WorldWideScience

Sample records for full k-space visualization

  1. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  2. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  3. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  4. The Perspective Structure of Visual Space

    Science.gov (United States)

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222

  5. Visualization of thermal management system in space using neutron radiography

    International Nuclear Information System (INIS)

    Nakazawa, Takeshi

    1995-01-01

    The visualizing technique by neutron radiography is effective for visualizing liquid in metals, and the applications in wide fields have been reported. In this paper, as one of the examples of applying the visualizing technique by neutron radiography, the experiment of visualizing the two-phase fluid loop heat removal system for the purpose of using in spatial environment was carried out, and its results are reported. For future large scale space ships and space stations, the heat removal system with two-phase fluid loop which utilizes the phase transformation of heat transport media is regarded as promising. By this system, good heat transfer performance is obtained, transported heat quantity per unit mass of media increases, and pumping power and the weight of the total system are reduced. Temperature can be controlled by system pressure. The two-phase fluid loop for the visualization experiment and the experimental results are reported. By the experiment using the real time NRG system at the JRR-3M, the boiling and evaporation phenomena in the capillary heat transfer tubes were able to be visualized. (K.I.)

  6. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  7. Using Typography to Expand the Design Space of Data Visualization

    Directory of Open Access Journals (Sweden)

    Richard Brath

    Full Text Available This article is a systematic exploration and expansion of the data visualization design space focusing on the role of text. A critical analysis of text usage in data visualizations reveals gaps in existing frameworks and practice. A cross-disciplinary review including the fields of typography, cartography, and coding interfaces yields various typographic techniques to encode data into text, and provides scope for an expanded design space. Mapping new attributes back to well understood principles frames the expanded design space and suggests potential areas of application. From ongoing research created with our framework, we show the design, implementation, and evaluation of six new visualization techniques. Finally, a broad evaluation of a number of visualizations, including critiques from several disciplinary experts, reveals opportunities as well as areas of concern, and points towards additional research with our framework.

  8. Comparing artistic and geometrical perspective depictions of space in the visual field.

    Science.gov (United States)

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.

  9. The extension of quadrupled xed point results in K-metric spaces

    Directory of Open Access Journals (Sweden)

    Ghasem Soleimani Rad

    2014-05-01

    Full Text Available Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] dened the conceptof quadrupled xed point in K-metric spaces and proved several quadrupled  xed point theorems for solid cones on K-metric spaces. In this paper some quadrupled xed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

  10. Crowdsourced Quantification and Visualization of Urban Mobility Space Inequality

    Directory of Open Access Journals (Sweden)

    Michael Szell

    2018-03-01

    Full Text Available Most cities are car-centric, allocating a privileged amount of urban space to cars at the expense of sustainable mobility like cycling. Simultaneously, privately owned vehicles are vastly underused, wasting valuable opportunities for accommodating more people in a livable urban environment by occupying spacious parking areas. Since a data-driven quantification and visualization of such urban mobility space inequality is lacking, here we explore how crowdsourced data can help to advance its understanding. In particular, we describe how the open-source online platform What the Street!? uses massive user-generated data from OpenStreetMap for the interactive exploration of city-wide mobility spaces. Using polygon packing and graph algorithms, the platform rearranges all parking and mobility spaces of cars, rails, and bicycles of a city to be directly comparable, making mobility space inequality accessible to a broad public. This crowdsourced method confirms a prevalent imbalance between modal share and space allocation in 23 cities worldwide, typically discriminating bicycles. Analyzing the guesses of the platform’s visitors about mobility space distributions, we find that this discrimination is consistently underestimated in the public opinion. Finally, we discuss a visualized scenario in which extensive parking areas are regained through fleets of shared, autonomous vehicles. We outline how such accessible visualization platforms can facilitate urban planners and policy makers to reclaim road and parking space for pushing forward sustainable transport solutions.

  11. Nebula: reconstruction and visualization of scattering data in reciprocal space.

    Science.gov (United States)

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H

    2015-04-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.

  12. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  13. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, J.J.; Albertazzi, L.; Doorn, A.J. van; Ee, R. van; Grind, W.A. van de; Kappers, A.M.L.; Lappin, J.S.; Norman, J.F.; Oomes, A.H.J.; Pas, S.F. te; Phillips, F.; Pont, S.C.; Richards, W.A.; Todd, J.T.; Verstraten, F.A.J.; Vries, S.C. de

    2010-01-01

    The issue of the existence of planes—understood as the carriers of a nexus of straight lines—in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  14. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, Jan J.; Albertazzi, Liliana; van Doorn, Andrea J.; van Ee, Raymond; van de Grind, Wim A.; Kappers, Astrid M L; Lappin, Joe S.; Farley Norman, J.; (Stijn) Oomes, A. H J; te Pas, Susan P.; Phillips, Flip; Pont, Sylvia C.; Richards, Whitman A.; Todd, James T.; Verstraten, Frans A J; de Vries, Sjoerd

    The issue of the existence of planes-understood as the carriers of a nexus of straight lines-in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  15. A design space of visualization tasks.

    Science.gov (United States)

    Schulz, Hans-Jörg; Nocke, Thomas; Heitzler, Magnus; Schumann, Heidrun

    2013-12-01

    Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.

  16. Investigating “Othering” in Visual Arts Spaces of Learning

    Directory of Open Access Journals (Sweden)

    Monique Biscombe

    2017-04-01

    Full Text Available In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored “othered” identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in terms of their experiences in the Department of Visual Arts. Theoretical perspectives such as “othering”, symbolic racism, the racialised body and visual art theory were used to interpret these experiences. It was found that “othering” because of indirect racism and language or economic circumstances affects students’ creative expression. Causes of “othering” experiences should be investigated in order to promote necessary transformation within the visual arts and within higher education institutions. 

  17. The Rhetoric of Multi-Display Learning Spaces: exploratory experiences in visual art disciplines

    Directory of Open Access Journals (Sweden)

    Brett Bligh

    2010-11-01

    Full Text Available Multi-Display Learning Spaces (MD-LS comprise technologies to allow the viewing of multiple simultaneous visual materials, modes of learning which encourage critical reflection upon these materials, and spatial configurations which afford interaction between learners and the materials in orchestrated ways. In this paper we provide an argument for the benefits of Multi-Display Learning Spaces in supporting complex, disciplinary reasoning within learning, focussing upon our experiences within postgraduate visual arts education. The importance of considering the affordances of the physical environment within education has been acknowledged by the recent attention given to Learning Spaces, yet within visual art disciplines the perception of visual material within a given space has long been seen as a key methodological consideration with implications for the identity of the discipline itself. We analyse the methodological, technological and spatial affordances of MD-LS to support learning, and discuss comparative viewing as a disciplinary method to structure visual analysis within the space which benefits from the simultaneous display of multiple partitions of visual evidence. We offer an analysis of the role of the teacher in authoring and orchestration and conclude by proposing a more general structure for what we term ‘multiple perspective learning’, in which the presentation of multiple pieces of visual evidence creates the conditions for complex argumentation within Higher Education.

  18. Leading effect of visual plant characteristics for functional uses of green spaces

    Directory of Open Access Journals (Sweden)

    Beyza Şat Güngör

    2016-07-01

    Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.

  19. Qualitative GIS and the Visualization of Narrative Activity Space Data.

    Science.gov (United States)

    Mennis, Jeremy; Mason, Michael J; Cao, Yinghui

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals' activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups.

  20. Visual pollution in public spaces in Venezuela

    International Nuclear Information System (INIS)

    Mendez Velandia, Carmen Arelys

    2013-01-01

    Each day cities inhabitants are exposed to visual pollution. This work assess the environmental impact caused by visual pollution in public spaces, using as a case of study a mixed-use neighborhood in San Cristobal, the capital of Tachira state, Venezuela. Such assessment was made using a qualitative approach, where special emphasis was paid to the perception of these impacts by a purposive sample of users of this area. The compilation and analysis of information reveal the main visual pollutants existing in these public spaces where, in addition to outdoor advertising, overhead wires, rubbish, graffiti, vacant land, among others, cars and outdoor kiosks. Neighborhood users are sensitive to the presence of visual pollutants, which affects them physically and psychologically, as well as for the visual quality of their environment. Such signs were used to guide a qualitative appraisal of environmental impacts generated by these circumstances and to propose policies to mitigate them.

  1. Topological properties of function spaces $C_k(X,2)$ over zero-dimensional metric spaces $X$

    OpenAIRE

    Gabriyelyan, S.

    2015-01-01

    Let $X$ be a zero-dimensional metric space and $X'$ its derived set. We prove the following assertions: (1) the space $C_k(X,2)$ is an Ascoli space iff $C_k(X,2)$ is $k_\\mathbb{R}$-space iff either $X$ is locally compact or $X$ is not locally compact but $X'$ is compact, (2) $C_k(X,2)$ is a $k$-space iff either $X$ is a topological sum of a Polish locally compact space and a discrete space or $X$ is not locally compact but $X'$ is compact, (3) $C_k(X,2)$ is a sequential space iff $X$ is a Pol...

  2. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    Science.gov (United States)

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  3. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  4. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  5. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    Science.gov (United States)

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones.

  7. Accessibility of Shared Space by Visually Challenged People

    NARCIS (Netherlands)

    Melis-Dankers, Bart J.M.; Havik, Else M.; Steyvers, Frank J.J.M.; Petrie, Helen; Kooijman, Aart C.; Kouroupetroglou, Georgios

    Shared Space is a concept that comprises the design of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually challenged. In this paper we give a systematic overview of the appearance of Shared Spaces in the Netherlands and the consequences that these

  8. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    Science.gov (United States)

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural

  9. Politicizing Precarity, Producing Visual Dialogues on Migration: Transnational Public Spaces in Social Movements

    Directory of Open Access Journals (Sweden)

    Nicole Doerr

    2010-05-01

    Full Text Available In a period characterized by weak public consent over European integration, the purpose of this article is to analyze images created by transnational activists who aim to politicize the social question and migrants' subjectivity in the European Union (EU. I will explore the content of posters and images produced by social movement activists for their local and joint European protest actions, and shared on blogs and homepages. I suspect that the underexplored visual dimension of emerging transnational public spaces created by activists offers a promising field of analysis. My aim is to give an empirical example of how we can study potential "visual dialogues" in transnational public spaces created within social movements. An interesting case for visual analysis is the grassroots network of local activist groups that created a joint "EuroMayday" against precarity and which mobilized protest parades across Europe. I will first discuss the relevance of "visual dialogues" in the EuroMayday protests from the perspective of discursive theories of democracy and social movements studies. Then I discuss activists' transnational sharing of visual images as a potentially innovative cultural practice aimed at politicizing and re-interpreting official imaginaries of citizenship, labor flexibility and free mobility in Europe. I also discuss the limits on emerging transnational "visual dialogues" posed by place-specific visual cultures. URN: urn:nbn:de:0114-fqs1002308

  10. Interactive Design and Visualization of Branched Covering Spaces.

    Science.gov (United States)

    Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene

    2018-01-01

    Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

  11. Women And Visual Representations Of Space In Two Chinese Film Adaptations Of Hamlet

    Directory of Open Access Journals (Sweden)

    CHEANG WAI FONG

    2014-12-01

    Full Text Available This paper studies two Chinese film adaptations of Shakespeare’s Hamlet, Xiaogang Feng’s The Banquet (2006 and Sherwood Hu’s Prince of the Himalayas (2006, by focusing on their visual representations of spaces allotted to women. Its thesis is that even though on the original Shakespearean stage details of various spaces might not be as vividly represented as in modern film productions, spaces are still crucial dramatic elements imbued with powerful significations. By analyzing the two Chinese film adaptations alongside the original Hamlet text, the paper attempts to reinterpret their different representations of spaces in relation to their different historical-cultural gender notions.

  12. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing.

    Science.gov (United States)

    Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger

    2017-08-01

    To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  14. Parallax visualization of full motion video using the Pursuer GUI

    Science.gov (United States)

    Mayhew, Christopher A.; Forgues, Mark B.

    2014-06-01

    In 2013, the Authors reported to the SPIE on the Phase 1 development of a Parallax Visualization (PV) plug-in toolset for Wide Area Motion Imaging (WAMI) data using the Pursuer Graphical User Interface (GUI).1 In addition to the ability to PV WAMI data, the Phase 1 plug-in toolset also featured a limited ability to visualize Full Motion video (FMV) data. The ability to visualize both WAMI and FMV data is highly advantageous capability for an Electric Light Table (ELT) toolset. This paper reports on the Phase 2 development and addition of a full featured FMV capability to the Pursuer WAMI PV Plug-in.

  15. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    Science.gov (United States)

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  16. Accessibility of shared space for visually impaired persons : A comparative field study

    NARCIS (Netherlands)

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  17. The Heliosphere in Space

    Science.gov (United States)

    Frisch, P. C.; Hanson, A. J.; Fu, P. C.

    2008-12-01

    A scientifically accurate visualization of the Journey of the Sun through deep space has been created in order to share the excitement of heliospheric physics and scientific discovery with the non-expert. The MHD heliosphere model of Linde (1998) displays the interaction of the solar wind with the interstellar medium for a supersonic heliosphere traveling through a low density magnetized interstellar medium. The camera viewpoint follows the solar motion through a virtual space of the Milky Way Galaxy. This space is constructed from real data placed in the three-dimensional solar neighborhood, and populated with Hipparcos stars in front of a precisely aligned image of the Milky Way itself. The celestial audio track of this three minute movie includes the music of the heliosphere, heard by the two Voyager satellites as 3 kHz emissions from the edge of the heliosphere. This short heliosphere visualization can be downloaded from http://www.cs.indiana.edu/~soljourn/pub/AstroBioScene7Sound.mov, and the full scientific data visualization of the Solar Journey is available commercially.

  18. Visual scan-path analysis with feature space transient fixation moments

    Science.gov (United States)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  19. COGNITIVE APPROACH TO THE STEREOTYPICAL PLACEMENT OF WOMEN IN VISUAL ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Simona Amankevičiūtė

    2013-10-01

    Full Text Available This article conceptualizes the image of women in the sexist advertisements of the 1950s and 60s and in current advertising discourse by combining the research traditions of both cognitive linguistics and semiotic image analysis. The aim of the research is to try to evaluate how canonical positionings of women in the hyperreality of advertisements may slip into everyday discourse (stereotype space and to present an interpretation of the creators’ visual lexicon. It is presumed that the traditional (formed by feminist linguists approach to sexist advertising as an expression of an androcentric worldview in culture may be considered too subjectively critical. This study complements an interpretation of women’s social roles in advertising with cognitive linguistic insights on the subject’s (woman’s visualisation and positioning in ad space. The article briefly overviews the feminist approach to women’s place in public discourse, and discusses the relevance of Goffman’s Gender Studies to an investigation of women’s images in advertising. The scholar’s contribution to adapting cognitive frame theory for an investigation of visuals in advertising is also discussed. The analysed ads were divided into three groups by Goffman’s classification, according to the concrete visuals used to represent women’s bodies or parts thereof: dismemberment, commodification, and subordination ritual. The classified stereotypical images of women’s bodies are discussed as visual metonymy, visual metaphor, and image schemas.

  20. OpenSpace: From Data Visualization Research to Planetariums and Classrooms Worldwide

    Science.gov (United States)

    Emmart, C.; Ynnerman, A.; Bock, A.; Kuznetsova, M. M.; Kinzler, R. J.; Trakinski, V.; Mac Low, M. M.; Ebel, D. S. S.

    2016-12-01

    "OpenSpace" is a new NASA supported open source software that brings the latest techniques from data visualization research to the planetarium community and general public. The American Museum of Natural History (AMNH), in collaboration with informal science institutions (ISI), academic partners, key vendors that support planetariums worldwide, and NASA mission teams and Subject Matter Experts (SME), is creating OpenSpace to enable STEM education and improve U.S. scientific literacy by engaging a broad spectrum of the American public and STEM learners in cutting-edge NASA science and engineering content. The project's primary focus is the interactive presentation of dynamic data from observations (image sequences), astrophysical simulation (volumetric rendering), and space missions (observation geometry visualization). Development of the software began several years ago in collaboration with NASA Goddard's space weather modeling center and in conjunction with academic support from Linköping University (LiU) in Sweden, and continued last year with visualizations of NASA's New Horizons mission and ESA's Rosetta mission. For the New Horizons Pluto encounter, a dozen sites around the world running OpenSpace networked simultaneously to view the close approach to Pluto as narrated in real time by mission control scientists at NASA's Jet Propulsion Laboratory. Subsequent image data from the Long Range Reconnaissance Imaging (LORRI) camera was released by NASA as it downloaded from the spacecraft in the following months. These images, along with post encounter navigation reconstruction data (NASA SPICE) were then used to update the OpenSpace New Horizons visualization, and create a February 2016 public program in which Deputy Project Scientist, Cathy Olkin, demonstrated these results visualized in OpenSpace to a sold out crowd in the AMNH Hayden Planetarium. As demonstrated with the New Horizons visualization in OpenSpace, the goals of the project are to make visible

  1. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces

    Directory of Open Access Journals (Sweden)

    Eva Mayr

    2018-03-01

    Full Text Available Stories are an essential mode, not only of human communication—but also of thinking. This paper reflects on the internalization of stories from a cognitive perspective and outlines a visualization framework for supporting the analysis of narrative geotemporal data. We discuss the strengths and limitations of standard techniques for representing spatiotemporal data (coordinated views, animation or slideshow, layer superimposition, juxtaposition, and space-time cube representation and think about their effects on mental representations of a story. Many current visualization systems offer multiple views and allow the user to investigate different aspects of a story. From a cognitive point of view, it is important to assist users in reconnecting these multiple perspectives into a coherent picture—e.g., by utilizing coherence techniques like seamless transitions. A case study involving visualizing biographical narratives illustrates how the design of advanced visualization systems can be cognitively and conceptually grounded to support the construction of an integrated internal representation.

  3. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  4. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  5. Estimation of Outage Capacity for Free Space Optical Links Over I-K and K Turbulent Channels

    Directory of Open Access Journals (Sweden)

    D. Marinos

    2011-06-01

    Full Text Available The free space optical communication systems are attracting great research and commercial interest due to their capability of transferring data, over short distances, with high rate and security, low cost demands and without licensing fees. However, their performance depends strongly on the atmospheric conditions in the link’s area. In this work, we investigate the influence of the turbulence on the outage capacity of such a system for weak to strong turbulence channels modeled by the I-K and the K-distribution and we derive closed-form expressions for its estimation. Finally, using these expressions we present numerical results for various link cases with different turbulence conditions.

  6. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  7. On the use of cartographic projections in visualizing phylo-genetic tree space

    Directory of Open Access Journals (Sweden)

    Clement Mark

    2010-06-01

    Full Text Available Abstract Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets.

  8. Characteristics of eye-position gain field populations determine geometry of visual space

    Directory of Open Access Journals (Sweden)

    Sidney R Lehky

    2016-01-01

    Full Text Available We have previously demonstrated differences in eye-position spatial maps for anterior inferotemporal cortex (AIT in the ventral stream and lateral intraparietal cortex (LIP in the dorsal stream, based on population decoding of gaze angle modulations of neural visual responses (i.e., eye-position gain fields. Here we explore the basis of such spatial encoding differences through modeling of gain field characteristics. We created a population of model neurons, each having a different eye-position gain field. This population was used to reconstruct eye-position visual space using multidimensional scaling. As gain field shapes have never been well established experimentally, we examined different functions, including planar, sigmoidal, elliptical, hyperbolic, and mixtures of those functions. All functions successfully recovered positions, indicating weak constraints on allowable gain field shapes. We then used a genetic algorithm to modify the characteristics of model gain field populations until the recovered spatial maps closely matched those derived from monkey neurophysiological data in AIT and LIP. The primary differences found between model AIT and LIP gain fields were that AIT gain fields were more foveally dominated. That is, gain fields in AIT operated on smaller spatial scales and smaller dispersions than in LIP. Thus we show that the geometry of eye-position visual space depends on the population characteristics of gain fields, and that differences in gain field characteristics for different cortical areas may underlie differences in the representation of space.

  9. Dynamic Space - uus köögistandard

    Index Scriptorium Estoniae

    2005-01-01

    Furnituuritootja Blum'i - ainuesindaja Eestis Hahle Eesti OÜ - poolt välja töötatud köögistandardi Dynamic Space põhimõtetest (piisav kasulik paigutusruum, viis köögitsooni, alumiste kappide asemel lõpuni lahtitõmmatavate ORGA-LINE sisejaotustega sahtlite eelistamine)

  10. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  11. Amazing Space: Explanations, Investigations, & 3D Visualizations

    Science.gov (United States)

    Summers, Frank

    2011-05-01

    The Amazing Space website is STScI's online resource for communicating Hubble discoveries and other astronomical wonders to students and teachers everywhere. Our team has developed a broad suite of materials, readings, activities, and visuals that are not only engaging and exciting, but also standards-based and fully supported so that they can be easily used within state and national curricula. These products include stunning imagery, grade-level readings, trading card games, online interactives, and scientific visualizations. We are currently exploring the potential use of stereo 3D in astronomy education.

  12. The Visual Uncertainty Paradigm for Controlling Screen-Space Information in Visualization

    Science.gov (United States)

    Dasgupta, Aritra

    2012-01-01

    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual…

  13. Cytoscape: the network visualization tool for GenomeSpace workflows [v2; ref status: indexed, http://f1000r.es/47f

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-08-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  14. Cytoscape: the network visualization tool for GenomeSpace workflows [v1; ref status: indexed, http://f1000r.es/3ph

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-07-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-ofbreed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded it over 850 times since the release of its first version in September, 2013.

  15. Using Scientific Visualizations to Enhance Scientific Thinking In K-12 Geoscience Education

    Science.gov (United States)

    Robeck, E.

    2016-12-01

    The same scientific visualizations, animations, and images that are powerful tools for geoscientists can serve an important role in K-12 geoscience education by encouraging students to communicate in ways that help them develop habits of thought that are similar to those used by scientists. Resources such as those created by NASA's Scientific Visualization Studio (SVS), which are intended to inform researchers and the public about NASA missions, can be used in classrooms to promote thoughtful, engaged learning. Instructional materials that make use of those visualizations have been developed and are being used in K-12 classrooms in ways that demonstrate the vitality of the geosciences. For example, the Center for Geoscience and Society at the American Geosciences Institute (AGI) helped to develop a publication that outlines an inquiry-based approach to introducing students to the interpretation of scientific visualizations, even when they have had little to no prior experience with such media. To facilitate these uses, the SVS team worked with Center staff and others to adapt the visualizations, primarily by removing most of the labels and annotations. Engaging with these visually compelling resources serves as an invitation for students to ask questions, interpret data, draw conclusions, and make use of other processes that are key components of scientific thought. This presentation will share specific resources for K-12 teaching (all of which are available online, from NASA, and/or from AGI), as well as the instructional principles that they incorporate.

  16. On spaces Cb(X) weakly K-analytic

    Czech Academy of Sciences Publication Activity Database

    Ferrando, J.C.; Kąkol, Jerzy; López-Pellicer, M.

    2017-01-01

    Roč. 290, č. 16 (2017), s. 2612-2618 ISSN 0025-584X R&D Projects: GA ČR GF16-34860L Institutional support: RVO:67985840 Keywords : K-analytic space * pseudocompact space * rainwater set Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016

  17. Images of Earth and Space: The Role of Visualization in NASA Science

    Science.gov (United States)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  18. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  19. Treemap Visualizations for Space Situational Awareness

    Science.gov (United States)

    Ianni, J.; Gorrell, Z.

    Making sense of massive data sets is a problem for many military domains including space. With unwieldy big data sets used for space situational awareness (SSA), important trends and outliers may not be easy to spot especially not at-a-glance. One method being explored to visualize SSA data sets is called treemapping. Treemaps fill screen space with nested rectangles (tiles) of various sizes and colors to represent multiple dimensions of hierarchical data sets. By mapping these dimensions effectively with a tiling algorithm that maintains an appropriate aspect ratio, patterns can emerge that often would have gone unnoticed. The ability to interactively perform range filtering (in our case with sliders) and object drill-downs (hyperlinking the tiles) make this technology powerful for in-depth analyses in addition to at-a-glance awareness. For one SSA analysis, the tiles could represent satellites that are grouped by country, sized by apogee, and colored/shaded by the launch date. Filter sliders could allow apogee range or launch dates to be narrowed for better resolution of a smaller data set. The application of this technology for the Joint Space Operations Center (JSpOC) Mission System (JMS) is being explored on a DARPA Small Business Innovative Research (SBIR) effort as a plug-in to the existing User-Defined Operational Picture (UDOP). In addition, visualization of DARPA OrbitOutlook small telescope data will be demonstrated. This research will investigate what SSA analyses are best served by treemaps, the best tiling algorithms for these problems, and how the treemaps should be integrated into the existing JMS UDOP workflow. Finally, we introduce a variation of treemaps that help leaders allocate their time to tasks based on importance and urgency.

  20. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    Science.gov (United States)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  1. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    International Nuclear Information System (INIS)

    Zhu Yan-Chun; Yang Wen-Chao; Wang Hao-Yu; Gao Song; Bao Shang-Lian; Du Jiang; Duan Chai-Jie

    2014-01-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts

  2. Image reconstruction in k-space from MR data encoded with ambiguous gradient fields.

    Science.gov (United States)

    Schultz, Gerrit; Gallichan, Daniel; Weber, Hans; Witschey, Walter R T; Honal, Matthias; Hennig, Jürgen; Zaitsev, Maxim

    2015-02-01

    In this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. The image space analogy between parallel imaging and imaging with non-bijective encoding fields is partially broken in k-space. As a consequence, it is hypothesized and proven that ambiguities can only be resolved partially in k-space, and not completely as is the case in image space. Image-space and k-space based reconstruction algorithms for multi-channel radiofrequency data acquisitions are programmed and tested using numerical simulations as well as in vivo measurement data. The hypothesis is verified based on an analysis of reconstructed images. It is found that non-bijective gradient fields have the effect that densely sampled autocalibration data, used for k-space reconstruction, provide less information than a separate scan of the receiver coil sensitivity maps, used for image space reconstruction. Consequently, in k-space only the undersampling artifact can be unfolded, whereas in image space, it is also possible to resolve aliasing that is caused by the non-bijectivity of the gradient fields. For standard imaging, reconstruction in image space and in k-space is nearly equivalent, whereas there is a fundamental difference with practical consequences for the selection of image reconstruction algorithms when non-bijective encoding fields are involved. © 2014 Wiley Periodicals, Inc.

  3. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  4. SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Han, F; Zhou, Z; Yang, Y; Sheng, K; Hu, P [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, which were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and respiratory

  5. Assessing Essential Qualities of Urban Space with Emotional and Visual Data Based on GIS Technique

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-11-01

    Full Text Available Finding a method to evaluate people’s emotional responses to urban spaces in a valid and objective way is fundamentally important for urban design practices and related policy making. Analysis of the essential qualities of urban space could be made both more effective and more accurate using innovative information techniques that have become available in the era of big data. This study introduces an integrated method based on geographical information systems (GIS and an emotion-tracking technique to quantify the relationship between people’s emotional responses and urban space. This method can evaluate the degree to which people’s emotional responses are influenced by multiple urban characteristics such as building shapes and textures, isovist parameters, visual entropy, and visual fractals. The results indicate that urban spaces may influence people’s emotional responses through both spatial sequence arrangements and shifting scenario sequences. Emotional data were collected with body sensors and GPS devices. Spatial clustering was detected to target effective sampling locations; then, isovists were generated to extract building textures. Logistic regression and a receiver operating characteristic analysis were used to determine the key isovist parameters and the probabilities that they influenced people’s emotion. Finally, based on the results, we make some suggestions for design professionals in the field of urban space optimization.

  6. Visual interface for space and terrestrial analysis

    Science.gov (United States)

    Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.

    1995-01-01

    The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.

  7. Visualizing Human Migration Trhough Space and Time

    Science.gov (United States)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  8. Doplněk Visual Studio Code pro kontrolu pravopisu

    OpenAIRE

    Gerguri, Denis

    2017-01-01

    Tato bakalářská práce se zabývá vytvořením doplňku kontroly pravopisu pro textový editor zdrojových kódu Microsoft Visual Code. Práce popisuje historii kontroly pravopisu, dnešní volně nejpoužívanější knihovny a samotnou implementaci a publikaci doplňku kontroly pravopisu a jeho případném zlepšení. This bachelor's thesis deals with creation of spell checking extension for source code text editor Microsoft Visual Code. This papper describes the history of the spell checking, today's most wi...

  9. Investigating "Othering" in Visual Arts Spaces of Learning

    Science.gov (United States)

    Biscombe, Monique; Conradie, Stephané; Costandius, Elmarie; Alexander, Neeske

    2017-01-01

    In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored "othered" identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in…

  10. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  11. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    Science.gov (United States)

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  12. Biases in Visual, Auditory, and Audiovisual Perception of Space

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  13. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    Science.gov (United States)

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2017-12-09

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  14. Visual Odometry for Autonomous Deep-Space Navigation Project

    Science.gov (United States)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.

  15. Cluster Oriented Spatio Temporal Multidimensional Data Visualization of Earthquakes in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohammad Nur Shodiq

    2016-03-01

    Full Text Available Spatio temporal data clustering is challenge task. The result of clustering data are utilized to investigate the seismic parameters. Seismic parameters are used to describe the characteristics of earthquake behavior. One of the effective technique to study multidimensional spatio temporal data is visualization. But, visualization of multidimensional data is complicated problem. Because, this analysis consists of observed data cluster and seismic parameters. In this paper, we propose a visualization system, called as IES (Indonesia Earthquake System, for cluster analysis, spatio temporal analysis, and visualize the multidimensional data of seismic parameters. We analyze the cluster analysis by using automatic clustering, that consists of get optimal number of cluster and Hierarchical K-means clustering. We explore the visual cluster and multidimensional data in low dimensional space visualization. We made experiment with observed data, that consists of seismic data around Indonesian archipelago during 2004 to 2014. Keywords: Clustering, visualization, multidimensional data, seismic parameters.

  16. Accessibility of Shared Space for visually impaired persons : An inventory in the Netherlands

    NARCIS (Netherlands)

    Havik, Else M; Melis - Dankers, Bart JM; Steyvers, Frank JJM; Kooijman, Aart C

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. This study provides a systematic overview of the appearance of Shared Spaces in the Netherlands and the

  17. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  18. Visual space perception at different levels of depth description

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2015-01-01

    Roč. 77, č. 6 (2015), 2098–2107 ISSN 1943-3921 R&D Projects: GA ČR GA13-28709S Institutional support: RVO:68081740 Keywords : visual space perception * Depth scales * Level of description Subject RIV: AN - Psychology Impact factor: 1.782, year: 2015

  19. Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility.

    Science.gov (United States)

    Wong, Sandy

    2018-01-01

    This paper draws from Hägerstrand's space-time framework to generate new insights on the everyday mobilities of individuals with visual impairments in the San Francisco Bay Area. While existing research on visual impairment and mobility emphasizes individual physical limitations resulting from vision loss or inaccessible public spaces, this article highlights and bridges both the behavioral and social processes that influence individual mobility. A qualitative analysis of sit-down and mobile interview data reveals that the space-time constraints of people with visual impairments are closely linked to their access to transportation, assistive technologies, and mobile devices. The findings deepen our understandings of the relationship between health and mobility, and present intervention opportunities for improving the quality of life for people with visual impairment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Science.gov (United States)

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  1. Utilizing visualization for shared knowledge spaces

    Science.gov (United States)

    Mareda, John F.; Marek, Edward L., Jr.; Smith, Steven A.

    1997-04-01

    The amount and variety of data on the Web continues to grow exponentially, greatly complicating the process of finding relevant information, and making it increasingly difficult to understand information in the context of related material. Advanced visualization techniques, as long as they are compatible and effective ion the context of the widely distributed nature of data on the Web, can provide some measure of order to this chaos. Despite the proliferation of automated tools which attempt to deal with this sea of data, there is still a pressing need for human involvement in the organization and representation of information. People 'living' on the Web tend to form little 'knowledge spaces', revolving around those subjects that they are interested in. We describe several research efforts currently underway which address the problem of organizing and finding information in Cyberspace. We conclude with 'CiteMaps', a technology we are developing which combines Web-relevant visualization techniques with concepts and tools, to allow 'real people' to develop shareable clusters of related information.

  2. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    Science.gov (United States)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can

  3. Generic Space Science Visualization in 2D/3D using SDDAS

    Science.gov (United States)

    Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.

    2017-12-01

    The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.

  4. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.

    Science.gov (United States)

    Haji-Valizadeh, Hassan; Rahsepar, Amir A; Collins, Jeremy D; Bassett, Elwin; Isakova, Tamara; Block, Tobias; Adluru, Ganesh; DiBella, Edward V R; Lee, Daniel C; Carr, James C; Kim, Daniel

    2018-05-01

    To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. The Open Space Sculptures Used in the Gençlik Park towards Visual Perception of Park Users

    Directory of Open Access Journals (Sweden)

    Ahmet Polat

    2012-11-01

    Full Text Available Urban parks are the most important areas that allow recreational activities in our towns. Increasing the visual quality of urban parks provides positive impacts on urban quality. Besides the artistic and technical features of open space sculptures which are used for urban park designs are the visual perceptions and preferences of park users are also important. In the context of this study, six sculptures in Gençlik Park which is in the boundaries Ankara have been considered. The aim of the study, to measure the visual quality of the sculptures in the urban parks through park users and to reveal the relationship between visual landscape indicators (of being interesting, coherence, complexity, meaningfulness, and mystery and the visual quality. For this purpose, the six pieces in Ankara Youth Park of sculpture were evaluated the scope of research. According to the results of the study; it was realized that park users like sculptures visually. A statistically significant relationship was found between the visual quality of the sculptures and some landscape indicators (to be interesting, mystery and harmony. In addition to these, some suggestions were made regarding the use of sculptures in urban parks.

  6. Stereo visualization in the ground segment tasks of the science space missions

    Science.gov (United States)

    Korneva, Natalia; Nazarov, Vladimir; Mogilevsky, Mikhail; Nazirov, Ravil

    The ground segment is one of the key components of any science space mission. Its functionality substantially defines the scientific effectiveness of the experiment as a whole. And it should be noted that its outstanding feature (in contrast to the other information systems of the scientific space projects) is interaction between researcher and project information system in order to interpret data being obtained during experiments. Therefore the ability to visualize the data being processed is essential prerequisite for ground segment's software and the usage of modern technological solutions and approaches in this area will allow increasing science return in general and providing a framework for new experiments creation. Mostly for the visualization of data being processed 2D and 3D graphics are used that is caused by the traditional visualization tools capabilities. Besides that the stereo data visualization methods are used actively in solving some tasks. However their usage is usually limited to such tasks as visualization of virtual and augmented reality, remote sensing data processing and suchlike. Low prevalence of stereo visualization methods in solving science ground segment tasks is primarily explained by extremely high cost of the necessary hardware. But recently appeared low cost hardware solutions for stereo visualization based on the page-flip method of views separation. In this case it seems promising to use the stereo visualization as an instrument for investigation of a wide range of problems, mainly for stereo visualization of complex physical processes as well as mathematical abstractions and models. The article is concerned with an attempt to use this approach. It describes the details and problems of using stereo visualization (page-flip method based on NVIDIA 3D Vision Kit, graphic processor GeForce) for display of some datasets of magnetospheric satellite onboard measurements and also in development of the software for manual stereo matching.

  7. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  8. Vector model for mapping of visual space to subjective 4-D sphere

    International Nuclear Information System (INIS)

    Matuzevicius, Dalius; Vaitkevicius, Henrikas

    2014-01-01

    Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia

  9. Visual Experience Shapes the Neural Networks Remapping Touch into External Space.

    Science.gov (United States)

    Crollen, Virginie; Lazzouni, Latifa; Rezk, Mohamed; Bellemare, Antoine; Lepore, Franco; Collignon, Olivier

    2017-10-18

    Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space. SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception. Copyright © 2017 the authors 0270-6474/17/3710097-07$15.00/0.

  10. Perceptual geometry of space and form: visual perception of natural scenes and their virtual representation

    Science.gov (United States)

    Assadi, Amir H.

    2001-11-01

    Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.

  11. Quantifying space, understanding minds: A visual summary approach

    Directory of Open Access Journals (Sweden)

    Mark Simpson

    2017-06-01

    Full Text Available This paper presents an illustrated, validated taxonomy of research that compares spatial measures to human behavior. Spatial measures quantify the spatial characteristics of environments, such as the centrality of intersections in a street network or the accessibility of a room in a building from all the other rooms. While spatial measures have been of interest to spatial sciences, they are also of importance in the behavioral sciences for use in modeling human behavior. A high correlation between values for spatial measures and specific behaviors can provide insights into an environment's legibility, and contribute to a deeper understanding of human spatial cognition. Research in this area takes place in several domains, which makes a full understanding of existing literature difficult. To address this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring topics are identified and validated with independent inter-rater agreement tasks in order to create a robust taxonomy for spatial measures and human behavior. The taxonomy is then illustrated with a visual representation that allows for at-a-glance visual access to the content of individual research papers in a corpus. A public web interface has been created that allows interested researchers to add to the database and create visual summaries for their research papers using our taxonomy.

  12. Space Access for Small Satellites on the K-1

    Science.gov (United States)

    Faktor, L.

    Affordable access to space remains a major obstacle to realizing the increasing potential of small satellites systems. On a per kilogram basis, small launch vehicles are simply too expensive for the budgets of many small satellite programs. Opportunities for rideshare with larger payloads on larger launch vehicles are still rare, given the complications associated with coordinating delivery schedules and deployment orbits. Existing contractual mechanisms are also often inadequate to facilitate the launch of multiple payload customers on the same flight. Kistler Aerospace Corporation is committed to lowering the price and enhancing the availability of space access for small satellite programs through the fully-reusable K-1 launch vehicle. Kistler has been working with a number of entities, including Astrium Ltd., AeroAstro, and NASA, to develop innovative approaches to small satellite missions. The K-1 has been selected by NASA as a Flight Demonstration Vehicle for the Space Launch Initiative. NASA has purchased the flight results during the first four K-1 launches on the performance of 13 advanced launch vehicle technologies embedded in the K-1 vehicle. On K-1 flights #2-#4, opportunities exist for small satellites to rideshare to low-earth orbit for a low-launch price. Kistler's flight demonstration contract with NASA also includes options to fly Add-on Technology Experiment flights. Opportunities exist for rideshare payloads on these flights as well. Both commercial and government customers may take advantage of the rideshare pricing. Kistler is investigating the feasibility of flying dedicated, multiple small payload missions. Such a mission would launch multiple small payloads from a single customer or small payloads from different customers. The orbit would be selected to be compatible with the requirements of as many small payload customers as possible, and make use of reusable hardware, standard interfaces (such as the existing MPAS) and verification plans

  13. A new design and rationale for 3D orthogonally oversampled k-space trajectories.

    Science.gov (United States)

    Pipe, James G; Zwart, Nicholas R; Aboussouan, Eric A; Robison, Ryan K; Devaraj, Ajit; Johnson, Kenneth O

    2011-11-01

    A novel center-out 3D trajectory for sampling magnetic resonance data is presented. The trajectory set is based on a single Fermat spiral waveform, which is substantially undersampled in the center of k-space. Multiple trajectories are combined in a "stacked cone" configuration to give very uniform sampling throughout a "hub," which is very efficient in terms of gradient performance and uniform trajectory spacing. The fermat looped, orthogonally encoded trajectories (FLORET) design produces less gradient-efficient trajectories near the poles, so multiple orthogonal hub designs are shown. These multihub designs oversample k-space twice with orthogonal trajectories, which gives unique properties but also doubles the minimum scan time for critical sampling of k-space. The trajectory is shown to be much more efficient than the conventional stack of cones trajectory, and has nearly the same signal-to-noise ratio efficiency (but twice the minimum scan time) as a stack of spirals trajectory. As a center-out trajectory, it provides a shorter minimum echo time than stack of spirals, and its spherical k-space coverage can dramatically reduce Gibbs ringing. Copyright © 2011 Wiley Periodicals, Inc.

  14. Color-Space-Based Visual-MIMO for V2X Communication †

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  15. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy; Jun, Mikyoung; Park, Cheolwoo

    2012-01-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests

  16. Visualizing the quantum interaction picture in phase space

    International Nuclear Information System (INIS)

    Mehmani, Bahar; Aiello, Andrea

    2012-01-01

    We present a graphical example of the interaction picture-time evolution. Our aim is to help students understand in a didactic manner the simplicity that this picture provides. Visualizing the interaction picture unveils its advantages, which are hidden behind the involved mathematics. Specifically, we show that the time evolution of a driven harmonic oscillator in the interaction picture corresponds to a local transformation of a phase space-reference frame into the one that is co-rotating with the Wigner function. (paper)

  17. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  18. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  19. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  20. Calorimetric thermal-vacuum performance characterization of the BAe 80K space cryocooler

    International Nuclear Information System (INIS)

    Kotsubo, V.Y.; Johnson, D.L.; Ross, R.G. Jr.

    1992-01-01

    This paper on a comprehensive characterization program which is underway at JPL to generate test data on long-life, miniature Stirling-cycle cryocoolers for space application. The key focus of this paper is on the thermal performance of the British Aerospace (BAe) 80K split-Stirling-cycle cryocooler as measured in a unique calorimetric thermal-vacuum test chamber that accurately simulates the heat-transfer interfaces of space. Two separate cooling fluid loops provide precis individual control of the compressor and displacer heatsink temperatures. In addition, heatflow transducers enable calorimetric measurements of the heat rejected separately by the compressor and displacer. Cooler thermal performance has been mapped for coldtip temperatures ranging from below 45 K to above 150 K, for heat-sink temperatures ranging from 280 K to 320 K, and for a wide variety of operational variables including compressor-displacer phase, compressor-displacer stoke, drive frequency, and piston-displacer dc offset

  1. Visual performance in cataract patients with low levels of postoperative astigmatism: full correction versus spherical equivalent correction

    Directory of Open Access Journals (Sweden)

    Lehmann RP

    2012-03-01

    Full Text Available Robert P Lehmann1, Diane M Houtman21Lehmann Eye Center, Nacogdoches, TX, 2Alcon Research Ltd, Fort Worth, TX, USAPurpose: To evaluate whether visual performance could be improved in pseudophakic subjects by correcting low levels of postoperative astigmatism.Methods: An exploratory, noninterventional study was conducted using subjects who had been implanted with an aspheric intraocular lens and had 0.5–0.75 diopter postoperative astigmatism. Monocular visual performance using full correction was compared with visual performance using spherical equivalent correction. Testing consisted of high- and low-contrast visual acuity, contrast sensitivity, and reading acuity and speed using the Radner Reading Charts.Results: Thirty-eight of 40 subjects completed testing. Visual acuities at three contrast levels (100%, 25%, and 9% were significantly better using full correction than when using spherical equivalent correction (all P < 0.001. For contrast sensitivity testing under photopic, mesopic, and mesopic with glare conditions, only one out of twelve outcomes demonstrated a significant improvement with full correction compared with spherical equivalent correction (at six cycles per degree under mesopic without glare conditions, P = 0.046. Mean reading speed was numerically faster with full correction across all print sizes, reaching statistical significance at logarithm of the reading acuity determination (logRAD 0.2, 0.7, and 1.1 (P , 0.05. Statistically significant differences also favored full correction in logRAD score (P = 0.0376, corrected maximum reading speed (P < 0.001, and logarithm of the minimum angle of resolution/logRAD ratio (P < 0.001.Conclusions: In this study of pseudophakic subjects with low levels of postoperative astigmatism, full correction yielded significantly better reading performance and high- and low-contrast visual acuity than spherical equivalent correction, suggesting that cataractous patients may benefit from surgical

  2. Measurement of $C\\!P$ violation in the phase space of $B^{\\pm} \\to K^{\\pm} \\pi^{+} \\pi^{-}$ and $B^{\\pm} \\to K^{\\pm} K^{+} K^{-}$ decays

    CERN Document Server

    INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The charmless decays $B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-$ and $B^{\\pm}\\to K^{\\pm}K^+K^-$ are reconstructed using data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}\\pi^+\\pi^-) = 0.032 \\pm 0.008 {\\mathrm{\\,(stat)}} \\pm 0.004 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-) = -0.043 \\pm 0.009 {\\mathrm{\\,(stat)}} \\pm 0.003 {\\mathrm{\\,(syst)}} \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the $C\\!P$ asymmetry of the $B^{\\pm}\\to J/\\psi K^{\\pm}$ reference mode. The significance of $A_{C\\!P}(B^{\\pm}\\to K^{\\pm}K^+K^-)$ exceeds three standard deviations and is the first evidence of an inclusive $C\\!P$ asymmetry in charmless three-body $B$ decays. In addition to the inclusive $C\\!P$ asymmetries, larger asymmetries are observed in localised regions of phase space.

  3. Big Data Management with Incremental K-Means Trees–GPU-Accelerated Construction and Visualization

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-07-01

    Full Text Available While big data is revolutionizing scientific research, the tasks of data management and analytics are becoming more challenging than ever. One way to remit the difficulty is to obtain the multilevel hierarchy embedded in the data. Knowing the hierarchy enables not only the revelation of the nature of the data, it is also often the first step in big data analytics. However, current algorithms for learning the hierarchy are typically not scalable to large volumes of data with high dimensionality. To tackle this challenge, in this paper, we propose a new scalable approach for constructing the tree structure from data. Our method builds the tree in a bottom-up manner, with adapted incremental k-means. By referencing the distribution of point distances, one can flexibly control the height of the tree and the branching of each node. Dimension reduction is also conducted as a pre-process, to further boost the computing efficiency. The algorithm takes a parallel design and is implemented with CUDA (Compute Unified Device Architecture, so that it can be efficiently applied to big data. We test the algorithm with two real-world datasets, and the results are visualized with extended circular dendrograms and other visualization techniques.

  4. Full-potential multiple scattering theory with space-filling cells for bound and continuum states.

    Science.gov (United States)

    Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R

    2010-05-12

    We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.

  5. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    Science.gov (United States)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  6. Effect of occlusion amblyopia after prescribed full-time occlusion on long-term visual acuity outcomes.

    Science.gov (United States)

    Longmuir, Susannah; Pfeifer, Wanda; Scott, William; Olson, Richard

    2013-01-01

    To investigate the incidence and characteristics of occlusion amblyopia with prescribed full-time patching and determine its effect on long-term visual acuity outcomes. The records of patients younger than 10 years diagnosed as having amblyopia between 1970 and 2000 were retrospectively reviewed. Patients were prescribed full-time occlusion and observed until completion of therapy. Of 597 patients treated for amblyopia by full-time patching, 115 were diagnosed as having occlusion amblyopia (19.3%). Seventy-five percent (86 of 115) developed occlusion amblyopia during the first episode of full-time patching. Occlusion amblyopia occurred more frequently in children prescribed full-time patching at an earlier age (P = .0002), with an odds ratio of 8.56 (95% confidence interval: 2.73, 26.84) in children younger than 36 months and 2.66 (95% confidence interval: 0.96, 7.37) in children between 36 and 59 months old. Seven of the patients with occlusion amblyopia did not reverse fixation and continued to fixate with the initially amblyopic eye after treatment. Final visual acuity in these eyes with occlusion amblyopia was 20/30 or better. After cessation of treatment, the final interocular difference in visual acuity was less in patients with a history of occlusion amblyopia (P = .003). Occlusion amblyopia occurred at all ages, but the incidence decreased with increasing age. Patients who developed occlusion amblyopia with prescribed full-time occlusion had less interocular visual acuity difference than patients who did not, suggesting that development of occlusion amblyopia can indicate the potential for the development of better vision in the originally amblyopic eye. Copyright 2013, SLACK Incorporated.

  7. From Physical Campus Space to a Full-view Figure: University Atlas Compiling Based on `Information Design' Concept

    Science.gov (United States)

    Song, Ge; Tang, Xi; Zhu, Feng

    2018-05-01

    Traditional university maps, taking campus as the principal body, mainly realize the abilities of space localization and navigation. They don't take full advantage of map, such as multi-scale representations and thematic geo-graphical information visualization. And their inherent propaganda functions have not been entirely developed. Therefore, we tried to take East China Normal University (ECNU) located in Shanghai as an example, and integrated various information related to university propaganda need (like spatial patterns, history and culture, landscape ecology, disciplinary constructions, cooperation, social services, development plans and so on). We adopted the frontier knowledge of `information design' as well as kinds of information graphics and visualization solutions. As a result, we designed and compiled a prototype atlas of `ECNU Impression' to provide a series of views of ECNU, which practiced a new model of `narrative campus map'. This innovative propaganda product serves as a supplement to typical shows with official authority, data maturity, scientificity, dimension diversity, and timing integrity. The university atlas will become a usable media for university overall figure shaping.

  8. Visualization of the Left Extraperitoneal Space and Spatial Relationships to Its Related Spaces by the Visible Human Project

    Science.gov (United States)

    Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming

    2011-01-01

    Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259

  9. The space-time cube revisited it potential to visualize mobile data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2010-01-01

    and analyse the complex movement patterns (COST - MOVE, 2009; Keim et al., 2008). This results in the development of new visual analytical and exploratory tools, while existing solutions receive new attention (Andrienko et al., 2007). Among the last the Space Time Cube (STC) can be grouped. It has the ability...... to provide information about spatial and temporal relationships. The original idea of STC was introduced by Hägerstrand (1970). It represents an elegant framework to study spatio-temporal characteristics of human activity (Kraak and Koussoulakou, 2005). The vertical dimension of cube represents time (t......), while horizontal axes represent space (x, y). Basic elements represented in the cube are the Space-time Path (STP), Stations, and the Space Time Prism (STP). The STP represents the continuous activities of movements undertaken in space and time displayed as trajectory. It has been studied...

  10. Habituation to novel visual vestibular environments with special reference to space flight

    Science.gov (United States)

    Young, L. R.; Kenyon, R. V.; Oman, C. M.

    1981-01-01

    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.

  11. Clinical performance of Rose K2 soft contact lens for keratoconus

    Directory of Open Access Journals (Sweden)

    Ihsan Yilmaz

    2017-08-01

    Full Text Available AIM: To evaluate the comfort and visual performance of Rose K2 soft contact lenses in patients with keratoconus.METHODS: Fifty eyes of 50 participants were included in this cross-sectional study. Each participant received a full ophthalmologic examination involving refraction, uncorrected visual acuity(UCVA, best spectacle corrected visual acuity(BCVA, slit-lamp biomicroscopy-fundoscopy, break-up time(BUT, corneal topography, and contrast sensitivity. After contact lens was fitted best contact lens corrected visual acuity(BCLCVA, contrast sensitivity, and comfort rating via visual analogue scales(VASwere performed.RESULTS: The mean age was 26.2±6.0(range: 16 to 39y. The mean logMAR UCVA, BCVA, and BCLCVA with Rose K2 soft(in orderwere 0.61±0.37(range: 0.15-1.3, 0.42±0.32(range: 0-1.3, and 0.18±0.20(range: 0-1.3. There were significant increases in visual acuities with contact lenses(P P CONCLUSION: Rose K2 soft contact lens can improve visual acuity, contrast sensitivity with comfort in patients with keratoconus.

  12. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    Directory of Open Access Journals (Sweden)

    Jeff A Tracey

    Full Text Available Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  13. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Real-space visualization of remnant Mott gap and magnon excitations.

    Science.gov (United States)

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  15. A new method for mapping perceptual biases across visual space.

    Science.gov (United States)

    Finlayson, Nonie J; Papageorgiou, Andriani; Schwarzkopf, D Samuel

    2017-08-01

    How we perceive the environment is not stable and seamless. Recent studies found that how a person qualitatively experiences even simple visual stimuli varies dramatically across different locations in the visual field. Here we use a method we developed recently that we call multiple alternatives perceptual search (MAPS) for efficiently mapping such perceptual biases across several locations. This procedure reliably quantifies the spatial pattern of perceptual biases and also of uncertainty and choice. We show that these measurements are strongly correlated with those from traditional psychophysical methods and that exogenous attention can skew biases without affecting overall task performance. Taken together, MAPS is an efficient method to measure how an individual's perceptual experience varies across space.

  16. Data management, archiving, visualization and analysis of space physics data

    Science.gov (United States)

    Russell, C. T.

    1995-01-01

    A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.

  17. STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction.

    Science.gov (United States)

    Zhou, Zechen; Wang, Jinnan; Balu, Niranjan; Li, Rui; Yuan, Chun

    2016-02-01

    A new subspace-based iterative reconstruction method, termed Self-supporting Tailored k-space Estimation for Parallel imaging reconstruction (STEP), is presented and evaluated in comparison to the existing autocalibrating method SPIRiT and calibrationless method SAKE. In STEP, two tailored schemes including k-space partition and basis selection are proposed to promote spatially variant signal subspace and incorporated into a self-supporting structured low rank model to enforce properties of locality, sparsity, and rank deficiency, which can be formulated into a constrained optimization problem and solved by an iterative algorithm. Simulated and in vivo datasets were used to investigate the performance of STEP in terms of overall image quality and detail structure preservation. The advantage of STEP on image quality is demonstrated by retrospectively undersampled multichannel Cartesian data with various patterns. Compared with SPIRiT and SAKE, STEP can provide more accurate reconstruction images with less residual aliasing artifacts and reduced noise amplification in simulation and in vivo experiments. In addition, STEP has the capability of combining compressed sensing with arbitrary sampling trajectory. Using k-space partition and basis selection can further improve the performance of parallel imaging reconstruction with or without calibration signals. © 2015 Wiley Periodicals, Inc.

  18. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  19. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Science.gov (United States)

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  20. Left neglected, but only in far space: Spatial biases in healthy participants revealed in a visually-guided grasping task

    Directory of Open Access Journals (Sweden)

    Natalie ede Bruin

    2014-01-01

    Full Text Available Hemispatial neglect is a common outcome of stroke that is characterised by the inability to orient towards, and attend to stimuli in contralesional space. It is established that hemispatial neglect has a perceptual component, however, the presence and severity of motor impairments is controversial. Establishing the nature of space use and spatial biases during visually-guided actions amongst healthy individuals is critical to understanding the presence of visuomotor deficits in patients with neglect. Accordingly, three experiments were conducted to investigate the effect of object spatial location on patterns of grasping. Experiment 1 required right-handed participants to reach and grasp for blocks in order to construct 3D models. The blocks were scattered on a tabletop divided into equal size quadrants: left near, left far, right near, and right far. Identical sets of building blocks were available in each quadrant. Space use was dynamic, with participants initially grasping blocks from right near space and tending to ‘neglect’ left far space until the final stages of the task. Experiment 2 repeated the protocol with left-handed participants. Remarkably, left-handed participants displayed a similar pattern of space use to right-handed participants. In Experiment 3 eye movements were examined to investigate whether ‘neglect’ for grasping in left far reachable space had its origins in attentional biases. It was found that patterns of eye movements mirrored patterns of reach-to-grasp movements. We conclude that there are spatial biases during visually-guided grasping, specifically, a tendency to neglect left far reachable space, and that this ‘neglect’ is attentional in origin. The results raise the possibility that visuomotor impairments reported among patients with right hemisphere lesions when working in contralesional space may result in part from this inherent tendency to ‘neglect’ left far space irrespective of the presence

  1. Trade study for kWe class space reactors

    Science.gov (United States)

    Bost, Donald S.

    Recent interest by NASA and other government agencies in space reactor power systems with power levels in the 1 to 100 kWe range has prompted a review of earlier space reactor programs, as well as the ongoing SP-100 program, to identify a system that will best fulfill their needs. The candidate reactor types that were reviewed are listed. They are categorized according to the method of heat removal. The five types are: conduction cooled, heat pipe cooled, liquid metal cooled, in-core thermionic and gas cooled. The UZrH moderated reactor coupled with an organic Rankine cycle power conversion system provides an attractive system for multikilowatt, long lived missions. The reactor requires a minimum development because a similar reactor has already flown and the ORC is being developed for use in the Dynamic Isotope Power System (DIPS) and on the Space Station.

  2. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  3. Visual Multipoles And The Assessment Of Visual Sensitivity To Displayed Images

    Science.gov (United States)

    Klein, Stanley A.

    1989-08-01

    The contrast sensitivity function (CSF) is widely used to specify the sensitivity of the visual system. Each point of the CSF specifies the amount of contrast needed to detect a sinusoidal grating of a given spatial frequency. This paper describes a set of five mathematically related visual patterns, called "multipoles," that should replace the CSF for measuring visual performance. The five patterns (ramp, edge, line, dipole and quadrupole) are localized in space rather than being spread out as sinusoidal gratings. The multipole sensitivity of the visual system provides an alternative characterization that complements the CSF in addition to offering several advantages. This paper provides an overview of the properties and uses of the multipole stimuli. This paper is largely a summary of several unpublished manuscripts with excerpts from them. Derivations and full references are omitted here. Please write me if you would like the full manuscripts.

  4. Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe.

    Science.gov (United States)

    Lange, Eckart; Hehl-Lange, Sigrid; Brewer, Mark J

    2008-11-01

    The provision of green space is increasingly being perceived as an important factor for quality of life. However, green spaces often face high developmental pressure. The main objective of this study is to investigate a prospective approach to green space planning by combining three-dimensional (3D) visualization of green space scenarios and survey techniques to facilitate improved participation of the public. Aside from the 'Status quo', scenarios 'Agriculture', 'Recreation', 'Nature conservation' and 'Wind turbines' are visualized in three dimensions. In order to test responses, a survey was conducted both in print format and on the Internet. Overall, 49 different visualizations that belong to one of the scenarios were available in the survey and were rated according to the perceived esthetic, recreational and ecological values. The highest rated scenes include vegetation elements such as meadows with orchards, single trees, shrubs or forest. The least attractive scenes are those where buildings are highly dominant or where there are no vegetation elements. Based on the ratings for the individual images and on the corresponding scenarios, our study shows that there is high potential for improving the existing landscape. All suggested changes are either rated about equal to or considerably higher than the status quo, with the scenario 'Nature conservation' receiving the highest scores.

  5. Secondary visual workload capability with primary visual and kinesthetic-tactual displays

    Science.gov (United States)

    Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.

    1978-01-01

    Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.

  6. Evaluation of Reduced Power Spectra from Three-Dimensional k-Space

    Science.gov (United States)

    Saur, J.; von Papen, M.

    2014-12-01

    We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in kk-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in kk-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with k∥˜kα⊥k_\\|sim k_perp^alpha, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κkappa on the field-to-flow angle θtheta between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θtheta-independent cascade with the spectral slope of the perpendicular cascade κ(θ=90∘)kappa(theta{=}90^circ). This happens at frequencies f>fmaxf>f_mathrm{max}, where fmax(L,α,θ)f_mathrm{max}(L,alpha,theta) is a function of outer scale LL, critical balance exponent αalpha and field-to-flow angle θtheta. We also discuss potential damping terms acting on the kk-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence κ(θ)kappa(theta) as found by textit{Horbury et al.} (2008) and textit{Chen et al.} (2010) can be explained with a damped critically balanced turbulence model.

  7. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    Science.gov (United States)

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The k-space origins of scattering in Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Alldredge, Jacob W; Calleja, Eduardo M; Dai, Jixia; Eisaki, H; Uchida, S; McElroy, Kyle

    2013-08-21

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ([Formula: see text] excitation). We have measured the k-space scattering structure over a wide range of doping (p ∼ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  9. KfK-seminar series on supercomputing und visualization from May till September 1992

    International Nuclear Information System (INIS)

    Hohenhinnebusch, W.

    1993-05-01

    During the period of may 1992 to september 1992 a series of seminars was held at KfK on several topics of supercomputing in different fields of application. The aim was to demonstrate the importance of supercomputing and visualization in numerical simulations of complex physical and technical phenomena. This report contains the collection of all submitted seminar papers. (orig./HP) [de

  10. Visual arts and the teaching of the mathematical concepts of shape and space in Grade R classrooms

    Directory of Open Access Journals (Sweden)

    Dianne Wilmot

    2015-09-01

    Full Text Available This article addresses the need for research in the areas of Grade R curriculum and pedagogy, Grade R teacher professional development, and early years mathematics teaching. More specifically, it responds to the need for teacher professional development in Grade R mathematics teaching of the geometric concepts of space and shape. The article describes a study about teachers’ understanding of how visual arts can be used as pedagogical modality. The study was prompted by the findings of a ‘Maths and Science through Arts and Culture Curriculum’ intervention undertaken with Grade R teachers enrolled for a Bachelor of Education (Foundation Phase degree at a South African university. Post-intervention, teachers’ classroom practices did not change, and they were not using visual arts to teach mathematical concepts. The lessons learned from the research intervention may contribute to the wider debate about Grade R teaching and children’s learning.

  11. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    Science.gov (United States)

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field

  12. Wavelet transform of generalized functions in K ′{Mp} spaces

    Indian Academy of Sciences (India)

    Using convolution theory in K{Mp} space we obtain bounded results for the wavelet transform. Calderón-type reproducing formula is derived in distribution sense as an application of the same. An inversion formula for the wavelet transform of generalized functions is established. Keywords. Continuous wavelet transform ...

  13. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    International Nuclear Information System (INIS)

    Houno, Yuuki; Kodera, Yoshie; Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro; Gotoh, Kenichi

    2017-01-01

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary

  14. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Houno, Yuuki; Kodera, Yoshie [Graduate School of Medicine, Nagoya University, Nagoya (Japan); Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro [Aichi Gakuin University, Nisshin (Japan); Gotoh, Kenichi [Div. of Radiology, Dental Hospital, Aichi Gakuin University, Nisshin (Japan)

    2017-09-15

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary.

  15. Recursion method in the k-space representation

    International Nuclear Information System (INIS)

    Anlage, S.M.; Smith, D.L.

    1986-01-01

    We show that by using a unitary transformation to k space and the special-k-point method for evaluating Brillouin-zone sums, the recursion method can be very effectively applied to translationally invariant systems. We use this approach to perform recursion calculations for realistic tight-binding Hamiltonians which describe diamond- and zinc-blende-structure semiconductors. Projected densities of states for these Hamiltonians have band gaps and internal van Hove singularities. We calculate coefficients for 63 recursion levels exactly and for about 200 recursion levels to a good approximation. Comparisons are made for materials with different magnitude band gaps (diamond, Si, α-Sn). Comparison is also made between materials with one (e.g., diamond) and two (e.g., GaAs) band gaps. The asymptotic behavior of the recursion coefficients is studied by Fourier analysis. Band gaps in the projected density of states dominate the asymptotic behavior. Perturbation analysis describes the asymptotic behavior rather well. Projected densities of states are calculated using a very simple termination scheme. These densities of states compare favorably with the results of Gilat-Raubenheimer integration

  16. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  17. K-1 Teachers' Visual Arts Beliefs and Their Role in the Early Childhood Classroom

    Science.gov (United States)

    Goodman-Schanz, Blythe Annette

    2012-01-01

    The purpose of this qualitative study was to explore and describe the visual arts beliefs and practices of eight K-1 teachers in four schools and in two different school districts in a southern state. Using a phenomenological framework (Creswell, 2007; Leedy & Ormrod, 2005), the research revealed the teachers' understandings of beliefs and how…

  18. Interactive visualization of APT data at full fidelity

    International Nuclear Information System (INIS)

    Bryden, Aaron; Broderick, Scott; Suram, Santosh K.; Kaluskar, Kaustubh; LeSar, Richard; Rajan, Krishna

    2013-01-01

    Understanding the impact of noise and incomplete data is a critical need for using atom probe tomography effectively. Although many tools and techniques have been developed to address this problem, visualization of the raw data remains an important part of this process. In this paper, we present two contributions to the visualization of data acquired through atom probe tomography. First, we describe the application of a rendering technique, ray-cast spherical impostors, that enables the interactive rendering of large numbers (as large as 10 million plus) of pixel perfect, lit spheres representing individual atoms. This technique is made possible by the use of a consumer-level graphics processing unit (GPU), and it yields an order of magnitude improvement both in render quality and speed over techniques previously used to render spherical glyphs in this domain. Second, we present an interactive tool that allows the user to mask, filter, and colorize the data in real time to help them understand and visualize a precise subset and properties of the raw data. We demonstrate the effectiveness of our tool through benchmarks and an example that shows how the ability to interactively render large numbers of spheres, combined with the use of filters and masks, leads to improved understanding of the three-dimensional (3D) and incomplete nature of atom probe data. This improvement arises from the ability of lit spheres to more effectively show the 3D position and the local spatial distribution of individual atoms than what is possible with point or isosurface renderings. The techniques described in this paper serve to introduce new rendering and interaction techniques that have only recently become practical as well as new ways of interactively exploring the raw data. - Highlights: ► Application of spherical impostor rendering to atom probe data visualization. ► Presented an interactive tool for visualizing atom probe tomography data. ► Presented a comparison of

  19. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  20. Individual differences in rate of encoding predict estimates of visual short-term memory capacity (K).

    Science.gov (United States)

    Jannati, Ali; McDonald, John J; Di Lollo, Vincent

    2015-06-01

    The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).

  1. Visualization of pigment distributions in paintings using synchrotron K-edge imaging

    International Nuclear Information System (INIS)

    Krug, K.; Dik, J.; Leeuw, M.; Whitson, A. den; Tortora, J.; Coan, P.; Nemoz, C.; Bravin, A.

    2006-01-01

    X-ray radiography plays an important role in the study of artworks and archaeological artifacts. The internal structure of objects provides information on genesis, authenticity, painting technique, material condition and conservation history. Transmission radiography, however, does not provide information on the exact elemental composition of objects and heavy metal layers can shadow or obscure the ones including lighter elements. This paper presents the first application of synchrotron-based K-edge absorption imaging applied to paintings. Using highly monochromatic radiation, K-edge imaging is used to obtain elemental distribution images over large areas. Such elemental maps visualize the distribution of an individual pigment throughout the paint stratigraphy. This provides color information on hidden paint layers, which is of great relevance to art historians and painting conservators. The main advantage is the quick data acquisition time and the sensitivity to elements throughout the entire paint stratigraphy. The examination of a test painting is shown and further instrumental developments are discussed. (orig.)

  2. Spatial Uncertainty Model for Visual Features Using a Kinect™ Sensor

    Directory of Open Access Journals (Sweden)

    Jae-Han Park

    2012-06-01

    Full Text Available This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  3. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  4. The structure of visual spaces

    NARCIS (Netherlands)

    Koenderink, J.J.; van Doorn, A.J.

    2008-01-01

    The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular

  5. Soil data clustering by using K-means and fuzzy K-means algorithm

    Directory of Open Access Journals (Sweden)

    E. Hot

    2016-06-01

    Full Text Available A problem of soil clustering based on the chemical characteristics of soil, and proper visual representation of the obtained results, is analysed in the paper. To that aim, K-means and fuzzy K-means algorithms are adapted for soil data clustering. A database of soil characteristics sampled in Montenegro is used for a comparative analysis of implemented algorithms. The procedure of setting proper values for control parameters of fuzzy K-means is illustrated on the used database. In addition, validation of clustering is made through visualisation. Classified soil data are presented on the static Google map and dynamic Open Street Map.

  6. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space......-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions...

  7. Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.

    Science.gov (United States)

    Sun, Jiaqi; Sakhaee, Elham; Entezari, Alireza; Vemuri, Baba C

    2015-01-01

    Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal S(q) in the q-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint (k, q)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization. In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of (k, q) for the reconstruction of P(x, r). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of P(x, r). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial (k, q)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach,.we present several synthetic and real data examples.

  8. The Orientation of Visual Space from the Perspective of Hummingbirds

    Directory of Open Access Journals (Sweden)

    Luke P. Tyrrell

    2018-01-01

    Full Text Available Vision is a key component of hummingbird behavior. Hummingbirds hover in front of flowers, guide their bills into them for foraging, and maneuver backwards to undock from them. Capturing insects is also an important foraging strategy for most hummingbirds. However, little is known about the visual sensory specializations hummingbirds use to guide these two foraging strategies. We characterized the hummingbird visual field configuration, degree of eye movement, and orientation of the centers of acute vision. Hummingbirds had a relatively narrow binocular field (~30° that extended above and behind their heads. Their blind area was also relatively narrow (~23°, which increased their visual coverage (about 98% of their celestial hemisphere. Additionally, eye movement amplitude was relatively low (~9°, so their ability to converge or diverge their eyes was limited. We confirmed that hummingbirds have two centers of acute vision: a fovea centralis, projecting laterally, and an area temporalis, projecting more frontally. This retinal configuration is similar to other predatory species, which may allow hummingbirds to enhance their success at preying on insects. However, there is no evidence that their temporal area could visualize the bill tip or that eye movements could compensate for this constraint. Therefore, guidance of precise bill position during the process of docking occurs via indirect cues or directly with low visual acuity despite having a temporal center of acute vision. The large visual coverage may favor the detection of predators and competitors even while docking into a flower. Overall, hummingbird visual configuration does not seem specialized for flower docking.

  9. Standard anatomical and visual space for the mouse retina: computational reconstruction and transformation of flattened retinae with the Retistruct package.

    Directory of Open Access Journals (Sweden)

    David C Sterratt

    Full Text Available The concept of topographic mapping is central to the understanding of the visual system at many levels, from the developmental to the computational. It is important to be able to relate different coordinate systems, e.g. maps of the visual field and maps of the retina. Retinal maps are frequently based on flat-mount preparations. These use dissection and relaxing cuts to render the quasi-spherical retina into a 2D preparation. The variable nature of relaxing cuts and associated tears limits quantitative cross-animal comparisons. We present an algorithm, "Retistruct," that reconstructs retinal flat-mounts by mapping them into a standard, spherical retinal space. This is achieved by: stitching the marked-up cuts of the flat-mount outline; dividing the stitched outline into a mesh whose vertices then are mapped onto a curtailed sphere; and finally moving the vertices so as to minimise a physically-inspired deformation energy function. Our validation studies indicate that the algorithm can estimate the position of a point on the intact adult retina to within 8° of arc (3.6% of nasotemporal axis. The coordinates in reconstructed retinae can be transformed to visuotopic coordinates. Retistruct is used to investigate the organisation of the adult mouse visual system. We orient the retina relative to the nictitating membrane and compare this to eye muscle insertions. To align the retinotopic and visuotopic coordinate systems in the mouse, we utilised the geometry of binocular vision. In standard retinal space, the composite decussation line for the uncrossed retinal projection is located 64° away from the retinal pole. Projecting anatomically defined uncrossed retinal projections into visual space gives binocular congruence if the optical axis of the mouse eye is oriented at 64° azimuth and 22° elevation, in concordance with previous results. Moreover, using these coordinates, the dorsoventral boundary for S-opsin expressing cones closely matches

  10. Test results of full-scale high temperature superconductors cable models destined for a 36 kV, 2 kA(rms) utility demonstration

    DEFF Research Database (Denmark)

    Daumling, M.; Rasmussen, C.N.; Hansen, F.

    2001-01-01

    Power cable systems using high temperature superconductors (HTS) are nearing technical feasibility. This presentation summarises the advancements and status of a project aimed at demonstrating a 36 kV, 2 kA(rms) AC cable system by installing a 30 m long full-scale functional model in a power...

  11. Full Space Vectors Modulation for Nine-Switch Converters Including CF & DF Modes

    DEFF Research Database (Denmark)

    Dehghan Dehnavi, Seyed Mohammad; Mohamadian, Mustafa; Andersen, Michael A. E.

    2010-01-01

    converter. As a space vector modulation for DF mode has already been proposed by authors. This paper proposes a full space vector modulation (SVM) for both CF and DF modes. Also practical methods are presented for SVM proposed. In addition a special SVM is proposed that offers minimum total harmonic...... distortion (THD) in DF mode. The performance of the proposed SVM is verified by simulation results....

  12. 3D Visualization of Engendering Collaborative Leadership in the Space

    Directory of Open Access Journals (Sweden)

    Aini-Kristiina Jäppinen

    2012-12-01

    Full Text Available The paper focuses on collaborative leadership in education and how to illustrate its engendering process in a three-dimensional space. This complex and fluid process is examined as distributed and pedagogical within a Finnish vocational upper secondary educational organization. As a consequence, the notion of distributed pedagogical leadership is used when collaborative leadership in education is studied. Collaborative leadership is argued to consist of the innermost substance of a professional learning community, as attributes of a group of people working together for specific purposes. Therefore, collaborative leadership naturally involves actors, activities, and context. However, the innermost substance of the community is the crux of leadership. It is here presented in the form of ten "keys", as ten attributes with several operational nuances. The keys are highly interdependent and a movement in one of them has an effect both on every other key and the whole. Within this framework, the paper provides a presentation of selected study results by means of the 3D program Strata. The visualizations illustrate concrete examples of how the keys relate to the reality in the vocational education organization in question. For this, a novel analysis called Wave is used, based on natural laws and rules of physics.

  13. The ground testing of a 2 kWe solar dynamic space power system

    International Nuclear Information System (INIS)

    Calogeras, J.E.

    1992-01-01

    Over the past 25 years Space Solar Dynamic component development has advanced to the point where it is considered a leading candidate power source technology for the evolutionary phases of the Space Station Freedom (SSF) program. Selection of SD power was based on studies and analyses which indicated significant savings in life cycle costs, launch mass and EVA requirements were possible when the system is compared to more conventional photovoltaic/battery power systems. Issues associated with micro-gravity operation such as the behavior of the thermal energy storage materials are being addressed in other programs. This paper reports that a ground test of a 2 kWe solar dynamic system is being planned by the NASA Office of Aeronautics and Space Technology to address the integration issues. The test will be scalable up to 25 kWe, will be flight configured and will incorporate relevant features of the SSF Solar Dynamic Power Module design

  14. kNOw Fear: Making rural public spaces safer for women and girls ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-01

    May 1, 2018 ... kNOw Fear: Making rural public spaces safer for women and girls ... The International Centre for Research on Women (ICRW) conducts research ... Poonam Kathuria's 17 years of experience as a women's rights advocate is ...

  15. Forward Modeling of Reduced Power Spectra from Three-dimensional k-space

    Science.gov (United States)

    von Papen, Michael; Saur, Joachim

    2015-06-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSDs) from arbitrary energy distributions in {\\boldsymbol{k}} -space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with {{k}\\parallel }∼ k\\bot α and α \\lt 1, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor’s hypothesis. We further investigate the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward θ-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency {{f}2D}(L,α ,θ ), which is analytically estimated and depends on outer scale L, critical balance exponent α, and field-to-flow angle θ. We discuss anisotropic damping terms acting on the {\\boldsymbol{k}} -space distribution of energy and their effects on the PSD. Further, we show that the spectral anisotropies κ (θ ) as found by Horbury et al. and Chen et al. in the solar wind are in accordance with a damped critically balanced cascade of kinetic Alfvén waves. We also model power spectra obtained by Papen et al. in Saturn’s plasma sheet and find that the change of spectral indices inside 9 {{R}s} can be explained by damping on electron scales.

  16. Audible vision for the blind and visually impaired in indoor open spaces.

    Science.gov (United States)

    Yu, Xunyi; Ganz, Aura

    2012-01-01

    In this paper we introduce Audible Vision, a system that can help blind and visually impaired users navigate in large indoor open spaces. The system uses computer vision to estimate the location and orientation of the user, and enables the user to perceive his/her relative position to a landmark through 3D audio. Testing shows that Audible Vision can work reliably in real-life ever-changing environment crowded with people.

  17. On low-complexity full-diversity detection of multi-user space-time coding

    KAUST Repository

    Ismail, Amr

    2013-06-01

    The incorporation of multiple input multiple output (MIMO) schemes in recent wireless communication standards paved the way to exploit the newly introduced dimension (i.e. space) to efficiently cancel the interference without requiring additional resources. In this paper, we focus on multiple input multiple ouitput (MIMO) multiple access channel (MAC) case and we answer the question about whether it is possible to suppress the interference in a MIMO MAC channel for completely blind users while achieving full-diversity with a simplified decoder in the affirmative. In fact, this goal can be attained by employing space-time block codes (STBC)s that achive full-diversity under partial interference cancellation (PIC). We derive sufficient conditions for a wide range of STBCs to achieve full-diversity under PIC group decoding with or without successive interference cancellation (SIC). Based on the provided design criteria we derive an upper-bound on the achievable rate for a class of codes. A two-user MIMO MAC interference cancellation scheme is presented and proved to achieve full-diversity under PIC group decoding. We compare our scheme to existing beamforming schemes with full or limit feedback. © 2013 IEEE.

  18. An empirical investigation into the changing visual identity of full service and low cost carriers, 2000 vs. 2012

    Directory of Open Access Journals (Sweden)

    Adam Taylor

    2013-09-01

    Full Text Available This paper reports on the findings of a semiotic content analysis of the visual branding of over 630 airline tail fins as they appeared in 2000 and 2012. Unlike existing studies of airlines’ visual identities that rely on a snap shot in time and examine all airlines, this paper focuses on changes that have occurred in the visual branding of full-service carriers (FSCs and low cost carriers (LCCs between 2000 and 2012. The results confirm that there have been significant changes in the visual content of FSC and LCC tail fins and the way in which these airlines portray non-price competitive characteristics. The research shows that while an increasing number of LCCs now use aircraft tail fins to display their corporate name, FSCs are increasingly employing icons of nationhood. This suggests that while LCCs are trying to appeal to a wide passenger demographic who value low fares over service, FSCs are responding to the competitive threat by explicitly drawing on the cultural rhetoric of symbols of sovereign national identity to differentiate themselves in an increasingly competitive market.

  19. Cosmiclike domain walls in superfluid 3He-B: Instantons and diabolical points in (k,r) space

    International Nuclear Information System (INIS)

    Salomaa, M.M.; Volovik, G.E.

    1988-01-01

    The possible planar superfluid B-B boundaries between inequivalent B-phase vacua are considered; such B-B interfaces provide an analogy with the cosmic domain walls that are believed to have precipitated in the phase transitions of the early Universe. Several of them display nontrivial structure in (k,r) space (i.e., the union of the momentum and real spaces). Such a wall represents an instanton connecting two B-phase vacua with different k-space topology. The transition between the vacua occurs through the formation of a pointlike defect either in the (k,r) space, or in the (k,t) space. These defects are so-called diabolical points of codimension 4, at which the fermionic energy tends to zero, thus providing the fermionic zero modes. Such points are new examples (within condensed-matter physics) of the peculiar diabolical points, which are characterized by the occurrence of a contact between the different branches of the quasiparticle spectra; in the present case, the branches of particles and holes, respectively. These points are here discussed for the case of the superfluid phases of liquid 3 He in close analogy with the quantum field theory of fermions interacting with classical bosonic fields. The cosmiclike domain walls in superfluid 3 He-B are observable in principle; in particular, the motion of the superfluid A-B interface is governed at low temperatures by the periodical emission of these topological excitation planes

  20. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  1. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  2. The space - time - cube and the display of large movement data sets: the link between visualization strategies and cartographic design guidelines

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2011-01-01

    one should not only consider the nature of the data, but also the purpose of the particular phase of the workflow. To verify the above approach the visualization strategies and design guidelines are applied in a different use cases. The cases include: • The annotated space-time path A travel log...... is the Space-Time-cube (STC). The last decades the interest in this representation has increased considerable because of the technological opportunities. Despite the many domains where the STC is used, it is still unclear what the full possibilities and limitations of this graphic representation are. Its three...... consisting of a trajectory based on different modes of transport, with linked annotations. The challenge is to deal different scales and annotations. • The historical movement data The event ‘Napoleons march to Moscow’ contains fifteen space-time paths (STP) with attribute information. Challenge is to answer...

  3. Visual target distance, but not visual cursor path length produces shifts in motor behavior

    Directory of Open Access Journals (Sweden)

    Nike eWendker

    2014-03-01

    Full Text Available When using tools effects in body space and distant space often do not correspond. Findings so far demonstrated that in this case visual feedback has more impact on action control than proprioceptive feedback. The present study varies the dimensional overlap between visual and proprioceptive action effects and investigates its impact on aftereffects in motor responses. In two experiments participants perform linear hand movements on a covered digitizer tablet to produce ∩-shaped cursor trajectories on the display. The shape of hand motion and cursor motion (linear vs. curved is dissimilar and therefore does not overlap. In one condition the length of hand amplitude and visual target distance is similar and constant while the length of the cursor path is dissimilar and varies. In another condition the length of the hand amplitude varies while the lengths of visual target distance (similar or dissimilar and cursor path (dissimilar are constant. First, we found that aftereffects depended on the relation between hand path length and visual target distance, and not on the relation between hand and cursor path length. Second, increasing contextual interference did not reveal larger aftereffects. Finally, data exploration demonstrated a considerable benefit from gain repetitions across trials when compared to gain switches. In conclusion, dimensional overlap between visual and proprioceptive action effects modulates human information processing in visually controlled actions. However, adjustment of the internal model seems to occur very fast for this kind of simple linear transformation, so that the impact of prior visual feedback is fleeting.

  4. Perceived size and perceived direction: The interplay of the two descriptors of visual space

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2011-01-01

    Roč. 40, č. 8 (2011), s. 953-961 ISSN 0301-0066 R&D Projects: GA ČR GPP407/10/P566 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space * spatial descriptors * size judgments * direction judgments * parameterization Subject RIV: AN - Psychology Impact factor: 1.313, year: 2011

  5. Language as the visual: Exploring the intersection of linguistic and visual language in manga

    Directory of Open Access Journals (Sweden)

    Giancarla Unser-Schutz

    2011-03-01

    Full Text Available In manga studies, a distinction is made between linguistic text (language and visual language. However, because linguistic text is mediated by visual structures, there is a a tendency to assume that it is a secondary element. I would argue, however, that examination of both languages might give a better idea of how manga functions, and start that process here by looking at two manga text types: handwritten lines, thoughts and authorial comments. Visually differentiated from other texts, and more common in series for girls (shōjo-manga, I compare them with Ōtsuka's (1994 highly-visual monologues from 1970s/1980s shōjo-manga, and demonstrate similarities to Takeuchi's (2005 mediator and spectator characters, and argue that these texts offer a sense of closeness to authors while also visually-coding data in terms of relevance. While non-essential secondary text, their visual-encoding offers a space of dynamic interpretation, with readerships able to ignore or read them as per their needs.

  6. Research on Language of Perception Still-Life as a Visual Aphorism

    Directory of Open Access Journals (Sweden)

    Anatolij P. Suprun

    2011-01-01

    Full Text Available This article describes a categorical structure of perception of still-life painting. Analysis is done on the system of visual opposition elements in still-life. A still-life is considered a "perceptual statement about the world", and a "visual aphorism" The research is based on such methods as: semantic spaces constructing and their transformation at introduction of additional elements in still-lifes. It also gives full analysis of an interpretation of complex images and understanding of types of still-life as a visual hermeneutics.

  7. Visualizing the mapped ion pathway through the Na,K-ATPase pump.

    Science.gov (United States)

    Takeuchi, Ayako; Reyes, Nicolás; Artigas, Pablo; Gadsby, David C

    2009-11-01

    The Na(+),K(+)-ATPase pump achieves thermodynamically uphill exchange of cytoplasmic Na(+) ions for extracellular K(+) ions by using ATP-mediated phosphorylation, followed by autodephosphorylation, to power conformational changes that allow ion access to the pump's binding sites from only one side of the membrane at a time. Formally, the pump behaves like an ion channel with two tightly coupled gates that are constrained to open and close alternately. The marine agent palytoxin disrupts this coupling, allowing both gates to sometimes be open, so temporarily transforming a pump into an ion channel. We made a cysteine scan of Na(+),K(+)-ATPase transmembrane (TM) segments TM1 to TM6, and used recordings of Na(+) current flow through palytoxin-bound pump-channels to monitor accessibility of introduced cysteine residues via their reaction with hydrophilic methanethiosulfonate (MTS) reagents. To visualize the open-channel pathway, the reactive positions were mapped onto a homology model of Na(+),K(+)-ATPase based on the structure of the related sarcoplasmicand endoplasmic-reticulum (SERCA) Ca(2+)-ATPase in a BeF(3)(-)-trapped state,(1,2) in which the extra-cytoplasmic gate is wide open (although the cytoplasmic access pathway is firmly shut). The results revealed a single unbroken chain of reactive positions that traverses the pump from the extracellular surface to the cytoplasm, comprises residues from TM1, TM2, TM4 and TM6, and passes through the equivalent of cation binding site II in SERCA, but not through site I. Cavity search analysis of the homology model validated its use for mapping the data by yielding a calculated extra-cytoplasmic pathway surrounded by MTS-reactive residues. As predicted by previous experimental results, that calculated extra-cytoplasmic pathway abruptly broadens above residue T806, at the outermost end of TM6 that forms the floor of the extracellular-facing vestibule. These findings provide a structural basis for further understanding cation

  8. Visualizing the mapped ion pathway through the Na,K-ATPase pump

    Science.gov (United States)

    Takeuchi, Ayako; Reyes, Nicolás; Artigas, Pablo; Gadsby, David C.

    2009-01-01

    The Na+,K+-ATPase pump achieves thermodynamically uphill exchange of cytoplasmic Na+ ions for extracellular K+ ions by using ATP-mediated phosphorylation, followed by autodephosphorylation, to power conformational changes that allow ion access to the pump's binding sites from only one side of the membrane at a time. Formally, the pump behaves like an ion channel with two tightly coupled gates that are constrained to open and close alternately. The marine agent palytoxin disrupts this coupling, allowing both gates to sometimes be open, so temporarily transforming a pump into an ion channel. We made a cysteine scan of Na+,K+-ATPase transmembrane (TM) segments TM1 to TM6, and used recordings of Na+ current flow through palytoxin-bound pump-channels to monitor accessibility of introduced cysteine residues via their reaction with hydrophilic methanethiosulfonate (MTS) reagents. To visualize the open-channel pathway, the reactive positions were mapped onto a homology model of Na+,K+-ATPase based on the structure of the related sarcoplasmic- and endoplasmic-reticulum (SERCA) Ca2+-ATPase in a BeF3−-trapped state1,2, in which the extra-cytoplasmic gate is wide open (although the cytoplasmic access pathway is firmly shut). The results revealed a single unbroken chain of reactive positions that traverses the pump from the extracellular surface to the cytoplasm, comprises residues from TM1, TM2, TM4, and TM6, and passes through the equivalent of cation binding site II in SERCA, but not through site I. Cavity search analysis of the homology model validated its use for mapping the data by yielding a calculated extra-cytoplasmic pathway surrounded by MTS-reactive residues. As predicted by previous experimental results, that calculated extra-cytoplasmic pathway abruptly broadens above residue T806, at the outermost end of TM6 which forms the floor of the extracellular-facing vestibule. These findings provide a structural basis for further understanding cation translocation by

  9. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  10. Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Moazzeni

    2016-07-01

    Full Text Available Daylight can be considered as one of the most important principles of sustainable architecture. It is unfortunate that this is neglected by designers in Tehran, a city that benefits from a significant amount of daylight and many clear sunny days during the year. Using a daylight controller system increases space natural light quality and decreases building lighting consumption by 60%. It also affects building thermal behavior, because most of them operate as shading. The light shelf is one of the passive systems for controlling daylight, mostly used with shading and installed in the upper half of the windows above eye level. The influence of light shelf parameters, such as its dimensions, shelf rotation angle and orientation on daylight efficiency and visual comfort in educational spaces is investigated in this article. Daylight simulation software and annual analysis based on climate information during space occupation hours were used. The results show that light shelf dimensions, as well as different orientations, especially in southern part, are influential in the distribution of natural light and visual comfort. At the southern orientation, increased light shelf dimensions result in an increase of the area of the work plane with suitable daylight levels by 2%–40% and a significant decrease in disturbing and intolerable glare hours.

  11. Space-based visual attention: a marker of immature selective attention in toddlers?

    Science.gov (United States)

    Rivière, James; Brisson, Julie

    2014-11-01

    Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.

  12. Visual coherence for large-scale line-plot visualizations

    KAUST Repository

    Muigg, Philipp

    2011-06-01

    Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).

  13. Visual coherence for large-scale line-plot visualizations

    KAUST Repository

    Muigg, Philipp; Hadwiger, Markus; Doleisch, Helmut; Grö ller, Eduard M.

    2011-01-01

    Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).

  14. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete.

    Science.gov (United States)

    Jarick, Michelle; Dixon, Mike J; Stewart, Mark T; Maxwell, Emily C; Smilek, Daniel

    2009-01-01

    Synaesthesia is a fascinating condition whereby individuals report extraordinary experiences when presented with ordinary stimuli. Here we examined an individual (L) who experiences time units (i.e., months of the year and hours of the day) as occupying specific spatial locations (January is 30 degrees to the left of midline). This form of time-space synaesthesia has been recently investigated by Smilek et al. (2007) who demonstrated that synaesthetic time-space associations are highly consistent, occur regardless of intention, and can direct spatial attention. We extended this work by showing that for the synaesthete L, her time-space vantage point changes depending on whether the time units are seen or heard. For example, when L sees the word JANUARY, she reports experiencing January on her left side, however when she hears the word "January" she experiences the month on her right side. L's subjective reports were validated using a spatial cueing paradigm. The names of months were centrally presented followed by targets on the left or right. L was faster at detecting targets in validly cued locations relative to invalidly cued locations both for visually presented cues (January orients attention to the left) and for aurally presented cues (January orients attention to the right). We replicated this difference in visual and aural cueing effects using hour of the day. Our findings support previous research showing that time-space synaesthesia can bias visual spatial attention, and further suggest that for this synaesthete, time-space associations differ depending on whether they are visually or aurally induced.

  15. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  16. Daylighting, Space, and Architecture: A Literature Review

    Directory of Open Access Journals (Sweden)

    Dalia Hafiz

    2015-12-01

    Full Text Available Daylighting dynamism and constant change can characterize buildings and spaces with a living quality that cannot be achieved with any other design element. However, daylighting can create unwanted lighting conditions in the visual field causing discomfort and glare. This may affect the performance of building occupants such as workers or students. Consequently, designing for daylighting needs a good understanding of daylighting. Designers can rely on information from simulation software to re-imagine the space, especially to examine possible unexpected visual discomfort conditions.This paper aims to represent different visual comfort evaluation methods that can help decision-makers make better informed decisions. Different definitions and structures associated with daylight and glare are examined. It also presents a review of the literature of previous research conducted on daylighting, visual comfort analysis and glare studies.

  17. Resource Handbook--Space Beyond the Earth. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    Science.gov (United States)

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; space. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into four units: 1) the sun, earth, and moon; 2) stars and planets; 3) exploring space; 4) man's existence in space. Each unit includes initiatory and developmental activities. There are also sections on evaluation, vocabulary,…

  18. Kameleon Live: An Interactive Cloud Based Analysis and Visualization Platform for Space Weather Researchers

    Science.gov (United States)

    Pembroke, A. D.; Colbert, J. A.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.

  19. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.

  20. Visualizing spikes in source-space

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Duez, Lene; Scherg, Michael

    2016-01-01

    OBJECTIVE: Reviewing magnetoencephalography (MEG) recordings is time-consuming: signals from the 306 MEG-sensors are typically reviewed divided into six arrays of 51 sensors each, thus browsing each recording six times in order to evaluate all signals. A novel method of reconstructing the MEG...... signals in source-space was developed using a source-montage of 29 brain-regions and two spatial components to remove magnetocardiographic (MKG) artefacts. Our objective was to evaluate the accuracy of reviewing MEG in source-space. METHODS: In 60 consecutive patients with epilepsy, we prospectively...... evaluated the accuracy of reviewing the MEG signals in source-space as compared to the classical method of reviewing them in sensor-space. RESULTS: All 46 spike-clusters identified in sensor-space were also identified in source-space. Two additional spike-clusters were identified in source-space. As 29...

  1. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    Science.gov (United States)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  2. Do you see what I hear? Vantage point preference and visual dominance in a time-space synaesthete.

    Science.gov (United States)

    Jarick, Michelle; Stewart, Mark T; Smilek, Daniel; Dixon, Michael J

    2013-01-01

    Time-space synaesthetes "see" time units organized in a spatial form. While the structure might be invariant for most synaesthetes, the perspective by which some view their calendar is somewhat flexible. One well-studied synaesthete L adopts different viewpoints for months seen vs. heard. Interestingly, L claims to prefer her auditory perspective, even though the month names are represented visually upside down. To verify this, we used a spatial-cueing task that included audiovisual month cues. These cues were either congruent with L's preferred "auditory" viewpoint (auditory-only and auditory + month inverted) or incongruent (upright visual-only and auditory + month upright). Our prediction was that L would show enhanced cueing effects (larger response time difference between valid and invalid targets) following the audiovisual congruent cues since both elicit the "preferred" auditory perspective. Also, when faced with conflicting cues, we predicted L would choose the preferred auditory perspective over the visual perspective. As we expected, L did show enhanced cueing effects following the audiovisual congruent cues that corresponded with her preferred auditory perspective, but that the visual perspective dominated when L was faced with both viewpoints simultaneously. The results are discussed with relation to the reification hypothesis of sequence space synaesthesia (Eagleman, 2009).

  3. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Carrington, Connie; Howell, Joe; Day, Greg

    2004-01-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both

  4. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    Science.gov (United States)

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical

  5. Reduction of respiratory ghosting motion artifacts in conventional two-dimensional multi-slice Cartesian turbo spin-echo: which k-space filling order is the best?

    Science.gov (United States)

    Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi

    2018-06-01

    The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.

  6. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  7. Status of CEA reactor studies for a 200 kWe turbo electric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    The present European ARIANE space program will expand after 1995 in the development of the large ARIANE 5 launch vehicle. Considering, that the range of power needs (50 to 400 kWe) and operation times required for the space missions planned after the year 2000, are relevant to a nuclear power system, the French Centre National d'Etudes Spatiales (CNES) invited in 1983 the Commissariat a l'Energie Atomique (CEA) to undertake preliminary studies on space power systems. The purpose of the present two year phase (mid 1984-mid 1986) is to identify key technologies for a space generator within the power range of interest and to estimate the development cost of such a project to be examined for commitment in 1986. This work mainly consists in the feasibility and cost assessment of a reference 200 kWe turboelectric space generator, selected for the maturity and availability of the conversion system and for its attractive specific mass compared to thermionics and thermoelectricity, considering the available radiator area afforded by the specific ARIANE 5 geometrical features. The system is basically composed of a fast neutron spectrum lithium cooled reactor, of a Brayton conversion loop and of a heat pipe radiator

  8. The Strucplot Framework: Visualizing Multi-way

    Directory of Open Access Journals (Sweden)

    David Meyer

    2006-10-01

    Full Text Available This paper describes the “strucplot” framework for the visualization of multi-way contingency tables. Strucplot displays include hierarchical conditional plots such as mosaic, association, and sieve plots, and can be combined into more complex, specialized plots for visualizing conditional independence, GLMs, and the results of independence tests. The framework’s modular design allows flexible customization of the plots’ graphical appearance, including shading, labeling, spacing, and legend, by means of “graphical appearance control” functions. The framework is provided by the R package vcd.

  9. Measurement of CP violation in the phase space of B±→K± π+ π- and B±→K± K+ K- decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-06

    The charmless decays B±→K± π+ π- and B±→K± K+ K- are reconstructed using data, corresponding to an integrated luminosity of 1.0  fb(-1), collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured as ACP(B±→K± π+ π-)=0.032±0.008 (stat)±0.004 (syst)±0.007(J/ψK±) and ACP(B±→K± K+ K-)=-0.043±0.009 (stat)±0.003 (syst)±0.007(J/ψK±), where the third uncertainty is due to the CP asymmetry of the B±→J/ψK± reference mode. The significance of ACP(B±→K± K+ K-) exceeds three standard deviations and is the first evidence of an inclusive CP asymmetry in charmless three-body B decays. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

  10. Color segmentation in the HSI color space using the K-means algorithm

    Science.gov (United States)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  11. Analytical model for vibration prediction of two parallel tunnels in a full-space

    Science.gov (United States)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  12. WebStruct and VisualStruct: web interfaces and visualization for Structure software implemented in a cluster environment

    Directory of Open Access Journals (Sweden)

    Jayashree B.

    2008-03-01

    Full Text Available Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into “K” clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool “Visualstruct”, written in PHP (HTML and Java script embedded, allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.

  13. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  14. K-space trajectory mapping and its application for ultrashort Echo time imaging

    Czech Academy of Sciences Publication Activity Database

    Latta, P.; Starčuk jr., Zenon; Gruwel, M. L. H.; Weber, M.H.; Tomanek, B.

    2017-01-01

    Roč. 36, February (2017), s. 68-76 ISSN 0730-725X R&D Projects: GA ČR(CZ) GA15-12607S Institutional support: RVO:68081731 Keywords : gradient imperfections * K-space deviation * trajectrory estaimation * ultrashort echo time Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 2.225, year: 2016

  15. Axiomatic method of partitions in the theory of Noebeling spaces. I. Improvement of partition connectivity

    International Nuclear Information System (INIS)

    Ageev, S M

    2007-01-01

    The Noebeling space N k 2k+1 , a k-dimensional analogue of the Hilbert space, is considered; this is a topologically complete separable (that is, Polish) k-dimensional absolute extensor in dimension k (that is, AE(k)) and a strongly k-universal space. The conjecture that the above-listed properties characterize the Noebeling space N k 2k+1 in an arbitrary finite dimension k is proved. In the first part of the paper a full axiom system of the Noebeling spaces is presented and the problem of the improvement of a partition connectivity is solved on its basis. Bibliography: 29 titles.

  16. Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom

    Science.gov (United States)

    Caglayan, Günhan

    2018-05-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.

  17. Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus

    Science.gov (United States)

    Lee, Jungah; Groh, Jennifer M.

    2014-01-01

    Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior. PMID:24454779

  18. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    Science.gov (United States)

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  19. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  20. Four dimensional magnetic resonance imaging with retrospective k-space reordering: A feasibility study

    International Nuclear Information System (INIS)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Chen, Nan-kuei; Chu, Mei-Lan

    2015-01-01

    Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N KS ) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C p ) and a number of impacting factors: the number of repeated scans (N R ), number of slices (N S ), number of respiratory phase bins (N P ), N KS , F, R, and initial respiratory phase at image acquisition (P 0 ). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C p and N R was found best represented by an exponential function (C P =100(1−e −0.18N R ), when N S

  1. Electric propulsion options for 10 kW class earth space missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  2. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  3. Studies of the resonance structure in $D^0\\to K^0_S K^{\\pm}\\pi^{\\mp}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2016-03-31

    Amplitude models are applied to studies of resonance structure in $D^0\\to K^0_S K^- \\pi^+$ and $D^0\\to K^0_S K^+ \\pi^-$ decays using $pp$ collision data corresponding to an integrated luminosity of $3.0\\,\\mathrm{fb}^{-1}$ collected by the LHCb experiment. Relative magnitude and phase information is determined, and coherence factors and related observables are computed for both the whole phase space and a restricted region of $100\\,\\mathrm{MeV/}c^2$ around the $K^{*}(892)^{\\pm}$ resonance. Two formulations for the $K\\pi$ $S$-wave are used, both of which give a good description of the data. The ratio of branching fractions $\\mathcal{B}(D^0\\to K^0_S K^+ \\pi^-)/\\mathcal{B}(D^0\\to K^0_S K^- \\pi^+)$ is measured to be $0.655\\pm0.004\\,(\\textrm{stat})\\pm0.006\\,(\\textrm{syst})$ over the full phase space and $0.370\\pm0.003\\,(\\textrm{stat})\\pm0.012\\,(\\textrm{syst})$ in the restricted region. A search for $CP$ violation is performed using the amplitude models and no significant effect is found. Predictions from $SU(3)$ fl...

  4. On semi star generalized closed sets in bitopological spaces.

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2010-07-01

    Full Text Available K. Chandrasekhara Rao and K. Joseph [5] introduced the concepts of semi star generalized open sets and semi star generalized closed sets in a topological space. The same concept was extended to bitopological spaces by K. Chan-drasekhara Rao and K. Kannan [6,7]. In this paper, we continue the study of τ1τ2-s∗g closed sets inbitopology and we introduced the newly related concept of pairwise s∗g-continuous mappings. Also S∗GO-connectedness and S∗GO-compactness are introduced in bitopological spaces and some of their properties are established.

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Stéphanie Giraud

    2017-06-01

    Full Text Available Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  6. Enabling dynamic network analysis through visualization in TVNViewer

    Directory of Open Access Journals (Sweden)

    Curtis Ross E

    2012-08-01

    Full Text Available Abstract Background Many biological processes are context-dependent or temporally specific. As a result, relationships between molecular constituents evolve across time and environments. While cutting-edge machine learning techniques can recover these networks, exploring and interpreting the rewiring behavior is challenging. Information visualization shines in this type of exploratory analysis, motivating the development ofTVNViewer (http://sailing.cs.cmu.edu/tvnviewer, a visualization tool for dynamic network analysis. Results In this paper, we demonstrate visualization techniques for dynamic network analysis by using TVNViewer to analyze yeast cell cycle and breast cancer progression datasets. Conclusions TVNViewer is a powerful new visualization tool for the analysis of biological networks that change across time or space.

  7. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  8. Banach spaces of continuous functions as dual spaces

    CERN Document Server

    Dales, H G; Lau, A T -M; Strauss, D

    2016-01-01

    This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.

  9. Time- and Space-Order Effects in Timed Discrimination of Brightness and Size of Paired Visual Stimuli

    Science.gov (United States)

    Patching, Geoffrey R.; Englund, Mats P.; Hellstrom, Ake

    2012-01-01

    Despite the importance of both response probability and response time for testing models of choice, there is a dearth of chronometric studies examining systematic asymmetries that occur over time- and space-orders in the method of paired comparisons. In this study, systematic asymmetries in discriminating the magnitude of paired visual stimuli are…

  10. Expectations in multi-particle production in hh collisions in the TeV energy region. Full phase space

    International Nuclear Information System (INIS)

    Giovannini, A.

    1999-01-01

    First results of our programme of investigation of final charged particles multiplicity distributions properties in the TeV region and related correlation structure in hadron hadron collisions in full phase space, in rapidity and in transverse momentum intervals, are discussed. Attention is limited here to full phase space only-Huge (mini-)jets production is the main expectation in all examined scenarios. (author)

  11. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    Directory of Open Access Journals (Sweden)

    Qianghui Zhang

    2016-07-01

    Full Text Available Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS, which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD based on Stolt interpolation. Finally, a modified TSP (MTSP is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  12. K-theory and phase transitions at high energies

    Directory of Open Access Journals (Sweden)

    T. V. Obikhod

    2016-06-01

    Full Text Available The duality between E8xE8 heteritic string on manifold K3xT2 and Type IIA string compactified on a Calabi-Yau manifold induces a correspondence between vector bundles on K3xT2 and Calabi-Yau manifolds. Vector bundles over compact base space K3xT2 form the set of isomorphism classes, which is a semi-ring under the operation of Whitney sum and tensor product. The construction of semi-ring V ect X of isomorphism classes of complex vector bundles over X leads to the ring KX = K(V ect X, called Grothendieck group. As K3 has no isometries and no non-trivial one-cycles, so vector bundle winding modes arise from the T2 compactification. Since we have focused on supergravity in d = 11, there exist solutions in d = 10 for which space-time is Minkowski space and extra dimensions are K3xT2. The complete set of soliton solutions of supergravity theory is characterized by RR charges, identified by K-theory. Toric presentation of Calabi-Yau through Batyrev's toric approximation enables us to connect transitions between Calabi-Yau manifolds, classified by enhanced symmetry group, with K-theory classification.

  13. Visualizing data mining results with the Brede tools

    Directory of Open Access Journals (Sweden)

    Finn A Nielsen

    2009-07-01

    Full Text Available A few neuroinformatics databases now exist that record results from neuroimaging studies in the form of brain coordinates in stereotaxic space. The Brede Toolbox was originally developed to extract, analyze and visualize data from one of them --- the BrainMap database. Since then the Brede Toolbox has expanded and now includes its own database with coordinates along with ontologies for brain regions and functions: The Brede Database. With Brede Toolbox and Database combined we setup automated workflows for extraction of data, mass meta-analytic data mining and visualizations. Most of the Web presence of the Brede Database is established by a single script executing a workflow involving these steps together with a final generation of Web pages with embedded visualizations and links to interactive three-dimensional models in the Virtual Reality Modeling Language. Apart from the Brede tools I briefly review alternate visualization tools and methods for Internet-based visualization and information visualization as well as portals for visualization tools.

  14. Full space device optimization for solar cells.

    Science.gov (United States)

    Baloch, Ahmer A B; Aly, Shahzada P; Hossain, Mohammad I; El-Mellouhi, Fedwa; Tabet, Nouar; Alharbi, Fahhad H

    2017-09-20

    Advances in computational materials have paved a way to design efficient solar cells by identifying the optimal properties of the device layers. Conventionally, the device optimization has been governed by single or double descriptors for an individual layer; mostly the absorbing layer. However, the performance of the device depends collectively on all the properties of the material and the geometry of each layer in the cell. To address this issue of multi-property optimization and to avoid the paradigm of reoccurring materials in the solar cell field, a full space material-independent optimization approach is developed and presented in this paper. The method is employed to obtain an optimized material data set for maximum efficiency and for targeted functionality for each layer. To ensure the robustness of the method, two cases are studied; namely perovskite solar cells device optimization and cadmium-free CIGS solar cell. The implementation determines the desirable optoelectronic properties of transport mediums and contacts that can maximize the efficiency for both cases. The resulted data sets of material properties can be matched with those in materials databases or by further microscopic material design. Moreover, the presented multi-property optimization framework can be extended to design any solid-state device.

  15. Visualizing Space Plasmas and Particles: Extraordinary Matter

    Science.gov (United States)

    Barbier, B.; Bartolone, L. M.; Christian, E. R.; Eastman, T. E.; Lewis, E.; Thieman, J. R.

    2010-12-01

    A recent survey of museum visitors documented some startling misconceptions at a very basic level. Even in this "science attentive" group, one quarter of the respondents believed that an atom would explode if it lost an electron, one sixth said it would become a new atom or element, and one fifth said they had no idea what would happen. Only one fourth of the respondents indicated they were familiar with plasma as a state of matter. Current resources on these topics are few in number and/or are difficult to locate, and they rarely provide suitable context at a level understandable to high school students and educators or to the interested public. In response to this and other evidence of common misunderstandings of simple particle and plasma science, our team of space scientists and education specialists has embarked upon the development of "Extraordinary Matter: Visualizing Space Plasmas and Particles", an online NASA multimedia library. It is designed to assist formal and informal educators and scientists with explaining concepts that cannot be easily demonstrated in the everyday world. The newly released site, with a target audience equivalent to grades 9-14, includes both existing products, reviewed by our team for quality, and new products we have developed. Addition of products to our site is in large part determined by the results of our front-end evaluation to determine the specific needs, gaps, and priorities of potential audiences. Each ready-to-use product is accompanied by a supporting explanation at a reading level matching the educational level of the concept, along with educational standards addressed, and links to other associated resources. Some will include related educational activities. Products are intended to stand alone, making them adaptable to the widest range of uses, either individually or as a custom-selected group. Uses may include, for example, scientist presentations, museum displays, teacher professional development, and classroom

  16. (Re)visualizing Black lesbian lives, (trans)masculinity, and township space in the documentary work of Zanele Muholi.

    Science.gov (United States)

    Imma, Z'étoile

    2017-04-03

    This article explores the politics of representing Black queer and trans subjectivities in the recent documentary film and photography of South African lesbian visual activist Zanele Muholi. While Muholi's work has been most often been positioned as an artistic response to the hate-crimes and violence perpetuated against Black lesbians in South African townships, most notably acts of sexual violence known increasingly as corrective rape, I argue that Muholi's documentary texts trouble the spatial, gendered, and highly racialized articulations that make up an increasingly global corrective rape discourse. The article considers how her visual texts foreground and (re)visualize Black queer and trans gender experiences that relocate, challenge, collaborate with, and at times, perform, masculinity as means to subvert heterosexist and racist constructions of township space and the Black gendered body.

  17. Characterizing the Incentive Compatible and Pareto Optimal Efficiency Space for Two Players, k Items, Public Budget and Quasilinear Utilities

    Directory of Open Access Journals (Sweden)

    Anat Lerner

    2014-04-01

    Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.

  18. The production of subject and space in video games

    Directory of Open Access Journals (Sweden)

    Altuğ Işığan

    2013-03-01

    Full Text Available Despite the dominant view that distinguishes video game space from other spatial representations as navigable space, someone who engages with the screen space of a video game must first and foremost rest at an ideal viewing spot in physical space, which is in accord with the requirements of a proper screening. In other words, one’s illusory experience of navigable space becomes possible only if one’s body in physical space occupies the visual center on which the scenographic arrangement relies in order to function.

  19. Y2K+1: Technology, Community-College Students, the Millennium, and Stanley Kubrick's "2001: A Space Odyssey."

    Science.gov (United States)

    Haspel, Paul

    2002-01-01

    Considers how screening Stanley Kubrick's "2001: A Space Odyssey" in a sophomore film class shows modern community-college students that millennial anxiety existed well before late 1999, the time of "Y2K" fears. Presents an assignment that examines "2001: A Space Odyssey" in the context of its time and in 2001. (SG)

  20. Experimental MR-guided cryotherapy of the brain with almost real-time imaging by radial k-space scanning

    International Nuclear Information System (INIS)

    Tacke, J.; Schorn, R.; Glowinski, A.; Grosskortenhaus, S.; Adam, G.; Guenther, R.W.; Rasche, V.

    1999-01-01

    Purpose: To test radial k-space scanning by MR fluoroscopy to guide and control MR-guided interstitial cryotherapy of the healthy pig brain. Methods: After MR tomographic planning of the approach, an MR-compatible experimental cryotherapy probe of 2.7 mm diameter was introduced through a 5 mm burr hole into the right frontal brain of five healthy pigs. The freeze-thaw cycles were imaged using a T 1 -weighted gradient echo sequence with radial k-space scanning in coronal, sagittal, and axial directions. Results: The high temporal resolution of the chosen sequence permits a continuous representation of the freezing process with good image quality and high contrast between ice and unfrozen brain parenchyma. Because of the interactive conception of the sequence the layer plane could be chosen as desired during the measurement. Ice formation was sharply demarcated, spherically configurated, and was free of signals. Its maximum diameter was 13 mm. Conclusions: With use of the novel, interactively controllable gradient echo sequence with radial k-space scanning, guidance of the intervention under fluoroscopic conditions with the advantages of MRT is possible. MR-guided cryotherapy allows a minimally-invasive, precisely dosable focal tissue ablation. (orig.) [de

  1. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  2. Visualization of the Flux Rope Generation Process Using Large Quantities of MHD Simulation Data

    Directory of Open Access Journals (Sweden)

    Y Kubota

    2013-03-01

    Full Text Available We present a new concept of analysis using visualization of large quantities of simulation data. The time development of 3D objects with high temporal resolution provides the opportunity for scientific discovery. We visualize large quantities of simulation data using the visualization application 'Virtual Aurora' based on AVS (Advanced Visual Systems and the parallel distributed processing at "Space Weather Cloud" in NICT based on Gfarm technology. We introduce two results of high temporal resolution visualization: the magnetic flux rope generation process and dayside reconnection using a system of magnetic field line tracing.

  3. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    Science.gov (United States)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  4. On Pták functions for bounded operators

    Directory of Open Access Journals (Sweden)

    Abdellah El Kinani

    2014-10-01

    Full Text Available The purpose of this paper is to prove that if the Pták function p is an operator norm, on \\mathcal{B}(E, associated to a norm | . |, then (E, | . | is a pseudo-Hilbert space. As a consequence, we obtain that if \\mathcal{B}(E  is a C*-algebra, then E is a Hilbert space.

  5. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    Directory of Open Access Journals (Sweden)

    Chih-Chung Ting

    2015-07-01

    Full Text Available Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods.

  6. Visualizing the Inner Product Space R[superscript m x n] in a MATLAB-Assisted Linear Algebra Classroom

    Science.gov (United States)

    Caglayan, Günhan

    2018-01-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…

  7. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  8. Search for CP violation using triple product asymmetries in $\\Lambda^{0}_{b}\\to pK^{-}\\pi^{+}\\pi^{-}$, $\\Lambda^{0}_{b}\\to pK^{-}K^{+}K^{-}$ and $\\Xi^{0}_{b}\\to pK^{-}K^{-}\\pi^{+}$ decays arXiv

    CERN Document Server

    INSPIRE-00258707; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Albero, A. Alfonso; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A.A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R.B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Atzeni, M.; Auriemma, G.; Babuschkin, I.; Bachmann, S.; Back, J.J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R.J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L.J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bordyuzhin, I.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T.J.V.; Bowen, E.; Bozzi, C.; Braun, S.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Perez, D.H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Chapman, M.G.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.F.; Chitic, S.G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P.E.L.; Clemencic, M.; Cliff, H.V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C.M.; Couturier, B.; Cowan, G.A.; Craik, D.C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Da Silva, C.L.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J.M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.T.; Decamp, D.; Del Buono, L.; Delaney, B.; Dembinski, H.P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Durham, J.M.; Dutta, D.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Ene, A.; Esen, S.; Evans, H.M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Lopes, L. Ferreira; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R.A.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fontana, M.; Fontanelli, F.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L.M.; Pardiñas, J. García; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O.G.; Giubega, L.; Gizdov, K.; Gligorov, V.V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I.V.; Gotti, C.; Govorkova, E.; Grabowski, J.P.; Graciani Diaz, R.; Granado Cardoso, L.A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B.R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S.C.; Hamilton, B.; Han, X.; Hancock, T.H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S.T.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hopchev, P.H.; Hu, W.; Huang, W.; Huard, Z.C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C.R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J.M.; Karodia, S.; Kazeev, N.; Kecke, M.; Keizer, F.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kim, K.E.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Kress, F.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A.K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.R.; Li, T.; Li, Y.; Li, Z.; Liang, X.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J.H.; Lucchesi, D.; Lucio Martinez, M.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M.W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Marangotto, D.; Maratas, J.; Marchand, J.F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Vidal, F. Martinez; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J.V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D.A.; Millard, E.; Minard, M.N.; Minzoni, L.; Mitzel, D.S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I.A.; Monteil, S.; Morandin, M.; Morello, M.J.; Morgunova, O.; Moron, J.; Morris, A.B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T.D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D.P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C.J.G.; Ossowska, A.; Otalora Goicochea, J.M.; Owen, P.; Oyanguren, A.; Pais, P.R.; Palano, A.; Palutan, M.; Panshin, G.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Pereima, D.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pietrzyk, G.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Lener, M. Poli; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G.J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Qin, J.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J.H.; Rama, M.; Ramos Pernas, M.; Rangel, M.S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A.C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Robbe, P.; Robert, A.; Rodrigues, A.B.; Rodrigues, E.; Rodriguez Lopez, J.A.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Rotondo, M.; Rudolph, M.S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J.J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D.M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H.F.; Schubiger, M.; Schune, M.H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E.S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B.G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Skidmore, N.; Skwarnicki, T.; Smith, I.T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M.D.; Soler, F.J.P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M.E.; Straticiuc, M.; Straumann, U.; Strokov, S.; Sun, J.; Sun, L.; Swientek, K.; Syropoulos, V.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tang, Z.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M.J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Aoude, R. Tourinho Jadallah; Tournefier, E.; Traill, M.; Tran, M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Regueiro, P. Vazquez; Vecchi, S.; van Veghel, M.; Velthuis, J.J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T.A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J.V.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitkovskiy, A.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J.A.; Vázquez Sierra, C.; Waldi, R.; Walsh, J.; Wang, J.; Wang, M.; Wang, Y.; Ward, D.R.; Wark, H.M.; Watson, N.K.; Websdale, D.; Weiden, A.; Weisser, C.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.R.J.; Williams, M.; Williams, T.; Wilson, F.F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S.A.; Wyllie, K.; Xie, Y.; Xu, M.; Xu, Q.; Xu, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K.A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J.B.; Zucchelli, S.

    A search for $C$P and $P$ violation using triple-product asymmetries is performed with $\\Lambda^{0}_{b}\\to pK^{-}\\pi^{+}\\pi^{-}$, $\\Lambda^{0}_{b}\\to pK^{-}K^{+}K^{-}$ and $\\Xi^{0}_{b}\\to pK^{-}K^{-}\\pi^{+}$ decays. The data sample corresponds to integrated luminosities of 1.0fb$^{-1}$ and 2.0fb$^{-1}$, recorded with the LHCb detector at centre-of-mass energies of 7TeV and 8TeV, respectively. The $CP$- and $P$-violating asymmetries are measured both integrating over all phase space and in specific phase-space regions. No significant deviation from $CP$ or $P$ symmetry is found.

  9. Developing Tests of Visual Dependency

    Science.gov (United States)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  10. Measurement of CP violation in the phase space of $B^{\\pm} \\rightarrow K^{+} K^{-} \\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+} \\pi^{-} \\pi^{\\pm}$ decays

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Adrover, Cosme; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Mar-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Dogaru, Marius; Donleavy, Stephanie; Dordei, Francesca; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorbounov, Petr; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hicks, Emma; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Li Gioi, Luigi; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Martynov, Aleksandr; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurice, Emilie; Mazurov, Alexander; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nomerotski, Andrey; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrick, Glenn; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Pérez-Calero Yzquierdo, Antonio; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Phan, Anna; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Straticiuc, Mihai; Straumann, Ulrich; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The charmless decays $B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}$ and $B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}$ are reconstructed in a data set, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ of pp collisions at a center-of-mass energy of 7 TeV, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured to be $A_{CP}(B^{\\pm} \\rightarrow K^{+}K^{-}\\pi^{\\pm}) =-0.141 \\pm 0.040 (stat) \\pm 0.018 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$ and $A_{CP}(B^{\\pm} \\rightarrow \\pi^{+}\\pi^{-}\\pi^{\\pm}) = 0.117 \\pm 0.021 (stat) \\pm 0.009 (syst) \\pm 0.007 (J/\\psi K^{\\pm})$, where the third uncertainty is due to the CP asymmetry of the $B^{\\pm} \\rightarrow J/\\psi K^{\\pm}$ reference mode. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

  11. Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics

    OpenAIRE

    Andrienko, N.; Andrienko, G.; Rinzivillo, S.

    2016-01-01

    A spatially abstracted transportation network is a graph where nodes are territory compartments (areas in geographic space) and edges, or links, are abstract constructs, each link representing all possible paths between two neighboring areas. By applying visual analytics techniques to vehicle traffic data from different territories, we discovered that the traffic intensity (a.k.a. traffic flow or traffic flux) and the mean velocity are interrelated in a spatially abstracted transportation net...

  12. Visual Thinking, Algebraic Thinking, and a Full Unit-Circle Diagram.

    Science.gov (United States)

    Shear, Jonathan

    1985-01-01

    The study of trigonometric functions in terms of the unit circle offer an example of how students can learn algebraic relations and operations while using visually oriented thinking. Illustrations are included. (MNS)

  13. Assessing the full effects of public investment in space

    NARCIS (Netherlands)

    Clark, J.; Koopmans, C.C.; Hof, B.; Knee, P.; Lieshout, R.; Simmonds, P.; Wokke, F.

    2014-01-01

    Many space-related impact studies have been carried out in the past, but there is no conclusive, comprehensive evaluation of the economic and social effects of public investments in space. Such evaluations are not easy to perform, for several reasons: the space sector is not a recognised category in

  14. Impact mitigation using kinematic constraints and the full space parameterization method

    Energy Technology Data Exchange (ETDEWEB)

    Morgansen, K.A.; Pin, F.G.

    1996-02-01

    A new method for mitigating unexpected impact of a redundant manipulator with an object in its environment is presented. Kinematic constraints are utilized with the recently developed method known as Full Space Parameterization (FSP). System performance criterion and constraints are changed at impact to return the end effector to the point of impact and halt the arm. Since large joint accelerations could occur as the manipulator is halted, joint acceleration bounds are imposed to simulate physical actuator limitations. Simulation results are presented for the case of a simple redundant planar manipulator.

  15. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Choi, Young Hun; Cheon, Jung Eun; Lee, So Mi; Cho, Hyun Hae; Kim, Woo Sun; Kim, In One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Shin, Su Mi [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2015-06-15

    Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI. To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging. Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence. BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P < 0.001), reduced respiratory motion artifact (0.51 ± 0.56 vs. 1.89 ± 0.68, P < 0.001), and improved lesion conspicuity (3.54 ± 0.88 vs. 2.92 ± 0.77, P = 0.006) compared to respiratory triggering turbo spin-echo (TSE) sequences. The bowel motion artifact scores were similar for both sequences (1.65 ± 0.77 vs. 1.79 ± 0.74, P = 0.691). BLADE introduced a radial artifact that was not observed on the respiratory triggering-TSE images (1.10 ± 0.85 vs. 0, P < 0.001). BLADE was associated with diminished signal variation compared with respiratory triggering-TSE in the liver, spleen and air (P < 0.001). The radial k-space sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences. (orig.)

  16. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  17. K2-29 b/WASP-152 b: AN ALIGNED AND INFLATED HOT JUPITER IN A YOUNG VISUAL BINARY

    International Nuclear Information System (INIS)

    Santerne, A.; Barros, S. C. C.; Mena, E. Delgado; Montalto, M.; Sousa, S. G.; Adibekyan, V.; Hébrard, G.; Lillo-Box, J.; Barrado, D.; Armstrong, D. J.; Pollacco, D.; Osborn, H. P.; Demangeon, O.; Deleuil, M.; Debackere, A.; Arlic, G.; Barthe, G.; Abe, L.; Almenara, J.-M.; André, P.

    2016-01-01

    In the present paper we report the discovery of a new hot Jupiter, K2-29 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25 days, a mass of 0.73 ± 0.04 M ♃ , and a radius of 1.19 ± 0.02 R ♃ . The host star is a relatively bright ( V = 12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of lithium, we find that the system might be as young as ∼450 Myr. The observation of the Rossiter–McLaughlin effect shows that the planet is aligned with respect to the stellar spin. Given the deep transit (20 mmag), the magnitude of the star and the presence of a nearby stellar companion, the planet is a good target for both space- and ground-based transmission spectroscopy, in particular in the near-infrared where both stars are relatively bright.

  18. K2-29 b/WASP-152 b: AN ALIGNED AND INFLATED HOT JUPITER IN A YOUNG VISUAL BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Santerne, A.; Barros, S. C. C.; Mena, E. Delgado; Montalto, M.; Sousa, S. G.; Adibekyan, V. [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Hébrard, G. [Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre and Marie Curie, 98bis boulevard Arago, F-75014 Paris (France); Lillo-Box, J.; Barrado, D. [Departamento de Astrofsica, Centro de Astrobiologa (CSIC-INTA), ESAC campus E-28692 Villanueva de la Caada (Madrid) (Spain); Armstrong, D. J.; Pollacco, D.; Osborn, H. P. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Demangeon, O.; Deleuil, M. [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille UMR 7326, F-13388, Marseille (France); Debackere, A.; Arlic, G.; Barthe, G. [European Pro/Am Network of Exoplanetary Transit Observers (France); Abe, L. [Laboratoire Lagrange, UMR7239, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d’Azur, F-06300 Nice (France); Almenara, J.-M. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); André, P., E-mail: alexandre.santerne@astro.up.pt [Observatoire de Belesta-en-Lauragais-Assoc. Astronomie Adagio 30 Route de Revel, F-31450 Varennes (France); and others

    2016-06-10

    In the present paper we report the discovery of a new hot Jupiter, K2-29 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25 days, a mass of 0.73 ± 0.04 M {sub ♃}, and a radius of 1.19 ± 0.02 R {sub ♃}. The host star is a relatively bright ( V = 12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of lithium, we find that the system might be as young as ∼450 Myr. The observation of the Rossiter–McLaughlin effect shows that the planet is aligned with respect to the stellar spin. Given the deep transit (20 mmag), the magnitude of the star and the presence of a nearby stellar companion, the planet is a good target for both space- and ground-based transmission spectroscopy, in particular in the near-infrared where both stars are relatively bright.

  19. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization...... techniques to give a rapid overview of traffic data. We illustrate our approach as a case study for traffic visualization systems, using datasets from the city of Oulu that can be extended to other city planning activities. We also report the feedback of real users (traffic management employees, traffic police...

  20. Gauge constructs and immersions of four-dimensional spacetimes in (4 + k)-dimensional flat spaces: algebraic evaluation of gravity fields

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2003-01-01

    Local action of the fundamental group SO(a, 4 + k - a) is used to show that any solution of an algebraically closed differential system, that is generated from matrix Lie algebra valued 1-forms on a four-dimensional parameter space, will generate families of immersions of four-dimensional spacetimes R 4 in flat (4 + k)-dimensional spaces M 4+k with compatible signature. The algorithm is shown to work with local action of SO(a, 4 + k - a) replaced by local action of GL(4 + k). Immersions generated by local action of the Poincare group on the target spacetime are also obtained. Evaluations of the line elements, immersion loci and connection and curvature forms of these immersions are algebraic. Families of immersions that depend on one or more arbitrary functions are calculated for 1 ≤ k ≤ 4. Appropriate sections of graphs of the conformal factor for two and three interacting line singularities immersed in M 6 are given in appendix A. The local immersion theorem given in appendix B shows that all local solutions of the immersion problem are obtained by use of this method and an algebraic extension in exceptional cases

  1. Visual acuity and full-field electroretinography in patients with Usher's syndrome

    OpenAIRE

    Mendieta, Luana; Berezovsky, Adriana; Salomão, Solange Rios; Sacai, Paula Yuri; Pereira, Josenilson Martins; Fantini, Sérgio Costa

    2005-01-01

    A síndrome de Usher (SU) é doença autossômica recessiva caracterizada por perda auditiva neuro-sensorial acompanhada de retinose pigmentária (RP). OBJETIVO: Analisar a eletrorretinografia de campo total (ERG) e a acuidade visual (AV) em pacientes com síndrome de Usher tipos I e II. MÉTODOS: Foram estudadas as respostas da eletrorretinografia de campo total e a acuidade visual de 22 pacientes (idade média = 26,8±16,8 anos). Destes, 17 tinham síndrome de Usher tipo I e 5 tinham síndrome ...

  2. Near-Full Genome Characterisation of Two Natural Intergenotypic 2k/1b Recombinant Hepatitis C Virus Isolates

    Directory of Open Access Journals (Sweden)

    Victoria L. Demetriou

    2011-01-01

    Full Text Available Few natural intergenotypic hepatitis C virus (HCV recombinants have been characterised, and only RF1_2k/1b has demonstrated widespread transmission. The near-full length genome sequences for two cases of 2k/1b recombinants (CYHCV037 and CYHCV093 sampled in Cyprus were obtained using strain-specific RT-PCR amplification and sequencing protocols. Sequence analysis confirmed their similarity with the original RF1_2k/1b strain from St. Petersburg, N687. These two isolates significantly contribute to the sequence data available on this recombinant and confirm its increasing spread among individuals from Eastern Europe, and its association with transmission through intravenous drug use. Phylogenetic analyses reveal clustering of the sequence 3′ to the recombination point, not seen in the topology of the 5′ sequences, implying a more complicated evolutionary history than that held to date. The increasing cases of HCV recombinant strains underline the requirement of their contribution to the standardised rules of HCV classification and nomenclature, molecular epidemiology, diagnosis, and treatment.

  3. Robust K-Median and K-Means Clustering Algorithms for Incomplete Data

    Directory of Open Access Journals (Sweden)

    Jinhua Li

    2016-01-01

    Full Text Available Incomplete data with missing feature values are prevalent in clustering problems. Traditional clustering methods first estimate the missing values by imputation and then apply the classical clustering algorithms for complete data, such as K-median and K-means. However, in practice, it is often hard to obtain accurate estimation of the missing values, which deteriorates the performance of clustering. To enhance the robustness of clustering algorithms, this paper represents the missing values by interval data and introduces the concept of robust cluster objective function. A minimax robust optimization (RO formulation is presented to provide clustering results, which are insensitive to estimation errors. To solve the proposed RO problem, we propose robust K-median and K-means clustering algorithms with low time and space complexity. Comparisons and analysis of experimental results on both artificially generated and real-world incomplete data sets validate the robustness and effectiveness of the proposed algorithms.

  4. Measurement of CP violation in the phase space of B± → K+ K- π± and B± → π+ π- π± decays.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-01-10

    The charmless decays B± → K+ K- π± and B± → π+ π- π± are reconstructed in a data set of pp collisions with an integrated luminosity of 1.0  fb(-1) and center-of-mass energy of 7 TeV, collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured to be A(CP)(B± → K+ K- π±) = -0.141±0.040  (stat)±0.018 (syst)±0.007(J/ψ K±) and A(CP)(B± → π+ π- π±) = 0.117±0.021 (stat)±0.009 (syst)±0.007(J/ψ K±), where the third uncertainty is due to the CP asymmetry of the B± → J/ψK± reference mode. In addition to the inclusive CP asymmetries, larger asymmetries are observed in localized regions of phase space.

  5. The Multivariate Müntz-Szasz Problem in Weighted Banach Space on Rn

    Directory of Open Access Journals (Sweden)

    Xiangdong Yang

    2014-01-01

    Full Text Available The purpose of this paper is to give an extension of Müntz-Szasz theorems to multivariable weighted Banach space. Denote by {λk=(λk1,λk2,...,λkn}k=1∞ a sequence of real numbers in R+n. The completeness of monomials {tλk} in Cα is investigated, where Cα is the weighted Banach spaces which consist of complex continuous functions f defined on Rn with f(t exp(-α(t vanishing at infinity in the uniform norm.

  6. Visual-Motor Learning Using Haptic Devices: How Best to Train Surgeons?

    Directory of Open Access Journals (Sweden)

    Oscar Giles

    2012-05-01

    Full Text Available Laparoscopic surgery has revolutionised medicine but requires surgeons to learn new visual-motor mappings. The optimal method for training surgeons is unknown. For instance, it may be easier to learn planar movements when training is constrained to a plane, since this forces the surgeon to develop an appropriate perceptual-motor map. In contrast, allowing the surgeon to move without constraints could improve performance because this provides greater experience of the control dynamics of the device. In order to test between these alternatives, we created an experimental tool that connected a commercially available robotic arm with specialised software that presents visual stimuli and objectively records kinematics. Participants were given the task of generating a series of aiming movements to move a visual cursor to a series of targets. The actions required movement along a horizontal plane, whereas the visual display was a screen positioned perpendicular to this plane (ie, vertically. One group (n=8 received training where the force field constrained their movement to the correct plane of action, whilst a second group (n=8 trained without constraints. On test trials (after training the unconstrained group showed better performance, as indexed by reduced movement duration and reduced path length. These results show that participants who explored the entire action space had an advantage, which highlights the importance of experiencing the full dynamics of a control device and the action space when learning a new visual-motor mapping.

  7. Lightning Protection for the Orion Space Vehicle

    Science.gov (United States)

    Scully, Robert

    2015-01-01

    The Orion space vehicle is designed to requirements for both direct attachment and indirect effects of lightning. Both sets of requirements are based on a full threat 200kA strike, in accordance with constraints and guidelines contained in SAE ARP documents applicable to both commercial and military aircraft and space vehicles. This paper describes the requirements as levied against the vehicle, as well as the means whereby the design shows full compliance.

  8. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    Science.gov (United States)

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  9. The Space-Time Cube as part of a GeoVisual Analytics Environment to support the understanding of movement data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, M. J.; van Elzakker, C. P. J. M.

    2015-01-01

    This paper reports the results of an empirical usability experiment on the performance of the space-time cube in a GeoVisual analytics environment. It was developed to explore movement data based on the requirements of human geographers. The interactive environment consists of multiple coordinated...

  10. Audiovisual Interactions in Front and Rear Space

    Directory of Open Access Journals (Sweden)

    Christopher Montagne

    2018-05-01

    Full Text Available The human visual and auditory systems do not encode an entirely overlapped space when static head and body position are maintained. While visual capture of sound source location in the frontal field is known to be immediate and direct, visual influence in the rear auditory space behind the subject remains under-studied. In this study we investigated the influence of presenting frontal LED flashes on the perceived location of a phantom sound source generated using time-delay-based stereophony. Our results show that frontal visual stimuli affected auditory localization in two different ways – (1 auditory responses were laterally shifted (left or right toward the location of the light stimulus and (2 auditory responses were more often in the frontal field. The observed visual effects do not adhere to the spatial rule of multisensory interaction with regard to the physical proximity of cues. Instead, the influence of visual cues interacted closely with front–back confusions in auditory localization. In particular, visually induced shift along the left–right direction occurred most often when an auditory stimulus was localized in the same (frontal field as the light stimulus, even when the actual sound sources were presented from behind a subject. Increasing stimulus duration (from 15-ms to 50-ms significantly mitigated the rates of front–back confusion and the associated effects of visual stimuli. These findings suggest that concurrent visual stimulation elicits a strong frontal bias in auditory localization and confirm that temporal integration plays an important role in decreasing front–back errors under conditions requiring multisensory spatial processing.

  11. K-homology and K-cohomology constructions of relations

    International Nuclear Information System (INIS)

    Abd El-Sattar, A. Dabbour; Bayoumy, F.M.

    1990-08-01

    One of the important homology (cohomology) theories, based on systems of covering of the space, is the homology (cohomology) theory of relations. In the present work, by using the idea of K-homology and K-cohomology groups different varieties of the Dowker's theory are introduced and studied. These constructions are defined on the category of pairs of topological spaces and over a pair of coefficient groups. (author). 14 refs

  12. MELAHIRKAN IMPERATIF MORALITAS DALAM KARYA VISUAL

    Directory of Open Access Journals (Sweden)

    Obed Bima Wicandra

    2005-01-01

    Full Text Available Visual aesthetics in visual arts are more and more questioned in the context of open global culture. Works that lead to violence%2C pornography%2C lies%2C and other things far from morality and ethics%2C are faced with public s identity to follow their desire to fulfill their consumtive needs. The blossoming of visual works and their media stimulates the visual creators in expressing ideas and imagination. Created visual works must support a better cultural direction for human life. Faith in its relation to God plays a role in achieveing space for interaction%2C so that visual works can reflect codes or symbols in the cycle of ideology or cultural values that respect the essence of faith. Abstract in Bahasa Indonesia : Estetika visual dalam seni rupa semakin dipertanyakan dalam konteks budaya global yang terbuka. Karya yang menjurus kekerasan%2C pornografi%2C kebohongan dan hal lain yang jauh dari moral dan etika diperhadapkan dengan identitas masyarakat yang mengikuti hasrat dalam memenuhi kebutuhan konsumtifnya. Karya-karya visual yang semakin berkembang beserta dengan medianya merangsang kreator visual dalam menuangkan gagasan dan imajinasi. Bagi peradaban kehidupan manusia%2C karya-karya visual yang dibuat harus mendukung arah peradaban yang lebih baik. Di sini peran iman dalam hubungannya dengan Tuhan mendapat ruang berinteraksi%2C sehingga karya visual yang dihasilkan mencerminkan kode-kode maupun simbol dalam perputaran ideologi atau nilai-nilai budaya yang menjunjung tinggi hakikat keimanan. visual aesthetics%2C moral imperative%2C faith.

  13. Energy-filtered real- and k-space secondary and energy-loss electron imaging with Dual Emission Electron spectro-Microscope: Cs/Mo(110)

    Energy Technology Data Exchange (ETDEWEB)

    Grzelakowski, Krzysztof P., E-mail: k.grzelakowski@opticon-nanotechnology.com

    2016-05-15

    Since its introduction the importance of complementary k{sub ||}-space (LEED) and real space (LEEM) information in the investigation of surface science phenomena has been widely demonstrated over the last five decades. In this paper we report the application of a novel kind of electron spectromicroscope Dual Emission Electron spectroMicroscope (DEEM) with two independent electron optical channels for reciprocal and real space quasi-simultaneous imaging in investigation of a Cs covered Mo(110) single crystal by using the 800 eV electron beam from an “in-lens” electron gun system developed for the sample illumination. With the DEEM spectromicroscope it is possible to observe dynamic, irreversible processes at surfaces in the energy-filtered real space and in the corresponding energy-filtered k{sub ǁ}-space quasi-simultaneously in two independent imaging columns. The novel concept of the high energy electron beam sample illumination in the cathode lens based microscopes allows chemically selective imaging and analysis under laboratory conditions. - Highlights: • A novel concept of the electron sample illumination with “in-lens” e- gun is realized. • Quasi-simultaneous energy selective observation of the real- and k-space in EELS mode. • Observation of the energy filtered Auger electron diffraction at Cs atoms on Mo(110). • Energy-loss, Auger and secondary electron momentum microscopy is realized.

  14. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  15. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  16. Status of CEA reactor studies for a 200 kWe turboelectric Space Power System

    International Nuclear Information System (INIS)

    Carre, F.; Gervaise, F.; Proust, E.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1986-01-01

    A reference design for a 200 kWe Space Nuclear Power System has been developed by the CNES and CEA Agencies of the French Government in order to assess within a first study phase running from mid 1984 to mid 1986, the key feasibility issues and the development cost of a Space Power System compatible with the version of the European launcher (ARIANE V), that will be available after 1995, and with adequate power range and lifetime performances for the missions considered at that time. The heat from a fast spectrum lithium cooled reactor is converted by a turboelectric system, selected for its technological readiness and for its advantage over thermionics and thermoelectricity, of minimizing the total mass of 100 to 300 kWe power systems, considering the available radiator area afforded by the specific ARIANE V geometrical features. A heat pipe radiator is preferred to an equivalent gas cooled system, for the increased reliability brought by the large number of independent cooling elements. The successive topics addressed in the paper, include a description of the system main components and steady state operating conditions, and the present views about the start up procedure and the reactor control

  17. Visual Descriptor Learning for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang

    2016-01-01

    by the task of grasping unknown objects given visual sensor information. The contributions from this thesis stem from three works that all relate to the task of grasping unknown objects but with particular focus on the visual representation part of the problem. First an investigation of a visual feature space...... consisting of surface features was performed. Dimensions in the visual space were varied and the effects were evaluated with the task of grasping unknown object. The evaluation was performed using a novel probabilistic grasp prediction approach based on neighbourhood analysis. The resulting success......-rates for predicting grasps were between 75% and 90% depending on the object class. The investigations also provided insights into the importance of selecting a proper visual feature space when utilising it for predicting affordances. As a consequence of the gained insights, a semi-local surface feature, the Sliced...

  18. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  19. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    Science.gov (United States)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  20. The Visualization of the Space Probability Distribution for a Particle Moving in a Double Ring-Shaped Coulomb Potential

    Directory of Open Access Journals (Sweden)

    Yuan You

    2018-01-01

    Full Text Available The analytical solutions to a double ring-shaped Coulomb potential (RSCP are presented. The visualizations of the space probability distribution (SPD are illustrated for the two- (contour and three-dimensional (isosurface cases. The quantum numbers (n,l,m are mainly relevant for those quasi-quantum numbers (n′,l′,m′ via the double RSCP parameter c. The SPDs are of circular ring shape in spherical coordinates. The properties for the relative probability values (RPVs P are also discussed. For example, when we consider the special case (n,l,m=(6,5,0, the SPD moves towards two poles of z-axis when P increases. Finally, we discuss the different cases for the potential parameter b, which is taken as negative and positive values for c>0. Compared with the particular case b=0, the SPDs are shrunk for b=-0.5, while they are spread out for b=0.5.

  1. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept

    NARCIS (Netherlands)

    Roosink, M.; Robitaille, N.; McFadyen, B.J.; Hebert, L.J.; Jackson, P.L.; Bouyer, L.J.; Mercier, C.

    2015-01-01

    BACKGROUND: Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback.

  2. Sex Differences in Performance with the Hand and Arm in near and Far Space: A Possible Effect of Tool Use

    Directory of Open Access Journals (Sweden)

    Geoff Sanders

    2007-10-01

    Full Text Available Using novel tasks, we tested two predictions from the hunter-gatherer hypothesis concerning sex differences in the motor control of hand and arm and in the visual processing of near and far space. In Study 1 we replicated earlier findings by demonstrating that women scored higher with the hand while men scored higher with the arm. Study 2 tested the motor and visual predictions concurrently and showed that the Muscle*Sex interaction, seen in Study 1, occurs in far as well as near space. However, we failed to confirm that women perform better with visual information from near and men from far space. Instead the relative performance of women and men was the same in far as it was in near space. Drawing on evidence from studies of selective visual neglect we suggest that this outcome arose because tool use causes far space to be re-mapped as near space. Finally, the selective visual neglect literature indicates that the processing of far and near space is located in the ventral and dorsal cortical streams, previously described as two “what”/“where” visual systems. We draw attention to their additional “there”/“here” functions that are sex dimorphic and, as we have shown, modulated by tool use.

  3. A Novel Visual Data Mining Module for the Geographical Information System gvSIG

    Directory of Open Access Journals (Sweden)

    Romel Vázquez-Rodríguez

    2013-01-01

    Full Text Available The exploration of large GIS models containing spatio-temporal information is a challenge. In this paper we propose the integration of scientific visualization (ScVis techniques into geographic information systems (GIS as an alternative for the visual analysis of data. Providing GIS with such tools improves the analysis and understanding of datasets with very low spatial density and allows to find correlations between variables in time and space. In this regard, we present a new visual data mining tool for the GIS gvSIG. This tool has been implemented as a gvSIG module and contains several ScVis techniques for multiparameter data with a wide range of possibilities to explore interactively the data. The developed module is a powerful visual data mining and data visualization tool to obtain knowledge from multiple datasets in time and space. A real case study with meteorological data from Villa Clara province (Cuba is presented, where the implemented visualization techniques were used to analyze the available datasets. Although it is tested with meteorological data, the developed module is of general application in the sense that it can be used in multiple application fields related with Earth Sciences.

  4. I See What You Mean: Visual Literacy, K-8. Second Edition

    Science.gov (United States)

    Moline, Steve

    2011-01-01

    Some educators may view diagrams, pictures, and charts as nice add-on tools for students who are visual thinkers. But Steve Moline sees visual literacy as fundamental to learning and to what it means to be human. In Moline's view, we are all bilingual. Our second language, which we do not speak but which we read and write every day, is visual.…

  5. Maps of intersections in visual education: artistic event as pedagogy

    Directory of Open Access Journals (Sweden)

    Belidson Dias

    2013-12-01

    Full Text Available This article explores the artistic event as pedagogical in Visual Education. It lies in the encounter between the Pictorial Turn in education and the pedagogical turn in art. Drawing from Cultural Pedagogy it seeks to cover how and under what conditions an event can be both an educational and artistic event at the same and how are instituted the spaces that promote educational events as aesthetic experiences. In this article it was pointed out conceptual and methodological bases for distinguishing the space of intersection between art and Visual Education and its political and cultural implications: Participant Art, Cultural Pedagogy and their relationships among politics and aesthetics. In this sense it analyzes the crossings of frontiers both in art and education and creates possibilities for an understanding of pedagogy of dissent.

  6. Imaged-Based Visual Servo Control for a VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Liying Zou

    2017-01-01

    Full Text Available This paper presents a novel control strategy to force a vertical take-off and landing (VTOL aircraft to accomplish the pinpoint landing task. The control development is based on the image-based visual servoing method and the back-stepping technique; its design differs from the existing methods because the controller maps the image errors onto the actuator space via a visual model which does not contain the depth information of the feature point. The novelty of the proposed method is to extend the image-based visual servoing technique to the VTOL aircraft control. In addition, the Lyapunov theory is used to prove the asymptotic stability of the VTOL aircraft visual servoing system, while the image error can converge to zero. Furthermore, simulations have been also conducted to demonstrate the performances of the proposed method.

  7. Knowledge acquisition with domain experts on the aspects of use of visual variables in the Space Time Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2013-01-01

    participants are selected purposefully based on the specific criteria in order to say something on the topic that has to be discussed (Nielsen, 1993). Accordingly, the main objective for focus group interview was to discuss the use of the visual variables based on the cartographic design theory (Bertin, 1983......The Space – Time Cube (STC) is a visual representation developed at the end of the 20th century for understanding the spatio-temporal aspects in human’s everyday life (Hägerstrand, 1970). Since its introduction, it has been widely used in a various discipline (Kraak, 2003; Demšar and Virrantaus...... to other visual representations. However, the usability metrics of the cartographic design theory for the STC content still remain to be unexplored. Therefore, this study particularly focused on the evaluation of the cartographic design aspects into the STC. This study was conducted in two different...

  8. Distributed Visualization

    Data.gov (United States)

    National Aeronautics and Space Administration — Distributed Visualization allows anyone, anywhere, to see any simulation, at any time. Development focuses on algorithms, software, data formats, data systems and...

  9. Visual Education

    DEFF Research Database (Denmark)

    Buhl, Mie; Flensborg, Ingelise

    2010-01-01

    The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating the functi......The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating...... to emerge in the interlocutory space of a global visual repertoire and diverse local interpretations. The two perspectives represent challenges for future visual education which require visual competences, not only within the arts but also within the subjects of natural sciences, social sciences, languages...

  10. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    Science.gov (United States)

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  11. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    Science.gov (United States)

    Tracey, Jeff A; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R; Fisher, Robert N

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  12. Visualizing the Heliosphere

    Science.gov (United States)

    Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  13. White blood cell segmentation by color-space-based k-means clustering.

    Science.gov (United States)

    Zhang, Congcong; Xiao, Xiaoyan; Li, Xiaomei; Chen, Ying-Jie; Zhen, Wu; Chang, Jun; Zheng, Chengyun; Liu, Zhi

    2014-09-01

    White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.

  14. Visualization Techniques in Space and Atmospheric Sciences

    Science.gov (United States)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  15. Visual quality evaluation of urban commercial streetscape for the development of landscape visual planning system in provincial street corridors in Malang, Indonesia

    Science.gov (United States)

    Santosa, H.; Ernawati, J.; Wulandari, L. D.

    2018-03-01

    The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.

  16. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Romain Helleringer

    2017-11-01

    Full Text Available During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD. Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

  17. Performance of a neutron transport code with full phase space decomposition on the Cray Research T3D

    International Nuclear Information System (INIS)

    Dorr, M.R.; Salo, E.M.

    1995-01-01

    We present performance results obtained on a 128-node Cray Research T3D computer by a neutron transport code implementing a standard mtiltigroup, discrete ordinates algorithm on a three-dimensional Cartesian grid. After summarizing the implementation strategy used to obtain a full decomposition of phase space (i.e., simultaneous parallelization of the neutron energy, directional and spatial variables), we investigate the scalability of the fundamental source iteration step with respect to each phase space variable. We also describe enhancements that have enabled performance rates approaching 10 gigaflops on the full 128-node machine

  18. Resolving kinematic redundancy with constraints using the FSP (Full Space Parameterization) approach

    International Nuclear Information System (INIS)

    Pin, F.G.; Tulloch, F.A.

    1996-01-01

    A solution method is presented for the motion planning and control of kinematically redundant serial-link manipulators in the presence of motion constraints such as joint limits or obstacles. Given a trajectory for the end-effector, the approach utilizes the recently proposed Full Space Parameterization (FSP) method to generate a parameterized expression for the entire space of solutions of the unconstrained system. At each time step, a constrained optimization technique is then used to analytically find the specific joint motion solution that satisfies the desired task objective and all the constraints active during the time step. The method is applicable to systems operating in a priori known environments or in unknown environments with sensor-based obstacle detection. The derivation of the analytical solution is first presented for a general type of kinematic constraint and is then applied to the problem of motion planning for redundant manipulators with joint limits and obstacle avoidance. Sample results using planar and 3-D manipulators with various degrees of redundancy are presented to illustrate the efficiency and wide applicability of constrained motion planning using the FSP approach

  19. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  20. Acuidade visual e eletrorretinografia de campo total em pacientes com síndrome de Usher Visual acuity and full-field electroretinography in patients with Usher's syndrome

    Directory of Open Access Journals (Sweden)

    Luana Mendieta

    2005-04-01

    Full Text Available A síndrome de Usher (SU é doença autossômica recessiva caracterizada por perda auditiva neuro-sensorial acompanhada de retinose pigmentária (RP. OBJETIVO: Analisar a eletrorretinografia de campo total (ERG e a acuidade visual (AV em pacientes com síndrome de Usher tipos I e II. MÉTODOS: Foram estudadas as respostas da eletrorretinografia de campo total e a acuidade visual de 22 pacientes (idade média = 26,8±16,8 anos. Destes, 17 tinham síndrome de Usher tipo I e 5 tinham síndrome de Usher tipo II. RESULTADOS: A acuidade visual média do grupo síndrome de Usher I foi de 0,9 logMAR (20/160, equivalente de Snellen e do grupo síndrome de Usher II de 0,4 logMAR (20/50, equivalente de Snellen. As respostas dos bastonetes e as máximas respostas mostraram-se não detectáveis nos dois grupos. A amplitude média dos potenciais oscilatórios foi de 14,5 µV±6,1 na síndrome de Usher I e na síndrome de Usher II de 12,6 µV±5,2. As respostas de cones foram não detectáveis em 95% dos pacientes com síndrome de Usher I e em 100% dos pacientes com síndrome de Usher II. A amplitude média do flicker a 30 Hz nos pacientes com síndrome de Usher I foi de 3,1 µV±4,1 e do tempo de culminação de 34,0ms±6,2; nos pacientes com síndrome de Usher II a média de amplitude foi de 1,0 mV±0,6 e do tempo de culminação de 35,8 ms±3,1. CONCLUSÃO: A acuidade visual mostrou-se relativamente preservada nos dois grupos, porém com melhores resultados no grupo de síndrome de Usher II. Os achados eletrorretinográficos mostraram-se grandemente reduzidos em ambos os grupos, com a maioria dos pacientes apresentando respostas não detectáveis de bastonetes e cones.PURPOSE: Usher's syndrome (US is a group of genetically distinct autossomal conditions, characterized by sensorineural hearing loss accompanied by a retinal dystrophy indistinguishable from retinitis pigmentosa (RP. The purpose of this study was to analyze full-field electroretinography (ERG

  1. Semantic Representations in 3D Perceptual Space

    Directory of Open Access Journals (Sweden)

    Suncica Zdravkovic

    2011-05-01

    Full Text Available Barsalou's (1999 perceptual theory of knowledge echoes the pre-20th century tradition of conceptualizing all knowledge as inherently perceptual. Hence conceptual space has an infinite number of dimensions and heavily relies on perceptual experience. Osgood's (1952 semantic differential technique was developed as a bridge between perception and semantics. We updated Osgood's methodology in order to investigate current issues in visual cognition by: (1 using a 2D rather than a 1D space to place the concepts, (2 having dimensions that were perceptual while the targets were conceptual, (3 coupling visual experience with another two perceptual domains (audition and touch, (4 analyzing the data using MDS (not factor analysis. In three experiments, subjects (N = 57 judged five concrete and five abstract words on seven bipolar scales in three perceptual modalities. The 2D space led to different patterns of response compared to the classic 1D space. MDS revealed that perceptual modalities are not equally informative for mapping word-meaning distances (Mantel min = −.23; Mantel max = .88. There was no reliable differences due to test administration modality (paper vs. computer, nor scale orientation. The present findings are consistent with multidimensionality of conceptual space, a perceptual basis for knowledge, and dynamic characteristics of concepts discussed in contemporary theories.

  2. Karakter Visual Keindonesiaan dalam Iklan Cetak di Indonesia

    Directory of Open Access Journals (Sweden)

    Didit Widiatmoko Suwardikun

    2008-07-01

    Full Text Available Many have tried to explore the unified identity character of an Indonesian, arousing certain tribal cultures to visually represent “Indonesian” on apparent bestowed upon Indonesia as a nation of multi-cultures. This is clearly be seen in advertisements where the expressed visuals represent periods, societal forms, political, and economical situation according to the allotted time and space. Thus, visuals on advertisements may serve as clues to understand the significance of expressions as “Indonesian” out of the memory of how things were and were done and therefore ought to be done. This study explores visuals from the advertisements of the past to understand the spirit of Indonesia as a nation for the purpose of tomorrow. The study looked into visuals of the advertisements from the Dutch colonial era, Japanese occupation period, the birth of a nation in 1950s, the new order (1970s-1990s, and end with those of reform order (2000s; in order to portray “Indonesian” in terms of figure, behavior, and attitude of a nation. The paper discusses visuals of the past to model the present and future of an “Indonesian”.

  3. Visualizing the history of living spaces.

    Science.gov (United States)

    Ivanov, Yuri; Wren, Christopher; Sorokin, Alexander; Kaur, Ishwinder

    2007-01-01

    The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants' behavior in the context of an entire building in a way that is only minimally intrusive to the occupants' privacy.

  4. A Butterfly Diagram and Carrington Maps for Century-long CA II K Spectroheliograms from The Kodaikanal Observatory

    Science.gov (United States)

    Chatterjee, Subhamoy; Banerjee, Dipankar; Ravindra, B.

    2016-08-01

    The century-long (1907-2007) Ca II K spectroheliograms from the Kodaikanal Solar Observatory (KSO) are calibrated, processed, and analyzed to follow the evolution of the bright on-disc structures called plages, possible representatives of magnetic activity on the Sun. This is the longest data set studied in Ca II K to date, covering about 9.5 cycles of 11 yr periods. Plages are segmented with area ≥slant 1 {{arcmin}}2 using global thresholds for individual full disc images and subsequent application of a morphological closing operation. The plage index is calculated and is seen to have a close positive correlation with the fractional disc area covered by plages. The newly generated plage area cycle (from KSO) was compared with the same from the Mount Wilson Observatory (correlation 95.6%) for the overlapping years, I.e., 1915-2000. This study illustrates the time-latitude distribution of plage centroids by rendering a butterfly diagram (as observed for sunspots). The 3D visualization of the diagram shows one-to-one mapping between plage location, time, and area. This work further delineates the positional correlation between magnetic patches and plage regions through the comparison of synoptic maps derived from both KSO Ca II K images and space-based full disc line-of-sight magnetograms. Regular synoptic magnetograms from ground-based observatories are available only after 1970s. Thus the long term Ca II K data from KSO can be used as a proxy for estimating magnetic activity locations and their strengths at earlier times.

  5. Ideal Convergence of k-Positive Linear Operators

    Directory of Open Access Journals (Sweden)

    Akif Gadjiev

    2012-01-01

    Full Text Available We study some ideal convergence results of k-positive linear operators defined on an appropriate subspace of the space of all analytic functions on a bounded simply connected domain in the complex plane. We also show that our approximation results with respect to ideal convergence are more general than the classical ones.

  6. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  7. Visual Middle-Out Modeling of Problem Spaces

    DEFF Research Database (Denmark)

    Valente, Andrea

    2009-01-01

    Modeling is a complex and central activity in many domains. Domain experts and designers usually work by drawing and create models from the middle-out; however, visual and middle-out style modeling is poorly supported by software tools. In order to define a new class of software-based modeling...... tools, we propose a scenario and identify some requirements. Those requirements are contrasted against features of existing tools from various application domains, and the results show general lack of support for custom visualization and incremental knowledge specification, poor handling of temporal...... information, and little generative capabilities.Satisfaction of the requirements proved difficult, and our first two prototypes did not perform well. A new and streamlined prototype is currently under development: it should enable some useful form of middle-out modeling. Application domains will range from...

  8. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    Science.gov (United States)

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  9. Laplacian eigenmodes for spherical spaces

    International Nuclear Information System (INIS)

    Lachieze-Rey, M; Caillerie, S

    2005-01-01

    The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned

  10. Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)

    Science.gov (United States)

    Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.

    2012-04-01

    Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the

  11. Free topological vector spaces

    OpenAIRE

    Gabriyelyan, Saak S.; Morris, Sidney A.

    2016-01-01

    We define and study the free topological vector space $\\mathbb{V}(X)$ over a Tychonoff space $X$. We prove that $\\mathbb{V}(X)$ is a $k_\\omega$-space if and only if $X$ is a $k_\\omega$-space. If $X$ is infinite, then $\\mathbb{V}(X)$ contains a closed vector subspace which is topologically isomorphic to $\\mathbb{V}(\\mathbb{N})$. It is proved that if $X$ is a $k$-space, then $\\mathbb{V}(X)$ is locally convex if and only if $X$ is discrete and countable. If $X$ is a metrizable space it is shown ...

  12. WebVis: a hierarchical web homepage visualizer

    Science.gov (United States)

    Renteria, Jose C.; Lodha, Suresh K.

    2000-02-01

    WebVis, the Hierarchical Web Home Page Visualizer, is a tool for managing home web pages. The user can access this tool via the WWW and obtain a hierarchical visualization of one's home web pages. WebVis is a real time interactive tool that supports many different queries on the statistics of internal files such as sizes, age, and type. In addition, statistics on embedded information such as VRML files, Java applets, images and sound files can be extracted and queried. Results of these queries are visualized using color, shape and size of different nodes of the hierarchy. The visualization assists the user in a variety of task, such as quickly finding outdated information or locate large files. WebVIs is one solution to the growing web space maintenance problem. Implementation of WebVis is realized with Perl and Java. Perl pattern matching and file handling routines are used to collect and process web space linkage information and web document information. Java utilizes the collected information to produce visualization of the web space. Java also provides WebVis with real time interactivity, while running off the WWW. Some WebVis examples of home web page visualization are presented.

  13. Verbal-spatial and visuospatial coding of power-space interactions.

    Science.gov (United States)

    Dai, Qiang; Zhu, Lei

    2018-05-10

    A power-space interaction, which denotes the phenomenon that people responded faster to powerful words when they are placed higher in a visual field and faster to powerless words when they are placed lower in a visual field, has been repeatedly found. The dominant explanation of this power-space interaction is that it results from a tight correspondence between the representation of power and visual space (i.e., a visuospatial coding account). In the present study, we demonstrated that the interaction between power and space could be also based on a verbal-spatial coding in absence of any vertical spatial information. Additionally, the verbal-spatial coding was dominant in driving the power-space interaction when verbal space was contrasted with the visual space. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  15. Visualizing compositional data on the Lexis surface

    Directory of Open Access Journals (Sweden)

    Jonas Schöley

    2017-02-01

    Full Text Available Background: The Lexis surface plot is an established visualization tool in demography. Its presentutility, however, is limited to the domain of one-dimensional magnitudes such as ratesand counts. Visualizing proportions among three or more groups on a period-age grid isan unsolved problem. Objective: We seek to extend the Lexis surface plot to the domain of compositional data. Methods: We propose four techniques for visualizing group compositions on a period-age grid. Todemonstrate the techniques we use data on age-specific cause-of-death compositions inFrance from 1925 to 1999. We compare the visualizations for compliance with multipledesired criteria. Results: Compositional data can effectively be visualized on the Lexis surface. A key feature ofthe classical Lexis surface plot - to show age, period, and cohort patterns - is retainedin the domain of compositions. The optimal choice among the four proposed techniquesdepends primarily on the number of groups making up the composition and whether ornot the plot should be readable by people with impaired colour vision. Contribution: We introduce techniques for visualizing compositional data on a period-age grid to thefield of demography and demonstrate the usefulness of the techniques by performingan exploratory analysis of age-specific French cause-of-death patterns across the 20thcentury. We identify strengths and weaknesses of the four proposed techniques. We contribute a technique to construct the ternary-balance colour scheme from within a per-ceptually uniform colour space. Comments: A full-colour representation is key to understanding the paper. Therefore, we recommend that you read it on screen or print a colour version.

  16. Visual intelligence Microsoft tools and techniques for visualizing data

    CERN Document Server

    Stacey, Mark; Jorgensen, Adam

    2013-01-01

    Go beyond design concepts and learn to build state-of-the-art visualizations The visualization experts at Microsoft's Pragmatic Works have created a full-color, step-by-step guide to building specific types of visualizations. The book thoroughly covers the Microsoft toolset for data analysis and visualization, including Excel, and explores best practices for choosing a data visualization design, selecting tools from the Microsoft stack, and building a dynamic data visualization from start to finish. You'll examine different types of visualizations, their strengths and weaknesses, a

  17. Visualizations as Projection Devices

    DEFF Research Database (Denmark)

    Harty, Chris; Holm Jacobsen, Peter; Tryggestad, Kjell

    The aim of this paper is to inquire into the role of project visualizations in shaping healthcare spaces and practices. The study draws upon an ethnographic field study from a large on-going hospital construction project in Denmark, and focuses on the early phases of on-boarding the design team...... into the project organization. During the on-boarding visualizations multiplies in form, content and purpose, ranging from paper and digitally based projections of clinical work spaces and practices for the future hospital building in use, to paper and digitally based projections of the cost budget and time...

  18. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.

    Science.gov (United States)

    Roosink, Meyke; Robitaille, Nicolas; McFadyen, Bradford J; Hébert, Luc J; Jackson, Philip L; Bouyer, Laurent J; Mercier, Catherine

    2015-01-05

    Virtual reality (VR) provides interactive multimodal sensory stimuli and biofeedback, and can be a powerful tool for physical and cognitive rehabilitation. However, existing systems have generally not implemented realistic full-body avatars and/or a scaling of visual movement feedback. We developed a "virtual mirror" that displays a realistic full-body avatar that responds to full-body movements in all movement planes in real-time, and that allows for the scaling of visual feedback on movements in real-time. The primary objective of this proof-of-concept study was to assess the ability of healthy subjects to detect scaled feedback on trunk flexion movements. The "virtual mirror" was developed by integrating motion capture, virtual reality and projection systems. A protocol was developed to provide both augmented and reduced feedback on trunk flexion movements while sitting and standing. The task required reliance on both visual and proprioceptive feedback. The ability to detect scaled feedback was assessed in healthy subjects (n = 10) using a two-alternative forced choice paradigm. Additionally, immersion in the VR environment and task adherence (flexion angles, velocity, and fluency) were assessed. The ability to detect scaled feedback could be modelled using a sigmoid curve with a high goodness of fit (R2 range 89-98%). The point of subjective equivalence was not significantly different from 0 (i.e. not shifted), indicating an unbiased perception. The just noticeable difference was 0.035 ± 0.007, indicating that subjects were able to discriminate different scaling levels consistently. VR immersion was reported to be good, despite some perceived delays between movements and VR projections. Movement kinematic analysis confirmed task adherence. The new "virtual mirror" extends existing VR systems for motor and pain rehabilitation by enabling the use of realistic full-body avatars and scaled feedback. Proof-of-concept was demonstrated for the assessment of

  19. Geometric Fuzzy Techniques for Guidance of Visually Impaired People

    Directory of Open Access Journals (Sweden)

    Adán Landa-Hernández

    2013-01-01

    Full Text Available In this paper we present the design of a device to guide the visually impaired person who normally uses a cane. We propose a non-invasive device that will help blind and visually impaired people to navigate. The system uses stereoscopic vision, a RGB-D sensor and an IMU to process images and to compute the distances from obstacles relative to cameras and to search for free walking paths in the scene. This computing is done using stereo vision, vanishing points, and fuzzy rules. Vanishing points are used to obtain a main orientation in structured spaces. Since the guidance system is related to a spatial reference system, the vanishing point is used like a virtual compass that helps the blind to orient him- or herself towards a goal. Reinforced with fuzzy decision rules, the system supports the blind in avoiding obstacles, thus the blind person is able to cross structured spaces and avoid obstacles without the need for a cane.

  20. The Orientation of Visual Space from the Perspective of Hummingbirds.

    Science.gov (United States)

    Tyrrell, Luke P; Goller, Benjamin; Moore, Bret A; Altshuler, Douglas L; Fernández-Juricic, Esteban

    2018-01-01

    Vision is a key component of hummingbird behavior. Hummingbirds hover in front of flowers, guide their bills into them for foraging, and maneuver backwards to undock from them. Capturing insects is also an important foraging strategy for most hummingbirds. However, little is known about the visual sensory specializations hummingbirds use to guide these two foraging strategies. We characterized the hummingbird visual field configuration, degree of eye movement, and orientation of the centers of acute vision. Hummingbirds had a relatively narrow binocular field (~30°) that extended above and behind their heads. Their blind area was also relatively narrow (~23°), which increased their visual coverage (about 98% of their celestial hemisphere). Additionally, eye movement amplitude was relatively low (~9°), so their ability to converge or diverge their eyes was limited. We confirmed that hummingbirds have two centers of acute vision: a fovea centralis , projecting laterally, and an area temporalis , projecting more frontally. This retinal configuration is similar to other predatory species, which may allow hummingbirds to enhance their success at preying on insects. However, there is no evidence that their temporal area could visualize the bill tip or that eye movements could compensate for this constraint. Therefore, guidance of precise bill position during the process of docking occurs via indirect cues or directly with low visual acuity despite having a temporal center of acute vision. The large visual coverage may favor the detection of predators and competitors even while docking into a flower. Overall, hummingbird visual configuration does not seem specialized for flower docking.

  1. The system K2NbF7-K2TiF6-KCl

    International Nuclear Information System (INIS)

    Kamenskaya, L.A.; Matveev, A.M.

    1984-01-01

    Using visual-polythermal and thermographical methods the ternary system K 2 NbF 7 -K 2 TiE 6 -KCl has been studied. Crystallization fields of initial components and the field of solid solutions of double compounds K 3 NbClF 7 and K 3 TiClF 6 are outlined. Ternary eutectics at 654 deg C, having the composition K 2 NbF 6 -41, K 2 TiP 6 -41, KCl-18 mol.%, is determined. Potassium fluoroniobate and fluorotitanate form continuous solid solutions unstable in the presence of the third component, potassium chloride

  2. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    Science.gov (United States)

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  3. 3D space analysis of dental models

    Science.gov (United States)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  4. Glial K(+) Clearance and Cell Swelling

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Zeuthen, Thomas

    2012-01-01

    An important feature of neuronal signalling is the increased concentration of K(+) in the extracellular space. The K(+) concentration is restored to its original basal level primarily by uptake into nearby glial cells. The molecular mechanisms by which K(+) is transferred from the extracellular...... space into the glial cell are debated. Although spatial buffer currents may occur, their quantitative contribution to K(+) clearance is uncertain. The concept of spatial buffering of K(+) precludes intracellular K(+) accumulation and is therefore (i) difficult to reconcile with the K(+) accumulation...

  5. Initial multi-parameter detection of atmospheric metal layers by Beijing Na–K lidar

    International Nuclear Information System (INIS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-01-01

    Beijing Na–K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring. - Highlights: • Full-band dual-beam lidar at 40°N. • Detecting sodium and potassium layer simultaneously. • Providing a supplement to the study of atmospheric metal layers and evidence for atmospheric sciences and space and atmospheric sciences and space environment monitoring.

  6. Instant Gratification: Striking a Balance Between Rich Interactive Visualization and Ease of Use for Casual Web Surfers

    Science.gov (United States)

    Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.

    2004-12-01

    Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.

  7. Visual Distraction: An Altered Aiming Spatial Response in Dementia

    Directory of Open Access Journals (Sweden)

    Elizabeth E. Galletta

    2012-06-01

    Full Text Available Background/Aims: Healthy individuals demonstrate leftward bias on visuospatial tasks such as line bisection, which has been attributed to right brain dominance. We investigated whether this asymmetry occurred in patients with probable dementia of the Alzheimer type (pAD which is associated with neurodegenerative changes affecting temporoparietal regions. Methods: Subjects with pAD and matched controls performed a line bisection task in near and far space under conditions of no distraction, left-sided visual distraction and right-sided visual distraction. Results: Participants with pAD manifested different motor-preparatory ‘aiming’ spatial bias than matched controls. There were significantly greater rightward ‘aiming’ motor-intentional errors both without distraction and with right-sided distraction. Conclusion: ‘Aiming’ motor-preparatory brain activity may be induced by distraction in pAD subjects as compared to typical visual-motor function in controls.

  8. VRF ("Visual RobFit") — nuclear spectral analysis with non-linear full-spectrum nuclide shape fitting

    Science.gov (United States)

    Lasche, George; Coldwell, Robert; Metzger, Robert

    2017-09-01

    A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.

  9. Multivariate volume visualization through dynamic projections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shusen [Univ. of Utah, Salt Lake City, UT (United States); Wang, Bei [Univ. of Utah, Salt Lake City, UT (United States); Thiagarajan, Jayaraman J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States)

    2014-11-01

    We propose a multivariate volume visualization framework that tightly couples dynamic projections with a high-dimensional transfer function design for interactive volume visualization. We assume that the complex, high-dimensional data in the attribute space can be well-represented through a collection of low-dimensional linear subspaces, and embed the data points in a variety of 2D views created as projections onto these subspaces. Through dynamic projections, we present animated transitions between different views to help the user navigate and explore the attribute space for effective transfer function design. Our framework not only provides a more intuitive understanding of the attribute space but also allows the design of the transfer function under multiple dynamic views, which is more flexible than being restricted to a single static view of the data. For large volumetric datasets, we maintain interactivity during the transfer function design via intelligent sampling and scalable clustering. As a result, using examples in combustion and climate simulations, we demonstrate how our framework can be used to visualize interesting structures in the volumetric space.

  10. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  11. Visualization analysis and design

    CERN Document Server

    Munzner, Tamara

    2015-01-01

    Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form. The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case stu...

  12. Comparison of Diagnostic Accuracy between Octopus 900 and Goldmann Kinetic Visual Fields

    Directory of Open Access Journals (Sweden)

    Fiona J. Rowe

    2014-01-01

    Full Text Available Purpose. To determine diagnostic accuracy of kinetic visual field assessment by Octopus 900 perimetry compared with Goldmann perimetry. Methods. Prospective cross section evaluation of 40 control subjects with full visual fields and 50 patients with known visual field loss. Comparison of test duration and area measurement of isopters for Octopus 3, 5, and 10°/sec stimulus speeds. Comparison of test duration and type of visual field classification for Octopus versus Goldmann perimetry. Results were independently graded for presence/absence of field defect and for type and location of defect. Statistical evaluation comprised of ANOVA and paired t test for evaluation of parametric data with Bonferroni adjustment. Bland Altman and Kappa tests were used for measurement of agreement between data. Results. Octopus 5°/sec perimetry had comparable test duration to Goldmann perimetry. Octopus perimetry reliably detected type and location of visual field loss with visual fields matched to Goldmann results in 88.8% of results (K=0.775. Conclusions. Kinetic perimetry requires individual tailoring to ensure accuracy. Octopus perimetry was reproducible for presence/absence of visual field defect. Our screening protocol when using Octopus perimetry is 5°/sec for determining boundaries of peripheral isopters and 3°/sec for blind spot mapping with further evaluation of area of field loss for defect depth and size.

  13. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  14. Visualization of the sequence of a couple splitting outside shop

    DEFF Research Database (Denmark)

    2015-01-01

    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  15. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  16. First responder tracking and visualization for command and control toolkit

    Science.gov (United States)

    Woodley, Robert; Petrov, Plamen; Meisinger, Roger

    2010-04-01

    In order for First Responder Command and Control personnel to visualize incidents at urban building locations, DHS sponsored a small business research program to develop a tool to visualize 3D building interiors and movement of First Responders on site. 21st Century Systems, Inc. (21CSI), has developed a toolkit called Hierarchical Grid Referenced Normalized Display (HiGRND). HiGRND utilizes three components to provide a full spectrum of visualization tools to the First Responder. First, HiGRND visualizes the structure in 3D. Utilities in the 3D environment allow the user to switch between views (2D floor plans, 3D spatial, evacuation routes, etc.) and manually edit fast changing environments. HiGRND accepts CAD drawings and 3D digital objects and renders these in the 3D space. Second, HiGRND has a First Responder tracker that uses the transponder signals from First Responders to locate them in the virtual space. We use the movements of the First Responder to map the interior of structures. Finally, HiGRND can turn 2D blueprints into 3D objects. The 3D extruder extracts walls, symbols, and text from scanned blueprints to create the 3D mesh of the building. HiGRND increases the situational awareness of First Responders and allows them to make better, faster decisions in critical urban situations.

  17. Spatial uncertainty model for visual features using a Kinect™ sensor.

    Science.gov (United States)

    Park, Jae-Han; Shin, Yong-Deuk; Bae, Ji-Hun; Baeg, Moon-Hong

    2012-01-01

    This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  18. Visual Analysis for Nowcasting of Multidimensional Lightning Data

    Directory of Open Access Journals (Sweden)

    Stefan Peters

    2013-08-01

    Full Text Available Globally, most weather-related damages are caused by thunderstorms. Besides floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. Therefore, lightning investigations, including detection, cluster identification, tracking, and nowcasting are essential. To enable reliable decisions, current and predicted lightning cluster- and track features as well as analysis results have to be represented in the most appropriate way. Our paper introduces a framework which includes identification, tracking, nowcasting, and in particular visualization and statistical analysis of dynamic lightning data in three-dimensional space. The paper is specifically focused on enabling users to conduct the visual analysis of lightning data for the purpose of identification and interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. A graphic user interface (GUI is developed, wherein lightning tracks and predicted lightning clusters, including their prediction certainty, can be investigated within a 3D view or within a Space-Time-Cube. In contrast to previous work, our approach provides insight into the dynamics of past and predicted 3D lightning clusters and cluster features over time. We conclude that an interactive visual exploration in combination with a statistical analysis can provide new knowledge within lightning investigations and, thus, support decision-making in weather forecast or lightning damage prevention.

  19. Reflection and transmission of full-vector X-waves normally incident on dielectric half spaces

    KAUST Repository

    Salem, Mohamed

    2011-08-01

    The reflection and transmission of full-vector X-Waves incident normally on a planar interface between two lossless dielectric half-spaces are investigated. Full-vector X-Waves are obtained by superimposing transverse electric and magnetic polarization components, which are derived from the scalar X-Wave solution. The analysis of transmission and reflection is carried out via a straightforward but yet effective method: First, the X-Wave is decomposed into vector Bessel beams via the Bessel-Fourier transform. Then, the reflection and transmission coefficients of the beams are obtained in the spectral domain. Finally, the transmitted and reflected X-Waves are obtained via the inverse Bessel-Fourier transform carried out on the X-wave spectrum weighted with the corresponding coefficient. © 2011 IEEE.

  20. Full Polymer Dielectric Elastomeric Actuators (DEA Functionalised with Carbon Nanotubes and High-K Ceramics

    Directory of Open Access Journals (Sweden)

    Tilo Köckritz

    2016-09-01

    Full Text Available Dielectric elastomer actuators (DEA are special devices which have a simple working and construction principle and outstanding actuation properties. The DEAs consist of a combination of different materials for the dielectric and electrode layers. The combination of these layers causes incompatibilities in their interconnections. Dramatic differences in the mechanical properties and bad adhesion of the layers are the principal causes for the reduction of the actuation displacement and strong reduction of lifetime. Common DEAs achieve actuation displacements of 2% and a durability of some million cycles. The following investigations represent a new approach to solving the problems of common systems. The investigated DEA consists of only one basic raw polymer, which was modified according to the required demands of each layer. The basic raw polymer was modified with single-walled carbon nanotubes or high-k ceramics, for example, lead magnesium niobate-lead titanate. The development of the full polymer DEA comprised the development of materials and technologies to realise a reproducible layer composition. It was proven that the full polymer actuator worked according to the theoretical rules. The investigated system achieved actuation displacements above 20% regarding thickness, outstanding interconnections at each layer without any failures, and durability above 3 million cycles without any indication of an impending malfunction.

  1. Evaluation of Sports Visualization Based on Wearable Devices

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-12-01

    Full Text Available In order to visualize the physical education classroom in school, we create a visualized movement management system, which records the student's exercise data efficiently and stores data in the database that enables virtual reality client to call. Each individual's exercise data are gathered as the source material to study the law of group movement, playing a strategic role in managing physical education. Through the combination of wearable devices, virtual reality and network technology, the student movement data (time, space, rate, etc. are collected in real time to drive the role model in virtual scenes, which visualizes the movement data. Moreover, the Markov chain based algorithm is used to predict the movement state. The test results show that this method can quantize the student movement data. Therefore, the application of this system in PE classes can help teacher to observe the students’ real-time movement amount and state, so as to improve the teaching quality.

  2. The S-Transform on Hardy Spaces and Its Duals

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Singh

    2015-03-01

    Full Text Available In this paper, continuity and boundedness results for the continuous S-transform in BMO and Hardy spaces are obtained. Furthermore, the continuous S-transform is also studied on the weighted BMO$_k$ and weighted Hardy spaces associated with a tempered weight function which was proposed by L. H\\"ormander in the study of the theory of partial differential equations.

  3. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors

    Directory of Open Access Journals (Sweden)

    Arturo Gil

    2010-05-01

    Full Text Available In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  4. Pattern recognition in probability spaces for visualization and identification of plasma confinement regimes and confinement time scaling

    International Nuclear Information System (INIS)

    Verdoolaege, G; Karagounis, G; Oost, G Van; Tendler, M

    2012-01-01

    Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. The purpose is to contribute to physics studies and plasma control. In this work, we address the visualization of plasma confinement data, the (real-time) identification of confinement regimes and the establishment of a scaling law for the energy confinement time. We take an intrinsically probabilistic approach, modeling data from the International Global H-mode Confinement Database with Gaussian distributions. We show that pattern recognition operations working in the associated probability space are considerably more powerful than their counterparts in a Euclidean data space. This opens up new possibilities for analyzing confinement data and for fusion data processing in general. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. (paper)

  5. Visual-Spatial Thinking in Hypertexts.

    Science.gov (United States)

    Johnson-Sheehan, Richard; Baehr, Craig

    2001-01-01

    Explores what it means to think visually and spatially in hypertexts and how users react and maneuver in real and virtual three-dimensional spaces. Offers four principles of visual thinking that can be applied when developing hypertexts. Applies these principles to actual hypertexts, demonstrating how selectivity, fixation, depth discernment, and…

  6. The time course of protecting a visual memory representation from perceptual interference

    Directory of Open Access Journals (Sweden)

    Dirk evan Moorselaar

    2015-01-01

    Full Text Available Cueing a remembered item during the delay of a visual memory task leads to enhanced recall of the cued item compared to when an item is not cued. This cueing benefit has been proposed to reflect attention within visual memory being shifted from a distributed mode to a focused mode, thus protecting the cued item against perceptual interference. Here we investigated the dynamics of building up this mnemonic protection against visual interference by systematically varying the SOA between cue onset and a subsequent visual mask in an orientation memory task. Experiment 1 showed that a cue counteracted the deteriorating effect of pattern masks. Experiment 2 demonstrated that building up this protection is a continuous process that is completed in approximately half a second after cue onset. The similarities between shifting attention in perceptual and remembered space are discussed.

  7. The application of visual communication design in display design

    Institute of Scientific and Technical Information of China (English)

    仪晓华

    2015-01-01

    Visual communication design is a kind of visual language and the art of communication behavior, it condenses complex and chaos and obscure information can in the shortest possible time to be understanding of the functional information, at the same time, make the design work itself sound art, philosophy and culture, cause the audience’s perception experience and emotional resonance, and eventually approved. Display of visual communication don’t like people use language to convey, but in all kinds of display environment by graphics, text, color elements such as passing information to people, visual communication design as a medium between designer and audience, communicate through planar graphic elements, format design, the combination of the text elements, color elements make exhibition has rhythm beauty so as to build a display space, the space information accurate, vivid and clear function division, comfortable, and the outline of rich imagination space to the person and strong visual impression.

  8. The peri-saccadic perception of objects and space.

    Directory of Open Access Journals (Sweden)

    Fred H Hamker

    2008-02-01

    Full Text Available Eye movements affect object localization and object recognition. Around saccade onset, briefly flashed stimuli appear compressed towards the saccade target, receptive fields dynamically change position, and the recognition of objects near the saccade target is improved. These effects have been attributed to different mechanisms. We provide a unifying account of peri-saccadic perception explaining all three phenomena by a quantitative computational approach simulating cortical cell responses on the population level. Contrary to the common view of spatial attention as a spotlight, our model suggests that oculomotor feedback alters the receptive field structure in multiple visual areas at an intermediate level of the cortical hierarchy to dynamically recruit cells for processing a relevant part of the visual field. The compression of visual space occurs at the expense of this locally enhanced processing capacity.

  9. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  10. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Satake, Hiroko; Kawamura, Minako; Fukatsu, Hiroshi; Sone, Michihiko; Nakashima, Tsutomu

    2008-01-01

    Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction. (orig.)

  11. Optimal Detection Range of RFID Tag for RFID-based Positioning System Using the k-NN Algorithm

    Directory of Open Access Journals (Sweden)

    Joon Heo

    2009-06-01

    Full Text Available Positioning technology to track a moving object is an important and essential component of ubiquitous computing environments and applications. An RFID-based positioning system using the k-nearest neighbor (k-NN algorithm can determine the position of a moving reader from observed reference data. In this study, the optimal detection range of an RFID-based positioning system was determined on the principle that tag spacing can be derived from the detection range. It was assumed that reference tags without signal strength information are regularly distributed in 1-, 2- and 3-dimensional spaces. The optimal detection range was determined, through analytical and numerical approaches, to be 125% of the tag-spacing distance in 1-dimensional space. Through numerical approaches, the range was 134% in 2-dimensional space, 143% in 3-dimensional space.

  12. Visual perception of ADHD children with sensory processing disorder.

    Science.gov (United States)

    Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi

    2014-04-01

    The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.

  13. Stereoscopic Three-Dimensional Visualization Applied to Multimodal Brain Images: Clinical Applications and a Functional Connectivity Atlas.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Rojas

    2014-11-01

    Full Text Available Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity.

  14. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yin-Tien Wang

    2010-09-01

    Full Text Available In the paper, a novel moving object detection (MOD algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM. The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.

  15. SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics.

    Science.gov (United States)

    Vartak, Manasi; Rahman, Sajjadur; Madden, Samuel; Parameswaran, Aditya; Polyzotis, Neoklis

    2015-09-01

    Data analysts often build visualizations as the first step in their analytical workflow. However, when working with high-dimensional datasets, identifying visualizations that show relevant or desired trends in data can be laborious. We propose SeeDB, a visualization recommendation engine to facilitate fast visual analysis: given a subset of data to be studied, SeeDB intelligently explores the space of visualizations, evaluates promising visualizations for trends, and recommends those it deems most "useful" or "interesting". The two major obstacles in recommending interesting visualizations are (a) scale : evaluating a large number of candidate visualizations while responding within interactive time scales, and (b) utility : identifying an appropriate metric for assessing interestingness of visualizations. For the former, SeeDB introduces pruning optimizations to quickly identify high-utility visualizations and sharing optimizations to maximize sharing of computation across visualizations. For the latter, as a first step, we adopt a deviation-based metric for visualization utility, while indicating how we may be able to generalize it to other factors influencing utility. We implement SeeDB as a middleware layer that can run on top of any DBMS. Our experiments show that our framework can identify interesting visualizations with high accuracy. Our optimizations lead to multiple orders of magnitude speedup on relational row and column stores and provide recommendations at interactive time scales. Finally, we demonstrate via a user study the effectiveness of our deviation-based utility metric and the value of recommendations in supporting visual analytics.

  16. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; hide

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  17. An Experimental Study of the Decay $D^0 \\to K^- K^- K^+ \\pi^+$

    Energy Technology Data Exchange (ETDEWEB)

    Devmal, Shiral Cleophas [Cincinnati U.

    2000-05-01

    Using data from the E791 experiment at Fermi National Accelerator Laboratory (Fermilab), we have studied the Cabibbo favored, but phase space suppressed decay $D^0 \\to K^-K^- K^+ \\pi^+$ with the normalization channel $D^0 \\to K^- \\pi^- \\pi^+ \\pi^+$. We report the branching ratio of $D^0 \\to K^- K^- K^+ \\pi^+$ relative to the branching ratio of $D^0 \\to K^- \\pi^- \\pi^+ \\pi^+$. This value is (0.54 $\\pm$ 0.13 $\\pm$ 0.07)%. We see a clear signal of $K^-K^+$ resonance in the decay $D^0 \\to K^-K^-K^+\\pi^+$ from which we conclude that about (60 $\\pm$ 30)% of $KKK\\pi$ comes from $D^0 \\to \\phi K^-\\pi^+; \\phi \\to K^-K^+$. We also set the range (0.30% - 0.90%) for the ratio $P_{q\\overline{q}} = P_{NoPop}$ where $P_{q\\bar{q}}$ is the contribution from either $D^0 \\to K^-K^-K^+\\pi^+$ terms that pop an $s\\bar{s}$ or corresponding $D^0 \\to K^- \\pi^- \\pi^+ \\pi^+$ terms that pop either $u\\bar{u}$ or $d\\bar{d}$ pair and $P_{NoPop}$ is the contributions from the $D^0 \\to K^- \\pi^- \\pi^+ \\pi^+$ terms that do not have such corresponding popping.

  18. Visualization Design Environment

    Energy Technology Data Exchange (ETDEWEB)

    Pomplun, A.R.; Templet, G.J.; Jortner, J.N.; Friesen, J.A.; Schwegel, J.; Hughes, K.R.

    1999-02-01

    Improvements in the performance and capabilities of computer software and hardware system, combined with advances in Internet technologies, have spurred innovative developments in the area of modeling, simulation and visualization. These developments combine to make it possible to create an environment where engineers can design, prototype, analyze, and visualize components in virtual space, saving the time and expenses incurred during numerous design and prototyping iterations. The Visualization Design Centers located at Sandia National Laboratories are facilities built specifically to promote the ''design by team'' concept. This report focuses on designing, developing and deploying this environment by detailing the design of the facility, software infrastructure and hardware systems that comprise this new visualization design environment and describes case studies that document successful application of this environment.

  19. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    2013-01-01

    Under mild assumptions, we characterise modules with projective resolutions of length n∈N in the target category of filtrated K-theory over a finite topological space in terms of two conditions involving certain Tor -groups. We show that the filtrated K-theory of any separable C∗dash-algebra over...... any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five......-point space, the filtrated K-theory of which has projective dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-Krieger algebras which have projective dimension 2 in filtrated K-theory over their respective primitive spectrum....

  20. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  1. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    Science.gov (United States)

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  2. Evolution of systems concepts for a 100 kWe class space nuclear power system

    International Nuclear Information System (INIS)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 space nuclear power system have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the baseline concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the backup concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the naseline concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The growth concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The growth concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the baseline concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness

  3. Evolution of systems concepts for a 100 kWe class Space Nuclear Power System

    Science.gov (United States)

    Katucki, R.; Josloff, A.; Kirpich, A.; Florio, F.

    1985-01-01

    Conceptual designs for the SP-100 Space Nuclear Power System have been prepared that meet baseline, backup and growth program scenarios. Near-term advancement in technology was considered in the design of the Baseline Concept. An improved silicon-germanium thermoelectric technique is used to convert the heat from a fast-spectrum, liquid lithium cooled reactor. This system produces a net power of 100 kWe with a 10-year end of life, under the specific constraints of area and volume. Output of the Backup Concept is estimated to be 60 kWe for a 10-year end of life. This system differs from the Baseline Concept because currently available thermoelectric conversion is used from energy supplied by a liquid sodium cooled reactor. The Growth Concept uses Stirling engine conversion to produce 100 kWe within the constraints of mass and volume. The Growth Concept can be scaled up to produce a 1 MWe output that uses the same type reactor developed for the Baseline Concept. Assessments made for each of the program scenarios indicate the key development efforts needed to initiate detailed design and hardware program phases. Development plans were prepared for each scenario that detail the work elements and show the program activities leading to a state of flight readiness.

  4. Acerca da métrica da percepção do espaço visual On the metric of visual space

    Directory of Open Access Journals (Sweden)

    José Aparecido da Silva

    2006-02-01

    Full Text Available Nesta revisão, analisamos diferentes aspectos relacionados à métrica da percepção visual. Atenção especial foi dada à mensuração de distância egocêntrica (distância de um observador a um objeto e à mensuração de distância exocêntrica (distância entre dois objetos, ou partes de um objeto. Além disso, foram, brevemente, consideradas as teorias, a natureza dos indícios de distância, os tipos de indicadores de distância percebida, e os ambientes nos quais as distâncias são mensuradas. Concluímos que, a relação entre distância percebida e distância real não reflete uma simples transformação de sua contraparte física; em vez disso, esta relação depende substancialmente do ambiente no qual as distâncias são estimadas bem como da combinação de indícios de distância presente neste ambiente.The major aim of this overview was the visual perception of egocentric (distance from an observer to a target and exocentric distance (distance between two targets. We considered different issues concerning the relationship between perceived distance and physical distance, giving special attention to the theories, to the cues regarding distance, how perceived distances are measured, and the types of visual environments where the measuring of distances occurred. We concluded that the perceived distance does not reflect a simple transformation of its physical counterpart; rather, the mapping between perceived distance and physical distance depends substantially on the type of visual environments where distances are measured, and, on the cue combination available in these environments.

  5. Experimental MR-guided cryotherapy of the brain with almost real-time imaging by radial k-space scanning; Experimentelle MR-gesteuerte Kryotherapie des Gehirns mit nahezu Echtzeitdarstellung durch radiale k-Raum-Abtastung

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, J.; Schorn, R.; Glowinski, A.; Grosskortenhaus, S.; Adam, G.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Speetzen, R.; Rau, G. [Helmholtz-Institut fuer Biomedizinische Technik, Aachen (Germany); Rasche, V. [Philips GmbH Forschungslaboratorium, Hamburg (Germany)

    1999-02-01

    Purpose: To test radial k-space scanning by MR fluoroscopy to guide and control MR-guided interstitial cryotherapy of the healthy pig brain. Methods: After MR tomographic planning of the approach, an MR-compatible experimental cryotherapy probe of 2.7 mm diameter was introduced through a 5 mm burr hole into the right frontal brain of five healthy pigs. The freeze-thaw cycles were imaged using a T{sub 1}-weighted gradient echo sequence with radial k-space scanning in coronal, sagittal, and axial directions. Results: The high temporal resolution of the chosen sequence permits a continuous representation of the freezing process with good image quality and high contrast between ice and unfrozen brain parenchyma. Because of the interactive conception of the sequence the layer plane could be chosen as desired during the measurement. Ice formation was sharply demarcated, spherically configurated, and was free of signals. Its maximum diameter was 13 mm. Conclusions: With use of the novel, interactively controllable gradient echo sequence with radial k-space scanning, guidance of the intervention under fluoroscopic conditions with the advantages of MRT is possible. MR-guided cryotherapy allows a minimally-invasive, precisely dosable focal tissue ablation. (orig.) [Deutsch] Ziel: Erprobung der radialen k-Raum-Abtastung bei der MR-Fluoroskopie zur Steuerung und Kontrolle MR-gesteuerter interstitieller Kryotherapie des gesunden Schweinegehirns. Methoden: Nach MR-tomographischer Planung des Zugangsweges wurde eine MR-kompatible experimentelle Kryotherapiesonde von 2,7 mm Durchmesser ueber ein 5 mm Bohrloch in das rechte Frontalhirn von fuenf gesunden Schweinen eingebracht. Die Frier-/Tauzyklen wurden anhand einer T{sub 1}-gewichteten Gradientenechosequenz mit radialer k-Raum-Abtastung in koronarer, sagittaler und axialer Schichtfuehrung dargestellt. Ergebnisse: Die hohe zeitliche Aufloesung der gewaehlten Sequenz erlaubte eine kontinuierliche Darstellung des Friervorgangs bei

  6. The Morse oscillator in position space, momentum space, and phase space

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Springborg, Michael

    1988-01-01

    We present a unified description of the position-space wave functions, the momentum-space wave functions, and the phase-space Wigner functions for the bound states of a Morse oscillator. By comparing with the functions for the harmonic oscillator the effects of anharmonicity are visualized....... Analytical expressions for the wave functions and the phase space functions are given, and it is demonstrated how a numerical problem arising from the summation of an alternating series in evaluating Laguerre functions can be circumvented. The method is applicable also for other problems where Laguerre...... functions are to be calculated. The wave and phase space functions are displayed in a series of curves and contour diagrams. An Appendix discusses the calculation of the modified Bessel functions of real, positive argument and complex order, which is required for calculating the phase space functions...

  7. Landmark Image Retrieval Using Visual Synonyms

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.

    2010-01-01

    In this paper, we consider the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which performs assignment of words based solely on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms -

  8. 2D full-wave simulation of waves in space and tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Kim Eun-Hwa

    2017-01-01

    Full Text Available Simulation results using a 2D full-wave code (FW2D for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result shows such resonant wave modes can be localized near the equatorial plane. We also adopt the FW2D code to tokamak geometry and examine radio frequency (RF waves in the scape-off layer (SOL of tokamaks. By adopting the rectangular and limiter boundary, we compare the results with existing AORSA simulations. The FW2D code results for the high harmonic fast wave heating case on NSTX with a rectangular vessel boundary shows excellent agreement with the AORSA code.

  9. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  10. Invariant subspaces in some function spaces on symmetric spaces. II

    International Nuclear Information System (INIS)

    Platonov, S S

    1998-01-01

    Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1

  11. Analyzing Spatiotemporal Anomalies through Interactive Visualization

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-06-01

    Full Text Available As we move into the big data era, data grows not just in size, but also in complexity, containing a rich set of attributes, including location and time information, such as data from mobile devices (e.g., smart phones, natural disasters (e.g., earthquake and hurricane, epidemic spread, etc. We are motivated by the rising challenge and build a visualization tool for exploring generic spatiotemporal data, i.e., records containing time location information and numeric attribute values. Since the values often evolve over time and across geographic regions, we are particularly interested in detecting and analyzing the anomalous changes over time/space. Our analytic tool is based on geographic information system and is combined with spatiotemporal data mining algorithms, as well as various data visualization techniques, such as anomaly grids and anomaly bars superimposed on the map. We study how effective the tool may guide users to find potential anomalies through demonstrating and evaluating over publicly available spatiotemporal datasets. The tool for spatiotemporal anomaly analysis and visualization is useful in many domains, such as security investigation and monitoring, situation awareness, etc.

  12. The cobordism category and Waldhausen's K-theory

    DEFF Research Database (Denmark)

    Bökstedt, M.; Madsen, Ib

    This paper examines the category C^k_{d,n} whose morphisms are d-dimensional smooth manifolds that are properly embedded in the product of a k-dimensional cube with an (d+n-k)-dimensional Euclidean space. There are k directions to compose k-dimensional cubes, so C^k_{d,n} is a (strict) k-tuple ca......-tuple category. The geometric realization of the k-dimensional multi-nerve is the classifying space BC^k_{d,n}. At the end of the paper we construct an infinite loop map to Waldhausens K-theory. \\Omega BC^1_{d,n}-> A(BO(d)), We believe that the map factors through \\Omega...

  13. A physiologically based nonhomogeneous Poisson counter model of visual identification

    DEFF Research Database (Denmark)

    Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus

    2018-01-01

    A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...

  14. Visual Impairment Screening Assessment (VISA) tool: pilot validation.

    Science.gov (United States)

    Rowe, Fiona J; Hepworth, Lauren R; Hanna, Kerry L; Howard, Claire

    2018-03-06

    To report and evaluate a new Vision Impairment Screening Assessment (VISA) tool intended for use by the stroke team to improve identification of visual impairment in stroke survivors. Prospective case cohort comparative study. Stroke units at two secondary care hospitals and one tertiary centre. 116 stroke survivors were screened, 62 by naïve and 54 by non-naïve screeners. Both the VISA screening tool and the comprehensive specialist vision assessment measured case history, visual acuity, eye alignment, eye movements, visual field and visual inattention. Full completion of VISA tool and specialist vision assessment was achieved for 89 stroke survivors. Missing data for one or more sections typically related to patient's inability to complete the assessment. Sensitivity and specificity of the VISA screening tool were 90.24% and 85.29%, respectively; the positive and negative predictive values were 93.67% and 78.36%, respectively. Overall agreement was significant; k=0.736. Lowest agreement was found for screening of eye movement and visual inattention deficits. This early validation of the VISA screening tool shows promise in improving detection accuracy for clinicians involved in stroke care who are not specialists in vision problems and lack formal eye training, with potential to lead to more prompt referral with fewer false positives and negatives. Pilot validation indicates acceptability of the VISA tool for screening of visual impairment in stroke survivors. Sensitivity and specificity were high indicating the potential accuracy of the VISA tool for screening purposes. Results of this study have guided the revision of the VISA screening tool ahead of full clinical validation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Phishing Detection: Analysis of Visual Similarity Based Approaches

    Directory of Open Access Journals (Sweden)

    Ankit Kumar Jain

    2017-01-01

    Full Text Available Phishing is one of the major problems faced by cyber-world and leads to financial losses for both industries and individuals. Detection of phishing attack with high accuracy has always been a challenging issue. At present, visual similarities based techniques are very useful for detecting phishing websites efficiently. Phishing website looks very similar in appearance to its corresponding legitimate website to deceive users into believing that they are browsing the correct website. Visual similarity based phishing detection techniques utilise the feature set like text content, text format, HTML tags, Cascading Style Sheet (CSS, image, and so forth, to make the decision. These approaches compare the suspicious website with the corresponding legitimate website by using various features and if the similarity is greater than the predefined threshold value then it is declared phishing. This paper presents a comprehensive analysis of phishing attacks, their exploitation, some of the recent visual similarity based approaches for phishing detection, and its comparative study. Our survey provides a better understanding of the problem, current solution space, and scope of future research to deal with phishing attacks efficiently using visual similarity based approaches.

  16. WebStruct and VisualStruct: Web interfaces and visualization for Structure software implemented in a cluster environment.

    Science.gov (United States)

    Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S

    2008-09-24

    Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.

  17. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Ruan Jishou

    2007-04-01

    Full Text Available Abstract Background Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP; the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction. Results The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are

  18. 6D Visualization of Multidimensional Data by Means of Cognitive Technology

    Science.gov (United States)

    Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.

    2010-12-01

    On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.

  19. Visual synonyms for landmark image retrieval

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.; Smeulders, A.W.M.

    2012-01-01

    In this paper, we address the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which assigns words based on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms - that are likely to host

  20. On the relationship between visual magnitudes and gas and dust production rates in target comets to space missions

    Science.gov (United States)

    de Almeida, A. A.; Sanzovo, G. C.; Singh, P. D.; Misra, A.; Miguel Torres, R.; Boice, D. C.; Huebner, W. F.

    In this paper, we report the results of a cometary research, developed during the last 10 years by us, involving a criterious analysis of gas and dust production rates in comets directly associated to recent space missions. For the determination of the water release rates we use the framework of the semi-empirical model of observed visual magnitudes [Newburn Jr., R.L. A semi-empirical photometric theory of cometary gas and dust production. Application to P/Halley's production rates, ESA-SP 174, 3, 1981; de Almeida, A.A., Singh, P.D., Huebner, W.F. Water release rates, active areas, and minimum nuclear radius derived from visual magnitudes of comets - an application to Comet 46P/Wirtanen, Planet. Space Sci. 45, 681-692, 1997; Sanzovo, G.C., de Almeida, A.A., Misra, A. et al. Mass-loss rates, dust particle sizes, nuclear active areas and minimum nuclear radii of target comets for missions STARDUST and CONTOUR, MNRAS 326, 852-868, 2001.], which once obtained, were directly converted into gas production rates. In turn, the dust release rates were obtained using the photometric model for dust particles [Newburn Jr., R.L., Spinrad, H. Spectrophotometry of seventeen comets. II - the continuum, AJ 90, 2591-2608, 1985; de Freitas Pacheco, J.A., Landaberry, S.J.C., Singh, P.D. Spectrophotometric observations of the Comet Halley during the 1985-86 apparition, MNRAS 235, 457-464, 1988; Sanzovo, G.C., Singh, P.D., Huebner, W.F. Dust colors, dust release rates, and dust-to-gas ratios in the comae of six comets, A&AS 120, 301-311, 1996.]. We applied these models to seven target comets, chosen for space missions of "fly-by"/impact and rendezvous/landing.

  1. 5D Task Analysis Visualization Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The creation of a five-dimensional task analysis visualization (5D-TAV) software tool for Task Analysis and Workload Planning using multi-dimensional visualization...

  2. Space Use in the Commons: Evaluating a Flexible Library Environment

    Directory of Open Access Journals (Sweden)

    Andrew D. Asher

    2017-06-01

    Full Text Available Abstract Objective – This article evaluates the usage and user experience of the Herman B Wells Library’s Learning Commons, a newly renovated technology and learning centre that provides services and spaces tailored to undergraduates’ academic needs at Indiana University Bloomington (IUB. Methods – A mixed-method research protocol combining time-lapse photography, unobtrusive observation, and random-sample surveys was employed to construct and visualize a representative usage and activity profile for the Learning Commons space. Results – Usage of the Learning Commons by particular student groups varied considerably from expectations based on student enrollments. In particular, business, first and second year students, and international students used the Learning Commons to a higher degree than expected, while humanities students used it to a much lower degree. While users were satisfied with the services provided and the overall atmosphere of the space, they also experienced the negative effects of insufficient space and facilities due to the space often operating at or near its capacity. Demand for collaboration rooms and computer workstations was particularly high, while additional evidence suggests that the Learning Commons furniture mix may not adequately match users’ needs. Conclusions – This study presents a unique approach to space use evaluation that enables researchers to collect and visualize representative observational data. This study demonstrates a model for quickly and reliably assessing space use for open-plan and learning-centred academic environments and for evaluating how well these learning spaces fulfill their institutional mission.

  3. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  4. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Ling-Yu Duan

    2010-01-01

    Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  5. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Tian Yonghong

    2010-01-01

    Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  6. WHITE SPACE DALAM IKLAN DI MEDIA CETAK

    Directory of Open Access Journals (Sweden)

    Andrian D. Hagijanto

    1999-01-01

    Full Text Available Readers are often unware of advertisments published in print media%2C therefore the elements of communication design composed in the promotion process fail to reach the objectives. One of the methods use to gain attention from the readers so they focus their vision to the advertisment is by presenting the lay out using white space. This article is to discuss about white space in media advertisments%2C especially newspaper and magazines. Abstract in Bahasa Indonesia : Iklan pada media cetak terkadang dilewati begitu saja oleh pembaca%2C sehingga proses promosi yang dikemas dengan elemen desain komunikasi visual itu gagal mencapai tujuannya. Salah satu cara untuk menarik perhatian pembaca agar menghentikan sejenak kedua matanya dan mengamati iklan adalah dengan menciptakan layout iklan lewat peranan white space. Tulisan ini akan membahas mengenai white space di dalam iklan media cetak%2C khususnya koran dan majalah.

  7. Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation

    International Nuclear Information System (INIS)

    Miki, Atsushi; Abe, Haruki; Nakajima, Takashi; Fujita, Motoi; Watanabe, Hiroyuki; Kuwabara, Takeo; Naruse, Shoji; Takagi, Mineo.

    1995-01-01

    Signal changes in the human primary visual cortex during visual stimulation were evaluated using non-invasive functional magnetic resonance imaging (fMRI). The experiments were performed on 10 normal human volunteers and 2 patients with homonymous hemianopsia, including one who was recovering from the exacerbation of multiple sclerosis. The visual stimuli were provided by a pattern generator using the checkerboard pattern for determining the visual evoked potential of full-field and hemifield stimulation. In normal volunteers, a signal increase was observed on the bilateral primary visual cortex during the full-field stimulation and on the contra-lateral cortex during hemifield stimulation. In the patient with homonymous hemianopsia after cerebral infarction, the signal change was clearly decreased on the affected side. In the other patient, the one recovering from multiple sclerosis with an almost normal visual field, the fMRI was within normal limits. These results suggest that it is possible to visualize the activation of the visual cortex during visual stimulation, and that there is a possibility of using this test as an objective method of visual field examination. (author)

  8. Audio-Visual Classification of Sports Types

    DEFF Research Database (Denmark)

    Gade, Rikke; Abou-Zleikha, Mohamed; Christensen, Mads Græsbøll

    2015-01-01

    In this work we propose a method for classification of sports types from combined audio and visual features ex- tracted from thermal video. From audio Mel Frequency Cepstral Coefficients (MFCC) are extracted, and PCA are applied to reduce the feature space to 10 dimensions. From the visual modali...

  9. "Off-the-Shelf" K2-EDTA for Calcific Band Keratopathy.

    Science.gov (United States)

    Lee, Marco E; Ouano, Dean P; Shapiro, Brett; Fong, Andrew; Coroneo, Minas T

    2018-07-01

    To explore the effectiveness of "off-the-shelf" dipotassium-ethylenediaminetetraacetic acid (K2-EDTA) as an alternative to sodium EDTA as chelation therapy in removal of calcific band keratopathy (CBK). This study was a retrospective case series involving 4 patients with CBK who underwent superficial keratectomy and subsequent chelation therapy with K2-EDTA in a single center (Coastal Eye Clinic) by the same surgeon. Visual acuity and symptomatic relief were the main outcomes measured in our study. All 4 participants in this study were female with an average age of 80.3 years. Three of the patients with reasonable baseline visual acuity experienced improved visual acuity at 1 month. The other patient with multiple ocular comorbidities and severely reduced visual potential reported symptomatic pain relief at 1-month follow-up after the intervention. K2-EDTA seems to be an effective alternative to disodium EDTA in its ability to clear calcific plaques and restore visual function. Because of the logistical difficulties associated with acquiring disodium EDTA, and the relative abundance of K2-EDTA in health-care facilities, we believe that our findings warrant further investigation into its use as a more accessible and cost-effective chelating agent in CBK.

  10. Unique features of space reactors

    International Nuclear Information System (INIS)

    Buden, D.

    1990-01-01

    This paper reports on space reactors that are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K

  11. fK /f{pi} in Full QCD with Domain Wall Valence Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Konstantinos Orginos; Martin Savage

    2007-05-01

    We compute the ratio of pseudoscalar decay constants f{sub K}/f{sub {pi}} using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L{sub 5}, and extrapolate f{sub K}/f{sub {pi}} to the physical point. We find: f{sub K}/f{sub {pi}} = 1.218 {+-} 0.002{sub -0.024}{sup +0.011} where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice valence quark are small.

  12. Visualization of plasma collision phenomenon by particle based rendering

    International Nuclear Information System (INIS)

    Yamamoto, Takeshi; Takagishi, Hironori; Hasegawa, Kyoko; Nakata, Susumu; Tanaka, Satoshi; Tanaka, Kazuo

    2012-01-01

    In this paper, we visualize plasma collision phenomenon based on XYT-space (space and time) volume data for supporting research in plasma physics. We create 3D volume data in the XYT-space by piling up a time series of XY-plane photo images taken in experiment. As a result, we can visualize as one still image all the time behavior of the plasma plume. Besides, we adopt 'fused' visualization based on particle based rendering technique. Using that technique, we can easily fuse volume rendering different materials, and compare physics of different elements in flexible ways. In addition, we propose the method to generate pseudo-3D images from pictures shoot by ICCD of two perspectives on the upper and side. (author)

  13. The prevalence and cognitive profile of sequence-space synaesthesia.

    Science.gov (United States)

    Ward, Jamie; Ipser, Alberta; Phanvanova, Eva; Brown, Paris; Bunte, Iris; Simner, Julia

    2018-05-01

    People with sequence-space synaesthesia visualize sequential concepts such as numbers and time as an ordered pattern extending through space. Unlike other types of synaesthesia, there is no generally agreed objective method for diagnosing this variant or separating it from potentially related aspects of cognition. We use a recently-developed spatial consistency test together with a novel questionnaire on naïve samples and estimate the prevalence of sequence-space synaesthesia to be around 8.1% (Study 1) to 12.8% (Study 2). We validate our test by showing that participants classified as having sequence-space synaesthesia perform differently on lab-based tasks. They show a spatial Stroop-like interference response, they show enhanced detection of low visibility Gabor stimuli, they report more use of visual imagery, and improved memory for certain types of public events. We suggest that sequence-space synaesthesia develops from a particular neurocognitive profile linked both to greater visual imagery and enhanced visual perception. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Visual sensations induced by Cherenkov radiation

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1975-01-01

    Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space

  15. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    Science.gov (United States)

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  16. Mapping the space of genomic signatures.

    Directory of Open Access Journals (Sweden)

    Lila Kari

    Full Text Available We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR, is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM, implicitly compares the occurrences of oligomers of length up to k (herein k = 9 in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (superkingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal

  17. Professional Standards for Visual Arts Educators

    Science.gov (United States)

    National Art Education Association, 2009

    2009-01-01

    The National Art Education Association (NAEA) is committed to ensuring that all students have access to a high quality, certified visual arts educator in every K-12 public school across the United States, recognizing that effective arts instruction is a core component of 21st-century education. "Professional Standards for Visual Arts…

  18. Visual Saliency Models for Text Detection in Real World.

    Directory of Open Access Journals (Sweden)

    Renwu Gao

    Full Text Available This paper evaluates the degree of saliency of texts in natural scenes using visual saliency models. A large scale scene image database with pixel level ground truth is created for this purpose. Using this scene image database and five state-of-the-art models, visual saliency maps that represent the degree of saliency of the objects are calculated. The receiver operating characteristic curve is employed in order to evaluate the saliency of scene texts, which is calculated by visual saliency models. A visualization of the distribution of scene texts and non-texts in the space constructed by three kinds of saliency maps, which are calculated using Itti's visual saliency model with intensity, color and orientation features, is given. This visualization of distribution indicates that text characters are more salient than their non-text neighbors, and can be captured from the background. Therefore, scene texts can be extracted from the scene images. With this in mind, a new visual saliency architecture, named hierarchical visual saliency model, is proposed. Hierarchical visual saliency model is based on Itti's model and consists of two stages. In the first stage, Itti's model is used to calculate the saliency map, and Otsu's global thresholding algorithm is applied to extract the salient region that we are interested in. In the second stage, Itti's model is applied to the salient region to calculate the final saliency map. An experimental evaluation demonstrates that the proposed model outperforms Itti's model in terms of captured scene texts.

  19. The Art in Visualizing Natural Landscapes from Space

    Science.gov (United States)

    Webley, P. W.; Shipman, J. S.; Adams, T.

    2017-12-01

    Satellite remote sensing data can capture the changing Earth at cm resolution, across hundreds of spectral channels, and multiple times per hour. There is an art in combining these datasets together to fully capture the beauty of our planet. The resulting artistic piece can be further transformed by building in an accompanying musical score, allowing for a deeper emotional connection with the public. We make use of visible, near, middle and long wave infrared and radar data as well as different remote sensing techniques to uniquely capture our changing landscape in the spaceborne data. We will generate visually compelling imagery and videos that represent hazardous events from dust storms to landslides and from volcanic eruptions to forest fires. We will demonstrate how specific features of the Earth's landscape can be emphasized through the use of different datasets and color combinations and how, by adding a musical score, we can directly connect with the viewer and heighten their experience. We will also discuss our process to integrate the different aspects of our project together and how it could be developed to capture the beauty of other planets across the solar system using spaceborne imagery and data. Bringing together experts in art installations, composing musical scores, and remote sensing image visualization can lead to new and exciting artistic representations of geoscience data. The resulting product demonstrates there is an art to visualizing remote sensing data to capture the beauty of our planet and that incorporating a musical score can take us all to new places and emotions to enhance our experience.

  20. The King-Devick (K-D) test of rapid eye movements: a bedside correlate of disability and quality of life in MS.

    Science.gov (United States)

    Moster, Stephen; Wilson, James A; Galetta, Steven L; Balcer, Laura J

    2014-08-15

    We investigated the King-Devick (K-D) test of rapid number naming as a visual performance measure in a cohort of patients with multiple sclerosis (MS). In this cross-sectional study, 81 patients with MS and 20 disease-free controls from an ongoing study of visual outcomes underwent K-D testing. A test of rapid number naming, K-D requires saccadic eye movements as well as intact vision, attention and concentration. To perform the K-D test, participants are asked to read numbers aloud as quickly as possible from three test cards; the sum of the three test card times in seconds constitutes the summary score. High-contrast visual acuity (VA), low-contrast letter acuity (1.25% and 2.5% levels), retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), MS Functional Composite (MSFC) and vision-specific quality of life (QOL) measures (25-Item NEI Visual Functioning Questionnaire [NEI-VFQ-25] and 10-Item Neuro-Ophthalmic Supplement) were also assessed. K-D time scores in the MS cohort (total time to read the three test cards) were significantly higher (worse) compared to those for disease-free controls (P=0.003, linear regression, accounting for age). Within the MS cohort, higher K-D scores were associated with worse scores for the NEI-VFQ-25 composite (Paccounting for age and within-patient, inter-eye correlations). Patients with a history of optic neuritis (ON) had increased (worse) K-D scores. Patients who classified their work disability status as disabled (receiving disability pension) did worse on K-D testing compared to those working full-time (P=0.001, accounting for age). The K-D test, a work disability as well as structural changes as measured by OCT imaging. History of ON and abnormal binocular acuities were associated with worse K-D scores, suggesting that abnormalities detected by K-D may go along with afferent dysfunction in MS patients. A brief test that requires saccadic eye movements, K-D should be considered for future MS trials as

  1. Visual Tracking via Feature Tensor Multimanifold Discriminate Analysis

    Directory of Open Access Journals (Sweden)

    Ting-quan Deng

    2014-01-01

    Full Text Available In the visual tracking scenarios, if there are multiple objects, due to the interference of similar objects, tracking may fail in the progress of occlusion to separation. To address this problem, this paper proposed a visual tracking algorithm with discrimination through multimanifold learning. Color-gradient-based feature tensor was used to describe object appearance for accommodation of partial occlusion. A prior multimanifold tensor dataset is established through the template matching tracking algorithm. For the purpose of discrimination, tensor distance was defined to determine the intramanifold and intermanifold neighborhood relationship in multimanifold space. Then multimanifold discriminate analysis was employed to construct multilinear projection matrices of submanifolds. Finally, object states were obtained by combining with sequence inference. Meanwhile, the multimanifold dataset and manifold learning embedded projection should be updated online. Experiments were conducted on two real visual surveillance sequences to evaluate the proposed algorithm with three state-of-the-art tracking methods qualitatively and quantitatively. Experimental results show that the proposed algorithm can achieve effective and robust effect in multi-similar-object mutual occlusion scenarios.

  2. Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): Validation in children with congenital heart disease.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Han, Eric; Gao, Yu; Nguyen, Kim-Lien; Finn, J Paul; Hu, Peng

    2017-08-01

    To develop and validate a cardiac-respiratory self-gating strategy for the recently proposed multiphase steady-state imaging with contrast enhancement (MUSIC) technique. The proposed SG strategy uses the ROtating Cartesian K-space (ROCK) sampling, which allows for retrospective k-space binning based on motion surrogates derived from k-space center line. The k-space bins are reconstructed using a compressed sensing algorithm. Ten pediatric patients underwent cardiac MRI for clinical reasons. The original MUSIC and 2D-CINE images were acquired as a part of the clinical protocol, followed by the ROCK-MUSIC acquisition, all under steady-state intravascular distribution of ferumoxytol. Subjective scores and image sharpness were used to compare the images of ROCK-MUSIC and original MUSIC. All scans were completed successfully without complications. The ROCK-MUSIC acquisition took 5 ± 1 min, compared to 8 ± 2 min for the original MUSIC. Image scores of ROCK-MUSIC were significantly better than original MUSIC at the ventricular outflow tracts (3.9 ± 0.3 vs. 3.3 ± 0.6, P ROCK-MUSIC in the other anatomic locations. ROCK-MUSIC provided images of equal or superior image quality compared to original MUSIC, and this was achievable with 40% savings in scan time and without the need for physiologic signal. Magn Reson Med 78:472-483, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  4. The Visual System

    Medline Plus

    Full Text Available ... to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.” ... Clinical Studies Publications Catalog Photos ...

  5. Imagined Spaces: Motion Graphics in Performance Spaces

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    through theories drawn from two different fields. The first is from the field of direct visual perception as explored and described by the American psychologist J. J. Gibson. I supplement this angle by introducing relevant new media theories extracted from writings from L. Manovich. I also briefly...... introduce a second theoretic perspective from neuroscience, especially neurological theories related to aesthetic experiences as studied, categorized and explained by V. S. Ramachandran. Key Words: Motion graphics, video projections, space, direct visual perception, design process, new media, neuroscience...

  6. Designed natural spaces: Informal gardens are perceived to be more restorative than formal gardens

    Directory of Open Access Journals (Sweden)

    Elyssa eTwedt

    2016-02-01

    Full Text Available Experimental research shows that there are perceived and actual benefits to spending time in natural spaces compared to urban spaces such as reduced cognitive fatigue, improved mood, and reduced stress. Whereas past research has focused primarily on distinguishing between distinct categories of spaces (i.e., nature versus urban, less is known about variability in perceived restorative potential of environments within a particular category of outdoor spaces, such as gardens. Conceptually, gardens are often considered to be restorative spaces and to contain an abundance of natural elements, though there is great variability in how gardens are designed that might impact their restorative potential. One common practice for classifying gardens is along a spectrum ranging from formal or geometric to informal or naturalistic, which often corresponds to the degree to which built or natural elements are present, respectively. In the current study, we tested whether participants use design informality as a cue to predict perceived restorative potential of different gardens. Participants viewed a set of gardens and rated each on design informality, perceived restorative potential, naturalness, and visual appeal. Participants perceived informal gardens to have greater restorative potential than formal gardens. In addition, gardens that were more visually appealing and more natural-looking were perceived to have greater restorative potential than less visually appealing and less natural gardens. These perceptions and precedents are highly relevant for the design of gardens and other similar green spaces intended to provide relief from stress and to foster cognitive restoration.

  7. Visual impact of overhead power transmission lines and dielectric and corona effects constraints on insulation coordination

    International Nuclear Information System (INIS)

    Deponti, F.; Fini, G.P.; Porrino, A.; Rosa, F.

    1992-06-01

    In assessing overhead power transmission line design and planning criteria for the optimization of visual impact, safety and the reduction of electro magnetic disturbance effects, this paper reviews the research findings of ENEL, the Italian Electricity Board. The on-going research activities involve theoretical calculations and laboratory performance tests to determine the best compact configurations for 380 kV lines. The parameters under examination include: insulator spacing, sizing and salt fog resistivity; allowable overvoltages; maximum line length; behaviour in lightning conditions; radio and acoustics disturbances

  8. SpacePy - a Python-based library of tools for the space sciences

    International Nuclear Information System (INIS)

    Morley, Steven K.; Welling, Daniel T.; Koller, Josef; Larsen, Brian A.; Henderson, Michael G.

    2010-01-01

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the

  9. Social Set Visualizer

    DEFF Research Database (Denmark)

    Flesch, Benjamin; Vatrapu, Ravi; Mukkamala, Raghava Rao

    2015-01-01

    approach to computational social science mentioned above. The development of the dashboard involved cutting-edge open source visual analytics libraries (D3.js) and creation of new visualizations such as of actor mobility across time and space, conversational comets, and more. Evaluation of the dashboard......Current state-of-the-art in big social data analytics is largely limited to graph theoretical approaches such as social network analysis (SNA) informed by the social philosophical approach of relational sociology. This paper proposes and illustrates an alternate holistic approach to big social data...

  10. Full Lindenmayer-AFL's and Related Language Families

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1976-01-01

    We establish a Canonical Form for the least full $R_Y$-AFL containing $Sub(K_1,K_2)$. From a well-known characterization of the families EOL and ETOL due to Ehrenfeucht & Rozenberg (1974, 1974a) we obtain Salomaa's (1973) result on the full Lindenmayer-AFL's $Sub(K,OL)$ and $Sub(K,TOL)$. The

  11. Radiative K{sub e3} decays revisited

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, J. [Universitaet Bern, Institut fuer Theoretische Physik, Bern (Switzerland); Kubis, B. [Universitaet Bern, Institut fuer Theoretische Physik, Bern (Switzerland); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Paver, N. [Universita degli Studi di Trieste, Dipartimento di Fisica Teorica, Trieste (Italy); INFN-Trieste, Trieste (Italy); Verbeni, M. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos, Granada (Spain)

    2005-03-01

    Motivated by recent experimental results and ongoing measurements, we review the chiral perturbation theory prediction for K{sub L}{yields}{pi}{sup -+}e{sup {+-}}{nu}{sub e}{gamma} decays. Special emphasis is given to the stability of the inner bremsstrahlung-dominated relative branching ratio versus the K{sub e3} form factors, and on the separation of the structure-dependent amplitude in differential distributions over the phase space. For the structure-dependent terms, an assessment of the order p{sup 6} corrections is given, in particular, a full next-to-leading order calculation of the axial component is performed. The experimental analysis of the photon energy spectrum is discussed, and other potentially useful distributions are introduced. (orig.)

  12. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert?

    Directory of Open Access Journals (Sweden)

    Sarah Laxhmi Chellappa

    Full Text Available BACKGROUND: Light exposure can cascade numerous effects on the human circadian process via the non-imaging forming system, whose spectral relevance is highest in the short-wavelength range. Here we investigated if commercially available compact fluorescent lamps with different colour temperatures can impact on alertness and cognitive performance. METHODS: Sixteen healthy young men were studied in a balanced cross-over design with light exposure of 3 different light settings (compact fluorescent lamps with light of 40 lux at 6500K and at 2500K and incandescent lamps of 40 lux at 3000K during 2 h in the evening. RESULTS: Exposure to light at 6500K induced greater melatonin suppression, together with enhanced subjective alertness, well-being and visual comfort. With respect to cognitive performance, light at 6500K led to significantly faster reaction times in tasks associated with sustained attention (Psychomotor Vigilance and GO/NOGO Task, but not in tasks associated with executive function (Paced Visual Serial Addition Task. This cognitive improvement was strongly related with attenuated salivary melatonin levels, particularly for the light condition at 6500K. CONCLUSIONS: Our findings suggest that the sensitivity of the human alerting and cognitive response to polychromatic light at levels as low as 40 lux, is blue-shifted relative to the three-cone visual photopic system. Thus, the selection of commercially available compact fluorescent lights with different colour temperatures significantly impacts on circadian physiology and cognitive performance at home and in the workplace.

  13. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Directory of Open Access Journals (Sweden)

    Ravinder eJerath

    2015-08-01

    Full Text Available The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information is filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  14. Every k-separable Cech-complete space is subcompact

    NARCIS (Netherlands)

    van Mill, J.; Tkachuk, V.V.

    2015-01-01

    We establish that a Čech-complete space X must be subcompact if it has a dense subspace representable as the countable union of closed subcompact subspaces of X. In particular, if a Čech-complete space contains a dense σ-compact subspace then it is subcompact. This result is new even for separable

  15. "Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students: Grades, Data Driven Decision Making, Dropping out and Hierarchical Cluster Analysis"

    Directory of Open Access Journals (Sweden)

    Alex J. Bowers

    2010-05-01

    Full Text Available School personnel currently lack an effective method to pattern and visually interpret disaggregated achievement data collected on students as a means to help inform decision making. This study, through the examination of longitudinal K-12 teacher assigned grading histories for entire cohorts of students from a school district (n=188, demonstrates a novel application of hierarchical cluster analysis and pattern visualization in which all data points collected on every student in a cohort can be patterned, visualized and interpreted to aid in data driven decision making by teachers and administrators. Additionally, as a proof-of-concept study, overall schooling outcomes, such as student dropout or taking a college entrance exam, are identified from the data patterns and compared to past methods of dropout identification as one example of the usefulness of the method. Hierarchical cluster analysis correctly identified over 80% of the students who dropped out using the entire student grade history patterns from either K-12 or K-8.

  16. Developmental changes in reading do not alter the development of visual processing skills: An application of explanatory item response models in grades K-2

    Directory of Open Access Journals (Sweden)

    Kristi L Santi

    2015-02-01

    Full Text Available Visual processing has been widely studied in regard to its impact on a students’ ability to read. A less researched area is the role of reading in the development of visual processing skills. A cohort-sequential, accelerated-longitudinal design was utilized with 932 kindergarten, first, and second grade students to examine the impact of reading acquisition on the processing of various types of visual discrimination and visual motor test items. Students were assessed four times per year on a variety of reading measures and reading precursors and two popular measures of visual processing over a three-year period. Explanatory item response models were used to examine the roles of person and item characteristics on changes in visual processing abilities and changes in item difficulties over time. Results showed different developmental patterns for five types of visual processing test items, but most importantly failed to show consistent effects of learning to read on changes in item difficulty. Thus, the present study failed to find support for the hypothesis that learning to read alters performance on measures of visual processing. Rather, visual processing and reading ability improved together over time with no evidence to suggest cross-domain influences from reading to visual processing. Results are discussed in the context of developmental theories of visual processing and brain-based research on the role of visual skills in learning to read.

  17. A contralateral eye study comparing apodized diffrative and full diffrative lenses: wavefront analysis and distance and near uncorrected visual acuity

    Directory of Open Access Journals (Sweden)

    Marcony Rodrigues de Santhiago

    2009-01-01

    Full Text Available PURPOSE: To evaluate intraindividual visual acuity, wavefront errors and modulation transfer functions in patients implanted with two diffractive multifocal intraocular lenses. METHODS: This prospective study examined 40 eyes of 20 cataract patients who underwent phacoemulsification and implantation of a spherical multifocal ReSTOR intraocular lens in one eye and an aspheric Tecnis ZM900 multifocal intraocular lens in the other eye. The main outcome measures, over a 3-month follow-up period, were the uncorrected photopic distance and near visual acuity and the defocus curve. The visual acuity was converted to logMAR for statistical analysis and is presented in decimal scale. The wavefront error and modulation transfer function were also evaluated in both groups. RESULTS: At the 3-month postoperative visit, the mean photopic distance uncorrected visual acuity (UCVA was 0.74 ± 0.20 in the ReSTOR group and 0.76 ± 0.22 in the Tecnis group (p=0.286. The mean near UCVA was 0.96 ± 0.10 in the ReSTOR group and 0.93 ± 0.14 in the Tecnis group (p=0.963. The binocular defocus curve showed measurements between the peaks better than 0.2 logMAR. The total aberration, higher-order aberration and coma aberration were not significantly different between the groups. The spherical aberration was significantly lower in the Tecnis group than in the ReSTOR group. (p=0.004. Both groups performed similarly for the modulation transfer function. CONCLUSION: The ReSTOR SN60D3 and Tecnis ZM 900 intraocular lenses provided similar photopic visual acuity at distance and near. The diffractive intraocular lenses studied provided a low value of coma and spherical aberrations, with the Tecnis intraocular lens having a statistically lower spherical aberration compared to the ReSTOR intraocular lens. In the 5 mm pupil diameter analyses, both intraocular lens groups showed similar modulation transfer functions.

  18. Visual Analytics for the Exploration of Tumor Tissue Characterization

    DEFF Research Database (Denmark)

    Raidou, R. G.; Van Der Heide, U. A.; Dinh, C. V.

    2015-01-01

    imaging data, to derive per voxel a number of features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging-derived feature space is prohibiting for easy exploration and analysis - especially when clinical researchers require to associate observations from...... the feature space to other reference data, e.g., features derived from histopathological data. Currently, the exploratory approach used in clinical research consists of juxtaposing these data, visually comparing them and mentally reconstructing their relationships. This is a time consuming and tedious process......, from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual analysis of the feature space of imaging-derived tissue characteristics and (2) knowledge discovery and hypothesis generation and confirmation, with respect to reference data used...

  19. Accessibility of shared space for visually impaired persons

    NARCIS (Netherlands)

    Havik, Else; Melis, Bart; Steyvers, Franciscus J.J.M.

    2011-01-01

    Shared Space is a new concept for the design of the public realm that is increasingly applied in Western countries. In Shared Space, the various functions of the public domain are combined, rather than separated. The behavior of road users is mainly determined by social relations and not exclusively

  20. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation.

    Science.gov (United States)

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  1. APLIKASI PRINSIP GESTALT PADA MEDIA DESAIN KOMUNIKASI VISUAL

    OpenAIRE

    Bing Bedjo Tanudjaja

    2005-01-01

    The Gestalt principle introduced around 1920 by Max Wertheimer is a general description for a concept which unifies different possibilities in design. Knowledge of Gestalt principle and visual perception helps as vital visual method in the development of visual strategy in graphic design and visual communication design today. Abstract in Bahasa Indonesia : Prinsip Gestalt yang diperkenalkan pada sekitar tahun 1920 oleh Max Wertheimer merupakan deskripsi secara umum untuk konsep yang membuat k...

  2. Introduction: Critical Visual Theory

    Directory of Open Access Journals (Sweden)

    Peter Ludes

    2014-03-01

    Full Text Available The studies selected for publication in this special issue on Critical Visual Theory can be divided into three thematic groups: (1 image making as power making, (2 commodification and recanonization, and (3 approaches to critical visual theory. The approaches to critical visual theory adopted by the authors of this issue may be subsumed under the following headings (3.1 critical visual discourse and visual memes in general and Anonymous visual discourse in particular, (3.2 collective memory and gendered gaze, and (3.3 visual capitalism, global north and south.

  3. An Empirical Study on Using Visual Embellishments in Visualization.

    Science.gov (United States)

    Borgo, R; Abdul-Rahman, A; Mohamed, F; Grant, P W; Reppa, I; Floridi, L; Chen, Min

    2012-12-01

    In written and spoken communications, figures of speech (e.g., metaphors and synecdoche) are often used as an aid to help convey abstract or less tangible concepts. However, the benefits of using rhetorical illustrations or embellishments in visualization have so far been inconclusive. In this work, we report an empirical study to evaluate hypotheses that visual embellishments may aid memorization, visual search and concept comprehension. One major departure from related experiments in the literature is that we make use of a dual-task methodology in our experiment. This design offers an abstraction of typical situations where viewers do not have their full attention focused on visualization (e.g., in meetings and lectures). The secondary task introduces "divided attention", and makes the effects of visual embellishments more observable. In addition, it also serves as additional masking in memory-based trials. The results of this study show that visual embellishments can help participants better remember the information depicted in visualization. On the other hand, visual embellishments can have a negative impact on the speed of visual search. The results show a complex pattern as to the benefits of visual embellishments in helping participants grasp key concepts from visualization.

  4. Visualization, Light Transport, and Big Data

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Scientific data treated by current peta-scale computers and coming exa-scale computers is quite huge and it is known as "Big Data". For a better understanding and analysis of this massive amount of information, visualization is an important task. Large scale, efficient, and visually compelling visualization has many challenges. In this talk, I will introduce the most promising visualization technique for big data. Namely, ray tracing method from Light Transport theory and image composition. I will also show some recent large scale visualization results using this technique on the K computer, a 10 peta-flops supercomputer with up to 65,536 computing nodes. About the speaker Please find the speaker's LinkedIn profile here.

  5. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques.

    Science.gov (United States)

    Viswanathan, Pooja; Nieder, Andreas

    2017-12-01

    The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. K3 projective models in scrolls

    CERN Document Server

    Johnsen, Trygve

    2004-01-01

    The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time.

  7. Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding

    Directory of Open Access Journals (Sweden)

    Anna A. Kosovicheva

    2012-09-01

    Full Text Available Acetylcholine (ACh reduces the spatial spread of excitatory fMRI responses in early visual cortex and the receptive field sizes of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two tasks that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Exp. 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: 1 surround grating with the same orientation as the center (parallel, 2 surround orthogonal to the center, or 3 no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS. Cholinergic enhancement reduced thresholds only in the parallel condition, thereby reducing OSSS. In Exp. 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the target and flanking letters that allowed reliable identification. Cholinergic enhancement had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical

  8. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    Science.gov (United States)

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  9. Graph-based clustering and data visualization algorithms

    CERN Document Server

    Vathy-Fogarassy, Ágnes

    2013-01-01

    This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on

  10. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    Science.gov (United States)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  11. The Visual System

    Medline Plus

    Full Text Available ... National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, ...

  12. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  13. Parametric embedding for class visualization.

    Science.gov (United States)

    Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B

    2007-09-01

    We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.

  14. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    Science.gov (United States)

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (pplane of platform motion significantly increased (phistory of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (pplanes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  15. 14 CFR 1221.108 - Establishment of the NASA Unified Visual Communications System.

    Science.gov (United States)

    2010-01-01

    ... Visual Communications System. The NASA Graphics Coordinator will develop and issue changes and additions... Communications System. 1221.108 Section 1221.108 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE... Communications System § 1221.108 Establishment of the NASA Unified Visual Communications System. (a) The NASA...

  16. NASA's Scientific Visualization Studio

    Science.gov (United States)

    Mitchell, Horace G.

    2003-01-01

    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at svs.gsfc.nasa.gov will also be described.

  17. Big data for space situation awareness

    Science.gov (United States)

    Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter

    2017-05-01

    Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.

  18. The Visual System

    Medline Plus

    Full Text Available ... NIH), the National Eye Institute’s mission is to “conduct and support research, training, health information dissemination, and other programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of ...

  19. A monocular, unconscious form of visual attention

    NARCIS (Netherlands)

    Self, M.W.; Roelfsema, P.R.

    2010-01-01

    Sudden changes in our visual field capture our attention so that we are faster and more accurate in our responses to that region of space. The underlying mechanisms by which these behavioral improvements occur are unknown. Here we investigate the level of the visual system at which attentional

  20. The Visuality, Embodiment and Gender Performance of Korean Pop: A Study on the Production, Consumption and Appropriation of the MVs of “Girls’ Generation”

    Directory of Open Access Journals (Sweden)

    Ming-Tsung Lee

    2015-01-01

    Full Text Available This paper tries to resolve the puzzle firstly: how can Korean pop (K-Pop become transbordering since Korean is not the main language in the world? It can be attributed to the policy input and capital integration, the textual circulation through emerging audio-video platform on-line, as well as the specific textual form with intensive visuality and embodiment. This paper applies not only traditionally visual-textual analysis but also the new methodology called “following the object” by the British sociologists Scott Lash and Celia Lury. The researcher regards K-Pop as an object of cross-cultural consumption and tracks its circulation from local production to “glocal” consumption. Through the interview to the K-Pop professionals, review of the relevant articles, textual analysis of the music videos and the ethnographic fieldwork of local fans community, this paper tries to answer the two questions: (1 how does K-Pop produce itself by the strategies of visualization and embodiment, as well as gendered performance; (2 how do the fans appropriate the K-Pop texts to re-perform and re-shape their gender identities in their everyday life.

  1. Colourings of (k-r,k-trees

    Directory of Open Access Journals (Sweden)

    M. Borowiecki

    2017-01-01

    Full Text Available Trees are generalized to a special kind of higher dimensional complexes known as \\((j,k\\-trees ([L. W. Beineke, R. E. Pippert, On the structure of \\((m,n\\-trees, Proc. 8th S-E Conf. Combinatorics, Graph Theory and Computing, 1977, 75-80], and which are a natural extension of \\(k\\-trees for \\(j=k-1\\. The aim of this paper is to study\\((k-r,k\\-trees ([H. P. Patil, Studies on \\(k\\-trees and some related topics, PhD Thesis, University of Warsaw, Poland, 1984], which are a generalization of \\(k\\-trees (or usual trees when \\(k=1\\. We obtain the chromatic polynomial of \\((k-r,k\\-trees and show that any two \\((k-r,k\\-trees of the same order are chromatically equivalent. However, if \\(r\

  2. The Visual System

    Medline Plus

    Full Text Available ... programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health ... Pressroom Contacts Dustin Hays - Chief, Science Communication dustin.hays@nih.gov Kathryn DeMott, Media Relations ...

  3. The Visual System

    Medline Plus

    Full Text Available ... blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of the blind.” ... DeMott, Media Relations Kathryn.DeMott@nih.gov NEI Office of Communications ( ...

  4. Visual Data Mining of Robot Performance Data, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop VDM/RP, a visual data mining system that will enable analysts to acquire, store, query, analyze, and visualize recent and historical...

  5. Classical variables in the era of space photometric missions

    Directory of Open Access Journals (Sweden)

    Molnár L.

    2015-01-01

    Full Text Available The space photometric missions like CoRoT and Kepler transformed our view of pulsating stars, including the well-known RR Lyrae and Cepheid classes. The K2, TESS and PLATO missions will expand these investigations to larger sample sizes and to specific stellar populations.

  6. Analysis of relationship among visual evoked potential, oscillatory potential and visual acuity under stimulated weightlessness

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2013-05-01

    Full Text Available AIM: To observe the influence of head-down tilt simulated weightlessness on visual evoked potential(VEP, oscillatory potentials(OPsand visual acuity, and analyse the relationship among them. METHODS: Head-down tilt for -6° was adopted in 14 healthy volunteers. Distant visual acuity, near visual acuity, VEP and OPs were recorded before, two days and five days after trial. The record procedure of OPs followed the ISCEV standard for full-field clinical electroretinography(2008 update. RESULTS: Significant differences were detected in the amplitude of P100 waves and ∑OPs among various time points(P<0.05. But no relationship was observed among VEP, OPs and visual acuity. CONCLUSION: Head-down tilt simulated weightlessness induce the rearrange of blood of the whole body including eyes, which can make the change of visual electrophysiology but not visual acuity.

  7. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  8. The Visual System

    Medline Plus

    Full Text Available ... to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and requirements of ... Pressroom Contacts Dustin Hays - Chief, Science Communication dustin.hays@nih.gov Kathryn DeMott, Media Relations ...

  9. The Visual System

    Medline Plus

    Full Text Available ... with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the ... Contact Us A-Z Site Map NEI on Social Media Information in Spanish (Información en español) Website, ...

  10. Playing in childhood: importance and singularities for children with visual impairment

    Directory of Open Access Journals (Sweden)

    Tania Mara Zancanaro Pieczkowski

    2017-01-01

    Full Text Available This study investigated what kind of playing and how visually impaired children play in the family and educational contexts, aiming at understanding playing and the role of toys in these children‟s development. The study was based on the historical-cultural perspective, mainly considering Vygotsky‟s studies. Empirical material was collected from five families with blind or short-sighted children and from the specialized institution these children attend. We adopted semi-structured interviews with parents and educators and observation of the relevant contexts. The data collected was categorized and theorized through content analysis. We concluded that the mediation of another person during playing enables the visually impaired child to develop confidence to explore the physical space, objects and to elaborate concepts.

  11. Embodied Space in Early Blind Individuals

    OpenAIRE

    Crollen, Virginie; Collignon, Olivier

    2012-01-01

    The impact of sensory experience during early life on space perception and control of action has only been scarcely studied. The visual system typically provides the more accurate and reliable spatial information of our surrounding and is then usually considered as the frontrunner sense when spatial processing is at play. The study of visually deprived individual therefore offers a unique opportunity to investigate the role that vision plays in shaping how we process our surrounding space. Ho...

  12. Crowded visual search in children with normal vision and children with visual impairment.

    Science.gov (United States)

    Huurneman, Bianca; Cox, Ralf F A; Vlaskamp, Björn N S; Boonstra, F Nienke

    2014-03-01

    This study investigates the influence of oculomotor control, crowding, and attentional factors on visual search in children with normal vision ([NV], n=11), children with visual impairment without nystagmus ([VI-nys], n=11), and children with VI with accompanying nystagmus ([VI+nys], n=26). Exclusion criteria for children with VI were: multiple impairments and visual acuity poorer than 20/400 or better than 20/50. Three search conditions were presented: a row with homogeneous distractors, a matrix with homogeneous distractors, and a matrix with heterogeneous distractors. Element spacing was manipulated in 5 steps from 2 to 32 minutes of arc. Symbols were sized 2 times the threshold acuity to guarantee visibility for the VI groups. During simple row and matrix search with homogeneous distractors children in the VI+nys group were less accurate than children with NV at smaller spacings. Group differences were even more pronounced during matrix search with heterogeneous distractors. Search times were longer in children with VI compared to children with NV. The more extended impairments during serial search reveal greater dependence on oculomotor control during serial compared to parallel search. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    Science.gov (United States)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  14. The development of hand-centred visual representations in the primate brain: a computer modelling study using natural visual scenes.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Galeazzi

    2015-12-01

    Full Text Available Neurons that respond to visual targets in a hand-centred frame of reference have been found within various areas of the primate brain. We investigate how hand-centred visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organisation. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localised receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localised receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centred receptive fields decreased their shape selectivity and started responding to a localised region of hand-centred space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localised, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  15. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Lee

    Full Text Available Despite the growing attention given to Traditional Medicine (TM worldwide, there is no well-known, publicly available, integrated bio-pharmacological Traditional Korean Medicine (TKM database for researchers in drug discovery. In this study, we have constructed PharmDB-K, which offers comprehensive information relating to TKM-associated drugs (compound, disease indication, and protein relationships. To explore the underlying molecular interaction of TKM, we integrated fourteen different databases, six Pharmacopoeias, and literature, and established a massive bio-pharmacological network for TKM and experimentally validated some cases predicted from the PharmDB-K analyses. Currently, PharmDB-K contains information about 262 TKMs, 7,815 drugs, 3,721 diseases, 32,373 proteins, and 1,887 side effects. One of the unique sets of information in PharmDB-K includes 400 indicator compounds used for standardization of herbal medicine. Furthermore, we are operating PharmDB-K via phExplorer (a network visualization software and BioMart (a data federation framework for convenient search and analysis of the TKM network. Database URL: http://pharmdb-k.org, http://biomart.i-pharm.org.

  16. VisComposer: A Visual Programmable Composition Environment for Information Visualization

    Directory of Open Access Journals (Sweden)

    Honghui Mei

    2018-03-01

    Full Text Available As the amount of data being collected has increased, the need for tools that can enable the visual exploration of data has also grown. This has led to the development of a variety of widely used programming frameworks for information visualization. Unfortunately, such frameworks demand comprehensive visualization and coding skills and require users to develop visualization from scratch. An alternative is to create interactive visualization design environments that require little to no programming. However, these tools only supports a small portion of visual forms.We present a programmable integrated development environment (IDE, VisComposer, that supports the development of expressive visualization using a drag-and-drop visual interface. VisComposer exposes the programmability by customizing desired components within a modularized visualization composition pipeline, effectively balancing the capability gap between expert coders and visualization artists. The implemented system empowers users to compose comprehensive visualizations with real-time preview and optimization features, and supports prototyping, sharing and reuse of the effects by means of an intuitive visual composer. Visual programming and textual programming integrated in our system allow users to compose more complex visual effects while retaining the simplicity of use. We demonstrate the performance of VisComposer with a variety of examples and an informal user evaluation. Keywords: Information Visualization, Visualization authoring, Interactive development environment

  17. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  18. Using the "K[subscript 5]Connected Cognition Diagram" to Analyze Teachers' Communication and Understanding of Regions in Three-Dimensional Space

    Science.gov (United States)

    Moore-Russo, Deborah; Viglietti, Janine M.

    2012-01-01

    This paper reports on a study that introduces and applies the "K[subscript 5]Connected Cognition Diagram" as a lens to explore video data showing teachers' interactions related to the partitioning of regions by axes in a three-dimensional geometric space. The study considers "semiotic bundles" (Arzarello, 2006), introduces "semiotic connections,"…

  19. Duality relations between SU(N)k and SU(k)NWZW models and their braid matrices

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    Dual relations are found between the primary fields, correlators, and conformal blocks of SU(N) k and SU(k) N WZW models, which in turn imply dual relations between the braid matrices of the two theories. These results are a consequence of the fact that the spaces of conformal blocks of SU(N) k and SU(k) N correlation functions are dual. (orig.)

  20. MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD

    Directory of Open Access Journals (Sweden)

    BARITZ Mihaela

    2015-06-01

    Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.

  1. Using Technology to Support Visual Learning Strategies

    Science.gov (United States)

    O'Bannon, Blanche; Puckett, Kathleen; Rakes, Glenda

    2006-01-01

    Visual learning is a strategy for visually representing the structure of information and for representing the ways in which concepts are related. Based on the work of Ausubel, these hierarchical maps facilitate student learning of unfamiliar information in the K-12 classroom. This paper presents the research base for this Type II computer tool, as…

  2. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Jones, Chad; Ma, K-L; Sanderson, Allen; Myers, Lee Roy Jr

    2007-01-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  3. 10. Creativity and Innovation in Visual Arts through Form and Space Having Symbolic Value

    Directory of Open Access Journals (Sweden)

    Iaţeşen Mihai – Cosmin

    2017-03-01

    Full Text Available The numerous plastic approaches of form in the 20th century are characterized by creativity and innovation. Form, as expression of an artistic language, is the cause and effect for the cultural evolution of a particular spatial-temporal area. The invention of forms depending on the factors which will impose them in a particular socio-cultural context and location environment is not everything. The challenges of the act of creation are far more complex. For the art of the 20th century, the role of the type of expression in visual or gestural language proved much more convincing and meaningful as to the data or phenomena occurring in immediate reality. The personality of the artist, his cultural character, his media coverage and exterior influences of his inner world, his preceding experiences and receiver’s contacts in a specific area are the factors that influence the relation between the work of art and the audience against a particular spatial-temporal background. The psychological and sensory processes in works of plastic art are spatially configured in structures, which leads to self-confession. The artist filters the information and the elements of exterior reality through the vision of his imagination and power of expression specific to his inner self, and turns them into values through the involvement of his state of mind. Constantin Brâncuşi is the sculptor whose role was considered exponential as he revolutionized modern artistic vision by integrating and creating space-form relations through symbol. Throughout his complex work - the Group of Monumental Sculptures of Tg. Jiu, the artist renewed the language of the sculpture-specific means of expression, though archaic forms, by restoring traditional art. Archetypes often make reference to the initial and ideal form and they represent the primitive and native models composing it. Form attracts, polarizes and integrates the energy of the matter outside the human body, and art acquires

  4. Common Fixed Points for Asymptotic Pointwise Nonexpansive Mappings in Metric and Banach Spaces

    Directory of Open Access Journals (Sweden)

    P. Pasom

    2012-01-01

    Full Text Available Let C be a nonempty bounded closed convex subset of a complete CAT(0 space X. We prove that the common fixed point set of any commuting family of asymptotic pointwise nonexpansive mappings on C is nonempty closed and convex. We also show that, under some suitable conditions, the sequence {xk}k=1∞ defined by xk+1=(1-tmkxk⊕tmkTmnky(m-1k, y(m-1k=(1-t(m-1kxk⊕t(m-1kTm-1nky(m-2k,y(m-2k=(1-t(m-2kxk⊕t(m-2kTm-2nky(m-3k,…,y2k=(1-t2kxk⊕t2kT2nky1k,y1k=(1-t1kxk⊕t1kT1nky0k,y0k=xk,  k∈N, converges to a common fixed point of T1,T2,…,Tm where they are asymptotic pointwise nonexpansive mappings on C, {tik}k=1∞ are sequences in [0,1] for all i=1,2,…,m, and {nk} is an increasing sequence of natural numbers. The related results for uniformly convex Banach spaces are also included.

  5. 5D Task Analysis Visualization Tool Phase II, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The creation of a five-dimensional task analysis visualization (5D-TAV) software tool for Task Analysis and Workload Planning using multi-dimensional visualization...

  6. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  7. Trajectory data analyses for pedestrian space-time activity study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-25

    It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an

  8. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    Science.gov (United States)

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  9. Nonlinear electrostatic emittance compensation in kA, fs electron bunches

    International Nuclear Information System (INIS)

    Geer, S.B. van der; Loos, M.J. de; Botman, J.I.M.; Luiten, O.J.; Wiel, M.J. van der

    2002-01-01

    Nonlinear space-charge effects play an important role in emittance growth in the production of kA electron bunches with a bunch length much smaller than the bunch diameter. We propose a scheme employing the radial third-order component of an electrostatic acceleration field, to fully compensate the nonlinear space-charge effects. This results in minimal transverse root-mean-square emittance. The principle is demonstrated using our design simulations of a device for the production of high-quality, high-current, subpicosecond electron bunches using electrostatic acceleration in a 1 GV/m field. Simulations using the GPT code produce a bunch of 100 pC and 73 fs full width at half maximum pulse width, resulting in a peak current of about 1.2 kA at an energy of 2 MeV. The compensation scheme reduces the root-mean-square emittance by 34% to 0.4π mm mrad

  10. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen

    2013-02-01

    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  11. Optimization of Visual Information Presentation for Visual Prosthesis

    Directory of Open Access Journals (Sweden)

    Fei Guo

    2018-01-01

    Full Text Available Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  12. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  13. Child behavior check list and Korean personality inventory for children with functional visual loss.

    Science.gov (United States)

    Kyung, Sung Eun; Lee, Sang Mi; Lim, Myung Ho

    2014-08-01

    To investigate the clinical psychiatric characteristics of children with the main complaint of functional visual loss, their behavior and personality were evaluated by the means of the Korean child behavior check list (K-CBCL), and the Korean personality inventory for children (KPI-C). The evaluation was carried out by the K-CBCL and the KPI-C, the domestically standardized tools, with 20 child subjects suspected of functional visual loss, among the patients who visited our hospital, between August, 2005 and December, 2012. The control group included 160 children in general schools of the same region. The 20 patients whose main complaint was functional visual loss were diagnosed as having a functional visual disorder. The child patient group showed a higher score for the K-CBCL and KPI-C sub-scales of somatic complaints, social problems, aggressive behavior, internalizing problems, externalizing problems, total behavioral problems, somatization and hyperactivity, than that of the control group. The results of the K-CBCL and KPI-C tests among children with functional visual loss, were significantly different from those of the normal control group. This result suggested that psychological factors may influence children with a main complaint of functional visual loss.

  14. On-site and laboratory evaluations of soundscape quality in recreational urban spaces

    DEFF Research Database (Denmark)

    Bjerre, Lærke Cecilie; Larsen, Thea Mathilde; Sørensen, Anna Josefine

    2017-01-01

    Regulations for quiet urban areas are typically based on sound level limits alone. However, the nonacoustic context may be crucial for subjective soundscape quality. Aims: This study aimed at comparing the role of sound level and nonacoustic context for subjective urban soundscape assessment...... in the presence of the full on-site context, the visual context only, and without context. Materials and Methods: Soundscape quality was evaluated for three recreational urban spaces by using four subjective attributes: loudness, acceptance, stressfulness, and comfort. The sound level was measured at each site......, the availability of the visual context in the listening experiment had no significant effect on the ratings. The participants were overall more positive toward natural sound sources on site. Conclusion: The full immersion in the on-site nonacoustic context may be important when evaluating overall soundscape...

  15. Multipliers on Generalized Mixed Norm Sequence Spaces

    Directory of Open Access Journals (Sweden)

    Oscar Blasco

    2014-01-01

    Full Text Available Given 1≤p,q≤∞ and sequences of integers (nkk and (nk′k such that nk≤nk′≤nk+1, the generalized mixed norm space ℓℐ(p,q is defined as those sequences (ajj such that ((∑j∈Ik‍|aj|p1/pk∈ℓq where Ik={j∈ℕ0 s.t. nk≤jspace of multipliers (ℓℐ(r,s,ℓ(u,v, for different sequences ℐ and of intervals in ℕ0, are determined.

  16. Programs Visualize Earth and Space for Interactive Education

    Science.gov (United States)

    2014-01-01

    Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.

  17. Real-space multiple-scattering theory and the electronic structure of systems with full or reduced symmetry

    International Nuclear Information System (INIS)

    Zhang, X.; Gonis, A.; MacLaren, J.M.

    1989-01-01

    We present a new real-space multiple-scattering-theory method for the solution of the Schroedinger equation and the calculation of the electronic structure of solid materials with full or reduced symmetry. The method is based on the concept of semi-infinite periodicity (SIP), rather than translational invariance, and on the property of removal invariance of the scattering matrix of systems with SIP. This latter property allows one to replace the usual Brillouin-zone integrals in reciprocal space by a self-consistency equation for the t matrix, which is sufficient for the determination of the Green function and related properties. Because it is developed entirely in direct space, the method provides a unified treatment of the electronic structure of bulk materials, surfaces, interfaces and grain boundaries (coherent or incoherent), impurities of interstitial or substitutional kinds, and can be easily extended to treat concentrated, substitutionally disordered alloys. One of its advantages over methods based on Bloch's theorem and reciprocal space is the great simplicity of setting up and running the associated computer codes even for complex structures, and structures with reduced or no symmetry that lie outside the realm of applicability of conventional methods. We present the results of model calculations for one-dimensional and three-dimensional model systems as well as for three-dimensional realistic materials. Where appropriate, these results are compared with those obtained through conventional techniques, and give an indication of the method's flexibility and reliability. Our applications of this method to this point are discussed, and our plans for future development are presented

  18. Cognitive visualization as a support instrument by individual education

    Directory of Open Access Journals (Sweden)

    V. A. Uglev

    2014-01-01

    Full Text Available The process of individual education, as the most effective form of gaining domain knowledge can be intensified through the organizational methods (involving a tutor, hardware (using computing technology, and psychological techniques (in particular, applying a cognitive visual representation. Of particular interest is a combination of traditional and computer-aided tutor support for individualized learning approaches based on the specific means of mapping.A tutor is an intermediary between a student (pupil and a teacher or between a student and a knowledge source in case of self-learning to orient the educational process to the student's personal goals and implement the L. S. Vygotsky's mediation principle. Thus, the tutor faces a task to identify the personal learning goals, disclose the learning prospects and its supports, but the student plays a role of a decision-maker. One of the nuclear problems of tutorage is making an individual educational or didactic path, which expects making a kind of distinctive cognition route.An application of cognitive visualization as a tutor's tools, is aimed, primarily, at a comprehensive representation of subjective educational student's space. A student has to be oriented inside this space to reach the denoted goals. In this context it is possible to formulate the navigation problem, which may be solved it in the most rational way by educational space mapping and navigating in it at any moment of the educational process. All three basic qualities of maps (the presence of different spatial objects in the corresponding metric, vector and scale can be usefully applied to support an individualized learning process.The paper shows that personality-resource maps can be used for describing the learning situation and building an individual study program in graphical form when the specifics of direct individualized learning is taken into account. Performing both the implementation function and the signum one, a

  19. Student Visual Communication of Evolution

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  20. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  1. Visual Impairment and Intracranial Hypertension: An Emerging Spaceflight Risk

    Science.gov (United States)

    Taddeo, Terrance A.

    2010-01-01

    During recent long duration missions to the International Space Station (ISS) crewmembers have reported changes in visual acuity or visual field defects. Exams in the postflight period revealed changes to the visual system and elevated intracranial pressures. As a result, NASA Space Medicine has added a number of tests to be performed in the preflight, inflight and postflight periods for ISS and shuttle missions with the goal of determining the processes at work and any potential mitigation strategies. This discussion will acquaint you with the changes that NASA has made to its medical requirements in order to address the microgravity induced intracranial hypertension and associated visual changes. Key personnel have been assembled to provide you information on this topic. Educational Objectives: Provide an overview of the current Medical Operations requirements and the mitigation steps taken to operationally address the issue.

  2. International Space Station Medical Projects - Full Services to Mars

    Science.gov (United States)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and

  3. Three dimensional visualization of medical images

    International Nuclear Information System (INIS)

    Suto, Yasuzo

    1992-01-01

    Three dimensional visualization is a stereoscopic technique that allows the diagnosis and treatment of complicated anatomy site of the bone and organ. In this article, the current status and technical application of three dimensional visualization are introduced with special reference to X-ray CT and MRI. The surface display technique is the most common for three dimensional visualization, consisting of geometric model, voxel element, and stereographic composition techniques. Recent attention has been paid to display method of the content of the subject called as volume rendering, whereby information on the living body is provided accurately. The application of three dimensional visualization is described in terms of diagnostic imaging and surgical simulation. (N.K.)

  4. K/sup -/n and K/sup -/p elastic scattering in K/sup -/d collisions from 12 to 22 GeV/c

    CERN Document Server

    Déclais, Y; Bricman, C; Duchon, J; Ferro-Luzzi, M; Louvel, M; Patry, J P; Perreau, J M; Séguinot, Jacques; Ypsilantis, Thomas

    1977-01-01

    The elastic scattering of negative K-mesons on the proton and on the neutron of the deuterium has been measured at six incident momenta equally spaced between 1.2 and 2.2 GeV/c. Differential cross sections over the almost complete angular range have been obtained for K/sup - /p and K/sup -/n. The aim of the experiment was the measurement of the pure isospin I=1 reaction K/sup -/n to K/sup -/n. The results for the reaction on proton are a by-product and provide a verification of the assumptions necessary for the analysis of the neutron reaction.

  5. Managing brain extracellular K+ during neuronal activity: The physiological role of the Na+/K+-ATPase subunit isoforms

    Directory of Open Access Journals (Sweden)

    Brian Roland eLarsen

    2016-04-01

    Full Text Available AbstractDuring neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity.Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2 and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood. This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  6. Separate visual representations for perception and for visually guided behavior

    Science.gov (United States)

    Bridgeman, Bruce

    1989-01-01

    Converging evidence from several sources indicates that two distinct representations of visual space mediate perception and visually guided behavior, respectively. The two maps of visual space follow different rules; spatial values in either one can be biased without affecting the other. Ordinarily the two maps give equivalent responses because both are veridically in register with the world; special techniques are required to pull them apart. One such technique is saccadic suppression: small target displacements during saccadic eye movements are not preceived, though the displacements can change eye movements or pointing to the target. A second way to separate cognitive and motor-oriented maps is with induced motion: a slowly moving frame will make a fixed target appear to drift in the opposite direction, while motor behavior toward the target is unchanged. The same result occurs with stroboscopic induced motion, where the frame jump abruptly and the target seems to jump in the opposite direction. A third method of separating cognitive and motor maps, requiring no motion of target, background or eye, is the Roelofs effect: a target surrounded by an off-center rectangular frame will appear to be off-center in the direction opposite the frame. Again the effect influences perception, but in half of the subjects it does not influence pointing to the target. This experience also reveals more characteristics of the maps and their interactions with one another, the motor map apparently has little or no memory, and must be fed from the biased cognitive map if an enforced delay occurs between stimulus presentation and motor response. In designing spatial displays, the results mean that what you see isn't necessarily what you get. Displays must be designed with either perception or visually guided behavior in mind.

  7. SpaceTwist

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang

    2008-01-01

    -based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...

  8. Photoelectron diffraction k-space volumes of the c(2x2) Mn/Ni(100) structure

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Traditionally, x-ray photoelectron diffraction (XPD) studies have either been done by scanning the diffraction angle for fixed kinetic energy (ADPD), or scanning the kinetic energy at fixed exit angle (EDPD). Both of these methods collect subsets of the full diffraction pattern, or volume, which is the intensity of photoemission as a function of momentum direction and magnitude. With the high density available at the Spectromicroscopy Facility (BL 7.0) {open_quotes}ultraESCA{close_quotes} station, the authors are able to completely characterize the photoelectron diffraction patterns of surface structures, up to several hundred electron volts kinetic energy. This large diffraction `volume` can then be analyzed in many ways. The k-space volume contains as a subset the energy dependent photoelectron diffraction spectra along all emission angles. It also contains individual, hemispherical, diffraction patterns at specific kinetic energies. Other `cuts` through the data set are also possible, revealing new ways of viewing photoelectron diffraction data, and potentially new information about the surface structure being studied. In this article the authors report a brief summary of a structural study being done on the c(2x2) Mn/Ni(100) surface alloy. This system is interesting for both structural and magnetic reasons. Magnetically, the Mn/Ni(100) surface alloy exhibits parallel coupling of the Mn and Ni moments, which is opposite to the reported coupling for the bulk, disordered, alloy. Structurally, the Mn atoms are believed to lie well above the surface plane.

  9. An Indoor Navigation System for the Visually Impaired

    Directory of Open Access Journals (Sweden)

    Luis A. Guerrero

    2012-06-01

    Full Text Available Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user’s trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  10. Spatial Coding of Individuals with Visual Impairments

    Science.gov (United States)

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2012-01-01

    The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…

  11. Charm Penguin in B± → K±K+K-: Partonic and hadronic loops

    Science.gov (United States)

    Bediaga, I.; Frederico, T.; Magalhães, P. C.

    2018-05-01

    Charm penguin diagrams are known to be the main contribution to charmless B decay process with strangeness variation equal to minus one, which is the case of B± →K±K+K- decay. The large phase space available in this and other B three-body decays allows non trivial final state interactions with all sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz plane. In this work we investigate the charm Penguin contribution to B± →K±K+K-, described by a hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D bar threshold which can result in a change of sign for the CP asymmetry.

  12. Listening to Voices and Visualizing Data in Qualitative Research

    Directory of Open Access Journals (Sweden)

    Rasheeta Chandler

    2015-06-01

    Full Text Available One of the tenets of qualitative research is the emphasis and honoring of the participants’ own words as generative of meaning and knowledge; yet it is rare to hear the actual voices of the research participants in a presentation or in text. Qualitative research dissemination has relied on dense transcribed text; these “mountains of words” do not lend themselves to the space limitations of academic journals or condensed visual elements such as summary charts, tables, or graphs. Technological advancements have the potential to revolutionize dissemination efforts, especially for qualitative research. The use of audio clips in poster and oral presentations, as well as embedded within written manuscripts plays with the interstices between the research participants and the observer. Infograms are effective ways of conveying a story visually. We demonstrate how combining audio clips and infographics can be a unique hypermodal dissemination possibility for qualitative results.

  13. Visual agnosia and focal brain injury.

    Science.gov (United States)

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. LEA Detection and Tracking Method for Color-Independent Visual-MIMO

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-07-01

    Full Text Available Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO technique is deteriorated by light emitting array (LEA detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER performance improvement.

  15. Is Visual Imagery Really Visual? Overlooked Evidence from Neuropsychology.

    Science.gov (United States)

    1987-08-07

    the study of imagery. British Journal of Psychology, 47 101-114 Bauer,R. M.. & Rubens. A B (1985). Agnosia In K. M. Heilman & E. Valenstein (Ed Clinical...Neuropsychology. New York: Oxford University Press. 2nd edition. Beauvois. M.F . & Saillant. B (1985) Optic aphasia for colours and colour agnosia A...integrative visual agnosia . Brain, Roland. P.E. (1982). Cortical regulation of selective attention in man. Journal of Neuroohysiology, 48. 1059-1078

  16. Full page insight

    DEFF Research Database (Denmark)

    Cortsen, Rikke Platz

    2014-01-01

    Alan Moore and his collaborating artists often manipulate time and space by drawing upon the formal elements of comics and making alternative constellations. This article looks at an element that is used frequently in comics of all kinds – the full page – and discusses how it helps shape spatio......, something that it shares with the full page in comics. Through an analysis of several full pages from Moore titles like Swamp Thing, From Hell, Watchmen and Promethea, it is made clear why the full page provides an apt vehicle for an apocalypse in comics....

  17. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  18. K-causal structure of space-time in general relativity

    Indian Academy of Sciences (India)

    1Department of Mathematics, St. Francis De Sales College, Nagpur 440 006, India. 2Department of Mathematics ... From the physical point of view, concept of causalities embodies the concept of time evolution, finite .... A K-causal open set O ⊆ V is globally hyperbolic iff for every pair of points p, q ∈ O, the interval K(p, ...

  19. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  20. Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories.

    Science.gov (United States)

    Ye, Xiaojing; Chen, Yunmei; Lin, Wei; Huang, Feng

    2011-03-01

    Both acquisition and reconstruction speed are crucial for magnetic resonance (MR) imaging in clinical applications. In this paper, we present a fast reconstruction algorithm for SENSE in partially parallel MR imaging with arbitrary k-space trajectories. The proposed method is a combination of variable splitting, the classical penalty technique and the optimal gradient method. Variable splitting and the penalty technique reformulate the SENSE model with sparsity regularization as an unconstrained minimization problem, which can be solved by alternating two simple minimizations: One is the total variation and wavelet based denoising that can be quickly solved by several recent numerical methods, whereas the other one involves a linear inversion which is solved by the optimal first order gradient method in our algorithm to significantly improve the performance. Comparisons with several recent parallel imaging algorithms indicate that the proposed method significantly improves the computation efficiency and achieves state-of-the-art reconstruction quality.

  1. A computational theory of visual receptive fields.

    Science.gov (United States)

    Lindeberg, Tony

    2013-12-01

    A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative

  2. Understand your Algorithm: Drill Down to Sample Visualizations in Jupyter Notebooks

    Science.gov (United States)

    Mapes, B. E.; Ho, Y.; Cheedela, S. K.; McWhirter, J.

    2017-12-01

    Statistics are the currency of climate dynamics, but the space of all possible algorithms is fathomless - especially for 4-dimensional weather-resolving data that many "impact" variables