induce residual stresses in metals that will impact product performance and phenomena such as cracking and corrosion. To better manage residual stress tools are needed to map their distribution. The critically refracted ultrasonic longitudinal (LCR) wave is one such approach that has been used for residual stress characterization. It has been shown to be sensitive to stress and less sensitive to the effects of the texture of the material. Although the LCR wave is increasingly widely applied, the factors that influence the formation of the LCR beam are seldom discussed. This paper reports a numerical model used to investigate the transducers' parameters that can contribute to the directionality of the LCR wave and hence enable performance optimization when used for industrial applications. An orthogonal test method is used to study the transducer parameters which influence the LCR wave beams. This method provides a design tool that can be used to study and optimize multiple parameter experiments and it can identify which parameter or parameters are of most significance. The simulation of the sound field in a 2-D 'water-steel' model is obtained using a Spatial Fourier Analysis method. The effects of incident angle, standoff, the aperture and the center frequency of the transducer were studied. Results show that the aperture of the transducer, the center frequency and the incident angle are the most important factors in controlling the directivity of the resulting LCR wave fields.

  16. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  17. The analysis of interfacial waves

    International Nuclear Information System (INIS)

    Galimov, Azat Yu.; Drew, Donald A.; Lahey, Richard T.; Moraga, Francisco J.

    2005-01-01

    We present analytical results for stable stratified wavy two-phase flow and functional forms for the various interfacial force densities in a two-fluid model. In particular, we have derived analytically the components of the non-drag interfacial force density [Drew, D.A., Passman, S.L., 1998. Theory of Multicomponent Fluids. Springer-Verlag, New York; Nigmatulin, T.R., Drew, D.A., Lahey, R.T., Jr., 2000. An analysis of wavy annular flow. In: International Conference on Multiphase Systems, ICMS'2000, Ufa, Russia, June 15-17], Reynolds stress tensor, and the term, (p-bar cl i -p-bar cl )-bar α cl , where p-bar cl i is interfacial average pressure, p-bar cl the average pressure, and α cl is the volume fraction of the continuous liquid phase. These functional forms should be useful for assessing two-fluid closure relations and Computational Multiphase Fluid Dynamics (CMFD) numerical models for stratified wavy flows. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows)

  18. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    Science.gov (United States)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full

  19. Performance analysis of a full-field and full-range swept-source OCT system

    Science.gov (United States)

    Krauter, J.; Boettcher, T.; Körner, K.; Gronle, M.; Osten, W.; Passilly, N.; Froehly, L.; Perrin, S.; Gorecki, C.

    2015-09-01

    In recent years, optical coherence tomography (OCT) became gained importance in medical disciplines like ophthalmology, due to its noninvasive optical imaging technique with micrometer resolution and short measurement time. It enables e. g. the measurement and visualization of the depth structure of the retina. In other medical disciplines like dermatology, histopathological analysis is still the gold standard for skin cancer diagnosis. The EU-funded project VIAMOS (Vertically Integrated Array-type Mirau-based OCT System) proposes a new type of OCT system combined with micro-technologies to provide a hand-held, low-cost and miniaturized OCT system. The concept is a combination of full-field and full-range swept-source OCT (SS-OCT) detection in a multi-channel sensor based on a micro-optical Mirau-interferometer array, which is fabricated by means of wafer fabrication. This paper presents the study of an experimental proof-of-concept OCT system as a one-channel sensor with bulk optics. This sensor is a Linnik-interferometer type with similar optical parameters as the Mirau-interferometer array. A commercial wavelength tunable light source with a center wavelength at 845nm and 50nm spectral bandwidth is used with a camera for parallel OCT A-Scan detection. In addition, the reference microscope objective lens of the Linnik-interferometer is mounted on a piezo-actuated phase-shifter. Phase-shifting interferometry (PSI) techniques are applied for resolving the conjugate complex artifact and consequently contribute to an increase of image quality and depth range. A suppression ratio of the complex conjugate term of 36 dB is shown and a system sensitivity greater than 96 dB could be measured.

  20. Full-Scale Testing of Pipeline Unplugging Technologies - NuVision's Fluidic Wave-Action Technology

    International Nuclear Information System (INIS)

    Gokaltun, S.; McDaniel, D.; Varona, J.; Patel, R.; Awwad, A.; Roelant, D.; Keszler, E.

    2009-01-01

    In this paper, we present a technical evaluation of a pipeline unplugging method that can be used as a feasible tool to clean fouled pipes at Department of Energy (DOE) sites. The unplugging method depends on running water against the plugged section in the pipeline for multiple times and breaking the mechanical bonds of the material that hold the plug together. The working principles of the method are similar to beach erosion since a water wave is generated using the suction and drive mechanisms caused by the system in the pipeline that erodes the plug from one end. The technology tested also is capable of creating an external force on the plug that helps the unplugging process however this characteristic of the technology was not tested during the testing reported in this work. More focus was given to the erosion capability of the technology and how wave characteristics affected that. Results obtained demonstrated that there is a correlation between the suction and drive characteristics of the wave generated in the pipeline with the maximum pressures attained in the plug region, the velocity of the wave prior to colliding with the plug and the erosion. It was found that the technology was most effective in unplugging Phosphate based chemical plugs and Kaolin clay based plugs while it took more time to erode Aluminum based plugs for the same pipeline test layouts. (authors)

  1. Modal approach for the full simulation of nondestructive tests by elastic guided waves

    International Nuclear Information System (INIS)

    Jezzine, K.

    2006-11-01

    Tools for simulating nondestructive tests by elastic guided waves are developed. Two overall formulations based on modal formalism and reciprocity are derived depending on whether transmission and reception are separated or not. They relate phenomena of guided wave radiation by a transducer, their propagation, their scattering by a non-uniformity of the guide or a defect and their reception. Receiver electrical output is expressed as a product of terms relating to each phenomenon that can be computed separately. Their computation uses developments based on the semi-analytical finite elements method, dealing with guides of arbitrary cross-section and cracks normal to the guide axis. Simulation tools are used to study means for selecting a single mode using a transducer positioned on the guide section, such a selection making easier the interpretation of the results of testing by guided waves. Two methods of mode selection are proposed, based on the use of two specific frequencies (which existence depends on guide geometry and mode symmetry). Mimicking the normal stress distribution of the mode at one of these two frequencies or the other makes it possible to radiate solely or predominantly the mode chosen. Examinations are simulated in configurations using a single or two separated transducers positioned on the section of various guide geometries and cracks of various shapes. The interest and performances of the two methods of mode selection are studied in these configurations. (author)

  2. Sorghum cobalt analysis on not determined wave length with atomic ...

    African Journals Online (AJOL)

    This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 ...

  3. Analysis of Bending Waves in Phononic Crystal Beams with Defects

    Directory of Open Access Journals (Sweden)

    Yongqiang Guo

    2018-01-01

    Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.

  4. Empirical assessment of the validity limits of the surface wave full ray theory using realistic 3-D Earth models

    KAUST Repository

    Parisi, Laura

    2016-02-10

    The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T

  5. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  6. One-D full-wave description of plasma emission and absorption in the ion cyclotron range of frequency in tokamaks

    International Nuclear Information System (INIS)

    Fraboulet, D.; Becoulet, A.; Nguyen, F.

    1998-11-01

    To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those α-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting α-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author)

  7. Validation study of core analysis methods for full MOX BWR

    International Nuclear Information System (INIS)

    2013-01-01

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  8. Validation study of core analysis methods for full MOX BWR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  9. Full band all-sky search for periodic gravitational waves in the O1 LIGO data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×1 0-8 Hz /s . Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ˜4 ×1 0-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 ×1 0-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ˜1.5 ×1 0-25.

  10. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  11. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon

    2017-12-05

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  12. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  13. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    Science.gov (United States)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  14. A phase-plane analysis of localized frictional waves

    Science.gov (United States)

    Putelat, T.; Dawes, J. H. P.; Champneys, A. R.

    2017-07-01

    Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.

  15. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    Science.gov (United States)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  16. Comparative dynamic analysis of the full Grossman model.

    Science.gov (United States)

    Ried, W

    1998-08-01

    The paper applies the method of comparative dynamic analysis to the full Grossman model. For a particular class of solutions, it derives the equations implicitly defining the complete trajectories of the endogenous variables. Relying on the concept of Frisch decision functions, the impact of any parametric change on an endogenous variable can be decomposed into a direct and an indirect effect. The focus of the paper is on marginal changes in the rate of health capital depreciation. It also analyses the impact of either initial financial wealth or the initial stock of health capital. While the direction of most effects remains ambiguous in the full model, the assumption of a zero consumption benefit of health is sufficient to obtain a definite for any direct or indirect effect.

  17. Full scale experimental analysis of wind direction changes (EOD)

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2007-01-01

    wind direction gust amplitudes associated with the investigated European sites are low compared to the recommended IEC- values. However, these values, as function of the mean wind speed, are difficult to validate thoroughly due to the limited number of fully correlated measurements....... the magnitudes of a joint gust event defined by a simultaneously wind speed- and direction change in order to obtain an indication of the validity of the magnitudes specified in the IEC code. The analysis relates to pre-specified recurrence periods and is based on full-scale wind field measurements. The wind......A coherent wind speed and wind direction change (ECD) load case is defined in the wind turbine standard. This load case is an essential extreme load case that e.g. may be design driving for flap defection of active stall controlled wind turbines. The present analysis identifies statistically...

  18. A Single MO-CFTA Based Electronically/Temperature Insensitive Current-mode Half-wave and Full-wave Rectifiers

    OpenAIRE

    Weerapon Kongnun; Phamorn Silapan

    2013-01-01

    The article presents a current-mode full-wave rectifier employing multiple output current follower transconductance amplifier (MO-CFTA). The both circuits description is very simple, it merely comprises only single MO-CFTA, without external passive element. In addition, the magnitude and direction of output currents can be controlled via electronically method. Furthermore, the outputs are independent of the thermal voltage (VT). The performances of the proposed circuits are investigated thro...

  19. Specialty and full-service hospitals: a comparative cost analysis.

    Science.gov (United States)

    Carey, Kathleen; Burgess, James F; Young, Gary J

    2008-10-01

    To compare the costs of physician-owned cardiac, orthopedic, and surgical single specialty hospitals with those of full-service hospital competitors. The primary data sources are the Medicare Cost Reports for 1998-2004 and hospital inpatient discharge data for three of the states where single specialty hospitals are most prevalent, Texas, California, and Arizona. The latter were obtained from the Texas Department of State Health Services, the California Office of Statewide Health Planning and Development, and the Agency for Healthcare Research and Quality Healthcare Cost and Utilization Project. Additional data comes from the American Hospital Association Annual Survey Database. We identified all physician-owned cardiac, orthopedic, and surgical specialty hospitals in these three states as well as all full-service acute care hospitals serving the same market areas, defined using Dartmouth Hospital Referral Regions. We estimated a hospital cost function using stochastic frontier regression analysis, and generated hospital specific inefficiency measures. Application of t-tests of significance compared the inefficiency measures of specialty hospitals with those of full-service hospitals to make general comparisons between these classes of hospitals. Results do not provide evidence that specialty hospitals are more efficient than the full-service hospitals with whom they compete. In particular, orthopedic and surgical specialty hospitals appear to have significantly higher levels of cost inefficiency. Cardiac hospitals, however, do not appear to be different from competitors in this respect. Policymakers should not embrace the assumption that physician-owned specialty hospitals produce patient care more efficiently than their full-service hospital competitors.

  20. Attenuation Analysis of Lamb Waves Using the Chirplet Transform

    NARCIS (Netherlands)

    Kerber, Florian; Sprenger, Helge; Niethammer, Marc; Luangvilai, Kritsakorn; Jacobs, Laurence J.

    2010-01-01

    Guided Lamb waves are commonly used in nondestructive evaluation to monitor plate-like structures or to characterize properties of composite or layered materials. However, the dispersive propagation and multimode excitability of Lamb waves complicate their analysis. Advanced signal processing

  1. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    Science.gov (United States)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  2. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity.

    Science.gov (United States)

    Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus

    2014-08-13

    Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    Science.gov (United States)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  4. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  5. Spectral analysis of full field digital mammography data

    International Nuclear Information System (INIS)

    Heine, John J.; Velthuizen, Robert P.

    2002-01-01

    The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2

  6. Preliminary analysis of knee stress in Full Extension Landing

    Directory of Open Access Journals (Sweden)

    Majid Davoodi Makinejad

    2013-09-01

    Full Text Available OBJECTIVE: This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height. METHODS: The impact time and loads were measured via inverse dynamic analysis of free landing without knee flexion from three different heights (25, 50 and 75 cm, using five subjects with an average body mass index of 18.8. Three-dimensional data were developed from computed tomography scans and were reprocessed with modeling software before being imported and analyzed by finite element analysis software. The whole leg was considered to be a fixed middle-hinged structure, while impact loads were applied to the femur in an upward direction. RESULTS: Straight landing exerted an enormous amount of pressure on the knee joint as a result of the body's inability to utilize the lower extremity muscles, thereby maximizing the threat of injury when the load exceeds the height-safety threshold. CONCLUSIONS: The researchers conclude that extended-knee landing results in serious deformation of the meniscus and cartilage and increases the risk of bone-to-bone contact and serious knee injury when the load exceeds the threshold safety height. This risk is considerably greater than the risk of injury associated with walking downhill or flexion landing activities.

  7. Full-motion video analysis for improved gender classification

    Science.gov (United States)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  8. ICRF full wave field solution and absorption for D-T and D-3He heating scenarios

    International Nuclear Information System (INIS)

    Scharer, J.; Sund, R.

    1989-01-01

    We consider a fundamental power conservation relation, full wave solutions for fields and power absorption in moderate and high density tokamaks to third order in the gyroradius expansion. The power absorption, conductivity tensor and kinetic flux associated with the conservation relation as well as the wave differential equation are obtained. Cases examined include D-T and D- 3 He scenarios for TFTR,JET and CIT at the Fundamental and Second harmonic. Optimum single pass absorption cases for D-T operation in JET and CIT are considered as a function of the K ≡ spectrum of the antenna with an without a minority He 3 resonance. It is found that at elevated temperatures >4 keV, minority (10%) fundamental deuterium absorption is very efficient for either fast wave low or high field incidence or high field Bernstein wave incidence. We consider the effects of a 10 keV bulk and 100 keV tail helium distribution on the second harmonic absorption in a deuterium plasma for Jet parameters. In addition, scenarios with ICRF operation without attendant substantial tritium concentrations are found the fundamental (15%) and second harmonic helium (33%) heating in a the deuterium plasma. For High field operation at high density in CIT, we find a higher part of the K parallel spectrum yields good single pass absorption with a 5% minority helium concentration in D-T

  9. Greenhouse gas emission inventory based on full energy chain analysis

    International Nuclear Information System (INIS)

    Dones, R.; Hirschberg, S.; Knoepfel, I.

    1996-01-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study 'Environmental Life-Cycle Inventories of Energy Systems' are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs

  10. Greenhouse gas emission inventory based on full energy chain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Knoepfel, I [Federal Inst. of Technology Zurich, Zurich (Switzerland)

    1996-07-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study `Environmental Life-Cycle Inventories of Energy Systems` are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs.

  11. Measurement of Dielectric Properties at 75 - 325 GHz using a Vector Network Analyzer and Full Wave Simulator

    Directory of Open Access Journals (Sweden)

    S.Khanal

    2012-06-01

    Full Text Available This paper presents a fast and easy to use method to determine permittivity and loss tangent in the frequency range of 75 to 325 GHz. To obtain the permittivity and the loss tangent of the test material, the reflection and transmission S-parameters of a waveguide section filled with the test material are measured using a vector network analyzer and then compared with the simulated plots from a full wave simulator (HFSS, or alternatively the measurement results are used in mathematical formulas. The results are coherent over multiple waveguide bands.

  12. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

    DEFF Research Database (Denmark)

    Guo, Kai; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers......, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new...

  13. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  14. Full-Range Public Health Leadership, Part 1: Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Erik L. Carlton

    2015-04-01

    Full Text Available Background. Workforce and leadership development are central to the future of public health. However, public health has been slow to translate and apply leadership models from other professions and to incorporate local perspectives in understanding public health leadership. Purpose. This study utilized the full-range leadership model in order to examine public health leadership. Specifically, it sought to measure leadership styles among local health department directors and to understand the context of leadership local health departments.Methods. Leadership styles among local health department directors (n=13 were examined using survey methodology. Quantitative analysis methods included descriptive statistics, boxplots, and Pearson bivariate correlations using SPSS v18.0. Findings. Self-reported leadership styles were highly correlated to leadership outcomes at the organizational level. However, they were not related to county health rankings. Results suggest the preeminence of leader behaviors and providing individual consideration to staff as compared to idealized attributes of leaders, intellectual stimulation, or inspirational motivation. Implications. Holistic leadership assessment instruments, such as the Multifactor Leadership Questionnaire (MLQ can be useful in assessing public health leaders approaches and outcomes. Comprehensive, 360-degree reviews may be especially helpful. Further research is needed to examine the effectiveness of public health leadership development models, as well as the extent that public health leadership impacts public health outcomes.

  15. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  16. Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project: Estimation of Potential Environmental Impacts

    Directory of Open Access Journals (Sweden)

    Mats Leijon

    2013-05-01

    Full Text Available Wave energy conversion is a clean electric power production technology. During operation there are no emissions in the form of harmful gases. However there are unsolved issues considering environmental impacts such as: electromagnetism; the artificial reef effect and underwater noise. Anthropogenic noise is increasing in the oceans worldwide and wave power will contribute to this sound pollution in the oceans; but to what extent? The main purpose of this study was to examine the noise emitted by a full scale operating Wave Energy Converter (WEC in the Lysekil project at Uppsala University in Sweden. A minor review of the hearing capabilities of fish and marine mammals is presented to aid in the conclusions of impact from anthropogenic sound. A hydrophone was deployed to the seabed in the Lysekil research site park at distance of 20 and 40 m away from two operational WECs. The measurements were performed in the spring of 2011. The results showed that the main noise was a transient noise with most of its energy in frequencies below 1 kHz. These results indicate that several marine organisms (fish and mammals will be able to hear the operating WECs of a distance of at least 20 m.

  17. Development of a full waveform digital sonic tool and its field application; Full wave onpa kenso sochi no kaihatsu to genchi tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T [Geological Survey of Japan, Tsukuba (Japan); Kurahashi, T [Public Works Research Institute, Tsukuba (Japan); Goebuchi, T [OYO Corp., Tokyo (Japan)

    1997-10-22

    Full waveform digital sonic tool (OYO) has been developed for the purpose of accurately measuring geophysical anomalies in the rockbed containing cracks, and its performance is evaluated by comparing its measurements with those obtained by the conventional sonic logging device (DBM). Modification involves the following. While gain is fixed in the DBM, it is variable in a times10-times200 range in the OYO. Analog transfer:ground surface A/D in the DBM is replaced by digital transfer:intra-probe A/D in the OYO. In the DBM, only a special program running on the MS-DOS can analyze waveform data but, in the OYO, waveforms are recorded in the SEG-Y format enabling the import of the data into generally available waveform processing software. In the OYO, a high-speed communication board is incorporated into the probe, which realizes high-speed communication. There is a very excellent agreement between the two in P-wave velocity distribution as reckoned from the initial run. Regarding the OYO, however, it is pointed out that gain control be performed with the greatest care to prevent waveforms from distortion. 5 figs.

  18. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon

    2017-08-17

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  19. 3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude

    KAUST Repository

    Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali

    2017-01-01

    We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.

  20. Full Wave Function Optimization with Quantum Monte Carlo and Its Effect on the Dissociation Energy of FeS.

    Science.gov (United States)

    Haghighi Mood, Kaveh; Lüchow, Arne

    2017-08-17

    Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.

  1. Potential and limitations of wave intensity analysis in coronary arteries

    NARCIS (Netherlands)

    Siebes, M.; Kolyva, C.; Verhoeff, B.J.; Piek, J.J.; Spaan, J.A.

    2009-01-01

    Wave intensity analysis (WIA) is beginning to be applied to the coronary circulation both to better understand coronary physiology and as a diagnostic tool. Separation of wave intensity (WI) into forward and backward traveling components requires knowledge of pulse wave velocity at the point of

  2. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  3. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  4. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly

  5. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  6. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen

    2017-06-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, a WEMVA method using plane-wave CIGs is presented. Plane-wave CIGs reduce the computational cost and memory storage because they are directly calculated from prestack plane-wave migration, and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic datasets and a field dataset validate the efficiency and effectiveness of this method.

  7. Full-Duplex MIMO Small-Cell Networks: Performance Analysis

    OpenAIRE

    Atzeni, Italo; Kountouris, Marios

    2015-01-01

    Full-duplex small-cell relays with multiple antennas constitute a core element of the envisioned 5G network architecture. In this paper, we use stochastic geometry to analyze the performance of wireless networks with full-duplex multiple-antenna small cells, with particular emphasis on the probability of successful transmission. To achieve this goal, we additionally characterize the distribution of the self-interference power of the full-duplex nodes. The proposed framework reveals useful ins...

  8. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    Science.gov (United States)

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  9. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  10. A time-frequency analysis of wave packet fractional revivals

    International Nuclear Information System (INIS)

    Ghosh, Suranjana; Banerji, J

    2007-01-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals

  11. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    Science.gov (United States)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  12. Wave Analysis for West Coast of South Myanmar

    Directory of Open Access Journals (Sweden)

    Xu Yanan

    2015-01-01

    Full Text Available The characteristic of southern parts of Myanmar is tropical monsoon climate, and this area is affected by few typhoons. The wave height is changed with season, the field measured data shows that the aver-age monthly maximum wave height is in June. The wave height, swelling from Indian Ocean and spreading to research area, is small. The research adopts SWAN model to simulate the waves that are transformed from off-shore to nearshore Myanmar based on the meteorological data from ECMWF. The simulated results were com-pared with satellite data and field measured data, it showed that the trend between the curves is unified, and the extreme value of simulation is close to the measured value. The simulation presents wave distribution around Myanmar southern sea, it shows that the wave height and wave directions are affected by terrain refraction and island trains shielding. When the wave is from WSW direction, the wave will be decreased fast caused by island shielding, and the direction turns to W direction at northern coastline. When the wave comes from SSW direction, the island shielding will be weak, the wave will be decreased slowly, and the direction will turn to SW direction at southern coastline.

  13. A comparative phylogenetic analysis of full-length mariner elements

    Indian Academy of Sciences (India)

    Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth, Antheraea mylitta with other full length MLEs submitted in the ...

  14. Detecting delaminations and disbondings on full-scale wing composite panel by guided waves based SHM system

    Science.gov (United States)

    Monaco, E.; Boffa, N. D.; Memmolo, V.; Ricci, F.; Maio, L.

    2016-04-01

    A full-scale lower wing panel made of composite material has been designed, manufactured and sensorised within the European Funded research project named SARISTU. The authors contributed to the whole development of the system, from design to implementation as well as to the impacts campaign phase where Barely Visible and Visible Damages (BVID and VID) are to be artificially induced on the panel by a pneumatic impact machine. This work summarise part of the experimental results related to damages production, their assessment by C-SCAN as reference NDT method as well as damage detection of delimitations by a guided waves based SHM. The SHM system is made by customized piezoelectric patches secondary bonded on the wing plate acting both as guided waves sources and receivers. The paper will deal mostly with the experimental impact campaign and the signal analyses carried out to extract the metrics more sensitive to damages induced. Image reconstruction of the damages dimensions and shapes will be also described based mostly on the combination of metrics maps over the plate partial surfaces. Finally a comparison of damages maps obtained by the SHM approach and those obtained by "classic" C-SCAN will be presented analyzing briefly pros and cons of the two different approached as a combination to the most effective structural maintenance scenario of a commercial aircraft.

  15. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    Science.gov (United States)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  16. Solution of Full Wave Equation for Global Modes in Small Aspect Ratio Tokamaks with Non-Circular Cross-Section

    International Nuclear Information System (INIS)

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The wave equation for strongly toroidal small aspect ratio (spherical) tokamaks with non-circular cross-section is properly formulated and solved for global waves, in the Alfven frequency range. The current-carrying toroidal plasma is surrounded by a helical sheet-current antenna, which is enclosed within a perfectly conducting wall. The problem is formulated in terms of the vector and scalar potentials (A,Φ), thus avoiding the numerical solution occurring in the case of (E,B) formulation. Adequate boundary conditions are applied at the vacuum - metallic wall interface and the magnetic axis. A recently derived dielectric tensor-operator, able to describe the anisotropic plasma response in spherical tokamaks, is used for this purpose; except for its linear character, no physical or geometrical limitations are imposed on it. The equilibrium profiles (magnetic field, pressure and current) are obtained from a numerical solution of the Grad-Shafranov equation. Specifically, the wave equation is solved by the aid of a numerical code we developed for the present problem, based on the well documented 2(1/2)D finite element solver proposed by E.G. Sewell. With the definitions V i (θ,ρ) = U i (-θ,ρ) (V i U i = A j , Φ; j = ρ,φ,θ), our code solves simultaneously 16 second order partial differential equations (eight equations for each of real and imaginary set of functions V i , U i ). A systematic analysis of the solutions obtained for various values and combinations of wavenumbers and frequencies in the Alfven range is presented

  17. Wave-equation Migration Velocity Analysis Using Plane-wave Common Image Gathers

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain or time-lag common image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images

  18. Analysis of full scale impact into an abutment

    International Nuclear Information System (INIS)

    Fullard, K.; Dowler, H.J.; Soanes, T.P.T.

    1985-01-01

    A 60mph impact into a tunnel abutment, of a flask on a railway flatrol with following vehicles, is shown to be a much less severe event for the flask than a 9 metre drop test to IAEA regulations. This involves the use of mathematical models of the full scale event of the same type as were employed in studying the behaviour of quarter scale models. The latter were subject to actual impact testing as part of the validation process. (author)

  19. Statistical analysis of monochromatic whistler waves near the Moon detected by Kaguya

    Directory of Open Access Journals (Sweden)

    Y. Tsugawa

    2011-05-01

    Full Text Available Observations are presented of monochromatic whistler waves near the Moon detected by the Lunar Magnetometer (LMAG on board Kaguya. The waves were observed as narrowband magnetic fluctuations with frequencies close to 1 Hz, and were mostly left-hand polarized in the spacecraft frame. We performed a statistical analysis of the waves to identify the distributions of their intensity and occurrence. The results indicate that the waves were generated by the solar wind interaction with lunar crustal magnetic anomalies. The conditions for observation of the waves strongly depend on the solar zenith angle (SZA, and a high occurrence rate is recognized in the region of SZA between 40° to 90° with remarkable north-south and dawn-dusk asymmetries. We suggest that ion beams reflected by the lunar magnetic anomalies are a possible source of the waves.

  20. Theory analysis and simple calculation of travelling wave burnup scheme

    International Nuclear Information System (INIS)

    Zhang Jian; Yu Hong; Gang Zhi

    2012-01-01

    Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)

  1. Genomic analysis identifies masqueraders of full-term cerebral palsy.

    Science.gov (United States)

    Takezawa, Yusuke; Kikuchi, Atsuo; Haginoya, Kazuhiro; Niihori, Tetsuya; Numata-Uematsu, Yurika; Inui, Takehiko; Yamamura-Suzuki, Saeko; Miyabayashi, Takuya; Anzai, Mai; Suzuki-Muromoto, Sato; Okubo, Yukimune; Endo, Wakaba; Togashi, Noriko; Kobayashi, Yasuko; Onuma, Akira; Funayama, Ryo; Shirota, Matsuyuki; Nakayama, Keiko; Aoki, Yoko; Kure, Shigeo

    2018-05-01

    Cerebral palsy is a common, heterogeneous neurodevelopmental disorder that causes movement and postural disabilities. Recent studies have suggested genetic diseases can be misdiagnosed as cerebral palsy. We hypothesized that two simple criteria, that is, full-term births and nonspecific brain MRI findings, are keys to extracting masqueraders among cerebral palsy cases due to the following: (1) preterm infants are susceptible to multiple environmental factors and therefore demonstrate an increased risk of cerebral palsy and (2) brain MRI assessment is essential for excluding environmental causes and other particular disorders. A total of 107 patients-all full-term births-without specific findings on brain MRI were identified among 897 patients diagnosed with cerebral palsy who were followed at our center. DNA samples were available for 17 of the 107 cases for trio whole-exome sequencing and array comparative genomic hybridization. We prioritized variants in genes known to be relevant in neurodevelopmental diseases and evaluated their pathogenicity according to the American College of Medical Genetics guidelines. Pathogenic/likely pathogenic candidate variants were identified in 9 of 17 cases (52.9%) within eight genes: CTNNB1 , CYP2U1 , SPAST , GNAO1 , CACNA1A , AMPD2 , STXBP1 , and SCN2A . Five identified variants had previously been reported. No pathogenic copy number variations were identified. The AMPD2 missense variant and the splice-site variants in CTNNB1 and AMPD2 were validated by in vitro functional experiments. The high rate of detecting causative genetic variants (52.9%) suggests that patients diagnosed with cerebral palsy in full-term births without specific MRI findings may include genetic diseases masquerading as cerebral palsy.

  2. Full core reactor analysis: Running Denovo on Jaguar

    Energy Technology Data Exchange (ETDEWEB)

    Jarrell, J. J.; Godfrey, A. T.; Evans, T. M.; Davidson, G. G. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2012-07-01

    Fully-consistent, full-core, 3D, deterministic neutron transport simulations using the orthogonal mesh code Denovo were run on the massively parallel computing architecture Jaguar XT5. Using energy and spatial parallelization schemes, Denovo was able to efficiently scale to more than 160 k processors. Cell-homogenized cross sections were used with step-characteristics, linear-discontinuous finite element, and trilinear-discontinuous finite element spatial methods. It was determined that using the finite element methods gave considerably more accurate eigenvalue solutions for large-aspect ratio meshes than using step-characteristics. (authors)

  3. Mountain Wave Analysis Using Fourier Methods

    National Research Council Canada - National Science Library

    Roadcap, John R

    2007-01-01

    ...) their requirements for only a coarse horizontal background state. Common traits of Fourier mountain wave models include use of the Boussinesq approximation and neglect of moisture and Coriolis terms...

  4. Analysis of Z Pinch Shock Wave Experiments

    International Nuclear Information System (INIS)

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  5. A performance analysis in AF full duplex relay selection network

    Science.gov (United States)

    Ngoc, Long Nguyen; Hong, Nhu Nguyen; Loan, Nguyen Thi Phuong; Kieu, Tam Nguyen; Voznak, Miroslav; Zdralek, Jaroslav

    2018-04-01

    This paper studies on the relaying selective matter in amplify-and-forward (AF) cooperation communication with full-duplex (FD) activity. Various relay choice models supposing the present of different instant information are investigated. We examine a maximal relaying choice that optimizes the instant FD channel capacity and asks for global channel state information (CSI) as well as partial CSI learning. To make comparison easy, accurate outage probability clauses and asymptote form of these strategies that give a diversity rank are extracted. From that, we can see clearly that the number of relays, noise factor, the transmittance coefficient as well as the information transfer power had impacted on their performance. Besides, the optimal relay selection (ORS) model can promote than that of the partial relay selection (PRS) model.

  6. Full text clustering and relationship network analysis of biomedical publications.

    Science.gov (United States)

    Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

    2014-01-01

    Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  7. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  8. Analysis of the Mannshan Unit 2 full load rejection transient

    International Nuclear Information System (INIS)

    Kang, J.C.; Pei, B.S.; Yu, G.P.; Yuann, R.Y.

    1987-01-01

    Mannshan Unit 2 is a Westinghouse three-loop pressurized water reactor with a rated core power of 2775 MW(thermal) and a rated core flow of 4702 kg/s. Before full power operation, a planned net load rejection was performed during the startup test by opening the main transformer highside breakers. The generator power rapidly reduced to station load. All 16 steam dump valves immediately popped open, and control bank-D rods automatically stepped in as the temperature difference T/sub avg/ - T/sub ref/ reached a programmed 2.8 0 C. Nuclear power decreased smoothly as control rods were inserted into the core. The pressurizer pressure and liquid levels also dropped. Neither safety injection nor reactor trip occurred during this transient. The test was done to verify that the whole system would function properly under a transient to keep the reactor from scramming and that the vessel integrity would also be protected. In this study, which is the preliminary stage of RELAP5/MOD2 transient simulation of the Mannshan PWR plants, system thermal-hydraulic response is tested first and isolated from the neutronic effects. The variation of core power versus time curve was extracted from the power test data to serve as a time varying boundary condition. The comparison of the analytical results of four major parameters (pressurizer pressure, average temperature of the core, steam dump flow rate, and feedwater flow rate) from RELAP5/MOD2 and the power test data is illustrated

  9. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  10. Analysis of Measured and Simulated Supraglottal Acoustic Waves.

    Science.gov (United States)

    Fraile, Rubén; Evdokimova, Vera V; Evgrafova, Karina V; Godino-Llorente, Juan I; Skrelin, Pavel A

    2016-09-01

    To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Topics in the Analysis of Shear-Wave Propagation in Oblique-Plate Impact Tests

    National Research Council Canada - National Science Library

    Scheidler, Mike

    2007-01-01

    This report addresses several topics in the theoretical analysis of shock waves, acceleration waves, and centered simple waves, with emphasis on the propagation of shear waves generated in oblique-plate impact tests...

  12. Full-field Strain Analysis of a Ski Boot

    Science.gov (United States)

    Reiter, M.; Singer, G.; Major, Z.

    2010-06-01

    The quality of the ski boots plays an extraordinary important role in the performance and in the safety of the skiers. The deformation behavior of a racing class ski boot was characterized by using the digital image correlation technique in this study. The boot was gripped in the ski binding and 3 types of motions of the skiers and the deformations of the boot were simulated by a professional skier in the laboratory. First, the buckles were closed in 4 stages and the resulting strains were measured. Furthermore, the skier positioned his balance continuously forward, resulting in a high overall bending deformation of the boot. The leg of the skier acted as a bending arm and pushed the upper part of the boot forward. This loading situation was assumed as quasistatic and was repeated several times. Finally, the skier jumped and this dynamic movement was recorded by using two high speed cameras for 3D analysis. Special focus was devoted to the measurement of the deformation of the boot during the contact of the ski with the ground of the laboratory. Both the displacement of the upper part and the local strain in selected areas of the boot was determined for both quasi-static and dynamic test conditions and are discussed in the paper.

  13. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Directory of Open Access Journals (Sweden)

    Rafael Luz Espindola

    Full Text Available This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon different wave energy converters (WEC over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  14. Reflection and refraction of elastic waves at a corrugated interface in a bi-material transversely isotropic full-space

    International Nuclear Information System (INIS)

    Shad-Manamen, N.; Eskandari-Ghadi, M.

    2008-01-01

    The existing theory for wave propagation through a soil layer are not compatible with the real soil layers because in the theory the layers are flat and the sub-layers are parallel, while in real the soil layers are not flat and they may not be parallel. Thus, wave propagations through a corrugated interface are so important. In this paper, a two dimensional SH-wave propagation through a corrugated interface between two linear transversely isotropic half-spaces is assessed. In order to do this, Lord Rayleigh's method is accepted to express the non-flat surface by a Fourier series. In this way, the amplitude of the reflected and transmitted waves is analytically determined in terms of the incident SH-wave amplitude. It is shown that except for the regular reflected and refracted waves, some irregular reflected and refracted waves are exist, and the amplitudes of these waves vary in terms of the angle and frequency of incident wave, equation of surface, and the material properties of the domains. The numerical computations for some cases of different amplitude/wave-length ratio of the interface are done. This work is an extension of Asano's paper (1960) for a more complicated interface, where more non-zero coefficients are considered in expressing the equation of surface in the form of Fourier series. The analytical results for some simpler case of isotropic domain are collapsed on Asano's results (1960). In addition, the numerical evaluation is in good agreement with Asano's.

  15. DANWEC - Empirical Analysis of the Wave Climate at the Danish Wave Energy Centre

    DEFF Research Database (Denmark)

    Tetu, Amelie; Nielsen, Kim; Kofoed, Jens Peter

    information on the DanWEC wave and current climate. In this paper an analysis of the wave climate of the DanWEC test site will be presented. This includes a description of the data quality control and filtration for analysis and the observations and data analysis. Relevant characteristics of the test site...... site for several Danish WECs. In 2013 DanWEC has received Greenlab funding from the EUDP programme to establish the site including more detailed information on its wave climate and bathymetry and seabed conditions. The project “Resource Assessment, Forecasts and WECs O&M strategies at DanWEC and beyond......, as for example scatter diagram (Hm0, Tz) will be analysed and wave power distribution given. Based on the data gathered so far a preliminary analysis of extreme events at the DanWEC test site will be presented. Deployment, control strategies and O&M strategies of wave energy converters are sensitive to the wave...

  16. Multivariate analysis of full-term neonatal polysomnographic data.

    Science.gov (United States)

    Gerla, V; Paul, K; Lhotska, L; Krajca, V

    2009-01-01

    Polysomnography (PSG) is one of the most important noninvasive methods for studying maturation of the child brain. Sleep in infants is significantly different from sleep in adults. This paper addresses the problem of computer analysis of neonatal polygraphic signals. We applied methods designed for differentiating three important neonatal behavioral states: quiet sleep, active sleep, and wakefulness. The proportion of these states is a significant indicator of the maturity of the newborn brain in clinical practice. In this study, we used data provided by the Institute for Care of Mother and Child, Prague (12 newborn infants of similar postconceptional age). The data were scored by an experienced physician to four states (wake, quiet sleep, active sleep, movement artifact). For accurate classification, it was necessary to determine the most informative features. We used a method based on power spectral density (PSD) applied to each EEG channel. We also used features derived from electrooculogram (EOG), electromyogram (EMG), ECG, and respiration [pneumogram (PNG)] signals. The most informative feature was the measure of regularity of respiration from the PNG signal. We designed an algorithm for interpreting these characteristics. This algorithm was based on Markov models. The results of automatic detection of sleep states were compared to the "sleep profiles" determined visually. We evaluated both the success rate and the true positive rate of the classification, and statistically significant agreement of the two scorings was found. Two variants, for learning and for testing, were applied, namely learning from the data of all 12 newborns and tenfold cross-validation, and learning from the data of 11 newborns and testing on the data from the 12th newborn. We utilized information obtained from several biological signals (EEG, ECG, PNG, EMG, EOG) for our final classification. We reached the final success rate of 82.5%. The true positive rate was 81.8% and the false

  17. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  18. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    Science.gov (United States)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  19. Barrelet zeros in partial wave analysis

    International Nuclear Information System (INIS)

    Baker, R.D.

    1976-01-01

    The formalism of Barrelet zeros is discussed. Spinless scattering is described to introduce the idea, then the more usual case of 0 - 1/2 + → 0 - 1/2 + scattering. The zeros are regarded here only as a means to an end, viz the partial waves. The extraction of these is given in detail, and ambiguities are discussed at length. (author)

  20. Preliminary Analysis of a Submerged Wave Energy Device

    Science.gov (United States)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  1. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  2. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  3. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  4. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    Energy Technology Data Exchange (ETDEWEB)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.

  5. P-wave velocity models of continental shelf of East Siberian Sea using the Laplace-domain full waveform inversion

    Science.gov (United States)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Jang, U.; Niessen, F.; Baranov, B.

    2017-12-01

    2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities.

  6. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials

    Science.gov (United States)

    Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.

    2018-01-01

    The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.

  7. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  8. Optimizing detection and analysis of slow waves in sleep EEG.

    Science.gov (United States)

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dispersive Wave Analysis Using the Chirplet Transform

    International Nuclear Information System (INIS)

    Kerber, Florian; Luangvilai, Kritsakorn; Kuttig, Helge; Niethammer, Marc; Jacobs, Laurence J.

    2007-01-01

    Time-frequency representations (TFR) are a widely used tool to analyze signals of guided waves such as Lamb waves. As a consequence of the uncertainty principle, however, the resolution in time and frequency is limited for all existing TFR methods. Due to the multi-modal and dispersive character of Lamb waves, displacement or energy related quantities can only be allocated to individual modes when they are well-separated in the time-frequency plane.The chirplet transform (CT) has been introduced as a generalization of both the wavelet and Short-time Fourier transform (STFT). It offers additional degrees of freedom to adjust time-frequency atoms which can be exploited in a model-based approach to match the group delay of individual modes. Thus, more exact allocation of quantities of interest is possible.The objective of this research is to use a previously developed adaptive algorithm based on the CT for nondestructive evaluation. Both numerically and experimentally generated data for a single aluminum plate is analyzed to determine the accuracy and robustness of the new method in comparison the classical STFT

  10. Analysis of a plane stress wave by the moving least squares method

    Directory of Open Access Journals (Sweden)

    Wojciech Dornowski

    2014-08-01

    Full Text Available A meshless method based on the moving least squares approximation is applied to stress wave propagation analysis. Two kinds of node meshes, the randomly generated mesh and the regular mesh are used. The nearest neighbours’ problem is developed from a triangulation that satisfies minimum edges length conditions. It is found that this method of neighbours’ choice significantly improves the solution accuracy. The reflection of stress waves from the free edge is modelled using fictitious nodes (outside the plate. The comparison with the finite difference results also demonstrated the accuracy of the proposed approach.[b]Keywords[/b]: civil engineering, meshless method, moving least squares method, elastic waves

  11. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion

    Science.gov (United States)

    De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien

    2014-05-01

    Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads

  12. Characteristics of the Operational Noise from Full Scale Wave Energy Converters in the Lysekil Project : Estimation of Potential Environmental Impacts

    OpenAIRE

    Haikonen, Kalle; Sundberg, Jan; Leijon, Mats

    2013-01-01

    Wave energy conversion is a clean electric power production technology. During operation there are no emissions in the form of harmful gases. However there are unsolved issues considering environmental impacts such as: electromagnetism; the artificial reef effect and underwater noise. Anthropogenic noise is increasing in the oceans worldwide and wave power will contribute to this sound pollution in the oceans; but to what extent? The main purpose of this study was to examine the noise emitted...

  13. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  14. Analysis of a cylindrical imploding shock wave

    International Nuclear Information System (INIS)

    Mishkin, E.A.; Fujimoto, Y.

    1978-01-01

    the self-similar solution of the gasdynamic equations of a strong cylindrical shock wave moving through an ideal gas, with γ = csub(p)/csub(v), is considered. These equations are greatly simplified following the transformation of the reduced velocity U 1 (xi) → U 1 = 1/2(γ + 1 ) (U + xi). The requirement of a single maximum pressure, dsub(xi)P = 0, leads to an analytical determination of the self-similarity exponent α(γ). For gases with γ = 2 + 3sup(1/2), this maximum ensues right at the shock front and the pressure distribution then decreases monotonically. The postulate of analyticity by Gelfand and Butler is shown to concur with the requirement dsub(xi)P 0. The saturated density of the gas left in the wake of the shock is computed and - U is shown to be the reduced velocity of sound at P = P sub(m). (author)

  15. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  16. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  17. Low-lying S-wave and P-wave dibaryons in a nodal structure analysis

    International Nuclear Information System (INIS)

    Liu Yuxin; Li Jingsheng; Bao Chengguang

    2003-01-01

    The inherent nodal surface structure analysis approach is proposed for six-quark clusters with u, d, and s quarks. The wave functions of the six-quark clusters are classified, and the contribution of the hidden-color channels are discussed. The quantum numbers and configurations of the wave functions of the low-lying dibaryons are obtained. The states [ΩΩ] (0,0 + ) , [ΩΩ] (0,2 - ) , [Ξ * Ω] (1/2,0 + ) , and [Σ * Σ * ] (0,4 - ) and the hidden-color channel states with the same quantum numbers are proposed to be the candidates of experimentally observable dibaryons

  18. Reconstruction of Interfering Waves from Three Dimensional Analysis of Their Interference Pattern

    Directory of Open Access Journals (Sweden)

    M. T. Tavassoli

    1997-04-01

    Full Text Available   Optical interferometry is being used as an efficient tool to analyse smooth surfaces for more than a century. Although, due to introduction of novel computer assisted analyzing techniques and array detectors, like CCD, the speed and the precision of processing have been increased tremendously, but the main equation involved is not changed. The main equation is the intensity distribution in the interference pattern of a plane reference wave and the required wave.   In the paper it is shown that by analysis of the interference pattern of two unknown waves in three dimension (which is possible for coherent waves it is possible to reconstruct each wave separately. This approach has several useful applications, namely, on can do without reference plane wave in the interferometric surface analysis and, it is possible to reconstruct an unknown wave by making it to interfere with itself. This is very useful in determining the profile of laser beams and erasing the effect of atmospheric disturbances on observing astronomical objects.

  19. Time-domain full waveform inversion using the gradient preconditioning based on seismic wave energy: Application to the South China Sea

    KAUST Repository

    Mengxuan, Zhong

    2017-06-01

    The gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI) are widely used now, but consume a lot of memory and do not fit the FWI of large models or actual seismic data well. To avoid the huge storage consumption, the gradient preconditioning approach based on seismic wave energy has been proposed it simulates the “approximated wave field” with the acoustic wave equation and uses the energy of the simulated wavefield to precondition the gradient. The method does not require computing and storing the Hessian matrix or its inverse and can effectively eliminate the effect caused by geometric diffusion and uneven illumination on gradient. The result of experiments in this article with field data from South China Sea confirms that the time-domain FWI using the gradient preconditioning based on seismic wave energy (GPWE) can achieve higher inversion accuracy for the deep high-velocity model and its underlying strata.

  20. Analysis and optimization of Love wave liquid sensors.

    Science.gov (United States)

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  1. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  2. P-wave and surface wave survey for permafrost analysis in alpine regions

    Science.gov (United States)

    Godio, A.; Socco, L. V.; Garofalo, F.; Arato, A.; Théodule, A.

    2012-04-01

    In various high mountain environments the estimate of mechanical properties of slope and sediments are relevant for the link of the geo-mechanical properties with the climate change effects. Two different locations were selected to perform seismic and georadar surveying, the Tsanteleina glacier (Gran Paradiso) and the Blue Lake in Val d'Ayas in the massif of Monterosa. The analysis of the seismic and GPR lines allowed to characterize the silty soil (top layer) and underlying bedrock. We applied seismic survey in time lapse mode to check the presence of "active" layer and estimate the mechanical properties of the moraines material and their sensitivity to the permafrost changes. Mechanical properties of sediments and moraines in glacial areas are related to the grain-size, the compaction of the material subjected to the past glacial activity, the presence of frozen materials and the reactivity of the permafrost to the climate changes. The test site of Tsanteleina has been equipped with sensors to monitor the temperature of soil and air and with time domain reflectometry to estimate the soil moisture and the frozen and thawing cycle of the uppermost material. Seismic reflections from the top of the permafrost layer are difficult to identify as they are embedded in the source-generated noise. Therefore we estimate seismic velocities from the analysis of traveltime refraction tomography and the analysis of surface wave. This approach provides information on compressional and shear waves using a single acquisition layout and a hammer acts as source. This reduces the acquisition time in complex logistical condition especially in winter period. The seismic survey was performed using 48 vertical geophones with 2 m spacing. The survey has been repeated in two different periods: summer 2011 and winter 2011. Common offset reflection lines with a 200 MHz GPR system (in summer) permitted to investigate the sediments and obtain information on the subsoil layering. The processing

  3. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  4. Distribution analysis of segmented wave sea clutter in littoral environments

    CSIR Research Space (South Africa)

    Strempel, MD

    2015-10-01

    Full Text Available are then fitted against the K-distribution. It is shown that the approach can accurately describe specific sections of the wave with a reduced error between actual and estimated distributions. The improved probability density function (PDF) representation...

  5. An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation

    Directory of Open Access Journals (Sweden)

    D. Soares

    2014-01-01

    Full Text Available Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and electromagnetic wave propagation problems are illustrated.

  6. Model-independent partial wave analysis using a massively-parallel fitting framework

    Science.gov (United States)

    Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.

    2017-10-01

    The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.

  7. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    Science.gov (United States)

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  8. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Rothwell, Brian; Carlson, Lorne; Fletcher, Leigh; Venton, Philip

    2010-01-01

    The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness-to-diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high-pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure and temperature

  9. Statistical analysis of thermospheric gravity waves from Fabry-Perot Interferometer measurements of atomic oxygen

    Directory of Open Access Journals (Sweden)

    E. A. K. Ford

    2008-02-01

    Full Text Available Data from the Fabry-Perot Interferometers at KEOPS (Sweden, Sodankylä (Finland, and Svalbard (Norway, have been analysed for gravity wave activity on all the clear nights from 2000 to 2006. A total of 249 nights were available from KEOPS, 133 from Sodankylä and 185 from the Svalbard FPI. A Lomb-Scargle analysis was performed on each of these nights to identify the periods of any wave activity during the night. Comparisons between many nights of data allow the general characteristics of the waves that are present in the high latitude upper thermosphere to be determined. Comparisons were made between the different parameters: the atomic oxygen intensities, the thermospheric winds and temperatures, and for each parameter the distribution of frequencies of the waves was determined. No dependence on the number of waves on geomagnetic activity levels, or position in the solar cycle, was found. All the FPIs have had different detectors at various times, producing different time resolutions of the data, so comparisons between the different years, and between data from different sites, showed how the time resolution determines which waves are observed. In addition to the cutoff due to the Nyquist frequency, poor resolution observations significantly reduce the number of short-period waves (<1 h period that may be detected with confidence. The length of the dataset, which is usually determined by the length of the night, was the main factor influencing the number of long period waves (>5 h detected. Comparisons between the number of gravity waves detected at KEOPS and Sodankylä over all the seasons showed a similar proportion of waves to the number of nights used for both sites, as expected since the two sites are at similar latitudes and therefore locations with respect to the auroral oval, confirming this as a likely source region. Svalbard showed fewer waves with short periods than KEOPS data for a season when both had the same time resolution data

  10. Gravitational wave detection and data analysis for pulsar timing arrays

    NARCIS (Netherlands)

    Haasteren, Rutger van

    2011-01-01

    Long-term precise timing of Galactic millisecond pulsars holds great promise for measuring long-period (months-to-years) astrophysical gravitational waves. In this work we develop a Bayesian data analysis method for projects called pulsar timing arrays; projects aimed to detect these gravitational

  11. SLAC three-body partial wave analysis system

    International Nuclear Information System (INIS)

    Aston, D.; Lasinski, T.A.; Sinervo, P.K.

    1985-10-01

    We present a heuristic description of the SLAC-LBL three-meson partial wave model, and describe how we have implemented it at SLAC. The discussion details the assumptions of the model and the analysis, and emphasizes the methods we have used to prepare and fit the data. 28 refs., 12 figs., 1 tab

  12. Data synthesis and display programs for wave distribution function analysis

    Science.gov (United States)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  13. Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Hyebin Lee

    2018-02-01

    Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.

  14. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Becoulet, A; Fraboulet, D; Giruzzi, G; Moreau, D; Saoutic, B [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Chinardet, J [CISI Ingenierie, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs.

  15. Hamiltonian analysis of fast wave current drive in tokamak plasmas

    International Nuclear Information System (INIS)

    Becoulet, A.; Fraboulet, D.; Giruzzi, G.; Moreau, D.; Saoutic, B.

    1993-12-01

    The Hamiltonian formalism is used to analyze the direct resonant interaction between the fast magnetosonic wave and the electrons in a tokamak plasma. The intrinsic stochasticity of the electron phase space trajectories is derived, and together with extrinsic de-correlation processes, assesses the validity of the quasilinear approximation for the kinetic studies of fast wave current drive (FWCD). A full-wave resolution of the Maxwell-Vlasov set of equations provides the exact pattern of the wave fields in a complete tokamak geometry, for a realistic antenna spectrum. The local quasilinear diffusion tensor is derived from the wave fields, and is used for a computation of the driven current and deposited power profiles, the current drive efficiency, including possible non-linear effects in the kinetic equation. Several applications of FWCD on existing and future machines are given, as well as results concerning combination of FWCD with other non inductive current drive methods. An analytical expression for the current drive efficiency is given in the high single-pass absorption regimes. (authors). 20 figs., 1 tab., 26 refs

  16. Managing Information Uncertainty in Wave Height Modeling for the Offshore Structural Analysis through Random Set

    Directory of Open Access Journals (Sweden)

    Keqin Yan

    2017-01-01

    Full Text Available This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling. Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure. The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability bounds are compared with the conventional probabilistic approach.

  17. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  18. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  19. A two-step FEM-SEM approach for wave propagation analysis in cable structures

    Science.gov (United States)

    Zhang, Songhan; Shen, Ruili; Wang, Tao; De Roeck, Guido; Lombaert, Geert

    2018-02-01

    Vibration-based methods are among the most widely studied in structural health monitoring (SHM). It is well known, however, that the low-order modes, characterizing the global dynamic behaviour of structures, are relatively insensitive to local damage. Such local damage may be easier to detect by methods based on wave propagation which involve local high frequency behaviour. The present work considers the numerical analysis of wave propagation in cables. A two-step approach is proposed which allows taking into account the cable sag and the distribution of the axial forces in the wave propagation analysis. In the first step, the static deformation and internal forces are obtained by the finite element method (FEM), taking into account geometric nonlinear effects. In the second step, the results from the static analysis are used to define the initial state of the dynamic analysis which is performed by means of the spectral element method (SEM). The use of the SEM in the second step of the analysis allows for a significant reduction in computational costs as compared to a FE analysis. This methodology is first verified by means of a full FE analysis for a single stretched cable. Next, simulations are made to study the effects of damage in a single stretched cable and a cable-supported truss. The results of the simulations show how damage significantly affects the high frequency response, confirming the potential of wave propagation based methods for SHM.

  20. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    Science.gov (United States)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  1. The next wave in metabolome analysis

    DEFF Research Database (Denmark)

    Nielsen, Jens; Oliver, S.

    2005-01-01

    The metabolome of a cell represents the amplification and integration of signals from other functional genomic levels, such as the transcriptome and the proteome. Although this makes metabolomics a useful tool for the high-throughput analysis of phenotypes, the lack of a direct connection...... to the genome makes it difficult to interpret metabolomic data. Nevertheless, functional genomics has produced examples of the use of metabolomics to elucidate the phenotypes of otherwise silent mutations. Despite several successes, we believe that future metabolomic studies must focus on the accurate...... measurement of the concentrations of unambiguously identified metabolites. The research community must develop databases of metabolite concentrations in cells that are grown in several well-defined conditions if metabolomic data are to be integrated meaningfully with data from the other levels of functional...

  2. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  3. Analysis and classification of ECG-waves and rhythms using circular statistics and vector strength

    Directory of Open Access Journals (Sweden)

    Janßen Jan-Dirk

    2017-09-01

    Full Text Available The most common way to analyse heart rhythm is to calculate the RR-interval and the heart rate variability. For further evaluation, descriptive statistics are often used. Here we introduce a new and more natural heart rhythm analysis tool that is based on circular statistics and vector strength. Vector strength is a tool to measure the periodicity or lack of periodicity of a signal. We divide the signal into non-overlapping window segments and project the detected R-waves around the unit circle using the complex exponential function and the median RR-interval. In addition, we calculate the vector strength and apply circular statistics as wells as an angular histogram on the R-wave vectors. This approach enables an intuitive visualization and analysis of rhythmicity. Our results show that ECG-waves and rhythms can be easily visualized, analysed and classified by circular statistics and vector strength.

  4. Full conformational landscape of 3-Methoxyphenol revealed by room temperature mm-wave rotational spectroscopy supported by quantum chemical calculations.

    Science.gov (United States)

    Roucou, Anthony; Fontanari, Daniele; Dhont, Guillaume; Jabri, Atef; Bray, Cédric; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2018-03-30

    Room temperature millimeter-wave rotational spectroscopy supported by high level of theory calculations have been employed to fully characterise the conformational landscape of 3-Methoxyphenol, a semi-volatile polar oxygenated aromatic compound precursor of secondary organic aerosols in the atmosphere arising from biomass combustion. While previous rotationally-resolved spectroscopic studies in the microwave and in the UV domains failed to observe the complete conformational landscape, the 70 - 330 GHz rotational spectrum measured in this study reveals the ground state rotational signatures of the four stable conformations theoretically predicted. Moreover, rotational transitions in the lowest energy vibrationally excited states were assigned for two conformers. While the inertial defect of methoxyphenol does not signicantly change between conformers and isomers, the excitation of the methoxy out-of-plane bending is the main contribution to the non-planarity of the molecule. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Data analysis algorithms for gravitational-wave experiments

    International Nuclear Information System (INIS)

    Bonifazi, P.; Ferrari, V.; Frasca, S.; Pallottino, G.V.; Pizzella, G.

    1978-01-01

    The analysis of the sensitivity of a gravitational-wave antenna system shows that the role of the algorithms used for the analysis of the experimental data is comparable to that of the experimental apparatus. After a discussion of the processing performed on the input signals by the antenna and the electronic instrumentation, we derive a mathematical model of the system. This model is then used as a basis for the discussion of a number of data analysis algorithms that include also the Wiener-Kolmogoroff optimum filter; the performances of the algorithms are presented in terms of signal-to-noise ratio and sensitivity to short bursts of resonant gravitational waves. The theoretical results are in good agreement with the experimental results obtained with a small cryogenic antenna (24 kg)

  6. Analysis of Periodic Errors for Synthesized-Reference-Wave Holography

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2009-12-01

    Full Text Available Synthesized-reference-wave holographic techniques offer relatively simple and cost-effective measurement of antenna radiation characteristics and reconstruction of complex aperture fields using near-field intensity-pattern measurement. These methods allow utilization of advantages of methods for probe compensations for amplitude and phasing near-field measurements for the planar and cylindrical scanning including accuracy analyses. The paper analyzes periodic errors, which can be created during scanning, using both theoretical results and numerical simulations.

  7. A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs

    Directory of Open Access Journals (Sweden)

    David Gallach-Sánchez

    2018-01-01

    Full Text Available The development of wave energy devices is growing in recent years. One type of device is the overtopping wave energy converter (OWEC, for which the knowledge of the wave overtopping rates is a basic and crucial aspect in their design. In particular, the most interesting range to study is for OWECs with steep slopes to vertical walls, and with very small freeboards and zero freeboards where the overtopping rate is maximized, and which can be generalized as steep low-crested structures. Recently, wave overtopping prediction formulae have been published for this type of structures, although their accuracy has not been fully assessed, as the overtopping data available in this range is scarce. We performed a critical analysis of the overtopping prediction formulae for steep low-crested structures and the validation of the accuracy of these formulae, based on new overtopping data for steep low-crested structures obtained at Ghent University. This paper summarizes the existing knowledge about average wave overtopping, describes the physical model tests performed, analyses the results and compares them to existing prediction formulae. The new dataset extends the wave overtopping data towards vertical walls and zero freeboard structures. In general, the new dataset validated the more recent overtopping formulae focused on steep slopes with small freeboards, although the formulae are underpredicting the average overtopping rates for very small and zero relative crest freeboards.

  8. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  9. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  10. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant; Tsvankin, Ilya

    2014-01-01

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green's function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  11. Simulation and Analysis of Converging Shock Wave Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  12. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  13. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    Science.gov (United States)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  14. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  15. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    Science.gov (United States)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  16. Quantitative subsurface analysis using frequency modulated thermal wave imaging

    Science.gov (United States)

    Subhani, S. K.; Suresh, B.; Ghali, V. S.

    2018-01-01

    Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.

  17. Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)

    Science.gov (United States)

    Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.

    2017-12-01

    We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis

  18. Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case

    Directory of Open Access Journals (Sweden)

    Królak Andrzej

    2005-03-01

    Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, F-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.

  19. Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case

    Directory of Open Access Journals (Sweden)

    Piotr Jaranowski

    2012-03-01

    Full Text Available The article reviews the statistical theory of signal detection in application to analysis of deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for the theory of signal detection and parameter estimation are presented. Several tools needed for both theoretical evaluation of the optimal data analysis methods and for their practical implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix, false alarm and detection probabilities, ℱ-statistic, template placement, and fitting factor. These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms to efficiently implement the optimal data analysis techniques are discussed. Formulas are given for a general gravitational-wave signal that includes as special cases most of the deterministic signals of interest.

  20. Efficient Full-Wave Analysis of Waveguide Arrays on Cylindrical Surfaces.

    NARCIS (Netherlands)

    Gerini, G.; Guglielmi, M.; Rozzi, T.; Zappelli, L.

    1999-01-01

    Conformal open-ended waveguide arrays received great attention in the early seventies. Recently, dielectric loaded waveguide radiators have been again proposed to achieve high dety microwave packaging [1], [2]. The efficient design of highly integrated array solutions, however, require fast and

  1. Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals

    Directory of Open Access Journals (Sweden)

    Longfei Li

    2016-04-01

    Full Text Available Phononic crystals can be used to control elastic waves due to their frequency bands. This paper analyzes the passive and active control as well as the dispersion properties of longitudinal waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love rod theory for modeling the longitudinal wave motions in the constituent rods and the method of reverberation-ray matrix (MRRM for deriving the member transfer matrices of the constituent rods, a modified transfer matrix method (MTMM is proposed for the analysis of dispersion curves by combining with the Floquet–Bloch principle and for the calculation of transmission spectra. Numerical examples are provided to validate the proposed MTMM for analyzing the band structures in both low and high frequency ranges. The passive control of longitudinal-wave band structures is studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied electric capacity, electric-short and applied feedback control conditions on the band structures are investigated to illustrate the active control scheme. From the calculated comprehensive frequency spectra over a large frequency range, the dispersion properties of the characteristic longitudinal waves in rod-type piezoelectric phononic crystals are summarized.

  2. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    Directory of Open Access Journals (Sweden)

    Adegbola R.B.

    2016-09-01

    Full Text Available We present a method that utilizes multichannel analysis of surface waves (MASW, which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D structure reflective of the depth and surface wave velocity distribution within a depth of 0–15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  3. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  4. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    Science.gov (United States)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  5. Global analysis of ICRF wave coupling on Tore Supra

    International Nuclear Information System (INIS)

    Goniche, M.; Bremond, S.; Colas, L.

    2003-01-01

    The Tore Supra tokamak is equipped with a multi-megawatt ion cyclotron range of frequency (ICRF) system for heating and current drive. The coupling of the fast wave to the plasma, characterized by the distributed coupling resistance along the radiating straps, is a crucial issue in order to launch large RF powers. Many factors can have an effect on ICRF wave coupling. Quantitative prediction from theoretical modelling requires the knowledge of the local inhomogeneous plasma density profile in front of the antenna for running sophisticated antenna codes. In this work, we have rather followed a 'global' approach, based on Tore Supra experimental results, for the parametric study of the coupling resistance. From a large data base covering seven experimental campaigns (∼2250 shots), a scaling law of the coupling resistance including the main parameters of the plasma and of the antenna configuration is established. This approach is found to be reliable for the analysis of coupling in the different scenarios: He/D 2 gas filling, gas/pellets for plasma fuelling, plasma leaning on inner wall/low field side limiter, limiter/ergodic divertor configuration, minority heating/direct electron heating. From one scenario to another, a significant variation of the coefficients of the scaling law is found. The study of these variations allows to get some insight on the main physical mechanisms which influence the ICRF wave coupling in a tokamak operation, such as the wall conditioning and recycling conditions, RF sheaths or frequency. (author)

  6. One-dimensional full wave treatment of mode conversion process at the ion-ion hybrid resonance in a bounded tokamak plasma

    International Nuclear Information System (INIS)

    Monakhov, I.; Becoulet, A.; Fraboulet, D.; NGuyen, F.

    1998-09-01

    A consistent picture of the mode conversion (MC) process at the ion-ion hybrid resonance in a bounded plasma of a tokamak is discussed, which clarifies the role of the global fast wave interference and cavity effects in the determination of the MC efficiency. This picture is supported by simulations with one-dimensional full wave kinetic code 'VICE'. The concept of the 'global resonator', formed by the R = n 2 || boundary cutoffs [B. Saoutic et al., Phys. Rev. Lett. 76, 1647 (1996)], is justified, as well as the importance of a proper tunneling factor choice η cr = 0.22 [A. K. Ram et al., Phys. Plasmas 3, 1976 (1996)]. The MC scheme behavior appears to be very sensitive to the MC layer position relative to the global wave field pattern, i.e. to the local value of 'poloidal' electric field at the resonance. Optimal MC regimes are found to be attainable without requirement of a particular parallel wavenumber choice. (author)

  7. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  8. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  9. Analysis of added resistance and seakeeping responses in head sea conditions for low-speed full ships using URANS approach

    Directory of Open Access Journals (Sweden)

    Yoo-Chul Kim

    2017-11-01

    Full Text Available The KVLCC2 and its modified hull form were investigated in regular head waves using Unsteady Reynolds Averaged Navier–Stokes (URANS methods. The modified KVLCC2 (named KWP-bow KVLCC2 is designed for reducing wave reflection from the bow. Firstly, the original KVLCC2 is studied for verification of the present code and methodology and the computed time history of total resistance and 2DOF motions (heave and pitch for the selected two wave length conditions are directly compared with the results obtained from KRISO towing tank experiment under the identical condition. The predicted added resistance, heave and pitch motion RAOs show relatively good agreement with the experimental results. Secondly, the comparison of performance in waves between KVLCC2 and KWP-bow KVLCC2 is carried out. We confirmed that newly designed hull form shows better performances in all the range of wave length conditions through both the computation and the experiment. The present URANS method can capture the difference of performance in waves of the two hull forms without any special treatment for short wave length conditions. It can be identified that KWP-bow KVLCC2 gives about 8% of energy saving in sea state 5 condition. Keywords: Added resistance in waves, Ship motion, URANS, KVLCC2

  10. Traitement des diagraphies acoustiques. Première partie : application de techniques issues de l'intelligence artificielle au pointe des diagraphies acoustiques Full Waveform Acoustic Data Processing. Part One: an Artificial Intelligence Approach for the Picking of Waves on Full-Waveform Acoustic Data

    Directory of Open Access Journals (Sweden)

    Mari J. L.

    2006-11-01

    Full Text Available Les enregistrements des données acoustiques en champ total (fuit waveform ont conduit le géophysicien et le diagraphiste à utiliser des techniques de traitement du signal pour séparer les différentes ondes observées sur les enregistrements. L'une des tâches importantes du traitement des diagraphies acoustiques est le pointé des temps d'arrivée des différentes ondes enregistrées. Une démarche de type système expert a été utilisée pour mettre au point un algorithme multicanaux qui réalise le pointé des différentes ondes, à l'aide de règles faisant intervenir les caractéristiques ou attributs de chaque onde. Une onde est caractérisée par sa vitesse, sa fréquence, son amplitude et sa cohérence latérale. L'algorithme fournit un ensemble de logs accompagnés d'une estimation de la dispersion des mesures à chaque cote profondeur. Les logs fournis sont les logs de lenteur et les logs de fréquence. Les résultats obtenus sur un ensemble de diagraphies acoustiques enregistrées dans un puits vertical du Bassin parisien montrent que la dispersion des mesures reste faible en comparaison des pas d'échantillonnage en temps et profondeur. Les logs de dispersion peuvent aussi permettre de détecter des phénomènes physiques tels que caves, fractures, conversions d'ondes ou interférences, reliés à la lithologie. Dans une deuxième partie, nous montrerons différentes techniques de séparation d'ondes. La troisième partie illustrera, sur un cas particulier, l'utilisation des logs issus des diagraphies acoustiques pour caractériser les formations. The full waveforms recorded by an array of recievers in a borehole sonic tool contain a set of waves that can be fruitfully used to obtain detailed information about the nearborehole lithology and structure. The different waves that can be observed by full-waveform sonic data are described in this article. The main tools used in the recording of full-waveform data are then reviewed

  11. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-03-01

    Full Text Available Coastal waves are an abundant nonpolluting and renewable energy source. A wave energy converter (WEC must be designed for efficient and steady operation in highly energetic ocean environments. A direct-drive wave energy conversion (D-DWEC system with a tubular permanent magnet linear generator (TPMLG on a wind and solar photovoltaic complementary energy generation platform is proposed to improve the conversion efficiency and reduce the complexity and device volume of WECs. The operating principle of D-DWECs is introduced, and detailed analyses of the proposed D-DWEC’s floater system, wave force characteristics, and conversion efficiency conducted using computational fluid dynamics are presented. A TPMLG with an asymmetric slot structure is designed to increase the output electric power, and detailed analyses of the magnetic field distribution, detent force characteristics, and no-load and load performances conducted using finite element analysis are discussed. The TPMLG with an asymmetric slot, which produces the same power as the TPMLG with a symmetric slot, has one fifth detent force of the latter. An experiment system with a prototype of the TPMLG with a symmetric slot is used to test the simulation results. The experiment and analysis results agree well. Therefore, the proposed D-DWEC fulfills the requirements of WEC systems.

  12. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights. Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves. Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  13. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights.

    Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves.

    Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  14. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  15. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    International Nuclear Information System (INIS)

    Kim, Min Soo; Sohn, Jeong Hyun; Kim, Jung Hee; Sung, Yong Jun

    2016-01-01

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system

  16. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Sohn, Jeong Hyun [Pukyong National Univ., Busan (Korea, Republic of); Kim, Jung Hee; Sung, Yong Jun [INGINE Inc., Seoul (Korea, Republic of)

    2016-06-15

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

  17. Study of probing beam enlargement due to forward-scattering under low wavenumber turbulence using a FDTD full-wave code

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F. da [Associao EURATOM/IST, IPFN-LA, Instituto Superor Tecnico, Lisbon (Portugal); Heuraux, S. [Institut Jean Lamour, CNRS-Nancy-Universite, BP70239, Vandoeuvre-les-Nancy (France); Gusakov, E.; Popov, A. [Ioffe Institute, Polytekhnicheskaya, St Petersburg (Russian Federation)

    2011-07-01

    Forward-scattering under high level of turbulence or long propagation paths can induce significant effects, as predicted by theory, and impose a signature on the Doppler reflectometry response. Simulations using a FDTD (finite-difference time-domain) full-wave code have confirmed the main dependencies and general behavior described by theory but display a returned RMS power, at moderate amplitudes, half of the one predicted by theory due to the impossibility to reach the numerical requirements needed to describe the small wavenumber spectrum with the wanted accuracy.One justifying factor may be due to the splitting and enlargement of the probing beam. At high turbulence levels, the scattered power returning to the antenna is higher than the predicted by the theory probably due to the scattered zone being closer than the oblique cutoff. This loss of coherence of the wavefront induces a beam spreading, which is also responsible for a diminution of the wavenumber resolution. With a FDTD full-wave code we study the behavior of the probing beam under several amplitude levels of low wavenumber plasma turbulence, using long temporal simulations series to ensure statistical accuracy. (authors)

  18. Use of the MULTINEST algorithm for gravitational wave data analysis

    International Nuclear Information System (INIS)

    Feroz, Farhan; Hobson, Michael P; Gair, Jonathan R; Porter, Edward K

    2009-01-01

    We describe an application of the MULTINEST algorithm to gravitational wave data analysis. MULTINEST is a multimodal nested sampling algorithm designed to efficiently evaluate the Bayesian evidence and return posterior probability densities for likelihood surfaces containing multiple secondary modes. The algorithm employs a set of 'live' points which are updated by partitioning the set into multiple overlapping ellipsoids and sampling uniformly from within them. This set of 'live' points climbs up the likelihood surface through nested iso-likelihood contours and the evidence and posterior distributions can be recovered from the point set evolution. The algorithm is model independent in the sense that the specific problem being tackled enters only through the likelihood computation, and does not change how the 'live' point set is updated. In this paper, we consider the use of the algorithm for gravitational wave data analysis by searching a simulated LISA data set containing two non-spinning supermassive black hole binary signals. The algorithm is able to rapidly identify all the modes of the solution and recover the true parameters of the sources to high precision.

  19. Use of the MULTINEST algorithm for gravitational wave data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Feroz, Farhan; Hobson, Michael P [Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Gair, Jonathan R [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Porter, Edward K [APC, UMR 7164, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France)

    2009-11-07

    We describe an application of the MULTINEST algorithm to gravitational wave data analysis. MULTINEST is a multimodal nested sampling algorithm designed to efficiently evaluate the Bayesian evidence and return posterior probability densities for likelihood surfaces containing multiple secondary modes. The algorithm employs a set of 'live' points which are updated by partitioning the set into multiple overlapping ellipsoids and sampling uniformly from within them. This set of 'live' points climbs up the likelihood surface through nested iso-likelihood contours and the evidence and posterior distributions can be recovered from the point set evolution. The algorithm is model independent in the sense that the specific problem being tackled enters only through the likelihood computation, and does not change how the 'live' point set is updated. In this paper, we consider the use of the algorithm for gravitational wave data analysis by searching a simulated LISA data set containing two non-spinning supermassive black hole binary signals. The algorithm is able to rapidly identify all the modes of the solution and recover the true parameters of the sources to high precision.

  20. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali; Wu, Zedong

    2016-01-01

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform

  1. Experimental analysis of shock wave effects in copper

    International Nuclear Information System (INIS)

    Llorca, Fabrice; Buy, Francois; Farre, Jose

    2002-01-01

    This paper proposes the analysis of shock wave effects for a high purity copper. The method developed is based on the analysis of the mechanical behavior of as received and shocked materials. Shock effect is generated through plates impact tests performed in the range 9 GPa to 12 GPa on a single stage light gas gun. Therefore, as-received and impacted materials are characterized on quasi static and Split Hopkinson apparatus. The difference between measured stresses between as received and shocked materials allows to understand shock effects in the low pressure range of study. A specific modeling approach is engaged in order to give indications about the evolution of the microstructure of the materials

  2. Quasi-static analysis of wave loadings on spine-based wave energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, F.P.; Peatfield, A.M.; West, M.J.

    1980-02-01

    A report is given on the Wave Energy Research Programme at Lanchester Polytechnic. Results are presented for both theoretical and experimental scale models for wave loadings on circular and rectangular spines of various lengths. The results are in good agreement over the operational wave range for the 1/50 scale model and for the more limited data on the 1/10 scale model.

  3. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  4. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  5. Transient Wave Scattering and Its Influence on Transient Analysis and Leak Detection in Urban Water Supply Systems: Theoretical Analysis and Numerical Validation

    Directory of Open Access Journals (Sweden)

    Huan-Feng Duan

    2017-10-01

    Full Text Available This paper investigates the impacts of non-uniformities of pipe diameter (i.e., an inhomogeneous cross-sectional area along pipelines on transient wave behavior and propagation in water supply pipelines. The multi-scale wave perturbation method is firstly used to derive analytical solutions for the amplitude evolution of transient pressure wave propagation in pipelines, considering regular and random variations of cross-sectional area, respectively. The analytical analysis is based on the one-dimensional (1D transient wave equation for pipe flow. Both derived results show that transient waves can be attenuated and scattered significantly along the longitudinal direction of the pipeline due to the regular and random non-uniformities of pipe diameter. The obtained analytical results are then validated by extensive 1D numerical simulations under different incident wave and non-uniform pipe conditions. The comparative results indicate that the derived analytical solutions are applicable and useful to describe the wave scattering effect in complex pipeline systems. Finally, the practical implications and influence of wave scattering effects on transient flow analysis and transient-based leak detection in urban water supply systems are discussed in the paper.

  6. Large-scale dynamical influence of a gravity wave generated over the Antarctic Peninsula – regional modelling and budget analysis

    Directory of Open Access Journals (Sweden)

    JOEL Arnault

    2013-03-01

    Full Text Available The case study of a mountain wave triggered by the Antarctic Peninsula on 6 October 2005, which has already been documented in the literature, is chosen here to quantify the associated gravity wave forcing on the large-scale flow, with a budget analysis of the horizontal wind components and horizontal kinetic energy. In particular, a numerical simulation using the Weather Research and Forecasting (WRF model is compared to a control simulation with flat orography to separate the contribution of the mountain wave from that of other synoptic processes of non-orographic origin. The so-called differential budgets of horizontal wind components and horizontal kinetic energy (after subtracting the results from the simulation without orography are then averaged horizontally and vertically in the inner domain of the simulation to quantify the mountain wave dynamical influence at this scale. This allows for a quantitative analysis of the simulated mountain wave's dynamical influence, including the orographically induced pressure drag, the counterbalancing wave-induced vertical transport of momentum from the flow aloft, the momentum and energy exchanges with the outer flow at the lateral and upper boundaries, the effect of turbulent mixing, the dynamics associated with geostrophic re-adjustment of the inner flow, the deceleration of the inner flow, the secondary generation of an inertia–gravity wave and the so-called baroclinic conversion of energy between potential energy and kinetic energy.

  7. Nucleon-nucleon partial-wave analysis to 1100 MeV

    International Nuclear Information System (INIS)

    Arndt, R.A.; Hyslop, J.S. III; Roper, L.D.

    1987-01-01

    Comprehensive analyses of nucleon-nucleon elastic-scattering data below 1100 MeV laboratory kinetic energy are presented. The data base from which an energy-dependent solution and 22 single-energy solutions are obtained consists of 7223 pp and 5474 np data. A resonancelike structure is found to occur in the 1 D 2 , 3 F 3 , 3 P 2 - 3 F 2 , and 3 F 4 - 3 H 4 partial waves; this behavior is associated with poles in the complex energy plane. The pole positions and residues are obtained by analytic continuation of the ''production'' piece of the T matrix obtained in the energy-dependent solution. The new phases differ somewhat from previously published VPIandSU solutions, especially in I = 0 waves above 500 MeV, where np data are very sparse. The partial waves are, however, based upon a significantly larger data base and reflect correspondingly smaller errors. The full data base and solution files can be obtained through a computer scattering analysis interactive dial-in (SAID) system at VPIandSU, which also exists at many institutions around the world and which can be transferred to any site with a suitable computer system. The SAID system can be used to modify solutions, plan experiments, and obtain any of the multitude of predictions which derive from partial-wave analyses of the world data base

  8. Parameter sensitivity and uncertainty analysis for a storm surge and wave model

    Directory of Open Access Journals (Sweden)

    L. A. Bastidas

    2016-09-01

    Full Text Available Development and simulation of synthetic hurricane tracks is a common methodology used to estimate hurricane hazards in the absence of empirical coastal surge and wave observations. Such methods typically rely on numerical models to translate stochastically generated hurricane wind and pressure forcing into coastal surge and wave estimates. The model output uncertainty associated with selection of appropriate model parameters must therefore be addressed. The computational overburden of probabilistic surge hazard estimates is exacerbated by the high dimensionality of numerical surge and wave models. We present a model parameter sensitivity analysis of the Delft3D model for the simulation of hazards posed by Hurricane Bob (1991 utilizing three theoretical wind distributions (NWS23, modified Rankine, and Holland. The sensitive model parameters (of 11 total considered include wind drag, the depth-induced breaking γB, and the bottom roughness. Several parameters show no sensitivity (threshold depth, eddy viscosity, wave triad parameters, and depth-induced breaking αB and can therefore be excluded to reduce the computational overburden of probabilistic surge hazard estimates. The sensitive model parameters also demonstrate a large number of interactions between parameters and a nonlinear model response. While model outputs showed sensitivity to several parameters, the ability of these parameters to act as tuning parameters for calibration is somewhat limited as proper model calibration is strongly reliant on accurate wind and pressure forcing data. A comparison of the model performance with forcings from the different wind models is also presented.

  9. Screening of Available Tools for Dynamic Mooring Analysis of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Jonas Bjerg Thomsen

    2017-06-01

    Full Text Available The focus on alternative energy sources has increased significantly throughout the last few decades, leading to a considerable development in the wave energy sector. In spite of this, the sector cannot yet be considered commercialized, and many challenges still exist, in which mooring of floating wave energy converters is included. Different methods for assessment and design of mooring systems have been described by now, covering simple quasi-static analysis and more advanced and sophisticated dynamic analysis. Design standards for mooring systems already exist, and new ones are being developed specifically forwave energy converter moorings, which results in other requirements to the chosen tools, since these often have been aimed at other offshore sectors. The present analysis assesses a number of relevant commercial software packages for full dynamic mooring analysis in order to highlight the advantages and drawbacks. The focus of the assessment is to ensure that the software packages are capable of fulfilling the requirements of modeling, as defined in design standards and thereby ensuring that the analysis can be used to get a certified mooring system. Based on the initial assessment, the two software packages DeepC and OrcaFlex are found to best suit the requirements. They are therefore used in a case study in order to evaluate motion and mooring load response, and the results are compared in order to provide guidelines for which software package to choose. In the present study, the OrcaFlex code was found to satisfy all requirements.

  10. Dispersion analysis for waves propagated in fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Lesniak, A; Niitsuma, H [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    Dispersion of velocity is defined as a variation of the phase velocity with frequency. This paper describes the dispersion analysis of compressional body waves propagated in the heterogeneous fractured media. The new method proposed and discussed here permitted the evaluation of the variation in P wave arrival with frequency. For this processing method, any information about the attenuation of the medium are not required, and only an assumption of weak heterogeneity is important. It was shown that different mechanisms of dispersion can be distinguished and its value can be quantitatively estimated. Although the frequency used in this study was lower than those in most previous experiments reported in literature, the evaluated dispersion was large. It was suggested that such a large dispersion may be caused by the velocity structure of the media studied and by frequency dependent processes in a highly fractured zone. It was demonstrated that the present method can be used in the evaluation of subsurface fracture systems or characterization of any kind of heterogeneities. 10 refs., 6 figs.

  11. Constraint likelihood analysis for a network of gravitational wave detectors

    International Nuclear Information System (INIS)

    Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.

    2005-01-01

    We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method

  12. IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli; Livne, Eli

    2012-01-01

    We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R crit . An approximate analytic expression for R crit is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R crit ∼ 100 μm (spherical) and R crit ∼ 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R crit . Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R crit within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.

  13. Lagrangian analysis of nonlinear wave-wave interactions in bounded plasmas

    International Nuclear Information System (INIS)

    Carr, A.R.

    1979-01-01

    In a weakly turbulent nonlinear wave-supporting medium, one of the important nonlinear processes which may occur is resonant three-wave interaction. Whitham's averaged Lagrangian method provides a general formulation of wave evolution laws which is easily adapted to nonlinear dispersive media. In this thesis, the strength of nonlinear interactions between three coherent, axisymmetric, low frequency, magnetohydrodynamic (Alfven) waves propagating in resonance along a cold cylindrical magnetized plasma column is calculated. Both a uniform and a parabolic density distribution have been considered. To account for a non-zero plasma temperature, pressure effects have been included. Distinctive features of the work are the use of cylindrical geometry, the presence of a finite rather than an infinite axial magnetic field, the treatment of a parabolic density distribution, and the inclusion of both ion and electron contributions in all expressions. Two astrophysical applications of the presented theory have been considered. In the first, the possibility of resonant three-wave coupling between geomagnetic micropulsations, which propagate as Alfven or magnetosonic waves along the Earth's magnetic field lines, has been investigated. The second case is the theory of energy transport through the solar chromosphere by upward propagating magnetohydrodynamic waves, which may then couple to heavily damped waves in the corona, causing the observed excess heating in that region

  14. Including the influence of waves in the overall slope stability analysis of rubble mound breakwaters

    OpenAIRE

    Mollaert, J.; Tavallali, A.

    2016-01-01

    An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of...

  15. Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere

    OpenAIRE

    Pechal, Radim

    2011-01-01

    Title: Analysis of multidimensional measurements of electromagnetic waves in the Earth's magnetosphere Author: Radim Pechal Department: Department of Surface and Plasma Science Supervisor: doc. RNDr. Lubomír Přech, Dr. Supervisor's e-mail address: Abstract: The thesis introduces into basic knowledge of waves in plasma, especially waves in the Earth's magnetosphere. There are mentioned some space projects focused on chorus waves. The second part of this thesis is a la...

  16. Full cost accounting in the analysis of separated waste collection efficiency: A methodological proposal.

    Science.gov (United States)

    D'Onza, Giuseppe; Greco, Giulio; Allegrini, Marco

    2016-02-01

    Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Analysis of wave directional spreading using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Deo, M.C.; Gondane, D.S.; SanilKumar, V.

    describes how a representative spreading parameter could be arrived at from easily available wave parameters such as significant wave height and average zero-cross wave period, using the technique of neural networks. It is shown that training of the network...

  18. Analysis of high moderation full MOX BWR core physics experiments BASALA

    International Nuclear Information System (INIS)

    Ishii, Kazuya; Ando, Yoshihira; Takada, Naoyuki; Kan, Taro; Sasagawa, Masaru; Kikuchi, Tsukasa; Yamamoto, Toru; Kanda, Ryoji; Umano, Takuya

    2005-01-01

    Nuclear Power Engineering Corporation (NUPEC) has performed conceptual design studies of high moderation full MOX LWR cores that aim for increasing fissile Pu consumption rate and reducing residual Pu in discharged MOX fuel. As part of these studies, NUPEC, French Atomic Energy Commission (CEA) and their industrial partners implemented an experimental program BASALA following MISTRAL. They were devoted to measuring the core physics parameters of such advanced cores. The MISTRAL program consists of one reference UO 2 core, two homogeneous full MOX cores and one full MOX PWR mock-up core that have higher moderation ratio than the conventional lattice. As for MISTRAL, the analysis results have already been reported on April 2003. The BASALA program consists of two high moderation full MOX BWR mock-up cores for operating and cold stand-by conditions. NUPEC has analyzed the experimental results of BASALA with the diffusion and the transport calculations by the SRAC code system and the continuous energy Monte Carlo calculations by the MVP code with the common nuclear data file, JENDL-3.2. The calculation results well reproduce the experimental data approximately within the same range of the experimental uncertainty. The analysis results of MISTRAL and BASALA indicate that these applied analysis methods have the same accuracy for the UO 2 and MOX cores, for the different moderation MOX cores, and for the homogeneous and the mock-up MOX cores. (author)

  19. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  20. Eigenmode analysis of compressional waves in the magnetosphere

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Lin, C.S.

    1987-04-01

    A field-aligned eigenode analysis of compressional Alfven instabilities has been performed for a two component anisotropic plasma in a dipole magnetic field. The eigenmode equations are derived from the gyrokinetic equations in the long wavelength (k rho < 1) and low frequency (ω < ω/sub b/) limits, where rho is the hot particle gyroradius and ω/sub b/ is the hot particle bounce frequency. Two types of compressional instabilities are identified. One is the drift mirror mode which has an odd parity compressional magnetic component with respect to the magnetic equator. The other is the drift compressional mode with an even parity compressional magnetic component. For typical storm time plasma parameters neargeosynchronous orbit, the drift mirror mode is most unstable and the drift compressional mode is stable. The storm time compressional Pc 5 waves, observed by multiple satellites during November 14-15, 1979 [Takahashi et al., 1987], can be explained by the drift mirror instability

  1. Poles of the Zagreb analysis partial-wave T matrices

    Science.gov (United States)

    Batinić, M.; Ceci, S.; Švarc, A.; Zauner, B.

    2010-09-01

    The Zagreb analysis partial-wave T matrices included in the Review of Particle Physics [by the Particle Data Group (PDG)] contain Breit-Wigner parameters only. As the advantages of pole over Breit-Wigner parameters in quantifying scattering matrix resonant states are becoming indisputable, we supplement the original solution with the pole parameters. Because of an already reported numeric error in the S11 analytic continuation [Batinić , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.57.1004 57, 1004(E) (1997); arXiv:nucl-th/9703023], we declare the old BATINIC 95 solution, presently included by the PDG, invalid. Instead, we offer two new solutions: (A) corrected BATINIC 95 and (B) a new solution with an improved S11 πN elastic input. We endorse solution (B).

  2. Thermal analysis of gyrotron traveling-wave tube collector

    International Nuclear Information System (INIS)

    Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong

    2013-01-01

    In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)

  3. Analysis of Technical Feasibility of Traveling Wave Reactor

    International Nuclear Information System (INIS)

    Kim, Sang Ji; Yoo, Jae Woon; Bae, In Ho

    2011-01-01

    The status and trend of TWR, patent status and its major technical characteristics were examined in this study. Main technical features of traveling wave reactor can be characterized as a reactor operation without refueling up to the reactor life more than 60 years and TWR utilizes depleted uranium which would be produced from the enrichment process as a byproduct. Enriched fuel is only loaded to an igniter which is required for initiation of burning wave. In this study, quantitative analysis of TWR arising from the technical features was carried out in terms of resource utilization, safety and integrity, and proliferation resistance. In parallel with the concept review of TerraPower SWR design concepts, independent analysis of SWR design by altering a design specification and operation strategy was done in this study. The fuel rod design of SWR was also investigated based on the current database of fuel irradiation and performance. The technical issues of TWR or SWR which should be prior to detailed research and development can be summarized as follows: ·Strong physical protection is required during the shuffling or in-service inspection period to improve the proliferation resistance. ·New flow control logic or device is required for distributing the assembly-wise flow to be corresponded with power swing of fuel assembly. ·High integrity cladding material need to be developed for covering the high fast neutron fluence more than three times of current limit which result from the high burnup and long fuel cycle. The metal fuel under the high burnup condition should be validated through the irradiation test

  4. DISPELLING ILLUSIONS OF REFLECTION: A NEW ANALYSIS OF THE 2007 MAY 19 CORONAL 'WAVE' EVENT

    International Nuclear Information System (INIS)

    Attrill, Gemma D. R.

    2010-01-01

    A new analysis of the 2007 May 19 coronal wave-coronal mass ejection-dimmings event is offered employing base difference extreme-ultraviolet (EUV) images. Previous work analyzing the coronal wave associated with this event concluded strongly in favor of purely an MHD wave interpretation for the expanding bright front. This conclusion was based to a significant extent on the identification of multiple reflections of the coronal wave front. The analysis presented here shows that the previously identified 'reflections' are actually optical illusions and result from a misinterpretation of the running difference EUV data. The results of this new multiwavelength analysis indicate that two coronal wave fronts actually developed during the eruption. This new analysis has implications for our understanding of diffuse coronal waves and questions the validity of the analysis and conclusions reached in previous studies.

  5. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    Science.gov (United States)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  6. The theoretical study of full spectrum analysis method for airborne gamma-ray spectrometric data

    International Nuclear Information System (INIS)

    Ni Weichong

    2011-01-01

    Spectra of airborne gamma-ray spectrometry was found to be the synthesis of spectral components of radioelement sources by analyzing the constitution of radioactive sources for airborne gamma-ray spectrometric survey and establishing the models of gamma-ray measurement. The mathematical equation for analysising airborne gamma-ray full spectrometric data can be expressed into matrix and related expansions were developed for the mineral resources exploration, environmental radiation measurement, nuclear emergency monitoring, and so on. Theoretical study showed that the atmospheric radon could be directly computed by airborne gamma-ray spectrometric data with full spectrum analysis without the use of the accessional upward-looking detectors. (authors)

  7. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    Directory of Open Access Journals (Sweden)

    Florian Schumacher

    2016-01-01

    Full Text Available Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth’s interior remains of high interest in Earth sciences. Here, we give a description from a user’s and programmer’s perspective of the highly modular, flexible and extendable software package ASKI–Analysis of Sensitivity and Kernel Inversion–recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski.

  8. A SAS2H/KENO-V Methodology for 3D Full Core depletion analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.; Petrovic, B.

    2003-04-01

    This paper describes the use of a SAS2H/KENO-V methodology for 3D full core depletion analysis and illustrates its capabilities by applying it to burnup analysis of the IRIS core benchmarks. This new SAS2H/KENO-V sequence combines a 3D Monte Carlo full core calculation of node power distribution and a 1D Wigner-Seitz equivalent cell transport method for independent depletion calculation of each of the nodes. This approach reduces by more than an order of magnitude the time required for getting comparable results using the MOCUP code system. The SAS2H/KENO-V results for the asymmetric IRIS core benchmark are in good agreement with the results of the ALPHA/PHOENIX/ANC code system. (author)

  9. Analysis of the critical and first full power operating cores for PARR using leu oxide fuel

    International Nuclear Information System (INIS)

    Khan, L.A.; Qazi, M.K.; Bokhari, I.H.; Fazal, R.

    1989-10-01

    This paper explains the analysis for determining the first full power operating core for PARR using LEU oxide fuel. The core configuration selected for this first full power operation contains about 6.13 kg of U-235 distributed in 19 standard and five control fuel elements. The neutron flux level is doubled when core is shifted from 5MW to 10 MW. Total nuclear power peaking factor of the core is 2.03. The analysis shows that the core can be operated safely at 5 MW with a flow rate of 520 meter cube per hour and at 10 MW with a flow rate of 900 meter cube per hour. (A.B.). 10 figs

  10. Thermal analysis of both ventilated and full disc brake rotors with frictional heat generation

    Directory of Open Access Journals (Sweden)

    Belhocine A.

    2014-06-01

    Full Text Available In automotive engineering, the safety aspect has been considered as a number one priority in development of a new vehicle. Each single system has been studied and developed in order to meet safety requirements. Instead of having air bags, good suspension systems, good handling and safe cornering, one of the most critical systems in a vehicle is the brake system. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake discs and to identify the critical temperature of the rotor. The analysis also gives us the heat flux distribution for the two discs.

  11. A Cost-Effective Design and Analysis of Full Bridge LLC Resonant Converter

    OpenAIRE

    Kaibalya Prasad Panda; Sreyasee Rout

    2016-01-01

    LLC (Inductor-inductor-capacitor) resonant converter has lots of advantages over other type of resonant converters which include high efficiency, more reliable and have high power density. This paper presents the design and analysis of a full bridge LLC resonant converter. In addition to the operational principle, the ZVS and ZCS conditions are also explained with the DC characteristics. Simulation of the LLC resonant converter is performed in MATLAB/ Simulink and the practical prototype setu...

  12. Status of the ITER full-tungsten divertor shaping and heat load distribution analysis

    International Nuclear Information System (INIS)

    Carpentier-Chouchana, S; Hirai, T; Escourbiac, F; Durocher, A; Fedosov, A; Ferrand, L; Kocan, M; Kukushkin, A S; Jokinen, T; Komarov, V; Lehnen, M; Merola, M; Mitteau, R; Pitts, R A; Sugihara, M; Firdaouss, M; Stangeby, P C

    2014-01-01

    In September 2011, the ITER Organization (IO) proposed to begin operation with a full-tungsten (W) armoured divertor, with the objective of taking a decision on the final target material (carbon fibre composite or W) by the end of 2013. This period of 2 years would enable the development of a full-W divertor design compatible with nuclear operations, the investigation of further several physics R and D aspects associated with the use of W targets and the completion of technology qualification. Beginning with a brief overview of the reference heat load specifications which have been defined for the full-W engineering activity, this paper will report on the current status of the ITER divertor shaping and will summarize the results of related three-dimensional heat load distribution analysis performed as part of the design validation. (paper)

  13. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  14. Traveling Wave Resonance and Simplified Analysis Method for Long-Span Symmetrical Cable-Stayed Bridges under Seismic Traveling Wave Excitation

    Directory of Open Access Journals (Sweden)

    Zhong-ye Tian

    2014-01-01

    Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.

  15. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2018-01-01

    Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  16. Structural Loads Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluid dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.

  17. A wave parameters and directional spectrum analysis for extreme winds

    OpenAIRE

    Montoya Ramírez, Rubén Darío; Osorio Arias, Andres Fernando; Ortiz Royero, Juan Carlos; Ocampo-Torres, Francisco Javier

    2013-01-01

    In this research a comparison between two of the most popular ocean wave models, WAVEWATCH III™ and SWAN, was performed using data from hurricane Katrina in the Gulf of Mexico. The numerical simulation of sea surface directional wave spectrum and other wave parameters for several parameter- izations and its relation with the drag coefficient was carried out. The simulated data were compared with in-situ NOAA buoy data. For most of the buoys, WAVEWATCH III™ presented the best statistical compar...

  18. Experimental Analysis and Full Prediction Model of a 5-DOF Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Weiyu Zhang

    2017-01-01

    Full Text Available The cost and power consumption of DC power amplifiers are much greater than that of AC power converters. Compared to a motorized spindle supported with DC magnetic bearings, a motorized spindle supported with AC magnetic bearings is inexpensive and more efficient. This paper studies a five-degrees-of-freedom (5-DOF motorized spindle supported with AC hybrid magnetic bearings (HMBs. Most models of suspension forces, except a “switching model”, are quite accurate, but only in a particular operating area and not in regional coverage. If a “switching model” is applied to a 5-DOF motorized spindle, the real-time performance of the control system can be significantly decreased due to the large amount of data processing for both displacement and current. In order to solve this defect, experiments based on the “switching model” are performed, and the resulting data are analyzed. Using the data analysis results, a “full prediction model” based on the operating state is proposed to improve real-time performance and precision. Finally, comparative, verification and stiffness tests are conducted to verify the improvement of the proposed model. Results of the tests indicate that the rotor has excellent characteristics, such as good real-time performance, superior anti-interference performance with load and the accuracy of the model in full zone. The satisfactory experimental results demonstrate the effectiveness of the “full prediction model” applied to the control system under different operating stages. Therefore, the results of the experimental analysis and the proposed full prediction model can provide a control system of a 5-DOF motorized spindle with the most suitable mathematical models of the suspension force.

  19. Analysis of supercritical vapor explosions using thermal detonation wave theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamoun, B.I.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.

  20. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  1. Data management system for full core LOCA-analysis using TRANSURANUS

    International Nuclear Information System (INIS)

    Maertens, D.; Spykman, G.

    2005-01-01

    A data management system has been developed to perform full core pin by pin calculations of normal operation and (LOCA-) transient behaviour of fuel rods. The system automatically generates the input from a data base, controls the fuel rod calculations and provides a powerful tool for visualising the results. The full core pin by pin analysis now allows to use specific power histories, rod geometries and material data as well as enveloping data. Fuel rod code Transuranus is used for the normal operation and the transient phase in one run, thus assuring that the calculated rod properties of the normal operation (pre-transient) phase are handed over in all detail and not compressed to the transient phase. Transuranus has been upgraded with respect to high temperature models for Zry and M5 TM -cladding for creep, oxidation, heat rate dependent phase transition and anisotropy in the α and the mixed crystal phase. Parameter studies have been carried out to investigate the influence of using rod specific power histories instead of enveloping power histories in a full core analysis. The results show a significant increase in the ratio of failed fuel rods during a LOCA transient from 0.12% to approx. 50%. Another study for a typical PWR LOCA transient shows very good correlation between the distribution of failed fuel rods and rods with significant ballooning. (author)

  2. Using the gauge condition to simplify the elastodynamic analysis of guided wave propagation

    Directory of Open Access Journals (Sweden)

    Md Yeasin BHUIYAN

    2016-09-01

    Full Text Available In this article, gauge condition in elastodynamics is explored more to revive its potential capability of simplifying wave propagation problems in elastic medium. The inception of gauge condition in elastodynamics happens from the Navier-Lame equations upon application of Helmholtz theorem. In order to solve the elastic wave problems by potential function approach, the gauge condition provides the necessary conditions for the potential functions. The gauge condition may be considered as the superposition of the separate gauge conditions of Lamb waves and shear horizontal (SH guided waves respectively, and thus, it may be resolved into corresponding gauges of Lamb waves and SH waves. The manipulation and proper choice of the gauge condition does not violate the classical solutions of elastic waves in plates; rather, it simplifies the problems. The gauge condition allows to obtain the analytical solution of complicated problems in a simplified manner.

  3. Leningrad NPP full scope simulator - new generation tool for training and analysis

    International Nuclear Information System (INIS)

    Malkin, S.D.; Shalia, V.V.; Rakitin, I.D.; Khoudiakov, M.M.

    1999-01-01

    Recent developments of Russian Research Center 'Kurchatov Institute' are aimed at the soonest and minimum expenditure's creation of modern high-performance means for personnel's training and regular restraining and also at the development of means of modeling, safety analysis and operators' support with severe accidents to be included. In this view, the most elaborated one is the Training Support Center (TSC) created at the Leningrad NPP, Sosnovy Bor, Russia. To be applied in this center, GSE Systems of USA and RRC 'Kurchatov Institute' have jointly developed the Total Training System that incorporates full-scope simulator; analytical full-scope simulator, expert system, interactive system, psycho-physiological system; and training support programs. Mathematical models creating and special software development were the responsibility of RRC 'Kurchatov Institute', the hardware and general purpose software were the responsibility of GSE Systems. (author)

  4. Evaluation of Technical Efficiency in Indian Sugar Industry: An Application of Full Cumulative Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Sunil KUMAR

    2012-05-01

    Full Text Available This study focuses on the inter-temporal and inter-state variations in technical and scale efficiency levels of Indian sugar industry. In the first stage, full cumulative data envelopment analysis (FCDEA is used to derive efficiency scores for 12 major sugar producing states. The panel data truncated regression is employed in the second stage to assess the key factors explaining the observed variations in the efficiency levels. The results suggest that the extent of technical inefficiency in Indian sugar industry is about 35.5 percent per annum, and the observed technical inefficiency stems primarily due to managerial inefficiency rather scale inefficiency. Also, a precipitous decline in the level of technical efficiency has been noticed in the postreforms period relative to the level observed in the pre-reforms period. The availability of skilled labour and profitability have been found to be most significant determinants of technical efficiency in Indian sugar industry.

  5. Wave Analysis Study for the Punta Catalina Jetty, Dominican Republic

    DEFF Research Database (Denmark)

    Røge, Mads Sønderstrup; Andersen, Thomas Lykke; Burcharth, Hans Falk

    This report deals with a two-dimensional test study to identify the largest significant wave height, the maximum wave height and the largest crest level along the Punta Catalina jetty in the Dominican Republic. The scale used for the model tests was 1:50. Unless otherwise specified all values given...

  6. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  7. Wave analysis at frictional interface: A case wise study

    Science.gov (United States)

    Srivastava, Akanksha; Chattopadhyay, Amares; Singh, Pooja; Singh, Abhishek Kumar

    2018-03-01

    The present article deals with the propagation of a Stoneley wave and with the reflection as well as refraction of an incident P -wave at the frictional bonded interface between an initially stressed isotropic viscoelastic semi-infinite superstratum and an initially stressed isotropic substratum as case I and case II, respectively. The complex form of the velocity equation has been derived in closed form for the propagation of a Stoneley wave in the said structure. The real and imaginary parts of the complex form of the velocity equation correspond to the phase velocity and damped velocity of the Stoneley wave. Phase and damped velocity have been analysed against the angular frequency. The expressions of the amplitude ratios of the reflected and refracted waves are deduced analytically. The variation of the amplitude ratios is examined against the angle of incidence of the P -wave. The influence of frictional boundary parameters, initial stress, viscoelastic parameters on the phase and damped velocities of the Stoneley wave and the amplitude ratios of the reflected as well as refracted P - and SV -wave have been revealed graphically through numerical results.

  8. Multi-component joint analysis of surface waves

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moura, R.M.M.; Moustafa, S.S.R.

    2015-01-01

    Roč. 119, AUG (2015), s. 128-138 ISSN 0926-9851 Institutional support: RVO:67985891 Keywords : surface waves * surface wave dispersion * seismic data acquisition * seismic data inversion * velocity spectrum Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.355, year: 2015

  9. Bifurcation analysis and the travelling wave solutions of the Klein

    Indian Academy of Sciences (India)

    In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by ...

  10. Physiology and analysis of the electrocardiographic T wave in mice

    DEFF Research Database (Denmark)

    Speerschneider, T; Thomsen, Morten Bækgaard

    2013-01-01

    The murine electrocardiogram (ECG) is a valuable tool in cardiac research, although the definition of the T wave has been a matter of debate for several years potentially leading to incomparable data. By this study, we seek to make a clear definition of the murine T wave. Moreover, we investigate...... the consequences of performing QT interval correction in anaesthetized mice....

  11. Analysis and design of efficient planar leaky-wave antennas

    NARCIS (Netherlands)

    Ettore, M.

    2008-01-01

    This thesis deals with the effective design of planar leaky-wave antennas. The work describes a methodology based on the polar expansion of Green's function representations to address very different geometrical configurations which might appear to have little in common. In fact leaky waves with

  12. Medical Comorbidity of Full and Partial Posttraumatic Stress Disorder in United States Adults: Results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions

    Science.gov (United States)

    Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.

    2011-01-01

    Objective This study examined associations between lifetime trauma exposures, PTSD and partial PTSD, and past-year medical conditions in a nationally representative sample of U.S. adults. Methods Face-to-face interviews were conducted with 34,653 participants in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses evaluated associations of trauma exposure, PTSD and partial PTSD with respondent-reported medical diagnoses. Results After adjustment for sociodemographic characteristics and comorbid Axis I and II disorders, respondents with full PTSD were more likely than traumatized respondents without full or partial PTSD (comparison group) to report diagnoses of diabetes mellitus, noncirrhotic liver disease, angina pectoris, tachycardia, hypercholesterolemia, other heart disease, stomach ulcer, HIV seropositivity, gastritis, and arthritis (odds ratios [ORs]=1.2-2.5). Respondents with partial PTSD were more likely than the comparison group to report past-year diagnoses of stomach ulcer, angina pectoris, tachycardia, and arthritis (ORs=1.3-1.6). Men with full and partial PTSD were more likely than controls to report diagnoses of hypertension (both ORs=1.6), and both men and women with PTSD (ORs=1.8 and 1.6, respectively), and men with partial PTSD (OR=2.0) were more likely to report gastritis. Total number of lifetime traumatic event types was associated with many assessed medical conditions (ORs=1.04-1.16), reducing the magnitudes and rendering non-significant some of the associations between PTSD status and medical conditions. Conclusions Greater lifetime trauma exposure and PTSD are associated with numerous medical conditions, many of which are stress-related and chronic, in U.S. adults. Partial PTSD is associated with intermediate odds of some of these conditions. PMID:21949429

  13. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis

    International Nuclear Information System (INIS)

    Lanning, D.D.; Lombardo, N.J.; Panisko, F.E.

    1993-09-01

    This report presents the final safety analysis for the preparation, conduct, and post-test discharge operation for the Full-Length High Temperature Experiment-5 (FLHT-5) to be conducted in the L-24 position of the National Research Universal (NRU) Reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test is sponsored by an international group organized by the US Nuclear Regulatory Commission. The test is designed and conducted by staff from Pacific Northwest Laboratory with CRNL staff support. The test will study the consequences of loss-of-coolant and the progression of severe fuel damage

  14. Design and Analysis of Tubular Permanent Magnet Linear Wave Generator

    Directory of Open Access Journals (Sweden)

    Jikai Si

    2014-01-01

    Full Text Available Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.

  15. Modal analysis of wave propagation in dispersive media

    Science.gov (United States)

    Abdelrahman, M. Ismail; Gralak, B.

    2018-01-01

    Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.

  16. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  17. Small-Signal Stability Analysis of Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2009-01-01

    focus since the share of wind power increases substituting power generation from conventional power plants. Here, a study based on modal analysis is presented which investigate the effect of large scale integration of full-load converter interfaced wind turbines on inter-area oscillations in a three...... generator network. A detailed aggregated wind turbine model is employed which includes all necessary control functions. It is shown that the wind urbines have very low participation in the inter-area power oscillation.......Power system stability investigations of wind farms often cover the tasks of low-voltage-fault-ride-through, voltage and reactive power control, and power balancing, but not much attention has yet been paid to the task of small-signal stability. Small-signal stability analysis needs increasing...

  18. Optimal Analysis of Left Atrial Strain by Speckle Tracking Echocardiography: P-wave versus R-wave Trigger.

    Science.gov (United States)

    Hayashi, Shuji; Yamada, Hirotsugu; Bando, Mika; Saijo, Yoshihito; Nishio, Susumu; Hirata, Yukina; Klein, Allan L; Sata, Masataka

    2015-08-01

    Left atrial (LA) strain analysis using speckle tracking echocardiography is useful for assessing LA function. However, there is no established procedure for this method. Most investigators have determined the electrocardiographic R-wave peak as the starting point for LA strain analysis. To test our hypothesis that P-wave onset should be used as the starting point, we measured LA strain using 2 different starting points and compared the strain values with the corresponding LA volume indices obtained by three-dimensional (3D) echocardiography. We enrolled 78 subjects (61 ± 17 years, 25 males) with and without various cardiac diseases in this study and assessed global longitudinal LA strain by two-dimensional speckle tracking strain echocardiography using EchoPac software. We used either R-wave peak or P-wave onset as the starting point for determining LA strains during the reservoir (Rres, Pres), conduit (Rcon, Pcon), and booster pump (Rpump, Ppump) phases. We determined the maximum, minimum, and preatrial contraction LA volumes, and calculated the LA total, passive, and active emptying fractions using 3D echocardiography. The correlation between Pres and LA total emptying fraction was better than the correlation between Rres and LA total emptying fraction (r = 0.458 vs. 0.308, P = 0.026). Pcon and Ppump exhibited better correlation with the corresponding 3D echocardiographic parameters than Rcon (r = 0.560 vs. 0.479, P = 0.133) and Rpump (r = 0.577 vs. 0.345, P = 0.003), respectively. LA strain in any phase should be analyzed using P-wave onset as the starting point rather than R-wave peak. © 2014, Wiley Periodicals, Inc.

  19. Diffusing wave spectroscopy applied to material analysis and process control

    International Nuclear Information System (INIS)

    Lloyd, Christopher James

    1997-01-01

    Diffusing Wave Spectroscopy (DWS) was studied as a method of laboratory analysis of sub-micron particles, and developed as a prospective in-line, industrial, process control sensor, capable of near real-time feedback. No sample pre-treatment was required and measurement was via a non-invasive, flexible, dip in probe. DWS relies on the concept of the diffusive migration of light, as opposed to the ballistic scatter model used in conventional dynamic light scattering. The specific requirements of the optoelectronic hardware, data analysis methods and light scattering model were studied experimentally and, where practical, theoretically resulting in a novel technique of analysis of particle suspensions and emulsions of volume fractions between 0.01 and 0.4. Operation at high concentrations made the technique oblivious to dust and contamination. A pure homodyne (autodyne) experimental arrangement described was resilient to environmental disturbances, unlike many other systems which utilise optical fibres or heterodyne operation. Pilot and subsequent prototype development led to a highly accurate method of size ranking, suitable for analysis of a wide range of suspensions and emulsions. The technique was shown to operate on real industrial samples with statistical variance as low as 0.3% with minimal software processing. Whilst the application studied was the analysis of TiO 2 suspensions, a diverse range of materials including polystyrene beads, cell pastes and industrial cutting fluid emulsions were tested. Results suggest that, whilst all sizing should be comparative to suitable standards, concentration effects may be minimised and even completely modelled-out in many applications. Adhesion to the optical probe was initially a significant problem but was minimised after the evaluation and use of suitable non stick coating materials. Unexpected behaviour in the correlation in the region of short decay times led to consideration of the effects of rotational diffusion

  20. Full-scale experimentations on alternative materials in roads: analysis of study practices.

    Science.gov (United States)

    François, D; Jullien, A; Kerzreho, J P; Chateau, L

    2009-03-01

    In France beginning in the 1990s, the topic of road construction using various alternative materials has given rise to several studies aimed at clarifying the technical and environmental feasibility of such an option. Although crucial to understanding and forecasting their behaviour in the field, an analysis of feedback from onsite experiences (back analysis) of roads built with alternative materials has not yet been carried out. The aim of the CAREX project (2003-2005) has been to fill this gap at the national scale. Based on a stress-response approach applied to both the alternative material and the road structure and including the description of external factors, a dedicated standardised framework for field data classification and analysis was adopted. To carry out this analysis, a set of 17 documented field experiments was identified through a specific national survey. It appears that a great heterogeneity exists in data processing procedures among studies. The description of material is acceptable while it is generally poor regarding external factors and structure responses. Structure monitoring is usually brief and mechanical loads too weak, which limits the significance of field testing. For future full-scale experiments, strengthening the realism within the testing conditions would be appropriate.

  1. An integrated factor analysis model for product eco-design based on full life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Xiao, T.; Li, D.

    2016-07-01

    Among the methods of comprehensive analysis for a product or an enterprise, there exist defects and deficiencies in traditional standard cost analyses and life cycle assessment methods. For example, some methods only emphasize one dimension (such as economic or environmental factors) while neglecting other relevant dimensions. This paper builds a factor analysis model of resource value flow, based on full life cycle assessment and eco-design theory, in order to expose the relevant internal logic between these two factors. The model considers the efficient multiplication of resources, economic efficiency, and environmental efficiency as its core objectives. The model studies the status of resource value flow during the entire life cycle of a product, and gives an in-depth analysis on the mutual logical relationship of product performance, value, resource consumption, and environmental load to reveal the symptoms and potentials in different dimensions. This provides comprehensive, accurate and timely decision-making information for enterprise managers regarding product eco-design, as well as production and management activities. To conclude, it verifies the availability of this evaluation and analysis model using a Chinese SUV manufacturer as an example. (Author)

  2. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    International Nuclear Information System (INIS)

    2011-01-01

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  3. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enercon Services, Inc.

    2011-03-14

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  4. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  5. Failure Mode and Effects Analysis (FMEA) of the solid state full length rod control system

    International Nuclear Information System (INIS)

    Shopsky, W.E.

    1977-01-01

    The Full Length Rod Control System (FLRCS) controls the power to the rod drive mechanisms for rod movement in response to signals received from the Reactor Control System or from signals generated through Reactor Operator action. Rod movement is used to control reactivity of the reactor during plant operation. The Full Length Rod Control System is designed to perform its reactivity control function in conjunction with the Reactor Control and Protection System, to maintain the reactor core within design safety limits. By the use of a Failure Mode and Effects Analysis, it is shown that the FLRCS will perform its reactivity control functions considering the loss of single active components. That is, sufficient fault limiting control circuits are provided which blocks control rod movement and/or indicates presence of a fault condition at the Control Board. Reactor operator action or automatic reactor trip will thus mitigate the consequences of potential failure of the FLRCS. The analysis also qualitatively demonstrates the reliability of the FLRCS to perform its intended function

  6. Analysis of Wave Reflection from Wave Energy Converters Installed as Breakwaters in Harbour

    DEFF Research Database (Denmark)

    Zanuttigh, B.; Margheritini, Lucia; Gambles, L.

    2009-01-01

    loads on the structure, i.e. better survivability. Nevertheless these devices must comply with the requirements of harbour protection structures and thus cope with problems due to reflection of incoming waves, i.e. dangerous sea states close to harbors entrances and intensified sediment scour, which can...

  7. Image-based Analysis of Emotional Facial Expressions in Full Face Transplants.

    Science.gov (United States)

    Bedeloglu, Merve; Topcu, Çagdas; Akgul, Arzu; Döger, Ela Naz; Sever, Refik; Ozkan, Ozlenen; Ozkan, Omer; Uysal, Hilmi; Polat, Ovunc; Çolak, Omer Halil

    2018-01-20

    In this study, it is aimed to determine the degree of the development in emotional expression of full face transplant patients from photographs. Hence, a rehabilitation process can be planned according to the determination of degrees as a later work. As envisaged, in full face transplant cases, the determination of expressions can be confused or cannot be achieved as the healthy control group. In order to perform image-based analysis, a control group consist of 9 healthy males and 2 full-face transplant patients participated in the study. Appearance-based Gabor Wavelet Transform (GWT) and Local Binary Pattern (LBP) methods are adopted for recognizing neutral and 6 emotional expressions which consist of angry, scared, happy, hate, confused and sad. Feature extraction was carried out by using both methods and combination of these methods serially. In the performed expressions, the extracted features of the most distinct zones in the facial area where the eye and mouth region, have been used to classify the emotions. Also, the combination of these region features has been used to improve classifier performance. Control subjects and transplant patients' ability to perform emotional expressions have been determined with K-nearest neighbor (KNN) classifier with region-specific and method-specific decision stages. The results have been compared with healthy group. It has been observed that transplant patients don't reflect some emotional expressions. Also, there were confusions among expressions.

  8. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Directory of Open Access Journals (Sweden)

    Meeyoung Jeong

    2014-12-01

    Full Text Available Odyssey, one of the NASA’s Mars exploration program and SELENE (Kaguya, a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  9. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    Science.gov (United States)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  10. On the resolution of ECG acquisition systems for the reliable analysis of the P-wave

    International Nuclear Information System (INIS)

    Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Triventi, Michele; Bartolini, Pietro; Corazza, Ivan; Boriani, Giuseppe

    2012-01-01

    The analysis of the P-wave on surface ECG is widely used to assess the risk of atrial arrhythmias. In order to provide reliable results, the automatic analysis of the P-wave must be precise and reliable and must take into account technical aspects, one of those being the resolution of the acquisition system. The aim of this note is to investigate the effects of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Starting from ECG recorded by an acquisition system with a less significant bit (LSB) of 31 nV (24 bit on an input range of 524 mVpp), we reproduced an ECG signal as acquired by systems with lower resolution (16, 15, 14, 13 and 12 bit). We found that, when the LSB is of the order of 128 µV (12 bit), a single P-wave is not recognizable on ECG. However, when averaging is applied, a P-wave template can be extracted, apparently suitable for the P-wave analysis. Results obtained in terms of P-wave duration and morphology revealed that the analysis of ECG at lowest resolutions (from 12 to 14 bit, LSB higher than 30 µV) could lead to misleading results. However, the resolution used nowadays in modern electrocardiographs (15 and 16 bit, LSB <10 µV) is sufficient for the reliable analysis of the P-wave. (note)

  11. STATISTICAL ANALYSIS OF ACOUSTIC WAVE PARAMETERS NEAR SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  12. Analysis Platform for Energy Efficiency Enhancement in Hybrid and Full Electric Vehicles

    Directory of Open Access Journals (Sweden)

    NICOLAICA, M.-O.

    2016-02-01

    Full Text Available The current paper presents a new virtual analysis method that is applied both on hybrid and electric vehicle architectures with the purpose of contributing to the improvement of energy efficiency. The study is based on Matlab modeling and simulation. A set of parameters are considered in order to assess the system performance. The benefit is given by the comparative overview obtained after the completed analysis. The effectiveness of the analysis method is confirmed by a sequence of simulation results combined in several case studies. The impulse of the research is given by the fact that the automotive market is focusing on wider simulation techniques and better control strategies that lead to more efficient vehicles. Applying the proposed method during design would improve the battery management and controls strategy. The advantage of this method is that the system behavior with regards to energy efficiency can be evaluated from an early concept phase. The results contribute to the actual necessity of driving more efficient and more environmental friendly vehicles.

  13. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    Science.gov (United States)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  14. Skin cancer margin analysis within minutes with full-field OCT (Conference Presentation)

    Science.gov (United States)

    Dalimier, Eugénie; Ogrich, Lauren; Morales, Diego; Cusack, Carrie Ann; Abdelmalek, Mark; Boccara, Claude; Durkin, John

    2017-02-01

    Non-melanoma skin cancer (NMSC) is the most common cancer. Treatment consists of surgical removal of the skin cancer. Traditional excision involves the removal of the visible skin cancer with a significant margin of normal skin. On cosmetically sensitive areas, Mohs micrographic tissue is the standard of care. Mohs uses intraoperative microscopic margin assessment which minimizes the surgical defect and can help reduce the recurrence rate by a factor of 3. The current Mohs technique relies on frozen section tissue slide preparation which significantly lengthens operative time and requires on-site trained histotechnicians. Full-Field Optical Coherence Tomography (FFOCT) is a novel optical imaging technique which provides a quick and efficient method to visualize cancerous areas in minutes, without any preparation or destruction of the tissue. This study aimed to evaluate the potential of FFOCT for the analysis of skin cancer margins during Mohs surgery. Over 150 images of Mohs specimens were acquired intraoperatively with FFOCT before frozen section analysis. The imaging procedure took less than 5 minutes for each specimen. No artifacts on histological preparation were found arising from FFOCT manipulation; however frozen section artifact was readily seen on FFOCT. An atlas was established with FFOCT images and corresponding histological slides to reveal FFOCT reading criteria of normal and cancerous structures. Blind analysis showed high concordance between FFOCT and histology. FFOCT can potentially reduce recurrence rates while maintaining short surgery times, optimize clinical workflow, and decrease healthcare costs. For the patient, this translates into smaller infection risk, decreased stress, and better comfort.

  15. Traitement des diagraphies acoustiques. Deuxième partie : séparation des ondes en diagraphie acoustique Full-Waveform Acoustic Data Processing. Second Part: Wave Separation in Acoustic Well Logging

    Directory of Open Access Journals (Sweden)

    Gavin P.

    2006-11-01

    Stoneley waves. The full waveforms taken at each receiver were recorded on magnetic tape. The data sampling rate was 40 µs, and 20 ms of the data were acquired for each trace. In the part of the well studied, the reservoir layers are clean sandstones or shaly sandstones overlain by impervious shale cap rock. The well is completed by a casing down to the top of the reservoir layers. The sonic data were recorded to study the reflected Stoneley waves. The borehole Stoneley waves are trapped modes that can be reflected when the direct borehole Stoneley wave encounters permeable fractures (Hornby, Johnson, Winkler and Plumb, 1989 or a major change in lithology (Hornby, 1989. Figure 6 shows the common shot gather processing applied to the waveforms recorded when the source was at depth 913. 3 m. The figure shows, from right to left, the raw data (A, the flattened raw data (B, the first eigensection obtained by matrix spectral filtering (C and its associated residual eigensection (D. These sonic sections were time shifted to be directly comparable with the raw data, using the picked time of the direct wave arrival. Sonic section E shows the direct Stoneley wave and its downgoing reflected waves (mainly between 13 and 15 ms. Sonic section F shows the upgoing reflected Stoneley waves. Figure 7 shows a constant offset gather. On this section we can observe good correlation between the frequency log and lithology derived from an independent analysis. In clean sandstone, the Stoneley wave have an apparent frequency of 1150 Hz; in shaly sandstone the frequency ranges from 800 Hz to 1100 Hz. The value of the Stoneley frequency is directly related to shaliness. Maximum shalk ness is observed in the 898-903 depth interval. Figure 8 shows from top to bottom the slowness and the standard deviation of the slowness computed from raw sonic data and filtered sonic data (first eigensection as well as the frequency log and its standard deviation. We can note that the standard deviation is very

  16. Numerical analysis of quasiperiodic perturbations for the Alfven wave

    International Nuclear Information System (INIS)

    Yamakoshi, Y.; Muto, K.; Yoshida, Z.

    1994-01-01

    The Alfven wave may have a localized eigenfunction when it propagates on a chaotic magnetic field. The Arnold-Beltrami-Childress (ABC) flow is a paradigm of chaotic stream lines and is a simple exact solution to the three-dimensional force-free plasma equilibrium equations. The three-dimensional structure of the magnetic field is represented by sinusoidal quasiperiodic modulation. The short wavelength Alfven wave equation for the ABC-flow magnetic field has a quasiperiodic potential term, which induces interference among ''Bragg-reflected'' waves with irregular phases. Then the eigenfunction decays at long distance and a point spectrum occurs. Two different types of short wavelength modes have numerically analyzed to demonstrate the existence of localized Alfven wave eigenmodes

  17. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    Energy Technology Data Exchange (ETDEWEB)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  18. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    International Nuclear Information System (INIS)

    Ritboon, Atirach; Daengngam, Chalongrat; Pengpan, Teparksorn

    2016-01-01

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  19. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes

    2015-01-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  20. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    KAUST Repository

    Alfano, Marco

    2015-03-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  1. Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct

    International Nuclear Information System (INIS)

    Kondo, Masaya; Kukita, Yutaka

    1996-07-01

    Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)

  2. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  3. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America

    International Nuclear Information System (INIS)

    Dalton, G.J.; Alcorn, R.; Lewis, T.

    2010-01-01

    , results indicated that NPV and IRR were not encouraging when using a EUR0.20/kWh tariff. It is recommended that a tariff rate of EUR0.30/kWh be considered for Ireland, and higher rates for other locations. In conclusion, Ireland had the most abundant wave energy output from the Pelamis. COE returns for Ireland were competitive for large number of WEC, even at peak costs, but it is recommended that careful analysis of NPV and IRR should be carried out for full economic assessment. Finally, a standardised method of COE reporting is recommended, using fixed WEC number or MW size, as well as standardised learning/production curves and initial costs, to facilitate confidence in investment decisions based on COE. (author)

  4. Full quantitative phase analysis of hydrated lime using the Rietveld method

    International Nuclear Information System (INIS)

    Lassinantti Gualtieri, Magdalena; Romagnoli, Marcello; Miselli, Paola; Cannio, Maria; Gualtieri, Alessandro F.

    2012-01-01

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2–15 wt.%.

  5. Full Polarization Analysis of Resonant Superlattice and Forbidden x-ray Reflections in Magnetite

    International Nuclear Information System (INIS)

    Wilkins, S.B.; Bland, S.R.; Detlefs, B.; Beale, T.A.W.; Mazzoli, C.; Joly, Y.; Hatton, P.D.; Lorenzo, J.E.; Brabers, V.A.M.

    2009-01-01

    Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1) C and superlattice (0, 0, 2n+1/2)C reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.

  6. Full quantitative phase analysis of hydrated lime using the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Romagnoli, Marcello; Miselli, Paola; Cannio, Maria [Dipartimento Ingegneria dei Materiali e dell' Ambiente, Universita Degli Studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41100 Modena (Italy); Gualtieri, Alessandro F. [Dipartimento di Scienze della Terra, Universita Degli Studi di Modena e Reggio Emilia, I-41100 Modena (Italy)

    2012-09-15

    Full quantitative phase analysis (FQPA) using X-ray powder diffraction and Rietveld refinements is a well-established method for the characterization of various hydraulic binders such as Portland cement and hydraulic limes. In this paper, the Rietveld method is applied to hydrated lime, a non-hydraulic traditional binder. The potential presence of an amorphous phase in this material is generally ignored. Both synchrotron radiation and a conventional X-ray source were used for data collection. The applicability of the developed control file for the Rietveld refinements was investigated using samples spiked with glass. The results were cross-checked by other independent methods such as thermal and chemical analyses. The sample microstructure was observed by transmission electron microscopy. It was found that the consistency between the different methods was satisfactory, supporting the validity of FQPA for this material. For the samples studied in this work, the amount of amorphous material was in the range 2-15 wt.%.

  7. Peer Support in Full-Service Partnerships: A Multiple Case Study Analysis.

    Science.gov (United States)

    Siantz, Elizabeth; Henwood, Benjamin; Gilmer, Todd

    2017-07-01

    Peer providers are integral to Full Service Partnerships (FSPs), which are team-based mental health service models. Peer providers use principles of recovery to engage clients, but FSPs can vary in their recovery orientation. Whether and how peer recovery orientation reflects the organizational environments of FSPs is unclear. This qualitative study explored peer provider attitudes towards recovery within the organizational contexts of FSPs where they are employed. Case study analysis was conducted on eight purposively sampled FSPs using qualitative interviews with peer providers and program directors. In two cases, peer recovery attitudes diverged from those of their organizational context. In these cases, peer providers were champions for recovery, and used practice-based strategies to promote client autonomy despite working in settings with lower recovery orientation. Peer providers could be uniquely positioned to promote client autonomy in settings where organizational factors limit consumer choice.

  8. Safety analysis calculations for a mixed and full FLIP core in a TRIGA Mark II

    International Nuclear Information System (INIS)

    Ringle, John C.; Hornyik, K.; Robinson, A.H.; Anderson, T.V.; Johnson, A.G.

    1976-01-01

    The Oregon State TRIGA Reactor will be reloading with FLIP fuel in August 1976. As we are the first Mark II TRIGA with a circular grid pattern and graphite reflector to utilize FLIP fuel, the safety analysis calculations performed at other facilities using FLIP were only of limited use to us. A multigroup, multiregion, one-dimensional diffusion theory code was used to calculate power densities in six different operational cores - mixed to full FLIP. Pulsing characteristics were obtained from a computer code based on point kinetics, with adiabatic heating of the fuel, linear temperature dependence of the specific heat, and prompt fuel temperature feedback coefficient. The results of all pertinent calculations will be presented. (author)

  9. ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation

    International Nuclear Information System (INIS)

    Parzer, I.; Kljenak, I.

    2005-01-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)

  10. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  11. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

    Directory of Open Access Journals (Sweden)

    Wei Yi-wen

    2015-06-01

    Full Text Available The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

  12. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    Science.gov (United States)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  13. Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3

    Directory of Open Access Journals (Sweden)

    Lin Ting-Hsiang

    2008-05-01

    Full Text Available Abstract Background Although the previous study demonstrated the envelope protein of dengue viruses is under purifying selection pressure, little is known about the genetic differences of full-length viral genomes of DENV-3. In our study, complete genomic sequencing of DENV-3 strains collected from different geographical locations and isolation years were determined and the sequence diversity as well as selection pressure sites in the DENV genome other than within the E gene were also analyzed. Results Using maximum likelihood and Bayesian approaches, our phylogenetic analysis revealed that the Taiwan's indigenous DENV-3 isolated from 1994 and 1998 dengue/DHF epidemics and one 1999 sporadic case were of the three different genotypes – I, II, and III, each associated with DENV-3 circulating in Indonesia, Thailand and Sri Lanka, respectively. Sequence diversity and selection pressure of different genomic regions among DENV-3 different genotypes was further examined to understand the global DENV-3 evolution. The highest nucleotide sequence diversity among the fully sequenced DENV-3 strains was found in the nonstructural protein 2A (mean ± SD: 5.84 ± 0.54 and envelope protein gene regions (mean ± SD: 5.04 ± 0.32. Further analysis found that positive selection pressure of DENV-3 may occur in the non-structural protein 1 gene region and the positive selection site was detected at position 178 of the NS1 gene. Conclusion Our study confirmed that the envelope protein is under purifying selection pressure although it presented higher sequence diversity. The detection of positive selection pressure in the non-structural protein along genotype II indicated that DENV-3 originated from Southeast Asia needs to monitor the emergence of DENV strains with epidemic potential for better epidemic prevention and vaccine development.

  14. A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images

    Science.gov (United States)

    Wampler-Doty, Matthew; Pierce Doty, John

    2015-12-01

    We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.

  15. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  16. Urinary tract infection in full-term newborn infants: risk factor analysis

    Directory of Open Access Journals (Sweden)

    Falcão Mário Cícero

    2000-01-01

    Full Text Available OBJECTIVE: To analyze the correlation of risk factors to the occurrence of urinary tract infection in full-term newborn infants. PATIENTS AND METHODS: Retrospective study (1997 including full-term infants having a positive urine culture by bag specimen. Urine collection was based on: fever, weight loss > 10% of birth weight, nonspecific symptoms (feeding intolerance, failure to thrive, hypoactivity, debilitate suction, irritability, or renal and urinary tract malformations. In these cases, another urine culture by suprapubic bladder aspiration was collected to confirm the diagnosis. To compare and validate the risk factors in each group, the selected cases were divided into two groups: Group I - positive urine culture by bag specimen collection and negative urine culture by suprapubic aspiration, and Group II - positive urine culture by bag specimen collection and positive urine culture by suprapubic aspiration . RESULTS: Sixty one infants were studied, Group I, n = 42 (68.9% and Group II, n = 19 (31.1%. The selected risk factors (associated infectious diseases, use of broad-spectrum antibiotics, renal and urinary tract malformations, mechanical ventilation, parenteral nutrition and intravascular catheter were more frequent in Group II (p<0.05. Through relative risk analysis, risk factors were, in decreasing importance: parenteral nutrition, intravascular catheter, associated infectious diseases, use of broad-spectrum antibiotics, mechanical ventilation, and renal and urinary tract malformations. CONCLUSION: The results showed that parenteral nutrition, intravascular catheter, and associated infectious diseases contributed to increase the frequency of neonatal urinary tract infection, and in the presence of more than one risk factor, the occurrence of urinary tract infection rose up to 11 times.

  17. Hydrodynamic Characteristics and Strength Analysis of a Novel Dot-matrix Oscillating Wave Energy Converter

    Science.gov (United States)

    Shao, Meng; Xiao, Chengsi; Sun, Jinwei; Shao, Zhuxiao; Zheng, Qiuhong

    2017-12-01

    The paper analyzes hydrodynamic characteristics and the strength of a novel dot-matrix oscillating wave energy converter, which is in accordance with nowadays’ research tendency: high power, high efficiency, high reliability and low cost. Based on three-dimensional potential flow theory, the paper establishes motion control equations of the wave energy converter unit and calculates wave loads and motions. On this basis, a three-dimensional finite element model of the device is built to check its strength. Through the analysis, it can be confirmed that the WEC is feasible and the research results could be a reference for wave energy’s exploration and utilization.

  18. Using the analysis of stress waves to build research for experimentation on ultrasonic film measurement

    Science.gov (United States)

    Chang, Shi-Shing; Wu, John H.

    1993-09-01

    After the 2th world war, although the application of ultrasonic wave in industries is becoming more and more popular. But due to the restriction of the precise equivelent , experimental method and the support of the basic theoremsetc. Ultrasonic wave is not applied in precise measurement. Nowadays due to many conditions - the improvement in the production technic, the precise of the equivelent, causes to increase the application of ultrasonic wave. But it's still limited due to the lack of measurement and analysis theorem. In this paper, first we caculate translation of the stress wave (elastic wave) in material for the free surface of material by a normal impulse load. as the theorem analysis base in real application. It is applied to an experiment of film measurement. We can find the partical motion in material and the arriving time of wave front. Then we can estimate the thickness of layers and can prove the actual condition with the result of experiment. This resarch is not only in the theoretical investigation but also in setting overall the measurement system, and excutes the following three experiments: the thickness measurement of two layers, the thickness measurement of film material. the thickness measurement of air propagation. About the data processing, we relied on the frequency analysis to evalute the time difference of two overlapped ultrasonic wave signal. in the meanwhile. we also designed several computer programs to assist the sonic wave identification and signal analysis.

  19. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.

    Science.gov (United States)

    Smoyer, K E

    1998-08-01

    This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.

  20. Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); van Rij, Jennifer A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-14

    Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designing wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.

  1. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data

    Science.gov (United States)

    Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area. PMID:28817731

  2. Wave energy resource of Brazil: An analysis from 35 years of ERA-Interim reanalysis data.

    Science.gov (United States)

    Espindola, Rafael Luz; Araújo, Alex Maurício

    2017-01-01

    This paper presents a characterization of the wave power resource and an analysis of the wave power output for three (AquaBuoy, Pelamis and Wave Dragon) different wave energy converters (WEC) over the Brazilian offshore. To do so it used a 35 years reanalysis database from the ERA-Interim project. Annual and seasonal statistical analyzes of significant height and energy period were performed, and the directional variability of the incident waves were evaluated. The wave power resource was characterized in terms of the statistical parameters of mean, maximum, 95th percentile and standard deviation, and in terms of the temporal variability coefficients COV, SV e MV. From these analyses, the total annual wave power resource available over the Brazilian offshore was estimated in 89.97 GW, with largest mean wave power of 20.63 kW/m in the southernmost part of the study area. The analysis of the three WEC was based in the annual wave energy output and in the capacity factor. The higher capacity factor was 21.85% for Pelamis device at the southern region of the study area.

  3. Design and analysis of tubular permanent magnet linear generator for small-scale wave energy converter

    Science.gov (United States)

    Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young

    2017-05-01

    This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.

  4. Urban Heat Wave Vulnerability Analysis Considering Climate Change

    Science.gov (United States)

    JE, M.; KIM, H.; Jung, S.

    2017-12-01

    Much attention has been paid to thermal environments in Seoul City in South Korea since 2016 when the worst heatwave in 22 years. It is necessary to provide a selective measure by singling out vulnerable regions in advance to cope with the heat wave-related damage. This study aims to analyze and categorize vulnerable regions of thermal environments in the Seoul and analyzes and discusses the factors and risk factors for each type. To do this, this study conducted the following processes: first, based on the analyzed various literature reviews, indices that can evaluate vulnerable regions of thermal environment are collated. The indices were divided into climate exposure index related to temperature, sensitivity index including demographic, social, and economic indices, and adaptation index related to urban environment and climate adaptation policy status. Second, significant variables were derived to evaluate a vulnerable region of thermal environment based on the summarized indices in the above. this study analyzed a relationship between the number of heat-related patients in Seoul and variables that affected the number using multi-variate statistical analysis to derive significant variables. Third, the importance of each variable was calculated quantitatively by integrating the statistical analysis results and analytic hierarchy process (AHP) method. Fourth, a distribution of data for each index was identified based on the selected variables and indices were normalized and overlapped. Fifth, For the climate exposure index, evaluations were conducted as same as the current vulnerability evaluation method by selecting future temperature of Seoul predicted through the representative concentration pathways (RCPs) climate change scenarios as an evaluation variable. The results of this study can be utilized as foundational data to establish a countermeasure against heatwave in Seoul. Although it is limited to control heatwave occurrences itself completely, improvements

  5. Analysis of panthers full-scale heat transfer tests with RELAP5

    International Nuclear Information System (INIS)

    Parlatan, Y.; Boyer, B.D.; Jo, J.; Rohatgi, S.

    1996-01-01

    The RELAP5 code is being assessed on the full-scale Passive Containment Cooling System (PCCS) in the Performance ANalysis and Testing of HEat Removal Systems (PANTHERS) facility at Societa Informazioni Termoidrauliche (SIET) in Italy. PANTHERS is a test facility with fall-size prototype beat exchangers for the PCCS in support of the General Electric's (GE) Simplified Boiling Water Reactor (SBWR) program. PANTHERS tests with a low noncondensable gas concentration and with a high noncondensable gas concentration were analyzed with RELAP5. The results showed that beat transfer rate decreases significantly along the PCCS tubes. In the test case with a higher inlet noncondensable gas fraction, the PCCS removed 35% less heat than in the test case with the lower noncondensable gas fraction. The dominant resistance to the overall heat transfer is the condensation beat transfer resistance inside the tubes. This resistance increased by about 5-fold between the inlet and exit of the tube due to the build up of noncondensable gases along the tube. The RELAP5 calculations also predicted that 4% to 5% of the heat removed to the PCCS pool occurs in the inlet steam piping and PCCS upper and lower headers. These piping needs to be modeled for other tests systems. The full-scale PANTHERS predictions are also compared against 1/400 scale GIRAFFE tests. GIRAFFE has 33% larger heat surface area, but its efficiency is only 15% and 23% higher than PANTHERS for the two cases analyzed This was explained by the high heat transfer resistance inside the tubes near the exit

  6. T-wave morphology analysis of competitive athletes

    DEFF Research Database (Denmark)

    Hong, L; Andersen, Lars Juel; Graff, Claus

    2015-01-01

    BACKGROUND: T-wave morphology has been shown to be more sensitive than QT and QTc interval to describe repolarization abnormalities. The electrocardiogram (ECG) performed in athletes may manifest abnormalities, including repolarization alterations. The aim of this study was to investigate...... the characteristics of T-wave morphology features in athletes. METHODS: Eighty male elite athletes, consisting of 40 Tour de France cyclists (age 27±5years), 40 soccer players (age 26±6years) and 40 healthy men (age 27±5years) were included. RESULTS: Sinus bradycardia, left ventricular (LV) hypertrophy, incomplete...... interval, and repolarization features than the control group. CONCLUSIONS: T-wave morphology of athletes is different from non-athletes, depending of the sport. Decreased potassium current in cardiomyocytes associated with LVH may contribute to these changes....

  7. The North Atlantic Oscillation Influence on the Wave Regime in Portugal: An Extreme Wave Event Analysis

    Science.gov (United States)

    2005-03-01

    picture at 22/00Z.............50 x Figure 24. Case 5 – wave parameters........................51 Figure 25. Evolution of energy density (arrow...equation or energy balance equation: . in nl ds F v F S S S S t ∂ + ∇ = ≡ + + ∂ r (1) where ( , ; , )F f x tθ r is the two dimensional...collected from an offshore directional Seawatch buoy, in the vicinity of Cape Silleiro, Rayo Silleiro 19 (“E1”), (Figure 3), was provided by the

  8. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; CFD RSRM Full-Scale Analyses

    Science.gov (United States)

    2001-01-01

    This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.

  9. Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis

    International Nuclear Information System (INIS)

    Fridman, E.; Kliem, S.

    2011-01-01

    Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution

  10. Statistical analysis of s-wave neutron reduced widths

    International Nuclear Information System (INIS)

    Pandita Anita; Agrawal, H.M.

    1992-01-01

    The fluctuations of the s-wave neutron reduced widths for many nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the s-wave neutron reduced widths of nuclei follow single channel Porter Thomas distribution (x 2 -distribution with degree of freedom ν = 1) for most of the cases. However there are apparent deviations from ν = 1 and possible explanation and significance of this deviation is given. These considerations are likely to modify the evaluation of neutron cross section. (author)

  11. Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories

    Science.gov (United States)

    Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan

    2017-10-01

    Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.

  12. Painleve analysis for a forced Korteveg-de Vries equation arisen in fluid dynamics of internal solitary waves

    Directory of Open Access Journals (Sweden)

    Zhang Sheng

    2015-01-01

    Full Text Available In this paper, Painleve analysis is used to test the Painleve integrability of a forced variable-coefficient extended Korteveg-de Vries equation which can describe the weakly-non-linear long internal solitary waves in the fluid with continuous stratification on density. The obtained results show that the equation is integrable under certain conditions. By virtue of the truncated Painleve expansion, a pair of new exact solutions to the equation is obtained.

  13. Full-Range Public Health Leadership, Part 2: Qualitative Analysis and Synthesis

    Science.gov (United States)

    Carlton, Erik L.; Holsinger, James W.; Riddell, Martha C.; Bush, Heather

    2015-01-01

    Public health leadership is an important topic in the era of U.S. health reform, population health innovation, and health system transformation. This study utilized the full-range leadership model in order to examine the public health leadership. We sought to understand local public health leadership from the perspective of local health department leaders and those who work with and for them. Public health leadership was explored through interviews and focus groups with directors (n = 4) and staff (n = 33) from local health departments. Qualitative analytic methods included reflexive journals, code-recode procedures, and member checking, with analysis facilitated by Atlas.ti v.6.0. Qualitative results supported and expanded upon previously reported quantitative findings. Leading by example and providing individual consideration to followers were found to be more important than other leader factors, such as intellectual stimulation, inspirational motivation, or idealized attributes of leaders. Having a clear and competent vision of public health, being able to work collaboratively with other community agencies, and addressing the current challenges to public health with creativity and innovation were also important findings. Idealized leadership behaviors and individual consideration should be the focus of student and professional development. Models that incorporate contextual considerations, such as the situational leadership model, could be utilized to ensure that optimal individual consideration is given to followers. PMID:26217654

  14. Full genome analysis of enterovirus D-68 strains circulating in Alberta, Canada.

    Science.gov (United States)

    Pabbaraju, Kanti; Wong, Sallene; Drews, Steven J; Tipples, Graham; Tellier, Raymond

    2016-07-01

    A widespread outbreak of enterovirus (EV)-D68 that started in the summer of 2014 has been reported in the USA and Canada. During the course of this outbreak, EV-D68 was identified as a possible cause of acute, unexplained severe respiratory illness and a temporal association was observed between acute flaccid paralysis with anterior myelitis and EV-D68 detection in the upper respiratory tract. In this study, four nasopharyngeal samples collected from patients in Alberta, Canada with a laboratory diagnosis of EV-D68 were used to determine the near full-length genome sequence directly from the specimens. Phylogenetic analysis was performed to study the genotypes and pathogenesis of the circulating strains. Our results support the contention that mutations in the VP1 gene and other regions of the genome causing altered antigenicity, as well as lack of immunity in the younger population, may be responsible for the increased severe respiratory disease outbreaks of EV-D68 worldwide. © 2015 Wiley Periodicals, Inc.

  15. Full-Range Public Health Leadership, Part 2: Qualitative Analysis and Synthesis.

    Science.gov (United States)

    Carlton, Erik L; Holsinger, James W; Riddell, Martha C; Bush, Heather

    2015-01-01

    Public health leadership is an important topic in the era of U.S. health reform, population health innovation, and health system transformation. This study utilized the full-range leadership model in order to examine the public health leadership. We sought to understand local public health leadership from the perspective of local health department leaders and those who work with and for them. Public health leadership was explored through interviews and focus groups with directors (n = 4) and staff (n = 33) from local health departments. Qualitative analytic methods included reflexive journals, code-recode procedures, and member checking, with analysis facilitated by Atlas.ti v.6.0. Qualitative results supported and expanded upon previously reported quantitative findings. Leading by example and providing individual consideration to followers were found to be more important than other leader factors, such as intellectual stimulation, inspirational motivation, or idealized attributes of leaders. Having a clear and competent vision of public health, being able to work collaboratively with other community agencies, and addressing the current challenges to public health with creativity and innovation were also important findings. Idealized leadership behaviors and individual consideration should be the focus of student and professional development. Models that incorporate contextual considerations, such as the situational leadership model, could be utilized to ensure that optimal individual consideration is given to followers.

  16. Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems

    International Nuclear Information System (INIS)

    Muhs, J.D.

    2001-01-01

    This paper describes a systems-level design and analysis of a new approach for improving the energy efficiency and affordability of solar energy in buildings, namely, hybrid solar lighting and full-spectrum solar energy systems. By using different portions of the solar spectrum simultaneously for multiple end-use applications in buildings, the proposed system offers unique advantages over other alternatives for using sunlight to displace electricity (conventional topside daylighting and solar technologies). Our preliminary work indicates that hybrid solar lighting, a method of collecting and distributing direct sunlight for lighting purposes, will alleviate many of the problems with passive daylighting systems of today, such as spatial and temporal variability, glare, excess illumination, cost, and energy efficiency. Similarly, our work suggests that the most appropriate use of the visible portion of direct, nondiffuse sunlight from an energy-savings perspective is to displace electric light rather than generate electricity. Early estimates detailed in this paper suggest an anticipated system cost of well under$2.0/Wp and 5-11(cents)/kWh for displaced and generated electricity in single-story commercial building applications. Based on a number of factors discussed in the paper, including sunlight availability, building use scenarios, time-of-day electric utility rates, cost, and efficacy of the displaced electric lights, the simple payback of this approach in many applications could eventually be well under 5 years

  17. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  18. Analysis of flexural wave propagation in poroelastic composite ...

    African Journals Online (AJOL)

    DR OKE

    dimensional solution for free vibration problem of homogeneous isotropic cylindrical ... Abousleiman and Cui (1998) presented poroelastic solutions in an inclined ...... The Biot-willis elastic coefficients for a sandstone, Journal of Applied Mechanics, Vol. ... Study of wave motions in fluid-saturated porous rocks, Journal of the ...

  19. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  20. Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion

    KAUST Repository

    Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi

    2012-01-01

    way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity

  1. Structural Modeling and Analysis of a Wave Energy Converter Applying Dynamical Substructuring Method

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Damkilde, Lars; Gao, Zhen

    2013-01-01

    to the relative stiff behavior of the arm the calculation can be reduced to a quasi-static analysis. The hydrodynamic and the structural analyses are thus performed separately. In order to reduce the computational time of the finite element calculation the main structure is modeled as a superelement......This paper deals with structural modeling and analysis of a wave energy converter. The device, called Wavestar, is a bottom fixed structure, located in a shallow water environment at the Danish Northwest coast. The analysis is concentrated on a single float and its structural arm which connects...... the WEC to a jackup structure. The wave energy converter is characterized by having an operational and survival mode. The survival mode drastically reduces the exposure to waves and therfore to the wave loads. Structural response analysis of the Wavestar arm is carried out in this study. Due...

  2. Origin and Structure of Nearshore Internal Tides and Waves: Data Analysis and Linear Theory

    National Research Council Canada - National Science Library

    Hendershott, Myrl

    2001-01-01

    Analysis of the data set obtained during the 1996-97 summer and autumn deployments of ADCP and T-logger internal wave antennas of Mission Beach, CA, was the principle activity during the reporting period...

  3. Two-Dimensional Analysis of Cable Stayed Bridge under Wave Loading

    Science.gov (United States)

    Seeram, Madhuri; Manohar, Y.

    2018-06-01

    In the present study finite element analysis is performed for a modified fan type cable-stayed bridge using ANSYS Mechanical. A cable stayed bridge with two towers and main deck is considered for the present study. Dynamic analysis is performed to evaluate natural frequencies. The obtained natural frequencies and mode shapes of cable stayed bridge are compared to the existing results. Further studies have been conducted for offshore area application by increasing the pylon/tower height depending upon the water depth. Natural frequencies and mode shapes are evaluated for the cable stayed bridge for offshore area application. The results indicate that the natural periods are higher than the existing results due to the effect of increase in mass of the structure and decrease in stiffness of the pylon/tower. The cable stayed bridge is analyzed under various environmental loads such as dead, live, vehicle, seismic and wave loading. Morison equation is considered to evaluate the wave force. The sum of inertia and drag force is taken as the wave force distribution along the fluid interacting height of the pylon. Airy's wave theory is used to assess water particle kinematics, for the wave periods ranging from 5 to 20 s and unit wave height. The maximum wave force among the different regular waves is considered in the wave load case. The support reactions, moments and deflections for offshore area application are highlighted. It is observed that the maximum support reactions and support moments are obtained due to wave and earthquake loading respectively. Hence, it is concluded that the wave and earthquake forces shall be given significance in the design of cable stayed bridge.

  4. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    Science.gov (United States)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  5. Portfolio and diversity analysis of energy technologies using full-spectrum risk measures

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.C.; Beurskens, L.W.M. [ECN Policy Studies, Petten (Netherlands); Awerbuch, S.; Stirling, A.C. [Science and Technology Policy Research SPRU, University of Sussex, Brighton, East Sussex (United Kingdom)

    2005-01-01

    Energy diversity and security have been evaluated using the multi-criteria diversity analysis (MDA) of A. C. Stirling as well as more classical Markowitz mean-variance portfolio (MVP) theory. Each of these approaches is capable of producing an efficient frontier that shows optimal generating portfolio mixes, those that maximize performance (i.e. minimize cost) while minimizing risk or uncertainty (i.e. maximizing diversity). MDA covers the full-spectrum of uncertainty, reaching into areas where little is known about the range of possible outcomes, let alone their probabilities. However, MDA does not exploit statistical information that is available in certain parts of the risk-spectrum where historic means, variances and co-variances of outcomes are known and can be used to make inferences about the future. MVP operates precisely in this space. However, like other capital market models, its prescriptive value rests on the idea that the past is the best guide to the future. As such MVP can be blind to unforeseen events that create future structural change. Used in isolation, therefore, neither model offers a fully satisfying result. An MVP analysis of energy technologies tells us how to create generating portfolios with minimum cost and risk (cost-variance), assuming historic ranges predict the future well enough. If policy makers are confident that past expected values, ranges and variances will continue, then the solutions are fine. But what about so-called unknown risks? Possible future events that may produce outcomes with unknown consequences? This is where MDA becomes a potentially powerful tool. This project seeks to merge the two approaches and to map the space between optimal MVP and MDA solutions using a combined MVP+MDA optimization and weighting scheme. Placing 100% of the emphasis on MVP, for example, produces results based purely on historical trends. These may serve for short planning horizons. On the other hand, giving MDA a 100% weighting produces

  6. Statistical Analysis of Langmuir Waves Associated with Type III Radio Bursts: I. Wind Observations

    Directory of Open Access Journals (Sweden)

    Vidojević S.

    2011-12-01

    Full Text Available Interplanetary electron beams are unstable in the solar wind and they generate Langmuir waves at the local plasma frequency or its harmonic. Radio observations of the waves in the range 4-256 kHz, observed in 1994-2010 with the WAVES experiment onboard the WIND spacecraft, are statistically analyzed. A subset of 36 events with Langmuir waves and type III bursts occurring at the same time was selected. After removal of the background, the remaining power spectral density is modeled by the Pearson system of probability distributions (types I, IV and VI. The Stochastic Growth Theory (SGT predicts log-normal distribution for the power spectrum density of the Langmuir waves. Our results indicate that SGT possibly requires further verification.

  7. EXAFS analysis of full color glasses and glass ceramics: local order and color

    International Nuclear Information System (INIS)

    Santa Cruz, Petrus A.; Sa, Gilberto F. de; Malta, Oscar L.; Silva, Jose expedito Cavalcante

    1996-01-01

    The generation and control of the relative intensities of the primary additive colors in solid state light emitters is very important to the development of higher resolution media, used in color monitors, solid state sensors, large area and flat displays and other optoelectronic devices. We have developed a multi-doped glassy material named FCG (full color glass, to generate and to control the primary light colors, allowing the simulation of any color of light by additive synthesis. Tm(III), Tb(III) and Eu(III) ions were used (0.01 to 5.0 mol%) as blue, green and red narrow emitters. A wide color gamut was obtained under ultraviolet excitation by varying the material composition. The chromaticity diagram is covered, including the white simulation. We proposed a mechanism to control the chromaticity of a fixed composition of the material, using the Er (III) as a selective quencher that may be deactivated by infrared excitation. Although this new material presents at this time a high efficiency, it may be improved because the energy transfer between the rare earth triad may be still reduced. Optical spectroscopy measurements confirms that it is still possible to improve the efficiency of the FCC material. EXAFS analysis will be used to probe the local environment around the triad of rare earth that generates the primary colors. For this purpose we have prepared single doped glasses with each component of the triad with the same concentration than FCG. The devitrification of these glasses will be analyzed in order to produce glassceramics with ion segregation. (author)

  8. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  9. Statistical analysis of P-wave neutron reduced widths

    International Nuclear Information System (INIS)

    Joshi, G.C.; Agrawal, H.M.

    2000-01-01

    The fluctuations of the p-wave neutron reduced widths for fifty one nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the p-wave neutron reduced widths of even-even nuclei fallow single channel Porter Thomas distribution (χ 2 -distribution with degree of freedom ν=1) for most of the cases where there are no intermediate structure. It is emphasized that the distribution in nuclei other than even-even may differ from a χ 2 -distribution with one degree of freedom. Possible explanation and significance of this deviation from ν=1 is given. (author)

  10. Quasilinear analysis of absorption of ion Bernstein waves by electrons

    International Nuclear Information System (INIS)

    Cardinali, A.; Paoletti, F.; Bernabei, S.; Ono, M.

    1995-01-01

    The effects induced on plasma electrons by an externally launched ion Bernstein wave (IBW), in the presence of a lower hybrid wave (LHW) in the current drive regime, are studied by analytical integration of the IBW ray-tracing equations along with the amplitude transport equation (Poynting theorem). The electric field amplitude parallel and perpendicular to the external magnetic field, the quasilinear diffusion coefficient, and the modified electron distribution function are analytically calculated in the case of IBW. The analytical calculation is compared to the numerical solution obtained by using a 2-D Fokker-Planck code for the distribution function, without any approximation for the collision operator. The synergy between the IBW and LHW can be accounted for, and the absorption of the IBW power when the electron distribution function presents a tail generated by the LHW in the current drive regime can be calculated

  11. Migration velocity analysis using pre-stack wave fields

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-08-25

    Using both image and data domains to perform velocity inversion can help us resolve the long and short wavelength components of the velocity model, usually in that order. This translates to integrating migration velocity analysis into full waveform inversion. The migration velocity analysis part of the inversion often requires computing extended images, which is expensive when using conventional methods. As a result, we use pre-stack wavefield (the double-square-root formulation) extrapolation, which includes the extended information (subsurface offsets) naturally, to make the process far more efficient and stable. The combination of the forward and adjoint pre-stack wavefields provides us with update options that can be easily conditioned to improve convergence. We specifically use a modified differential semblance operator to split the extended image into a residual part for classic differential semblance operator updates and the image (Born) modelling part, which provides reflections for higher resolution information. In our implementation, we invert for the velocity and the image simultaneously through a dual objective function. Applications to synthetic examples demonstrate the features of the approach.

  12. An evaluation of directional analysis techniques for multidirectional, partially reflected waves .1. numerical investigations

    DEFF Research Database (Denmark)

    Ilic, C; Chadwick, A; Helm-Petersen, Jacob

    2000-01-01

    , non-phased locked methods are more appropriate. In this paper, the accuracy of two non-phased locked methods of directional analysis, the maximum likelihood method (MLM) and the Bayesian directional method (BDM) have been quantitatively evaluated using numerical simulations for the case...... of multidirectional waves with partial reflections. It is shown that the results are influenced by the ratio of distance from the reflector (L) to the length of the time series (S) used in the spectral analysis. Both methods are found to be capable of determining the incident and reflective wave fields when US > 0......Recent studies of advanced directional analysis techniques have mainly centred on incident wave fields. In the study of coastal structures, however, partially reflective wave fields are commonly present. In the near structure field, phase locked methods can be successfully applied. In the far field...

  13. Sensitivity of a numerical wave model on wind re-analysis datasets

    Science.gov (United States)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  14. Comparative analysis of winch-based wave energy converters

    OpenAIRE

    Nachev, Aleksandar

    2017-01-01

    Renewable energy sources are probably the future of the mankind. The main points advocating wave energy in particular include its huge potential, low environmental impact and availability around the globe. In order to harvest that energy, however, engineers have to overcome, among others, the corrosive sea environment and the unpredictable storms as well as secure funding for research and development. A lot of effort has been put into building and testing WECs after the oil crisis in the 1970...

  15. Singular value decomposition methods for wave propagation analysis

    Czech Academy of Sciences Publication Activity Database

    Santolík, Ondřej; Parrot, M.; Lefeuvre, F.

    2003-01-01

    Roč. 38, č. 1 (2003), s. 10-1-10-13 ISSN 0048-6604 R&D Projects: GA ČR GA205/01/1064 Grant - others:Barrande(CZ) 98039/98055 Institutional research plan: CEZ:AV0Z3042911; CEZ:MSM 113200004 Keywords : wave propagation * singular value decomposition Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.832, year: 2003

  16. Use of offshore mooring platform for sea wave motion analysis

    International Nuclear Information System (INIS)

    Cicconi, G.; Dagnino, I.; Papa, L.

    1979-01-01

    An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported. (author)

  17. Use of offshore mooring platform for sea wave motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cicconi, G.; Dagnino, I.; Papa, L. (Genova Univ. (Italy). Ist. Geofisica e Geodetico); Basano, L.; Ottonello, P. (Genoa Univ. (Italy))

    An offshore mooring platform for supertankers may often turn out to be an ideal solution for the problem of installing a meteorological station. Its location may be particularly desirable for the purpose of recording and analysing sea wave motion in deep water or in the intermediate zone between shallow and deep water. The preliminary results obtained through the operation of a subsurface sensor at the mooring platform off the harbour of Genova are reported.

  18. Site Classification using Multichannel Channel Analysis of Surface Wave (MASW) method on Soft and Hard Ground

    Science.gov (United States)

    Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.

    2018-04-01

    Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.

  19. Analysis of efficient preconditioned defect correction methods for nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter

    2014-01-01

    Robust computational procedures for the solution of non-hydrostatic, free surface, irrotational and inviscid free-surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable...... prediction of free-surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow...... equations. We present new detailed fundamental analysis using finite-amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high-order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow...

  20. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    International Nuclear Information System (INIS)

    Zhang, Y. S.; Cai, F.; Xu, W. M.

    2011-01-01

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  1. Investigation of interfacial wave structure using time-series analysis techniques

    International Nuclear Information System (INIS)

    Jayanti, S.; Hewitt, G.F.; Cliffe, K.A.

    1990-09-01

    The report presents an investigation into the interfacial structure in horizontal annular flow using spectral and time-series analysis techniques. Film thickness measured using conductance probes shows an interesting transition in wave pattern from a continuous low-frequency wave pattern to an intermittent, high-frequency one. From the autospectral density function of the film thickness, it appears that this transition is caused by the breaking up of long waves into smaller ones. To investigate the possibility of the wave structure being represented as a low order chaotic system, phase portraits of the time series were constructed using the technique developed by Broomhead and co-workers (1986, 1987 and 1989). These showed a banded structure when waves of relatively high frequency were filtered out. Although these results are encouraging, further work is needed to characterise the attractor. (Author)

  2. Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy

    NARCIS (Netherlands)

    Mullakkal Babu, F.A.; Wang, M.; van Arem, B.; Happee, R.; Rosetti, R.; Wolf, D.

    2016-01-01

    Current Full Range Adaptive Cruise Control (FRACC) systems switch between separate adaptive cruise control and collision avoidance systems. This can lead to jerky responses and discomfort during the transition between the two control modes. We propose a Full Range Adaptive Cruise Control (FRACC)

  3. On the Efficiency of the Multi-Channel Analysis of Surface Wave Method for Shallow and Semi-Deep Loose Soil Layers

    Directory of Open Access Journals (Sweden)

    Kasgin Khaheshi Banab

    2010-01-01

    Full Text Available The multi-channel analysis of surface waves (MASWs method was used to obtain the shear wave velocity variations through near surface (depth 2,300 m/s is very large. The MASW velocity results compared with those of other geophysical approaches, such as seismic reflection/refraction methods and borehole data, where available, mostly confirming the capability of the MASW method to distinguish the high shear wave velocity contrast in the study area. We have found that, of the inversion procedures of MASW data, the random search inversion technique provides better results than the analytical generalized inversion method.

  4. Experimental analysis on the performance of lithium based batteries for road full electric and hybrid vehicles

    International Nuclear Information System (INIS)

    Capasso, Clemente; Veneri, Ottorino

    2014-01-01

    Highlights: • Performance analysis for lithium storage technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries. • Actual capacity of lithium technologies analyzed almost close to their nominal capacity also for high discharging current. • The charging efficiency for Li[NiCoMn]O 2 positively affects the regenerative breaking and fast recharging operations. • The analyzed battery packs follow dynamic power requirements on performed road driving cycles. • Experimental results demonstrate driving range is much higher when battery packs are based on lithium technology. - Abstract: This paper deals with an experimental evaluation regarding the real performance of lithium based energy storage systems for automotive applications. In particular real working operations of different lithium based storage system technologies, such as Li[NiCoMn]O 2 and LiFePO 4 batteries, are compared in this work from the point of view of their application in supplying full electric and hybrid vehicles, taking as a reference the well-known behavior of lead acid batteries. For this purpose, the experimental tests carried out in laboratory are firstly performed on single storage modules in stationary conditions. In this case the related results are obtained by means of a bidirectional cycle tester based on the IGBT technology, and consent to evaluate, compare and contrast charge/discharge characteristics and efficiency at constant values of current/voltage/power for each storage technology analyzed. Then, lithium battery packs are tested in supplying a 1.8 kW electric power train using a laboratory test bench, based on a 48 V DC bus and specifically configured to simulate working operations of electric vehicles on the road. For this other experimentation the test bench is equipped with an electric brake and acquisition/control system, able to represent in laboratory the real vehicle conditions and road characteristics on predefined driving cycles at different slopes. The obtained

  5. A New Alternative in Urban Geophysics: Multi-Channel Analysis of Surface Waves (MASW) Method

    International Nuclear Information System (INIS)

    Ozcep, F.

    2007-01-01

    Geophysical studies are increasingly being applied to geotechnical investigations as they can identify soil properties and soil boundaries. Other advantage is that many of these methods are non-invasive and environment friendly. Soil stiffness is one of the critical material parameters considered during an early stage of most foundation construction. It is related directly to the stability of structural load, especially as it relates to possible earthquake hazard. Soil lacking sufficient stiffness for a given load can experience a significant reduction in strength under earthquake shaking resulting in liquefaction, a condition responsible for tremendous amounts of damage from earthquakes around the world The multichannel analysis of surface waves (MASW) method originated from the traditional seismic exploration approach that employs multiple (twelve or more) receivers placed along a linear survey line. Main advantage is its capability of recognizing different types of seismic waves based on wave propagation characteristics such as velocity and attenuation. The MASW method utilizes this capability to discriminate the fundamental-mode Rayleigh wave against all other types of surface and body waves generated not only from the active seismic source but also from the ambient site conditions. Dispersive characteristics of seismic waves are imaged from an objective 2-D wave field transformation. The present paper indicates results from MASW survey at different urban site in Turkey. MASW techniques will prove to be important tools for obtaining shear wave velocity and evaluating liquefaction potential, soil bearing capacity and soil amplification, etc. for future geophysical and geotechnical engineering community

  6. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    Science.gov (United States)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  7. Assessment of health risks related to the use of an Eqo millimetre-wave full-body scanner. Opinion of the Anses. Collective expertise report

    International Nuclear Information System (INIS)

    Agnani, Jean-Benoit; DORe, Jean-Francois; Behar-Cohen, Francine; Ducimetiere, Pierre; Le Drean, Yves; Letertre, Thierry; Ndagijimana, Fabien; Sicard, Yves; Hours, Martine; Bertho, Jean-Marc; Cesarini, Jean-Pierre; Couturier, Frederic; EL Khatib, Aicha; Feltin, Nicolas; Flahaut, Emmanuel; Gaffet, Eric; Muzet, Alain; Lafaye, Murielle; Lepoutre, Philippe; Martinsons, Christophe; Mouneyrac, Catherine; Sicard, Yves; Soyez, Alain; Toppila, Esko; Yardin, Catherine; Fite, Johanna; Merckel, Olivier; Saddoki, Sophia

    2012-07-01

    Eqo is a detection scanner portal used in airports for the detection of various materials on passengers. After a presentation of the context, scope and modalities of this expertise, this report presents the Eqo portal (main actors, operation, physical parameters, obtained image, control capacity, uses) and reports the assessment of the levels of electromagnetic fields emitted by this portal (measurement conditions and measurement devices, results in terms of frequency spectrum, time variations and power density) and the assessment of the exposure to millimetre-wavelength waves in relationship with the use of the Eqo portal (passengers, workers in the airports and airline personnel, operators). Then, it addresses the case of waves with a frequency higher than 1 GHz (potential biological and health effects, depth of penetration, biological studies, and epidemiological studies). The last part proposes an assessment of health risks related to the use of the Eqo portal

  8. Modal approach for the full simulation of nondestructive tests by elastic guided waves; Approche modale pour la simulation globale de controles non-destructifs par ondes elastiques guidees

    Energy Technology Data Exchange (ETDEWEB)

    Jezzine, K

    2006-11-15

    Tools for simulating nondestructive tests by elastic guided waves are developed. Two overall formulations based on modal formalism and reciprocity are derived depending on whether transmission and reception are separated or not. They relate phenomena of guided wave radiation by a transducer, their propagation, their scattering by a non-uniformity of the guide or a defect and their reception. Receiver electrical output is expressed as a product of terms relating to each phenomenon that can be computed separately. Their computation uses developments based on the semi-analytical finite elements method, dealing with guides of arbitrary cross-section and cracks normal to the guide axis. Simulation tools are used to study means for selecting a single mode using a transducer positioned on the guide section, such a selection making easier the interpretation of the results of testing by guided waves. Two methods of mode selection are proposed, based on the use of two specific frequencies (which existence depends on guide geometry and mode symmetry). Mimicking the normal stress distribution of the mode at one of these two frequencies or the other makes it possible to radiate solely or predominantly the mode chosen. Examinations are simulated in configurations using a single or two separated transducers positioned on the section of various guide geometries and cracks of various shapes. The interest and performances of the two methods of mode selection are studied in these configurations. (author)

  9. Full vessel CFD analysis on thermal-hydraulic characteristics of CPR1000 PWR

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Mingqian

    2014-01-01

    To obtain flow distributions and thermal-hydraulic properties in a full vessel PWR under limited computation ability and time, a full vessel simulation model of CPR1000 was built based on two simplification methods. One simplified the inner geometry of the control rod guide tubes using equivalent flow area. Another substituted the core by a porous domain to maintain the pressure drop and temperature rise. After the computation, global and localized flow distributions, hydraulic loads of some main assemblies were obtained, as well as other thermal-hydraulic properties. The results indicate the flow distribution in the full vessel is asymmetrical. Therefore it is essential to use the full vessel model to simulate. The calculated thermal-hydraulic characteristics agree well with the operation statistics, providing the reference data for the reactor safety operation. (authors)

  10. Future Projection of Ocean Wave Climate: Analysis of SST Impacts on Wave Climate Changes in the Western North Pacific

    OpenAIRE

    Shimura, Tomoya; Mori, Nobuhito; Mase, Hajime

    2015-01-01

    Changes in ocean surface waves elicit a variety of impacts on coastal environments. To assess the future changes in the ocean surface wave climate, several future projections of global wave climate have been simulated in previous studies. However, previously there has been little discussion about the causes behind changes in the future wave climate and the differences between projections. The objective of this study is to estimate the future changes in mean wave climate and the sensitivity of...

  11. Symmetry analysis of many-body wave functions, with applications to the nuclear shell model

    International Nuclear Information System (INIS)

    Novoselsky, A.; Katriel, J.

    1995-01-01

    The weights of the different permutational symmetry components of a nonsymmetry-adapted many-particle wave function are evaluated in terms of the expectation values of the symmetric-group class sums. This facilitates the evaluation of the weights without the construction of a complete set of symmetry adapted functions. Subspace projection operators are introduced, to be used when prior knowledge about the symmetry-species composition of a wave function is available. The permutational weight analysis of a recursively angular-momentum coupled (shell model) wave function is presented as an illustration

  12. Gravitational-wave physics and astronomy an introduction to theory, experiment and data analysis

    CERN Document Server

    Creighton, Jolien D E

    2011-01-01

    This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitation

  13. Development of an analysis code for pressure wave propagation, (1)

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Sakano, Kosuke; Shindo, Yoshihisa

    1974-11-01

    We analyzed the propagation of the pressure-wave in the piping system of SWAT-1B rig by using SWAC-5 Code. We carried out analyses on the following parts. 1) A straight pipe 2) Branches 3) A piping system The results obtained in these analyses are as follows. 1) The present our model simulates well the straight pipe and the branch with the same diameters. 2) The present our model simulates approximately the branch with the different diameters and the piping system. (auth.)

  14. Linear and nonlinear analysis of density wave instability phenomena

    International Nuclear Information System (INIS)

    Ambrosini, Walter

    1999-01-01

    In this paper the mechanism of density-wave oscillations in a boiling channel with uniform and constant heat flux is analysed by linear and nonlinear analytical tools. A model developed on the basis of a semi-implicit numerical discretization of governing partial differential equations is used to provide information on the transient distribution of relevant variables along the channel during instabilities. Furthermore, a lumped parameter model and a distributed parameter model developed in previous activities are also adopted for independent confirmation of the observed trends. The obtained results are finally put in relation with the picture of the phenomenon proposed in classical descriptions. (author)

  15. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  16. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  17. Analysis of full and cross-shaped boss membranes with piezoresistors in transversal strain configuration

    International Nuclear Information System (INIS)

    Tibrewala, A; Phataralaoha, A; Büttgenbach, S

    2008-01-01

    A 3D force sensor is developed using bulk silicon micromachining for measuring force in the sub-μN range. It is intended for use in high precision coordinate measuring machines. Full and cross-shaped boss membranes are fabricated, where the total chip size is 6.5 × 6.5 mm 2 . The full membrane is 3000 × 3000 µm 2 and the beams of the cross-shaped membrane are 900 × 700 µm 2 with 16 p-diffused piezoresistors in transversal strain configuration. The strains detected by the piezoresistors are measures of the three orthogonal components of the force applied at the tip of the stylus, which is glued on the center of the boss. When a vertical load is applied to the stylus, higher sensitivity is obtained for the cross-shaped membrane than for the full membrane

  18. An Optimal Analysis in Wireless Powered Full-duplex Relaying Network

    Directory of Open Access Journals (Sweden)

    K.-T. Nguyen

    2017-04-01

    Full Text Available Wireless-powered cellular networks (WPCNs are currently being investigated to exploit the reliability and improve battery lifetime of mobile users. This paper investigates the energy harvesting structure of the full-duplex relaying networks. By using the time switching based relaying (TSR protocol and Amplify-and-Forward (AF model in delay-limited transmission scheme, we propose the closed-form expression of the outage probability and then calculate the optimal throughput. An important result can be taken obviously that the time fraction in TSR, the position of relay, the noise as well as the energy conversation impacting on the outage probability as well as the optimal throughput. By Monte Carlo simulation, the numerical results indicate an effective relaying strategy in full-duplex cooperative systems. Finally, we provide fundamental design guidelines for selecting time fraction in TSR that satisfies the requirements of a practical relaying system.

  19. Analysis and Construction of Full-Diversity Joint Network-LDPC Codes for Cooperative Communications

    Directory of Open Access Journals (Sweden)

    Capirone Daniele

    2010-01-01

    Full Text Available Transmit diversity is necessary in harsh environments to reduce the required transmit power for achieving a given error performance at a certain transmission rate. In networks, cooperative communication is a well-known technique to yield transmit diversity and network coding can increase the spectral efficiency. These two techniques can be combined to achieve a double diversity order for a maximum coding rate on the Multiple-Access Relay Channel (MARC, where two sources share a common relay in their transmission to the destination. However, codes have to be carefully designed to obtain the intrinsic diversity offered by the MARC. This paper presents the principles to design a family of full-diversity LDPC codes with maximum rate. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full diversity.

  20. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  1. Coupled channel analysis of s-wave ππ and K anti-K photoproduction

    International Nuclear Information System (INIS)

    Chueng-Ryong Ji; Szczepaniak, A.; Kaminski, R.; Lesniak, L.; Williams, R.

    1997-10-01

    We present a coupled channel partial wave analysis of non-diffractive S-wave π + π - and K + K - photoproduction focusing on the K anti-K threshold. Final state interactions are included. We calculate total cross sections, angular and effective mass distributions in both ππ and K anti-K channels. Our results indicate that these processes are experimentally measurable and valuable information on the f 0 (980) resonance structure can be obtained. (author)

  2. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Science.gov (United States)

    Mošna, Z.; Koucká Knížová, P.

    2012-12-01

    The present study mainly concerns the wave-like activity in the ionospheric sporadic E layer (Es) and in the lower lying stratosphere. The proposed analysis involves parameters describing the state of plasma in the sporadic E layer. Critical frequencies foEs and layer heights hEs were measured at the Pruhonice station (50°N, 14.5°E) during summer campaigns 2004, 2006 and 2008. Further, we use neutral atmosphere (temperature data at 10 hPa) data from the same time interval. The analysis concentrates on vertically propagating wave-like structures within distant atmospheric regions. By means of continuous wavelet transform (CWT) we have detected significant wave-like oscillation at periods covering tidal and planetary oscillation domains both in the Es layer parameters (some of them were reported earlier, for instance in works of Abdu et al., 2003; Pancheva and Mitchel, 2004; Pancheva et al., 2003; Šauli and Bourdillon, 2008) and in stratospheric temperature variations. Further analyses using cross wavelet transform (XWT) and wavelet coherence analysis (WTC) show that despite high wave-like activity in a wide period range, there are only limited coherent wave-like bursts present in both spectra. Such common coherent wave bursts occur on periods close to eigen-periods of the terrestrial atmosphere. We suppose that vertical coupling between atmospheric regions realized by vertically propagating planetary waves occurs predominantly on periods close to those of Rossby modes. Analysis of the phase shift between data from distant atmospheric regions reveals high variability and very likely supports the non-linear scenario of the vertical coupling provided by planetary waves.

  3. Analysis of a time fractional wave-like equation with the homotopy analysis method

    International Nuclear Information System (INIS)

    Xu Hang; Cang Jie

    2008-01-01

    The time fractional wave-like differential equation with a variable coefficient is studied analytically. By using a simple transformation, the governing equation is reduced to two fractional ordinary differential equations. Then the homotopy analysis method is employed to derive the solutions of these equations. The accurate series solutions are obtained. Especially, when h f =h g =-1, these solutions are exactly the same as those results given by the Adomian decomposition method. The present work shows the validity and great potential of the homotopy analysis method for solving nonlinear fractional differential equations. The basic idea described in this Letter is expected to be further employed to solve other similar nonlinear problems in fractional calculus

  4. Analysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia

    Science.gov (United States)

    Lewis, Owen; Guy, Robert

    2017-11-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using physarum plasmodia. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.

  5. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  6. Half-width at half-maximum, full-width at half-maximum analysis

    Indian Academy of Sciences (India)

    addition to the well-defined parameter full-width at half-maximum (FWHM). The distribution of ... optical side-lobes in the diffraction pattern resulting in steep central maxima [6], reduc- tion of effects of ... and broad central peak. The idea of.

  7. Full-energy-chain analysis of greenhouse gas emissions for solar thermal electric power generation systems

    International Nuclear Information System (INIS)

    Norton, B.; Lawson, W.R.

    1997-01-01

    Technical attributes and environmental impacts of solar thermal options for centralized electricity generation are discussed. In particular, the full-energy-chain, including embodied energy and energy production, is considered in relation to greenhouse gas emission arising from solar thermal electricity generation. Central receiver, parabolic dish, parabolic trough and solar pond systems are considered. (author)

  8. Exploration of Integrated Visible to Near-, Shortwave-, and Longwave-Infrared (Full-Range) Spectral Analysis

    Science.gov (United States)

    2014-09-01

    wavelength region .................................... 67 Table 7. Description of comparison locations...concentration and characteristics of the silicate bonds. Sulfates, phosphates, oxides, and hydroxides also exhibit strong features in the LWIR. Because...authors suggested that full spectral coverage would provide complementary information about the mineralogical and mineral chemistry patterns. The

  9. Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media

    Science.gov (United States)

    Zhang, K.; Luo, Y.; Xia, J.; Chen, C.

    2011-01-01

    Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P

  10. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    Science.gov (United States)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  11. Different methodologies in neutron activation to approach the full analysis of environmental and nutritional samples

    International Nuclear Information System (INIS)

    Freitas, M.C.; Dionisio, I.; Dung, H.M.

    2008-01-01

    Different methodologies of neutron activation analysis (NAA) are now available at the Technological and Nuclear Institute (Sacavem, Portugal), namely Compton suppression, epithermal activation, replicate and cyclic activation, and low energy photon measurement. Prompt gamma activation analysis (PGAA) will be implemented soon. Results by instrumental NAA and PGAA on environmental and nutritional samples are discussed herein, showing that PGAA - carried out at the Institute of Isotope Research (Budapest, Hungary) - brings about an effective input to assessing relevant elements. Sensitivity enhancement in NAA by Compton suppression is also illustrated. Through a judicious combination of methodologies, practically all elements of interest in pollution and nutrition terms can be determined. (author)

  12. First- and Second-Order Full-Differential in Edge Analysis of Images

    Directory of Open Access Journals (Sweden)

    Dong-Mei Pu

    2014-01-01

    mathematics. We propose and reformulate them with a uniform definition framework. Based on our observation and analysis with the difference, we propose an algorithm to detect the edge from image. Experiments on Corel5K and PASCAL VOC 2007 are done to show the difference between the first order and the second order. After comparison with Canny operator and the proposed first-order differential, the main result is that the second-order differential has the better performance in analysis of changes of the context of images with good selection of control parameter.

  13. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  14. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  15. Full-genome analysis of a canine pneumovirus causing acute respiratory disease in dogs, Italy.

    Directory of Open Access Journals (Sweden)

    Nicola Decaro

    Full Text Available An outbreak of canine infectious respiratory disease (CIRD associated to canine pneumovirus (CnPnV infection is reported. The outbreak occurred in a shelter of the Apulia region and involved 37 out of 350 dogs that displayed cough and/or nasal discharge with no evidence of fever. The full-genomic characterisation showed that the causative agent (strain Bari/100-12 was closely related to CnPnVs that have been recently isolated in the USA, as well as to murine pneumovirus, which is responsible for respiratory disease in mice. The present study represents a useful contribution to the knowledge of the pathogenic potential of CnPnV and its association with CIRD in dogs. Further studies will elucidate the pathogenicity and epidemiology of this novel pneumovirus, thus addressing the eventual need for specific vaccines.

  16. Similar familial underpinnings for full and subsyndromal pediatric bipolar disorder: A familial risk analysis.

    Science.gov (United States)

    Wozniak, Janet; Uchida, Mai; Faraone, Stephen V; Fitzgerald, Maura; Vaudreuil, Carrie; Carrellas, Nicholas; Davis, Jacqueline; Wolenski, Rebecca; Biederman, Joseph

    2017-05-01

    To examine the validity of subthreshold pediatric bipolar I disorder (BP-I), we compared the familial risk for BP-I in the child probands who had either full BP-I, subthreshold BP-I, ADHD, or were controls that neither had ADHD nor bipolar disorder. BP-I probands were youth aged 6-17 years meeting criteria for BP-I, full (N=239) or subthreshold (N=43), and also included were their first-degree relatives (N=687 and N=120, respectively). Comparators were youth with ADHD (N=162), controls without ADHD or bipolar disorder (N=136), and their first-degree relatives (N=511 and N=411, respectively). We randomly selected 162 non-bipolar ADHD probands and 136 non-bipolar, non-ADHD control probands of similar age and sex distribution to the BP-I probands from our case-control ADHD family studies. Psychiatric assessments were made by trained psychometricians using the Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children Epidemiological Version (KSADS-E) and Structured Clinical Interview for DSM-IV (SCID) structured diagnostic interviews. We analyzed rates of bipolar disorder using multinomial logistic regression. Rates of full BP-I significantly differed between the four groups (χ 2 3 =32.72, Pdisorder compared to relatives of control probands. Our results showed that youth with subthreshold BP-I had similarly elevated risk for BP-I and major depressive disorder in first-degree relatives as youth with full BP-I. These findings support the diagnostic continuity between subsyndromal and fully syndromatic states of pediatric BP-I disorder. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    OpenAIRE

    Kiil, Søren

    2017-01-01

    This work concerns the development of simulation tools for mapping of pigment dispersion. Focus has been on the mechanical breakage of pigment agglomerates. The underlying physical mechanism was assumed to be surface erosion of spherical pigment agglomerates, and the full agglomerate particle size distribution was simulated. Data from previous experimental investigations with organic pigments were used for model validation.When the linear rate of agglomerate surface erosion was taken to be pr...

  18. Full energy chain analysis of greenhouse gas emissions from different energy sources

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    The field of work of the Advisory Group Meeting/Workshop, i.e. full-energy chain emissions of greenhouse gases, is defined, and its environment, i.e. the Earth Summit -the 1992 UN Conference on Environment and Development in Rio-, is discussed. It is inferred that countries that ratified the Earth Summit's Convention on Climate Change have committed themselves to lower the greenhouse gas emissions from their energy use, and that this can be done most effectively by accounting in energy planning for the full-energy chain emissions of all greenhouse gases. The scatter in literature values of greenhouse gas emission factors of the full energy chain of individual energy sources is discussed. The scatter among others is due to different analytical methods, data bases and system boundaries, and due to neglect of the non-CO 2 greenhouse gases and professional biases. Generic values for greenhouse gas emission factors of energy and materials use are proposed. (author). 10 refs, 2 tabs

  19. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    Science.gov (United States)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  20. Harmonic Analysis of Offshore Wind Farms with Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2009-01-01

    to a shore with a long HV cable. The way of propagation and effects of harmonics are presented for different study cases. Modeling strategies of harmonic sources for harmonic analysis are described and compared. Different results dependent on applied harmonic models are shown and discussed in this paper...

  1. [Quantitative and qualitative analysis of oral microbiota by orthopedic rehabilitation with full and partial removable dentures].

    Science.gov (United States)

    Stafeev, A A; Chesnokova, M G; Chesnokov, V A

    2015-01-01

    Microbiological analysis of biomaterial surface in dental prosthesis showed the most common colonizing gram-positive species to be S. aureus, Micrococcus spp., S. haemolyticus, E. faecalis, mainly massive colonization with S. aureus was seen. The highest concentration of C. albicans colonization was found in removable dentures and may have a destructive effect on prosthetic material.

  2. Procedure for conducting probabilistic safety assessment: level 1 full power internal event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dae; Lee, Y. H.; Hwang, M. J. [and others

    2003-07-01

    This report provides guidance on conducting a Level I PSA for internal events in NPPs, which is based on the method and procedure that was used in the PSA for the design of Korea Standard Nuclear Plants (KSNPs). Level I PSA is to delineate the accident sequences leading to core damage and to estimate their frequencies. It has been directly used for assessing and modifying the system safety and reliability as a key and base part of PSA. Also, Level I PSA provides insights into design weakness and into ways of preventing core damage, which in most cases is the precursor to accidents leading to major accidents. So Level I PSA has been used as the essential technical bases for risk-informed application in NPPs. The report consists six major procedural steps for Level I PSA; familiarization of plant, initiating event analysis, event tree analysis, system fault tree analysis, reliability data analysis, and accident sequence quantification. The report is intended to assist technical persons performing Level I PSA for NPPs. A particular aim is to promote a standardized framework, terminology and form of documentation for PSAs. On the other hand, this report would be useful for the managers or regulatory persons related to risk-informed regulation, and also for conducting PSA for other industries.

  3. Construction of a full-length cDNA library and analysis of expressed ...

    African Journals Online (AJOL)

    ... in the GenBank databases. Cluster analysis allowed the identification of 61 unique sequences. These genes were classified into six types by Gene Ontology (GO) annotation. The results also indicated that unigenes of C. capsularis have higher homology to Populus trichocarpa, Ricinus communis and Corchorus olitorius.

  4. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Kipergil, Esra Aytac; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet Burcin

    2017-06-21

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  5. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  6. A theoretical analysis of the weak shock waves propagating through a bubbly flow

    International Nuclear Information System (INIS)

    Jun, Gu Sik; Kim, Heuy Dong; Baek, Seung Cheol

    2004-01-01

    Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data

  7. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    International Nuclear Information System (INIS)

    Manley, D. Mark

    2016-01-01

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K"+ Λ.

  8. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Manley, D. Mark [Kent State Univ., Kent, OH (United States)

    2016-09-08

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.

  9. SHOCK WAVE ANALYSIS OF THE CONSEQUENCES OF A REACTOR ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    Klickman, A E; Nicholson, R B; Nims, J B

    1963-06-15

    The solution to the problem of transmission and attenuation of the shock wave resulting from a large reactor accident is demonstrated for a configuration typical of many reactors. The particular configuration is that of a spherical gas bubble surrounded by one or more concentric regions of compressible material. A systematic parameter study was made in which the physical characteristics of the compressible shield regions and the expansion characteristics of a gas were assumed to be parameters. Results for seven cases are shown, and similar cases with only one important difference are compared. From these comparisons it was concluded that under certain conditions alternative materials can be substituted for reactor materials in model experiments and TNT can be used as an energy source instead of uranium. In the outer crushable region the total mass of material is the important factor. (A.G.W.)

  10. Use of energy analysis to evaluate the parameters of wave fields

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, V.N.; Sinitsyn, Ye.S.

    1984-01-01

    Algorithms are proposed and studied for energy analysis of the wave fields. A comparative evaluation is made of the resolution of the energy analysis methods. A method is examined for automated processing of the energograms allowing a search for an estimate of the parameters with significant acceleration of the computer calculations and saving of its working storage by designing multipurpose algorithms of data processing.

  11. Auto-correlation analysis of wave heights in the Bay of Bengal

    Indian Academy of Sciences (India)

    Time series observations of significant wave heights in the Bay of Bengal were subjected to auto- correlation analysis to determine temporal variability scale. The analysis indicates an exponen- tial fall of auto-correlation in the first few hours with a decorrelation time scale of about six hours. A similar figure was found earlier ...

  12. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    Science.gov (United States)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  13. Screening in veterinary drug analysis and sports doping control based on full-scan, accurate-mass spectrometry

    NARCIS (Netherlands)

    Peters, R.J.B.; Stolker, A.A.M.; Mol, J.G.J.; Lommen, A.; Lyris, E.; Angelis, Y.S.; Vonaparti, A.; Stamou, M.; Georgakopoulos, C.G.; Nielen, M.W.F.

    2010-01-01

    A common trend in food contaminants and sports doping control is towards a limited number of targeted, full-scan, accurate-mass spectrometry (MS) methods based on time-of-flight (TOF) or Fourier-transform orbital trap (Orbitrap) mass analyzers. Retrospective analysis of the full-scan datasets of

  14. Full aperture backscatter signal analysis of laser with hohlraum on Shenguang II laser facility

    International Nuclear Information System (INIS)

    Jiao Chunye; Wang Feng; Liu Shenye; Jiang Xiaohua; Li Sanwei; Liu Yonggang; Yang Jiamin; Gu Yuqiu; Wang Chuanke

    2010-01-01

    Full aperture backscatter system and experimental measurement of hohlraum with 351 nm wavelength laser on Shenguang II laser facility is reported. FABS optical path has been analyzed and the backscattering light completely entered FABS collecting optical path. FABS existed the background light when the eight beams symmetrically acted on hohlraum. The background light is composed of 526.5 nm and 1053 nm wavelength remains while the 1053 nm wavelength changes into 351 nm wavelength, according to records of laser sensitive paper and optical filter. The background light accounts for 15% of FABS energy from experimental measurement result. (authors)

  15. Geomaterial characterizations of full scale pavement test sections for mechanistic analysis and design

    CSIR Research Space (South Africa)

    Kwon, J

    2007-02-01

    Full Text Available roller compactor. The compaction effort was monitored with nuclear density gauge and DCP measurements taken from each pavement test section. As-built density of each subgrade lift obtained using the nuclear gauge satisfied a minimum relative density... was monitored with a nuclear gauge to maintain a minimum 95% relative compaction in the field. 0 100 200 300 400 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CBR (%) Pe n et ra tio n (m m ) Pe n et ra tio n (m m ) Figure 2...

  16. Report and analysis on 'PR and PP evaluation. Example sodium fast reactor full system case study'

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Inoue, Naoko; Kawakubo, Yoko; Watahiki, Masaru

    2011-01-01

    The Generation IV (GEN IV) Nuclear Energy Systems International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PRPP WG) was established in December 2002 in order to develop the PR and valuation methodology for GEN IV nuclear energy systems. In the final report of 'PR and PP Evaluation: Example Sodium Fast Reactor (ESFR) Full System Case Study,' issued in October 2009, the demonstration study of PR and PP evaluation with the qualitative approach are summarized using ESFR with four scenario threats. The present paper reviews and analyzes some results of the ESFR case study, and identifies the challenges and direction for the PR and PP evaluation methodology with quantitative approach. (author)

  17. Quantitative analysis of pigment dispersion taking into account the full agglomerate size distribution

    DEFF Research Database (Denmark)

    Kiil, Søren

    were in good quantitative agreement with experimental data. The only adjustable parameter used was an apparent rate constant for the linear agglomerate erosion rate. Model simulations, at selected values of time, for the full agglomerate particle size distribution were in good qualitative agreement...... distribution was simulated. Data from previous experimental investigations with organic pigments were used for model validation.When the linear rate of agglomerate surface erosion was taken to be proportional to the external agglomerate surface area, simulations of the volume-moment mean diameter over time...

  18. Generation and Analysis of Full-length cDNA Sequences from Elephant Shark (Callorhinchus milii)

    KAUST Repository

    Kodzius, Rimantas

    2009-03-17

    Cartilaginous fishes are the oldest living group of jawed vertebrates and therefore is an important group for understanding the evolution of vertebrate genomes including the human genome. Our laboratory has proposed elephant shark (C. milii) as a model cartilaginous fish genome because of its relatively small genome size (910 Mb). The whole genome of C. milii is being sequenced (first cartilaginous fish genome to be sequenced completely). To characterize the transcriptome of C. milii and to assist in annotating exon-intron boundaries, transcriptional start sites and alternatively spliced transcripts, we are generating full-length cDNA sequences from C. milii.

  19. Gap-metric-based robustness analysis of nonlinear systems with full and partial feedback linearisation

    Science.gov (United States)

    Al-Gburi, A.; Freeman, C. T.; French, M. C.

    2018-06-01

    This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.

  20. Direct Time Domain Numerical Analysis of Transient Behavior of a VLFS during Unsteady External Loads in Wave Condition

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2014-01-01

    Full Text Available The transient response of the VLFS subjected to arbitrary external load is systematically investigated by a direct time domain modal expansion method, in which the BEM solutions based on time domain Kelvin sources are used for hydrodynamic forces. In the analysis, the time domain free-surface Green functions with sufficient accuracy are rapidly evaluated in finite water depth by the interpolation-tabulation method, and the boundary integral equation with a quarter VLFS model is established taking advantage of symmetry of flow field and structure. The validity of the present method is verified by comparing with the time histories of vertical displacements of the VLFS during a mass drop and airplane landing and takeoff in still water conditions, respectively. Then the developed numerical scheme is used in wave conditions to study the combined action taking into account the mass drop/airplane landing/takeoff loads as well as incident wave action. It is found that the elevation of structural waves due to mass drop load can be significantly changed near the impact region, while the vertical motion of runway in wave conditions is dominant as compared with that only generated by airplane.