WorldWideScience

Sample records for fuel shipment risk

  1. Shipment of Taiwanese research reactor spent nuclear fuel (Phase 2): Environmental assessment

    International Nuclear Information System (INIS)

    1988-06-01

    The proposed action is to transport approximately 1100 spent fuel rods from a foreign research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the receiving basin for offsite fuels at the Savannah River Plant (SRP) for reprocessing to recover uranium and plutonium. The analysis of the impacts of the proposed action have been evaluated and shown to have negligible impact on the local environments. The calculations have been completed using the RADTRAN III code. PWR spent fuel was analyzed as a benchmark to link the calculations in this analysis to those in earlier environmental documentation. Cumulative total, maximum annual, and per shipment risks were calculated. The results indicate that the PWR spent fuel shipment risks are somewhat lower than those previously estimated. The cumulative and maximum annual normal, or incident-free, risks associated with the shipment of Taiwanese research reactor spent fuel is a factor of 10 lower than that for PWR fuel, and the cumulative and maximum annual accident radiological risks are a factor of about 2.2 lower than that for PWR spent fuel. As a result, the port risks are about a factor of 10 larger than the risk of overland transport. All of the risks calculated are small. The PWR risk values are similar to those judged by the NRC to be small enough not to warrant increased stringency in regulations. The Taiwanese research reactor spent fuel shipment risk values are smaller yet. 51 refs., 22 tabs

  2. Historical overview of domestic spent fuel shipments: Update

    International Nuclear Information System (INIS)

    1991-07-01

    This report presents available historic data on most commercial and research reactor spent fuel shipments in the United States from 1964 through 1989. Data include sources of the spent fuel shipped, types of shipping casks used, number of fuel assemblies shipped, and number of shipments made. This report also addresses the shipment of spent research reactor fuel. These shipments have not been documented as well as commercial power reactor spent fuel shipment activity. Available data indicate that the greatest number of research reactor fuel shipments occurred in 1986. The largest campaigns in 1986 were from the Brookhaven National Laboratory, Brooklyn, New York, to the Idaho Chemical Processing Plant (ICPP) and from the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in Tennessee and the Rockwell International Reactor in California to the Savannah River Plant near Aiken, South Carolina. For all years addressed in this report, DOE facilities in Idaho Falls and Savannah River were the major recipients of research reactor spent fuel. In 1989, 10 shipments were received at the Idaho facilities. These originated from universities in California, Michigan, and Missouri. 9 refs., 12 figs., 7 tabs

  3. Significance of campaigned spent fuel shipments

    International Nuclear Information System (INIS)

    Doman, J.W.; Tehan, T.E.

    1993-01-01

    Operational experience associated with spent fuel or irradiated hardware shipments to or from the General Electric Morris Facility is presented. The following specific areas are addressed: Problems and difficulties associated with meeting security and safeguard requirements of 10 CFR Part 73; problems associated with routing via railroad; problems associated with scheduling and impact on affected parties when a shipment is delayed or cancelled; and impact on training when shipments spread over many years. The lessons learned from these experiences indicate that spent fuel shipments are best conducted in dedicated open-quotes campaignsclose quotes that concentrate as much consecutive shipping activity as possible into one continuous time frame

  4. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1996-07-01

    This circular provides information on shipment of spent fuel subject to regulation by US NRC. It provides a brief description of spent fuel shipment safety and safeguards requirement of general interest, a summary of data for 1979-1995 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  5. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1991-01-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1989 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials. 11 figs., 3 tabs

  6. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1992-06-01

    The circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1991 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  7. Spent fuel transportation in the United States: commercial spent fuel shipments through December 1984

    International Nuclear Information System (INIS)

    1986-04-01

    This report has been prepared to provide updated transportation information on light water reactor (LWR) spent fuel in the United States. Historical data are presented on the quantities of spent fuel shipped from individual reactors on an annual basis and their shipping destinations. Specifically, a tabulation is provided for each present-fuel shipment that lists utility and plant of origin, destination and number of spent-fuel assemblies shipped. For all annual shipping campaigns between 1980 and 1984, the actual numbers of spent-fuel shipments are defined. The shipments are tabulated by year, and the mode of shipment and the casks utilized in shipment are included. The data consist of the current spent-fuel inventories at each of the operating reactors as of December 31, 1984. This report presents historical data on all commercial spent-fuel transportation shipments have occurred in the United States through December 31, 1984

  8. Present status of JMTR spent fuel shipment

    International Nuclear Information System (INIS)

    Miyazawa, Masataka; Watanabe, Masao; Yokokawa, Makoto; Sato, Hiroshi; Ito, Haruhiko

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been consistently making the enrichment reduction of reactor fuels in cooperation with RERTR Program and FRR SNF Acceptance Program both conducted along with the U.S. Nuclear Non-Proliferation Policy and JMTR, 50 MW test reactor in Oarai Research Establishment, has achieved core conversion, from its initial 93% enriched UAl alloy to 45% enriched uranium-aluminide fuel, and then to the current 19.8% enriched uranium-silicide fuel. In order to return all of JMTR spent fuels, to be discharged from the reactor by May 12, 2006, to the U.S.A. by May 12, 2009, JAERI is planning the transportation schedule based on one shipment per year. The sixth shipment of spent fuels to U.S. was carried out as scheduled this year, where the total number of fuels shipped amounts to 651 elements. All of the UAl alloy elements have so far been shipped and now shipments of 45% enriched uranium-aluminide type fuels are in progress. Thus far the JMTR SFs have been transported on schedule. From 2003 onward are scheduled more then 850 elements to be shipped. In this paper, we describe our activities on the transportation in general and the schedule for the SFs shipments. (author)

  9. Regulation of spent nuclear fuel shipment: A state perspective

    International Nuclear Information System (INIS)

    Halstead, R.J.; Sinderbrand, C.; Woodbury, D.

    1987-01-01

    In 1985, the Wisconsin Department of Natural Resources (WDNR) sought to regulate rail shipments of spent nuclear fuel through the state, because federal regulations did not adequately protect the environmentally sensitive corridor along the route of the shipments. A state interagency working group identified five serious deficiencies in overall federal regulatory scheme: 1) failure to consider the safety or environmental risks associated with selected routes; 2) abscence of route-specific emergency response planning; 3) failure of the NRC to regulate the carrier of spent nuclear fuel or consider its safety record; 4) abscence of requirements for determination of need for, or the propriety of, specific shipments of spent nuclear fuel; and 5) the lack of any opportunity for meaningful public participation with respect to the decision to transport spent nuclear fuel. Pursuant to Wisconsin's hazardous substance statutes, the WDNR issues an order requiring the utility to file a spill prevention and mitigation plan or cease shipping through Wisconsin. A state trial court judge upheld the utility's challenge to Wisconsin's spill plan requirements, based on federal preemption of state authority. The state is now proposing federal legislation which would require: 1) NRC determination of need prior to approval of offsite shipment of spent fuel by the licensees; 2) NRC assessment of the potential environmental impacts of shipments along the proposed route, and comparative evaluation of alternative modes and routes; and 3) NRC approval of a route-specific emergency response and mitigation plan, including local training and periodic exercises. Additionally, the proposed legislation would authorize States and Indian Tribes to establish regulatory programs providing for permits, inspection, contingency plans for monitoring, containments, cleanup and decontamination, surveillance, enforcement and reasonable fees. 15 refs

  10. Commercial spent nuclear fuel shipments in the United States, 1964--1987

    International Nuclear Information System (INIS)

    1990-12-01

    This report provides an overview of US commercial light-water reactor spent-fuel shipments that have occurred from January, 1964 through December, 1987. A summary analysis was performed on these historical shipments, showing the amount of fuel that has been shipped to research facilities, reprocessing plants, away-from-reactor (AFR) storage sites, and other reactors. Also presented in this report is a listing of potential spent-fuel shipments to and/or from commercial nuclear plants. Table 1 provides the detailed listing of historical spent-fuel shipments. Table 2 is a summary of these shipments grouped by destination. Section IV discusses utility plans for future spent-fuel shipments. 2 tabs

  11. Application of ALARA principles to shipment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Greenborg, J.; Brackenbush, L.W.; Murphy, D.W.; Burnett, R.A.; Lewis, J.R.

    1980-05-01

    The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose

  12. Fuel shipment experience, fuel movements from the BMI-1 transport cask

    International Nuclear Information System (INIS)

    Bauer, Thomas L.; Krause, Michael G.

    1986-01-01

    The University of Texas at Austin received two shipments of irradiated fuel elements from Northrup Aircraft Corporation on April 11 and 16, 1985. A total of 59 elements consisting of standard and instrumented TRIGA fuel were unloaded from the BMI-1 shipping cask. At the time of shipment, the Northrup core burnup was approximately 50 megawatt days with fuel element radiation levels, after a cooling time of three months, of approximately 1.75 rem/hr at 3 feet. In order to facilitate future planning of fuel shipment at the UT facility and other facilities, a summary of the recent transfer process including several factors which contributed to its success are presented. Numerous color slides were made of the process for future reference by UT and others involved in fuel transfer and handling of the BMI-1 cask

  13. Public information circular for shipments of irradiated reactor fuel. Revision 12

    International Nuclear Information System (INIS)

    1997-10-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1996 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  14. Public information circular for shipments of irradiated reactor fuel. Revision 10

    International Nuclear Information System (INIS)

    1995-04-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the US Nuclear Regulatory Commission (NRC). It provides a brief description of spent fuel shipment safety and safeguards requirements of general interest, a summary of data for 1979--1994 highway and railway shipments, and a listing, by State, of recent highway and railway shipment routes. The enclosed route information reflects specific NRC approvals that have been granted in response to requests for shipments of spent fuel. This publication does not constitute authority for carriers or other persons to use the routes described to ship spent fuel, other categories of nuclear waste, or other materials

  15. Historical overview of domestic spent fuel shipments

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Armstrong, S.; Hamberger, C.; Schmid, S.

    1991-01-01

    The purpose of this paper is to provide available historical data on most commercial and research reactor spent fuel shipments that have been completed in the United States between 1964 and 1989. This information includes data on the sources of spent fuel that has been shipped, the types of shipping casks used, the number of fuel assemblies that have been shipped, and the number of shipments that have been made. The data are updated periodically to keep abreast of changes. Information on shipments is provided for planning purposes; to support program decisions of the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM); and to inform interested members of the public, federal, state, and local government, Indian tribes, and the transportation community. 5 refs., 7 figs., 2 tabs

  16. Special routing of spent fuel shipments. Final report Dec 79-Apr 81

    International Nuclear Information System (INIS)

    Berkowitz, R.L.; Shaver, D.K.; Rudd, T.J.

    1982-05-01

    Special rail routing of spent fuel shipments from commercial nuclear power plants to Away-From-Reactor (AFR) storage and disposal sites has been proposed as one means of reducing the consequences and severity of radioactive materials accidents in areas of high population density. Whether or not special rail routing of spent fuel shipments does indeed decrease radiation exposure levels under normal and accident transportation conditions and at what incremental cost forms the basis of this study funded by the Federal Railroad Administration. The study is divided into five areas: (1) developing analytical models for assessing the risks associated with both the normal and accident transport modes; (2) selecting representative origin to destination routing pairs using the normal transportation and accident risk models; (3) analyzing rail shipment costs for nuclear spent fuel; and (4) performing sensitivity analyses to identify parameters that critically affect the total exposure level. The major findings resulting from this study are: (1) the risk over the seven example routes is relatively small for the normal transport mode; (2) the risk associated with an accident is at least an order of magnitude larger than the normal transport dose in all cases and as such is the overriding contribution to the total expected transport dose; and (3) no beneficial cost versus dose reduction relationship was found for any of the routes studied

  17. Public information circular for shipments of irradiated reactor fuel. Revision 5

    International Nuclear Information System (INIS)

    1985-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use in accordance with the regulatory provisions of Section 73.37 of 10 CFR Part 73. The information included reflects NRC staff knowledge as of June 1, 1985. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission has chosen to provide information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipment as well as safeguards incidents regarding spent fuel shipments (of which none have been reported to date). This additional information is furnished by the Commission in order to convey to the public a more complete picture of NRC regulatory practices concerning the shipment of spent fuel than could be obtained by the publication of the shipment routes and quantities alone

  18. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    International Nuclear Information System (INIS)

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  19. Case histories of West Valley spent fuel shipments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  20. Case histories of West Valley spent fuel shipments: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs

  1. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1988-04-01

    This circular has been prepared in response to numerous requests for information regarding routes for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC). The NRC staff approves such routes prior to their use, in accordance with the regulatory provisions of 10 CFR Part 73.37. The objective of the safeguards regulations contained in 10 CFR Part 73.37 is to provide protection against radioactive dispersal caused by malevolent acts by persons. The design and construction of the casks used to ship the spent fuel provide adequate radiological protection of the public health and safety against accidents. Therfore, transporting appropriately packaged spent fuel over existing rail systems and via any highway system is radiologically safe without specific NRC approval of the route. However, to assure adequate planning for protection against actual or attempted acts of radiological sabotage, the NRC requires advance route approval. This approval is given on a shipment-by-shipment or series basis, it is not general approval of the route for subsequent spent fuel shipments. Spent fuel shipment routes, primarily for road transportation, but also including three rail routes, are indicated on reproductions of road maps. Also included are the amounts of material shipped during the approximate 8-year period that safeguards regulations have been effective. This information is current as of September 30, 1987

  2. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1982-06-01

    This publication is the third in a proposed series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. Subsequent issues in this series will update the information contained herein. This publication contains basically three kinds of information: (1) routes approved by the Commission for the shipment of irradiated reactor fuel, (2) information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and (3) cumulative amounts of material shipped

  3. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1993-03-01

    This circular has been prepared to provide information on the shipment of irradiated reactor fuel (spent fuel) subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96--295. The report provides a brief description of NRC authority for certain aspects of transporting spent fuel. It provides descriptive statistics on spent fuel shipments regulated by the NRC from 1979 to 1992. It also lists detailed highway and railway segments used within each state from October 1, 1987 through December 31, 1992

  4. Physical protection of shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    Kasun, D.J.

    1979-05-01

    During May 1979 the U.S. Nuclear Regulatory Commission approved for issuance in effective form new interim regulations for strengthening the protection of spent fuel shipments against sabotage and diversion. The new regulations will likely continue in force until the completion of an ongoing research program concerning the response of spent fuel to certain forms of sabotage. At that time the regulations may be rescinded, modified, or made permanent, as appropriate. This report discusses the new regulations and provides a basis on which licensees can develop an acceptable interim program for the protection of spent fuel shipments

  5. Considerations in the selection of transport modes for spent nuclear fuel shipments

    International Nuclear Information System (INIS)

    Daling, P.M.; McNair, G.W.; Andrews, W.B.

    1985-07-01

    This paper discusses the factors associated with selecting a particular transport mode for spent fuel shipments. These factors include transportation costs, economics of potential transportation accidents, risk/safety of spent fuel transportation, routing alternatives, shipping cask handling capabilities, and shipping cask availability. Data needed to estimate transportation costs and risks are presented and discussed. The remaining factors are discussed qualitatively and can be used as guidance for selecting a particular transport mode. 15 refs., 3 tabs

  6. Licensing Air and Transboundary Shipments of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Komarov, S.V.; Budu, M.E.; Derganov, D.V.; Savina, O.A.; Bolshinsky, I.M.; Moses, S.D.; Biro, L.

    2016-01-01

    Since 1996 the IAEA TS-R-1 regulation included new requirements applicable to transport of fissile materials by air. The later 2005 and 2009 editions confirmed the validity of those provisions. Despite the fact that the IAEA TS-R-1 allows for air shipments of SNF in Type B and Type C packages, the examples of such shipments are not abundant. Nuclear regulatory bodies and transport safety experts are cautious about air shipments of SNF. Why so? What are the risks? What are the alternatives? In this new regulatory framework, in 2009, two air shipments in Type B packages of Research Reactor (RR) Spent Nuclear Fuel (SNF) from Romania and Libya were performed under the U.S. DOE/NNSA RRRFR Program. The first licensing process of such shipment brought up many questions about package and shipment safety from the licensing experts' side and so the scope of analyses exceeded the requirements of IAEA. Under the thorough supervision of Rosatom and witnessed by DOE and CNCAN, all questions were answered by various strength analyses and risk evaluations. But the progress achieved didn't stop here. In 2010-2011, an energy absorption container (EAC) with titanium spheres as absorbers based on the SKODA VPVR/M cask was designed as the first Type C package in the world destined for RR SNF, currently under approval process. At the same time, intense preparations for the safe removal of the Russian-origin damaged RR SNF from Serbia, Vinca were in progress. The big amount of SNF and its rapidly worsening condition imposed as requirements to organize only one shipment as fast as possible, i.e. using at the maximum extent the entire experience available from other SNF shipments. The long route, several transit countries and means of transport, two different casks, new European regulations and many other issues resulted for the Serbian shipment in one of the most complex SNF shipments’ licensing exercise. This paper shows how the international regulatory framework ensures the

  7. Public information circular for shipments of irradiated reactor fuel

    International Nuclear Information System (INIS)

    1983-07-01

    This publication contains basically three kinds of information: routes approved by the Commission for the shipment of irradiated reactor fuel, information regarding any safeguards-significant incidents which have been reported to occur during shipments along such routes, and cumulative amounts of material shipped

  8. Public information circular for shipments of irradiated reactor fuel. Revision 4

    International Nuclear Information System (INIS)

    1984-06-01

    This publication is the fifth in a series of annual publications issued by the Nuclear Regulatory Commission in response to public information requests regarding the Commission's regulation of shipments of irradiated reactor fuel. This publication contains basically three kinds of information: (1) routes recently approved (18 months) by the Commission for the shipment of irradiated reactor fuel; (2) information regarding any safeguards-significant incidents that may be (to date none have) reported during shipments along such routes; and (3) cumulative amounts of material shipped

  9. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  10. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    International Nuclear Information System (INIS)

    Allen, K.J.; Bolshinsky, I.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.

    2010-01-01

    Romania safely air shipped 23.7 kilograms of Russian-origin highly enriched uranium (HEU) spent nuclear fuel from the VVR-S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world's first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3. country under the RRRFR program and the 14. country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment. (authors)

  11. RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

    2009-07-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  12. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  13. Historical overview of domestic spent nuclear fuel shipments in the United States

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Hamberger, C.R.; Schmid, S.P.

    1993-01-01

    The information in this paper summarized historical data on spent nuclear fuel shipments in the United States (U.S.) from the period from 1964 to 1991. Information on shipments has been developed to establish a basis for developing a transportation system in the U.S. for initiating shipments of spent nuclear fuel beginning in 1988. The paper shows that approximately 2700 power spent nuclear fuel rail and truck casks have been shipped within the U.S. during the past 28 years. In total, approximately 2000 metric tonnes of uranium (MTU) have been shipped to date, which compares with projected shipping rates of from 3000 to greater than 6000 MTU per year when the U.S. Civilian Radiation Waste Management System is in full operation. (author)

  14. Historical overview of domestic spent nuclear fuel shipments in the United States

    International Nuclear Information System (INIS)

    Pope, R.B.; Wankerl, M.W.; Hamberger, C.R.; Schmid, S.P.

    1992-01-01

    The information in this paper summarizes historical data on spent nuclear fuel shipments in the United States (US) from the period from 1964 to 1991. Information on shipments has been developed to establish a basis for developing a transportation system in the US for initiating shipments of spent nuclear fuel beginning in 1998. The paper shows that approximately 2700 power reactor spent nuclear fuel rail and truck casks have been shipped within the US during the past 28 years. In total, approximately 2000 metric tonnes of uranium (MTU) have been shipped to date, which compares with projected shipping rates of from 3000 to greater than 6000 MM per year when the US Civilian Radioactive Waste Management System is in full operation

  15. Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    MASSEY, CHARLES D.; MESSICK, C.E.; MUSTIN, T.

    1999-01-01

    Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed

  16. Shipment of TRIGA spent fuel to DOE's INEEL site - a status report

    International Nuclear Information System (INIS)

    Patterson, John; Viebrock, James; Shelton, Tom; Parker, Dixon

    1998-01-01

    DOE placed its transportation services contract with NAC International in April 1997 and awarded the first task to NAC for return of TRIGA fuel in July 1997. This initial shipment of TRIGA fuel, scheduled for early 1998, is reflective of many of the difficulties faced by DOE and the transportation services contractor in return of the foreign research reactor fuel to the United States: 1) First time use of the INEEL dry storage facility for receipt of research reactor fuel; 2) Safety analysis of the INEEL facility for the NAC-LWT shipping cask; 3) Cask certification for a mixed loading of high enriched and low enriched TRIGA fuels; 4) Cask loading for standard length and extended length rods (instrumented and fuel follower control rods); 5) Design and certification of a canister for degraded TRIGA fuel; 6) Initial port entry through the Naval Weapons Station in Concord, California; 7) Initial approval of the rail route for shipment from Concord to INEEL. In this presentation we describe the overall activities involved in the first TRIGA shipment, discuss the actions required to resolve the difficulties identified above, and provide a status report of the initial shipment from South Korea and Indonesia. Recommendations are presented as to actions that can be taken by the research reactor operator, by DOE, and by the transportation services agent to speed and simplify the transportation process. Actions having the potential to reduce costs to DOE and to reactor operators from high-income economies will be identified. (author)

  17. Shipments of nuclear fuel and waste: are they really safe

    International Nuclear Information System (INIS)

    1978-08-01

    This paper presents a summarized status report on the potential hazards of shipping nuclear materials. Principles of nuclear shipment safety, government regulations, shipment information, quality assurance, types of radioactive wastes, package integrity, packaging materials, number of shipments, accidents, and accident risk are considered

  18. Assessment of the risk of transporting spent nuclear fuel by truck

    International Nuclear Information System (INIS)

    Elder, H.K.

    1978-11-01

    The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10 -5 fatalities. An individual in the population at risk would have one chance in 6 x 10 11 of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year

  19. Background and planning requirements for spent fuel shipments to DOE

    Energy Technology Data Exchange (ETDEWEB)

    Ravenscroft, Norman [Edlow International Company, 1666 Connecticut Avenue, NW, Suite 201, Washington, DC 20009 (United States)

    1996-10-01

    Information is provided on the planning required and the factors that must be included in the planning process for spent fuel shipments to DOE. A summary is also provided on the background concerning renewal of the DOE spent fuel acceptance policy in May 1996. (author)

  20. Physical protection of shipments of irradiated reactor fuel; Interim guidance. Regulatory report

    International Nuclear Information System (INIS)

    1980-06-01

    During May, 1979, the U.S. Nuclear Regulatory Commission approved for issuance in effective form new interim regulations for strengthening the protection of spent fuel shipments against sabotage and diversion. The new regulations were issued without benefit of public comment, but comments from the public were solicited after the effective date. Based upon the public comments received, the interim regulations were amended and reissued in effective form as a final interim rule in May, 1980. The present document supersedes a previously issued interim guidance document, NUREG-0561 (June, 1979) which accompanied the original rule. This report has been revised to conform to the new interim regulations on the physical protection of shipments of irradiated reactor fuel which are likely to remain in effect until the completion of an ongoing research program concerning the response of spent fuel to certain forms of sabotage, at which time the regulations may be rescinded, modified or made permanent, as appropriate. This report discusses the amended regulations and provides a basis on which licensees can develop an acceptable interim program for the protection of spent fuel shipments

  1. Public information circular for shipments of irradiated reactor fuel. Report for 16 Jul 79-1 May 82

    International Nuclear Information System (INIS)

    1982-06-01

    This circular has been prepared in response to numerous requests for information regarding routes used for the shipment of irradiated reactor (spent) fuel subject to regulation by the Nuclear Regulatory Commission (NRC), and to meet the requirements of Public Law 96-295. The NRC staff must approve such routes prior to their first use. Spent fuel shipment routes, primarily for road transportation, but also including one rail route, are indicated on reproductions of DOT road maps. Also included are the amounts of material shipped during the approximate three year period that safeguards regulations for spent fuel shipments have been effective. In addition, the Commission provided information in this document regarding the NRC's safety and safeguards regulations for spent fuel shipments as well as safeguards incidents regarding same

  2. Experience in arranging shipments of spent fuel assemblies of commercial and research reactors

    International Nuclear Information System (INIS)

    Komarov, S.; Barinkov, O.; Eshcherkin, A.; Lozhnikov, V.; Smirnov, A.

    2008-01-01

    At present the key activities of Sosny Company are to inspect physical conditions, handle and arrange shipment of SFA including failed SFA. In 2003 after obtaining the license of Gosatomnadzor (Rostechnadzor now) entitled to handle nuclear materials in the process of their shipment, Sosny Company started preparing certification and arranging SFA shipment on its own. About 40 shipments of SFA were performed with participation of Sosny Company. Experience in handling failed SFA - an example of development of a new technology could be the transport and technological scheme of RBMK-1000 SFA shipment from Leningradskaya NPP that was designed by Sosny Company. TUK-11 cask was selected for this shipment. The example of change of transport and technological scheme is modification of the technology for handling and shipment of WWER-440 SFA from Kola NPP. Experience in arranging transportation - based on the results of development of logistics schemes for shipping SFA of reactor facilities Sosny Company justified and implemented composition of mixed trains containing rail cars of many types that enabled to perform shipment more efficiently in time and cost. Experience in arranging handling and shipment of research reactor SFA - over the past years the activity of Sosny Company was aimed at implementing international Russian Research Reactor Fuel Return (RRRFR) program. Since equipment of the majority of research centers doesn't allow for the large casks to be accepted and loaded, special casks of less mass and dimensions are used to ship SFA from research reactors. In RRRFR program it is assumed to use different casks for RR SFA such as Russian TUK- 19, TUK-128 and foreign SKODA VPVR/M and NAC-LWT. At present Sosny Company is involved in coordination of the efforts of the affected organizations in creating the type 'C' package for RR SFA in the RF. Conclusion: Under conditions of constant increase of the requirements to shipment safety and complication of regulations of all

  3. The option study of air shipment of DUPIC fuel elements to Canada

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Koo, J. H.

    2003-01-01

    KAERI developed a DUPIC nuclear fuel with the refabrication of spent PWR fuel discharged from domestic nuclear power plant by a dry process at M6 hot-cell in IMEF. To verify the performance of DUPIC nuclear fuel, irradiation test at operating conditions of commercially operating power plant is essential. Since the HANARO research reactor of KAERI does not have Fuel Test Loop(FTL) for irradiating nuclear fuel under high temperature and high pressure conditions, DUPIC fuel cannot be irradiated in the FTL of HANARO until about 2008. In the 13-th PRM among Korea, Canada, USA and IAEA, AECL proposed that KAERI fabricated DUPIC fuel can be irradiated in the FTL of the NRU research reactor without charge of neutrons. The transportation quantity of DUPIC fuel to Canada is 10 elements(about 6 kg). This transportation package is classified as the 7-th class according to 'recommendation on the transport of dangerous goods' made by the United Nations. Air shipment was investigated as a promising option because it is generally understood that air shipment is more appropriate than ship shipment for transportation of small quantity of nuclear materials from the perspectives of cost and transportation period. In case of air shipment, the IATA regulations have been more intensified since the July of 2001. To make matters worse, it becomes more difficult to get the ratification of corresponding authorities due to 9.11 terror. It was found that at present there is no proper air transportation cask for DUPIC fuel. So, air transportation is considered to be impossible. An alternative of using the exemption limit of fissile material was reviewed. Its results showed that in case of going via USA territory, approvals from US DOT should be needed. The approvals include shipping and cask approvals on technical cask testing. Furthermore, since passes through territories of Japan and Russia have to be done in case of using a regular air cargo from Korea to Canada, approvals from Russia and

  4. Health physics aspects of a research reactor fuel shipment

    International Nuclear Information System (INIS)

    Dodd, B.; Johnson, A.G.; Anderson, T.V.

    1984-01-01

    In June 1982, 92 irradiated fuel elements were shipped from the Oregon State University TRIGA Reactor to Westinghouse Hanford Corporation to be used in the Fuel Materials Examination Facility, This paper describes some of the health physics aspects of the planning, preparation and procedures associated with that shipment. In particular, the lessons learned are described in order that the benefits of the experience gained may be readily available to other small institutions. (author)

  5. Shipments of nuclear fuel and waste: are they really safe

    International Nuclear Information System (INIS)

    1977-10-01

    The safety aspects of shipping nuclear fuels and radioactive wastes are discussed by considering: US regulations on the shipment of hazardous and radioactive materials, types of radioactive wastes; packaging methods, materials, and specifications; design of shipping containers; evaluation of the risk potential under normal shipping conditions and in accident situations. It is concluded that: the risk of public catastrophe has been eliminated by strict standards, engineering design safety, and operational care; the long-term public burden of not transporting nuclear materials is likely to be higher than the risks of carefully controlled transportation, considering the various options available; and the likelihood of death, injury, or serious property damage from the nuclear aspects of nuclear transportation is thousands of times less than the likelihood of death, injury, or serious property damage from more common hazards, such as automobile accidents, boating accidents, accidental poisoning, gunshot wounds, fires, or even falls

  6. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    International Nuclear Information System (INIS)

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  7. Safety aspects of the RA-6 spent fuel shipment to the USA

    International Nuclear Information System (INIS)

    Novara, Oscar; Facchini, Guillermo; Fernandez, Carlos

    2008-01-01

    RA-6 reactor is located in Bariloche Atomic Centre (CAB), in the city of San Carlos de Bariloche, in the south of Argentina. In 2005, CNEA and DOE signed a contract for the conversion of the RA-6 reactor to LEU and for shipping back in a single shipment the HEU spent fuel inventory that consisted of 42 MTR - type fuel assemblies. The shipment activity was performed in the frame of the DOE's Spent Fuel Acceptance Program. The shipment campaign took place in the last quarter of 2007 and the receiving facility for the RA-6 fuel was Savannah River Site. One unit of a NAC - LWT shipping cask was used to ship the fuel. In order to place inside it all the fuel assemblies, cropping of their non active parts (structural parts) was required. In order to provide adequate shielding to the operators, fuel cropping was performed under water. Transfer of baskets loaded with conditioned fuel to the transport cask was made by shielded intermediate transfer systems. Especially designed shielded drums were manufactured for the storage of the cropped parts that remained in the reactor site as medium-level radioactive waste. After testing of the loaded LWT (radionuclide sampling test, helium test), the package check out was completed by measuring the superficial contamination (α and β/γ emitters) and the dose rate in contact and at 1 m. An additional requirement was to verify that the package was 'self-protected'. The ISO containers with the package and with the auxiliary equipment were also subjected to an equivalent radiological control. The typical daily staff that participated in the loading campaign was about twelve people. The collective dose was 0.72 mSv.man. (author)

  8. Analysis of the risk of transporting spent nuclear fuel by train

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H.K.

    1981-09-01

    This report uses risk analyses to analyze the safety of transporting spent nuclear fuel for commercial rail shipping systems. The rail systems analyzed are those expected to be used in the United States when the total electricity-generating capacity by nuclear reactors is 100 GW in the late 1980s. Risk as used in this report is the product of the probability of a release of material to the environment and the consequences resulting from the release. The analysis includes risks in terms of expected fatalities from release of radioactive materials due to transportation accidents involving PWR spent fuel shipped in rail casks. The expected total risk from such shipments is 1.3 x 10/sup -4/ fatalities per year. Risk spectrums are developed for shipments of spent fuel that are 180 days and 4 years out-of-reactor. The risk from transporting spent fuel by train is much less (by 2 to 4 orders of magnitude) than the risk to society from other man-caused events such as dam failure.

  9. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National

  10. Shipment of VINCA Institute's HEU fresh fuel to Russia

    International Nuclear Information System (INIS)

    Pesic, Milan; Sotic, Obrad

    2002-01-01

    This paper shows, for the first time, the basic data related to the recent shipment of the fresh HEU fuel elements from Yugoslavia back to Russia for uranium down blending. In this way, Yugoslavia gives its contribution to the RERTR program and to the world's joint efforts to prevent possible terrorist action against nuclear material potentially usable for production of nuclear weapons. (author)

  11. Shipment of spent research reactor fuel to US-operators experience

    International Nuclear Information System (INIS)

    Krull, W.

    1999-01-01

    To ship 1500 spent fuel elements over more than 30 years to different reprocessing or storage sites a large amount of experience has been gotten. The most important partners for these activities have been US organizations. The development of the US policy for the receipt of foreign spent fuel elements of US origin is described briefly. The experience being made and lessons learned with the on May 13, 1996 renewed receipt program is described in detail, including US organizations, shipment and formal steps. (author)

  12. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  13. Transportation of nuclear fuel

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1979-01-01

    Shipment of used fuel from nuclear reactors to a central fuel management facility is discussed with particular emphasis on the assessment of the risk to the public due to these shipments. The methods of transporting used fuel in large shipping containers is reviewed. In terms of an accident scenario, it is demonstrated that the primary risk of transport of used fuel is due to injury and death in common road accidents. The radiological nature of the used fuel cargo is, for all practical purposes, an insignificant factor in the total risk to the public. (author)

  14. Radiation exposures associated with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Massey, C.D.; Messick, C.E.; Mustin, T.

    1999-01-01

    In accordance with the Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (ROD) (DOE, 1996a), the U.S. Department of Energy (DOE) is implementing a 13-year program under which DOE accepts foreign research reactor spent nuclear fuel (SNF) containing uranium that was enriched in the United States. The ROD required that DOE take several steps to ensure low environmental and health impacts resulting from the implementation of the program. These efforts mainly focus on transportation related activities that the analysis of potential environmental impacts in the Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (EIS) (DOE, 1996b) identified as having the potential for exceeding current radiation protection guidelines. Consequently, DOE issued a Mitigation Action Plan to reduce the likelihood of potential adverse environmental impacts associated with the policy established in the ROD. As shown in the EIS, incident-free radiation exposures to members of the ship's crew, port workers, and ground transportation personnel due to shipments of spent nuclear fuel from foreign research reactors are expected to be below the radiation exposure limit of 100 mrem (1 mSv) per year established to protect the general public. However, the analysis in the EIS demonstrated that port and transportation workers could conceivably receive a cumulative radiation dose above the limit established for the general public if, for example, they are involved in multiple shipments within one year or if the radiation levels outside the casks are at the maximum allowable regulatory limit (10 mrem/hr [0.1 mSv/h] at 2 meters from the surface of the cask). With the program successfully underway, DOE has collected information from the shipments in accordance with the Mitigation Action Plan. The information to date has demonstrated that the analysis in

  15. Advance notification of shipments of nuclear waste and spent fuel: guidance

    International Nuclear Information System (INIS)

    1982-06-01

    U.S. Nuclear Regulatory Commission regulations in 10 CFR 70.5b and 73.37(f) require NRC licensees to notify the governor of a state prior to making a shipment of nuclear waste or spent fuel within or through the state. This guidance document was prepared to assist licensees in carrying out those requirements

  16. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  17. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Science.gov (United States)

    2010-01-01

    ... fuel and nuclear waste. 71.97 Section 71.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... advance notification of transportation of nuclear waste was published in the Federal Register on June 30...

  18. Ohio State University Nuclear Reactor Laboratory HEU fuel shipment summary. Final

    International Nuclear Information System (INIS)

    1997-01-01

    In November 1988, OSURR converted from HEU fuel to LEU fuel. As a result they needed to get rid of their HEU fuel by shipping it to Savannah River. The players in the fuel shipping game are: OSURR as the keeper of the fuel; DOE as the owner of fuel and shipper of record; Tri-State Motor Transit Co. for transporting the cask; Muth Brothers as the rigger responsible for getting the cask on and off the truck and in and out of the building; Hoffman LaRoche/Cintichem as the owner of the cask; Savannah River as the receiver of the fuel; and the NRC for approval of the Security Plan, QA Plan, etc. This report gives a chronological history of the events from February 1989 to June 1, 1995, the actual day of shipment. The cask was received at Savannah River on June 2, 1995

  19. The first commercial spent fuel shipment in China

    International Nuclear Information System (INIS)

    Meinert, N.M.; Xiaoqing Li

    2004-01-01

    In two and a half years, government regulatory agencies and contractors from three countries worked together to design, license, fabricate, and transport the first commercial spent fuel shipment in China. Their cooperative efforts helped avoid the loss of full core reserve at a nuclear power plant serving two of China's largest cities. In March 2001, Everclean Environmental Engineering Corporation (EEEC) selected NAC International (NAC) to supply two United States Nuclear Regulatory Commission (USNRC) licensed Storable Transport Casks (NACSTC) and technology support, to ensure that qualified Chinese operators would be ready to load the first cask in late 2003. EEEC is a subsidiary of China National Nuclear Corporation (CNNC), which sets nuclear policy in China. EEEC is responsible for implementing nuclear transportation policy set forth from its parent corporation. Timely implementation of EEEC's ambitious plan would avoid loss of full core reserve at Guangdong Nuclear Power Station (Daya Bay) Unit-1, which supplies power to Hong Kong and Schenzen. The spent fuel would be transported to the Lanzhou Nuclear Fuel Complex (LNFC), a reprocessing facility, approximately 4,000 kilometers Northwest of Daya Bay

  20. Lessons learned from the West Valley spent nuclear fuel shipment within the United States

    International Nuclear Information System (INIS)

    Tyacke, M.J.; Anderson, T.

    2004-01-01

    This paper describes the lessons learned from the U.S. Department of Energy (DOE) transportation of 125 DOE-owned commercial spent nuclear fuel (SNF) assemblies by railroad from the West Valley Demonstration Project to the Idaho National Engineering and Environmental Laboratory (INEEL). On July 17, 2003, DOE made the largest single shipment of commercial SNF in the history of the United States. This was a highly visible and political shipment that used two specially designed Type B transportation and storage casks. This paper describes the background and history of the shipment. It discusses the technical challenges for licensing Type B packages for hauling large quantities of SNF, including the unique design features, testing and analysis. This paper also discusses the preshipment planning, preparations, coordination, route evaluation and selection, carrier selection and negotiations, security, inspections, tracking, and interim storage at the INEEL

  1. Shipments of irradiated DIDO fuel from Risoe National Laboratory to the Savannah River Site - Challenges and achievements

    International Nuclear Information System (INIS)

    Anne, C.; Patterson, J.

    2003-01-01

    On September 28, 2000, the Board of Governors of Risoe National Laboratory decided to shut down the Danish research reactor DR3 due to technical problems (corrosion on the reactor aluminum tank). Shortly thereafter, the Danish Government asked the National Laboratory to empty the reactor and its storage pools containing a total of 255 DIDO irradiated elements and ship them to Savannah River Site in the USA as soon as possible. Risoe National Laboratory had previously contracted with Cogema Logistics to ship DR3 DIDO fuel elements to SRS through the end of the return program. The quantity of fuel was less than originally intended but the schedule was significantly shorter. It was agreed in June 2001 that a combination of Cogema Logistics' and NAC casks would be preferable, as it would allow Risoe to ship all the irradiated fuel in two shipments and complete the shipments by June 2002. Risoe National Laboratory, Cogema Logistics and NAC International had twelve months to perform the shipments including licensing, basket fabrication for the NAC-LWT casks and actual transport. The paper describes the challenging work that was accomplished to meet the date of June 2002. (author)

  2. TRIGA 14 MW spent fuel shipment to USA

    International Nuclear Information System (INIS)

    Toma, C.; Barbos, D.; Preda, M.; Covaci, St.; Ciocanescu, M.

    2008-01-01

    Romania has begun to convert Pitesti TRIGA 14 MW reactor having HEU fuel in its first loading and has agreed to complete conversion of the reactor to LEU fuel by May 12, 2006. Thus it became possible to benefit of US policy as set forth in the Record of Decision (ROD) issued by the Department of Energy (DOE ) on May 13 , 1996 directed for acceptance, management and disposition of the Authorized Material which has been discharged from the foreign research reactors. Consequently, United States, DOE Idaho Operations Office and Institute for Nuclear Research at Pitesti, Romania have mutually agreed the terms and conditions set forth in a contract applicable to the receipt of the Authorized Material. Irradiated and spent nuclear fuel rods from TRIGA reactor containing uranium enriched in the United States that have met the requirements set forth in the Environmental Impact Statement and the ROD have been designated as 'Authorized Material' and transferred to Idaho National Engineering and Environmental Laboratory (INEEL)- USA during the summer of 1999 in a joint shipment. 267 TRIGA spent fuel rods loaded in a Legal Weight Truck Shipping Cask belonging to the NAC International have been transported through an overland truck route from Pitesti, Romania to Koper, Slovenia and from there it was shipped to USA. The paper has the following contents: 1.Introduction; 2.Fuel rods selection; 3.Fuel rods characterization; 4.Evaluation of TRIGA fuel in wet storage; 5.Fuel rods transfer from TRIGA pool to the transport cask; 6.Supporting documentation for transfer approval; 7. Conclusions. In conclusion one is stressed that, on site fuel evaluation process evidenced the existence of very good running and storage conditions in reactor pool during reactor operation and fuel storage. Only one fuel rod had to be packaged prior to placement in the shipping cask because of damaged cladding during negligent handling

  3. The first commercial spent fuel shipment in China

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, N.M. [NAC International, Norcross, GA (United States); Xiaoqing Li [Everclean Environmental Engineering Corp., Beijing, BJ (China)

    2004-07-01

    In two and a half years, government regulatory agencies and contractors from three countries worked together to design, license, fabricate, and transport the first commercial spent fuel shipment in China. Their cooperative efforts helped avoid the loss of full core reserve at a nuclear power plant serving two of China's largest cities. In March 2001, Everclean Environmental Engineering Corporation (EEEC) selected NAC International (NAC) to supply two United States Nuclear Regulatory Commission (USNRC) licensed Storable Transport Casks (NACSTC) and technology support, to ensure that qualified Chinese operators would be ready to load the first cask in late 2003. EEEC is a subsidiary of China National Nuclear Corporation (CNNC), which sets nuclear policy in China. EEEC is responsible for implementing nuclear transportation policy set forth from its parent corporation. Timely implementation of EEEC's ambitious plan would avoid loss of full core reserve at Guangdong Nuclear Power Station (Daya Bay) Unit-1, which supplies power to Hong Kong and Schenzen. The spent fuel would be transported to the Lanzhou Nuclear Fuel Complex (LNFC), a reprocessing facility, approximately 4,000 kilometers Northwest of Daya Bay.

  4. Simplified risk assessment for transporting ATR spent fuel within the INEL

    International Nuclear Information System (INIS)

    Franklin, E.M.; Courtney, J.C.

    1994-01-01

    Interest in characterizing the condition of stored spent fuels has generated the need to move spent fuels to hot cell facilities within the Idaho National Engineering Laboratory (INEL). A simplified probabilistic risk assessment (SPRA) and an evaluation of the radiological consequences in the event of an accident are discussed and applied to on-site Advanced Test Reactor (AYR) spent fuel shipments. Reported accident probabilities between 10 -4 and 10 -6 and low radiological consequences, affords this, and other spent fuel characterization efforts, an additional option to move spent fuels within the INEL

  5. Successful completion of a time sensitive MTR and TRIGA Indonesian shipment

    International Nuclear Information System (INIS)

    Anne, Catherine; Patterson, John; Messick, Chuck

    2005-01-01

    Early this year, a shipment of 109 MTR fuel assemblies was received at the Department of Energy's Savannah River Site from the BATAN reactor in Serpong, Indonesia and another of 181 TRIGA fuel assemblies was received at the Idaho National Laboratory from the two BATAN Indonesian TRIGA reactors in Bandung and Yogyakarta, Indonesia. These were the first Other-Than- High-Income Countries shipments under the FRR program since the Spring 2001. The Global Threat Reduction Initiative announced by Secretary Abraham will require expeditious scheduling and extreme sensitivity to shipment security. The subject shipments demonstrated exceptional performance in both respects. Indonesian terrorist acts and 9/11 impacted the security requirements for the spent nuclear fuel shipments. Internal Indonesian security issues and an upcoming Indonesian election led to a request to perform the shipment with a very short schedule. Preliminary site assessments were performed in November 2003. The DOE awarded a task order to NAC for shipment performance just before Christmas 2003. The casks departed the US in January and the fuel elements were delivered at the DOE sites by the end of April 2004. The paper will present how the team completed a successful shipment in a timely manner. (author)

  6. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    International Nuclear Information System (INIS)

    Dolphin, Barbara H.; Richins, William D.; Novascone, Stephen R.

    2010-01-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision

  7. Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada

    International Nuclear Information System (INIS)

    Rangel, R.C.

    1999-01-01

    The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States' defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes

  8. Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters

    International Nuclear Information System (INIS)

    Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R.; Johnson, J.D.; Reardon, P.C.; Ebert, M.W.; Gallagher D.W.

    1996-08-01

    Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters

  9. Transportation impact analysis for shipment of irradiated N-reactor fuel and associated materials

    International Nuclear Information System (INIS)

    Daling, P.M.; Harris, M.S.

    1994-12-01

    An analysis of the radiological and nonradiological impacts of highway transportation of N-Reactor irradiated fuel (N-fuel) and associated materials is described in this report. N-fuel is proposed to be transported from its present locations in the 105-KE and 105-KW Basins, and possibly the PUREX Facility, to the 327 Building for characterization and testing. Each of these facilities is located on the Hanford Site, which is near Richland, Washington. The projected annual shipping quantity is 500 kgU/yr for 5 years for a total of 2500 kgU. It was assumed the irradiated fuel would be returned to the K- Basins following characterization, so the total amount of fuel shipped was assumed to be 5000 kgU. The shipping campaign may also include the transport and characterization of liquids, gases, and sludges from the storage basins, including fuel assembly and/or canister parts that may also be present in the basins. The impacts of transporting these other materials are bounded by the impacts of transporting 5000 kgU of N-fuel. This report was prepared to support an environmental assessment of the N-fuel characterization program. The RADTRAN 4 and GENII computer codes were used to evaluate the radiological impacts of the proposed shipping campaign. RADTRAN 4 was used to calculate the routine exposures and accident risks to workers and the general public from the N-fuel shipments. The GENII computer code was used to calculate the consequences of the maximum credible accident. The results indicate that the transportation of N-fuel in support of the characterization program should not cause excess radiological-induced latent cancer fatalities or traffic-related nonradiological accident fatalities. The consequences of the maximum credible accident are projected to be small and result in no excess latent cancer fatalities

  10. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    We analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy's (DOE) Office of Defense Programs. Two separate shipment programs were analyzed. The shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). To perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. The risks of transporting spent nuclear fuel and other radioactive materials by all modes have been analyzed extensively. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  11. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    International Nuclear Information System (INIS)

    Hostick, C.J.; Lavender, J.C.; Wakeman, B.H.

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel

  12. Preparations for the shipment of RA-3 reactor irradiated fuel

    International Nuclear Information System (INIS)

    Goldschmidt, Adrian; Novara, Oscar; Lafuente, Jose

    2002-01-01

    During the last quarter of 2000, in the Radioactive Waste Management Area of the Argentine National Commission of Atomic Energy (CNEA), located at Ezeiza Atomic Center (CAE), activities associated to the shipment of 207 MTR spent fuels containing high enrichment uranium were carried out within the Foreign Research Reactor/Domestic Research Reactor Receipt Program launched by the US Department of Energy (DOE). The MTR spent fuel shipped to Savannah River Site (SRS) was fabricated in Argentina with 90% enriched uranium of US origin and it was utilized in the operation of the research and radioisotope production reactor RA-3 from 1968 until 1987. After a cooling period at the reactor, the spent fuel was transferred to the Central Storage Facility (CSF) located in the waste management area of CAE for interim storage. The spent fuel (SF) inventory consisted of 166 standard assemblies (SA) and 41 control assemblies (CA). Basically, the activities performed were the fuel conditioning operations inside the storage facility (remote transference of the assemblies to the operation pool, fuel cropping, fuel re-identification, loading in transport baskets, etc.) conducted by CNEA. The loading of the filled baskets in the transport casks (NAC-LWT) by means of intermediate transfer systems and loaded casks final preparations were conducted by NAC personnel (DOE's contractor) with the support of CNEA personnel. (author)

  13. Operational aspects of TRIGA shipment from South Korea to INEEL

    International Nuclear Information System (INIS)

    Shelton, Thomas

    1999-01-01

    A shipment of 299 irradiated TRIGA fuel elements was made from South Korea to the United States in July 1998. The shipment was from two facilities in Korea and was received at the Irradiated Fuel Storage Facility (IFSF) at the Idaho National Engineering and Environmental Laboratory (INEEL). Fuel types shipped included aluminum and stainless steel clad standard fuel elements, instrumented and fuel follower control elements, as well as FLIP elements and failed fuel elements. Modes of transport included truck, rail and ship. (author)

  14. Analyses of the transportation of spent research reactor fuel in the United States

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.

    1989-01-01

    The Transportation Technology Center at Sandia National Laboratories has analyzed the impacts of transportation of research reactor spent fuel from US and foreign reactors for the US Department of Energy (DOE) Office of Defense Programs. This effort represents the first comprehensive analytical evaluation of the risks of transporting high-, medium-, and low-enriched uranium spent research reactor fuel by both sea and land. Two separate shipment programs have been analyzed: the shipment of research reactor spent fuel from Taiwan to the US (Fuel Movement Program), and the return of research reactor spent fuels of US origin from foreign and domestic reactors (Research Reactor Fuel Return Program). In order to perform these analyses, a comprehensive methodology for analyzing the probabilities and consequences of transportation in coastal waters and port facilities, handling at the port, and shipment by truck to reprocessing facilities was developed. The Taiwanese fuel consists of low-burnup aluminum-clad metallic uranium research reactor spent fuel; the other fuels are primarily aluminum-clad oxide fuels. The Fuel Movement Program is ongoing, while the Fuel Return Program addresses future shipments over a ten-year period. The operational aspects of the Taiwanese shipments have been uniform, but several possible shipping configurations are possible for the Fuel Return Program shipments. Comprehensive assessments, which bound the impacts of spent fuel transport, demonstrate that when shipments are made in compliance with applicable regulations, the risks for all such transport are low. For comparison with previously licensed transport activities and to provide continuity with earlier analyses, the results for shipment of 150-day-old commercial pressurized water reactor (PWR) spent fuel are presented as part of this study

  15. Risk assessment in spent fuel storage and transportation

    International Nuclear Information System (INIS)

    Pandimani, S.

    1989-01-01

    Risk assessment in various stages of nuclear fuel cycle is still an active area of Nuclear safety studies. From the results of risk assessment available in literature, it can be determined that the risk resulting from shipments of plutonium and spent-fuel are much greater than that resulting from the transport of other materials within the nuclear fuel cycle. In India spent fuels are kept in Spent Fuel Storage Pool (SFSP) for about 240-400 days, which is relatively a longer period compared to the usual 120 days as recommended by regulatory authorities. After cooling spent fuels are transported to the reprocessing sites which are mostly situated close to the plants. India has two high level waste treatment facilities, one PREFRE (Plutonium Reprocessing and Fuel Recycling) at Tarapur and the other one, a unit of Nuclear Fuel Complex at Hyderabad. This paper presents the risk associated with spent fuel storage and transportation for the Indian conditions. All calculations are based on a typical CANDU reactor system. Simple fault tree models are evolved for SFSP and for Transportation Accident Mode (TAM) for both road and rail. Fault tree quantification and risk assessment are done to each of these models. All necessary data for SFSP are taken mostly from Reactor Safety Study, (1975). Similarly, the data for rail TAM are taken from Annual Statistical Statements, (1987-8) and that for road TAM from Special Issue on Motor Vehicle Accident Statistics in India, (1986). Simulation method is used wherever necessary. Risk is also estimated for normal/accident free transport

  16. The Experience of Storage and Shipment for Reprocessing of HEU Nuclear Fuel Irradiated in the IRT-M Research Reactor and Pamir-630 Mobile Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sikorin, S. N.; Polazau, S. A.; Luneu, A. N.; Hrigarovich, T. K. [Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-08-15

    At the end of 2010 under the Global Threat Reduction Initiative (GTRI), the Joint Institute for Power and Nuclear Research–“Sosny” (JIPNR–Sosny) of the National Academy of Sciences of the Republic of Belarus repatriated HEU spent nuclear fuel to the Russian Federation. The spent nuclear fuel was from the decommissioned Pamir-630D mobile reactor and IRT-M research reactor. The paper discusses the Pamir-630D spent nuclear fuel; experience and problems of spent nuclear fuel storage; and various aspects of the shipment including legal framework, preparation activities and shipment logistics. The conceptual project of a new research reactor for Belarus is also presented.

  17. Sustaining Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Bonnardel-Azzarelli, Betty [World Nuclear Transport Institute, Remo House, 4th Floor, 310-312 Regent Street, London, London W1B 3AX (United Kingdom)

    2009-06-15

    Transport plays an essential role in bringing the benefits of the atom to people the world over. Each day thousands of shipments of radioactive materials are transported on national and international routes. These consignments are essential to many aspects of modern life, from the generation of electricity, to medicine and health, scientific research and agriculture. Maintaining safe, cost-effective transport is essential to support them. Despite an outstanding safety record spanning over 45 years, the transport of radioactive materials cannot and must not be taken for granted. In an era of nuclear expansion, with increased transports required to more destinations, a worrisome trend for global supply is that some shipping companies, air carriers, ports and terminals, have instituted policies of not accepting radioactive materials. Experience has shown that the reasons for delays and denials of shipments are manifold and often have their origin in mis-perceptions about the nature of the materials and the requirements for their safe handling and carriage. There is growing recognition internationally of the problems created by shipment delays and denials and they now are being addressed in a more proactive way by such organisations as the International Atomic Energy Agency (IAEA). The rapidly changing supply-demand equation for fuel cycle services: substantial new nuclear build planned or underway in several countries, twenty-first century 'gold rush' fever in uranium exploration and mining, proposed new mechanisms to assure fuel supply to more countries while minimising proliferation risks. But, can supply to meet demand be assured, unless and until transport can be assured? And is it reasonable to expect that transport can be assured to meet the emerging demand-side of the fuel cycle equation when industry already is facing increased instances of shipment delays and denials? It is a worrisome trend for global supply of Class 7 radioactive materials that

  18. Twenty years of experience in spent fuel shipment from German nuclear power plants - a view of the competent authority

    International Nuclear Information System (INIS)

    Fasten, Ch.; Mueller, U.; Alter, U.

    1994-01-01

    A survey of the transport of spent fuel in and from Germany during the last 20 years is presented. The spent fuel is now transported from the German nuclear power facilities to the reprocessing plants in France and the United Kingdom. In the past, there were also shipments to the former reprocessing plant WAK Karlsruhe (Germany), to the long-term storage facility CLAB (Sweden) and also from the former German Democratic Republic to the USSR. The transport of the spent fuel is carried out in specially built flasks requiring an extensive quality assurance programme. Due to the heavy weight of these packages, the shipments are mostly carried out by rail, but also by road and sea. An overview is given of the following matters: (i) quantities of spent fuel transport, (ii) organisation of transport (iii) licensing matters, and (iv) reported incidents. In addition, an analysis is included of the radiation exposure for normal conditions of transport, especially of the transport workers. Difficulties and hindrances during transport are also reported. (author)

  19. The tracking of high level waste shipments-TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-01-01

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users

  20. The tracking of high level waste shipments - TRANSCOM system

    International Nuclear Information System (INIS)

    Johnson, P.E.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The TRANSCOM (transportation tracking and communication) system is the US Department of Energy's (DOE's) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY 1993 to track almost 100 shipments within the US DOE complex, and it is accessed weekly by 10 to 20 users

  1. TRANSCOM: The US Department of Energy (DOE) system for tracking shipments

    International Nuclear Information System (INIS)

    Boes, K.S.; Joy, D.S.; Pope, R.B.; Thomas, T.M.; Lester, P.B.

    1994-01-01

    The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment)

  2. Shipment security update - 2003

    International Nuclear Information System (INIS)

    Patterson, John; Anne, Catherine

    2003-01-01

    At the 2002 RERTR, NAC reported on the interim measures taken by the U.S. Nuclear Regulatory Commission to enhance the security afforded to shipments of spent nuclear fuel. Since that time, there have been a number of additional actions focused on shipment security including training programs sponsored by the U.S. Department of Transportation and the Electric Power Research Council, investigation by the Government Accounting Office, and individual measures taken by shippers and transportation agents. The paper will present a status update regarding this dynamic set of events and provide an objective assessment of the cost, schedule and technical implications of the changing security landscape. (author)

  3. Feasibility and incentives for the consideration of spent fuel operating histories in the criticality analysis of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-08-01

    Analyses have been completed that indicate the consideration of spent fuel histories (''burnup credit'') in the design of spent fuel shipping casks is a justifiable concept that would result in cost savings and public risk benefits in the transport of spent nuclear fuel. Since cask capacities could be increased over those of casks without burnup credit, the number of shipments necessary to transport a given amount of fuel could be reduced. Reducing the number of shipments would increase safety benefits by reducing public and occupational exposure to both radiological and nonradiological risks associated with the transport of spent fuel. Economic benefits would include lower in-transit shipping, reduced transportation fleet capital costs, and reduced numbers of cask handling operations at both shipping and receiving facilities. 44 refs., 66 figs., 28 tabs

  4. Cost and risk tradeoff for routing nuclear spent fuel movements

    International Nuclear Information System (INIS)

    Chin, S.M.

    1988-01-01

    In the transportation industry, much effort has been devoted to finding the least cost routes for shipping goods from their production sites to the market areas. In addition to cost, the decision maker must take the risk of an incident into consideration for transportation routing involving hazardous materials. The transportation of spent nuclear fuel from reactor sites to repositories is an example. Given suitable network information, existing routing methods can readily determine least cost or least risk routes for any shipment. These two solutions, however, represent the extremes of a large number of alternatives with different combinations of risk and cost. In the selection of routes and also in the evaluation of alternative storage sites it is not enough to know which is the lease cost or lowest risk. Intelligent decision-marking requires knowledge of how much it will cost to lower risk by a certain amount. The objective of this study is to develop an automated system to evaluate the tradeoff between transportation cost and potential population at risk under different nuclear spent fuel transportation strategies

  5. A software tool integrated risk assessment of spent fuel transpotation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Christian, Robby [Dept. of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (Korea, Republic of); Kim, Bo Gyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of)

    2017-06-15

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode.

  6. A software tool integrated risk assessment of spent fuel transpotation and storage

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook; Christian, Robby; Kim, Bo Gyung; Lee, Sang Hoon

    2017-01-01

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode

  7. Status of the TRIGA shipments to the INEEL from Asia

    International Nuclear Information System (INIS)

    Tyacke, M.; George, W.; Petrasek, A.; Stump, R.C.; Patterson, J.

    1997-01-01

    This paper will report on preparations being made for returning Training, Research, Isotope, General Atomics (TRIGA) foreign research reactor (FRR) spent fuel from South Korea and Indonesia to the Idaho National Engineering and Environmental Laboratory (INEEL). The roles of US Department of Energy, INEEL, and NAC International in implementing a safe shipment are provided. Special preparations necessitated by making a shipment through a west coast port of the US to the INEEL will be explained. The institutional planning and actions needed to meet the unique political and operational environment for making a shipment from Asia to INEEL will be discussed. Facility preparation at both the INEEL and the FRRs is discussed. Cask analysis needed to properly characterize the various TRIGA configurations, compositions, and enrichments is discussed. Shipping preparations will include an explanation of the integrated team of spent fuel transportation specialists, and shipping resources needed to retrieve the fuel from foreign research reactor sites and deliver it to the INEEL

  8. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    Bolshinsky, I.; Allen, K.J.; Biro, L.L.; Budu, M.E.; Zamfir, N.V.; Dragusin, M.; Paunoiu, C.; Ciocanescu, M.

    2010-01-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  9. Pre-Shipment Preparations at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, J.E.

    2000-01-01

    This paper will provide a detailed description of each of the pre-shipment process steps WSRC performs to produce the technical basis for approving the receipt and storage of spent nuclear fuel at the Savannah River Site. It is intended to be a guide to reactor operators who plan on returning ''U.S. origin'' SNF and to emphasize the need for accurate and timely completion of pre-shipment activities

  10. Overweight truck shipments to nuclear waste repositories: legal, political, administrative and operational considerations

    International Nuclear Information System (INIS)

    1986-03-01

    This report, prepared for the Chicago Operations Office and the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), identifies and analyzes legal, political, administrative, and operational issues that could affect an OCRWM decision to develop an overweight truck cask fleet for the commercial nuclear waste repository program. It also provides information required by DOE on vehicle size-and-weight administration and regulation, pertinent to nuclear waste shipments. Current legal-weight truck casks have a payload of one pressurized-water reactor spent fuel element or two boiling-water reactor spent fuel elements (1 PWR/2 BWR). For the requirements of the 1960s and 1970s, casks were designed with massive shielding to accommodate 6-month-old spent fuel; the gross vehicle weight was limited to 73,280 pounds. Spent fuel to be moved in the 1990s will have aged five years or more. Gross vehicle weight limitation for the Interstate highway system has been increased to 80,000 pounds. These changes allow the design of 25-ton legal-weight truck casks with payloads of 2 PWR/5 BWR. These changes may also allow the development of a 40-ton overweight truck cask with a payload of 4 PWR/10 BWR. Such overweight casks will result in significantly fewer highway shipments compared with legal-weight casks, with potential reductions in transport-related repository risks and costs. These advantages must be weighed against a number of institutional issues surrounding such overweight shipments before a substantial commitment is made to develop an overweight truck cask fleet. This report discusses these issues in detail and provides recommended actions to DOE

  11. Physical Protection of Spent Fuel Shipments: Resolution of Stakeholder Concerns Through Rulemaking - 12284

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, James D. [Department of Sociology, California State University, Northridge, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 89706 (United States); Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)

    2012-07-01

    In 1999, the State of Nevada brought its concerns about physical protection of current spent nuclear fuel (SNF) shipments, and future SNF shipments to a federal repository, before the NRC in a 1999 petition for rulemaking (PRM-73-10). In October 2010, the NRC published a rulemaking decision which would significantly strengthen physical protection of SNF in transit. The newest articulation of the rule (10 CFR 73.37) incorporates regulatory clarifications and security enhancements requested in Nevada's 1999 petition for rulemaking, codifies the findings of the Nuclear NRC and DOE consequence analyses into policy guidance documents and brings forward into regulations the agency and licensee experience gained since the terrorist attacks of September 11, 2001. Although at present DOE SNF shipments would continue to be exempt from these NRC regulations, Nevada considers the rule to constitute a largely satisfactory resolution to stakeholder concerns raised in the original petition and in subsequent comments submitted to the NRC. This paper reviews the process of regulatory changes, assesses the specific improvements contained in the new rules and briefly describes the significance of the new rule in the context of a future national nuclear waste management program. Nevada's petition for rulemaking led to a generally satisfactory resolution of the State's concerns. The decade plus timeframe from petition to rulemaking conclusion saw a sea change in many aspects of the relevant issues - perhaps most importantly the attacks on 9/11 led to the recognition by regulatory bodies that a new threat environment exists wherein shipments of SNF and HLW pose a viable target for human initiated events. The State of Nevada has always considered security a critical concern for the transport of these highly radioactive materials. This was one of the primary reasons for the original rulemaking petition and subsequent advocacy by Nevada on related issues. NRC decisions on

  12. Reliability of the fuel identification procedure used by COGEMA during cask loading for shipment to LA HAGUE

    International Nuclear Information System (INIS)

    Pretesacque, P.; Eid, M.; Zachar, M.

    1993-01-01

    This study has been carried out to demonstrate the reliability of the system of the spent fuel identification used by COGEMA and NTL prior to shipment to the reprocessing plant of La Hague. This was a prerequisite for the French competent authority to accept the 'burnup credit' assumption in the criticality assessment of spent fuel packages. The probability to load a non-irradiated and non-specified fuel assembly was considered as acceptable if our identification and irradiation status measurement procedures were used. Furthermore, the task analysis enabled us to improve the working conditions at reactor sites, the quality of the working documentation, and consequently to improve the reliability of the system. The NTL experience of transporting to La Hague, as consignor, more than 10,000 fuel assemblies since the date of implementation of our system in 1984 without any non-conformance on fuel identification, validated the formalism of this study as well as our assumptions on basic events probabilities. (J.P.N.)

  13. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-01-01

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  14. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    2001-01-01

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft(reg s ign) Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft(reg s ign) Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the

  15. Plan for shipment, storage, and examination of TMI-2 fuel

    International Nuclear Information System (INIS)

    Quinn, G.J.; Engen, I.A.; Tyacke, M.J.; Reno, H.W.

    1984-05-01

    This Plan addresses the preparation and shipment of core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL) for receipt, storage, and examination. The Manager of the Nuclear Materials Evaluation Programs Division of EG and G Idaho, Inc. will manage two separate but integrated programs, one located at TMI (Part 1) and the other at INEL (Part 2). The Technical Integration Office (at TMI) is responsible for developing and implementing Part 1, TMI-2 Core Shipment Program. That portion of the Plan establishes coordination between TMI and INEL (and others) for shipment of core debris, and it provides the coordination by which handling systems at both locations are designed, constructed, or modified to establish and maintain system compatibility. The Technical Support Branch (at INEL) is responsible for developing and implementing Part 2, Core Activities Program. That portion of the Plan details operational and examination activities at INEL, as well as defines core-related activities planned at other DOE laboratories

  16. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  17. Status of the TRIGA shipments to the INEEL from Europe

    International Nuclear Information System (INIS)

    Stump, Robert C.; Mustin, Tracy

    1997-01-01

    During 1999 shipment from 4 European countries, involving the following 4 research reactors was foreseen: ENEA of Italy, ICN of Romania, TRIGA-IJS of Slovenia, and MHH of Germany. The research reactors under consideration are LENA of Italy, IFK and DKFZ of Germany. Unique challenges of this task are: first shipment to the INEEL from the east coast of the United States; Need to identify a transportation route and working with the states, tribes and local governments to ensure that adequate public safety and security planning is done and followed; first shipment to INEEL involving both high-income and less-than-high-income countries in one shipment. There is an opportunity to save a significant amount of money for both DOE and the high-income countries by cooperating and coordinating the shipments together. The First will be the shipment to INEEL of mixed TRIGA SNF and more than one shipping cask type. This shipment will include a mixture of LEU, HEU, aluminum clad, stainless steel clad, and Incoloy clad rods. INEEL will need to prepare the safety documentation, procedures, and make equipment and facility modifications necessary to handle the ifferent fuel and cask types

  18. Choices of canisters and elements for the first fuel shipment from K West Basin

    International Nuclear Information System (INIS)

    Makenas, B.J.

    1995-03-01

    Twenty-two canisters (10 prime and 12 backup candidates) in the K West Basin have been identified as containing fuel which, when examined, will satisfy the Data Quality Objectives for the first fuel shipment from this basin. These were chosen as meeting criteria such as containing relatively long fuel elements, locking bar integrity, and the availability of gas/liquid interface level measurements for associated canister gas traps. Two canisters were identified as having reported broken fuel on initial loading. Usage and interpretation of canister cesium concentration measurements have also been established and levels of maximum and minimum acceptable cesium concentration (from a data optimization point of view) for decapping have been determined although other operational cesium limits may also apply. Criteria for picking particular elements, once a canister is opened, are reviewed in this document. A pristine, a slightly damaged, and a badly damaged element are desired. The latter includes elements with end caps removed but does not include elements which have large amounts of swelling or split cladding that might interfere with handling tools. Finally, operational scenarios have been suggested to aid in the selections of canisters and elements in a way that utilizes anticipated canister gas sampling and leads to a correct and quick choice of elements which will supply the desired data

  19. Selection of highway routes for the shipment of radioactive materials within the Commonwealth of Virginia

    International Nuclear Information System (INIS)

    Hobeika, A.G.; Jamei, B.; Santoso, I.B.

    1986-01-01

    In this study Virginia Electric and Power Company proposed to ship limited quantities of irradiated nuclear fuel from Surry to North Anna in Virginia. Eight routes were considered as candidate routes for shipment. The objectives of this study are: To minimize the accidental-release radiation risk to people and property; and to maximize the community preparedness in terms of emergency response and evacuation capability. To determine the ''Preferred'' route and the alternative route for highway shipments of radioactive material, a conceptual approach was developed, based on the following three principles: Feasibility; Evaluation; and Choice. The feasibility of a candidate route is first established. Then all feasible routes are evaluated under the same criteria, which would lead to the choice of the best feasible route

  20. Analysis of alternative transportation methods for radioactive materials shipments including the use of special trains for spent fuel and wastes

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.

    1978-01-01

    Two studies were completed which evaluate the environmental impact of radioactive material transport. The first was a generic study which evaluated all radioactive materials and all transportation modes; the second addressed spent fuel and fuel-cycle wastes shipped by truck, rail and barge. A portion of each of those studies dealing with the change in impact resulting from alternative shipping methods is presented in this paper. Alternatives evaluated in each study were mode shifts, operational constraints, and, in generic case, changes in material properties and package capabilities. Data for the analyses were obtained from a shipper survey and from projections of shipments that would occur in an equilibrium fuel cycle supporting one hundred 1000-MW(e) reactors. Population exposures were deduced from point source radiation formulae using separation distances derived for scenarios appropriate to each shipping mode and to each exposed population group. Fourteen alternatives were investigated for the generic impact case. All showed relatively minor changes in the overall radiological impact. Since the radioactive material transport is estimated to be fewer than 3 latent cancer fatalities (LCF) for each shipment year (compared to some 300,000 yearly cancer fatalities or 5000 LCF's calculated for background radiation using the same radiological effects model), a 15% decrease caused by shifting from passenger air to cargo air is a relatively small effect. Eleven alternatives were considered for the fuel cycle/special train study, but only one produced a reduction in total special train baseline LCF's (.047) that was larger than 5%

  1. Draft environmental impact statement on a proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Volume 2, Appendix E, Evaluation of human health effects of overland transportation

    International Nuclear Information System (INIS)

    1995-03-01

    This Appendix provides an overview of the approach used to assess the human health risks that may result from the overland transportation of foreign research reactor spent nuclear fuel. The Appendix includes discussion of the scope of the assessment, analytical methods used for the risk assessment (i.e., computer models), important assessment assumptions, determination of potential transportation routes, and presents the results of the assessment. In addition, to aid in the understanding and interpretation of the results, specific arm of uncertainty are described, with an emphasis an how the uncertainties may affect comparisons of the alternatives. he approach used in this Appendix is modeled after that used in the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Draft Environmental Impact Statement (SNF ampersand INEL Draft EIS) (DOE, 1994b). The SNF ampersand INEL Draft EIS did not perform as detailed an analysis on the specific actions taken for foreign research reactor spent nuclear fuel because of the breadth necessary to analyze the entire spent fuel management program. However, the fundamental assumptions used in this analysis are consistent with those used in the SNF ampersand INEL Draft EIS (DOE, 1994b), and the same computer codes and generic release and accident data are used. The risk assessment results are presented in this Appendix in terms of ''Per-shipment'' risk factors, as well as for the total risks associated with each alternative. Per-shipment risk factors provide an estimate of the risk from a single spent nuclear fuel shipment between a specific origin and destination. They are calculated for all possible origin and destination pairs for each spent nuclear fuel type. The total risks for a given alternative are found by multiplying the expected number of shipments by the appropriate per-shipment risk factors. This approach provides maximum flexibility for determining the risks for a large number of potential

  2. Worldwide spent fuel transportation logistics

    International Nuclear Information System (INIS)

    Best, R.E.; Garrison, R.F.

    1978-01-01

    This paper presents an overview of the worldwide transportation requirements for spent fuel. Included are estimates of numbers and types of shipments by mode and cask type for 1985 and the year 2000. In addition, projected capital and transportation costs are presented. For the year 1977 and prior years inclusive, there is a cumulative worldwide requirement for approximately 300 MTU of spent fuel storage at away-from-reactor (AFR) facilities. The cumulative requirements for years through 1985 are projected to be nearly 10,000 MTU, and for the years through 2000 the requirements are conservatively expected to exceed 60,000 MTU. These AFR requirements may be related directly to spent fuel transportation requirements. In total nearly 77,000 total cask shipments of spent fuel will be required between 1977 and 2000. These shipments will include truck, rail, and intermodal moves with many ocean and coastal water shipments. A limited number of shipments by air may also occur. The US fraction of these is expected to include 39,000 truck shipments and 14,000 rail shipments. European shipments to regional facilities are expected to be primarily by rail or water mode and are projected to account for 16,000 moves. Pacific basin shipments will account for 4500 moves. The remaining are from other regions. Over 400 casks will be needed to meet the transportation demands. Capital investment is expected to reach $800,000,000 in 1977 dollars. Cumulative transport costs will be a staggering $4.4 billion dollars

  3. 49 CFR 375.509 - How must I determine the weight of a shipment?

    Science.gov (United States)

    2010-10-01

    ...—origin weigh. You determine the difference between the tare weight of the vehicle before loading at the origin of the shipment and the gross weight of the same vehicle after loading the shipment. (2) Second... fuel tanks on the vehicle must be full at the time of each weighing, or, in the alternative, when you...

  4. Bases for DOT exemption uranyl nitrate solution shipments

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1982-07-01

    Uranyl nitrate solutions from a Savannah River Plant reprocessing facility have been transported in cargo tank trailers for more than 20 years without incident during transit. The solution is shipped to Oak Ridge for further processing and returned to SRP in a solid metal form for recycle. This solution, called uranyl nitrate hexahydrate (UNH) solution in Department of Transportation (DOT) regulations, is currently diluted about 2-fold to comply with DOT concentration limits (10% of low specific activity levels) specified for bulk low specific activity (LSA) liquid shipments. Dilution of the process solution increases the number of shipments, the cost of transportation, the cost of shipper preparations, the cost of further reprocessing in the receiving facility to first evaporate the added water, and the total risk to the population along the route of travel. However, the radiological risk remains about the same. Therefore, obtaining an exemption from DOT regulations to permit shipment of undiluted UNH solution, which is normally about two times the present limit, is prudent and more economical. The radiological and nonradiological risks from shipping a unit load of undiluted solution are summarized for the probable route. Data and calculations are presented on a per load or per shipment basis throughout this memorandum to keep it unclassified

  5. Highway route controlled quantity shipment routing reports - An overview

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Welles, B.W.; Welch, M.J.

    1989-01-01

    US Department of Transportation (DOT) regulations require a postnotification report from the shipper for all shipments of radioactive materials categorized as a Highway Route Controlled Quantity. These postnotification reports, filed in compliance with 49 CFR 172.203(d), have been compiled by the DOT in a database known as the Radioactive Materials Routing Report (RAMRT) since 1982. The data were sorted by each of its elements to establish historical records and trends of Highway Route Controlled Quantity shipments from 1982 through 1987. Approximately 1520 records in the RAMRT database were compiled for this analysis. Approximately half of the shipments reported for the study period were from the US Department of Energy (DOE) and its contractors, with the others being commercial movements. Two DOE installations, EG and G Idaho and Oak Ridge, accounted for nearly half of the DOE activities. Similarly, almost half of the commercial movements were reported by two vendors, Nuclear Assurance Corporation and Transnuclear, Incorporated. Spent fuel from power and research reactors accounted for approximately half of all shipments

  6. Pre-shipment preparations at the Savannah River Site - WSRC's technical basis to support DOE's approval to ship

    International Nuclear Information System (INIS)

    Thomas, Jay E.; Bickley, Donald W.; Conatser, E. Ray

    2000-01-01

    In the first four years of the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Return Program following resumption of the SNF return program with the DOE-EIS ROD in May 1996, 13 shipments involving 77 casks with over 2,600 assemblies have been safely received and stored at the Savannah River Site (SRS). Each fuel type has gone through a rigorous pre-shipment preparation process that includes fuel characterization, criticality safety reviews, and operational reviews, culminating in the Department of Energy's (DOE's) authorization to ship. Ideally, the authorization to ship process should begin two years in advance of the fuel receipt with an agreement between the Department of Energy - Head Quarters (DOE-HQ) and the research reactor government on the conditions and protocol for the spent nuclear fuel return, with a target of DOE shipment authorization at least two months before facility loading. A visit by representatives from the Department of Energy - Savannah River (DOE-SR) and Westinghouse Savannah River Company (WSRC), DOE's Management and Operations (M and O) Contractor for the SRS, to the research reactor facility is then scheduled for the purpose of finalizing contractual arrangements (DOE-SR), facility assessments, and initial fuel inspections. An extensive effort is initiated at this time to characterize the fuel in a standard format as identified in the Appendix A attachment to the contract. The Appendix A must be finalized in an accurate and timely manner because it serves as the base reference document for WSRC and other involved stakeholders such as the cask owners and the competent authorities throughout the approval process. With the approval of the Appendix A, criticality safety reviews are initiated to evaluate the unloading and storage configurations. Operational reviews are conducted to allow for necessary adaptation of fuel handling facilities, procedures, and training. WSRC has proceduralized this process, 'Certification to Receive and

  7. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  8. Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components

    International Nuclear Information System (INIS)

    Just, R.A.; Love, A.F.

    1997-10-01

    The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied

  9. Research reactor spent nuclear fuel shipment from the Czech Republic to the Russian Federation

    International Nuclear Information System (INIS)

    Svoboda, K.; Broz, V.; Novosad, P.; Podlaha, J.; Svitak, F.

    2009-01-01

    In May 2004, the Global Threat Reduction Initiative agreement was signed by the governments of the United States and the Russian Federation. The goal of this initiative is to minimize, in cooperation with the International Atomic Energy Agency (IAEA) in Vienna, the existing threat of misuse of nuclear and radioactive materials for terrorist purposes, particularly highly enriched uranium (HEU), fresh and spent nuclear fuel (SNF), and plutonium, which have been stored in a number of countries. Within the framework of the initiative, HEU materials and SNF from research reactors of Russian origin will be transported back to the Russian Federation for reprocessing/liquidation. The program is designated as the Russian Research Reactor Fuel Return (RRRFR) Program and is similar to the U.S. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program, which is underway for nuclear materials of United States origin. These RRRFR activities are carried out under the responsibilities of the respective ministries (i.e., U.S. Department of Energy (DOE) and Russian Federation Rosatom). The Czech Republic and the Nuclear Research Institute Rez, plc (NRI) joined Global Threat Reduction Initiative in 2004. During NRI's more than 50 years of existence, radioactive and nuclear materials had accumulated and had been safely stored on its grounds. In 1995, the Czech regulatory body , State Office for Nuclear Safety (SONS), instructed NRI that all ecological burdens from its past activities must be addressed and that the SNF from the research reactor LVR -15 had to be transported for reprocessing. At the end of November 2007, all these activities culminated with the unique shipment to the Russian Federation of 527 fuel assemblies of SNF type EK-10 (enrichment 10% U-235) and IRT-M (enrichment 36% and 80% U-235) and 657 irradiated fuel rods of EK-10 fuel, which were used in LVR-15 reactor. (authors)

  10. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix C, marine transport and associated environmental impacts. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix C to a Draft Environmental Statement on a Proposed Nuclear Weapon Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. Shipment of any material via ocean transport entails risks to both the ship's crew and the environment. The risks result directly from transportation-related accidents and, in the case of radioactive or other hazardous materials, also include exposure to the effects of the material itself. This appendix provides a description of the approach used to assess the risks associated with the transport of foreign research reactor spent nuclear fuel from a foreign port to a U.S. port(s) of entry. This appendix also includes a discussion of the shipping configuration of the foreign research reactor spent nuclear fuel, the possible types of vessels that could be used to make the shipments, the risk assessment methodology (addressing both incident-free and accident risks), and the results of the analyses. Analysis of activities in the port(s) is described in Appendix D. The incident-free and accident risk assessment results are presented in terms of the per shipment risk and total risks associated with the basic implementation of Management Alternative 1and other implementation alternatives. In addition, annual risks from incident-free transport are developed

  11. The highway and railroad operating environments for hazardous shipments in the United States - safer in the '90s?

    International Nuclear Information System (INIS)

    Saricks, C.L.; Tompkins, M.M.

    2000-01-01

    This paper seeks to illuminate the status of transportation safety and risk for large-quantity shipments of spent commercial reactor fuel and mixed and hazardous wastes by examining road and rail accident and vehicular travel data from the mid-1990s. Of special interest are the effect of speed limit changes on controlled-access expressways (chiefly the Interstate Highway System) and the possible effect of season-to-season climatic variation on road transport. We found that improvements in railroad technology and infrastructure have created a safer overall operating environment for railroad freight shipments. We also found recent evidence of an increase in accident rates of heavy combination trucks in states that have raised highway speed limits. Finally, cold weather increases road transport risk, while conditions associated with higher ambient temperatures do not. This last finding is in contrast to rail transport, for which the literature associates both hot and cold temperature extremes with higher accident rates

  12. Studsvik's implementation of the DOE spent fuel return program: The US perspective

    International Nuclear Information System (INIS)

    Grover, Stephen; Browser, Rita C.

    1996-01-01

    The government of Sweden has long been a proponent of nuclear nonproliferation policies. This includes laws governing the conduct of the Studsvik R2 Reactor in Nykoeping, Sweden. Studsvik became a participant in the RERTR program early on and was one of the first research reactors to convert from Highly Enriched Uranium (HEU) to Low Enriched Uranium (LEU) fuel. Since Studsvik operates the reactor on a commercial basis, it is important to fully comply with all Swedish laws and regulations for the operation of a nuclear reactor. This includes development of a proper long term program for the final disposition for the irradiated fuel. For this reason it was very important to Studsvik to be involved in the process for development of the DOE Spent Fuel Return Program as early as possible. This process included input into the Environmental Impact Statement process, early contractual negotiations after the issuance of the Record of Decision, participation in litigation involving the Spent Fuel Return Program, and plans for return of HEU fuel on the first European shipment. Not only was program involvement important, but actual program implementation was necessary for Studsvik to maintain its reactor license. Studsvik needed to have fuel included in the first shipment in the return program not only for licensing considerations, but also to reduce the proliferation risk associated with the storage of non-self protecting fuel. To ensure participation in the first shipment, Studsvik's activities included the early development of Appendix A's, coordinating the shipment, obtaining approvals and authorizations, and other technical aspects. (author)

  13. The use of burnup credit in criticality control for the Korean spent fuel management program

    International Nuclear Information System (INIS)

    Koh, Duck Joon; Chon, Je Keun; Park, Chung Ryul; Ji, Pyung Kuk; Kim, Byung Tae; Jo, Chang Keun; Cho, Nam Zin

    1997-01-01

    More than 25% k-eff saving effect is observed in this burnup credit analysis. This mainly comes from the adoption of actinide nuclides and fission products in the criticality analysis. By taking burnup credit, the high capacity of the storage and transportation can be more fully utilized, reducing the space of storage and the number of shipments. Larger storage and fewer shipments for a given inventory of spent fuel result should in remarkable cost savings and more importantly reduce the risks to the public and occupational workers for the Korean Spent Fuel Management Program

  14. Trends in state-level freight accident rates: An enhancement of risk factor development for RADTRAN

    International Nuclear Information System (INIS)

    Saricks, C.; Kvitek, T.

    1991-01-01

    Under the Nuclear Waste Policy Act, the Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) is concerned with understanding and managing risk as it applies to the shipment of spent commercial nuclear reactor fuel. Understanding risk in relation to mode and geography may provide opportunities to minimize radiological and non-radiological risks of transportation. To enhance such an understanding, a set of state-or waterway-specific accident, fatality, and injury rates (expressed as rates per shipment kilometer) by transportation mode and highway administrative class was developed, using publicly-available data bases. Adjustments made to accommodate miscoded or incomplete information in accident data are described, as well as the procedures for estimating state-level flow data. Results indicate that the shipping conditions under which spent fuel is likely to be transported should be less subject to accidents than the ''average'' shipment within mode. 10 refs., 3 tabs

  15. Impacts of SNF burnup credit on the shipment capability of the GA-4 cask

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Lake, W.; Richardson, J.

    1996-01-01

    Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million

  16. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  17. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United...

  18. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D ampersand D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews

  19. Virginia Power and Department of Energy spent fuel transportation experience

    International Nuclear Information System (INIS)

    Ruska, M.D.; Schoonen, D.H.

    1986-12-01

    Spent fuel assemblies for the Spent Fuel Storage Cask Testing Program conducted by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) were transported to the INEL. A total of 69 spent fuel assemblies (23 shipments) were shipped from Virginia Power's nuclear power plant at Surry, Virginia, to the INEL between July 1985 and June 1986 to fill and test three spent fuel storage casks. The shipments were made over the highway system in Transnuclear, Inc., TN-8L shipping casks on specially constructed trailers. The shipments were moved by diesel tractors owned and operated by Tri-State Motor Transit Company of Joplin, Missouri. The gross vehicle weight for each shipment was 112,000 lb, which was a major consideration when selecting routes for the shipments. Cooperative negotiations with officials for the 17 states involved obtained authorization to transport through their states. The shipping campaign was successfully completed through close communication and cooperation and careful planning and operation by all organizations involved

  20. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  1. Route selection issues for NWPA shipments

    International Nuclear Information System (INIS)

    Hill, C.V.; Harrison, I.G.

    1993-01-01

    Questions surrounding the designation of routes for the movement of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) by the Office of Civilian Radioactive Waste Management (OCRWM) have broad implications. Federal regulations prescribe rules to be applied in the selection of highway routes. In most cases, these rules will lead to a clear selection of one route between an origin and destination point. However, in other cases, strict application of the regulations does not result in a clear choice of a preferred route. The regulations also provide discretion to State governments and carriers to select alternative routes to enhance the safety of the shipment. Railroad shipments of radioactive materials are not subject to Federal routing regulations. Since the railroads operate on private property, it has been assumed that they know the best way to move freight on their system. This discretion, while desirable for addressing unique local safety concerns or for responding to temporary safety concerns such as road problems, weather conditions, or construction areas, leads to significant opportunity for misunderstandings and uneasiness on the part of local residents

  2. AREVA Logistics Business Unit Transportation Risk Management Initiative

    International Nuclear Information System (INIS)

    Anne, C.

    2009-01-01

    A safe, secure and reliable transportation organization is a key component for the success of the nuclear industry. With the forecasted increase of radioactive material transport flows in future and the changing environment, AREVA Logistic Business Unit (L-BU) must ensure that safety and security risks are minimized but also ensure of the chain supply for its various facilities (mines, conversion, enrichment, fuel manufacturing, reprocessing, etc). AREVA L-BU Unit is implementing a transportation risk management initiative for the radioactive shipments of the AREVA group across all the Business Unit involved in shipments of radioactive and nuclear materials. The paper will present the four main components of the risk management. (authors)

  3. Transport insurance of unirradiated nuclear fuels

    International Nuclear Information System (INIS)

    Matto, H.

    1985-01-01

    Special conditions must be taken into account in transport insurance for nuclear materials even if the nuclear risk involved is negligible, as in shipments of unirradiated nuclear fuels. The shipwreck of the 'Mont Louis' has raised a number of open points which must be solved pragmatically within the framework of transport insurance. Some proposals are outlined in the article. (orig.) [de

  4. Research reactor de-fueling and fuel shipment

    International Nuclear Information System (INIS)

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-01-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures

  5. Assessment of the radiological risks of road transport accidents involving type A package shipments

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Schwarz, G.; Raffestin, D.; Schneider, T.; Gelder, R.; Hughes, J.S.; Shaw, K.B.; Hedberg, B.; Simenstad, P.; Svahn, B.; Hienen, J.F.A.; Jansma, R.

    1998-01-01

    This paper is an account of work performed within a multi-lateral research project on the radiological risks associated with the transportation of Type A packaged radioactive material. The research project has been performed on behalf of the European Commission and various national agencies of the participating countries and involved organizations and institutes of five EU Member States, France, Germany, The Netherlands, Sweden, and the UK. The main objectives of the research project were the assessment and appraisal of the potential radiological risks of road transport accidents involving Type A package shipments in participating EU Member States. Data were collected and include harmonized sets information related to the type, quantity and characteristics of Type A package shipments by road. Such databases were basically non-existent until recently. The results are expected to be valuable to both national agencies and international organizations, with responsibilities for the safe transport of radioactive materials by providing some insight in the carriage of radioactive materials by road making up a major fraction of radioactive material transports. Similarly, a wide body of information has been collected and compiled on road transport accidents in terms of the frequency of occurrence and the severity of accidental impact loads potentially experienced by a Type A package.In addition, the results will facilitate judgement of the adequacy of the IAEA Transport Regulations as far as Type A packages are concerned. (O.M.)

  6. Routing of radioactive shipments in networks with time-varying costs and curfews

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

    1998-09-01

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

  7. Routing of radioactive shipments in networks with time-varying costs and curfews

    International Nuclear Information System (INIS)

    Bowler, L.A.; Mahmassani, H.S.

    1998-09-01

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated

  8. European experience with spent fuel transport

    International Nuclear Information System (INIS)

    Hunter, I.A.

    1995-01-01

    Nuclear Transport Ltd has transported 5000 tonnes of spent fuel from 35 reactors in 8 European countries since 1972. Transport management is governed by the Quality Plan for: transport administration, packaging and shipment procedures at the shipping plant, operations at the power plant, and packaging and shipment organization at the power plant. Selection of a suitable carrier device is made with regard to the shipping plant requirements, physical limitations of the reactor, fuel characteristics, and transport route constraints. The transport plan is set up taking into account exploitation of the casks, reactor shut-down requirements, fuel acceptance plans at the reprocessing plant, and cask maintenance periods. A transport cycle involving spent fuel shipment to La Hague or to Sellafield takes typically two or four weeks, respectively. Most transports through Europe are by rail. A special-design railway ferry boat serves transports to the United Kingdom. Both wet or dry casks are employed. Modern casks are designed for high burnups and for oxide fuels. (J.B.)

  9. Back-end of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    Gruber, Gehard J.

    1996-01-01

    This paper outlines the status of topics and issues related to: (1) Research Reactor Spent Nuclear Fuel Return to the U.S., including policy, shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipment, and legal process, (2) UKAEA: MTR Spent Nuclear Fuel Reprocessing, (3) COGEMA: MTR Spent Nuclear Fuel Reprocessing, and (4) Intermediate Storage + Direct Disposal for Research Reactors. (author)

  10. Risk assessment for the transportation of radioactive zeolite liners

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1982-01-01

    The accident risk is estimated for the shipment of two zeolite liners containing radioactive cesium and strontium. Each liner, assumed to hold 68,200 Ci and sealed inside a CNS 1 to 13C, type-B shipping cask, is transported by truck over a 4200-km route. The risk to the population along the route is calculated for potential transportation accidents involving fire, impact, and puncture forces. The total risk is 5.3E-7 man-rem (50-year inhalation dose) and the maximum dose (from the least-likely accident) is 0.7 man-rem. Both estimates are less than 0.1% of comparable risk measures for natural background radiation and spent fuel shipment accidents

  11. Denials of Shipments for Radioactive Material - Indian Perspective

    International Nuclear Information System (INIS)

    Singh, Khaidem Ranjankumar; Hussain, S.A; Panda, G.K.; Singh, T. Dewan; Dinakaran, M.C.

    2016-01-01

    Radioactive material (RAM) needs to be transported for use in public health and industry and for production of nuclear power. In India, transport of RAM is governed by national and international regulations which are based on the IAEA Regulations for the safe transport of RAM. However, recently there were increasing numbers of instances of denials and delays of shipment of RAM, reported by many countries worldwide including India, despite compliance with regulations. In Indian experience, the reasons for denials of shipment of RAM by the carriers are varied in nature. From the feedback received from the participants (airport operators, airlines, courier and cargo service providers, cargo forwarding agents, port authorities and sea carriers) of awareness programmes on safe transport of RAM conducted from year 2008 onwards by Atomic Energy Regulatory Board (AERB) it became clear that the denials of shipments in India are mainly due to (1) perception of unnecessary fear for transport of RAM (2) lack of confidence and awareness on the procedures for acceptance of shipment of RAM (3) fear of risk during accidents with packages containing RAM (4) policy of the carriers not to accept consignment of dangerous goods (5) poor infrastructure at the major/transit ports (6) problems of transshipments and (7) shippers not having undergone dangerous goods training. In this paper, the Indian experience in dealing with the problems of denial/delay of shipments containing radioactive material and identified possible consequences of such denials including economical impact are discussed in detail. (author)

  12. Denial of shipments - myth or reality

    International Nuclear Information System (INIS)

    Charrette, M.A.; McInnes, D.

    2004-01-01

    The global healthcare community depends on shipments of radioisotopes. MDS Nordion manufactures and distributes radioisotopes used in the medical, research and sterilization industries throughout the world. With a growing demand for radiation and radiation technology to prevent, diagnose and treat disease, it is important that the global health care industry have a secure and reliable supply of such important materials. Despite this ever increasing need, shipments of radioisotopes are being increasingly delayed and outright denied. This paper outlines the importance of radioisotopes to global healthcare. It also details examples of shipment denials and how this evolving situation has impeded the efficient transport of radioactive material which risks preventing the delivery of essential radioisotopes to many member states. Denial of shipments was identified as a key issue at the 2003 International Conference on the Safety of Transport of Radioactive Material, the 2003 International Atomic Energy Agency (IAEA) General Conference and at an IAEA Technical Meeting in January 2004. The outcome is that the IAEA is focused on better documenting the problem and is starting to develop ideas to address it. Moreover, governments, associations and modal organizations are becoming more aware of the matter. As a responsible partner in a unique industry, MDS Nordion encourages all IAEA Member States, commercial carriers, airports and ports to be engaged in this matter and accept the transport of radioactive material without additional requirements. In this respect, the collaboration of all organizations involved in this highly interactive global system of transport is vital to assure the effective transport of radioactive material for global health care

  13. Denial of shipments - myth or reality

    Energy Technology Data Exchange (ETDEWEB)

    Charrette, M.A.; McInnes, D. [MDS Nordion, Ottawa, ON (Canada)

    2004-07-01

    The global healthcare community depends on shipments of radioisotopes. MDS Nordion manufactures and distributes radioisotopes used in the medical, research and sterilization industries throughout the world. With a growing demand for radiation and radiation technology to prevent, diagnose and treat disease, it is important that the global health care industry have a secure and reliable supply of such important materials. Despite this ever increasing need, shipments of radioisotopes are being increasingly delayed and outright denied. This paper outlines the importance of radioisotopes to global healthcare. It also details examples of shipment denials and how this evolving situation has impeded the efficient transport of radioactive material which risks preventing the delivery of essential radioisotopes to many member states. Denial of shipments was identified as a key issue at the 2003 International Conference on the Safety of Transport of Radioactive Material, the 2003 International Atomic Energy Agency (IAEA) General Conference and at an IAEA Technical Meeting in January 2004. The outcome is that the IAEA is focused on better documenting the problem and is starting to develop ideas to address it. Moreover, governments, associations and modal organizations are becoming more aware of the matter. As a responsible partner in a unique industry, MDS Nordion encourages all IAEA Member States, commercial carriers, airports and ports to be engaged in this matter and accept the transport of radioactive material without additional requirements. In this respect, the collaboration of all organizations involved in this highly interactive global system of transport is vital to assure the effective transport of radioactive material for global health care.

  14. Comparative safety assessment of surface versus submarine plutonium shipments

    International Nuclear Information System (INIS)

    Knepper, D.S.; Feltus, M.A.

    1993-01-01

    The recent shipment of plutonium from France to Japan aboard the freighter Akatsuki Maru touched off protests from environmental and antinuclear organizations. These protests arose from the fear of an accidental sinking of the vessel that would release its cargo to the sea, as well as the threat of a terrorist nation highjacking the ship for its cargo to produce atomic weapons. The sinking of a merchant ship is not uncommon, as illustrated by the famous losses of the tankers Amoco Cadiz and Exxon Valdez. The highjacking of a lightly armed freighter such as the Akatsuki Maru is possible and would not be unduly difficult for a well-equipped terrorist nation. The combined threats of weapons proliferation and environmental damage arising from the diversion or destruction of a sea vessel carrying plutonium will continue to abound as the reprocessing of spent nuclear fuel increases. An alternate method for the transportation with reduced risks of both diversion and destruction needs to be developed. The shipment aboard the Akatsuki Maru was originally proposed to be flown from France to Japan over the continental United States. This proposal was rejected by the Reagan administration in 1988. A third alternative to the current ideas of air transport and surface transport is subsurface transport. This research project investigates the transportation of plutonium by submarine and compares it to the current method of transportation by freighter. This analysis involves a study of the military threat to a submarine by a terrorist nation and comparable threat to a surface vessel. To study the nonmilitary aspects of plutonium shipping, a fault-tree evaluation is performed for transportation by submarine and compared with the current risk analysis performed for surface vessels

  15. Studies and research concerning BNFP. Nuclear spent fuel transportation studies

    International Nuclear Information System (INIS)

    Anderson, R.T.; Maier, J.B.

    1979-11-01

    Currently, there are a number of institutional problems associated with the shipment of spent fuel assemblies from commercial nuclear power plants: new and conflicting regulations, embargoing of certain routes, imposition of transport safeguards, physical security in-transit, and a lack of definition of when and where the fuel will be moved. This report presents a summary of these types and kinds of problems. It represents the results of evaluations performed relative to fuel receipt at the Barnwell Nuclear Fuel Plant. Case studies were made which address existing reactor sites with near-term spent fuel transportation needs. Shipment by either highway, rail, water, or intermodal water-rail was considered. The report identifies the impact of new regulations and uncertainty caused by indeterminate regulatory policy and lack of action on spent fuel acceptance and storage. This stagnant situation has made it impossible for industry to determine realistic transportation scenarios for business planning and financial risk analysis. A current lack of private investment in nuclear transportation equipment is expected to further prolong the problems associated with nuclear spent fuel and waste disposition. These problems are expected to intensify in the 1980's and in certain cases will make continuing reactor plant operation difficult or impossible

  16. TRIGA Mark II Ljubljana - spent fuel transportation

    International Nuclear Information System (INIS)

    Ravnik, M.; Dimic, V.

    2008-01-01

    The most important activity in 1999 was shipment of the spent fuel elements back to the United States for final disposal. This activity started already in 1998 with some governmental support. In July 1999 all spent fuel elements (219 pieces) from the TRIGA research reactor in Ljubljana were shipped back to the United Stated by the ship from the port Koper in Slovenia. At the same time shipment of the spent fuel from the research reactor in Pitesti, Romania, and the research reactor in Rome, Italy, was conducted. During the loading the radiation exposure to the workers was rather low. The loading and shipment of the spent nuclear fuel went very smoothly and according the accepted time table. During the last two years the TRIGA research reactor in Ljubljana has been in operation about 1100 hours per year and without any undesired shut-down. (authors)

  17. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    International Nuclear Information System (INIS)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-01-01

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research

  18. Supply Chain Shipment Pricing Data

    Data.gov (United States)

    US Agency for International Development — This data set provides supply chain health commodity shipment and pricing data. Specifically, the data set identifies Antiretroviral (ARV) and HIV lab shipments to...

  19. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    International Nuclear Information System (INIS)

    1995-01-01

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO's engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs

  20. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO`s engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs.

  1. Risk assessment for transportation of radioactive material within the state of Idaho

    International Nuclear Information System (INIS)

    Deng, C.; Oberg, S.G.; Downs, J.L.

    1996-01-01

    The State of Idaho and the U.S. DOE have agreed to a one year pilot program to review and analyze DOE's off-site transportation of radioactive materials within Idaho on a shipping-campaign basis. As a part of that effort, the State of Idaho INEL Oversight Program conducts independent transportation risk assessments. These risk assessments are performed for both highway and railroad shipments using the computer codes RADTRAN4 ,and RISKIND 1.11. Some input parameters are customized with. Idaho-specific data, such as population density, accident rates and meteorological data. The dose and risk (to the public, handlers, crew, etc.) are estimated for both incident free and accident scenarios. Source term files are being built for past, current, and future shipments in Idaho. These include transuranic waste. shipments to WIPP, low level waste, mixed waste, spent fuel, and high level waste. Each shipment is analyzed for two types of transportation route segments: county segments and ten-mile segments. Risk estimation for each county segment provides information for allocation of emergency preparedness resources. Risk estimation for each ten-mile segment helps to identify higher risk segments. The dose and risk results are presented in appropriate formats for various audiences. The quantitative risk measures are used to guide appropriate levels of emergency preparedness. GIS tools are being used to graphically present risk information to elected officials and to the general public

  2. Experience of shipping Russian-origin research reactor spent fuel to the Russian Federation

    International Nuclear Information System (INIS)

    2009-11-01

    The primary goal of the Russian Research Reactor Fuel Return (RRRFR) programme is to advance nuclear non-proliferation objectives by eliminating stockpiles of Russian-origin highly enriched uranium (HEU). The RRRFR programme was first conceived during trilateral discussions among the USA, the Russian Federation and the IAEA, initiated in 1999, when participants identified more than 20 research reactors in 17 countries having Russian/Soviet supplied fuel. In 2000, the Director General of the IAEA sent a letter to 15 countries asking for their willingness to return HEU spent fuel to the Russian Federation. Fourteen countries responded positively to the Director General's letter. In 2004, the Russian Federation and the USA signed a Government-to-Government Agreement concerning cooperation to return the Russian produced research reactor nuclear fuel to the Russian Federation. This agreement established the legal framework necessary for the cooperation between the Russian Federation and the USA for the return of Russian supplied research reactor fuel from eligible countries. Under the Bratislava agreements concluded by Presidents George W. Bush and Vladimir Putin in February 2005, both countries committed to completing all shipments of Russian-origin HEU spent fuel currently stored outside research reactors by the end of 2010. Up to the time of writing (May 2009) the programme has completed 19 shipments totalling over 838 kg of Russian-origin HEU spent and fresh fuel which has been returned from Bulgaria, the Czech Republic, Germany, Kazakhstan, Latvia, the Libyan Arab Jamahiriya, Poland, Romania, Serbia, Uzbekistan and Vietnam. During this time, the programme successfully removed all HEU from two countries, Latvia and Bulgaria. HEU spent fuel shipments have been the most complex shipments under the RRRFR programme, which will be the focus of this publication. The first shipment of HEU spent fuel from Uzbekistan was completed in January 2006, followed by HEU spent fuel

  3. SRE fuel decladding. Final report

    International Nuclear Information System (INIS)

    Dennison, W.F.

    1977-01-01

    This report summarizes the task of decladding the SRE fuel assemblies, and shipment of the fuel to Savannah River for eventual reprocessing. The disposition of 16 unidentified RMDF storage canisters is also covered

  4. Building on success. The foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Massey, Charles D.

    1998-01-01

    The second year of implementation of the research reactor spent nuclear fuel acceptance program was marked by significant challenges and achievements. In July 1998, the Department of Energy completed by significant challenges and achievements. In July 1998, the Department of Energy completed its first shipment of spent fuel from Asia via the Concord Naval Weapons Station in California to the Idaho National Engineering and Environmental (INEEL). This shipment, which consisted of three casks of spent nuclear fuel from two research reactors in the Republic of Korea, presented significant technical, legal, and political challenges in the United States and abroad. Lessons learned will be used in the planning and execution of our next significant milestone, a shipment of TRIGA spent fuel from research reactors in Europe to INEEL, scheduled for the summer of 1999. This shipment will include transit across the United States for over 2,000 miles. Other challenges and advances include: clarification of the fee policy to address changes in the economic status of countries during the life of the program; resolution of issues associated with cask certification and the specific types and conditions of spent fuel proposed for transport; revisions to standard contract language in order to more clearly address unique shipping situations; and priorization and scheduling of shipments to most effectively implement the program. As of this meeting, eight shipments, consisting of nearly 2,000 spent fuel assemblies from fifteen countries, have been successfully completed. With the continued cooperation of the international research reactor community, we are committed to building on this success in the remaining years of the program. (author)

  5. Progress of the United States foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, D.G.; Clapper, M.; Thrower, A.W.

    2002-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program has completed 23 shipments. Almost 5000 spent fuel assemblies from eligible research reactors throughout the world have been accepted into the United States under this program. Over the past year, another cross-country shipment of fuel was accomplished, as well as two additional shipments in the fourth quarter of calendar year 2001. These shipments attracted considerable safeguards oversight since they occurred post September 11. Recent guidance from the Nuclear Regulatory Commission (NRC) pertaining to security and safeguards issues deals directly with the transport of nuclear material. Since the Acceptance Program has consistently applied above regulatory safety enhancements in transport of spent nuclear fuel, this guidance did not adversely effect the Program. As the Program draws closer to its termination date, an increased number of requests for program extension are received. Currently, there are no plans to extend the policy beyond its current expiration date; therefore, eligible reactor operators interested in participating in this program are strongly encouraged to evaluate their inventory and plan for future shipments as soon as possible. (author)

  6. 7 CFR 322.8 - Packaging of shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of shipments. 322.8 Section 322.8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... Packaging of shipments. (a) Adult honeybees. All shipments of adult honeybees imported into the United...

  7. Spent nuclear fuel and high level radioactive waste transportation. White paper

    International Nuclear Information System (INIS)

    1985-06-01

    The High-Level Radioactive Waste Committee of the Western Interstate Energy Board has been involved in a year-long cooperative project with the US Department of Energy (DOE) to develop an information base on the transportation of spent nuclear fuel and high-level radioactive waste (HLW) so that western states can be constructive and informed participants in the repository program under the Nuclear Waste Policy Act (NWPA). The historical safety record of transportation of HLW and spent fuel is excellent; no release of these radioactive materials has ever occurred during transportation. Projected shipments under the NWPA will, however, greatly exceed current shipments in the US. For example, over the past five years, 119 metric tons of civilian spent fuel have been shipped in this country, while shipments to the first and second repository are each expected to peak at 3000 metric tons per year. The Committee believes that the successful development and operation of a national HLW/spent fuel transportation system can best be accomplished through an open process based on the common sense approach of taking all reasonable measures to minimize public risk and performing whatever actions are reasonably required to promote public acceptance. Therefore, the Committee recommends that the Department of Energy further the goals of the NWPA by developing a Comprehensive Transportation Plan which adopts a systematic, comprehensive, and integrated approach to resolving all spent fuel and HLW transportation issues in a timely manner. The suggested scope of such a plan is discussed in this White paper. Many of the suggested elements of such a plan are similar to those being developed by the Department of energy for inclusion in the Department's Transportation Institutional Plan

  8. Commercializing fuel cells: managing risks

    Science.gov (United States)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  9. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    McSweeney, Thomas; Winnard, Thomas; Ross, Steven B.; Best, Ralph E.

    2001-01-01

    Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft(reg s ign) Access database was created. In the Microsoft(reg s ign) Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation

  10. 76 FR 67229 - Governors' Designees Receiving Advance Notification of Transportation of Certain Shipments of...

    Science.gov (United States)

    2011-10-31

    ... of Transportation of Certain Shipments of Nuclear Waste and Spent Fuel On January 6, 1982 (47 FR 596 and 47 FR 600), the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register final... Avenue, Fairbanks, AK 99709, (907) 451-2172, 24 hours: (907) 457- 1421, Cell: (907) 347-7779, (907) 451...

  11. 77 FR 38859 - Governors' Designees Receiving Advance Notification of Transportation of Certain Shipments of...

    Science.gov (United States)

    2012-06-29

    ... of Transportation of Certain Shipments of Nuclear Waste and Spent Fuel On January 6, 1982 (47 FR 596 and 47 FR 600), the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register final... Conservation, State of Alaska, 555 Cordova Street, Anchorage, AK 99501, (907) 269- 1099, 24 hours: (907) 457...

  12. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  13. Nevada commercial spent nuclear fuel transportation experience

    International Nuclear Information System (INIS)

    1991-09-01

    The purpose of this report is to present an historic overview of commercial reactor spent nuclear fuel (SNF) shipments that have occurred in the state of Nevada, and to review the accident and incident experience for this type of shipments. Results show that between 1964 and 1990, 309 truck shipments covering approximately 40,000 miles moved through Nevada; this level of activity places Nevada tenth among the states in the number of truck shipments of SNF. For the same period, 15 rail shipments moving through the State covered approximately 6,500 miles, making Nevada 20th among the states in terms of number of rail shipments. None of these shipments had an accident or an incident associated with them. Because the data for Nevada are so limited, national data on SNF transportation and the safety of truck and rail transportation in general were also assessed

  14. 7 CFR 160.84 - Identification of shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Identification of shipments. 160.84 Section 160.84... STANDARDS FOR NAVAL STORES Sales and Shipments § 160.84 Identification of shipments. The invoice or contract of sale of any naval stores in commerce shall identify and describe the article in accordance with...

  15. Long island to Limerick, nuclear fuel transfer

    International Nuclear Information System (INIS)

    Jones, Bill

    1999-01-01

    The issue described is: how to move 33 shipments of radioactive nuclear fuel - 200 tons of enriched uranium pellets - on rail cars through the heart of Philadelphia, without upsetting politicians, the media and anti-nuclear activists, after a similar plan to move the fuel through New York City had been rejected in a political disaster. The answer to this is: Strategic Communications Planning. At PECO Energy's department of Corporate and Public Affairs, the research is quite clear that in risk management situations like this, the side that gets out front with the most credible information inevitably wins. That is exactly what was set out to do

  16. Program plan for shipment, receipt, and storage of the TMI-2 core. Revision 1

    International Nuclear Information System (INIS)

    Quinn, G.J.; Reno, H.W.; Schmitt, R.C.

    1985-01-01

    This plan addresses the preparation and shipment of core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that core debris. The Manager of the Nuclear Materials Evaluation Programs Division of EG and G Idaho, Inc. will manage two separate but integrated programs, one located at TMI (Part 1) and the other at INEL (Part 2). The Technical Integration Office (at TMI) is responsible for developing and implementing Part 1, TMI-2 Core Shipment Program. The Technical Support Branch (at INEL) is responsible for developing and implementing Part 2, TMI-2 Core Receipt and Storage. The plan described herein is a revision of a previous document entitled Plan for Shipment, Storage, and Examination of TMI-2 Fuel. This revision was required to delineate changes, primarily in Part 2, Core Activities Program, of the previous document. That part of the earlier document related to core examination was reidentified in mid-FY-1984 as a separate trackable entity entitled Core Sample Acquisition and Examination Project, which is not included here

  17. Monitored Retrievable Storage (MRS) Facility and its impact on spent fuel transportation

    International Nuclear Information System (INIS)

    Joy, D.S.; Jolley, R.L.

    1986-01-01

    The Department of Energy has identified nine potential sites for a repository to permanently dispose of radioactive wastes. DOE has released several sets of maps and tables identifying expected transportation routes between nuclear reactors and repository sites. More recently, the DOE has announced three potential Monitored Retrievable Storage Facility (MRS) sites in the state of Tennessee. Obviously, if a large portion of the spent fuel is routed to Tennessee for consolidation and repackaging, there will be significant changes in the estimated routes. For typical scenarios, the number of shipments in the vicinity of the repository will be reduced. For example, with direct reactor to repository shipments, 995 highway and 262 rail shipments are expected to arrive at the repository annually. With a MRS these numbers are reduced to 201 and 30, respectively. The remaining consolidated fuel would be transported from the MRS in 22 dedicated trains (each train transporting five casks). Conversely, the MRS would result in an increase in the number of spent fuel shipments traveling through the eastern part of Tennessee. However, the operation of a MRS would significantly reduce the number of shipments through the central and western parts of the state

  18. Incentives for the allowance of burnup credit in the design of spent nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-01-01

    An analysis has been completed which indicates that the consideration of spent fuel histories ('burnup credit') in the criticality design of spent fuel shipping casks could result in considerable public risk benefits and cost savings in the transport of spent nuclear fuel. Capacities of casks could be increased considerably in some cases. These capacity increases result in lower public and occupational exposures to ionizing radiation due to the reduced number of shipments necessary to transport a given amount of fuel. Additional safety benefits result from reduced non-radiological risks to both public and occupational sectors. In addition, economic benefits result from lower in-transit shipping costs, reduced transportation fleet capital costs, and fewer cask handling requirements at both shipping and receiving facilities

  19. 27 CFR 28.230 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.230 Section 28.230 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Drawback Consignment, Shipment, and Delivery § 28.230 Consignment, shipment, and delivery. The consignment, shipment, and delivery of taxpaid beer removed under this subpart shall be made under the provisions of...

  20. A continuing success - The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Mustin, Tracy P.; Clapper, Maureen; Reilly, Jill E.

    2000-01-01

    The United States Department of Energy, in consultation with the Department of State, adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program, established under this policy, has completed 16 spent fuel shipments. 2,651 material test reactor (MTR) assemblies, one Slowpoke core containing less than 1 kilogram of U.S.-origin enriched uranium, 824 Training, Research, Isotope, General Atomic (TRIGA) rods, and 267 TRIGA pins from research reactors around the world have been shipped to the United States so far under this program. As the FRR SNF Acceptance Program progresses into the fifth year of implementation, a second U.S. cross country shipment has been completed, as well as a second overland truck shipment from Canada. Both the cross country shipment and the Canadian shipment were safely and successfully completed, increasing our knowledge and experience in these types of shipments. In addition, two other shipments were completed since last year's RERTR meeting. Other program activities since the last meeting included: taking pre-emptive steps to avoid license amendment pitfalls/showstoppers for spent fuel casks, publication of a revision to the Record of Decision allowing up to 16 casks per ocean going vessel, and the issuance of a cable to 16 of the 41 eligible countries reminding their governments and the reactor operators that the U.S.-origin uranium in their research reactors may be eligible for return to the United States under the Acceptance Program and urging them to begin discussions on shipping schedules. The FRR SNF program has also supported the Department's implementation of the competitive pricing policy for uranium and resumption of shipments of fresh uranium for fabrication into assemblies for research reactors. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues

  1. 27 CFR 28.145 - Consignment, shipment and delivery.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consignment, shipment and delivery. 28.145 Section 28.145 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE...-Trade Zone § 28.145 Consignment, shipment and delivery. The consignment, shipment and delivery of beer...

  2. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  3. Loading procedures for shipment of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bates, E F; Feltz, D E; Sandel, P S; Schoenbucher, B [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  4. Loading procedures for shipment of irradiated fuel

    International Nuclear Information System (INIS)

    Bates, E.F.; Feltz, D.E.; Sandel, P.S.; Schoenbucher, B.

    1974-01-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  5. Status of the US foreign research reactor spent nuclear fuel program

    International Nuclear Information System (INIS)

    Chacey, K.A.; Zeitoun, A.; Saris, E.C.

    1997-01-01

    A significant step was made in 1996 with the establishment of a new nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Specifically the United States will accept over a 13-year period up to 20 tonnes of spent nuclear fuel from 41 countries. Only spent fuel containing uranium enriched in the United States is covered under this policy. Since the acceptance policy took effect on 13 May 1996, the Department of Energy has undertaken a number of steps to effectively implement the policy. An implementation strategy plan, mitigation action plan, and detailed transportation plans have been developed. Other activities include foreign research reactor assessments, and the determination of shipment priorities and schedules. The first shipment under the acceptance policy was received into the United States in September 1996. A second shipment was received from Canada in December 1996. The next shipment of foreign research reactor spent nuclear fuel is expected from Europe in early March 1997. The primary challenge for DOE is to continue to transport this material in a consistent, cost-effective manner over the 13-year duration of the program. This article covers the following topics: background; acceptance policy; implementation of the acceptance policy; next steps/closing. 6 figs

  6. Comprehensive transportation risk assessment system based on unit-consequence factors

    International Nuclear Information System (INIS)

    Biwer, B.M.; Monette, F.A.; LePoire, D.J.; Chen, S.Y.

    1994-01-01

    The U.S. Department of Energy (DOE) Environmental Restoration and Waste Management Programmatic Environmental Impact Statement requires a comprehensive transportation risk analysis of radioactive waste shipments for large shipping campaigns. Thousands of unique shipments involving truck and rail transport must be analyzed; a comprehensive risk analysis is impossible with currently available methods. Argonne National Laboratory developed a modular transportation model that can handle the demands imposed by such an analysis. The modular design of the model facilitates the simple addition/updating of transportation routes and waste inventories, as required, and reduces the overhead associated with file maintenance and quality assurance. The model incorporates unit-consequences factors generated with the RADTRAN 4 transportation risk analysis code that are combined with an easy-to-use, menu-driven interface on IBM-compatible computers running under DOS. User selection of multiple origin/destination site pairs for the shipment of multiple radioactive waste inventories is permitted from pop-up lists. Over 800 predefined routes are available among more than 30 DOE sites and waste inventories that include high-level waste, spent nuclear fuel, transuranic waste, low-level waste, low-level mixed waste, and greater-than-Class C waste

  7. BNFL's experience in the sea transport of irradiated research reactor fuel to the USA

    International Nuclear Information System (INIS)

    Hudson, I.A.; Porter, I.

    2000-01-01

    BNFL provides worldwide transport for a wide range of nuclear materials. BNFL Transport manages an unique fleet of vessels, designed, built, and operated to the highest safety standards, including the highest rating within the INF Code recommended by the International Maritime Organisation. The company has some 20 years of experience of transporting irradiated research reactor fuel in support of the United States' programme for returning US obligated fuel from around the world. Between 1977 and 1988 BNFL performed 11 shipments of irradiated research reactor fuel from the Japan Atomic Energy Research Institute to the US. Since 1997, a further 3 shipments have been performed as part of an ongoing programme for Japanese research reactor operators. Where possible, shipments of fuel from European countries such as Sweden and Spain have been combined with those from Japan for delivery to the US. (author)

  8. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Townes, G.A.

    1979-10-01

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  9. Hazards classification determination for PUREX fuel transfer to K-Basins

    International Nuclear Information System (INIS)

    Dodd, E.N. III.

    1995-01-01

    The PUREX Plant presently contains 2.9 metric tons of an aluminum clad Single Pass Reactor (SPR) fuel which is stored under water in four open top buckets in the PUREX slug storage basin. The PUREX dissolver cells contain approximately 0.5 metric tons of zirconium clad N Reactor fuel which was inadvertently placed into the process cell during charging operations. The dissolver N reactor elements will be recovered from the process floors using new crane operated tools. When the fuel shipment(s) is scheduled, the cask cars will be positioned into the PUREX rail tunnel and the overhead door will be opened. All the SPR fuel will be loaded into two cask rail cars inside four casks. The N Reactor fuel will be loaded into a separate rail car inside two or three casks. The car loading is initiated by opening the rail car lid and removing the cask lids. Prior to loading the canisters of N Reactor fuel, the canisters will be refilled with water (as needed) and a lid will be installed. The baskets of SPR fuel or canisters of N Reactor fuel will then be loaded into the casks. The lids to the casks will then be reinstalled and the car lids closed. The rail cars will then be decontaminated as necessary. The cask cars will be shipped either in two shipments or a combined single shipment using the rail route between PUREX and the K Basins. At the basin, the cask car will be positioned in the loadout area. The cask car lid will be opened and a single cask moved into the loadout pit, which is a lowered section of the basin. The cask lid is removed while the cask is lower into the pit. The fuel is then removed from the cask and stored in the basin. The cask is then removed, the lid reinstalled during removal, and the cask replaced into the cask car. This document identifies the hazard classification of the Fuel Transfer from the PUREX facility to K-Basins

  10. Studies and research concerning BNFP. Nuclear transportation studies related to use of the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.

    1981-11-01

    It will be necessary to transport radioactive material on a routine basis if the Barnwell Nuclear Fuel Plant (BNFP) is to be utilized. This report examines the current and projected status of transport of high-level nuclear material, with particular application directed toward the operation of the BNFP. The current domestic US status is one of comparative inactivity in the movement of utility spent fuel. Pending the successful disposition of fuel cycle options such as either Away-from-Reactor (AFR) storage or reprocessing, spent fuel transport to the BNFP will be dormant through the mid-1980's. If fuel movement is initiated, the primary areas of concern will be the maze of local, state, and federal regulations on routing, the availability of spent fuel casks, and the logistic concerns of fuel loading and unloading capability at the reactor and the BNFP. The report examines the application of overweight truck (OWT) shipments of spent fuel casks patterned on current European practice. Overweight shipments, whether by truck or intermodal movement (rail or barge combined with truck shipment), can have a significant impact on resolving logistics problems. It seems obvious from our studies that OWT casks will be utilized, along with legal weight truck and rail shipment. Water transport was also examined. It appears that this mode will only be used in the event that highway and rail problems are insuperable

  11. Experience with ANSI N14.30 for in-service inspections of semi-trailer used for spent fuel shipments

    International Nuclear Information System (INIS)

    Hirtz, G.J.

    1998-05-01

    On July 18, 1996, the Oak Ridge National Laboratory (ORNL) resumed shipping spent fuel in interstate commerce after a 10 year suspension of this activity. This shipment was conducted using a Nuclear Regulatory Commission licensed spent fuel transport package purchased from General Electric Company by ORNL for the purpose of moving High Flux Isotope Reactor spent fuel to the Savannah River Site. The trailer, fabricated to the ANSI N14.30, Semi-Trailers Employed in the Highway Transport of Weight Concentrated Radioactive Loads Design, Fabrication, and Maintenance, has recently undergone its first scheduled in-service inspection. This paper presents the experience gained from interpretation and application of the ANSI N14.30 standard focusing on the in-service inspection for the structure of the trailer. Initially, the term weight concentrated is illustrated giving detail to the location and center of gravity of the 33,500 pound shipping container and forces induced by the tie down system. Basic information about the design stresses and initial testing provided by the manufacturer are used as a lead-in to the requirements of the standard. The task of examining the trailer structure provided many lessons and required considerable effort. All of the support personnel were provided by ORNL; the garage mechanics and the certified inspection engineers had never been involved in applying ANSI N14.30. Other obstacles were the lack of existing inspection procedures for this particular activity and the lack of a previous experience interpreting the standard with regard to repair work. Some of these questions were resolved by clarification received from the writers of the standard, and others were resolved by the teamwork between the manufacturer and ORNL. This experience illustrated the importance of the trailer manufacturer as a participant in the decisions made concerning in-service inspection and maintenance

  12. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  13. Dry spent-fuel consolidation demonstration at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Townes, G.A.

    1982-08-01

    Equipment for disassembling and canning (or encapsulating) spent fuel to allow more efficient storage is being developed and demonstrated at the BNFP. The program is aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling the existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly has been demonstrated in the BNFP hot cells at rates of approx. 10 to 12 assemblies per day. 3 figures

  14. Development of information management system on LWR spent fuel

    International Nuclear Information System (INIS)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S.

    2002-01-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility

  15. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  16. Transportation 2000. Spent fuel transportation trends in the new millenium

    International Nuclear Information System (INIS)

    Blee, David; Viebrock, James; Patterson, John

    1999-01-01

    The paper will provide a comparison of foreign research reactor spent fuel transportation today verses the assumptions used by the Department of Energy in the Environmental Impact Statement. In addition, it will suggest changes that are likely to occur in transportation logistics through the remainder of the U.S. spent fuel returns program. Cask availability, certification status, shipment strategy, cost issues, and public acceptance are among the topical areas that will be examined. Transportation requirements will be assessed in light of current participation in the returns program and the tendency for shipment plans to shift toward spent fuel return toward the end of the 13 year period of eligibility. (author)

  17. Offsite Shipment Campaign Readiness Assessment (OSCRA): A tool for offsite shipment campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Michelhaugh, R.D.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Bisaria, A. [Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-31

    The Offsite Shipment Campaign Readiness Assessment (OSCRA) tool is designed to assist program managers in identifying, implementing, and verifying applicable transportation and disposal regulatory requirements for specific shipment campaigns. OSCRA addresses these issues and provides the program manager with a tool to support planning for safe and compliant transportation of waste and other regulated materials. Waste transportation and disposal requirements must be identified and addressed in the planning phase of a waste management project. In the past, in some cases, transportation and disposal requirements have not been included in overall project plans. These planning deficiencies have led to substantial delays and cost impacts. Additionally, some transportation regulatory requirements have not been properly implemented, resulting in substantial fines and public embarrassment for the U.S. Department of Energy (DOE). If a material has been processed and packaged for onsite storage (prior to offsite disposal) in a package that does not meet transportation requirements, it must be repackaged in U.S. Department of Transportation (DOT)-compliant packaging for transport. This repackaging can result in additional cost, time, and personnel radiation exposure. The original OSCRA concept was developed during the Pond Waste Project at the K-25 Site in Oak Ridge, Tennessee. The continued development of OSCRA as a user-friendly tool was funded in 1995 by the DOE Office of Environmental Management, Transportation Management Division (TMD). OSCRA is designed to support waste management managers, site remediation managers, and transportation personnel in defining applicable regulatory transportation and disposal requirements for offsite shipment of hazardous waste and other regulated materials. The need for this tool stems from increasing demands imposed on DOE and the need to demonstrate and document safe and compliant packaging and shipment of wastes from various DOE sites.

  18. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios

  19. Radiological transportation risk assessment of the shipment of sodium-bonded fuel from the Fast Flux Test Facility to the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-01-31

    This document was written in support of Environmental Assessment: Shutdown of the Fast Flux Test Facility (FFTF), Hanford Site, Richland, Washington. It analyzes the potential radiological risks associated with the transportation of sodium-bonded metal alloy and mixed carbide fuel from the FFTF on the Hanford Site in Washington State to the Idaho Engineering Laboratory in Idaho in the T-3 Cask. RADTRAN 4 is used for the analysis which addresses potential risk from normal transportation and hypothetical accident scenarios.

  20. Tracking radioactive shipments using radio-navigation and satellite telecommunication systems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Habib, E.J.; Hurley, J.D.; Carlson, R.D.

    1988-01-01

    The United States Department of Enegy (USDOE) Waste Transportation Management Division (WMTD) has commissioned the development of a transportation tracking management and communication system to monitor movement of radioactive material shipments throughout the United States. The system, TRANSCOM, is being developed to enhance DOE's management oversight and operational control over the transport of sensitive materials (e.g., spent fuel, highlevel waste, transuranic waste etc.) and to address state and local government concerns regarding public safety. These goals are accomplished through providing a near real time tracking and communication system complete with information database management to support emergency response capabilities

  1. Safe but controversial: A study of recent high-visibility spent fuel shipping campaigns

    International Nuclear Information System (INIS)

    Grimm, P.D.; Harmon, L.H.

    1987-01-01

    Since the need to move radioactive materials is at the core of every part of the fuel cycle, it is not surprising that the waste management program also has a critical transportation link. Yet, in spite of a nearly flawless safety record, transportation of spent fuel is an extremely controversial and emotional issue. There are reactions at every political level and pressures from special interest groups across the Nation. In many cases the courts make the final decisions. An example is the DOE program to move spent fuel from Brookhaven National Laboratory which took ten years to accomplish and wound up being decided by the U.S. Supreme Court. Two other DOE shipping campaigns now underway contain all of the same elements of controversy. About 35 - 40 rail shipments are intended to move the damaged Three-Mile Island core to DOE's Idaho facility. In addition, approximately 50 shipments of spent fuel will be made from the VEPCO plant at Surry, Virginia, to Idaho for use in testing above-ground storage methods. This paper traces the background of the campaigns and the controversies generated. Comparisons and contrasts of ''routine'' shipments of recent years with problems of today, including lawsuits to prevent shipment, are given along with implications for the future

  2. Spent fuel generated by the Kozloduy nuclear power plant within the period 1974 - 1994

    International Nuclear Information System (INIS)

    Peev, P.

    1994-01-01

    The spent fuel management during the 20-year operation of Kozloduy NPP is described. Formally this period is divided into two stages. The first one covers 1977 - 1988 when the spent fuel after short-term (3 years) storage in the reactor building was dispatched to the former Soviet Union. Within this period 21 shipments of spent fuel (about 3086 fuel assemblies) with various level of enrichment and burnup were performed. The second stage covers the period 1988 - 1994. In that period the authorities responsible for the safe operation of Kozloduy NPP faced a number of problems related to necessity of on-site spent-fuel storage commissioning. A reassessment of the seismic risk after Vrancha earthquake and the Russia's attitude towards the former Soviet Union policy of spent fuel storage was discussed

  3. Spent fuel generated by the Kozloduy nuclear power plant within the period 1974 - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Peev, P [National Electricity Company, Sofia (Bulgaria)

    1994-12-31

    The spent fuel management during the 20-year operation of Kozloduy NPP is described. Formally this period is divided into two stages. The first one covers 1977 - 1988 when the spent fuel after short-term (3 years) storage in the reactor building was dispatched to the former Soviet Union. Within this period 21 shipments of spent fuel (about 3086 fuel assemblies) with various level of enrichment and burnup were performed. The second stage covers the period 1988 - 1994. In that period the authorities responsible for the safe operation of Kozloduy NPP faced a number of problems related to necessity of on-site spent-fuel storage commissioning. A reassessment of the seismic risk after Vrancha earthquake and the Russia`s attitude towards the former Soviet Union policy of spent fuel storage was discussed.

  4. Forests at risk: integrating risk science into fuel management strategies.

    Science.gov (United States)

    Jonathan. Thompson

    2008-01-01

    The threat from wildland fire continues to grow across many regions of the Western United States. Drought, urbanization, and a buildup of fuels over the last century have contributed to increasing wildfire risk to property and highly valued natural resources. Fuel treatments, including thinning overly dense forests to reduce fuel and lower fire risk, have become a...

  5. 27 CFR 28.217 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Exportation of Wine With Benefit of Drawback § 28.217 Consignment, shipment, and delivery. The consignment, shipment, and delivery of wines...

  6. Route assessment using comparative risk factors integrated through a GIS

    International Nuclear Information System (INIS)

    Toth, D.M.; O'Connell, W.J.

    1996-01-01

    The assessment of potential alternative routes for the shipment of spent nuclear fuel was simplified through the use of comparative risk factors evaluated using detailed route and environmental attributes. The route characteristics, integrated into risk measures, vary strongly with location and were developed from national, state, and local sources. The route data and evaluation were managed using a geographic information system (GIS). An assessment of four real North Florida routes was performed and an interstate highway route exhibited the lowest risk based on the application of the risk factors

  7. Logistics characterization for regional spent fuel repositories concept

    International Nuclear Information System (INIS)

    Joy, D.S.; Hudson, B.J.; Anthony, M.W.

    1980-08-01

    This report summarizes a study of logistics considerations for a four-region repository system for spent fuel disposal. The logistics considerations include: (1) yearly receipt and emplacement; (2) inventory; (3) away-from-reactor (AFR) storage; (4) nuclear capacity growth effects; (5) entire lifetime of reactors served by repository operations; (6) proportions of pressurized-water-reactor (PWR)/boiling-water-reactor (BWR) fuel; (7) proportions of rail and truck shipments; (8) shipping cask fleet requirements; (9) number of annual shipments; (10) mode (rail/truck) and cost of shipment; and (11) initial year for shipment to maintain full core reserve. The nation was divided into Northeast, North Central, Southern, and Western regions for evaluation purposes. Repository logistics were analyzed in each region based on three different capacity projections. For the Southern region, results for seven salt dome sites are presented. The Western region results cover four potential sites. The North Central and Northeastern regions results are not presented on a site specific basis. Conclusions are drawn based on the results. The methodology assumptions and references used in the logistics analysis are described for the convenience of the reader

  8. TMI-2 spent fuel shipping

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.

    1985-01-01

    TMI-2 failed fuel will be shipped to the Idaho National Engineering Laboratory for use in the DOE Core Examination Program. The fuel debris will be loaded into three types of canisters during defueling and dry loaded into a spent fuel shipping cask. The cask design accommodates seven canisters per cask and has two separate containment vessels with ''leaktight'' seals. Shipments are expectd to begin in early 1986

  9. U.S. spent fuel transportation security in the post 9/11 world

    International Nuclear Information System (INIS)

    Anne, Catherine; Patterson, John; Williams, Blake

    2002-01-01

    On September 11, 2002 the terrible tragedies in New York, Pennsylvania and Washington, DC changed the world forever. Security issues not only impact our daily lives, but are also in a state flux concerning the shipment of spent nuclear fuel in the United States. The formation of the Homeland Security Advisory System and Interim Compensatory Measures from the NRC, along with other security measures, have affected the way we transport spent nuclear fuel. This paper describes the challenging and demanding way that security is planned, implemented and maintained in support of spent fuel shipments in the United States. (author)

  10. A Joint Optimal Decision on Shipment Size and Carbon Reduction under Direct Shipment and Peddling Distribution Strategies

    Directory of Open Access Journals (Sweden)

    Daiki Min

    2017-11-01

    Full Text Available Recently, much research has focused on lowering carbon emissions in logistics. This paper attempts to contribute to the literature on the joint shipment size and carbon reduction decisions by developing novel models for distribution systems under direct shipment and peddling distribution strategies. Unlike the literature that has simply investigated the effects of carbon costs on operational decisions, we address how to reduce carbon emissions and logistics costs by adjusting shipment size and making an optimal decision on carbon reduction investment. An optimal decision is made by analyzing the distribution cost including not only logistics and carbon trading costs but also the cost for adjusting carbon emission factors. No research has explicitly considered the two sources of carbon emissions, but we develop a model covering the difference in managing carbon emissions from transportation and storage. Structural analysis guides how to determine an optimal shipment size and emission factors in a closed form. Moreover, we analytically prove the possibility of reducing the distribution cost and carbon emissions at the same time. Numerical analysis follows validation of the results and demonstrates some interesting findings on carbon and distribution cost reduction.

  11. 27 CFR 19.997 - Withdrawal of fuel alcohol.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Withdrawal of fuel alcohol. 19.997 Section 19.997 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... and Transfers § 19.997 Withdrawal of fuel alcohol. For each shipment or other removal of fuel alcohol...

  12. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  13. 7 CFR 906.41 - Gift fruit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Gift fruit shipments. 906.41 Section 906.41... LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Regulation § 906.41 Gift fruit shipments. The handling to any person of gift packages of fruit individually addressed to such person, in quantities...

  14. Shipments/receipts resolution program

    International Nuclear Information System (INIS)

    Davis, F.B.

    1988-01-01

    Savannah River Plant (SRP) has initiated an aggressive program aimed at improving shipper/receiver (S/R) posture. The site is routinely involved in 800 nuclear material transfers/year. This many transactions between facilities provides many opportunities for resolving S/R differences. Resolution of S/R differences requires considerable effort from both DOE offices and contractors, presents legitimate safeguards concerns if the receiving quantity is less than the quantity shipped, and must be resolved for shipments to continue. This paper discusses the programs in place at SRP to resolve S/R differences. S/R agreements provide a method of communicating between the shipping and receiving facilities and protect both facilities by eliminating misunderstandings. Nondestructive assay (NDA) instrumentation allows the facility to obtain an accountability quality value for receipt before the material is processed. More accurate and precise analytical techniques are in use wherever SRP does not have the capability to measure a shipment or receipt by NDA. S/R values are graphed to identify trends and/or biases that may not have exceeded any error limits. The central Material Control and Accountability (MCandA) division has become more involved in analyzing the data from shipments and receipts including the calculation of limits of error (LOE's), instrument biases, and analyzing trends

  15. Routing and scheduling of hazardous materials shipments: algorithmic approaches to managing spent nuclear fuel transport

    International Nuclear Information System (INIS)

    Cox, R.G.

    1984-01-01

    Much controversy surrounds government regulation of routing and scheduling of Hazardous Materials Transportation (HMT). Increases in operating costs must be balanced against expected benefits from local HMT bans and curfews when promulgating or preempting HMT regulations. Algorithmic approaches for evaluating HMT routing and scheduling regulatory policy are described. A review of current US HMT regulatory policy is presented to provide a context for the analysis. Next, a multiobjective shortest path algorithm to find the set of efficient routes under conflicting objectives is presented. This algorithm generates all efficient routes under any partial ordering in a single pass through the network. Also, scheduling algorithms are presented to estimate the travel time delay due to HMT curfews along a route. Algorithms are presented assuming either deterministic or stochastic travel times between curfew cities and also possible rerouting to avoid such cities. These algorithms are applied to the case study of US highway transport of spent nuclear fuel from reactors to permanent repositories. Two data sets were used. One data set included the US Interstate Highway System (IHS) network with reactor locations, possible repository sites, and 150 heavily populated areas (HPAs). The other data set contained estimates of the population residing with 0.5 miles of the IHS and the Eastern US. Curfew delay is dramatically reduced by optimally scheduling departure times unless inter-HPA travel times are highly uncertain. Rerouting shipments to avoid HPAs is a less efficient approach to reducing delay

  16. Improving the Way State and Federal Co-Regulators Communicate about Risk

    International Nuclear Information System (INIS)

    Easton, E.; Janairo, L.R.

    2009-01-01

    This paper explores risk communications concepts that could be used by Federal and state governments to help the public understand how government officials rely on risk analysis and management to ensure that shipments of spent fuel and other radioactive wastes take place in a safe, secure manner that merits public confidence. A key focus in the communication concepts put forward in the paper is the relationship between understanding and validating the public's concerns and explaining how those concerns are being addressed by current safety requirements and practices. The authors will recommend best practices to state and Federal officials that have the responsibility for communicating with the public about radioactive waste transportation. The paper will also suggest ways to bring these state and federal co-regulators together to communicate more effectively and to speak with one voice on the issue of shipment safety. (authors)

  17. 19 CFR 18.6 - Short shipments; shortages; entry and allowance.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Short shipments; shortages; entry and allowance...; DEPARTMENT OF THE TREASURY TRANSPORTATION IN BOND AND MERCHANDISE IN TRANSIT General Provisions § 18.6 Short shipments; shortages; entry and allowance. (a) When there has been a short shipment and the short-shipped...

  18. Ten years of IAEA cooperation with the Russian research reactor fuel return programme

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, S.; Adelfang, P.; Bradley, E. [International Atomic Energy Agency, Vienna (Austria)

    2013-01-15

    The Russian Research Reactor Fuel Return (RRRFR) Programme was launched in 2001. Over the duration, the programme successfully completed 43 safe shipments of 1.6 tons of fresh and spent HEU fuel from different countries using Russian fuelled research reactors to the country of origin. The IAEA has been a very active supporter of the RRRFR Programme since its inception. Under the auspices of the RRRFR Programme, the Agency has been ensuring a broad range of technical advisory and organizational support to the HEU fuel repatriation, as well as training and advisory assistance for supporting RR conversion from HEU to LEU. The presentation gives an overview of the RRRFR programme achievements with special consideration of the IAEA contribution. These include an overview of the shipments' history in terms of fresh and spent fuel, as well as a summary of experiences gained during the shipments' preparation and termination. The presentation focuses on technical advisory support given by the IAEA during the programme implementation, captures the consolidated knowledge of the unique international programme and shares the most important lessons learned. (orig.)

  19. Logistics of the research reactor fuel cycle: AREVA solutions

    International Nuclear Information System (INIS)

    Ohayon, David; Halle, Laurent; Naigeon, Philippe; Falgoux, Jean-Louis; Franck Obadia, Franck; Auziere, Philippe

    2005-01-01

    The AREVA Group Companies offer comprehensive solutions for the entire fuel cycle of Research Reactors comply with IAEA standards. CERCA and Cogema Logistics have developed a full partnership in the front end cycle. In the field of uranium CERCA and Cogema Logistics have the long term experience of the shipment from Russia, USA to the CERCA plant.. Since 1960, CERCA has manufactured over 300,000 fuel plates and 15,000 fuel elements of more than 70 designs. These fuel elements have been delivered to 40 research reactors in 20 countries. For the Back-End stage, Cogema and Cogema Logistics propose customised solutions and services for international shipments. Cogema Logistics has developed a new generation of packaging to meet the various needs and requirements of the Laboratories and Research Reactors all over the world, and complex regulatory framework. Comprehensive assistance dedicated, services, technical studies, packaging and transport systems are provided by AREVA for every step of research reactor fuel cycle. (author)

  20. The projected environmental impacts of transportation of radioactive material to the first United States repository site

    International Nuclear Information System (INIS)

    Cashwell, J.W.; Neuhauser, K.S.; Reardon, P.C.; McNair, G.W.

    1987-01-01

    The relative national environmental impacts of transporting spent fuel and other nuclear wastes to each of 9 candidate repository sites in the United States were analyzed for the 26-year period of repository operation. Two scenarios were examined for each repository: 1) shipment of 5-year-old spent fuel and Defence High-Level Waste (DHLW) directly from their points of origin to a repository (reference case); and 2) shipment of 5-year-old spent fuel to a Monitored Retrievable Storage (MRS) facility and shipment (by dedicated rail) of 10-year-old consolidated spent fuel from the MRS to a repository. Transport by either all truck or all rail from the points of origin were analyzed as bounding cases. The computational system used to analyze these impacts included the WASTES II logistics code and the RADTRAN III risk analysis code. The radiological risks for the reference case increased as the total shipment miles to a repository increased for truck; the risks also increased with mileage for rail but at a lower rate. For the MRS scenario the differences between repository sites were less pronounced for both modal options, because of the reduction in total shipment miles possible with the large dedicated rail casks. All the risks reported are small in comparison to the radiological risks due to 'natural background'

  1. Transportation impact analysis for the shipment of Low Specific Activity Nitric Acid

    International Nuclear Information System (INIS)

    Green, J.R.

    1994-01-01

    This document was written in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes the potential toxicological and radiological risks associated with the transportation of PUREX Facility LSA Nitric Acid from the Hanford Site in Washington State to three Eastern ports

  2. Human islet viability and function is maintained during high density shipment in silicone rubber membrane vessels

    Science.gov (United States)

    Kitzmann, Jennifer P; Pepper, Andrew R; Lopez, Boris G; Pawlick, Rena; Kin, Tatsuya; O’Gorman, Doug; Mueller, Kathryn R; Gruessner, Angelika C; Avgoustiniatos, Efstathios S; Karatzas, Theodore; Szot, Greg L; Posselt, Andrew M; Stock, Peter G; Wilson, John R; Shapiro, AM; Papas, Klearchos K

    2014-01-01

    The shipment of human islets from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Human islets(IE) were isolated from two manufacturing centers and shipped in 10cm2 surface area SRM vessels in temperature and pressure controlled containers to a distant center following at least two days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a micro centrifuge tube negative control (NC). LD was designed to mimic the standard culture density for human islet preparations (200 IE/cm2), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1–3 vessels. Upon receipt, islets were assessed for viability, measured by oxygen consumption rate normalized to DNA content (OCR/DNA), and quantity, measured by DNA, and, when possible, potency and function with dynamic glucose-stimulated insulin secretion (GSIS) measurements and transplants in immunodeficient B6 rag mice. Post-shipment OCR/DNA was not reduced in HD versus LD, and was substantially reduced in the NC condition. HD islets exhibited normal function post-shipment. Based on the data we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function. PMID:25131090

  3. State shipment fees as a supplement to federal financial assistance under section 180(c) of the nuclear waste policy act

    International Nuclear Information System (INIS)

    Janairo, L.R.

    2009-01-01

    In Section 180(c) of the Nuclear Waste Policy Act (NWPA), Congress requires the Secretary of Energy to provide financial and technical assistance to states and tribes that will be affected by shipments of spent nuclear fuel and high-level radioactive waste (HLW) to a national repository or other NWPA-mandated facility. Although Section 180(c) assistance may be an important source of revenue for some states, two major limitations will reduce its effectiveness in preparing state and local personnel along shipping routes for their oversight and emergency response roles in connection with shipments to a national repository. First, Section 180(c) applies only to shipments to facilities mandated by the NWPA, therefore unless Congress amends the NWPA, the Secretary has no obligation to provide assistance to states and tribes that are affected by shipments to private facilities or to other federal storage locations. Second, the U.S. Department of Energy (DOE) has interpreted Section 180(c) assistance as solely intended 'for training', not for actually carrying out activities such as inspecting or escorting shipments. No mechanism or mandate currently exists for DOE to provide states with assistance in connection with operations - related activities. This paper looks at state shipment fees as a supplement to or a substitute for the federal financial assistance that is available through Section 180(c) specifically with regard to states. Using DOE' s data on projected shipment numbers, representative routes, and affected population, and following the department's proposed formula for allocating Section 180(c) assistance, the author examined the potential revenues states could reap through a standard fee as opposed to the NWPA-mandated assistance . The analysis shows that, while more states would likely derive greater benefit from Section 180(c) grants than they would from fees, the states with the highest projected shipment numbers would appear to gain by foregoing Section

  4. 27 CFR 28.124 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS EXPORTATION OF ALCOHOL Withdrawal of Wine Without Payment of... Bonded Warehouse, or Transportation to a Manufacturing Bonded Warehouse § 28.124 Consignment, shipment, and delivery. The consignment, shipment, and delivery of wines withdrawn without payment of tax under...

  5. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  6. Inspection of nuclear fuel transport in Spain

    International Nuclear Information System (INIS)

    Lobo Mendez, J.

    1977-01-01

    The experience acquired in inspecting nuclear fuel shipments carried out in Spain will serve as a basis for establishing the regulations wich must be adhered to for future transports, as the transport of nuclear fuels in Spain will increase considerably within the next years as a result of the Spanish nuclear program. The experience acquired in nuclear fuel transport inspection is described. (author) [es

  7. Shipment of gas generating spent fuel on the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1998-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are stored in the two K Basins at the US Department of Energy (DOE) Hanford Site near Richland, Washington. The basin water contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. The condition of the spent fuel elements varies from intact to severely damaged, where the cladding is badly split or has peeled, with substantial fuel missing. The K Basins are located within a few hundred meters of the Columbia River and have leaked twice in the past. One of the highest priorities of the DOE is to remove the spent fuel from the K Basins, stabilize it, and move it to a Canister Storage Building (CSB), built well away from the Columbia River, for long-term storage prior to final disposition at a repository. Transportation of the K Basin spent fuel will occur entirely within the confines of the Hanford Site, which does not have routine public access. Consequently, the transport is onsite, and does not fall under the Federal Hazardous Materials Regulations (DOT 1997). DOE Order 460.1 (DOE 1995) enables DOE facilities to develop onsite transportation programs that provide equivalent safety to the Federal Hazardous Materials Regulations (DOT 1997). The basis for the Hanford Site onsite transportation program is detailed in HNF-PRO-1 54 (FDH 1998). The Hanford Site onsite transportation program was developed to meet the equivalent safety requirement, be consistent with analogous commercial operations, interface appropriately with facility safety analysis requirements, and utilize a risk-based management approach to ensure effort is applied consistent with the risk. The program focus is on the establishment of defendable safety bases. Authorization to use an onsite transportation system is granted by the approval of the applicable Safety Analysis Report for Packaging (Onsite). The K Basin spent fuel transportation activity is similar, in some respects

  8. 7 CFR 322.24 - Packaging of transit shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Packaging of transit shipments. 322.24 Section 322.24 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION... Restricted Organisms Through the United States § 322.24 Packaging of transit shipments. (a) Restricted...

  9. Risk and investment in the fuel cell industry

    International Nuclear Information System (INIS)

    Henriques, I.; Sadorsky, P.

    2004-01-01

    The energy industry is one of the building blocks of the new economy. Currently, the global energy industry is going through a transformation from high carbon content fuels like crude oil to less carbon content fuels like natural gas and hydrogen. Fuel cells are the backbone of the hydrogen economy. Advances in fuel cell technology have the potential to improve the living standards of people in all countries. New sources of financial capital, however, remain a problem. In the fuel cell industry, the future of a firm often depends upon the success or failure of a few key products. This tends to make these firms very risky to invest in and, as a result, makes it difficult for these firms to secure financial investment capital. Oil price movements remain one very important source of risk to fuel cell companies. Conventional wisdom suggests that higher oil prices stimulate interest in alternative energy sources like fuel cells and the stock prices of publicly traded fuel cell companies tend to perform well when oil prices are high. Lower oil prices, however, have the opposite effect. Consequently, oil price movements may affect the rates of return of the companies currently in the fuel cell industry. In this paper, we empirically analyze the stock price sensitivity of a sample of fuel cell companies to oil price risk. In particular, we look at both the impact and magnitude of oil price changes on fuel cell stock prices. Both symmetric and asymmetric oil price changes are considered. Our results indicate that oil price risk is not an important source of risk that impacts the equity returns of fuel cell companies. We find that market risk factors are much more important. We then offer suggestions on how to manage this risk. These results are useful for managers, investors, policy makers, and others who are interested in the strategic management, financing and risk management of firms building the hydrogen economy. (author)

  10. Risk associated with the transport of radioactive materials in the fuel cycle

    International Nuclear Information System (INIS)

    Lange, F.; Mairs, J.; Niel, C.

    1997-01-01

    This paper sets out the regulatory framework within which nuclear fuel cycle materials are transported. It establishes the basic principles of those safety regulations and explains the graded approach to satisfying those requirements depending on the hazard of the radioactive contents. The paper outlines the minimum performance standards required by the Regulations. It covers the performance standards for Type C packages in a little more detail because these are new to the 1996 Edition of the IAEA's Regulations for the Safe Transport of Radioactive Material and are less well reported elsewhere at present. The paper then gives approximate data on the number of shipments of radioactive materials that service the nuclear fuel cycles in France, Germany and the UK. The quantities are expressed as average annual quantities per GW el installed capacity. There is also a short discussion of the general performance standards required of Type B packages in comparison with tests that have simulated specific accident conditions involving particular packages. There follows a discussion on the probability of packages experiencing accident conditions that are comparable with the tests that Type B packages are required to withstand. Finally there is a summary of the implementation of the Regulations for sea and air transport and a description of ongoing work that may have a bearing on the future development of mode related Regulations. Nuclear fuel cycle materials are transported in accordance with strict and internationally agreed safety regulations which are the result of a permanent and progressive process based on social concern and on the advancement of knowledge provided by research and development. Transport operations take place in the public domain and some become high profile events in the management of these materials, attracting a lot of public, political and media attention. The risks associated with the transport of radioactive materials are low and it is important

  11. 19 CFR 123.41 - Truck shipments transiting Canada.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Truck shipments transiting Canada. 123.41 Section... OF THE TREASURY CUSTOMS RELATIONS WITH CANADA AND MEXICO United States and Canada In-Transit Truck Procedures § 123.41 Truck shipments transiting Canada. (a) Manifest required. Trucks with merchandise...

  12. 27 CFR 28.155 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Consignment, shipment, and delivery. 28.155 Section 28.155 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE..., and delivery. The consignment, shipment, and delivery of specially denatured spirits withdrawn free of...

  13. 27 CFR 28.106 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.106 Section 28.106 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Transportation to a Manufacturing Bonded Warehouse § 28.106 Consignment, shipment, and delivery. The consignment, shipment, and delivery of distilled spirits withdrawn without payment of tax under this subpart shall be...

  14. 27 CFR 28.196 - Consignment, shipment, and delivery.

    Science.gov (United States)

    2010-04-01

    ... delivery. 28.196 Section 28.196 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Benefit of Drawback Filing of Notice and Removal § 28.196 Consignment, shipment, and delivery. The consignment, shipment, and delivery of distilled spirits removed under this subpart for export, use on vessels...

  15. 19 CFR 148.114 - Shipment of unaccompanied articles.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Shipment of unaccompanied articles. 148.114 Section 148.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY... States § 148.114 Shipment of unaccompanied articles. One copy of the validated Customs Form 255 shall be...

  16. 15 CFR 752.7 - Direct shipment to customers.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Direct shipment to customers. 752.7... COMPREHENSIVE LICENSE § 752.7 Direct shipment to customers. (a) General authorization. (1) Upon request by a... directly to the requesting consignee's customer in either: (i) The requesting consignee's country; or (ii...

  17. 327 SNF fuel return to K-Basin quality process plan

    International Nuclear Information System (INIS)

    Ham, J.E.

    1998-01-01

    The B and W Hanford Company's (BWHC) 327 Facility, in the 300 Area of the Hanford Site, contains Spent Nuclear Fuel (SNF) single fuel element canisters (SFEC) and fuel remnant canisters (FRC) which are to be returned to K-Basin. Seven shipments of up to six fuel canisters will be loaded into the CNS 1-13G Cask and transported to 105-KE

  18. Transportation risks in the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Andrews, W.B.

    1980-01-01

    Estimated risks associated with accidental releases of materials transported for each step of the nuclear fuel cycle are presented. The risk estimates include both immediate and latent fatilities caused by releases of these materials in transportation accidents. Studies of the risk of transporting yellowcake, fresh nuclear and low level wastes from the front end of the fuel cycle have not been completed. Existing information does permit estimates of the risks to be made. The estimates presented result from the very low hazards associated with release of these materials. These estimates are consistent with the results of other studies. The results show that risks from all the fuel cycle transportation steps are low. The results also indicate that the total transportation risks associated with the nuclear fuel cycle are distributed about evenly between the fuel supply end and waste management end of the cycle. Risks in the front end of the cycle result primarily from the chemical toxicity of the materials transported. The results of the risk analysis studies for transportation of nuclear fuel cycle materials are compared with the results for the three studies that have been completed for non-nuclear systems. The risk analysis methodology used in these studies identifies the complete spectrum of potential accident consequences and estimates the probability of events producing that level of consequence. The maximum number of fatalities predicted for each material is presented. A variety of risk measures have been used because of the inherent difficulties in making risk comparisons. Examination of a number of risk measures can provide additional insights and help guard against conclusions that are dependent on the way the risk information has been developed and displayed. The results indicate that the risks from transporting these materials are all relatively low in comparison to other risks in society

  19. Spent nuclear fuel transportation: public issues and answers

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    The court-ordered shipping of 750 spent nuclear fuel assemblies from West Valley, New York back to their utility owners has generated considerable public and media interest. This paper discusses the specific concerns of the general public over the West Valley shipments, the issues raised by opposition groups, the interest of public officials and emergency preparedness teams as well as the media coverage generated. An analysis is performed on the effectiveness of the West Valley and utility public information programs utilized in addressing these issues, concerns and interests. Emphasis is placed on communications which work to facilitate the shipments and generate fuel transport acceptance. Information programs are discussed which increase preparedness for nuclear shipments by emergency response teams and build public confidence in their safety. The paper also examines communications which could have further enhanced the shipping campaign to date. Finally, plans are discussed for media preparation with interview training and press conferences. Emphasis is placed on materials provided for the media which have served to generate more favorable print and air time

  20. Spent nuclear fuel transportation: Public issues and answers

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    The court-ordered shipping of 750 spent nuclear fuel assemblies from West Valley, New York back to their utility owners has generated considerable public and media interest. This paper discusses the specific concerns of the general public over the West Valley shipments, the issues raised by opposition groups, the interests of public officials and emergency preparedness teams as well as the media coverage generated. An analysis is performed on the effectiveness of the West Valley and utility public information programs utilized in addressing these issues, concerns and interests. Emphasis is placed on communications which work to facilitate the shipments and generate fuel transport acceptance. Information programs are discussed which increase preparedness for nuclear shipments by emergency response teams and build public confidence in their safety. The paper also examines communications which could have further enhanced the shipping campaigns to date. Finally, plans are discussed for media preparation with interview training and press conferences. Emphasis is placed on materials provided for the media which has served to generate more favorable print and air time

  1. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  2. Demand forecast for rail shipment of radioactive material in the United States

    International Nuclear Information System (INIS)

    Allen, G.C.; Cashwell, J.W.

    1981-01-01

    A summary of the market potential for radioactive material (in millions of ton-miles) is presented in tabular form. These include the following: milled uranium ore; mill tailings; natural uranium hexafluoride; enriched uranium hexafluoride; fresh fuel, spent fuel; low-level waste; transuranic waste; and high-level waste. The maximum realistic market share for rail carriers is always less than these values because of the lack of rail access to some shipping and receiving facilities, small material quantities which could most easily move by other modes, short shipping distances for certain transport segments and greater operational convenience of other modes for some material categories. While market share and revenues for radioactive material are presently small, rail carriers appear to have a market advantage for milled uranium ore, transuranic waste and high-level waste. The potential for a significantly increased market share exists for spent fuel and uranium hexafluoride. While more fresh fuel and low-level waste can be transported by rail, it is unlikely that rail market share for radioactive materials (RAM) in general will rise to the potential maximum because many of these materials have historically been moved by truck and transported in frequent, small shipments

  3. 27 CFR 19.396 - Spirits removed for shipment to Puerto Rico.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spirits removed for shipment to Puerto Rico. 19.396 Section 19.396 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO... § 19.396 Spirits removed for shipment to Puerto Rico. Spirits removed for shipment to Puerto Rico with...

  4. 27 CFR 28.244a - Shipment to a customs bonded warehouse.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to a customs... Export Consignment § 28.244a Shipment to a customs bonded warehouse. Distilled spirits and wine withdrawn for shipment to a customs bonded warehouse shall be consigned in care of the customs officer in charge...

  5. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature

    International Nuclear Information System (INIS)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included

  6. Shipment of radioactive materials by the US Department of Energy

    International Nuclear Information System (INIS)

    1986-01-01

    This brochure provides notification of, and information on, the general types of radioactive material shipments being transported for or on behalf of DOE in commerce across state and other jurisdictional boundaries. This brochure addresses: packaging and material types, shipment identification, modes of transport/materials shipped, DOE policy for routing and oversize/overweight shipments, DOE policy for notification and cargo security, training, emergency assistance, compensation for nuclear accidents, safety record, and principal DOE contact

  7. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  8. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  9. Risk of transporting spent nuclear fuel by train

    International Nuclear Information System (INIS)

    Elder, H.K.

    1981-12-01

    This paper presents results of a study which analyzes the risk of transporting spent fuel by train. The risk assessment methodology consists of 4 basic steps: (1) a description of the system being analyzed; (2) identification of sequences of events that could lead to a release of material during transportation; (3) evaluation of the probability and consequences of each release sequence; and (4) assessment of the risk and evaluation of the results. The conclusion reached was that considering the substantial benefits derived from the fuel, the current spent fuel transportation system poses reasonably low risks

  10. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  11. Transport and storage of spent fuel in Germany - possibilities for more safety

    International Nuclear Information System (INIS)

    Brennecke, P.; Fasten, Ch.; Nitsche, F.

    2004-01-01

    The safe transport of spent fuel from nuclear power plants in Germany is ensured by compliance with the dangerous goods transport regulations of class 7 which are fully consistent with the IAEA Transport Regulations and in parallel with the regulations of the German Atomic Energy Act. The purpose of this paper is to give an overview of this legal basis and the appropriate regulations applicable to spent fuel transport in Germany. Some aspects of the status and the future development of spent fuel shipments are described including experiences since resumption of those shipments in 2001. Furthermore, the status of licensing of on-site interim storage, assessments of an terrorist attack as well as consequences resulting from changes in energy policy are given

  12. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    International Nuclear Information System (INIS)

    Green, J.R.

    1995-01-01

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ

  13. Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.R.

    1995-05-16

    This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

  14. Moving into the 21st century - The United States' Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Reilly, Jill E.

    1999-01-01

    Since 1996, when the United States Department of Energy and the Department of State jointly adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, twelve shipments totaling 2,985 MTR and TRIGA spent nuclear fuel assemblies from research reactors around the world have been accepted into the United States. These shipments have contained approximately 1.7 metric tons of HEU and 0.6 metric tons of LEU. Foreign research reactor operators played a significant role in this success. A new milestone in the acceptance program occurred during the summer of 1999 with the arrival of TRIGA spent nuclear fuel from Europe through the Charleston Naval Weapons Station via the Savannah River Site to the Idaho National Engineering and Environmental Laboratory. This shipment consisted of five casks of TRIGA spent nuclear fuel from research reactors in Germany, Italy, Slovenia, and Romania. These casks were transported by truck approximately 2,400 miles across the United States (one cask packaged in an ISO container per truck). Drawing upon lessons learned in previous shipments, significant technical, legal, and political challenges were addressed to complete this cross-country shipment. Other program activities since the last RERTR meeting have included: formulation of a methodology to determine the quantity of spent nuclear fuel in a damaged condition that may be transported in a particular cask (containment analysis for transportation casks); publication of clarification of the fee policy; and continued planning for the outyears of the acceptance policy including review of reactors and eligible material quantities. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues to demonstrate success due to the continuing commitment between the United States and the research reactor community to make this program work. We strongly encourage all eligible research reactors to decide as soon as possible to

  15. Safety of HLW shipments

    International Nuclear Information System (INIS)

    1998-01-01

    The third shipment back to Japan of vitrified high-level radioactive waste (HLW) produced through reprocessing in France is scheduled to take place in early 1998. A consignment last March drew protest from interest groups and countries along the shipping route. Requirements governing the shipment of cargoes of this type and concerns raised by Greenpeace that were assessed by an international expert group, were examined in a previous article. A further report prepared on behalf of Greenpeace Pacific has been released. The paper: Transportation accident of a ship carrying vitrified high-level radioactive waste, Part 1 Impact on the Federated States of Micronesia by Resnikoff and Champion, is dated 31 July 1997. A considerable section of the report is given over to discussion of the economic situation of the Federated Statess of Micronesia, and lifestyle and dietary factors which would influence radiation doses arising from a release. It postulates a worst case accident scenario of a collision between the HLW transport ship and an oil tanker 1 km off Pohnpei with the wind in precisely the direction to result in maximum population exposure, and attempts to assess the consequences. In summary, the report postulates accident and exposure scenarios which are conceivable but not credible. It combines a series of worst case scenarios and attempts to evaluate the consequences. Both the combined scenario and consequences have probabilities of occurrence which are negligible. The shipment carried by the 'Pacific Swan' left Cherbourgon 21 January 1998 and comprised 30 tonnes of reprocessed vitrified waste in 60 stainless steel canisters loaded into three shipping casks. (author)

  16. Low level waste shipment accident lessons learned

    International Nuclear Information System (INIS)

    Rast, D.M.; Rowe, J.G.; Reichel, C.W.

    1995-01-01

    On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident

  17. Achieving the timely receipt of foreign research reactor spent nuclear fuel at the Savannah River site

    International Nuclear Information System (INIS)

    Brizes, C.M.; Clark, W.D; Thomas, J.; Andes, T.

    1998-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel states that the United States will accept spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors through the year 2009. The best information available indicates that approximately 13,000 assemblies of Material Test Reactor (MTR) spent nuclear fuel from 29 countries are expected to be shipped to the Savannah River Site during the 13 years of the program. As of July 1998, 1,371 spent nuclear fuel assemblies from 12 foreign research reactors have been received at the SRS. That is, after more than two years of the FRR program (approximately 15 percent of the program time), 11 percent of the total assemblies have been received at SRS. Current projections show that most of the assemblies can be received by 2009, however if some of the eligible, non-participating countries decide to rejoin the program, a bottleneck would occur at the end of the program. Also adding to the potential for the bottleneck is a trend of shipments being moved out in the timeline. The Savannah River Site is working to be proactive in avoiding a bottleneck at the end of the program, but cooperation is required from all program participants to be successful. Activities currently in progress include inventory/information questionnaires, verifying fuel against cask(s) certificate of compliance (C. of C.), and collecting Appendix A information well in advance of shipping the SNF. The inventory/information sheets have been distributed to a select number of reactor facilities in the past, but work is in progress to refine the process. Information requested in the questionnaire includes inventory numbers, preferred shipping dates, and cask preferences. This information allows for improved shipment planning and helps to ensure that we are working to meet the needs of the reactor facilities. Current plans are to send the questionnaires to

  18. Handling of spent fuel from research reactors in Japan

    International Nuclear Information System (INIS)

    Kanda, K.

    1997-01-01

    In Japan eleven research reactors are in operation. After the 19th International Meeting on Reduced Enrichment for Research Reactors and Test Reactors (RERTR) on October 6-10, 1996, Seoul, Korea, the Five Agency Committee on Highly Enriched Uranium, which consists of Science and Technology Agency, the Ministry of Education, Science and Culture, the Ministry of Foreign Affairs, Japan Atomic Energy Research Institute (JAERI) and Kyoto University Research Reactor Institute (KURRI) met on November 7,1996, to discuss the handling of spent fuel from research reactors in Japan. Advantages and disadvantages to return spent fuel to the USA in comparison to Europe were discussed. So far, a number of spent fuel elements in JAERI and KURRI are to be returned to the US. The first shipment to the US is planned for 60 HEU elements from JMTR in 1997. The shipment from KURRI is planned to start in 1999. (author)

  19. 19 CFR 351.515 - Internal transport and freight charges for export shipments.

    Science.gov (United States)

    2010-04-01

    ... shipments. 351.515 Section 351.515 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE... Internal transport and freight charges for export shipments. (a) Benefit—(1) In general. In the case of internal transport and freight charges on export shipments, a benefit exists to the extent that the charges...

  20. Resumption of transport of KUR spent fuel from Japan to USA - Very long-term storage and public acceptance for transport

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro; Nishimaki, Kenzo; Kanda, Keiji

    1999-01-01

    The Research Reactor Institute, Kyoto University (KURRI) has more than 250 MTR-type HEU spent fuel elements. They have been stored in water pools after irradiation in the Kyoto University Research Reactor (KUR) core. The longest pool residence time is 25 years. In accordance with the Foreign Research Reactor Spent Nuclear Fuel Receipt Program of the United States, sixty KUR spent fuel elements were shipped from KURRI to the Savannah River Site of the USDOE in August, 1999. This shipment was done successfully through a public port in Osaka Prefecture, Japan. This is the first shipment in the past twenty-six years after the last shipment through the Yokohama Port. Concerning the use of a public port, we had to solve many issues for public acceptance. In this paper, we describe how we have stored the spent fuels for a long time with high integrity and how we have obtained public acceptance for the transport. (author)

  1. NDE of PWR fuel: Identifying candidates for hot cell examination

    International Nuclear Information System (INIS)

    Moon, J.E.; Bury, J.G.; Correal, O.A.; Kunishi, H.; Wilson, H.W.

    1992-05-01

    On-site examinations were performed at the Indian Point 3 and Callaway reactors to attempt to identify the leakage mechanism of several leaking fuel rods. The exams consisted of removing the leaking fuel rods from the assembly and performing a visual examination. These results, combined with other available on-site data on leaking fuel rods, were used to select fuel rods for shipment to a hot cell for detailed root cause examination. Three fuel rods from the Indian Point 3 reactor were found to be leaking due to debris-induced fretting. The examinations at Callaway were terminated prior to completion due to utility scheduler conflicts. Rods from the Callaway reactor were selected for shipment to the hot cell along with the rods from the Byron 1 and 2 and V.C. Summer reactors. The data presented in the report summarize the coolant activity history, the UT examination results, and a summary of the review of the fabrication records. The basis for the selection of the rods to be sent to the hot cells is also summarized

  2. Legal precedents regarding use and defensibility of risk assessment in Federal transportation of SNF and HLW

    International Nuclear Information System (INIS)

    Bentz, E.J. Jr.; Bentz, C.B.; O'Hora, T.D.; Chen, S.Y.

    1997-01-01

    Risk assessment has become an increasingly important and essential tool in support of Federal decision-making regarding the handling, storage, disposal, and transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). This paper analyzes the current statutory and regulatory framework and related legal precedents with regard to SNF and HLW transportation. The authors identify key scientific and technical issues regarding the use and defensibility of risk assessment in Federal decision-making regarding anticipated shipments

  3. Off-site shipment request development and review plan

    International Nuclear Information System (INIS)

    1992-05-01

    On May 17, 1991, Department of Energy Headquarters (DOE-HQ) imposed a moratorium on the shipment of all Resource Conservation and Recovery Act (RCRA) hazardous and Toxic Substances Control Act (TSCA) waste to commercial treatment, storage and disposal facilities. The moratorium was imposed after it was discovered that some shipments of RCRA and TSCA waste from Department of Energy (DOE) sites contained small quantities of radioactive and special nuclear material (SNM). The shipment of these wastes has been attributed to inconsistent and possibly erroneous interpretation of DOE Orders and guidance. In an effort to clarify existing DOE Orders and guidance and establish throughout the DOE complex, June 21, 1991, DOE-HQ issued in draft the Performance Objective for Certification of Non-Radioactive Hazardous Waste. This Performance Objective was subsequently approved on November 15, 1991. The Performance Objective contains specific requirements that must be net to allow the shipment of RCRA and TSCA waste for commercial treatment, storage and disposal. On July 16, 1991, based on the initial draft of the Performance Objective, Martin Marietta Energy Systems (MMES) issued a directive which applies the Performance Objective requirements to all wastes and materials. In addition, this MMES directive imposed the requirement for a review by a Central Waste Management (CWM) Readiness Review Board (RRB). Additional DOE and MMES guidance and directives have been issued since May 17, 1991. This plan applies to all waste destined for shipment from the Portsmouth Gaseous Diffusion Plant (PORTS) to off-site commercial treatment, storage and disposal facilities, and to all materials destined for recycle, surplus and salvage

  4. Administrative mechanics of research fuel transportation

    International Nuclear Information System (INIS)

    Harmon, Diane W.

    1983-01-01

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either

  5. Administrative mechanics of research fuel transportation

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Diane W [Edlow International Company, Washington, DC (United States)

    1983-09-01

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either.

  6. 27 CFR 28.245 - Shipment to foreign-trade zone.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Shipment to foreign-trade zone. 28.245 Section 28.245 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Consignment § 28.245 Shipment to foreign-trade zone. Where distilled spirits (including specially denatured...

  7. Radiation surveys of radioactive material shipments

    International Nuclear Information System (INIS)

    Howell, W.P.

    1986-07-01

    Although contractors function under the guidance of the Department of Energy, there is often substantial variation in the methods and techniques utilized in making radiation measurements. When radioactive materials are shipped from one contractor to another, the measurements recorded on the shipping papers may vary significantly from those measured by the receiver and has been a frequent cause of controversy between contractors. Although significant variances occur in both measurements of radiation fields emanating from shipment containers and measurements of residual radioactivity on the surfaces of the containers, the latter have been the most troublesome. This report describes the measurement of contamination on the exterior surfaces of shipment containers

  8. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  9. ANS/ENS tutorial session: Burnup credit issues in spent fuel transportation: Overview and objectives

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1988-01-01

    A number of opportunities exist to increase the efficiency of the next generation of spent fuel shipping casks. Improving cask efficiency will not only reduce life cycle transportation costs, but also is consistent with maintaining public and occupational radiological risks and, more importantly, total risks (radiological and nonradiological) within the guidelines of the ''as low as reasonably achievable'' (ALARA) philosophy. Increases in cask capacities will reduce both the total number of shipments required to transport a given amount of fuel and the number of handling operations at both shipping and receiving facilities. Additional capacity increases can be achieved by implementing various design strategies based on new concepts and/or the actual characteristics of the majority of the spent fuel to be shipped in the future. For example, it has been determined that additional capacity increases can be achieved by taking credit for burnup, the reduced reactivity that results when fuel has been used to produce power in a nuclear reactor. That is, as the fuel is used the atoms of fissile material decrease, and neutron absorbers (or ''poisons'') that tend to retard the fission process are produced. 7 refs., 1 fig

  10. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  11. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  12. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    International Nuclear Information System (INIS)

    Dilger, Fred C.; Ballard, James D.; Halstead, Robert J.

    2013-01-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  13. The selective use of emergency shipments for service-contract differentiation

    NARCIS (Netherlands)

    Alvarez, Elisa; van der Heijden, Matthijs C.; Zijm, Willem H.M.

    2013-01-01

    Suppliers of capital goods increasingly offer performance-based service contracts with customer-specific service levels. We use selective emergency shipments of spare parts to differentiate logistic performance: We apply emergency shipments in out-of-stock situations for combinations of parts and

  14. A report on the transport of MTR-type spent fuel assemblies of the Philippine Research Reactor (PRR-1)

    International Nuclear Information System (INIS)

    Yoshisaki, Magno B.; Leopando, Leonardo S.

    1999-03-01

    Fifty one (51) fuel assemblies of mixed enrichment from the Philippine Research Reactor (PRR-1), consisting of 50 spent and 1 fresh, were shipped to the United States last 14 March 1999 under the U.S. Return of Foreign Research Reactor (FRR) fuel policy. The shipment was in line with the U.S. initiative to implement its Record of Decision (ROD) which took effect on 13 May 1996 to accept and manage all FRR uranium fuel of U.S. origin and enriched in the United States. The shipment program would last10 years, ending midnight of 13 May 2006. The ROD provided a 3 year extension period within which to accept FRR spent nuclear fuel (SNF) withdrawn from reactors after 2006. The U.S. policy gave priority to the NPT significance of high enriched U, as the prime target of the return of FRR policy. Classified as a developing country, the Philippines, through the PNRI, signed a contract with the U.S. Department of Energy for the cost-free shipment of PRR-1 spent fuel to the United States. Spent fuel loading and transport operations to the port area lasted seven (7) days, from 8 to 14 March 1999. (Author)

  15. High-burnup/low-cooling-time fuel carrying capacity of the GA-4 and GA-9 spent fuel shipping casks

    International Nuclear Information System (INIS)

    Boshoven, J.K.; Hopf, J.E.

    1994-01-01

    In response to utilities' projected needs to ship higher burnup spent fuel, General Atomics (GA) has performed shielding and thermal analysis for the GA-4 and GA-9 legal weight shipping casks to determine the minimum cooling times for various burnup levels for fully loaded GA-4 and GA-9 casks and reduced payloads for the casks. Tables are provided in the paper which show the minimum cooling time for a given burnup and payload for each of the casks. The analyses show that the GA-4 and GA-9 casks can carry at least as many high-burnup and/or short-cooling-time spent fuel assemblies as present day shipping casks. In addition, the GA casks are able to carry at least twice as many assemblies as the present day shipping casks if the spent fuel burnup levels and/or cooling times are open-quotes coolerclose quotes or open-quotes as coolclose quotes as their design basis fuels. The increased shipping capacity for these more common open-quotes coolerclose quotes assemblies allows fewer shipments and therefore increases the efficiency and lowers predicted risks of the transport system

  16. The evaluation of isotopic composition for TRIGA 14 MW spent fuel

    International Nuclear Information System (INIS)

    Covaci, St.; Toma, C.; Preda, M.

    2008-01-01

    In the summer of 1999 year, a first shipment of TRIGA HEU spent fuel to INEEL U.S.A. has taken place. he TRIGA HEU fuel was burned in the TRIGA steady state 14 MW reactor between 1980 and 1996 years. At the moment of prepared documentation for the shipment (July 1999), the evaluation of isotopic composition was calculated with ORIGEN-2 code with an irradiation history adequately prepared. Subsequently (May - June 2000), the evaluation was repeated with SAS2H module of SCALE 4.4a system. In the paper the results and the comparisons of the codes are presented, and the accuracy and convenient application of SCALE 4.4a system are emphasized. (authors)

  17. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Science.gov (United States)

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  18. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  19. Module 13: Bulk Packaging Shipments by Highway

    International Nuclear Information System (INIS)

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ''Training.'' Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination

  20. It's safety first on N-fuel carrier ship

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 3 000t deadweight ship to carry irradiated nuclear fuel ordered recently from Appledore Shipbuilders will be one of the most sophisticated ships built at the firm's modern and totally-enclosed north Devon yard. The ship will be used to carry irradiated nuclear fuel from Japan to be reprocessed at British Nuclear Fuels site at Sellafield and at the Cogema plant in northern France. It has been designed to conform to the most exacting requirements of Pacific Nuclear Transport and will incorporate every safeguard for the shipment of irradiated nuclear fuels

  1. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel

    International Nuclear Information System (INIS)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs

  2. Transportation incidents involving Canadian shipments of radioactive material

    International Nuclear Information System (INIS)

    Jardine, J.M.

    1979-06-01

    This paper gives a brief statement of the legislation governing the transportation of radioactive materials in Canada, reviews the types of shipments made in Canada in 1977, and surveys the transportation incidents that have been reported to the Atomic Energy Control Board over the period 1947-1978. Some of the more significant incidents are described in detail. A totAl of 135 incidents occurred from 1947 to 1978, during which time there were 644750 shipments of radioactive material in Canada

  3. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  4. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  5. The California Multimedia Risk Assessment Protocol for Alternative Fuels

    Science.gov (United States)

    Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.

    2013-12-01

    Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment

  6. Radiological source terms resulting from sabotage to transportation casks: Final report

    International Nuclear Information System (INIS)

    Miller, N.E.; Fentiman, A.W.; Kuhlman, M.R.; Ebersole, H.N.; Trott, B.D.; Orban, J.E.

    1986-11-01

    The Nuclear Regulatory Commission (NRC) promulgated a rule, 10 CFR 73.37, which established requirements for safeguarding shipments of spent fuel to reduce the risk from acts of sabotage of highly radioactive materials. After the rule became effective, experimental programs conducted by Battelle for the NRC and by Sandia for the DOE showed the consequences of an attack using explosives on a shipment of PWR spent fuel were significantly less than had been indicated by earlier analytical studies. As a result, NRC is considering modifying the safeguards requirements. In support of NRC's efforts to modify the rule, Battelle has conducted additional experimental studies to evaluate the consequences of attacks on shipments of high-temperature gas-cooled reactor (HTGR) spent fuel, nonpower reactor (NPR) spent fuel, and vitrified high-level waste (HLW). Model casks containing surrogates of the spent fuels or high-level waste were penetrated by the jet from a precision shaped charge. Air samples collected after each test were used to estimate the quantities of respirable material released after the cask was penetrated. Results of the tests were scaled by specially developed scaling factors to estimate the releases that may occur from attacks on full-sized shipments of the materials. It was concluded that the sabotage of shipments of HTGR spent fuel, NPR spent fuel, or vitrified HLW should have no greater consequences than those predicted for shipments of PWR spent fuel

  7. 7 CFR 35.6 - Shipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shipment. 35.6 Section 35.6 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... country regardless of the number of consignees, receivers, or ports of destination in that country. [41 FR...

  8. Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, Fred C. [Black Mountain Research, Henderson, NV 81012 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)

    2013-07-01

    As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

  9. Unreviewed safety question evaluation of 100K East and 100K West in-basin fuel characterization program activities

    International Nuclear Information System (INIS)

    Alwardt, L.D.

    1995-01-01

    The purpose of this report is to provide the basis for answers to an Unreviewed Safety Question (USQ) safety evaluation of the 105K East (KE) and 105K West (KW) in-basin activities associated with the fuel characterization program as described in the characterization shipping plan. The significant activities that are common to both 105 KE and 105 KW basins are the movement of canisters from their main basin storage locations (or potentially from the 105 KE Tech View Pit if a dump table is available) to the south loadout pit transfer channel, hydrogen generation testing in the single element fuel container, loading the single element fuel container into the shipping cask, loading of the shipping cask onto a flat-bed trailer, return of the test fuel elements or element pieces from the 327 facility, placement of the fuel elements back into Mark 2 canisters, and placement of the canisters in the main storage basin. Decapping of canisters in the south loadout pit transfer channel and re-encapsulation of canisters are activities specific to the 105 KW basin. The scope of this safety evaluation includes only those characterization fuel shipment activities performed in the 105 KE and 105 KW fuel storage basin structures up to installation of the overpack. The packaging safety evaluation report governs the shipment of the fuel elements. The K Basins Plant Review Committee has determined that the in-basin activities associated with the fuel characterization program fuel shipments are bounded by the current safety envelop and do not constitute an unreviewed safety question. This determination is documented on Attachment 1

  10. L. Transportation of fuel and wastes

    International Nuclear Information System (INIS)

    1976-01-01

    The principles applied to the transport of nuclear fuels and wastes have been founded on the more general provisions governing the transport of radioactive materials. Safe shipment of radioactive materials has historically been sought by specifying required characteristics in the shipping packages and establishing minimum acceptable levels of package integrity. The reason for this is that in the course of transport by road, rail, sea, or air, consignments of radioactive material are in close proximity to members of the public, and in many cases they are loaded or unloaded by transport workers who have had no special training or experience in the handling of such substances. The procedures adopted to ensure transport safety have worked satisfactorily. Both in the USA and the UK, the industry and regulatory authorities have established outstanding safety records in shipping radioactive materials over a period of thirty years. It is claimed that there have been no injuries due to the radioactive nature of the shipments, nor has there been a release of nuclear materials serious enough to be a threat of death or injury. Admittedly, about 95% of the 800,000 shipments estimated in the USA each year involve small quantities for use in industry, medicine, agriculture and education. However the principals underlying the safe packaging of these and reactor fuels are the same, and there is little reason to doubt that a similar safety record can be maintained

  11. International topical meeting on research reactor fuel management (RRFM) - United States Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) acceptance program: 2007 update

    International Nuclear Information System (INIS)

    Messick, C.E.; Taylor, J.L.

    2007-01-01

    The Nuclear Weapons Non-proliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, adopted by The United States Department of Energy (DOE), in consultation with the Department of State in May 1996, has been extended to expire May 12, 2016, providing an additional 10 years to return fuel to the U.S. This paper provides a brief update on the program, now transferred to the National Nuclear Security Administration (NNSA), and discusses program initiatives and future activities. The goal of the program continues to be recovery of nuclear materials (27 countries have participated so far, returning a total of 7620 spent nuclear fuel elements), which could otherwise be used in weapons, while assisting other countries to enjoy the benefits of nuclear technology. More than ever before, DOE and reactor operators need to work together to schedule shipments as soon as possible, to optimize shipment efficiency over the remaining years of the program. The NNSA is seeking feedback from research reactor operators to help us understand ways to include eligible reactor who have not yet participated in the program

  12. 75 FR 1235 - Revisions to the Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD...

    Science.gov (United States)

    2010-01-08

    ..., Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, New Zealand, Norway... Requirements for: Transboundary Shipments of Hazardous Wastes Between OECD Member Countries, Export Shipments of Spent Lead- Acid Batteries, Submitting Exception Reports for Export Shipments of Hazardous Wastes...

  13. Status report on the EPRI fuel cycle accident risk assessment

    International Nuclear Information System (INIS)

    Erdmann, R.C.; Fullwood, R.R.; Garcia, A.A.; Mendoza, Z.T.; Ritzman, R.L.; Stevens, C.A.

    1979-07-01

    This report summarizes and extends the work reported in five unpublished draft reports: the accidental radiological risk of reprocessing spent fuel, mixed oxide fuel fabrication, the transportation of materials within the fuel cycle, and the disposal of nuclear wastes, and the routine atmospheric radiological risk of mining and milling uranium-bearing ore. Results show that the total risk contribution of the fuel cycle is only about 1% of the accident risk of the power plant and hence, with little error, the accident risk of nuclear electric power is that of the power plant itself. The power plant risk, assuming a very large usage of nuclear power by the year 2005, is only about 0.5% of the radiological risk of natural background. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihoods and estimated errors. The primary probabilistic estimation tool is fault tree analysis with the release source terms calculated using physical--chemical processes. Doses and health effects are calculated with the CRAC code. No evacuation or mitigation is considered: source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/T) and short cooling (90 to 150 d); HEPA filter efficiencies are derived from experiments

  14. Doses to railroad workers from shipments of radioactive materials

    International Nuclear Information System (INIS)

    Fields, D.E.; Cottrell, W.D.

    1988-01-01

    Fissile and high-level radioactive wastes are currently transported over long distances by truck and by rail transportation systems. The primary form of fissile material is spent reactor fuel. Transportation operations within DOE are controlled through the Transportation Operations and Management System. DOE projected increases in the rate of shipments have generated concern by railroad companies that railroad workers may be exposed to levels of radiation sufficiently high that a radiation protection program may need to be implemented. To address railroad company concerns, the Health and Safety Research Division at Oak Ridge National Laboratory has estimated doses to railroad workers for two exposure scenarios that were constructed using worker activity data obtained from CSX Transportation for crew and maintenance workers. This characterization of railroad worker activity patterns includes a quantitative evaluation of the duration and rate of exposure. These duration and exposure rate values were evaluated using each of three exposure rate vs. distance models to generate exposure estimates. 14 refs., 1 tab

  15. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  16. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  17. Work plan for development of K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1994-01-01

    The purpose of this document is to provide the engineering work plan for the development of handling tools for the removal of N-Reactor fuel elements from their storage canisters in the K-Basins storage pool and insertion into the Single Fuel Element Cans for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element from the storage canister

  18. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  19. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2008-01-01

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room. Reactor

  20. Spent fuel pool cleanup and stabilization

    International Nuclear Information System (INIS)

    Miller, R.L.

    1987-06-01

    Each of the plutonium production reactors at Hanford had a large water-filled spent fuel pool to provide interim storage of irradiated fuel while awaiting shipment to the separation facilities. After cessation of reactor operations the fuel was removed from the pools and the water levels were drawn down to a 5- to 10-foot depth. The pools were maintained with the water to provide shielding and radiological control. What appeared to be a straightforward project to process the water, remove the sediments from the basin, and stabilize the contamination on the floors and walls became a very complex and time consuming operation. The sediment characteristics varied from pool to pool, the ion exchange system required modification, areas of hard-pack sediments were discovered on the floors, special arrangements to handle and package high dose rate items for shipment were required, and contract problems ensued with the subcontractor. The original schedule to complete the project from preliminary engineering to final stabilization of the pools was 15 months. The actual time required was about 25 months. The original cost estimate to perform the work was $2,651,000. The actual cost of the project was $5,120,000, which included $150,000 for payment of claims to the subcontractor. This paper summarizes the experiences associated with the cleanup and radiological stabilization of the 100-B, -C, -D, and -DR spent fuel pools, and discusses a number of lessons learned items

  1. Shipment Consolidation Policy under Uncertainty of Customer Order for Sustainable Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kang

    2017-09-01

    Full Text Available With increasing concern over the environment, shipment consolidation has become one of a main initiative to reduce CO2 emissions and transportation cost among the logistics service providers. Increased delivery time caused by shipment consolidation may lead to customer’s order cancellation. Thus, order cancellation should be considered as a factor in order uncertainty to determine the optimal shipment consolidation policy. We develop mathematical models for quantity-based and time-based policies and obtain optimality properties for the models. Efficient algorithms using optimal properties are provided to compute the optimal parameters for ordering and shipment decisions. To compare the performances of the quantity-based policy with the time-based policy, extensive numerical experiments are conducted, and the total cost is compared.

  2. Delay and Denial of Shipment

    International Nuclear Information System (INIS)

    Wright, T. de; Gray, P.; Sobriera, A.C.F.; Xavier, C.C.; Schwela, U.

    2016-01-01

    Despite the strong safety and security record for shipments of Radioactive Material (RAM), Class 7 goods, transportation often continues to provide challenges as many carriers and ports (air and sea) choose not to engage in RAM product transportation. This paper discusses factors impacting the availability of regular air and sea transport routes for RAM, including: negative perception about radiation due to a lack of awareness and information about the industry; concerns about the cost and extent of training required of those who handle radioactive materials; multiplicity and diversity of regulations governing the handling, use and transport of these products; lack of harmonisation between governments in applying international regulations; and, a lack of outreach and public awareness about the needs and applications of radioactive materials. The particular issues involved in sea transport of: relatively small trade volumes; additional requirements or bans on port access, both for transit and trans-shipment; and scheduling difficulties due to commercial carrier routing decisions are also discussed. Initiatives being taken internationally, regionally and nationally to overcome these issues and examples of success are described. (author)

  3. Spent Nuclear Fuel Alternative Technology Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  4. Spent Nuclear Fuel Alternative Technology Risk Assessment

    International Nuclear Information System (INIS)

    Perella, V.F.

    1999-01-01

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment

  5. ArcFuels: an ArcMap toolbar for fuel treatment planning and wildfire risk assessment

    Science.gov (United States)

    Nicole M. Vaillant; Alan A. Ager

    2014-01-01

    Fire behavior modeling and geospatial analysis can provide tremendous insight to land managers in defining both the benefits and potential impacts of fuel treatments in the context of land management goals and public expectations. ArcFuels is a streamlined fuel management planning and wildfire risk assessment system that creates a trans-scale (stand to large landscape...

  6. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  7. Trial intercountry shipment of irradiated spices

    International Nuclear Information System (INIS)

    Saputra, T.S.; Maha, Munsiah; Purwanto, Z.I.

    1984-01-01

    An experiment has been carried out to evaluate the quality of irradiated spices packaged in some indigenous packaging materials. Spices used were whole nutmeg (myristica fragrans) and whole white pepper (piper nigrum). The spice samples were packaged in tin containers with or without oxygen absorber and in woven polypropylene (PP) bags, then irradiated at 5 kGy, and despatched from Jakarta to Wagenigen by sea-freight. The shipment was performed in small and commercial size packages. The results showed that irradiation treatment could effectively disinfest and decontaminate spices without altering their chemical composition and sensory properties. PP bags, particularly the one without inner liner, were unable to withstand rough handling and to prevent reinfestation during shipment. Tin containers were able to withstand rough handling and prevent reinfestation. The oxygen absorber used had no effect on microbial count and other parameters of the spices. (author)

  8. Trial intercountry shipment of irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Saputra, T S; Maha, Munsiah; Purwanto, Z I; Parkas, J

    1984-10-01

    An experiment has been carried out to evaluate the quality of irradiated spices packaged in some indigenous packaging materials. Spices used were whole nutmeg (myristica fragrans) and whole white pepper (piper nigrum). The spice samples were packaged in tin containers with or without oxygen absorber and in woven polypropylene (PP) bags, then irradiated at 5 kGy, and despatched from Jakarta to Wagenigen by sea-freight. The shipment was performed in small and commercial size packages. The results showed that irradiation treatment could effectively disinfest and decontaminate spices without altering their chemical composition and sensory properties. PP bags, particularly the one without inner liner, were unable to withstand rough handling and to prevent reinfestation during shipment. Tin containers were able to withstand rough handling and prevent reinfestation. The oxygen absorber used had no effect on microbial count and other parameters of the spices. 21 references.

  9. Fuel distribution process risk analysis in East Borneo

    Directory of Open Access Journals (Sweden)

    Laksmita Raizsa

    2018-01-01

    Full Text Available Fuel distribution is an important aspect of fulfilling the customer’s need. It is risky because it can cause tardiness that can cause fuel scarcity. In the process of distribution, many risks are occurring. House of Risk is a method used for mitigating the risk. It identifies seven risk events and nine risk agents. Matrix occurrence and severity are used for eliminating the minor impact risk. House of Risk 1 is used for determining the Aggregate Risk Potential (ARP. Pareto diagram is applied to prioritize risk that must be mitigated by preventive actions based on ARP. It identifies 4 priority risks, namely A8 (Car trouble, A4 (Human Error, A3 (Error deposit via bank and underpayment, and A6 (traffic accident which should be mitigated. House of Risk 2 makes for mapping between the preventive action and risk agent. It gets the Effectiveness to Difficulty Ratio (ETD for mitigating action. Conducting safety talk routine once every three days with ETD 2088 is the primary preventive actions.

  10. Remote waste handling at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Vaughn, M.E.

    1982-01-01

    Radioactive solid wastes, some of which are combustible, are generated during disassembly and examination of irradiated fast-reactor fuel and material experiments at the Hot Fuel Examination Facility (HFEF). These wastes are remotely segregated and packaged in doubly contained, high-integrity, clean, retrievable waste packages for shipment to the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). This paper describes the equipment and techniques used to perform these operations

  11. Public relations campaign for shipping spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bushee, Tom [Northern States Power Company, Minneapolis, MN (United States)

    1989-07-01

    An example of positive outcome of proper attitude of the media and public on the occasion of shipping of nuclear fuel is described. Nothing new was invented in the way of public relations issue management. But a combination of a number of proven techniques were put together and the public relations plan that was highly successful. early planning was of great help. Public officials were well informd by means of ANS organized seminars. ANS had experts from Sandia Labs (a major government research facility), General Electric (the cask supplier), the railroad we planned to use and Northern States Power Company on the program to describe what was going to happen and why it was safe. These sessions are believed to head off a major portion of the local opposition. A cooperation was established with the states of Wisconsin and Minnesota in providing shipment-specific training for emergency response personnel along the route. Safety, obviously, was the number one concern expressed by public officials. Knowing that would be the case, it was decided to provide some optional extras to go with the shipments. There was a consultant yo do a safety analysis of all the possible rail routes between the plant and storage facility. Though none was required by law, a shipment-specific emergency response plan which was prepared. Another important effort which was maintained from the beginning was sharing information among the participants. In dealing with the news media, an attemp was made to stick to a single source of information as much as possible. When dealing with the news media, one should refuse to apologize for modern technology. One should attack, at every opportunity, the idea that a ''risk-free'' society is worth the price of returning to the Dark Ages. The contributions of nuclear technology are numerous and far-reaching. Its negative impacts on health and safety have been minor compared with most other major industrial technologies. Certainly there is risk in stepping out

  12. Packaging and transportation risk management and evaluation plan

    International Nuclear Information System (INIS)

    Rhyne, W.R.

    1993-09-01

    Shipments of radioactive materials and hazardous chemicals at the Los Alamos National Laboratory (LANL) are governed by a variety of Federal and state regulations, industrial standards, and LANL processes and procedures. Good judgement is exercised in situations that are not covered by regulations. As a result, the safety record for transporting hazardous materials at LANL has been excellent. However, future decisions should be made such that the decision-making process produces a defensible record of the safety of onsite shipments. This report proposes the development of a risk management tool to meet this need. First, the application of quantitative risk analysis methodology to transportation is presented to provide a framework of understanding. Risk analysis definitions, the basic quantitative risk analysis procedure, quantitative methodologies, transportation data bases, and risk presentation techniques are described. Quantitative risk analysis is frequently complex; but simplified approaches can be used as a management tool to make good decisions. Second, a plan to apply the use of risk management principles to the selection of routes, special administrative controls, and containers for hazardous material transportation at LANL is provided. A risk management tool is proposed that can be used by MAT-2 without substantial support from specialized safety and risk analysis personnel, e.g., HS-3. A workbook approach is proposed that can be automated at a later date. The safety of some types of onsite shipments at LANL is not well documented. Documenting that shipments are safe, i.e., present acceptable risks, will likely require elaborate analyses that should be thoroughly reviewed by safety and risk professionals. These detailed analyses are used as benchmarks and as examples for the use of the proposed tool by MAT-2. Once the benchmarks are established, the workbook can be used by MAT-2 to quantify that safety goals are met by similar shipments

  13. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  14. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  15. Understanding and managing the movements of hazardous material shipments through Texas population centers.

    Science.gov (United States)

    2009-08-01

    Every day almost a million shipments of hazardous materials move safely and securely along our nations transportation system, via any combination of modes. Only a small fraction of total shipments interrupt their planned journey due to an incident...

  16. Fuel cells and electricity companies - new risk management opportunities

    International Nuclear Information System (INIS)

    Whale, M.

    2004-01-01

    'Full text:' Deregulation, distributed generation, combined heat and power, renewables, fuel cells, hydrogen. Power companies are facing a rapidly evolving environment that is testing their ability to effectively deploy capital and earn profits. While recent deregulation trends have shifted the structure of power markets into separating generators from distributors, the improving economic value proposition offered by smaller scale distributed generation technologies - such as fuel cells - would seem to be a conflicting development. In this complex and changing environment, decisions based on the economic reality of the capital markets are likely to prevail. By examining the opportunity to enhance risk management offered by stationary fuel cells, particularly in CHP applications, we provide a context for the issues being discussed in today's sessions focusing on power companies and electric utilities. Our risk management perspective suggests a pathway for implementing fuel cells in combined heat and power applications that large power generators can introduce in increasingly smaller sizes. With capital costs of fuel cells high and risk tolerance of power companies low, the challenge for smaller technology developers will be to reduce the apparently long time horizon that persists for substantial deployment. (author)

  17. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  18. LIFE vs. LWR: End of the Fuel Cycle

    International Nuclear Information System (INIS)

    Farmer, J.C.; Blink, J.A.; Shaw, H.F.

    2008-01-01

    LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs

  19. Risk assessment for the transportation of radioactive materials in the U.S.A

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.; DuCharme, A.R.

    1976-01-01

    The radiological risk of transporting radioactive materials in the United States was evaluated in terms of expected additional latent cancer fatalities (LCF). Two risks were estimated: that resulting from normal (accident-free) transport and that resulting from transportation accidents involving radioactive shipments. A standard shipments model was devised to represent the radioactive material shipping industry. The calculation of the normal transport risk included estimates of exposures to aircraft passengers and crew, truck drivers, cargo handlers, and population along the transport link. The accident risk calculation incorporated accident probabilities and package release fraction estimates. Dispersible materials were assumed to be aerosolized in severe accidents and the aerosol cloud transported downwind according to a Gaussian diffusion model. An annual normal transport risk of 9600 person-rem, or 1.2 LCF, resulted primarily from radiopharmaceutical shipments. The annual risk due to accidents was 5.6 x 10 -4 LCF, resulting almost entirely from PuO 2 shipments

  20. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  1. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paskievici, W.; Zikovsky, L.

    1983-06-01

    This report analyzes in a preliminary way the risks to the public posed by the CANDU nuclear fuel cycle. Part 1 considers radiological risks, while part 2 (published as INFO-0141-2) evaluates non-radiological risks. The report concludes that, for radiological risks, maximum individual risks to members of the public are less than 10 -5 per year for postulated accidents, are less than 1 percent of regulatory limits for normal operation and that collective doses are small, less than 3 person-sieverts. It is also concluded that radiological risks are much smaller than the non-radiological risks posed by activities of the nuclear fuel cycle

  2. Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties.

    Science.gov (United States)

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-06-01

    Fuel poverty affects 2.4 million UK homes leading to poor hygrothermal conditions and risk of mould and house dust mite contaminations, which in turn increases risk of asthma exacerbation. For the first time we assess how fuel poverty, occupants' risk perception and use of mechanical ventilation mediate the risk of mould contamination in social housing. Postal questionnaires were sent to 3867 social housing properties to collect adult risk perception, and demographic and environmental information on occupants. Participant details were linked to data pertaining to the individual properties. Multiple logistic regression was used to calculate odds ratios and confidence intervals while allowing for clustering of individuals coming from the same housing estate. We used Structured Equation Modelling and Goodness of Fit analysis in mediation analyses to examine the role of fuel poverty, risk perception, use of ventilation and energy efficiency. Eighteen percent of our target social housing populations (671 households) were included into our study. High risk perception (score of 8-10) was associated with reduced risk of mould contamination in the bedrooms of children (OR 0.5 95% CI; 0.3-0.9) and adults (OR 0.4 95% CI; 0.3-0.7). High risk perception of living with inadequate heating and ventilation reduced the risk of mould contamination (OR 0.5 95% CI; 0.3-0.8 and OR 0.5 95% CI; 0.3-0.7, respectively). Participants living with inadequate heating and not heating due to the cost of fuel had an increased risk of mould contamination (OR 3.4 95% CI; 2.0-5.8 and OR 2.2 95% CI; 1.5-3.2, respectively). Increased risk perception and use of extractor fans did not mediate the association between fuel poverty behaviours and increased risk of mould contamination. Fuel poverty behaviours increased the risk of mould contamination, which corresponds with existing literature. For the first time we used mediation analysis to assess how this association maybe modified by occupant behaviours

  3. Test plan for K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use

  4. Risk analysis methodology for unreprocessed spent fuel disposal in bedded salt

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.Y.; Cranwell, R.M.

    1982-01-01

    In accordance with the decision to defer the reprocessing of commercially generated spent fuel, we are investigating the implications on risk of direct disposal of spent fuel assemblies. To the extent possible, we are using the methodology developed at Sandia for the NRC to evaluate risks from the disposal of wastes from reprocessing of spent fuel. This allows direct comparison of the risks calculated for the two waste forms. A number of differences between the two waste forms with implications on risk have been identified and investigation of their effects has begun. Among these are the presence of gases and additional plutonium and uranium isotopes, the potential for differing leach behavior, and the difference in the decay heat source which determines the overall thermomechanical response of the host media. We have analyzed a number of scenarios for a hypothetical geologic repository that have been identified as important contributors to risk from the disposal of both reprocessed and unreprocessed spent fuel. For each scenario, we employ the Groundwater Transport, Pathways to Man, and Dosimetry and Health Effects models of the High Level Waste Methodology. Risks are compared for the reprocessed and unreprocessed spent fuel wastes and the effects of uncertainty in the parameters of the various models are compared

  5. 21 CFR 600.15 - Temperatures during shipment.

    Science.gov (United States)

    2010-04-01

    ... to maintain a temperature range between 1 to 10 °C during shipment. Yellow Fever Vaccine 0 °C or... Evaluation and Research. [39 FR 39872, Nov. 12, 1974, as amended at 49 FR 23833, June 8, 1984; 50 FR 4133...

  6. Areva solutions for management of defective fuel

    International Nuclear Information System (INIS)

    Morlaes, I.; Vo Van, V.

    2014-01-01

    Defective fuel management is a major challenge for nuclear operators when all fuel must be long-term managed. This paper describes AREVA solutions for managing defective fuel. Transport AREVA performs shipments of defective fuel in Europe and proposes casks that are licensed for that purpose in Europe and in the USA. The paper presents the transport experience and the new European licensing approach of defective fuel transport. Dry Interim Storage AREVA is implementing the defective fuel storage in the USA, compliant with the Safety Authority's requirements. In Europe, AREVA is developing a new, more long-term oriented storage solution for defective fuel, the best available technology regarding safety requirements. The paper describes these storage solutions. Treatment Various types of defective fuel coming from around the world have been treated in the AREVA La Hague plant. Specific treatment procedures were developed when needed. The paper presents operational elements related to this experience. (authors)

  7. Logistics: DoD International Personal Property Shipment Rates

    National Research Council Canada - National Science Library

    2002-01-01

    .... The allegation claimed that under current procedures Code of Service 4 DoD was paying excessive costs for ocean transportation on household goods shipments because a third party company purchased...

  8. A risk-informed evaluation of MOX fuel loading in PWRS

    International Nuclear Information System (INIS)

    Lyman, E.S.

    2001-01-01

    The full text follows: The U.S. Department of Energy (DOE) has signed a contract with Duke Cogema Stone and Webster (DCS) for fabrication of mixed-oxide (MOX) fuel and irradiation of the MOX fuel at the Catawba and McGuire pressurized-water reactors (PWRs), operated by Duke Power. The first load of MOX fuel is scheduled for 2007. In order to use MOX in these plants, Duke Power will have to apply to the Nuclear Regulatory Commission (NRC) for amendments to their operating licenses. Until recently, there have been no numerical guidelines for determining the acceptability of license amendment requests. However, such guidelines are now at hand with the adoption in 1998 of NRC Regulatory Guide 1.174, which defines a maximum value for the permissible increase in risk to the public resulting from a proposed change to a nuclear plant's licensing basis (LB). The substitution of MOX fuel for low-enriched uranium (LEU) fuel in LWRs will have an impact on risk to the public that will require regulatory evaluation. One of the major differences is that use of MOX will increase the inventories of plutonium and minor actinides in the reactor core, thereby increasing the source term for certain severe accidents, such as a core melt with early containment failure or a spent fuel pool drain-down. The goal of this paper is to quantitatively evaluate the increase in risk associated with the greater actinide source term in MOX-fueled reactors, and to compare this increase with RG 1.174 guidelines. Standard computer programs (SCALE and MACCS2) are used to estimate the increase in severe accident risk to the public associated with the DCS plan to use 40% cores of weapons-grade MOX fuel. These values are then compared to the RG 1.174 acceptance criteria, using publicly available risk information. Since RG 1.174 guidelines are based on the assumption that severe accident source terms are not affected by LB changes, the RG 1.174 formalism must be modified for this case. A similar

  9. 7 CFR 947.54 - Shipments for specified purposes.

    Science.gov (United States)

    2010-01-01

    ... shipments of potatoes for the following purposes: (1) Livestock feed; (2) Charity; (3) Export; (4) Seed; (5) Prepeeling; (6) Canning and freezing; (7) Processing into other products, including “other processing...

  10. Environmental Assessment for the shipment of low enriched uranium billets to the United Kingdom from the Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Assessment provides the necessary information so that a decision can be made on whether a Finding of No Significant Impact Environmental Impact Statement should be prepared for the proposed action. The proposed action is to transfer 2,592 low enriched uranium billets to the United Kingdom. The billets are currently stored in the 300 Area of the Hanford Site, Richland, Washington. The proposed action would consist of two types of activities: loading and transportation. The loading activities would include placing the billets into the appropriate containers for transportation. The transportation activities would include the tasks required to transport the containers 215 miles (344 km) via highway to the Port of Seattle, Washington, and transfer the containers aboard an ocean cargo vessel for transportation to the United Kingdom. The Department of Energy would only be responsible for conducting the loading activities. The United Kingdom would be responsible for conducting the transportation activities in compliance with all applicable United States and international transportation laws. The tasks associated with the proposed action activities have been performed before and are well defined in terms of requirements and consequences. A risk assessment and a nuclear safety evaluation were performed to address safety issues associated with the proposed action. The risk assessment determined the exposure risk from normal operation and from the maximum credible accident that involves a truck or ship collision followed by a fire that engulfs all the billets in the shipment and the release of the radiological contents of the shipment to the environment. The criticality assessment determined the nuclear safety limits for handling, transporting and storing the shipment under incident-free and accident transport conditions

  11. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  12. Criticality control during conditioning of spent nuclear fuel in the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Khalil, H.S.

    1994-01-01

    Spent nuclear fuel may be unacceptable for direct repository storage because of composition, enrichment, form, physical condition, or the presence of undesirable materials such as sodium. Fuel types which are not acceptable for direct storage must be processed or conditioned to produce physical forms which can safely be stored in a repository. One possible approach to conditioning is the pyroprocess implemented in the Fuel Cycle Facility (FCF) at Argonne National Laboratory-West. Conditioning of binary (U-Zr) and ternary (U-Pu-Zr) metallic fuels from the EBR-2 reactor is used to demonstrate the process. Criticality safety considerations limit batch sizes during the conditioning steps and provide one constraint on the final form of conditioned material. Criticality safety during conditioning is assured by the integration of criticality safety analysis, equipment design, process development, a measurement program, accountability procedures, and a computerized Mass Tracking System. Criticality issues related to storage and shipment of conditioned material have been examined

  13. 7 CFR 920.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... (including shipments to facilitate the conduct of marketing research and development projects); or, (3) in... prevent kiwifruit handled under the provisions of this section from entering the channels of trade for...

  14. 7 CFR 924.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... shipments to facilitate the conduct of marketing research and development projects established pursuant to... necessary to prevent prunes handled under the provisions of this section from entering the channels of trade...

  15. Satellite tracking of radioactive shipments - High technology solution to tough institutional problems

    International Nuclear Information System (INIS)

    Harmon, L.H.; Grimm, P.D.

    1987-01-01

    Three troublesome institutional issues face every large-quantity radioactive materials shipment. They are routing, pre-notification, and emergency response. The Transportation Communications System (TRANSCOM), under development by DOE, is based on a rapidly developing technology to determine geographical location using geo-positioning satellite systems. This technology will be used to track unclassified radioactive materials shipments in real-time. It puts those charged with monitoring transportation status on top of very shipment. Besides its practical benefits in the areas of logistics planning and execution, it demonstrates emergency preparedness has indeed been considered and close monitoring is possible. This paper describes TRANSCOM in its technical detail and DOE plans and policy for its implementation. The state of satellite positioning technology and its business future is also discussed

  16. Spent fuel transportation - lessons drawn and ways forward: European utilities perspective

    International Nuclear Information System (INIS)

    Debes, M.; Schimmele, J.G.; Sannen, H.; Patak, H.

    2001-01-01

    Surface contamination that was found on surfaces of spent fuel shipping containers (flasks) in 1998 was treated differently by authorities in different European countries. In two countries, Germany and Switzerland, spent fuel shipments were stopped for an indefinite period by Government authorities. This paper, co-authored by representatives of utilities from four European countries, explains the rationale for surface contamination limits in transport regulations and attempts to place the observed contamination in proper perspective. (author)

  17. 76 FR 24713 - Cooperative Inspection Programs: Interstate Shipment of Meat and Poultry Products

    Science.gov (United States)

    2011-05-02

    ... amenable species, such as processing game meat or for busy times in their retail shops around holidays. The... Service 9 CFR Parts 321, 332, and 381 Cooperative Inspection Programs: Interstate Shipment of Meat and... Shipment of Meat and Poultry Products AGENCY: Food Safety and Inspection Service, USDA. ACTION: Final rule...

  18. Public health risks associated with the CANDU nuclear fuel cycle

    International Nuclear Information System (INIS)

    Paskievici, W.; Zikovsky, L.

    1982-09-01

    This report has been prepared in the hope that it will calculate, apparently for the first time, the non-radiological risks associated with the use of nuclear fuels. The specific risks identified and evaluated in this work should be balanced against the benefits resulting from the use of nuclear fuels or against the risks inherent in other fuels. Due to lack of sufficient data in certain areas the results obtained are subject to a large degree of uncertainty and therefore the results indicate an order of magnitude rather than exact values of hazard. The total hazard can be expressed as 6.0 ± 4.8 x 10 -3 fatalities and 4.8 ± 0.7 x l0 -2 injuries per 1 GWy of electricity produced

  19. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  20. Management and inspection of integrity of spent fuel from IRT MEPhI research reactor

    International Nuclear Information System (INIS)

    Aden, V.G.; Bulkin, S.Y.; Sokolov, A.V.; Bushuev, A.V.; Redkin, A.F.; Portnov, A.A.

    2002-01-01

    The information on wet storage and dry storage of the spent nuclear fuel (SNF) of the IRT MEPhI reactor and experience from SNF shipment for reprocessing are presented. The procedure and a facility for nondestructive inspection of local power density fields and the burnup of fuel assemblies based on studying the γ-activity of some fission products generated in U 235 and procedure for inspection of the fuel element cladding leak tightness are described. (author)

  1. Conceptual Assessment of a Fresh Fuel Transport Package for KJRR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Choi, W. S.; Bang, K. S.; Yu, S. H.; Park, J. S.; Yang, Y. Y. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The IAEA and domestic regulations stipulate that the fissile material transport package be subjected to the cumulative effects of a 9 m drop, 1 m puncture, 800 ℃ thermal and water leakage tests. A fissile material transport package should be maintained the subcriticality during the normal and accident conditions for contingency of leakage of water into or out of package, rearrangement of the contents, reduction of spaces and temperature changes. KAERI has been developing a fresh fuel transport package for Kijang research reactor (KJRR). This paper describes a conceptual design and preliminary safety analysis of the transport package for KJRR. The transport package was designed for shipment of a fresh fuel and a FM (Fission Molybdenum) target. Low-enriched uranium (LEU) of U-Mo fuel with U-235 enrichment of 19.75 w/o is used as a research reactor fuel. And LEU of UAlx-Al with U-235 enrichment of 19.75 w/o is used as a FM target material. The transport package was designed for shipment of a fresh fuel and a FM target. Safety analyses were conducted on all areas, including criticality, structural, and thermal fields. In the criticality analysis, effective neutron multiplication factors were below the criticality safety limit. In the structural analysis, the maximum stress satisfied the stress requirement stipulated in the ASME code. After 9 m free drop and 1 m puncture test, there was no significant deformation of fuel basket to cause a criticality. In the thermal analysis, the maximum temperatures at each part were lower than the allowable values.

  2. 41 CFR 101-26.311 - Frustrated shipments.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Frustrated shipments. 101-26.311 Section 101-26.311 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 26-PROCUREMENT SOURCES AND...

  3. Annual Report - FY 1998, Shipments to and from the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1999-01-01

    This report summarizes waste shipments to the Nevada Test Site Radioactive Waste Management Sites at Area 3 and Area 5 during fiscal year 1998. In addition this report provides a summary evaluation of each shipping campaign by source (waste generator) which identifies observable incidents, if any, associated with the actual waste shipments

  4. Safe transport of irradiated fuel by sea

    International Nuclear Information System (INIS)

    Miller, M.L.

    1997-01-01

    The development is described of a transport system dedicated to the sea transport of irradiated nuclear fuel. The background is reviewed of why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilised is provided, together with details of key procedures implemented to ensure safety and customer satisfaction. (Author)

  5. The sea transport of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Miller, M.L.

    1995-01-01

    The paper describes the development of a transport system dedicated to the sea transport of irradiated nuclear fuel. It reviews the background to why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilized is provided, together with details of key procedures implemented to ensure safety and customer satisfaction

  6. Effect of reduced enrichment on the fuel cycle for research reactors

    International Nuclear Information System (INIS)

    Travelli, A.

    1982-01-01

    The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel

  7. 7 CFR 925.54 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Special purpose shipments. 925.54 Section 925.54 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... entering the channels of trade for other than the specific purposes authorized by this section. Inspection...

  8. 48 CFR 252.247-7017 - Erroneous shipments.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Erroneous shipments. 252... SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of..., articles of personal property inadvertently packed with goods of other than the rightful owner. (2) Ensure...

  9. Human risk assessment of benzene after a gasoline station fuel leak

    Directory of Open Access Journals (Sweden)

    Miriam dos Anjos Santos

    2013-06-01

    Full Text Available OBJECTIVE: To assess the health risk of exposure to benzene for a community affected by a fuel leak. METHODS: Data regarding the fuel leak accident with, which occurred in the Brasilia, Federal District, were obtained from the Fuel Distributor reports provided to the environmental authority. Information about the affected population (22 individuals was obtained from focal groups of eight individuals. Length of exposure and water benzene concentration were estimated through a groundwater flow model associated with a benzene propagation model. The risk assessment was conducted according to the Agency for Toxic Substances and Disease Registry methodology. RESULTS: A high risk perception related to the health consequences of the accident was evident in the affected community (22 individuals, probably due to the lack of assistance and a poor risk communication from government authorities and the polluting agent. The community had been exposed to unsafe levels of benzene (> 5 µg/L since December 2001, five months before they reported the leak. The mean benzene level in drinking water (72.2 µg/L was higher than that obtained by the Fuel Distributer using the Risk Based Corrective Action methodology (17.2 µg/L.The estimated benzene intake from the consumption of water and food reached a maximum of 0.0091 µg/kg bw/day (5 x 10-7 cancer risk per 106 individuals. The level of benzene in water vapor while showering reached 7.5 µg/m3 for children (1 per 104 cancer risk. Total cancer risk ranged from 110 to 200 per 106 individuals. CONCLUSIONS: The population affected by the fuel leak was exposed to benzene levels that might have represented a health risk. Local government authorities need to develop better strategies to respond rapidly to these types of accidents to protect the health of the affected population and the environment.

  10. Truck and rail charges for shipping spent fuel and nuclear waste

    International Nuclear Information System (INIS)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials

  11. Safety analysis report: packages. Argonne National Laboratory SLSF test train shipping container, P-1 shipment. Fissile material. Final report

    International Nuclear Information System (INIS)

    Meyer, C.A.

    1975-06-01

    The package is used to ship an instrumented test fuel bundle (test train) containing fissile material. The package assembly is Argonne National Laboratory (ANL) Model R1010-0032. The shipment is fissile class III. The packaging consists of an outer carbon steel container into which an inner container is placed; the inner container is separated from the outer container by urethane foam cushioning material. The test train is supported in the inner container by a series of transverse supports spaced along the length of the test train. Both the inner and outer containers are closed with bolted covers. The covers do not seal the containers in a leaktight manner. The gross weight of the shipment is about 8350 lb. The unirradiated fissile material content is less than 3 kg of UO 2 of up to 93.2 percent enrichment. This is a Type A quantity (transport group III and less than 3 curies) of radioactive material which does not require shielding, cooling or heating, or neutron absorption or moderation functions in its packaging. The maximum exterior dimensions of the container are 37 ft 11 in. long, 24 1 / 2 in. wide, and 19 3 / 4 in. high

  12. Physical and transportation requirements for a FLIP fueled TRIGA

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.

    1977-01-01

    Several major changes to the OSTR Physical Security Plan were required by the NRC prior to the August 1976 receipt and installation of a new core consisting entirely of FLIP fuel. The general nature of these changes will be reviewed along with several decisions we faced during their implementation. At the previous TRIGA Owners' Conference in Salt Lake City, Utah, we reported on Oregon's regulatory program for research reactor emergency response planning and physical security. The latter program was of particular interest to us in light of the projected FLIP fuel shipments. The impact of the State's program for physical security of FLIP fuel during transportation will be presented. (author)

  13. Zero risk fuel fabrication: a systems analysis

    International Nuclear Information System (INIS)

    1979-01-01

    Zero risk is a concept used to ensure that system requirements are developed through a systems approach such that the choice(s) among alternatives represents the balanced viewpoints of performance, achievability and risk. Requirements to ensure characteristics such as stringent accountability, low personnel exposure and etc. are needed to guide the development of component and subsystems for future LMFBR fuel supply systems. To establish a consistent and objective set of requirements, RF and M-TMC has initiated a systems requirements analysis activity. This activity pivots on judgement and experience provided by a Task Force representing industrial companies engaged in fuel fabrication in licensed facilities. The Task Force members are listed in Appendix A. Input developed by this group is presented as a starting point for the systems requirements analysis

  14. 31 CFR 361.4 - Preparation of shipment.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Preparation of shipment. 361.4 Section 361.4 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL... of accounting controls or otherwise, for the maintenance of basic records which will enable them to...

  15. Russian spent marine fuel as a global security risk

    International Nuclear Information System (INIS)

    Gussgard, K.; Reistad, O.

    2001-01-01

    Russian marine fuel is a trans-national security concern. This paper focuses on specific technical properties of Russian marine nuclear fuel especially relevant for evaluating different aspects on nuclear proliferation, in addition to risks associated with regional environmental degradation and illegal diversion of radiological substances. Russian fresh fuel for marine reactors has been involved in several significant cases of illicit trafficking of special nuclear materials. The amount and quality of nuclear materials in Russian spent marine fuel give also reason for concern. Not less than 200 marine reactor cores are ready for having their spent fuel unloaded and preliminary stored on shore in the Far East and North West of Russia, and large amounts of spent naval fuel have been stored at Russian military bases for decades. In order to assess the security risks associated with Russian spent marine fuel, this paper discusses the material attractiveness of spent fuel from all types of Russian marine reactors. The calculations are based on a model of a light water moderated Russian icebreaker reactor. The computer tool HELIOS, used for modelling the reactor and the reactor operations, has been extensively qualified by comparisons with experimental data and international benchmark problems for reactor physics codes as well as through feedback from applications. Some of these benchmarks and studies include fuel enrichments up to 90% in Russian marine reactors. Several fuel data cases are discussed in the paper, focusing especially on: 1) early fuel designs with low initial enrichment; 2) more modern fuel designs used in third and fourth generation of Russian submarines probably with intermediate enriched fuel; and 3) marine fuel with initial enrichment levels close to weapons-grade material. In each case the fuel has been burned until k eff has reached below 1. Case 1) has been evaluated, the calculations made as basis for this paper have concentrated on fuel with

  16. Risk assessment basis for WWER-440 spent nuclear fuel

    International Nuclear Information System (INIS)

    Lascek, M.; Necas, V.; Darilek, P.

    2000-01-01

    The most problematic part of nuclear fuel cycle is its back end. Various high level waste management are available or under development (final disposal of spent assemblies in deep repository, reprocessing, partitioning, transmutation,...). Application of any method is connected with production of characteristic high level waste (amount, radio-toxicity, form,...) as well as various risk level for the environment and mankind. Strategy selection should be based on risk analysis also. The paper deals with assessment of risk, that is associated with WWER-440 spent fuel inventory. In order to evaluate the risk, the accumulated amount of the radioactive inventory is calculated and the decay of the long-lived radionuclides is computed by ORIGEN code. Analysis is oriented on calculation of hazard indexes for assessing the relative hazards of actinides, toxic and long-lived radionuclides. (Authors)

  17. Projected Source Terms for Potential Sabotage Events Related to Spent Fuel Shipments

    International Nuclear Information System (INIS)

    Luna, R.E.; Neuhauser, K.S.; Vigil, M.G.

    1999-01-01

    Two major studies, one sponsored by the U.S. Department of Energy and the other by the U.S. Nuclear Regulatory Commission, were conducted in the late 1970s and early 1980s to provide information and source terms for an optimally successful act of sabotage on spent fuel casks typical of those available for use. This report applies the results of those studies and additional analysis to derive potential source terms for certain classes of sabotage events on spent fuel casks and spent fuel typical of those which could be shipped in the early decades of the 21st century. In addition to updating the cask and spent fuel characteristics used in the analysis, two release mechanisms not included in the earlier works were identified and evaluated. As would be expected, inclusion of these additional release mechanisms resulted in a somewhat higher total release from the postulated sabotage events. Although health effects from estimated releases were addressed in the earlier study conducted for U.S. Department of Energy, they have not been addressed in this report. The results from this report maybe used to estimate health effects

  18. Public relations campaign for shipping spent nuclear fuel

    International Nuclear Information System (INIS)

    Bushee, Tom

    1989-01-01

    An example of positive outcome of proper attitude of the media and public on the occasion of shipping of nuclear fuel is described. Nothing new was invented in the way of public relations issue management. But a combination of a number of proven techniques were put together and the public relations plan that was highly successful. early planning was of great help. Public officials were well informd by means of ANS organized seminars. ANS had experts from Sandia Labs (a major government research facility), General Electric (the cask supplier), the railroad we planned to use and Northern States Power Company on the program to describe what was going to happen and why it was safe. These sessions are believed to head off a major portion of the local opposition. A cooperation was established with the states of Wisconsin and Minnesota in providing shipment-specific training for emergency response personnel along the route. Safety, obviously, was the number one concern expressed by public officials. Knowing that would be the case, it was decided to provide some optional extras to go with the shipments. There was a consultant yo do a safety analysis of all the possible rail routes between the plant and storage facility. Though none was required by law, a shipment-specific emergency response plan which was prepared. Another important effort which was maintained from the beginning was sharing information among the participants. In dealing with the news media, an attemp was made to stick to a single source of information as much as possible. When dealing with the news media, one should refuse to apologize for modern technology. One should attack, at every opportunity, the idea that a r isk-freesociety is worth the price of returning to the Dark Ages. The contributions of nuclear technology are numerous and far-reaching. Its negative impacts on health and safety have been minor compared with most other major industrial technologies. Certainly there is risk in stepping out of

  19. Engineering study: Fast Flux Test Facility fuel reprocessing

    International Nuclear Information System (INIS)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-01

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III

  20. 7 CFR 932.155 - Special purpose shipments.

    Science.gov (United States)

    2010-01-01

    ... and Regulations § 932.155 Special purpose shipments. (a) The disposition of packaged olives covered by... Service, such packaged olives may be disposed of for use in the production of olive oil or dumped. (2... furnish the committee, upon demand, such evidence of disposition of the packaged olives covered by an...

  1. Simplified probabilistic risk assessment in fuel reprocessing

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000

  2. RELATIVE PROLIFERATION RISKS FOR NUCLEAR FUEL LEASING ARRANGEMENT

    International Nuclear Information System (INIS)

    CHENG, L.Y.; YUE, M.; BARI, R.A.

    2007-01-01

    The present study demonstrates a probabilistic approach to quantify the proliferation risks of fuel leasing and recycling. A Markov model approach is applied to evaluate the probability of proliferation success by diversion or theft. Proliferation risk is calculated as a product of the probability of success and the corresponding consequences

  3. Estimated risk contribution for dry spent fuel storage cask

    International Nuclear Information System (INIS)

    Santos, C.; Kirk, M.T.; Abramson, L.; Guttmann, J.; Hackett, E.; Simonen, F.A.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is pursuing means to risk-inform its regulations and programs for dry storage of spent nuclear fuel. In pursuit of this objective, the NRC will develop safety goals and probabilistic risk assessments for implementing risk-informed programs. This paper provides one example method for calculating the risk of a dry spent fuel storage cask under normal and accident conditions. The example is on the HI-STORM 100 cask at a proposed site containing four thousand such casks. The paper evaluates the risk to the public by determining the likelihood a welded stainless steel container will leak. In addition, the study addresses the risk at a site where 4,000 casks may be stored until the U.S. Department of Energy accepts the casks for placement in a repository. The methods used employ the PRODIGAL computer code to assess the probability of a faulty weld on a stainless steel-welded canister. These analyses are only the initial stages of a comprehensive risk study that the NRC is performing in support of its regulatory initiatives. (author)

  4. Transport of nuclear used fuel and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Neau, H.J. [World Nuclear Transport Institute, London (United Kingdom)

    2015-07-01

    20 millions consignments of radioactive materials are routinely transported annually on public roads, railways and ships. 5% of these are nuclear fuel cycle related. International Atomic Energy Agency Regulations have been in force since 1961. The sector has an excellent safety record spanning over 50 years. Back end transport covers the operations concerned with spent fuel that leaves reactors and wastes. Since 1971, there have been 70,000 shipments of used fuel (i.e. over 80,000 tonnes) with no damage to property or person. The excellent safety record spanning over 50 years praised every year by the General Conference of the International Atomic Energy Agency. More than 200 sea voyages over a distance of more than 8 million kilometres of transport of used fuel or high-level wastes.

  5. Preliminary Report: Bases for Containment Analysis for Transportation of Aluminum-Based Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Vinson, D.W.

    1998-01-01

    Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to SRS under the site FRR/DRR Receipts Program. Shipment of the FRR/DRR assemblies required that the cask with loaded fuel be certified by the US Nuclear Regulatory Commission (for US-owned casks) or the US Department of Transportation (for foreign-owned casks) to comply with the requirements in 10CFR71

  6. A Historical Review of the Safe Transport of Spent Nuclear Fuel, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Kevin J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pope, Ronald [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report is a revision to M3 milestone M3FT-16OR090402028 for the former Nuclear Fuels Storage and Transportation Planning Project (NFST), “Safety Record of SNF Shipments.” The US Department of Energy (DOE) has since established the Office of Integrated Waste Management (IWM), which builds on the work begun by NFST, to develop an integrated waste management system for spent nuclear fuel (SNF), including the developm

  7. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    International Nuclear Information System (INIS)

    Nguyen, P.M.

    1994-01-01

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents

  8. Analysis of time series for postal shipments in Regional VII East Java Indonesia

    Science.gov (United States)

    Kusrini, DE; Ulama, B. S. S.; Aridinanti, L.

    2018-03-01

    The change of number delivery goods through PT. Pos Regional VII East Java Indonesia indicates that the trend of increasing and decreasing the delivery of documents and non-documents in PT. Pos Regional VII East Java Indonesia is strongly influenced by conditions outside of PT. Pos Regional VII East Java Indonesia so that the prediction the number of document and non-documents requires a model that can accommodate it. Based on the time series plot monthly data fluctuations occur from 2013-2016 then the model is done using ARIMA or seasonal ARIMA and selected the best model based on the smallest AIC value. The results of data analysis about the number of shipments on each product sent through the Sub-Regional Postal Office VII East Java indicates that there are 5 post offices of 26 post offices entering the territory. The largest number of shipments is available on the PPB (Paket Pos Biasa is regular package shipment/non-document ) and SKH (Surat Kilat Khusus is Special Express Mail/document) products. The time series model generated is largely a Random walk model meaning that the number of shipment in the future is influenced by random effects that are difficult to predict. Some are AR and MA models, except for Express shipment products with Malang post office destination which has seasonal ARIMA model on lag 6 and 12. This means that the number of items in the following month is affected by the number of items in the previous 6 months.

  9. Risk hedging against the fuel price fluctuation in energy service business

    International Nuclear Information System (INIS)

    Bannai, Masaaki; Tomita, Yasushi; Ishida, Yasushi; Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    2007-01-01

    Energy service business, or energy service company (ESCO), is expanding among industrial users as a means of energy saving. The ESCO business normally tends to become a long-term operation. During the operation, fluctuations of fuel and electricity costs significantly impact on the stability of the profit from ESCO business. Therefore, it is essential to reduce the risk of fuel and electricity cost fluctuations. Generally, a transaction called ''financial derivative'' is used as a measure of hedging against the fuel price fluctuation. In the case of ESCO business, it is necessary to manage the risk of both electricity and fuel price fluctuations because the variation in electricity price strongly affects the profit from ESCO as that in fuel price does. In this paper, the stabilization of the ESCO profit using financial derivatives was discussed by quantitative analyses of the actual data from existing plants. Case studies revealed that the appropriate volume of the fuel derivative implementation was less than a half of the fuel consumption at the ESCO facilities, and it ranged from 5% to 50%. (author)

  10. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR) 1 and Integral Fast Reactor (IF) 2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  11. Risks in U.S. energy material transportation

    International Nuclear Information System (INIS)

    Franklin, A.L.; Rhoads, R.E.; Andrews, W.B.

    1982-01-01

    For the past five years, the Pacific Northwest Laboratory has been conducting a programme to study the safety of transporting energy materials. The overall objectives of the programme are to develop information on the safety of transporting hazardous materials required to support the major energy cycles in the USA. This information was developed for use in making energy policy decisions; in designing and developing new or improved transportation systems for these materials; to help establish research priorities; and as an aid in developing effective transportation safety regulations. Risk analysis was selected as the methodology for performing these studies. This methodology has been applied to rail and highway shipments of nuclear fuel cycle materials and liquid and gaseous fossil fuels. Studies of the risks of transporting spent nuclear fuel by train and uranium ore concentrates (yellow cake) by truck were expected to be issued early in 1981. Analyses of the risks of transporting reactor waste and transuranic wastes are in progress. The work completed to date for nuclear material transportation makes it possible to estimate the transportation risks for the entire fuel cycle in the USA. Results of the assessment are presented in this paper. Because the risk analysis studies for the transportation of gasoline, propane and chlorine have been performed using a methodology, basic assumptions and data that are consistent with the studies that have been performed for nuclear materials, comparisons between the risks for nuclear materials and these materials can also be made. It should be noted that it is not the intention of these comparisons to judge the safety of one industry in comparison with another. These comparisons can, however, provide some insights into the regulatory philosophy for hazardous materials transportation. The remaining sections of the paper briefly review the risk-analysis methodology used in these studies, provide an overview of the systems

  12. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  13. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  14. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  15. Usefulness of the risk assessment technique in solving transportation problems

    International Nuclear Information System (INIS)

    Johnson, J.F.; Hall, R.J.

    1976-08-01

    The purpose was to develop and use a model to assess the risk associated with the shipment of nuclear and non-nuclear hazardous energy-related materials. The analysis method comprises the steps of describing the system, identifying the release sequence, evaluating the sequence, and calculating and assessing the risk. Plutonium shipment is used as an example. Uses of this method to improve transportation safety are discussed. 12 fig

  16. Safety Evaluation for Packaging for the N Reactor/single pass reactor fuel characterization shipments

    International Nuclear Information System (INIS)

    Stevens, P.F.

    1994-01-01

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the ChemNuclear CNS 1-13G packaging to ship samples of irradiated fuel elements from the 100 K East and 100 K West basins to the Postirradiation Testing Laboratory (PTL) in support of the spent nuclear fuel characterization effort. It also authorizes the return of the fuel element samples to the 100 K East facility using the same packaging. The CNS 1-13G cask has been-chosen to transport the fuel because it has a Certificate of Compliance (CoC) issued by the US Nuclear Regulatory Commission (NRC) for transporting irradiated oxide and metal fuel in commerce. It is capable of being loaded and offloaded underwater and may be shipped with water in the payload compartment

  17. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    International Nuclear Information System (INIS)

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D ampersand D) and to reduce the cost of maintaining the facilities prior to D ampersand D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor's fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered

  18. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC, Las Vegas, NV (United States)

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  19. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  20. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  1. Fabrication of zero power reactor fuel elements containing 233U3O8 powder

    International Nuclear Information System (INIS)

    Nicol, R.G.; Parrott, J.R.; Krichinsky, A.M.; Box, W.D.; Martin, C.W.; Whitson, W.R.

    1982-05-01

    Oak Ridge National Laboratory, under contract with Argonne National Laboratory, completed the fabrication of 1743 fuel elements for use in their Zero Power Reactor. The contract also included recovery of 20 kg of 233 U from rejected elements. This report describes the steps associated with conversion of purified uranyl nitrate (as solution) to U 3 O 8 powder (suitable for fuel) and subsequent charging, sealing, decontamination, and testing of the fuel elements (packets) preparatory to shipment. The nuclear safety, radiation exposures, and quality assurance aspects of the program are discussed

  2. French experience in research reactor fuel transportation

    International Nuclear Information System (INIS)

    Raisonnier, Daniele

    1996-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packaging for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of spent fuel from power reactors are made on a regular and industrial basis, but this is not yet the case for the transport of spent fuel coming from research reactors. Each shipment is a permanent challenge and requires a reactive organization dealing with all the transportation issues. This presentation will explain the choices made by Transnucleaire and its associates to provide and optimize the corresponding services while remaining in full compliance with the applicable regulations and customer requirements. (author)

  3. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  4. First shipment of magnets from CERN to SESAME

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    On Monday, 19 October, CERN will bid a fond farewell to two containers of magnets. Their destination: SESAME, the synchrotron light source under construction in Jordan.   The SESAME magnets, ready for transport. The containers hold 31 sextupoles, produced in Cyprus and France, and 32 quadrupoles, produced in Spain and Turkey. The magnets will rejoin 8 dipoles (from the UK) that are already at SESAME. The quadrupoles and sextupoles were checked and measured at CERN before this shipment, while the dipoles went via the ALBA synchrotron, near Barcelona, where magnetic measurements were carried out. With this shipment, around 50% of the magnets for the SESAME storage ring will have been delivered. The containers are expected to arrive just in time for the upcoming SESAME Council meeting at the end of November. The rest of the magnets – as well as all the power supplies and related control modules – have been produced and will be delivered to SESAME at th...

  5. Estimation of wildfire size and risk changes due to fuels treatments

    Science.gov (United States)

    Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.

  6. U.S. Wood Shipments to Puerty Rico

    Science.gov (United States)

    James E. Granskog

    1992-01-01

    Puerto Rico's importance as an offshore market for U.S. wood products is often overlooked. Because of its unique Commonwealth status, trade flows between the United States and Puerto Rico are recorded separately and are not counted in the U.S. foreign trade statistics. In 1991, wood product shipments from the United States to Puerto Rico totaled more than $83...

  7. Initiation of depleted uranium oxide and spent fuel testing for the spent fuel sabotage aerosol ratio program

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Gregson, M.W.; Sorenson, K.B. [Sandia National Labs. (United States); Billone, M.C.; Tsai, H. [Argonne National Lab. (United States); Koch, W.; Nolte, O. [Fraunhofer Inst. fuer Toxikologie und Experimentelle Medizin (Germany); Pretzsch, G.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (Germany); Autrusson, B.; Loiseau, O. [Inst. de Radioprotection et de Surete Nucleaire (France); Thompson, N.S.; Hibbs, R.S. [U.S. Dept. of Energy (United States); Young, F.I.; Mo, T. [U.S. Nuclear Regulatory Commission (United States)

    2004-07-01

    We provide a detailed overview of an ongoing, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high energy density device, HEDD. The program participants in the U.S. plus Germany, France, and the U.K., part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC have strongly supported and coordinated this research program. Sandia National Laboratories, SNL, has the lead role for conducting this research program; test program support is provided by both the U.S. Department of Energy and Nuclear Regulatory Commission. WGSTSC partners need this research to better understand potential radiological impacts from sabotage of nuclear material shipments and storage casks, and to support subsequent risk assessments, modeling, and preventative measures. We provide a summary of the overall, multi-phase test design and a description of all explosive containment and aerosol collection test components used. We focus on the recently initiated tests on ''surrogate'' spent fuel, unirradiated depleted uranium oxide, and forthcoming actual spent fuel tests. The depleted uranium oxide test rodlets were prepared by the Institut de Radioprotection et de Surete Nucleaire, in France. These surrogate test rodlets closely match the diameter of the test rodlets of actual spent fuel from the H.B. Robinson reactor (high burnup PWR fuel) and the Surry reactor (lower, medium burnup PWR fuel), generated from U.S. reactors. The characterization of the spent fuels and fabrication into short, pressurized rodlets has been performed by Argonne National Laboratory, for testing at SNL. The ratio of the aerosol and respirable particles released from HEDD-impacted spent

  8. Effects of an LMR-based partitioning-transmutation system on US nuclear fuel cycle health risk

    International Nuclear Information System (INIS)

    Michaels, G.E.; Reich, W.J.

    1992-01-01

    Health risks for the current US nuclear fuel cycle and for an illustrative partitioning and transmutation (P-T) fuel cycle based on Liquid Metal Reactor (LMR) technology are calculated and compared. Health risks are calculated for all non-reactor fuel cycle steps, including reprocessing, transportation, and high-level waste (HLW) disposal. Uranium mining and milling health risks have been updated to include recent occupational injury and death statistics, and the radiological health risk to the general public posed by the uranium mining overburden. In addition, the radiological health risks for transportation have been updated to include latent cancer fatalities associated with both normal transport and accidents. Given the assumptions of the study, it is shown that the deployment of an LMR-based P-T system is expected to reduce overall nuclear fuel cycle health risk

  9. Revealing smuggled nuclear material covered by a legitimate radioisotope shipment using CdTe-based gamma-ray spectrometry

    CERN Document Server

    Lakosi, L; Zsigrai, J; Safar, J

    2003-01-01

    Illicit trade of nuclear materials (NM) represents a serious challenge to radiation monitoring upon scenarios, when legitimate radioisotope shipments are used to obscure the weak radiation of NM. Planar and hemispherical Cd(Zn)Te detectors with a portable mini-multichannel analyzer were proven to be suitable, in measuring times of 10 min order, for revealing the presence of low-enriched or natural U-bearing reactor fuel pellets in amounts of kg order, placed beside transport containers of lead or depleted uranium, which contain high activity sup 6 sup 0 Co (10 GBq range) or sup 1 sup 9 sup 2 Ir (TBq range) radioisotope sources. Such a hand-held or portable device may help authorities combating illicit trafficking of nuclear materials.

  10. Preliminary assessment of costs and risks of transporting spent fuel by barge

    International Nuclear Information System (INIS)

    Tobin, R.L.; Meshkov, N.K.; Jones, R.H.

    1985-12-01

    The purpose of this study is to analyze the costs and risks associated with transporting spent fuel by barge. The barge movements would be made in combination with rail movements to transport spent fuel from plants to a repository. For the purpose of this analysis, three candidate repository sites are analyzed: Yucca Mountain, Nevada, Deaf Smith, Texas, and Hanford, Washington. This report complements a report prepared by Sandia National Laboratories in 1984 that analyzes the costs and risks of transporting spent fuel by rail and by truck to nine candidate repository sites

  11. The juridic control of transboundary shipments of hazardous waste in the United States

    International Nuclear Information System (INIS)

    Juergensmeyer, J.C.

    1989-01-01

    An intergovernmental conflict over location of disposal of hazardous waste is discussed; the several definitions of hazardous waste in the United States are analysed; moreover the American Law Regulating the transport and disposal of hazardous waste as well is put in question; also the restrictions an disposal of waste are examined in light of the Constitution of the United States, finally, transboundary shipments of hazardous waste and international agreements on hazardous waste shipment are considered [pt

  12. Distribution and Diversity of Salmonella Strains in Shipments of Hatchling Poultry, United States, 2013.

    Science.gov (United States)

    Habing, G G; Kessler, S E; Mollenkopf, D F; Wittum, T E; Anderson, T C; Barton Behravesh, C; Joseph, L A; Erdman, M M

    2015-08-01

    Multistate outbreaks of salmonellosis associated with live poultry contact have been occurring with increasing frequency. In 2013, multistate outbreaks of salmonellosis were traced back to exposure to live poultry, some of which were purchased at a national chain of farm stores (Farm store chain Y). This study was conducted at 36 stores of Farm store chain Y and was concurrent with the timing of exposure for the human outbreaks of salmonellosis in 2013. We used environmental swabs of arriving shipment boxes of hatchling poultry and shipment tracking information to examine the distribution, diversity and anti-microbial resistance of non-typhoidal Salmonella (NTS) across farm stores and hatcheries. Isolates recovered from shipment boxes underwent serotyping, anti-microbial resistance (AMR) testing and pulsed-field gel electrophoresis (PFGE). Postal service tracking codes from the shipment boxes were used to determine the hatchery of origin. The PFGE patterns were compared with the PFGE patterns of NTS causing outbreaks of salmonellosis in 2013. A total of 219 hatchling boxes from 36 stores in 13 states were swabbed between 15 March 2013 and 18 April 2013. NTS were recovered from 59 (27%) of 219 hatchling boxes. Recovery was not significantly associated with species of hatchlings, number of birds in the shipment box, or the presence of dead, injured or sick birds. Four of the 23 PFGE patterns and 23 of 50 isolates were indistinguishable from strains causing human outbreaks in 2013. For serotypes associated with human illnesses, PFGE patterns most frequently recovered from shipment boxes were also more frequent causes of human illness. Boxes positive for the same PFGE pattern most frequently originated from the same mail-order hatchery. Only one of 59 isolates was resistant to anti-microbials used to treat Salmonella infections in people. This study provides critical information to address recurrent human outbreaks of salmonellosis associated with mail-order hatchling

  13. Spent fuel storage capacities. An update of DOE/RL-84-1

    International Nuclear Information System (INIS)

    1985-10-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The resport also assesses the possible impacts of increased fuel exposure and spent fuel transhipment on the requirements for additional storage capacity

  14. Whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worths, cycle length, fuel discharge burnup, gamma heating rates, β/sub eff/l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed

  15. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    International Nuclear Information System (INIS)

    Tyacke, Michael; Bolshinsky, Igor; Tomczak, Wlodzimierz; Naletov, Sergey; Pichugin, Oleg

    2001-01-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy's Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic's vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic's capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  16. The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Tyacke; Dr. Igor Bolshinsky; Wlodzimierz Tomczak; Sergey Naletov; Oleg Pichugin

    2001-10-01

    The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy’s Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic’s vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic’s capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities’ reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

  17. Dry storage assessment of LWR fuel in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Goll, W [AREVA NP GmbH (Germany)

    2012-07-01

    Germany's revised energy act, dated 2002, prohibits the shipment of spent nuclear fuel to reprocessing plants and restricts its disposal to a final repository. To comply with this law and to ensure further nuclear plant operation, the reactor operators had to construct on-site facilities for dry cask storage, to keep spent fuel assemblies for 40 years until a final repository is available. Twelve facilities went into operation during the last years. The amount of spent fuel in store is continuously increasing and has reached a level of about 1700 t HM by end of 2007. The central sites Ahaus and Gorleben remain in operation but shall be used for special purposes in future. The objectives are: Review of main features of facilities with an emphasis on associated monitoring; Review of degradation mechanisms in the context of fuel types and design (PWR, BWR, UO2, MOX) relative to fuel burn-up, structural materials and long term behaviour.

  18. Determination of production-shipment policy using a two-phase algebraic approach

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-04-01

    Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.

  19. Prevalence, level and distribution of Salmonella in shipments of imported capsicum and sesame seed spice offered for entry to the United States: observations and modeling results.

    Science.gov (United States)

    Van Doren, Jane M; Blodgett, Robert J; Pouillot, Régis; Westerman, Ann; Kleinmeier, Daria; Ziobro, George C; Ma, Yinqing; Hammack, Thomas S; Gill, Vikas; Muckenfuss, Martin F; Fabbri, Linda

    2013-12-01

    In response to increased concerns about spice safety, the United States Food and Drug Administration (FDA) initiated research to characterize the prevalence and levels of Salmonella in imported spices. 299 imported dried capsicum shipments and 233 imported sesame seed shipments offered for entry to the United States were sampled. Observed Salmonella shipment prevalence was 3.3% (1500 g examined; 95% CI 1.6-6.1%) for capsicum and 9.9% (1500 g; 95% Confidence Interval (CI) 6.3-14%) for sesame seed. Within shipment contamination was not inconsistent with a Poisson distribution. Shipment mean Salmonella level estimates among contaminated shipments ranged from 6 × 10(-4) to 0.09 (capsicum) or 6 × 10(-4) to 0.04 (sesame seed) MPN/g. A gamma-Poisson model provided the best fit to observed data for both imported shipments of capsicum and imported shipments of sesame seed sampled in this study among the six parametric models considered. Shipment mean levels of Salmonella vary widely between shipments; many contaminated shipments contain low levels of contamination. Examination of sampling plan efficacy for identifying contaminated spice shipments from these distributions indicates that sample size of spice examined is critical. Sampling protocols examining 25 g samples are predicted to be able to identify a small fraction of contaminated shipments of imported capsicum or sesame seeds. Published by Elsevier Ltd.

  20. A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973

    International Nuclear Information System (INIS)

    Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.; Nagel, W.E.; Pearlman, H.; Schaubert, V.J.

    1995-09-01

    This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments

  1. Prevalence, serotype diversity, and antimicrobial resistance of Salmonella in imported shipments of spice offered for entry to the United States, FY2007-FY2009.

    Science.gov (United States)

    Van Doren, Jane M; Kleinmeier, Daria; Hammack, Thomas S; Westerman, Ann

    2013-06-01

    In response to increased concerns about spice safety, the U.S. FDA initiated research to characterize the prevalence of Salmonella in imported spices. Shipments of imported spices offered for entry to the United Sates were sampled during the fiscal years 2007-2009. The mean shipment prevalence for Salmonella was 0.066 (95% CI 0.057-0.076). A wide diversity of Salmonella serotypes was isolated from spices; no single serotype constituted more than 7% of the isolates. A small percentage of spice shipments were contaminated with antimicrobial-resistant Salmonella strains (8.3%). Trends in shipment prevalence for Salmonella associated with spice properties, extent of processing, and export country, were examined. A larger proportion of shipments of spices derived from fruit/seeds or leaves of plants were contaminated than those derived from the bark/flower of spice plants. Salmonella prevalence was larger for shipments of ground/cracked capsicum and coriander than for shipments of their whole spice counterparts. No difference in prevalence was observed between shipments of spice blends and non-blended spices. Some shipments reported to have been subjected to a pathogen reduction treatment prior to being offered for U.S. entry were found contaminated. Statistical differences in Salmonella shipment prevalence were also identified on the basis of export country. Published by Elsevier Ltd.

  2. A risk-based monitoring framework for the long term management of used fuel

    International Nuclear Information System (INIS)

    Garisto, N.C.

    2006-01-01

    The Nuclear Waste Management Organization has a mandate from the Government of Canada to consult with the public and to recommend an approach for managing Canada's used nuclear fuel. Three main fuel management methods are being explored and evaluated by the Nuclear Waste Management Organization: disposal in a Deep Geological Repository (DGR); reactor-site extended storage (RES); and centralized extended storage (CES), either above ground or below ground. The used nuclear fuel management system, whether a DGR or an extended storage system will require monitoring. In this study, a risk-based monitoring framework was developed for the used fuel management program. The proposed approach addresses the unique challenges of used fuel management being implemented in a multi-stakeholder process, including: (i) the complexity of the facilities; (ii) the need to consider both science-based risk and perceived risk in the monitoring plans; and (iii) the difficulty in conducting 'invasive' measurements of sealed systems, particularly over a very long time frame. (author)

  3. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Gregory, Louis

    2014-01-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014.

  4. The effects of preparation, shipment and ageing on the Pu elemental assay results of milligram-sized samples

    International Nuclear Information System (INIS)

    Berger, J.; Doubek, N.; Jammet, G.; Aigner, H.; Bagliano, G.; Donohue, D.; Kuhn, E.

    1994-02-01

    Specialized procedures have been implemented for the sampling of Pu-containing materials such as Pu nitrate, oxide or mixed oxide in States which have not yet approved type B(U) shipment containers for the air-shipment of gram-sized quantities of Pu. In such cases, it it necessary to prepare samples for shipment which contain only milligram quantities of Pu dried from solution in penicillin vials. Potential problems due to flaking-off during shipment could affect the recovery of Pu at the analytical laboratory. Therefore, a series of tests was performed with synthetic Pu nitrated, and mixed U, Pu nitrated samples to test the effectiveness of the evaporation and recovery procedures. Results of these tests as well as experience with actual inspection samples are presented, showing conclusively that the existing procedures are satisfactory. (author). 11 refs, 6 figs, 8 tabs

  5. Improvement of resource efficiency by efficient waste shipment inspections; Steigerung der Ressourceneffizienz durch effiziente Kontrollen von Abfallverbringungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Stephanie [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany)

    2011-09-15

    Illegal shipment of waste as well as enforcement related to waste shipment have been regularly the centre of attention of public and professional debates and are also a topic of cross-national relations. In addition, the fear persists that by illegal waste shipments waste is treated in plants neither adapted to protect the environment and health nor having sufficient recuperation capabilities for precious raw materials. This project therefore intends to clarify the status quo of waste shipment inspections in the 16 federal states of Germany (Bundeslaender, in the following cited as states or federal states) to identify potential for development regarding the organisation and execution of inspections and to elaborate recommendations to optimise enforcement activities and further development of European and German legislative regulations. In order to optimise the enforcement of the European Waste Shipment Regulation (WSR) and the German Waste Shipment Act (AbfVerbrG), an adequate number of qualified personnel is necessary within all bodies involved into waste shipment inspections. Those bodies are namely the competent waste authorities, customs, police, the Federal Office for Transport of Goods (BAG), the Federal Railway Authority (EBA) and the prosecution offices. An adequate number of qualified personnel is not provided for in all states/authorities. This is also reflected in the number of transport and plant inspections which deviate between zero to a fixed number per year as well as being continuously performed and based occasion-/cause oriented inspections. Tangible means like access to IT-systems and the Internet should be provided for on-site inspections. Besides qualified and experienced personnel also IT-Systems have a relevant impact on the preselection of the entity to be inspected as well as for on-the-spot investigations. Therefore IT-System can increase the efficiency of inspections (inspections per time unit resp. exposure of illegal shipments per time

  6. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  7. Design support document for the K Basins Vertical Fuel Handling Tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the design support information for the Vertical Fuel Handling Tools, developed for the removal of N Reactor fuel elements from their storage canisters in the K Basins storage pool and insertion into the Single Fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N Reactor fuel elements is part of the overall characterization effort. These new hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element vertically from the storage canister. Additionally, a Mark II storage canister Lip Seal Protector was designed and fabricated for use during fuel retrieval. This device was required to prevent damage to the canister lip should a fuel element accidentally be dropped during its retrieval, using the handling tools. Supporting documentation for this device is included in this document

  8. Risk-analysis of the fuel cycle in the Netherlands

    International Nuclear Information System (INIS)

    1975-06-01

    The introduction of nuclear power production in the Netherlands in 1985 up to an installed power of 3500MWe, requires a certain capacity for the fabrication of fuel elements. In view of the risk analysis, a study group has originated a plan to develop a Dutch fuel fabrication plant with developing economic prospectives. Until 1986, only light enriched uranium will be manufactured; after that period, the recycling of plutonium. The location of the projected factory is yet indefinite. The possibilities of waste disposal could influence the selection of the location. The threat of critical accidents remains low according to the permissible levels of polution to the environment. The fabrication of fuel elements would not give any significant contribution in the radiation burden to the environment. The working conditions are strongly supervised and follow the standing procedures and disciplines. The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical conversion of UF 6 , sintering of the fuel pellets, the fabrication of uranium oxide-vibrasol 6 fuel and the steel assembling of fuel elements. The safeguarding of the fuel cycle has been submitted to strictly enforced administrative control. The recycling of plutonium in light water reactors on an industrial scale would not be foreseeable for some time in Holland. Because of the much higher specific radioactivity of the material (6 x 10 -2 Ci/g), the processing of plutonium requires additional provisions. For the present, the Dutch factory should process only Pu bearing fuel with 5% Pu and in the form of high density sintered globules with 1mm diameter. The specific radioactivity of this material is 3 x 10 -3 Ci/g, about 2000 times that of light enriched uranium. Experiences in the safe handling of this material has taught the processing of radioactivated fuel in gloveboxes which are connected to ventilation systems with extra filters

  9. Transportation of spent fuel from light water reactors

    International Nuclear Information System (INIS)

    Bernard, H.

    1993-01-01

    The French 'Compagnie Generale des Matieres Nucleaires' - COGEMA - is involved in the whole nuclear fuel cycle about 20 years. Among the different parts of the cycle, the Transport of Radioactive Materials, acting as a link between the differents plants has a great importance. As nuclear material transportation is the only fuel cycle step to be performed on public grounds, the industrial task has to be performed with the utmost stringent safety criteria. COGEMA and associates is now operating a fully mature commercial activity, with some 300 spent fuel shipments per year from its reprocessing customer's reactors to the LA HAGUE plant, either by rail, road or sea. The paper will review the organization of COGEMA transportation business, the level of technology with an update of the casks used for spent fuel, and the operational experience, with a particular view of the maintenance policy. (author)

  10. Addressing the supply security of the nuclear fuel cycle: a US merchant generator risk acceptance perspective

    International Nuclear Information System (INIS)

    Jordan, R. P.; Benavides, P.A.

    2006-01-01

    With the current rising markets across the nuclear fuel supply spectrum, understanding and managing nuclear fuel cycle supply security risk becomes an increasingly important consideration. In addressing this area, Constellation Energy is implementing an integrated multifaceted approach as consistent with a comprehensive risk profile covering the nuclear fuel supply industry. This approach is founded on use of a utility traditional procurement strategy, as dependent on the qualitative parameters of supply origination diversification, geopolitical stability, contracting duration and individual supplier financial bases. However, Constellation also adds an additional consideration into development of this nuclear fuel supply risk profile. To do such, qualitative assessments covering specific supplier risks, as based on the parameters of supplier management and organizational structure, design capacities (applicable to fabrication and enrichment only), operational history as applicable to forward-looking performance, regulatory or legal history and financial performance are also considered. Constellation overlays the risks of future availabilities, catastrophic occurrences and prices for each nuclear fuel material and service component onto a quantitative set of results. The overall focus of these assessments is the creation of a risk management perspective directed towards determining the potential loss or delay of nuclear fuel supply for our operating reactors. The conclusion of this effort is an integrated assessment of the nuclear fuel supply security as applicable to the Constellation-specific structured risk profile. Use of this assessment allows Constellation to target appropriate suppliers of interest in the marketplace and form the fundamental bases for the Constellation procurement strategy while managing risks associated with nuclear fuel cycle supply security. (authors)

  11. Risk assessment for the transportation of radioactive zeolite liners

    International Nuclear Information System (INIS)

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: 90 Sr = 3000 Ci, 134 Cs = 7000 Ci, 137 Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public

  12. Comparison of actual and predicted routes used in the shipment of radioactive materials

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.; Harrison, I.G.

    1985-01-01

    A number of highway controlled shipments of radioactive materials have been made over the past several years. An excellent example showing the variability of actual routes is the transfer of 45 shipments between the Three Mile Island reactor in Pennsylvania and Scoville, Idaho in 1982 and 1983. Six different routes varying between 2273 and 2483 miles were used. Approximately 75% of these shipments followed a common route which passed through ten Urbanized Areas, defined by the Census Bureau as having a population exceeding 100,000 people. Other routes, while shorter in distance, passed through as many as 14 Urbanized Areas. Routes predicted by the Oak Ridge routing model did not exactly duplicate actual routes used. However, the analysis shows that the routing model does make a good estimate of transportation routes actually chosen by shippers of radioactive materials. In actual practice, a number of factors (weather, road conditions, driver preference, etc.) influence the actual route taken. 5 refs., 1 fig., 1 tab

  13. Mobile Melt-Dilute Treatment for Russian Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Peacock, H.

    2002-01-01

    Treatment of spent Russian fuel using a Melt-Dilute (MD) process is proposed to consolidate fuel assemblies into a form that is proliferation resistant and provides critically safety under storage and disposal configurations. Russian fuel elements contain a variety of fuel meat and cladding materials. The Melt-Dilute treatment process was initially developed for aluminum-based fuels so additional development is needed for several cladding and fuel meat combinations in the Russian fuel inventory (e.g. zirconium-clad, uranium-zirconium alloy fuel). A Mobile Melt-Dilute facility (MMD) is being proposed for treatment of spent fuels at reactor site storage locations in Russia; thereby, avoiding the costs of building separate treatment facilities at each site and avoiding shipment of enriched fuel assemblies over the road. The MMD facility concept is based on laboratory tests conducted at the Savannah River Technology Center (SRTC), and modular pilot-scale facilities constructed at the Savannah River Site for treatment of US spent fuel. SRTC laboratory tests have shown the feasibility of operating a Melt-Dilute treatment process with either a closed system or a filtered off-gas system. The proposed Mobile Melt-Dilute process is presented in this paper

  14. Risk analysis methodology for spent fuel repositories in bedded salt: methodlogy summary and differences between spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.

    1981-06-01

    In the absence of spent fuel reprocessing plans, unreprocessed spent fuel has become a candidate waste form for geologic disposal. In order to understand the public health risks from such disposal and to gain insights into the factors that influence them, a methodology is needed to combine the effects of site geology and hydrology, physical and chemical properties of the waste form, and the details of the engineering design. This report outlines such a methodology which the authors currently are applying to the analysis of unreprocessed spent fuel disposal. The methodology is the same methodology as was developed to describe the risks from geologic disposal of wastes from reprocessed spent fuel. The difference between spent fuel wastes and wastes from reprocessing that may affect the applicability of the methodology are highlighted

  15. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  16. Radioactive Waste Transport: Managing Risk Perception and Communication

    International Nuclear Information System (INIS)

    Murray, Ch.

    2009-01-01

    The implementation of a national transportation system for spent nuclear fuel and high-level waste that merits public trust and confidence will require the delivery of consistent, accurate and timely transportation messages; stakeholder and public understanding of the need for, and safety of, shipments; and effective two-way communication to address stakeholder concerns in its decision-making processes. Building the trust and consent of stakeholders and the public is complex and challenging. In order to accomplish this goal, it is imperative to understand how and why members of society develop various perceptions of risks and assessments of benefits with regard to the nuclear energy cycle. Understanding the basis and reasons for the public's beliefs concerning the nuclear energy cycle will allow OCRWM to more effectively address concerns regarding the national transportation program. This paper will examine how a person's gender, sources of information, world-view, culture, emotion, cognition, and other factors affect their beliefs and perceptions of risk. It will also explore the reasons why nuclear energy and nuclear waste are viewed with such a distinctly different attitude than other hazardous materials that pose a comparable or greater hazard. Drawing on research from prominent experts in risk perception and communication methods, this study will conduct a unique investigation into the perspectives of a diverse set of key stakeholders and experts involved in the transportation process. This paper will present several hypotheses on why there are unique challenges involved in communicating about transportation of spent nuclear fuel and other nuclear fuel cycle activities, and also present recommendations for remediating such challenges. (authors)

  17. Probabilistic Risk Assessment on Maritime Spent Nuclear Fuel Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Spent nuclear fuel (SNF) management has been an indispensable issue in South Korea. Before a long term SNF solution is implemented, there exists the need to distribute the spent fuel pool storage loads. Transportation of SNF assemblies from populated pools to vacant ones may preferably be done through the maritime mode since all nuclear power plants in South Korea are located at coastal sites. To determine its feasibility, it is necessary to assess risks of the maritime SNF transportation. This work proposes a methodology to assess the risk arising from ship collisions during the transportation of SNF by sea. Its scope is limited to the damage probability of SNF packages given a collision event. The effect of transport parameters' variation to the package damage probability was investigated to obtain insights into possible ways to minimize risks. A reference vessel and transport cask are given in a case study to illustrate the methodology's application.

  18. Carbon Risk and the Fossil Fuel Industry

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2015-04-01

    As calls for ambitious climate action intensify, questions arise concerning the resilience of the fossil fuel industry in a world ever more inclined to favour climate protection. This article will attempt to assess the extent of present risks and show how the strength of debate can affect practices and strategy employed by companies in this sector. (author)

  19. 49 CFR 173.312 - Requirements for shipment of MEGCs.

    Science.gov (United States)

    2010-10-01

    ...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.312 Requirements... MEGC's structural or service equipment may be affected. (4) No person may fill or offer for... requalification due date. (5) Prior to filling and offering a MEGC for transportation, the MEGC's structural and...

  20. Directory of national competent authorities' approval certificates for packages, shipments, special arrangements and special form radioactive material

    International Nuclear Information System (INIS)

    1987-11-01

    The Agency's transport regulations prescribe various requirements for the authorization of packages and shipments in respect of both national and international movement of radioactive material. These authorizations are issued by the relevant competent authority of the country concerned; they take the form of package approval and/or shipment approval certificates. At the request of the Standing Advisory Group of the Safe Transport of Radioactive Material (SAGSTRAM), the Agency has established a programme to maintain a file of those certificates for packages and shipments which are either transported internationally or used outside the country of origin. The purpose of this directory is to facilitate the transfer of information to competent authorities and any other person wishing details on the packaging, authorized contents or special conditions pertinent to any package or shipment. The directory enables competent authorities to be aware of the status of any certificate submitted for validation. It also indicates any change in status of any certificate already validated

  1. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the 'Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. No shipments were disposed of at Area 3 in fiscal year (FY) 2008. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during FY 2008. No transuranic (TRU) waste shipments were made from or to the NTS during FY 2008

  2. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  3. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  4. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dupree, S.A.; O'Malley, L.C.

    1980-10-01

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  5. Reliability of the spent fuel identification for flask loading procedure used by COGEMA for fuel transport to La Hague

    International Nuclear Information System (INIS)

    Eid, M.; Zachar, M.; Pretesacque, P.

    1991-01-01

    The Spent Fuel Identification for Flask Loading (SFIFL) procedure designed by COGEMA is analysed and its reliability calculated. The reliability of the procedure is defined as the probability of transporting only approved fuel elements for a given number of shipments. The procedure describes a non-coherent system. A non-coherent system is the one in which two successive failures could result in a success, from the system mission point of view. A technique that describes the system with the help of its maximal cuts (states) is used for calculations. A maximal cut contains more than one failure which can split into two cuts (sub-states). Cuts splitting will enable us to analyse, in a systematic way, non-coherent systems with independent basic components. (author)

  6. Reliability of the spent fuel identification for flask loading procedure used by COGEMA for fuel transport to La Hague

    International Nuclear Information System (INIS)

    Eid, M.; Zachar, M.; Pretesacque, P.

    1990-01-01

    The Spent Fuel Identification for Flask Loading, SFIFL, procedure designed by COGEMA is analysed and its reliability is calculated. The reliability of the procedure is defined as the probability of transporting only approved fuel elements for a given number of shipments. The procedure describes a non-coherent system. A non-coherent system is the one in which two successive failures could result in a success, from the system mission point of view. A technique that describes the system with the help of its maximal cuts (states), is used for calculations. A maximal cut contains more than one failure can split into two cuts, (sub-states). Cuts splitting will enable us to analyse, in a systematic way, non-coherent systems with independent basic components. (author)

  7. The potential importance of water pathways for spent fuel transportation accident risk

    International Nuclear Information System (INIS)

    Ostmeyer, R.M.

    1986-01-01

    This paper analyzes the potential importance of water pathway contamination for spent fuel transportation accident risk using a ''worst-case'' water contamination scenario. The scenario used for the analysis involves an accident release that occurs near a reservoir. Water pathway doses are compared to doses for accident releases in urban or agricultural areas. The results of the analysis indicate that water pathways are not important for assessing the risk of transporting spent reactor fuel by truck or by rail

  8. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adam David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cohn, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, Douglas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeMenno, Mercy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Maikael A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Ethan Rutledge [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Mancel Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeantete, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.

  9. 27 CFR 44.61 - Removals, withdrawals, and shipments authorized.

    Science.gov (United States)

    2010-04-01

    ... payment of tax, for direct exportation or for delivery for subsequent exportation, in accordance with the... shipments authorized. 44.61 Section 44.61 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX General § 44.61 Removals...

  10. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  11. Results of a recent crud/corrosion fuel risk assessment at a U.S. PWR

    International Nuclear Information System (INIS)

    Lamanna, Larry; Pop, Mike; Gregorich, Carola; Harne, Richard; Jones, John

    2012-09-01

    In order to avoid potential fuel reliability issues, specifically crud-related issues, it is necessary to achieve and maintain a crud safe environment. Therefore, the ability to confidently predict risks associated with crud deposition on fuel becomes critically important. AREVA is applying its cutting-edge PWR Fuel Crud (Primary System corrosion products)/Corrosion Tools, i.e. COBRA-FLX (subchannel-by-subchannel T/H tool) coupled with FDIC (crud deposition tool) to subsequently perform PWR Fuel Crud /Corrosion risk assessments for operating plants in the US. After describing the method, the result of one of these assessments is presented for an operating plant in the US that has experienced recent crud observations/concerns. Both Crud Induced Localized Corrosion (CILC) and Crud Induced Power Shift (CIPS) risk assessment methods, as applied to the upcoming cycle (Cycle N), were compared to the current/on-going cycle (Cycle N-1) and to the previous cycle (Cycle N-2). The results allowed the Utility to consider crud risk management changes associated with the upcoming cycle (Cycle-N). Benchmarking of the AREVA tools, using the plant-specific crud information gained from the crud sampling/characterization for the Unit will be presented. The CIPS analysis references boron loading and the amount of insoluble iron-nickel-borates predicted for Cycles N-2, N-1, and N. The results of the CILC evaluation reference FDIC-predicted crud thickness, cladding temperature under deposit, evolution of CILC bearing species and lithium concentration in the zirconium oxide layer. The approach taken by AREVA during the evaluation was to consider both 'risk' and 'margin' to fuel performance impact caused by crud deposits. The conclusion of the assessment, illustrated by the results presented in this paper, is that the example Plant has sufficient margin in worst case conditions for CIPS and CILC risk in Cycle N, based on Cycle N-1 and Cycle N-2 conditions and behavior

  12. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  13. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  14. Development of IAEA safeguards at low enrichment uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Badawy, I.

    1988-01-01

    In this report the nuclear material at low enrichment uranium fuel fabrication plants under IAEA safeguards is studied. The current verification practices of the nuclear material and future improvements are also considered. The problems met during the implementation of the the verification measures of the nuclear material - particularly for the fuel assemblies are discussed. The additional verification activities as proposed for future improvements are also discussed including the physical inventory verification and the verification of receipts and shipments. It is concluded that the future development of the present IAEA verification practices at low enrichment uranium fuel fabrication plants would necessitate the application of quantitative measures of the nuclear material and the implementation of advanced measurement techniques and instruments. 2 fig., 4 tab

  15. Nuclear and radiological safety in the substitution process of the fuel HEU to LEU 30/20 in the Reactor TRIGA Mark III of the ININ

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2012-10-01

    Inside the safety initiative in the international ambit, with the purpose of reducing the risks associated with the use of high enrichment nuclear fuels (HEU) for different proposes to the peaceful uses of the nuclear energy, Mexico contributes by means of the substitution of the high enrichment fuel HEU for low enrichment fuel LEU 30/20 in the TRIGA Mark III Reactor, belonging to Instituto Nacional de Investigaciones Nucleares (ININ). The conversion process was carried out by means of the following activities: analysis of the proposed core, reception and inspection of the fuel LEU 30/20, the discharge of the fuels of the mixed reactor core, shipment of the fuels HEU fresh and irradiated to the origin country, reload activities with the fuels LEU 30/20 and parameters measurement of the core operation. In order to maintaining the personnel's integrity and infrastructure associated to the Reactor, during the whole process the measurements of nuclear and radiological safety were controlled to detail, in execution with the license requirements of the installation. This work describes the covering activities and radiological inspections more relevant, as well as the measurements of radiological control implemented with base in the estimate of the equivalent dose of the substitution process. (Author)

  16. Safety technical investigation activities for shipment of damaged spent fuels from Fukushima Daiichi Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization(JNES) carries out the investigation for damaged fuel transportation from Fukushima Daiichi Nuclear Power Station(1F) under safety condition to support Nuclear Regulation Authority (NRA). In 2012 fiscal year, JNES carried out the investigation of spent fuel condition in unit 4 of 1F and actual result of leak fuel transport in domestic /other countries. From this result, Package containing damaged fuel from unit 4 in 1F were considered. (author)

  17. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs.

  18. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs

  19. Comparison of the transportation risks for the spent fuel in Korea for different transportation scenarios

    International Nuclear Information System (INIS)

    Jeong, Jongtae; Cho, D.K.; Choi, H.J.; Choi, J.W.

    2011-01-01

    According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. At the start of the operation of the final repository (FR), by the year 2065, transport will then take place between the CISF and the FR. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios for a maritime transportation by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. And, we estimated and compared the transportation risks for these four transportation scenarios. Also, we estimated and compared the transportation risks resulting from accidents during the transportation of PWR and PHWR spent fuels by road trailers from the CISF and the FR. From the results of this study, we found that risks resulting from accidents during the transportation of the spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future.

  20. Projections of spent fuel to be discharged by the U.S. nuclear power industry

    International Nuclear Information System (INIS)

    Alexander, C.W.; Kee, C.W.; Croff, A.G.; Blomeke, J.O.

    1977-10-01

    Calculated properties of spent fuel projected to be discharged and accumulated by the U.S. nuclear power industry through the year 2031 A.D. are presented. The projections are based on installed nuclear capacities of 380 and 543 GW(e) in the year 2000 and 2030, respectively. They include compilations of the grams of the elements, curies of radioactivity, thermal decay power, photon and neutron emission rates, and radiotoxicities of the assemblies that are accumulated at a Spent Unreprocessed Fuel Facility (SURFF), allowing for delays of 5 and 10 years before shipment to SURFF

  1. Projections of spent fuel to be discharged by the U. S. nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, C.W.; Kee, C.W.; Croff, A.G.; Blomeke, J.O.

    1977-10-01

    Calculated properties of spent fuel projected to be discharged and accumulated by the U.S. nuclear power industry through the year 2031 A.D. are presented. The projections are based on installed nuclear capacities of 380 and 543 GW(e) in the year 2000 and 2030, respectively. They include compilations of the grams of the elements, curies of radioactivity, thermal decay power, photon and neutron emission rates, and radiotoxicities of the assemblies that are accumulated at a Spent Unreprocessed Fuel Facility (SURFF), allowing for delays of 5 and 10 years before shipment to SURFF.

  2. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage

  3. 15 CFR 303.7 - Issuance of licenses and shipment permits.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Issuance of licenses and shipment permits. 303.7 Section 303.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE MISCELLANEOUS REGULATIONS WATCHES...

  4. Directory of national competent authorities' approval certificates for package design and shipment of radioactive material

    International Nuclear Information System (INIS)

    1990-04-01

    The authorization of packages and shipments of radioactive materials are issued in the form of certificates by the national competent authority of the IAEA Member State in which the package is designed or from which a shipment originates, and may be validated or endorsed by the corresponding authority of other Member States as the need arises. This directory summarizes in tabular form the key information on existing package approval certificates contained in PACKTRAM database. 5 tabs

  5. 41 CFR 102-118.130 - Must my agency use a GBL for express, courier, or small package shipments?

    Science.gov (United States)

    2010-07-01

    ... package express delivery, the terms and conditions of that contract are binding. ... for express, courier, or small package shipments? 102-118.130 Section 102-118.130 Public Contracts and... Transportation Services § 102-118.130 Must my agency use a GBL for express, courier, or small package shipments...

  6. Mission Need Statement: Idaho Spent Fuel Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  7. 9 CFR 73.6 - Placarding means of conveyance and marking billing of shipments of treated scabby cattle or...

    Science.gov (United States)

    2010-01-01

    ... marking billing of shipments of treated scabby cattle or cattle exposed to scabies. 73.6 Section 73.6... INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS SCABIES IN CATTLE § 73.6 Placarding means of conveyance and marking billing of shipments of treated scabby cattle or cattle exposed to...

  8. United States experience in the transportation of radioactive materials

    International Nuclear Information System (INIS)

    Platt, A.M.; Rhoads, R.E.; Hall, R.J.; Williams, L.D.; Brobst, W.A.; Shappert, L.B.; Jefferson, R.M.

    1977-01-01

    The transport of radioactive material forms a vital link in the nuclear fuel cycle in the United States. Actual U.S. experience and practice with such systems for the packaging and transport of uranium ore concentrates, uranium hexafluoride, fresh fuel, irradiated fuel, non-high-level waste, and plutonium with low heat generation rates are described. Specific shipping systems in current use for these services are illustrated. A comparison will be made of shipping requirements for nuclear parks versus dispersed facilities. Shipping systems for other fuel cycle materials (e.g., high-level waste and cladding hulls) have not been developed because there has been no need to transport these materials commercially. However, conceptual designs for packaging and transport of such materials have been developed. Selected systems are reviewed and summarized. Transport safety in the U.S. is regulated by the U.S. Department of Transportation and the Nuclear Regulatory Commission. Key regulations defining packaging requirements, allowable radiation dose rates, and handling procedures are reviewed. Although the radioactive material shipping industry has an outstanding safety record, opposition to nuclear fuel cycle shipments has surfaced in several areas. The U.S. congressional ban on the shipment of plutonium by air, the actions of New York City to prohibit certain shipments within the city limits, and the requirement of U.S. railroads to ship spent fuel casks only in dedicated trains are reviewed. In an attempt to provide information on the safety margins inherent in the design of radioactive materials packages, ERDA has undertaken a series of accident studies and full scale crash tests that stress the packages beyond the levels expected in severe accidents. In addition, the level of total risk associated with radioactive materials shipments is being evaluated. Current ERDA crash test and transportation risk assessment studies are reviewed. Concern about the possibility of

  9. Logistics models for the transportation of radioactive waste and spent fuel

    International Nuclear Information System (INIS)

    Joy, D.S.; Holcomb, B.D.

    1978-03-01

    Mathematical modeling of the logistics of waste shipment is an effective way to provide input to program planning and long-range waste management. Several logistics models have been developed for use in parametric studies, contingency planning, and management of transportation networks. These models allow the determination of shipping schedules, optimal routes, probable transportation modes, minimal costs, minimal personnel exposure, minimal transportation equipment, etc. Such information will permit OWI to specify waste-receiving rates at various repositories in order to balance work loads, evaluate surge capacity requirements, and estimate projected shipping cask fleets. The programs are tailored to utilize information on the types of wastes being received, location of repositories and waste-generating facilities, shipping distances, time required for a given shipment, availability of equipment, above-ground storage capabilities and locations, projected waste throughput rates, etc. Two basic models have been developed. The Low-Level Waste Model evaluates the optimal transportation policy for shipping waste directly from the source to a final destination without any intermediate stops. The Spent Fuel Logistics Model evaluates the optimal transportation policy for shipping unreprocessed spent fuel from nuclear power plants (1) indirectly, that is, to an Away-From-Reactor (AFR) storage facility, with subsequent transhipment to a repository, or (2) directly to a repository

  10. Facilitation of the USHPRR Program MP-1 Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-11

    This report describes the activities necessary to support the numerous transportation tasks involved with the successful completion of the mini-plate MP-1 and future MP experiments for the U.S. High Performance Research Reactor HEU to LEU conversion program. It includes information about the general activities necessary to implement equipment, operational processes, and safety basis changes required at the shipping facility and receipt facilities to support the shipments.

  11. Facilitation of the USHPRR Program MP-1 Shipments

    International Nuclear Information System (INIS)

    Woolstenhulme, Eric C.

    2017-01-01

    This report describes the activities necessary to support the numerous transportation tasks involved with the successful completion of the mini-plate MP-1 and future MP experiments for the U.S. High Performance Research Reactor HEU to LEU conversion program. It includes information about the general activities necessary to implement equipment, operational processes, and safety basis changes required at the shipping facility and receipt facilities to support the shipments.

  12. Spent fuel storage requirements. An update of DOE/RL-85-2

    International Nuclear Information System (INIS)

    1986-10-01

    Utility projections of spent fuel storage capacities indicate that some commercial light water reactors (LWRs) have inadequate capacity to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The report also assesses the possible impacts of increased fuel exposure and spent fuel transshipment on the requirements for additional storage capacity

  13. Waste transmutation with minimal fuel cycle long-term risk

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I.; Salvatores, M.; Uematsu, M. [Direction des Reacteurs Nucleaires, Cadarache (France)

    1995-10-01

    Hybrid systems (source-driven subcritical reactors), are investigated at CEA, mainly from a conceptual point of view, in order to assess their potential to transmute radioactive wastes (mainly long-lived fission products, LLFP) and their potential to insure a minimal long-term radiological risk related both to the fuel inventory inside the system and to the full fuel cycle (mass flows, reprocessing transport, waste disposal). The physics of these systems has been explored and work is in progress both in the field of basic data and INC code validation, in the frame of international collaborations and in the field of conceptual design studies. The most interesting feature of subcritical source-driven system is related to the possibility to obtain an {open_quotes}excess{close_quotes} of neutrons per fission, which can be used to reduce the long-term radiological risk. A specific example will be discussed here.

  14. Radiological health risks from accidents during transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Potential radiological health risks from severe accident scenarios during the transportation of spent nuclear fuels are estimated. These extremely low probability, but potentially credible, scenarios are characterized by the U.S. Nuclear Regulatory Commission's Modal Study in terms of the maximum credible structural responses and/or the maximum credible cask temperature responses. In some accident scenarios, the spent nuclear fuel casks are assumed to be breached, resulting in the release of radioactivity to the atmosphere. Models have been developed to estimate radiological health consequences, including potential short-term exposures and health effects to individuals and potential long-term environmental dose commitments and health effects to the population. The population risks are calculated using state-level data, and the resulting overall health risks are compared for several levels of cleanup effort to determine the relative effects on long-term risks to the population in the event of an accident. 4 refs., 3 figs., 3 tabs

  15. Spent fuel management in Hungary: Current status and prospects

    International Nuclear Information System (INIS)

    Ferenczi, G.

    1996-01-01

    The Paks Nuclear Power Plant Ltd. operates the only NPP of Hungary, consisting of a 4 WWER-440 type units. Since 1989, approximately 40-50 % of the total yearly electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia (previously from the Soviet Union) and the spent fuel assemblies are shipped back to Russia for later reprocessing after 5 years of decay storage in the spent fuel pools of the plant. Seeing the political and economical changes that started in Russia, the Paks NPP's management made a decision in 1990 to study the implementation of an independent spent fuel storage facility (ISFSF) at the Paks site and in 1992 to choose the GEC-ALSTHOM's MVDS. On the basis of the Construction License issued by the HAEC, the construction of the ISFSF was started in March 1995. The paper gives general information on the spent fuel arisings, the storage at the site, the shipment to Russia and on the implementation of the ISFSF. (author). 3 refs

  16. 15 CFR 30.36 - Exemption for shipments destined to Canada.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Exemption for shipments destined to Canada. 30.36 Section 30.36 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From the Requirements...

  17. 19 CFR 10.540 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ...-Singapore Free Trade Agreement Rules of Origin § 10.540 Packing materials and containers for shipment. (a... the United States. Accordingly, in applying either the build-down or build-up method for determining... shipping container which it purchased from Company B in Singapore. The shipping container is originating...

  18. 19 CFR 10.462 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ... Free Trade Agreement Rules of Origin § 10.462 Packing materials and containers for shipment. (a... disregarded in determining the regional value content of a good imported into the United States. Accordingly, in applying either the build-down or build-up method for determining the regional value content of...

  19. Directory of national competent authorities' approval certificates for packages, shipments, special arrangements and special form radioactive material

    International Nuclear Information System (INIS)

    1986-09-01

    The Agency's transport regulations prescribe various requirements for the authorization of packages and shipments in respect of both national and international movement of radioactive materials. These authorizations are issued by the relevant competent authority of the country concerned; they take the form of package approval and/or shipment approval certificates. At the request of the Standing Advisory Group of the Safe Transport of Radioactive Material (SAGSTRAM), the Agency has established a programme to maintain a file of those certificates for packages and shipments which are either transported internationally or used outside the country of origin. The purpose of this directory is to facilitate the transfer of information to competent authorities and any other person wishing details on the packaging, authorized contents or special conditions pertinent to any package or shipment. The directory enables competent authorities to be aware of the status of any certificate submitted for validation. It also indicates any change in status of any certificate already validated. Future updates of the complete data will be distributed annually in a TECDOC form and, in addition, summary listings of the certificates will be issued every six months thereafter

  20. Rapid Gamma Screening of Shipments of Analytical Samples to Meet DOT Regulations

    International Nuclear Information System (INIS)

    Wojtaszek, P.A.; Remington, D.L.; Ideker-Mulligan, V.

    2006-01-01

    The accelerated closure program at Rocky Flats required the capacity to ship up to 1000 analytical samples per week to off-site commercial laboratories, and to conduct such shipment within 24 hours of sample collection. During a period of near peak activity in the closure project, a regulatory change significantly increased the level of radionuclide data required for shipment of each package. In order to meet these dual challenges, a centralized and streamlined sample management program was developed which channeled analytical samples through a single, high-throughput radiological screening facility. This trailerized facility utilized high purity germanium (HPGe) gamma spectrometers to conduct screening measurements of entire packages of samples at once, greatly increasing throughput compared to previous methods. The In Situ Object Counting System (ISOCS) was employed to calibrate the HPGe systems to accommodate the widely varied sample matrices and packing configurations encountered. Optimum modeling and configuration parameters were determined. Accuracy of the measurements of grouped sample jars was confirmed with blind samples in multiple configurations. Levels of radionuclides not observable by gamma spectroscopy were calculated utilizing a spreadsheet program that can accommodate isotopic ratios for large numbers of different waste streams based upon acceptable knowledge. This program integrated all radionuclide data and output all information required for shipment, including the shipping class of the package. (authors)

  1. 19 CFR 10.602 - Packing materials and containers for shipment.

    Science.gov (United States)

    2010-04-01

    ...-Central America-United States Free Trade Agreement Rules of Origin § 10.602 Packing materials and... regional value content calculation. Packing materials and containers for shipment, as defined in § 10.593(m) of this subpart, are to be disregarded in determining the regional value content of a good imported...

  2. Intermodal transfer of spent fuel

    International Nuclear Information System (INIS)

    Neuhauser, K.S.; Weiner, R.F.

    1991-01-01

    As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel

  3. Advanced accountability techniques for breeder fuel fabrication facilities

    International Nuclear Information System (INIS)

    Bennion, S.I.; Carlson, R.L.; DeMerschman, A.W.; Sheely, W.F.

    1978-01-01

    The United States Department of Energy (DOE) has assigned the Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, the project lead in developing a uniform nuclear materials reporting system for all contractors on the Hanford Reservation. The Hanford Nuclear Inventory System (HANISY) is based upon HEDL's real-time accountability system, originally developed in 1968. The HANISY system will receive accountability data either from entry by process operators at remote terminals or from nondestructive assay instruments connected to the computer network. Nuclear materials will be traced from entry, through processing to final shipment through the use of minicomputer technology. Reports to DOE will be formed directly from the realtime files. In addition, HEDL has established a measurement program that will complement the HANISY system, providing direct interface to the computer files with a minimum of operator intervention. This technology is being developed to support the High Performance Fuels Laboratory (HPFL) which is being designed to assess fuel fabrication techniques for proliferation-resistant fuels

  4. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Thijssen, P.J.M.

    1999-01-01

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235 U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  5. Recent experience in planning, packaging and preparing non-commercial spent fuel for shipment within the United States

    International Nuclear Information System (INIS)

    Johnson, P.E.; Shappert, L.B.; Turner, D.W.

    1996-01-01

    US DOE orders dictate that the aluminium clad fuels now stored at ORNL will be shipped to the Savannah River Site. A number of activities had to be carried out in order to ready the fuel for shipping, including choosing a cask capable of transporting the fuel, repackaging the fuel, developing a transportation plan, identifying the appropriate routes, and carrying out a readiness self assessment. These tasks have been successfully completed and are discussed herein

  6. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA

    Directory of Open Access Journals (Sweden)

    José Luis Fuentes-Bargues

    2017-06-01

    Full Text Available The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA. Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain. HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants.

  7. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA.

    Science.gov (United States)

    Fuentes-Bargues, José Luis; González-Cruz, Mª Carmen; González-Gaya, Cristina; Baixauli-Pérez, Mª Piedad

    2017-06-30

    The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain). HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants.

  8. Risk of transporting plutonium dioxide and liquid plutonium nitrate by truck and rail

    International Nuclear Information System (INIS)

    Williams, L.D.; Hall, R.J.

    1976-07-01

    Results are summarized of the risk assessments of shipping PuO 2 powder and liquid Pu nitrate by truck and rail in the U.S. In the analysis method used, the system is described, potential release sequences are identified and evaluated (fault tree used), and the system risk is assessed. It is concluded that: there is little difference in risk in shipping PuO 2 by rail and by truck; there also is little change in risk in shipping PuO 2 by rail and by truck; there also is little change in risk for liquid shipment; the vermiculite loss is somewhat less important in rail shipment; and the response of the L-10 container to crush is more important in rail transport

  9. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  10. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    International Nuclear Information System (INIS)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation

  11. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  12. The Global Threat Reduction Initiative's Return of Highly Enriched Uranium from Chile

    Energy Technology Data Exchange (ETDEWEB)

    Messick, C.E.; Dickerson, S.L.; Greenberg, R.F. Jr. [U.S. Department of Energy, National Nuclear Security Administration, Washington D.C. (United States); Andes, T.C. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2011-07-01

    In March 2010, the U.S. National Nuclear Security Administration's Office of Global Threat Reduction (GTRI), in collaboration with the Chilean Nuclear Energy Commission (CCHEN), completed a shipment of 18.2 kilograms of non-U.S.-origin highly enriched uranium (HEU) to the United States. The HEU was in the form of 71 aluminium-clad material test reactor (MTR) fuel elements and was the first GTRI Gap Program shipment that included non-U.S. origin irradiated nuclear fuel. Although shipments of research reactor fuels are not unique, this shipment served as a cornerstone to the first Presidential Nuclear Security Summit held in Washington, D.C., in April 2010. Carrying out the shipment became critical when a severe earthquake struck Chile just one day before the shipment was to occur. As the fuel had already been packaged in casks and the ocean vessels were nearing the port, U.S. and Chilean officials decided that it was most imperative that the shipment continue as planned. After careful analysis of the situation, inspection of the transportation packages, roadways, and port services, the shipment team was able to make the shipment occur in a safe and secure manner. This paper describes the loading activities at both the RECH-1 and RECH-2 reactors as well as the transportation of the loaded casks to the port of departure. (author)

  13. Industry self-regulation to improve student health: quantifying changes in beverage shipments to schools.

    Science.gov (United States)

    Wescott, Robert F; Fitzpatrick, Brendan M; Phillips, Elizabeth

    2012-10-01

    We developed a data collection and monitoring system to independently evaluate the self-regulatory effort to reduce the number of beverage calories available to children during the regular and extended school day. We have described the data collection procedures used to verify data supplied by the beverage industry and quantified changes in school beverage shipments. Using a proprietary industry data set collected in 2005 and semiannually in 2007 through 2010, we measured the total volume of beverage shipments to elementary, middle, and high schools to monitor intertemporal changes in beverage volumes, the composition of products delivered to schools, and portion sizes. We compared data with findings from existing research of the school beverage landscape and a separate data set based on contracts between schools and beverage bottling companies. Between 2004 and the 2009-2010 school year, the beverage industry reduced calories shipped to schools by 90%. On a total ounces basis, shipments of full-calorie soft drinks to schools decreased by 97%. Industry self-regulation, with the assistance of a transparent and independent monitoring process, can be a valuable tool in improving public health outcomes.

  14. Problems of dosimetry and risk assessment associated with inhalation of fuel particles

    International Nuclear Information System (INIS)

    Repin, V.S.; Nechaev, S.Y.; Bondarenko, O.A.; Bykorez, A.I.; Kononenko, L.I.

    1995-01-01

    This work deals with the problems of dosimetry and risk assessment associated with inhalation of fuel particles. Radioactive emission parameters and potential for assessment of the lung cancer risk with inhalation penetration of hot particles are described. (O.L.). 10 refs., 9 figs., 1 tab

  15. Use of probabilistic risk assessment in fuel cycle facilities

    International Nuclear Information System (INIS)

    Gonzalez, Felix; Gonzalez, Michelle; Wagner, Brian

    2013-01-01

    As expressed in its Policy Statement on the Use of Probabilistic Risk Assessment (PRA) Methods in Nuclear Regulatory Activities, the U.S Nuclear Regulatory Commission has been working for decades to increase the use of PRA technology in its regulatory activities. Since the policy statement was issued in 1995, PRA has become a core component of the nuclear power plant (NPP) licensing and oversight processes. In the last several years, interest has increased in PRA technologies and their possible application to other areas including, but not limited to, spent fuel handling, fuel cycle facilities, reprocessing facilities, and advanced reactors. This paper describes the application of PRA technology currently used in NPPs and its application in other areas such as fuel cycle facilities and advanced reactors. It describes major challenges that are being faced in the application of PRA into new technical areas and possible ways to resolve them. (authors)

  16. Comparison of the Transportation Risks Resulting from Accidents during the Transportation of the Spent Fuel

    International Nuclear Information System (INIS)

    Jeong Jong Tae; Cho, Dong Kuen; Choi, Heui Joo; Choi, Jong Won

    2007-01-01

    The safe, environmentally sound and publicly acceptable disposal of high level wastes and spent fuels is becoming a very important issue. The operational safety assessment of a repository including a transportation safety assessment is a fundamental part in order to achieve this goal. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for spent fuels. Also, we estimated and compared the transportation risks resulting from the accidents during the transportation of spent fuels for these four transportation scenarios

  17. Spent fuel pool risk analysis for the Dukovany NPP

    Energy Technology Data Exchange (ETDEWEB)

    Hust' ak, S.; Jaros, M.; Kubicek, J. [UJV Rez, a.s., Husinec-Rez (Czech Republic)

    2013-07-01

    UJV Rez, a.s. maintains a Living Probabilistic Safety Assessment (Living PSA) program for Dukovany Nuclear Power Plant (NPP) in the Czech Republic. This project has been established as a framework for activities related to risk assessment and to support for risk-informed decision making at this plant. The most extensively used PSA application at Dukovany NPP is risk monitoring of instantaneous (point-in-time) risk during plant operation, especially for the purpose of configuration risk management during plant scheduled outages to avoid risk significant configurations. The scope of PSA for Dukovany NPP includes also determination of a risk contribution from spent fuel pool (SFP) operation to provide recommendations for the prevention and mitigation of SFP accidents and to be applicable for configuration risk management. This paper describes the analysis of internal initiating events (IEs) in PSA for Dukovany NPP, which can contribute to the risk from SFP operation. The analysis of those IEs was done more thoroughly in the PSA for Dukovany NPP in order to be used in instantaneous risk monitoring. (orig.)

  18. 7 CFR 318.47-4 - Shipments by the Department of Agriculture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Shipments by the Department of Agriculture. 318.47-4 Section 318.47-4 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES...

  19. Spent Nuclear Fuel Transportation Risk Assessment Methodology for Homeland Security

    International Nuclear Information System (INIS)

    Teagarden, Grant A.; Canavan, Kenneth T.; Nickell, Robert E.

    2006-01-01

    In response to increased interest in risk-informed decision making regarding terrorism, EPRI was selected by U.S. DHS and ASME to develop and demonstrate a nuclear sector specific methodology for owner / operators to utilize in performing a Risk Analysis and Management for Critical Asset Protection (RAMCAP) assessment for the transportation of spent nuclear fuel (SNF). The objective is to characterize SNF transportation risk for risk management opportunities and to provide consistent information for DHS decision making. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. Worst reasonable case scenarios characterize risk for a benchmark set of threats and consequence types. A trial application was successfully performed and implementation is underway by one utility. (authors)

  20. Evaluating the loss of a LWR spent fuel or plutonium shipping package into the sea

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Baker, D.A.

    1976-06-01

    As the nations of the world turn to nuclear power for an energy source, commerce in nuclear fuel cycle materials will increase. Some of this commerce will be transported by sea. Such shipments give rise to the possibility of loss of these materials into the sea. This paper discusses the postulated accidental loss of two materials, light water reactor (LWR) spent fuel and plutonium, at sea. The losses considered are that of a single shipping package which is either undamaged or damaged by fire prior to the loss. The containment failure of the package in the sea,

  1. Analysis and management of risks from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1989-04-01

    The Coordinated Research Programme (CRP) on Risk Criteria for the Nuclear Fuel Cycle was begun in 1983 with several objectives: A primary objective was to permit countries with little experience with risk assessment methods to gain familiarity with these techniques. Another objective was to support work regarding safety criteria complementary to the risk assessment work. Risk criteria expressed as quantitative safety goals or targets can be used to establish acceptable safety levels; in this respect, they define what it is that risk assessments should measure; conversely the capabilities of risk assessment must be recognized when risk criteria are established. In addition to the work by each participating country under the sponsorship of the programme, the exchange of information between the participants was an objective of the programme. Refs, figs and tabs

  2. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    International Nuclear Information System (INIS)

    Makenas, B.J.

    1996-01-01

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories

  3. 15 CFR 30.35 - Procedure for shipments exempt from filing requirements.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Procedure for shipments exempt from filing requirements. 30.35 Section 30.35 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS Exemptions From the...

  4. Report of lower endplug welding, and testing and inspecting result for MONJU 1{sup th} reload core fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Takasi; Numata, Kazuaki; Ohtani, Seiji [Quality Assuranse Section, Technical Administration Division, Plutonium Fuel Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Kobayashi, Hiromi; Watanabe, Hiroaki; Goto, Tatsuro; Takahashi, Hideki; Nagasaku, Katsuhiko [Inspection Development Campany Ltd., Tokai, Ibaraki (Japan)

    2000-02-01

    The procedure and result of lower endplugwelding, Test and Inspection and Shipment of the 1{sup th} reload core fuel assembly (80 Fuel Assemblies) for the fast breeder reactor MONJU are reported, which had been examined and inspected in Tamatsukuri Branch, Material Insurance Office, Quality Assurance Section, Technical Administration Division, Plutonium Fuel Center (before: Inspection Section, Plutonium Fuel Division), from June 1994 to January 1996. The number of cladding tubes welded to the endplug were totally 13,804: 7,418 for Core - Inside of 43 fuel Assemblies and 6,836 for Core-Outside of 37 fuel Assemblies. 13,794 of them, 7,414 Core-Inside and 6,379 Core-Outside, were approved by the test and sent to Plutonium Fuel Center. 10 of them weren't approved mainly because of default welding. Disapproval rating was 0.07%. (author)

  5. U.S. Department of Energy operational experience with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Massey, Charles D.; Mustin, Tracy P.

    1998-01-01

    On May 13, 1996, the U.S. Department of Energy issued a Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The goal of the long-term policy is to recover enriched uranium exported from the United States, while giving foreign research reactor operators sufficient time to develop their own long-term solutions for storage and disposal of spent fuel. The spent fuel accepted by the U.S. DOE under the policy must be out of the research reactors by May 12, 2006 and returned to the United States by May 12, 2009. (author)

  6. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  7. Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, Mohsen Parsa

    2011-01-01

    This work addresses a relevant methodology for self-scheduling of a price-taker fuel and emission constrained power producer in day-ahead correlated energy, spinning reserve and fuel markets to achieve a trade-off between the expected profit and the risk versus different risk levels based on Markowitz's seminal work in the area of portfolio selection. Here, a set of uncertainties including price forecasting errors and available fuel uncertainty are considered. The latter uncertainty arises because of uncertainties in being called for reserve deployment in the spinning reserve market and availability of power plant. To tackle the price forecasting errors, variances of energy, spinning reserve and fuel prices along with their covariances which are due to markets correlation are taken into account using relevant historical data. In order to tackle available fuel uncertainty, a framework for self-scheduling referred to as rolling window is proposed. This risk-constrained self-scheduling framework is therefore formulated and solved as a mixed-integer non-linear programming problem. Furthermore, numerical results for a case study are discussed. (author)

  8. The low-enrichment fuel development program

    International Nuclear Information System (INIS)

    Stahl, D.

    1993-01-01

    In the 1950s and 1960s, low-power research reactors were built around the world utilized MTR-type fuel elements containing 20% enriched uranium. However, the demand for higher specific power created a need for greater uranium-235 concentrations. Early difficulties in increasing uranium content led to the substitution of highly enriched uranium in place of the 20% enriched fuel previously utilized. The highly enriched material also yielded other benefits including longer core residence time, higher specific reactivity, and somewhat lower cost. Highly enriched material then became readily available and was used for high-power reactors as well as in low-power reactors where 20% enriched material would have sufficed. The trend toward higher and higher specific power also led to the development of the dispersion-type fuels which utilized highly enriched uranium at a concentration of about 40 wt%. In the 1970's, however, concerns were raised about the proliferation resistance of fuels and fuel cycles. As a consequence, the U.S. Department of State has recently prohibited the foreign shipment of highly enriched material, except where prior contractual obligation or special merit exists. This will impact on the availability and utilization of highly enriched uranium for research and test reactor fuel. It has also stimulated development programs on fuels with higher uranium content which would allow the use of uranium of lower enrichment. The purpose of this report is to briefly describe the overall fuel-development program which is coordinated by Argonne National Laboratory for the Department of Energy, and to indicate the current and potential uranium loadings. Other reports will address the individual fuel-development activities in greater detail

  9. Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2 radioactive waste and laundry shipments

    International Nuclear Information System (INIS)

    Doerge, D.H.; Haffner, D.R.

    1988-06-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order

  10. The whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worth, cycle length, fuel discharge burn-up, gamma heating rate, β eff /l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed. Key issues being addressed in the safety assessment are fuel performance, radiological consequences, margin to burnout and transient behavior. The LEU core is comparable in all safety aspects to the HEU core and the transition core is only marginally worse owing to higher power seeking factors. (author)

  11. 48 CFR 47.207-3 - Description of shipment, origin, and destination.

    Science.gov (United States)

    2010-10-01

    ..., hazardous material, whether packed for export, or unusual value. (d) Exclusion of freight. The contracting officer shall (1) clearly identify any freight or types of shipments that are subject to exclusion; e.g... clause substantially the same as the clause at 52.247-7, Freight Excluded, when any commodities or types...

  12. Bombs grade 'spent' nuclear material removed from Uzbekistan

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: Spent nuclear fuel containing enough uranium to produce 2.5 nuclear weapons has been safely returned to Russia from Uzbekistan in a classified mission completed on 19 April 2006. It is the first time that fuel used in a nuclear research reactor - referred to as 'spent' - has been repatriated to Russia since the break-up of the Soviet Union. Under tight security, 63 kilograms of spent highly enriched uranium (HEU) was transported to Mayak in Russia, in four separate shipments. IAEA safeguards inspectors monitored and verified the packing of the fuel for transport over the course of 16 days. The secret operation, six years in the planning, was a joint undertaking of the IAEA, the United States, Uzbekistan, Russia and Kazakhstan as part of the Global Threat Reduction Initiative (GTRI). The aim of the GTRI is to identify, secure and recover high-risk vulnerable nuclear and radiological materials around the world. 'There was particular concern about the Uzbek spent fuel given its significant quantity and that it was no longer 'self protecting', 'the IAEA's Crosscutting Co-ordinator for Research Reactors, Mr. Pablo Adelfang, said. 'This means that the fuel has lost its high radioactivity. In other words, it would no longer injure anyone who handled it and would not deter potential thieves,' Mr. Adelfang said. 'The shipment is an important step to reduce stockpiles of high-risk, vulnerable nuclear materials. Russia, the US, Uzbekistan and Kazakhstan should be applauded for their successful cooperation. It will contribute to the security of both Uzbekistan and the international community,' he added. In Russia, the fuel will be processed so that it can not be used for atomic bombs. Russia originally supplied the nuclear fuel to Uzbekistan for use in its 10 megawatt research reactor. Located at the Institute of Nuclear Physics of Uzbekistan, 30 km from Tashkent, the reactor is currently used for research and to produce isotopes for medical purposes. The IAEA is

  13. Materials accountancy and control for power reactors and associated spent-fuel storage

    International Nuclear Information System (INIS)

    Ek, P.

    1982-01-01

    Materials accountancy and control at power reactors is an integrated part of the Swedish National System of Accuntancy and Control of Nuclear Materials. The nuclear material is stratified on the basis of measurement accuracy. The physical form of the material makes item accountability applicable on the rod level. Consequently, fuel assembly dismantling and fuel rod exchanges present special problems. Both physical inventory verification and the shipment of irradiated fuel are extensive operations involving inspections and controls on inventory records and fuel elements. A method for nondestructive measurement of irradiated fuel is under development in cooperation with the IAEA. The method has been tested at a reactor station with encouraging results. An away from reactor storage facility for spent fuel is under construction in Sweden. Optical verificationof each fuel element at all times is one of the basic facility control requirements. The receiving/shipping area of the storage facility is being designed and equipped to make NDA-measurements feasible. The overlal cooperation with the IAEA in matters related to safeguarding power reactors is proceeding smoothly. There are, however, some differences of opinion, for example, as regards material stratification (Key Measurement Points) and verification procedures

  14. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  15. Capabilities of U.S. domestic transportation systems for the shipment of radioactive wastes

    International Nuclear Information System (INIS)

    Best, R.E.; Allen, J.H.; Aucoin, P.A.; Ball, G.D.; Hoffman, C.C.; Mason, M.E.; Propes, W.A.; Vizzini, T.A.

    1977-09-01

    This document is a compilation of data and reports that provide an overview of the capabilities of U.S. domestic transportation systems for the shipment of materials that are or may be classified as radioactive wastes

  16. Denials and Delays of Radioactive Material Shipments

    International Nuclear Information System (INIS)

    El-Shinawy, R.M.K.

    2011-01-01

    delays of shipments of radioactive materials forms an important issue today. Radioactive materials need to be transported using all modes of transport for use in different applications such as public health, industry, research and production of nuclear power. The transport of radioactive materials is governed by national and international regulations, which are based on the International Atomic Energy Agency (IAEA) regulations for safe transport of radioactive materials (TS-R-1). These regulations ensure high standards of safety. Recently there were increasing numbers of instances of denials and delays of shipments of radioactive materials even when complying with the regulations. The denials and delays can result in difficulties to patients and others who rely on products sterilized by radiation. Therefore there is an urgent need for a universally accepted approach to solve this problem. In response, the IAEA has formed an International Steering Committee (ISC) on denials and delays of radioactive materials. Also, it designate the National Focal Points (NFP) representative to help the ISC members and the IAEA by informing about denial operations and how they can help. The Steering Committee developed and adopted an action plan which includes the action to be taken. This plan is based on: Awareness, Training, Communication, Lobbying for marketing, Economic and Harmonization among member states. It is important to work within the mandate of the ISC and in the line of action plan on denials and delays. It identified the following network members such as: National Focal Points, Regional Coordinators, National Committee, National Representative for different modes of transport and similar bodies, Carriers, Producers and Suppliers, Different civil societies, NGO's, Ministry of transport and others.

  17. ETR fuel element shipping container addendum to PR-T-79-011 (TR-466). Internal technical report

    International Nuclear Information System (INIS)

    Smith, M.C.

    1979-01-01

    In July, 1979, EG and G Idaho, Inc. was requested to evaluate the ETR Fuel Element Shipping Container for compliance with existing transport regulations, in order to ship GETR fuel elements from Vallecitos, California to the INEL. Technical report PR-T-79-011 (TR-466), ATR Fuel Element Shipping Container Safety Analysis, was used as a basis for this evaluation. The safety analysis contained in technical report PR-T-79-011 (TR-466) was performed utilizing the ATR, ETR, MTR, and SPERT shipping containers. The report determined the ETR Fuel Element Shipping Container does comply with the existing transport regulations for a Type A quantity, Fissile Class I shipping container. The ETR and GETR fuel elements are essentially identical in physical size, construction, and fissile material content, the analysis documented in this report has determined the shipment of GETR fuel elements in the ETR shipping container to be safe and pose no threat to the public health and safety

  18. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  19. Risk comparisons for the transportation of spent fuel from nuclear reactors

    International Nuclear Information System (INIS)

    Hull, A.P.; Lessard, E.T.

    1985-04-01

    In summary, on the basis of calculated estimates, tests and accident statistics, the transport of spent nuclear fuel by whatever means has been shown to represent an infinitesimally small risk to the public, wherever they may be located enroute. This conclusion is based on three points (1) the probability of an accident involving spent fuel is small, (2) the probability that this hypothetical accident releases radioactive materials is even smaller and (3) the public-health consequences of such a release are trivial. It hardly seems to warrant the extensive assessment that it has received. If the risk to the public is of concern, this attention and analysis might have been more profitably spent on the improvement of the safety of the transport of a wide variety of other hazardous substances, which at present are given little if any prior scrutiny

  20. Processing Discrepancy Reports Against Foreign Military Sales Shipments (Supplementation is Permitted at all Levels)

    National Research Council Canada - National Science Library

    Tucker, Gary

    1991-01-01

    ...) shipments are processed. It provides for the basic documents required to support adjustment of property and financial inventory accounting records, notification to shippers of the type of discrepancies, required corrective...

  1. Cross-border shipment route selection utilizing analytic hierarchy process (AHP method

    Directory of Open Access Journals (Sweden)

    Veeris Ammarapala

    2018-02-01

    Full Text Available Becoming a member of ASEAN Economic Community (AEC, Thailand expects a growth of cross-border trade with neighboring countries, especially the agricultural products shipment. To facilitate this, a number of strategies are set, such as the utilization of single check point, the Asian Highway (AH route development, and the truck lane initiation. However, majority of agricultural products traded through the borders are transported using the rural roads, from growing area to the factory, before continuing to the borders using different highways. It is, therefore, necessary for the Department of Rural Roads (DRR to plan for rural road improvement to accommodate the growth of the cross-border trades in the near future. This research, thus, aims to select potential rural roads to support cross-border shipment utilizing the analytic hierarchy process (AHP method. Seven key factors affecting rural roads selection, with references from transport and other related literatures, are extracted. They include:1 cross-border trade value, 2 distance from border to rural road, 3 agriculture and processed agriculture goods transported across the border, 4 compatibility with national strategies, 5 area characteristics around the rural road, 6 truck volume, and 7 number of rural roads in the radius of 50 kilometers from the border. Interviews are conducted with the experts based on seven key factors to collect data for the AHP analysis. The results identify the weight of each factor with an acceptable consistency ratio. It shows that the cross-border trade value is the most important factor as it achieves the highest weight. The distance from border to rural road and the compatibility with national strategies are also found crucial when making rural road selection decision. The Department of Rural Roads could use the results to select suitable roads, and plan for road improvement to support the crossborder shipment when the AEC is fully implemented.

  2. Slovenian System for Protecting Against Radioactive Material in Scrap Metal Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A.; Cesarek, J.; Vokal Nemec, B., E-mail: andrej.stritar@gov.si [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2011-07-15

    The Slovenian experience shows that the majority of detected orphan sources are associated with imports of scrap metal to Slovenia and transits of that material through Slovenia. Such orphan sources originate from past industrial activities and weak regulatory control in the countries of origin. In order to minimise the number of sources outside regulatory control several regulatory and law enforcement measures have been implemented. To prevent illicit trafficking across the border the 'First line of defence' - customs and police - are equipped with radiation detection devices. Since 2002, the Slovenian Nuclear Safety Administration (SNSA) has provided a 24-hour on-duty officer, who gives advice in case of the discovery of an orphan source. The majority of scrap metal collectors and re-cyclers are equipped with portal monitors and/or hand-held radiation detection equipment. Generally, good cooperation has been established between different organizations within Slovenia, with neighbouring countries and with some international organizations. To regulate the scrap metal activities, a new Decree on checking the radioactivity of shipments of metal scrap has been in force since 1 January 2008. This decree requires that every importer has to present a certificate of radiation measurement before any shipment of scrap metal is brought into Slovenia. Such measurements can be performed only by certified organizations. These organizations can obtain certification from the SNSA providing that they have the prescribed measuring devices, adequate training and procedures, and that their capabilities have been checked by a technical support organization. The experience after one year of application of the decree is positive. Awareness, including the adequacy of response, has increased. The paper discusses the general scheme for protection against illicit radioactive material in scrap metal shipments and the Slovenian experience in the last decade. (author)

  3. Calculation of health risks from spent-nuclear-fuel transportation accidents

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1987-01-01

    Models developed to analyze potential radiological health risks from various accident scenarios during transportation of spent nuclear fuels are described. The models are designed both for detailed route-specific risk analyses and for use in conducting overall risk analyses for route selection and related decision-making activities. The radiological risks calculated include individual dose commitments, collective dose commitments, and long-term (100-year) environmental dose commitments to a population following release of radioactivity. To facilitate route-specific analysis, a state-level database was developed and incorporated into the model. Route-specific analysis is demonstrated by the calculation of radiological risks resulting from various accident scenarios, as postulated by the recent US Nuclear Regulatory Commission Modal Study, for four representative states selected from various regions of the United States. 10 refs., 3 figs., 3 tabs

  4. Basis for Interim Operation for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2003-01-01

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the current and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment

  5. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Tanner, J.E.; Brackenbush, L.W.; Gilbert, E.S.

    1984-08-01

    A health risk assessment was conducted to investigate the impact of implementing regulations from the Environmental Protection Agency's Final Environmental Statement - 40 CFR 190 - Environmental Protection Requirements for Normal Operation of Activities in the Uranium Fuel Cycle. Potential risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. The average occupationally exposed worker was estimated to receive about 400 to 600 mrem/y from 85 Kr recovery and immobilization activities. This dose is a factor of 20,000 to 30,000 higher than the estimated dose to the maximum offsite individual (0.02 mrem/y), and a factor of 130,000 to 200,000 higher than the dose received by the average member of the 50-mile population (0.003 mrem/y) from routine release of all 85 Kr. Given the uncertainties in the models used to generate lifetime risk numbers (0.02-0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks cannot be considered meaningful. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from recovery, immobilization and storage of the noble gas. 22 references, 1 figure, 3 tables

  6. Risk-based approach for bioremediation of fuel hydrocarbons at a major airport

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Guest, P.R.; Blicker, B.R.

    1994-01-01

    This paper describes a risk-based approach for bioremediation of fuel-hydrocarbon-contaminated soil and ground water at a major airport in Colorado. In situ bioremediation pilot testing, natural attenuation modeling, and full-scale remedial action planning and implementation for soil and ground water contamination has conducted at four airport fuel farms. The sources of fuel contamination were leaking underground storage tanks (USTs) or pipelines transporting Jet A fuel and aviation gasoline. Continuing sources of contamination were present in several small cells of free-phase product and in fuel residuals trapped within the capillary fringe at depths 15 to 20 feet below ground surface. Bioventing pilot tests were conducted to assess the feasibility of using this technology to remediate contaminated soils. The pilot tests included measurement of initial soil gas chemistry at the site, determination of subsurface permeability, and in situ respiration tests to determine fuel biodegradation rates. A product recovery test was also conducted. ES designed and installed four full-scale bioventing systems to remediate the long-term sources of continuing fuel contamination. Benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH) were detected in ground water at concentrations slightly above regulatory guidelines

  7. Resource handbook on transport risk assessment (invited paper)

    International Nuclear Information System (INIS)

    Chen, S.Y.; Biwer, B.M.; Monette, F.A.; Luna, R.; Weiner, R.; Yoshimura, R.; Detrick, C.; Dunn, T.; Maheras, S.; Bhatnager, S.; Kapoor, A.K.

    2003-01-01

    The US Department of Energy's (DOE's) National Transportation Program established the DOE Transportation Risk Assessment Working Group (TRAWG) to develop the Resource Handbook on DOE Transportation Risk Assessment, published in July 2002. The working group is comprised of technical experts representing DOE national laboratories, the DOE Naval Reactors Program, and DOE contractors. The motivation behind preparing this handbook was to document and disseminate lessons learned and information accumulated from more than 20 years of experience by DOE and its contractors in preparing transport risk assessments that address the shipment of virtually all types of radioactive materials and wastes. The handbook is intended to serve as a primary source of information on conducting transport risk assessments for shipments of radioactive materials or wastes under both normal and accident conditions. The paper provides an overview of the information contained in the handbook. It should be recognised that development of radioactive materials transport risk assessment is an ongoing process, and that the analysis methods are regularly improved. The Resource Handbook on DOE Transportation Risk Assessment appears on the Web at www.ntp.doe.gov/transrisk_handbook.pdf. (author)

  8. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  9. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    International Nuclear Information System (INIS)

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  10. Packaging and transportation system for K-Basin spent fuel-component testing

    International Nuclear Information System (INIS)

    Kee, A.T.

    1998-01-01

    This paper describes the cask/transportation system that was designed, procured and delivered to the Hanford K-Basin site at Richland, Washington. The performance requirements and design of the various components -- cask, trailer with cask tie-down system, and the cask operation equipment for the load-out pit -- will be discussed. The presentation will include the details of the factory acceptance testing and its results. The performance requirements for the cask/transportation system was dictated by the constraints imposed by the large number of high priority shipments and the spent fuel pool environment, and the complex interface requirements with other equipment and facility designs. The results of the testing form the basis for the conclusion that the system satisfies the site performance requirements. The cask/transportation system design was driven by the existing facility constraints and the limitations imposed by the large number of shipments over a short two-year period. This system may be useful information for other DOE facilities that may be or will be in a similar situation

  11. Cost targets for at-reactor spent fuel rod consolidation

    International Nuclear Information System (INIS)

    Macnabb, W.V.

    1985-01-01

    The high-level nuclear waste management system in the US currently envisions the disposal of spent fuel rods that have been removed from their assemblies and reconfigured into closely packed arrays. The process of fuel rod removal and packaging, referred to as rod consolidation, can occur either at reactors or at an integrated packaging facility, monitored retrievable storage (MRS). Rod consolidation at reactors results in cost savings down stream of reactors by reducing needs for additional storage, reducing the number of shipments, and reducing (eliminating, in the extreme) the amount of fuel handling and consolidation at the MRS. These savings accrue to the nuclear waste fund. Although private industry is expected to pay for at-reactor activities, including rod consolidation, it is of interest to estimate cost savings to the waste system if all fuel were consolidated at reactors. If there are savings, the US Department of Energy (DOE) may find it advantageous to pay for at-reactor rod consolidation from the nuclear waste fund. This paper assesses and compares the costs of rod consolidation at reactors and at the MRS in order to determine at what levels the former could be cost competitive with the latter

  12. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  13. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  14. 16 CFR 1611.39 - Shipments under section 11(c) of the act.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.39 Shipments... commerce for such purpose maintains records which establish (1) that the textile fabric or article of... been completed, as well as records to show the disposition of such textile fabric or article of wearing...

  15. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    Energy Technology Data Exchange (ETDEWEB)

    Juergen, S.; Herman, S. [Transnubel, Dessel (Belgium)

    2004-07-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR.

  16. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    International Nuclear Information System (INIS)

    Juergen, S.; Herman, S.

    2004-01-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR

  17. Spent fuel transportation on highways: the radioactive dose to the traffic

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    1975-01-01

    The radioactive exposure of the traffic moving on the same highway as spent fuel shipments has been neglected in the past. Methods developed for calculating peak exposures, the number of individuals receiving a dose in excess of a certain limiting value, and the cumulative population doses for the occupants of the vehicles under a variety of highway and accident conditions allow comparisons to the corresponding stationary-population doses. Consideration of both routine direct-radiation exposures and accidental releases indicates that the traffic doses can be of equal or greater importance than the stationary-population doses

  18. Breeder Spent Fuel Handling (BSFH) cask study for FY83. Final report

    International Nuclear Information System (INIS)

    Diggs, J.M.

    1985-01-01

    This report documents a study conducted to investigate the applicability of existing LWR casks to shipment of long-cooled LMFBR fuel from the Clinch River Breeder Reactor Plant (CRBRP) to the Breeder Reprocessing Engineering Test (BRET) Facility. This study considered a base case of physical constraints of plants and casks, handling capabilities of plants, through-put requirements, shielding requirements due to transportation regulation, and heat transfer capabilities of the cask designs. Each cask design was measured relative to the base case. 15 references, 4 figures, 6 tables

  19. Shipment of LLW by intercoastal maritime service

    International Nuclear Information System (INIS)

    Barbour, D.A.

    1985-01-01

    Transportation costs are a significant element of total waste disposal costs. In 1982, Nuclear Metals, Inc. (NMI) began a series of tests and investigations to examine the feasibility of using alternative modes for its low-level waste (LLW) shipments. NMI's investigations and experience have identified significant problems in transporting LLW by rail. Intercoastal maritime service, however, has been demonstrated as a safe and cost-effective way of transporting LLW from eastern seaboard generation sites to the repository at Beatty, Nevada. Intuition is an unreliable guide in this area. Waste managers need to periodically assess and compare combined transportation and burial costs for all site options to ensure that disposal operations are conducted in the most rational way

  20. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study