WorldWideScience

Sample records for fuel plate temperatures

  1. Release of fission products from miniature fuel plates at elevated temperature

    International Nuclear Information System (INIS)

    Posey, J.C.

    1982-01-01

    Three miniature fuel plates were tested at progressively higher temperatures. A U 3 Si plated blistered and released fission gases at 500 0 C. Two U 3 O 8 filled plates blistered and released fission gases at 550 0 C

  2. Release of fission products from miniature fuel plates at elevated temperature

    International Nuclear Information System (INIS)

    Posey, John C.

    1983-01-01

    Three miniature fuel plates were tested at progressively higher temperatures. A U 3 Si filled plate blistered and released fission gases at 500 deg. C. Two U 3 O 8 filled plates blistered and released fission gases at 550 deg. C. (author)

  3. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  4. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  5. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  6. Calculation of plate temperatures in a Mk 4 LEU fuel element

    International Nuclear Information System (INIS)

    Haack, K.

    1988-09-01

    A calculation method for estimating the axial temperature distributions of each tube in each of the 26 fuel elements of the DR 3 core is described and demonstrated. With input data for fuel element power, D2O outlet temperature and main D2O circulator combination, a computer code calculates all important temperatures in the fuel element. 11 tabs., 32 ills. 8 refs. (author)

  7. Calculation of plate temperatures in a Mk 4 LEU fuel element

    International Nuclear Information System (INIS)

    Haack, K.

    1991-10-01

    A calculation method for estimating the axial temperature distributions of each tube in each of the 26 fuel elements of the DR 3 core is described and demonstrated. With input data for fuel element power, D 2 O outlet temperature and main D 2 O circulator combination, a computer code calculates all important temperatures in the fuel element. Preface to Second Edition Oct. 1991. The second edition is based on the more reliable thermophysical heavy water properties made available by the investigations of Professor J. Bukovsky. The values in the tables are replaced and a new set of fuel element temperature curves is enclosed as an example of the temperature distributions in a low enriched uranium (19,8% 235 U as U 3 Si 2 ). (author) 11 tabs., 32 ills., 9 refs

  8. MTR fuel plate qualification capabilities at SCK-CEN

    International Nuclear Information System (INIS)

    Koonen, E.; Jacquet, P.

    2002-01-01

    In order to enhance the capabilities of BR2 in the field of MTR fuel plate testing, a dedicated irradiation device has been designed. In its basic version this device allows the irradiation of 3 fuel plates. The central fuel plate may be replaced by a dummy plate or a plate carrying dosimeters. A first FUTURE device has been built. A benchmark irradiation has been executed with standard BR2 fuel plates in order to qualify this device. Detailed neutronic calculations were performed and the results compared to the results of the post-irradiation examinations of the plates. These comparisons demonstrate the capability to conduct a fuel plate irradiation program under requested and well-known irradiation conditions. Further improvements are presently being designed in order to extend the ranges of heat flux and surface temperature of the fuel plates that can be handled with the FUTURE device. (author)

  9. Finite element analysis of advanced neutron source fuel plates

    International Nuclear Information System (INIS)

    Luttrell, C.R.

    1995-08-01

    The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles

  10. Effect of temperature on the expansion and microstructure Of U3 Si2-AI mini plate fuel of 3.6 g/cm3 uranium loading

    International Nuclear Information System (INIS)

    Ginting, A. Br.; Samosir, N.; Suparjo; Nasution, H.

    2000-01-01

    Expansion analysis has been conducted to 50 x 20-mm U 3 Si 2 -AI mini plate of 3.6 g/cm 3 uranium loading using dilatometer. The analysis was carried out at various temperatures of 170 o C, 350 o C and 550 o C in Argon medium with delay time 4 days. The result showed that the fuel plate was relatively stable with increasing of heating time but underwent significant expansion. Heating at 170 o C, 350 o C and 550 o C resulted in the expansion of the U 3 Si 2 -AI fuel plate of to 83-212 mum, 333-475 mum, and 433-724 mum with coefficient expansion of 24.2x10 -6 / o C - 24.3x10 -6 / o C, 25.5x10 -6 / o C - 26.2x10 -6 /'oC and 26.6 x 10 -6 / o C - 28.2 x 10 -6 / o C respectively. Microanalysis of the U 3 Si 2 -AI mini plate fuel with SEM-EDS upon heating at those temperature variation showed that microstructure change didn't occur at 170 o C, mean while interaction between AIMg2 cladding and the fuel meat appeared to take place at 350 o C and 550 o C. Data on the expansion and microstructure change of U 3 Si 2 -AI fuel plate upon heating are of great important for the manufacture/fabrication of research fuel plate to produce silicide fuel element for higher uranium loading. (author)

  11. Creep analysis of fuel plates for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein

  12. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  13. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  14. Modeling RERTR experimental fuel plates using the PLATE code

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Snelgrove, J.L.; Brazener, R.A.

    2003-01-01

    Modeling results using the PLATE dispersion fuel performance code are presented for the U-Mo/Al experimental fuel plates from the RERTR-1, -2, -3 and -5 irradiation tests. Agreement of the calculations with experimental data obtained in post-irradiation examinations of these fuels, where available, is shown to be good. Use of the code to perform a series of parametric evaluations highlights the sensitivity of U-Mo dispersion fuel performance to fabrication variables, especially fuel particle shape and size distributions. (author)

  15. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    on a finite-element approach. On each discretized segment, fluid properties, heat transfer process and TEG performance are locally calculated for higher model precision. To benefit both the system design and fabrication, the way to model TEG modules is herein reconsidered; a database of commercialized compact......This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...... plate-fin heat exchangers is adopted. Then the model is validated against experimental data and the main variables are identified by means of a sensitivity analysis. Finally, the system configuration is optimized for recovering heat from the exhaust gas. The results exhibit the crucial importance...

  16. Fuel cell cooler-humidifier plate

    Science.gov (United States)

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  17. Evaluation of plate type fuel options for small power reactors

    International Nuclear Information System (INIS)

    Andrzejewski, Claudio de Sa

    2005-01-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO 2 in stainless steel, of UO 2 in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  18. Fuel performance analysis for the HAMP-1 mini plate test

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byoung Jin; Tahka, Y. W.; Yim, J. S.; Lee, B. H. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    U-7wt%Mo/Al- 5wt%Si dispersion fuel with 8gU/cm{sup 3} is chosen to achieve more efficiency and higher performance than the conventional U{sub 3}Si{sub 2} fuel. As part of the fuel qualification program for the KiJang research reactor (KJRR), three irradiation tests with mini-plates are on the way at the High-flux Advanced Neutron Application Reactor (HANARO). The first test among three HANARO Mini-Plate Irradiation tests (HAMP-1, 2, 3) has completed. PLATE code has been initially developed to analyze the thermal performance of high density U-Mo/Al dispersion fuel plates during irradiation [1]. We upgraded the PLATE code with the latest irradiation results which were implemented by corrosion, thermal conductivity and swelling model. Fuel performance analysis for HAMP-1 was conducted with updated PLATE. This paper presents results of performance evaluation of the HAMP-1. Maximum fuel temperature was obtained 136 .deg., which is far below the preset limit of 200 .deg. for the irradiation test. The meat swelling and corrosion thickness was also confirmed that the developed fuel would behave as anticipated.

  19. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  20. Dual fuel gradients in uranium silicide plates

    Energy Technology Data Exchange (ETDEWEB)

    Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  1. MTR fuel plate qualification in OSIRIS reactor

    International Nuclear Information System (INIS)

    Sacristan, P.; Boulcourt, P.; Naury, S.; Marchard, L.; Carcreff, H.; Noirot, J.

    2005-01-01

    Qualification of new MTR fuel needs the irradiation in research reactors under representative neutronic, heat flux and thermohydraulic conditions. The experiments are performed in France in the OSIRIS reactor by irradiating MTR full size fuel plates in the IRIS device located in the reactor core. The fuel plates are easily removed from the device during the shutdown of the reactor for performing thickness measurements along the plates by means of a swelling measurement device. Beside the calculation capabilities, the experimental platform includes: the ISIS neutron mock-up for the measurement of neutron flux distribution along the plates; the γ spectrometry for the purpose of measuring the activities of the radionuclides representative of the power and the burnup and to compare with the neutronic calculation. Owing to the experience feedback, a good agreement is observed between calculation and measurement; destructive post irradiation examinations in the LECA facility (Cadarache). New irradiations with the IRIS device and at higher heat flux are under preparation for qualification of MTR fuels. (author)

  2. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    aluminum was found not to be a problem. Blister temperatures were in the acceptable magnitude of higher than 5000 deg. C. Examination of the remaining plates that contain higher fuel dispersion densities, and more detailed analysis of already available data, are needed to fully characterize the irradiation behavior of the silicide and substantiate the potential of this fuel in the RERTR Program

  3. Modeling of high-density U-MO dispersion fuel plate performance

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    2002-01-01

    Results from postirradiation examinations (PIE) of highly loaded U-Mo/Al dispersion fuel plates over the past several years have shown that the interaction between the metallic fuel particles and the matrix aluminum can be extensive, reducing the volume of the high-conductivity matrix phase and producing a significant volume of low-conductivity reaction-product phase. This phenomenon results in a significant decrease in fuel meat thermal conductivity during irradiation. PIE has further shown that the fuel-matrix interaction rate is a sensitive function of irradiation temperature. The interplay between fuel temperature and fuel-matrix interaction makes the development of a simple empirical correlation between the two difficult. For this reason a comprehensive thermal model has been developed to calculate temperatures throughout the fuel plate over its lifetime, taking into account the changing volume fractions of fuel, matrix and reaction-product phases within the fuel meat owing to fuel-matrix interaction; this thermal model has been incorporated into the dispersion fuel performance code designated PLATE. Other phenomena important to fuel thermal performance that are also treated in PLATE include: gas generation and swelling in the fuel and reaction-product phases, incorporation of matrix aluminum into solid solution with the unreacted metallic fuel particles, matrix extrusion resulting from fuel swelling, and cladding corrosion. The phenomena modeled also make possible a prediction of fuel plate swelling. This paper presents a description of the models and empirical correlations employed within PLATE as well as validation of code predictions against fuel performance data for U-Mo experimental fuel plates from the RERTR-3 irradiation test. (author)

  4. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Science.gov (United States)

    Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.

  5. The bipolar plate of AISI 1045 steel with chromized coatings prepared by low-temperature pack cementation for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Chemistry and Materials Science and Engineering, Chung Cheng Institute of Technology, National Defense University, Tau-Yuan 335 (China); Wen, Tse-Min [School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China); Hou, Kung-Hsu [Department of Power Vehicles and System Engineering, Chung Cheng Institute of Technology, National Defense University, Tao-Yuan 335 (China)

    2010-02-01

    The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 x 10{sup -8} A cm{sup -2}, and the smallest interfacial contact resistance, 5.9 m{omega} cm{sup 2}, at 140 N cm{sup -2} among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC. (author)

  6. Irradiation of novel MTR fuel plates in BR2

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Beeckmans De Westmeerbeeck, A.; De Raedt, Ch.

    2000-01-01

    Since the end of 1999, novel MTR fuel plates with very high-density meat are being irradiated in BR2. The purpose of the irradiation is to investigate the behaviour of these fuel plates under very severe reactor operation conditions. The novel fuel plates are inserted in two standard six-tube BR2 fuel elements in the locations normally occupied by the standard outer fuel plates. The irradiation in BR2 was prepared by carrying out detailed neutron Monte Carlo calculations of the whole BR2 core containing the two experimental fuel elements for various positions in the reactor and for various azimuthal orientations of the fuel elements. Comparing the thus determined fission density levels and azimuthal profiles in the new MTR fuel plates irradiated in the various channels allowed the experimenters to choose the most appropriate BR2 channel and the most appropriate fuel element orientation. (author)

  7. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W.; Ross Finlay, M.; Moore, Glenn; Medvedev, Pavel; Meyer, Mitch

    2017-05-01

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U-Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  8. Microstructural characterization of an irradiated RERTR-6 U-7Mo/AA4043 alloy dispersion fuel plate specimen blister-tested to a final temperature of 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D., E-mail: dennis.keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Jue, Jan-Fong; Gan, Jian; Miller, Brandon D.; Robinson, Adam B.; Madden, James W. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States); Ross Finlay, M. [Australian Nuclear Science and Technology Organization, PMB 1, Menai, NSW 2234 (Australia); Moore, Glenn; Medvedev, Pavel; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-6146 (United States)

    2017-05-15

    The Material Management and Minimization (M3) Reactor Conversion Program, in the past called the Reduced Enrichment for Research and Test Reactor (RERTR) Program, is developing low-enriched uranium (LEU) fuels for application in research and test reactors. U–Mo alloy dispersion fuel is one type being developed. Blister testing has been performed on different fuel plate samples to determine the margin to failure for fuel plates irradiated to different fission densities. Microstructural characterization was performed using scanning electron microscopy and transmission electron microscopy on a sample taken from a U-7Mo/AA4043 matrix dispersion fuel plate irradiated in the RERTR-6 experiment that was blister-tested up to a final temperature of 500 °C. The results indicated that two types of grain/cell boundaries were observed in the U-7Mo fuel particles, one with a relatively low Mo content and fission gas bubbles and a second type enriched in Si, due to interdiffusion from the Si-containing matrix, with little evidence of fission gas bubbles. With respect to the behavior of the major fission gas Xe, a significant amount of the Xe was still observed within the U-7Mo fuel particle, along with microns into the AA4043 matrix. For the fuel/matrix interaction layers that form during fabrication and then grow during irradiation, they change from the as-irradiated amorphous structure to one that is crystalline after blister testing. In the AA4043 matrix, the original Si-rich precipitates, which are typically observed in as-irradiated U-Mo dispersion fuel, get consumed due to interdiffusion with the U-7Mo fuel particles during the blister test. Finally, the fission gas bubbles that were originally around 3 nm in diameter and resided on a fission gas superlattice (FGS) in the intragranular regions of as-irradiated U-7Mo fuel grew in size (up to ∼20 nm diameter) during blister testing and, in many areas, are no longer organized as a superlattice.

  9. Status of high-density fuel plate fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1991-01-01

    Progress has continued on the fabrication of fuel plates with equivalent fuel zone loadings approaching 9 gU/cm 3 . Through hot isostatic pressing (HIP), successful diffusion bonds have been made with 1100 Al and 6061 Al alloys. Although additional study is necessary to optimize the procedure, these bonds demonstrated the most critical processing step for proof-of-concept hardware. Two types of prototype highly loaded fuel plates have been fabricated. The first is a fuel plate in which 0.030-in. (0.76-mm) uranium compound wires are bonded within an aluminum cladding; the second, a dispersion fuel plate with uniform cladding and fuel zone thickness. The successful fabrication of these fuel plates derives from the unique ability of the HIP process to produce diffusion bonds with minimal deformation. (orig.)

  10. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  11. Evolution of fuel plate parameters during deformation in rolling

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, M., E-mail: mdurazzo@ipen.br [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Vieira, E.; Urano de Carvalho, E.F. [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Riella, H.G. [Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil)

    2017-07-15

    The Nuclear and Energy Research Institute – IPEN/CNEN-SP routinely produces the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U{sub 3}Si{sub 2}-Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed based on information obtained from literature, which was used as a premise for defining the current manufacturing procedures, according to a methodology with an essentially empirical character. Despite the current rolling process being perfectly stable and highly reproducible, it is not well characterized and is therefore not fully known. The objective of this work is to characterize the rolling process for producing dispersion fuel plates. Results regarding the evolution of the main parameters of technological interest, after each rolling pass, are presented. Some defects that originated along the fuel plate deformation during the rolling process were characterized and discussed. The fabrication procedures for manufacturing the fuel plates are also presented. - Highlights: •Evolution of defects when manufacturing dispersion fuel plates. •Aspects of dispersion fuel plates fabrication. •What happen during the manufacturing of dispersion fuel plates? •Clarifying the deformation of fuel plates by rolling.

  12. Use of gamma spectrometry for studying fuel plates

    International Nuclear Information System (INIS)

    Carteret, Y.; Schley, R.; Simonet, G.

    1979-01-01

    The programme of experimental irradiation performed at the CEA on the CARAMEL plate fuel was followed by gamma spectrometry, jointly with other techniques. The qualitative study of the distribution of fission products constitutes a source of information on the behavior of the fuel (temperature and structure) and enables its utilization limits to be predicted. The quantitative determination of short and long half life fission products makes it possible to calculate the specific power and specific burn-up. Carried out periodically, it is a means of checking the values obtained by the continuous measurement of cladding temperature, directly linked to the specific burn-up. At the end of irradiation, the results are compared against those achieved by neodymium analysis. The study of the change in gadolinium, a burnable poison, is an application of this technique [fr

  13. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  14. Examinations of the irradiation behaviour of U3Si2 test fuel plates with low enrichment

    International Nuclear Information System (INIS)

    Muellauer, J.

    1989-01-01

    Five low-enriched (19.7% 235 U), high-density (4.7 gU/cm/ 3 ) U 3 Si 2 -test fuel plates (miniplates) with different fine grain contents have been qualified under irradiation. During the course of irradiation up to burnup of 63% 235 U depletion, no released fractions of gaseous or solid fission products from the fuel plate to the rig coolant were detected. The measured swelling rate of the fuel zone (meat) is less than 0.45% ΔV/10 20 fissions/cm 3 the blister-threshold temperature of the fuel plates is above 520 0 C. The favourable irradiation behavior of the U 3 Si 2 fuel plates was not influenced by using higher amounts of fine grained particles (40% [de

  15. PEM fuel cell bipolar plate material requirements for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States)] [and others

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  16. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  17. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    Science.gov (United States)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  18. Analysis of hydraulic instability of ANS involute fuel plates

    International Nuclear Information System (INIS)

    Sartory, W.K.

    1991-11-01

    Curved shell equations for the involute Advanced Neutron Source (ANS) fuel plates are coupled to two-dimensional hydraulic channel flow equations that include fluid friction. A complete set of fluid and plate boundary conditions is applied at the entrance and exit and along the sides of the plate and the channel. The coupled system is linearized and solved to assess the hydraulic instability of the plates

  19. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  20. Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing

    2009-08-01

    Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.

  1. Fuel assemblies for PWR type reactors: fuel rods, fuel plates. CEA work presentation

    International Nuclear Information System (INIS)

    Delafosse, Jacques.

    1976-01-01

    French work on PWR type reactors is reported: basic knowledge on Zr and its alloys and on uranium oxide; experience gained on other programs (fast neutron and heavy water reactors); zircaloy-2 or zircaloy-4 clad UO 2 fuel rods; fuel plates consisting of zircaloy-2 clad UO 2 squares of thickness varying between 2 and 4mm [fr

  2. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  3. Drying studies of simulated DOE aluminum plate fuels

    International Nuclear Information System (INIS)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-01-01

    Experiments have been conducted to validate the Idaho National Engineering Laboratory (INEL) drying procedures for preparation of corroded aluminum plate fuel for dry storage in an existing vented (and filtered) fuel storage facility. A mixture of hydrated aluminum oxide bound with a clay was used to model the aluminum corrosion product and sediment expected in these Department of Energy (DOE) owned fuel types. Previous studies demonstrated that the current drying procedures are adequate for removal of free water inside the storage canister and for transfer of this fuel to a vented dry storage facility. However, using these same drying procedures, the simulated corrosion product was found to be difficult to dry completely from between the aluminum clad plates of the fuel. Another related set of experiments was designed to ensure that the fuel would not be damaged during the drying process. Aluminum plate fuels are susceptible to pitting damage on the cladding that can result in a portion of UAl x fuel meat being disgorged. This would leave a water-filled void beneath the pit in the cladding. The question was whether bursting would occur when water in the void flashes to steam, causing separation of the cladding from the fuel, and/or possible rupture. Aluminum coupons were fabricated to model damaged fuel plates. These coupons do not rupture or sustain any visible damage during credible drying scenarios

  4. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  5. Parametric study of the deformation of dispersion fuel plates

    International Nuclear Information System (INIS)

    Vieira, Edeval; Leal Neto, Ricardo Mendes; Durazzo, Michelangelo

    2011-01-01

    The Nuclear and Energy Research Institute - IPEN-CNEN/SP produces routinely the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U 3 Si 2 -Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed with base on information obtained from literature, which were used as premises for defining the current manufacturing procedures, according to a methodology with essentially empirical character. Despite the current rolling process to be perfectly stable and highly reproducible, it is not well characterized and therefore is not fully known. The objective of this work is to characterize the rolling process for producing fuel plates, presenting results of the evolution of all parameters of technological interest, after each rolling pass, obtaining information along the fuel plate deformation during the rolling process. (author)

  6. Low-enriched uranium-molybdenum fuel plate development

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Prokofiev, I.G.

    2000-01-01

    To examine the fabricability of low-enriched uranium-molybdenum powders, full-size 450 x 60 x 0.5-mm (17.7 x 2.4 x 0.020-in.) fuel zone test plates loaded to 6 g U/cm 3 were produced. U-10 wt.% Mo powders produced by two methods, centrifugal atomization and grinding, were tested. These powders were supplied at no cost to Argonne National Laboratory by the Korean Atomic Energy Research Institute and Atomic Energy of Canada Limited, respectively. Fuel homogeneity indicated that both of the powders produced acceptable fuel plates. Operator skill during loading of the powder into the compacting die and fuel powder morphology were found to be important when striving to achieve homogeneous fuel distribution. Smaller, 94 x 22 x 0.6-mm (3.7 x 0.87 x 0.025-in.) fuel zone, test plates were fabricated using U-10 wt.% Mo foil disks instead of a conventional powder metallurgy compact. Two fuel plates of this type are currently undergoing irradiation in the RERTR-4 high-density fuel experiment in the Advanced Test Reactor. (author)

  7. SEM and TEM Characterization of As-Fabricated U-7Mo Disperson Fuel Plates

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Yao, B.; Perez, E.; Sohn, Y.H.

    2009-01-01

    The starting microstructure of a dispersion fuel plate can have a dramatic impact on the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of dispersion fuel plates, SEM and TEM analysis have been performed on RERTR-9A archive fuel plates, which went through an additional hot isostatic procsssing (HIP) step during fabrication. The fuel plates had depleted U-7Mo fuel particles dispersed in either Al-2Si or 4043 Al alloy matrix. For the characterized samples, it was observed that a large fraction of the ?-phase U-7Mo alloy particles had decomposed during fabrication, and in areas near the fuel/matrix interface where the transformation products were present significant fuel/matrix interaction had occurred. Relatively thin Si-rich interaction layers were also observed around the U-7Mo particles. In the thick interaction layers, (U)(Al,Si)3 and U6Mo4Al43 were identified, and in the thin interaction layers U(Al,Si)3, U3Si3Al2, U3Si5, and USi1.88-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this work, exposure of dispersion fuel plates to relatively high temperatures during fabrication impacts the overall microstructure, particularly the nature of the interaction layers around the fuel particles. The time and temperature of fabrication should be carefully controlled in order to produce the most uniform Si-rich layers around the U-7Mo particles.

  8. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  9. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  10. Irradiation testing of miniature fuel plates for the RERTR program

    Energy Technology Data Exchange (ETDEWEB)

    Senn, R L; Martin, M M [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    1983-08-01

    An irradiation test facility, which provides a test bed for irradiating a variety of miniature fuel plates miniplates) for the Reduced Enrichment Research and Test Reactors (RERTR) program, has been placed into operation. The objective of these tests is to screen various candidate fuel materials as to their suitability for replacing the highly enriched uranium fuel materials currently used by the world's test and research reactors with a lower enrichment fuel material, without significantly degrading reactor operating characteristics and power levels. The use of low uranium enrichment of about 20% {sup 235}U in place of highly enriched fuel for these reactors would reduce the potential for {sup 235}U diversion. Fuel materials currently being evaluated in this first phase of these screening tests include aluminum-base dispersion-type fuel plates with fuel cores of 1) high uranium content U{sup 3}){sup 8}-Al being developed by ORNL, 2) high uranium content UAI{sub x}-Al being developed by EG and G Idaho, Inc., and 3) very high uranium content U{sub 3}Si-Al- being developed by ANL. The miniplates are 115-mm long by 50-mm wide with overall plate thicknesses of 1.27 or 1.52 mm. The fuel core dimensions vary according to overall plate thicknesses with a minimal clad thickness requirement of 0.20 mm. Sixty such miniplates (thirty of each thickness) can be irradiated in one test facility. The irradiation test facility, designated as HFED-1 is operating in core position E-7 in the Oak Ridge Research Reactor (ORR), a 30-MW water-moderated reactor. The peak neutron flux measured for this experiment is 1.96 x 10{sup 18} neutrons m{sub -2} s{sub -1}. The various types of miniplates will achieve burnups of up to approximately 2.2x10{sup 27} fissions/m{sup 3} of fuel, which will require approximately eight full power months of irradiation. During reactor shutdown periods, the experiment is removed from the reactor, moved to a special poolside station, disassembled, and inspected

  11. Characterization and testing of monolithic RERTR fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, D.D.; Jue, J.F.; Burkes, D.E. [Idaho National Lab., Idaho Falls, ID (United States)

    2007-07-01

    Monolithic fuel plates are being developed as a LEU (low enrichment uranium) fuel for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIP-made samples indicates that the foil/cladding interaction behavior depends on the Mo content in the UMo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process. (authors)

  12. Development of materials and processes for low-cost production of high-temperature bipolar plates for use in polymer electrolyte membrane fuel cells (PEMFC). Final report; Material- und Verfahrensentwicklung fuer eine kostenguenstige Herstellung von Hochtemperatur-Bipolarplatten zum Einsatz in Polymer-Elektrolyt-Membran Brennstoffzellen (PEM-BZ). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In the context of the project 'Verfahren zur spritzgiesstechnischen Herstellung von HT-BPP' (processes for injection moulding of high-temperature fuel cells), bipolar plates for high-temperature proton exchange membrane fuel cells (HT-PEM-FC) were produced by an injection moulding process suited for mass production. This implied extensive material analyses of fillers and matrix materials. A specific compound for application in fuel cells and suited for mass production was produced on this basis. (orig./AKB)

  13. Development of hold down plate of INGLE fuel assembly

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Kim, Kyu Tae

    1996-07-01

    Hold down plate for the INGLE fuel which has been designed for high performance in the standpoints of thermal margin and structural integrity compared to current fuel for YGN 3/4 and UCN 3/4 has been developed and its structural integrity has been verified based on the eh stress analysis. The design feature of the developed hold down plate has not only perfect compatibility with the reactor internals of Korea standard reactor, but also brand-new locking mechanism between upper tie plate and guide tubes. This locking mechanism introduced to the INGLE fuel provides very simple and reliable reconstitutability. In this report, finite element stress analysis with the aid of the ANSYS code as a solver and the MSC/PATRAN code as a pre and post processor were performed to verify structural integrity of the hold down plate considering various load cases which seem to be applied to the hold down plate during its lifetime. Based on the analysis results, the developed hold down plate for INGLE fuel sustains structural integrity under considered load conditions. 3 tabs., 16 figs., 9 refs. (Author)

  14. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  15. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  16. Corrosion on the fuel plate nucleus based on U3 O8 - Al dispersions

    International Nuclear Information System (INIS)

    Durazzo, M.

    2005-01-01

    Samples of MTR type U 3 O 8 - Al dispersion fuel plates meats were corrosion tested in deionized water at different temperatures in the range 30 to 90 deg C. In the tests the cores were exposed to the deionized water by means of an artificially produced cladding defect. The results indicate that the meat corrosion is accompanied by hydrogen evolution. (author)

  17. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  18. Interplay between geometry and temperature for inclined Casimir plates

    International Nuclear Information System (INIS)

    Weber, Alexej; Gies, Holger

    2009-01-01

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T D behavior of the force, we find a T D-1 behavior for inclined plates, and a ∼T D-0.3 behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence ∼T D-2 occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  19. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  20. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  1. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    International Nuclear Information System (INIS)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil

    2016-01-01

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature

  2. Design of metallic bipolar plates for PEM fuel cells.

    Science.gov (United States)

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  3. Variation of microchannel plate resistance with temperature and applied voltage

    International Nuclear Information System (INIS)

    Pearson, J.F.; Fraser, G.W.; Whiteley, M.J.

    1987-01-01

    The resistance of microchannel plate electron multiplier is well known to be a function of both applied voltage and detector temperature. We show that the apparent variation of resistance with bias voltage is simply due to plate temperature increases resulting from resistive heating. (orig.)

  4. Automated ultrasonic scanning of flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    One of the most challenging problems in Non-Destructive Testing lies in making the inspection as rapid, precise, cost effective and operator independent as possible. Only by optimizing these four factors can a technology take full advantage of the quality control possible with NDT. This paper describes a highly complex application of high frequency ultrasonics to image extremely small and difficult to detect flaws in a production line environment. The objects of interest are flat plate nuclear fuel used in the Advanced Test Reactor at the Idaho National Engineering Laboratory. The plates are fabricated by hot rolling a sandwich of alloyed uranium fuel and aluminum cladding. After rolling, the block is flattened to a long thin plate approximately 1.27 m (55 inches) long, 102 mm (4 inches) wide and 1.25 mm (0.050 inches) thick. The core, or fuel area is nominally 0.75 mm (0.030 inches) thick with 0.25 mm (0.010 inches) of aluminum bonded to both sides. As might be expected the fabrication is a sensitive process which can introduce several flaws detrimental to the reactor operation if they are undetected. Two of the characteristics that must be examined are the cladding thickness of the aluminum left over the fuel and the quality of bond between the cladding and the fuel. If either the cladding is too thin or the bonding inadequate thermal and/or corrosive activity can crack the protective cladding

  5. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  6. Thermal Characteristic Of AIMg2 Cladding And Fuel Plates Of U3Si2-Al With Various Uranium Loading

    International Nuclear Information System (INIS)

    Aslina, Br. G.; Suparjo; Aggraini, D.; Hasbullah, N.

    1998-01-01

    Thermal characteristic analyzed in this paper included linear expansion value, coefficient expansion, and enthalpy of cladding material fuel core and fuel plate of U 3 Si 2 -AI. Before analyzing, the fresh cladding of AIMg2 (without treatment) and the rolled AIMg2 were annealed at temperature of 425 o C for 1 hour, and the fuel plates of U 3 Si 2 -AI was prepared for various uranium loading of 0.9 - 3.6 - 4.2 - 4.8 and 5.2 g/cm 3 . Linear expansion nominal value and expansion coefficient were analyzed by using Dilatometer whereas enthalpy determination used Differential Thermal Analysis (DTA). The linear expansion and expansion coefficient analysis was performed to study the dimension cladding and of fuel plates during their stay in the reactor core, whereas determination of enthalpy was carried out to estimate the energy absorbed and released by fuel meat of U 3 Si 2 -AI to the cooling water through AlMg2 as a cladding. The result showed that the linear expansion and expansion coefficient of fresh AIMg2 cladding, rolled AIMg2 and fuel plates of U 3 Si 2 -AI are increased with the increase of temperature as well as the increase of uranium loading. The enthalpy measure showed that the enthalpy of fresh AIMg2 is smaller than that of rolled AIMg2 but melting temperature of fresh AIMg2 is greater than that of rolled AIMg2. The enthalpy of fuel plates and meat of U 3 Si 2 -AI is less than that of plates of U 3 Si 2 -AI. The enthalpy of fuel platers and meat of U 3 Si 2 -AI decrease with the increase of uranium loading. It is concluded that the fuel meat more reactive than fuel plates of U 3 Si 2 -AI

  7. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  8. Safety assessment of U–Mo fuel mini plates irradiated in HANARO reactor

    International Nuclear Information System (INIS)

    Jo, Daeseong; Kim, Haksung

    2015-01-01

    Highlights: • Neutronic and thermal-hydraulic analyses of U–Mo fuel irradiated in HANARO reactor. • A mock-up irradiation target was designed and tested to measure the flow rate. • During normal operation, boiling does not occur. • During limiting accidents, boiling occurs. However, fuel integrity is maintained. - Abstract: Neutronic and thermal hydraulic characteristics of U–Mo fuel mini plates irradiated in the HANARO reactor were analyzed for the safety assessment of these plates. A total of eight fuel plates were double-stacked; each stack contained three 8.0 gU/cc U–7Mo fuel plates and one 6.5 gU/cc U–7Mo fuel plate. The neutronic and thermal hydraulic analyses were carried out using the MCNP code and TMAP code, respectively. The core status used in the study was the equilibrium core, and four Control Absorber Rod (CAR) locations were considered: 350 mm, 450 mm, 550 mm, and 650 mm away from the bottom of the core. For the fuels in the lower stack, the maximum heat flux was found at the CAR located at 450 mm. For the fuels in the upper stack, the maximum heat flux was found at the CAR located at 650 mm. The axial power distributions for the upper and lower stacks were selected on the basis of thermal margin analyses. A mock-up irradiation target assembly was designed and tested at the out-of-pile test facility to measure the flow rate through the irradiation site, given that the maximum flow rate through the irradiation site at the HANARO reactor is limited to 12.7 kg/s. For conservative analyses, measurement and correlation uncertainties and engineering hot channel factors were considered. During normal operation, the minimum ONB temperature margins for the lower and upper stacks are 41.6 °C and 31.8 °C, respectively. This means that boiling does not occur. However, boiling occurs during the limiting accidents. Nevertheless, the fuel integrity is maintained since the minimum DNBR are 1.96 for the Reactivity Insertion Accident (RIA) and 2

  9. Inflight fuel tank temperature survey data

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.

  10. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  11. Some tooling for manufacturing research reactor fuel plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment. (author)

  12. Some Tooling for Manufacturing Research Reactor Fuel Plates

    International Nuclear Information System (INIS)

    Knight, R.W.

    1999-01-01

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment

  13. Use of plate fuel elements for the RA3 reactor

    International Nuclear Information System (INIS)

    Parodi, C.; Parkanski, D.; Higa, M.; Marajofsky, A.

    1992-01-01

    The RA3 reactor is a pool reactor, redesigned for 5 MW dissipation. Nineteen plates are used in each fuel element. The utilization of 20% enriched U, gives the possibility of the development of rod type fuel with Al/U 3 O 8 cermets. The thermohydraulic and neutronic conditions are studied in this work in order to satisfy the stipulated power. In addition, the fabrication conditions of Al/U 3 O 8 and Al/U 3 O 8 /Zr H 2 cermets with densities within the limits imposed by the thermohydraulics and neutronics conditions are studied. (author)

  14. Uranium density reduction on fuel element side plates assessment

    International Nuclear Information System (INIS)

    Rios, Ilka A.; Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E.

    2011-01-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  15. Uranium density reduction on fuel element side plates assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka A. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Andrade, Delvonei A.; Domingos, Douglas B.; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    During operation of IEA-R1 research reactor, located at Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, an abnormal oxidation on some fuel elements was noted. It was also verified, among the possible causes of the problem, that the most likely one was insufficient cooling of the elements in the core. One of the propositions to solve or minimize the problem is to reduce uranium density on fuel elements side plates. In this paper, the influence of this change on neutronic and thermal hydraulic parameters for IEA-R1 reactor is verified by simulations with the codes HAMMER and CITATION. Results are presented and discussed. (author)

  16. Apparatus for transferring nuclear fuel pellets to a plate loader

    International Nuclear Information System (INIS)

    Huggins, T.B.

    1978-01-01

    An apparatus is described for transferring nuclear fuel pellets from a grinding machine to a plate loader. It includes a frame, an endless belt fitted to the frame, a control system provided on it for actuating the belt at a preset speed, a V shaped vessel fitted directly above the belt and extending along its length to guide the pellets on the belt and a device to receive the pellets coming from the belt [fr

  17. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  18. Full-sized plates irradiation with high UMo fuel loading. Final results of IRIS 1 experiment

    International Nuclear Information System (INIS)

    Huet, F.; Marelle, V.; Noirot, J.; Sacristan, P.; Lemoine, P.

    2003-01-01

    As a part of the French UMo Group qualification program, IRIS 1 experiment contained full-sized plates with high uranium loading in the meat of 8 g.cm -3 . The fuel particles consisted of 7 and 9 wt% Mo-uranium alloys ground powders. The plate were irradiated at OSIRIS reactor in IRIS device up to 67.5% peak burnup within the range of 136 W.cm - '2 for the heat flux and 72 deg. C for the cladding temperature. After each reactor cycle the plates thickness were measured. The results show no swelling behaviour differences versus burnup between UMo7 and UMo9 plates. The maximum plate swelling for peak burnup location remains lower than 6%. The wide set of PIE has shown that, within the studied irradiation conditions, the interaction product have a global formulation of '(U-Mo)Al -7 ' and that there is no aluminium dissolution in UMo particles. IRIS1 experiment, as the first step of the UMo fuel qualification for research reactor, has established the good behaviour of UMo7 and UMo9 high uranium loading full-sized plate within the tested conditions. (author)

  19. An analysis of hot plate initial temperature effect on rectangular narrow gap quenching process

    International Nuclear Information System (INIS)

    M-Hadi Kusuma; Mulya Juarsa; Anhar Riza Antariksawan; Nandy Putra

    2012-01-01

    The understanding about thermal management in the event of a severe accident such as the melting nuclear reactor fuel and reactor core, became a priority to maintain the integrity of reactor pressure vessel. Thus the debris will not out from the reactor pressure vessel and resulting impact of more substantial to the environment. One way to maintain the integrity of the reactor pressure vessel was cooling of the excess heat generated due to the accident. To get understanding of this aspect, there search focused on the effect of the initial temperature of the hot plate in the rectangular narrow gap quenching process. The initial temperature effect on quenching process is related to cooling process (thermal management) when the occurrence of a nuclear accident due to loss of coolant accident or severe accident. In order to address the problem, it is crucial to conduct research to get a better understanding of thermal management regarding to nuclear cooling accident. The research focused on determining the rewetting temperature of hot plate cooling on 220°C, 400°C, and 600°C with 0.2 liters/sec cooling water flowrate. Experiments were carried out by injecting 85°C cooling water temperature into the narrow gap at flowrates of 0.2 liters/sec. Data of transient temperature measurements were recorded using a data acquisition system in order to know the rewetting temperature during the quenching process. This study aims to understand the effect of hot plate initial temperature on rewetting during rectangular narrow gap quenching process. The results obtained show that the rewetting point on cooling the hot plate 220°C, 400°C and 600°occurs at varying rewetting temperatures. At 220°C hot plate initial temperature, the rewetting temperature occurs on 220°C. At 400°C hot plate initial temperature, the rewetting temperature occurs on 379.51°C. At 600°C hot plate initial temperature, the rewetting temperature occurs on 426.63°C. Significant differences of hot plate

  20. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Science.gov (United States)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  1. Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Carton, J.G.; Olabi, A.G.

    2010-01-01

    Low temperature hydrogen fuel cells are electrochemical devices which offer a promising alternative to traditional power sources. Fuel cells produce electricity with a reaction of the fuel (hydrogen) and air. Fuel cells have the advantage of being clean; only producing water and heat as by products. The efficiency of a fuel cell varies depending on the type; SOFC with CHP for example, can have a system efficiency of up to 65%. What the Authors present here is a comparison between three different configurations of flow plates of a proton exchange membrane fuel cell, the manufacturer's serpentine flow plate and two new configurations; the maze flow plate and the parallel flow plate. A study of the input parameters affecting output responses of voltage, current, power and efficiency of a fuel cell is performed through experimentation. The results were taken from direct readings of the fuel cell and from polarisation curves produced. This information was then analysed through a design of experiment to investigate the effects of the changing parameters on different configurations of the fuel cell's flow plates. The results indicate that, in relation to current and voltage response of the polarisation curve and the corresponding graphs produced from the DOE, the serpentine flow plate design is a much more effective design than the maze or parallel flow plate design. It was noted that the parallel flow plate performed reasonably well at higher pressures but over all statically the serpentine flow plate performed better.

  2. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  3. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  4. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  5. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  6. Development of the uranium recovery process from rejected fuel plates in the fabrication of MTR type nuclear fuel

    International Nuclear Information System (INIS)

    Fleming Rubio, Peter Alex

    2010-01-01

    The current work was made in Conversion laboratory belonging to Chilean Nuclear Energy Commission, CCHEN. This is constituted by the development of three hydrometallurgical processes, belonging to the recovery of uranium from fuel plates based on uranium silicide (U_3Si_2) process, for nuclear research reactors MTR (Material Testing Reactor) type, those that come from the Fuel Elements Manufacture Plant, PEC. In the manufacturing process some of these plates are subjected to destructive tests by quality requirement or others are rejected for non-compliance with technical specifications, such as: lack of homogenization of the dispersion of uraniferous compound in the meat, as well as the appearance of the defects, such as blisters, so-called "dog bone", "fish tail", "remote islands", among others. Because the uranium used is enriched in 19.75% U_2_3_5 isotope, which explains the high value in the market, it must be recovered for reuse, returning to the production line of fuel elements. The uranium silicide, contained in the plates, is dispersed in an aluminum matrix and covered with plates and frames of ASTM 6061 Aluminum, as a sandwich coating, commonly referred to as 'meat' (sandwich meat). As aluminum is the main impurity, the process begins with this metal dissolution, present in meat and plates, by NaOH reaction, followed by a vacuum filtration, washing and drying, obtaining a powder of uranium silicide, with a small impurities percentage. Then, the crude uranium silicide reacts with a solution of hydrofluoric acid, dissolving the silicon and simultaneously precipitating UF_4 by reaction with HNO_3, obtaining an impure UO_2(NO_3)_2 solution. The experimental work was developed and implemented at laboratory scale for the three stages pertaining to the uranium recovery process, determining for each one the optimum operation conditions: temperature, molarity or concentration, reagent excess, among others (author)

  7. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  8. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    International Nuclear Information System (INIS)

    Ding Shurong; Wang Qiming; Huo Yongzhong

    2010-01-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  9. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Laug, David V.; Scates, Dawn M.; Reber, Edward L.; Roybal, Lyle G.; Walter, John B.; Harp, Jason M. [Idaho National Laboratory, 2525 Fremont Avenue, MS 3860, Idaho Falls, ID 83415-3860 (United States); Morris, Robert N. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A system has been developed for safety testing of irradiated coated particle fuel. Black-Right-Pointing-Pointer FACS system is designed to facilitate remote operation in a shielded hot cell. Black-Right-Pointing-Pointer System will measure release of fission gases and condensable fission products. Black-Right-Pointing-Pointer Fuel performance can be evaluated at temperatures as high as 2000 Degree-Sign C in flowing helium. - Abstract: The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 Degree-Sign C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated

  10. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  11. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  12. Optimum development temperature and duration for nuclear plate

    International Nuclear Information System (INIS)

    Nagoshi, Chieko.

    1975-01-01

    Sakura 100 μm thick nuclear plates have been employed to determine optimum temperature and duration of the Amidol developer for low energy protons (Ep 0 C were tried for periods of 15--35 min. For Ep 0 C and for development time less than 30 min. (auth.)

  13. Combustion of fuels with low sintering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1950-08-16

    A furnace for the combustion of low sintering temperature fuel consists of a vertical fuel shaft arranged to be charged from above and supplied with combustion air from below and containing a system of tube coils extending through the fuel bed and serving the circulation of a heat-absorbing fluid, such as water or steam. The tube-coil system has portions of different heat-absorbing capacity which are so related to the intensity of combustion in the zones of the fuel shaft in which they are located as to keep all parts of the fuel charge below sintering temperature.

  14. Evaluation of plate type fuel elements by eddy current test method

    International Nuclear Information System (INIS)

    Frade, Rangel Teixeira

    2015-01-01

    Plate type fuel elements are used in MTR research nuclear reactors. The fuel plates are manufactured by assembling a briquette containing the fissile material inserted in a frame, with metal plates in both sides of the set, to act as a cladding. This set is rolled under controlled conditions in order to obtain the fuel plate. In Brazil, this type of fuel is manufactured by IPEN and used in the IEA-R1 reactor. After fabrication of three batches of fuel plates, 24 plates, one of them is taken, in order to verify the thickness of the cladding. For this purpose, the plate is sectioned and the thickness measurements are carried out by using optical microscopy. This procedure implies in damage of the plate, with the consequent cost. Besides, the process of sample preparation for optical microscopy analysis is time consuming, it is necessary an infrastructure for handling radioactive materials and there is a generation of radioactive residues during the process. The objective of this study was verify the applicability of eddy current test method for nondestructive measurement of cladding thickness in plate type nuclear fuels, enabling the inspection of all manufactured fuel plates. For this purpose, reference standards, representative of the cladding of the fuel plates, were manufactured using thermomechanical processing conditions similar to those used for plates manufacturing. Due to no availability of fuel plates for performing the experiments, the presence of the plate’s core was simulated using materials with different electrical conductivities, fixed to the thickness reference standards. Probes of eddy current testing were designed and manufactured. They showed high sensitivity to thickness variations, being able to separate small thickness changes. The sensitivity was higher in tests performed on the reference standards and samples without the presence of the materials simulating the core. For examination of the cladding with influence of materials simulating the

  15. Ni-based amorphous alloy-coating for bipolar plate of PEM fuel cell by electrochemical plating

    International Nuclear Information System (INIS)

    Yamaura, S; Kim, S C; Inoue, A

    2013-01-01

    In this study, the Ni-Cr-P amorphous alloy-coated bipolar plates were produced by electro-plating on the Cu base plates with a flow field. The power generation tests of a single fuel cell with those Ni-Cr-P bipolar plates were conducted at 353 K. It was found that the single fuel cell with those Ni-Cr-P bipolar plates showed excellent I-V performance as well as that with the carbon graphite bipolar plates. It was also found that the single cell with those Ni-Cr-P bipolar plates showed better I-V performance than that with the Ni-P amorphous alloy-coated bipolar plates. Furthermore, the long-time operation test was conducted for 440 h with those Ni-Cr-P bipolar plates at the constant current density of 200 mA·cm −2 . As a result, it was found that the cell voltage gradually decreased at the beginning of the measurement before 300 h and then the voltage was kept constant after 300 h.

  16. 3D COMSOL Simulations for Thermal Deflection of HFIR Fuel Plate in the "Cheverton-Kelley" Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL; Cook, David Howard [ORNL

    2012-08-01

    Three dimensional simulation capabilities are currently being developed at Oak Ridge National Laboratory using COMSOL Multiphysics, a finite element modeling software, to investigate thermal expansion of High Flux Isotope Reactor (HFIR) s low enriched uranium fuel plates. To validate simulations, 3D models have also been developed for the experimental setup used by Cheverton and Kelley in 1968 to investigate the buckling and thermal deflections of HFIR s highly enriched uranium fuel plates. Results for several simulations are presented in this report, and comparisons with the experimental data are provided when data are available. A close agreement between the simulation results and experimental findings demonstrates that the COMSOL simulations are able to capture the thermal expansion physics accurately and that COMSOL could be deployed as a predictive tool for more advanced computations at realistic HFIR conditions to study temperature-induced fuel plate deflection behavior.

  17. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  18. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  19. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation – Non-destructive analysis of the AFIP-1 fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M., E-mail: daniel.wachs@inl.gov [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Robinson, A.B.; Rice, F.J. [Idaho National Laboratory, Characterization and Advanced PIE Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Kraft, N.C.; Taylor, S.C. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Lillo, M. [Idaho National Laboratory, Nuclear Systems Design and Analysis Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Woolstenhulme, N.; Roth, G.A. [Idaho National Laboratory, Nuclear Fuels and Materials Division, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008–2009. The irradiation conditions were: ∼250 W/cm{sup 2} peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm{sup 3} peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  20. Analysis of the effect of transverse power distribution in an involute fuel plate with and without oxide film formation

    International Nuclear Information System (INIS)

    Smith, R. S.

    1998-01-01

    Existing thermal hydraulics computer codes can account for variations in power and temperature in the axial and thickness directions but variations across the width of the plate cannot be accounted for. In the case of fuel plates in an annular core this can lead to significant errors which are accentuated by the presence of an oxide layer that builds up on the aluminum cladding with burnup. This paper uses a three dimensional SINDA model to account for the transverse variations in power. The effect of oxide thickness on these differences is studied in detail. Power distribution and fuel conductivity are also considered. The lower temperatures predicted with the SINDA model result in a greater margin to clad and fuel damage

  1. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1992-01-01

    The planned Advanced Neutron Source (ANS) and several existing reactors use closely spaced arrays of involute shaped fuel-plates which are cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported in this paper. The tests were conducted using full scale epoxy plate models of the aluminum/uranium silicide ANS involute shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as function of the flow velocity are examined. Comparisons with mathematical models are noted. 12 refs

  2. Fuel plate stability experiments and analysis for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-05-01

    The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays of involute-shaped fuel plates that will be cooled by water flowing through the channels between the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect and touch, with resulting failure of the plates. Experiments have been conducted at the Oak Ridge National Laboratory to examine this potential phenomenon. Results of the experiments and comparison with analytical predictions are reported. The tests were conducted using full-scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use of epoxy plates and model theory allowed lower flow velocities and pressures to explore the potential failure mechanism. Plate deflections and channel pressures as functions of the flow velocity are examined. Comparisons with mathematical models are noted

  3. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  4. Bottom nozzle for nuclear reactor fuel assembly having an adaptor plate and a coupled filtration plate

    International Nuclear Information System (INIS)

    Verdier, M.; Mortgat, R.

    1992-01-01

    The bottom nozzle includes an adaptor plate with openings to allow the passage of water and a filtration plate with small holes. The openings in the adaptor plate are symmetrical with regard to medians and diagonals. Within each zone, some of the openings are rectangular and some may be circular. The small holes in the filtration plate coincide with the rectangular openings in the adaptor plate

  5. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    International Nuclear Information System (INIS)

    Travelli, A.

    1988-01-01

    A nuclear fuel-containing plate structure for a nuclear reactor is described; such structure comprising a pair of malleable metallic non-fissionable matrix plates having confronting surfaces which are pressure bonded together and fully united to form a bonded surface, and elongated malleable wire-like fissionable fuel members separately confined and fully enclosed between the matrix plates along the interface to afford a high fuel density as well as structural integrity and effective retention of fission products. The plates have separate recesses formed in the confronting surfaces for closely receiving the wire-like fissionable fuel members. The wire-like fissionable fuel members are made of a maleable uranium alloy capable of being formed into elongated wire-like members and capable of withstanding pressure bonding. The wire-like fissionable fuel members are completely separated and isolated by fully united portions of the interface

  6. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  7. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...... model to simulate the temperature development of a fuel cell stack during heating can be used for assistance in system and control design. The heating strategies analyzed and tested reduced the startup time of one of the fuel cell stacks from 1 h to about 6 min....

  8. Corrosion of MTR type fuel plates containing U3O8-Al cermet cores

    International Nuclear Information System (INIS)

    Durazzo, M.

    1985-01-01

    The fuel plate samples containing U 3 O 8 -Al cermet cores with concentrations from 10 to 90% of U 3 O 8 weight were fabricated. Samples with 58% of U 3 O 8 eight were fabricated using compacts with densities from 75 to 95% of theoretical density. The influences of U 3 O 8 concentration and porosity of compacted core on porosity and uniformity of core thickness are discussed. The U 3 O 8 -Al cores were submitted to corrosion tests and exposed to deionized water at temperatures of 30, 50, 70 and 90 0 C by cladding deffect produced artificially. The results shown that core corrosion is accompanied by hydrogen release. The total volum of released hydrogen and the time interval to observe the initiation of hydrogen releasing (incubation time) are depending on core pososity and absolute temperature. A mechanism for U 3 O 8 -Al core corrosion process is proposed and discussed. The cladding of fuel plate samples was submitted to corrosion tests under similar conditons of the IAE-R1 reactor operating at 2, 5 and 10 MW. (Author) [pt

  9. Heat transfer and temperature distribution in fuel

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Stevanovic, M.

    1966-01-01

    This paper describes methods and procedures for determining the integral, mean and effective heat conductivity and temperature distribution in fuel, with the experimental solutions for measuring these parameters. A procedure for measuring the integral conductivity by measuring the power generated in the fuel is given [sr

  10. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Grundler, M.; Derieth, T.; Beckhaus, P.; Heinzel, A. [centre for fuel cell technology ZBT GmbH (Germany)

    2010-07-01

    Using standard mass production techniques for the fabrication of fuel cell components, such as bipolar plates, is a main issue for the commercialisation of PEM fuel cell systems. Bipolar plates contribute significantly to the cost structure of PEM stacks. In an upcoming fuel cell market a large number of bipolar plates with specific high-quality standards will be needed. At the Centre for Fuel Cell Technology (ZBT) together with the University of Duisburg-Essen fuel cell stacks based on injection moulded bipolar plates have been developed and demonstrated successfully [1]. This paper focuses on the interactions between carbon filling materials (graphite, carbon black and carbon nanotubes (CNT)) in compound based bipolar plates and especially the potential of CNTs, which were used in bipolar plates for the first time. The entire value added chain based on the feedstock, the compounding and injection moulding process, the component bipolar plate, up to the operation of a PEM single fuel cell stack with CNT-based bipolar plates is disclosed. (orig.)

  11. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  12. Development of pulsed plate columns for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Jenkins, J.A.; Logsdail, D.H.; Lyall, E.; Myers, P.E.; Partridge, B.A.

    1987-01-01

    The UK Atomic Energy Authority has undertaken a development programme on solvent extraction equipment for reprocessing fast reactor fuels. As part of this programme a solvent extraction pilot plant has been built at Harwell in which a variety of flowsheet conditions can be simulated using the system uranyl nitrate/nitric acid (UN/HNO 3 ) - 20% tri-n-butyl phosphate in odourless kerosene (TBP/OK). The main purpose of present pilot plant operations is to study the performance of pulsed plate columns, with the following specific objectives: to measure the volumetric throughput capacity of the columns, - to study the effect of scale-up of column diameter on U mass transfer performance, - to provide hydraulic and mass transfer data for a dynamic simulation model of pulsed column operation, - to develop and test instruments and ancillary equipment. This poster describes the pilot plant and is illustrated by experimental data, with particular reference to an external settler for controlling the removal of aqueous phase from columns operated with the aqueous phase dispersed

  13. Accident Testing of High Temperature Reactor Fuel Elements with the KueFA Device

    International Nuclear Information System (INIS)

    Seeger, O.; Laurie, M.; Bottomley, P.D.W.; Ferreira-Teixeira, A.E.; Van Winckel, S.; Rondinella, V.V.; Allelein, H.J.

    2013-06-01

    The High Temperature Reactor (HTR) is characterised by an advanced design with passive safety features. Fuel elements are constituted by a graphite matrix containing sub-mm-sized fuel particles with Tri-Isotropic (TRISO) coating, designed to provide high fission product retention. During a loss of coolant accident scenario in a HTR the maximum temperature is foreseen to be in the range of 1600-1650 deg. C, remaining well below the melting point of the fuel. The Cold Finger Apparatus (KueFA) is used to observe the combined effects of Depressurization and Loss of Forced Circulation (DLOFC) accident scenarios on HTR fuel. Originally designed at the Forschungszentrum Juelich (FZJ), an adapted KueFA operates on irradiated fuel in hot cell at JRC-ITU. A fuel pebble is heated in He atmosphere for several hundred hours, mimicking accident temperatures up to 1800 deg. C and realistic temperature transients. Non-gaseous volatile fission products released from the fuel condense on a water cooled stainless steel plate dubbed 'Cold Finger'. Exchanging plates frequently during the experiment and analysing plate deposits by means of HPGe gamma spectroscopy allows a reconstruction of the fission product release as a function of time and temperature. In order to achieve a good quantification of the release, a careful calibration of the setup is mandatory. An especially tailored collimator was designed to perform plate scanning with high spatial resolution, thus yielding information about the fission product distribution on the condensation plates. The analysis of condensation plates from recent KueFA tests shows that fission product release quantification is possible at high and low activity levels. Chemical dissolution has been performed for some condensation plates in order to assess beta nuclides of interest such as 90 Sr and possibly 129 I using an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) and to cross check the HPGe gamma spectroscopy measurements

  14. Evaluation of plate type fuel options for small power reactors; Avaliacao de alternativas de combustivel tipo placa para reatores de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Andrzejewski, Claudio de Sa

    2005-07-01

    Plate type fuels are generally used in research reactor. The utilization of this kind of configuration improves significantly the overall performance fuel. The conception of new fuels for small power reactors based in plate-type configuration needs a complete review of the safety criteria originally used to conduce power and research reactor projects. In this work, a group of safety criteria is established for the utilization of plate-type fuels in small power reactors taking into consideration the characteristics of power and research reactors. The performance characteristics of fuel elements are strongly supported by its materials properties and the adopted configuration for its fissile particles. The present work makes an orientated bibliographic investigation searching the best material properties (structural materials and fuel compounds) related to the performance fuel. Looking for good parafermionic characteristics and manufacturing exequibility associated to existing facilities in national research centres, this work proposes several alternatives of plate type fuels, considering its utilization in small power reactors: dispersions of UO{sub 2} in stainless steel, of UO{sub 2} in zircaloy, and of U-Mo alloy in zircaloy, and monolithic plates of U-Mo cladded with zircaloy. Given the strong dependency of radiation damage with temperature increase, the safety criteria related to heat transfer were verified for all the alternatives, namely the DNBR; coolant temperature lower than saturation temperature; peak meat temperature to avoid swelling; peak fuel temperature to avoid meat-matrix reaction. It was found that all alternatives meet the safety criteria including the 0.5 mm monolithic U-Mo plate cladded with zircaloy. (author)

  15. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value

    DEFF Research Database (Denmark)

    2011-01-01

    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack...

  16. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  17. Preparation of High-Density Uranium-Silicide U3Sl2-Uss: Effects of Preirradiation Heat Treatment on As-Cast Ingot Fuel Plates

    International Nuclear Information System (INIS)

    Suripto, A; Yuwono

    1998-01-01

    Heat treatment experiments upon U 3 Si 2 - U ss ingot have been cam e d out to obtain free uranium particle size improvement which is required to enhance the U-Al inter-diffusion reaction in the fuel plate meat. . Heat treatment experiments upon fuel plates containing dispersion of U 3 Si 2 - U ss in Al matrix have also been carried out to study the effect of temperature and treatment duration on the extent of inter-diffusion reaction between free uranium particle and aluminium matrix in the fuel plate meat. Both the experiments indicate that a drastic size improvement has occurred with the U 3 Si 2 as well as free uranium particles upon heat treatment at controlled temperature between the U 3 Si 2 peritectic and peritectoid temperatures and that the inter-diffusion reaction between free uranium and Al matrix occurs quite significantly at temperatures higher than that ordinarily used in the fabrication procedure

  18. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  19. Technical investigation of a pyrophoric event involving corrosion products from HEU ZPPR fuel plates

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    2000-01-01

    A pyrophoric event recently occurred which involved corrosion products collected from highly-enriched uranium (HEU) fuel plates used in the Zero Power Physics Reactor (ZPPR). This paper summarizes the event and its background, and presents the results of an investigation into its source and mechanism. The investigation focused on characterization of corrosion product samples similar to those involved in the event using thermo-gravimetric analysis (TGA). Burning curve TGA tests were performed to measure the ignition temperature and hydride fractions of corrosion products in several different conditions to assess the effects of passivation treatment and long-term storage on chemical reactivity. The hydride fraction and ignition temperature of the corrosion products were found to be strongly dependent on the corrosion extent of the source metal. The results indicate that the energy source for the event was a considerable quantity of uranium hydride present in the corrosion products, but the specific ignition mechanism could not be identified

  20. Electromagnetic Acoustic Test of the Artificial Defects for a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Kim, Dong Min; Lee, Yoon Sang; Cheong, Yong Moo

    2011-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel meat in aluminum alloy. Last year, KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of the plate-type fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done under immersion condition, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined is a non-ferromagnetic material such as aluminum with a good acousto-elastic property, which requires an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an Electromagnetic Acoustic Transducer (EMAT) technology for an automated inspection of a nuclear fuel without water

  1. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  2. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    International Nuclear Information System (INIS)

    Tolosa, S.C.; Marajofsky, A.

    2004-01-01

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate

  3. An expert system to analyze homogeneity in fuel element plates for research reactors

    International Nuclear Information System (INIS)

    Cativa Tolosa, Sebastian; Marajofsky, Adolfo

    2004-01-01

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up.This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to X-ray images. These images are generated when the X-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized X-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate. (author)

  4. Design of the Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plate provides flow holes to direct the heated coolant into/out of the fuel assembly and structural intensity to insure that the fuel rod is axially restrained within the spacer grids. So, flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape. Because the flow holes' area of a flow plate affects pressure drop, the flow holes' area must be larger than/equal to that of conventional flow plates. And design criterion of the TEP/BEP says that the flow plate should withstand a 22.241 kN axial load during handling lest a calculated stress intensity should exceed the Condition I allowable stress. In this paper, newly designed flow plates of a TEP/BEP are suggested and stress analysis is conducted to evaluate strength robustness of the flow plates for the dual cooled fuel assembly

  5. Applicability and performance of an imaging plate at subzero temperatures

    International Nuclear Information System (INIS)

    Sakoda, Akihiro; Ishimori, Yuu; Hanamoto, Katsumi; Kawabe, Atsushi; Kataoka, Takahiro; Nagamatsu, Tomohiro; Yamaoka, Kiyonori

    2010-01-01

    The performance of imaging plates (IPs) has not been studied at temperatures lower than 0 o C. In the present study, an IP was irradiated with gamma rays emitted from the mineral monazite at temperatures between -80 and 30 o C to determine its fundamental properties. The IP response as a function of irradiation time was found to be linear, suggesting that the IP works properly at low temperatures. Fading, an effect which should be considered at temperatures of more than 0 o C, was not observed at -30 and -80 o C. Furthermore, the fading-corrected PSL value of the IP irradiated at -80 o C was lower than at other temperatures (30, 5 and -30 o C). This can be explained by thermostimulated luminescence (TSL). Since the only intensive TSL peak in the temperature range from -80 to 30 o C is present at about -43 o C, some of the electrons trapped at F centers recombine with holes through the process of TSL before the stored radiation image is read out at room temperature. This finding suggests that the apparent sensitivity of the IP is lower at -80 o C although it is similar to sensitivities between -30 and 30 o C. This low sensitivity should be corrected to perform quantitative measurements.

  6. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  7. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    Science.gov (United States)

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  8. Characterization of an irradiated RERTR-7 fuel plate using transmission electron microscopy

    International Nuclear Information System (INIS)

    Gan, J.; Keiser, D.D. Jr.; Miller, B.D.; Robinson, A.B.; Medvedev, P.

    2010-01-01

    Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the Reduced Enrichment Research and Test Reactor RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper will discuss the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization. (author)

  9. SEM Characterization of an Irradiated Monolithic U-10Mo Fuel Plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/cladding interface, particularly the interaction zone that had developed during fabrication and irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-Mo powders of an irradiated dispersion fuel.

  10. SEM characterization of an irradiated monolithic U-10Mo fuel plate

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Jue, J.F.; Robinson, A.B.; Finlay, M.R.

    2010-01-01

    Results of scanning electron microscopy (SEM) characterization of irradiated U-7Mo dispersion fuel plates with differing amounts of matrix Si have been reported. However, to date, no results of SEM analysis of irradiated U-Mo monolithic fuel plates have been reported. This paper describes the first SEM characterization results for an irradiated monolithic U-10Mo fuel plate. Two samples from this fuel plate were characterized. One sample was produced from the low-flux side of the fuel plate, and another was produced at the high-flux side of the fuel plate. This characterization focused on the microstructural features present at the U-10Mo foil/AA6061 cladding interface, particularly the interaction zone that had developed during fabrication and any continued development during irradiation. In addition, the microstructure of the foil itself was investigated, along with the morphology of the observed fission gas bubbles. It was observed that a Si-rich interaction layer was present at the U-10Mo foil/cladding interface that exhibited relatively good irradiation behavior, and within the U-10Mo foil the microstructural features differed in some respects from what is typically seen in the U-7Mo powders of an irradiated dispersion fuel. (author)

  11. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U 3 Si 2 dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U 3 Si 2 fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U 3 Si 2 particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U 3 Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U 3 Si 2 -aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m 3 is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs

  12. Evaluation of materials for bipolar plates in simulated PEM fuel-cell cathodic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, S.V.; Belmonte, M.R.; Moron, L.E.; Torres, J.; Orozco, G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica S.C. Parcque Sanfandila, Queretaro (Mexico); Perez-Quiroz, J.T. [Mexican Transport Inst., Queretaro (Mexico); Cortes, M. A. [Mexican Petroleum Inst., Mexico City (Mexico)

    2008-04-15

    The bipolar plates in proton exchange membrane fuel cells (PEMFC) are exposed to an oxidizing environment on the cathodic side, and therefore are susceptible to corrosion. Corrosion resistant materials are needed for the bipolar plates in order to improve the lifespan of fuel cells. This article described a study in which a molybdenum (Mo) coating was deposited over austenitic stainless steel 316 and carbon steel as substrates in order to evaluate the resulting surfaces with respect to their corrosion resistance in simulated anodic and cathodic PEMFC environments. The molybdenum oxide films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. The article presented the experiment and discussed the results of the corrosion behaviour of coated stainless steel. In general, the electrochemical characterization of bare materials and coated steel consisted of slow potentiodynamic polarization curves followed by a constant potential polarization test. The test medium was 0.5M sulfuric acid with additional introduction of oxygen to simulate the cathodic environment. All tests were performed at ambient temperature and at 50 degrees Celsius. The potentiostat used was a Gamry instrument. It was concluded that it is possible to deposit Mo-oxides on steel without using another alloying metal. The preferred substrate for corrosion prevention was found to be an alloy with high chromium content. 24 refs., 4 figs.

  13. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Kanda, Keiji; Mishima, Kaichiro; Tamai, Tadaharu; Hayashi, Masatoshi; Snelgrove, James L.; Stahl, David; Matos, James E.; Travelli, Armando; Case, F. Neil; Posey, John C.

    1983-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel cladding material. The release of fission products from the fuel plate at temperature below 500 deg. C was found negligible. The first rapid release of fission products was observed with the occurrence of blistering at 561±1 deg. C on the plates. The next release at 585. C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 deg. C of U-Al x . The released material was mostly xenon, but small amounts of iodine and cesium were observed. (author)

  14. Release of fission products from irradiated aluminide fuel at high temperature

    International Nuclear Information System (INIS)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500 0 C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1 0 C on the plates. The next release at 585 0 C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640 0 C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed

  15. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses

    International Nuclear Information System (INIS)

    Rios, Ilka Antonia

    2013-01-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  16. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    Science.gov (United States)

    Carter, J David [Bolingbrook, IL; Mawdsley, Jennifer R [Woodridge, IL; Niyogi, Suhas [Woodridge, IL; Wang, Xiaoping [Naperville, IL; Cruse, Terry [Lisle, IL; Santos, Lilia [Lombard, IL

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  17. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  18. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  19. A review of microstructural analysis on U3Si2-Al plate-type fuel

    International Nuclear Information System (INIS)

    Ti Zhongxin; Guo Yibai

    1995-12-01

    The microstructure of U 3 Si 2 -Al plate-type fuel, that is the microstructure of fuel particles, compatibility of the fuel particles and Al matrix, fuel particles distribution, dogbone area morphology, clad and meat thickness, bone quality of clad/frame and clad/fuel core, and the effect of these factors on products quality were comprehensively investigated and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), image processing technique, etc.. The main results are as following: U-7.7%Si alloy contains two phases: primary U 3 Si 2 and small amount of USi (about 12%), free-uranium was not detected in fuel particles; the dogbone area is the key factor affecting fuel plate quality (1 ref., 16 figs., 4 tabs.)

  20. Feasibility of Electromagnetic Acoustic Evaluation for Quality Test of a Plate-type Nuclear Fuel

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Lee, Yoon Sang; Cheong, Yong Moo

    2010-01-01

    Most research and test reactors use the nuclear fuel plates which are consisted of a fuel core in aluminum alloy. Recently KAERI signed a deal with the Jordan Atomic Energy Commission to build the research reactor and have to supply the plate-type nuclear fuels. For the demands of world market, KAERI started the research and development of the plate-type fuel elements and endeavored to achieve a localization of fuel fabrication. For the inspection of plate-type fuel elements to be used in Research Reactors, an immersion pulse-echo ultrasonic technique was applied. This inspection was done with water, so a nuclear fuel was immersed to be prone to corrosion and needed to have time and cost due to an additional process. The sample that will be examined within this paper is a non-ferromagnetic material such as aluminum which has a good acousto-elastic property, for an effective inspection of a bond quality for a nuclear fuel under a manufacturing environment. The purpose of this study is to investigate the feasibility of an EMAT technology for an automated inspection of a nuclear fuel without water

  1. Comparison of Different Fuel Temperature Models

    Energy Technology Data Exchange (ETDEWEB)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  2. Comparison of Different Fuel Temperature Models

    International Nuclear Information System (INIS)

    Weddig, Beatrice

    2003-02-01

    The purpose of this work is to improve the performance of the core calculation system used in Ringhals for in-core fuel management. It has been observed that, whereas the codes yield results that are in good agreement with measurements when the core operates at full nominal power, this agreement deteriorates noticeably when the reactor is running at reduced power. This deficiency of the code system was observed by comparing the calculated and measured boron concentrations in the moderator of the PWR. From the neutronic point of view, the difference between full power and reduced power in the same core is the different temperature of the fuel and the moderator. Whereas the coolant temperature can be measured and is thus relatively well known, the fuel temperature is only inferred from the moderator temperature as well as neutron physics and heat transfer calculations. The most likely reason for the above mentioned discrepancy is therefore the uncertainty of the fuel temperature at low power, and hence the incorrect calculation of the fuel temperature reactivity feedback through the so called Doppler effect. To obtain the fuel temperature at low power, usually some semi-empirical relations, sometimes called correlations, are used. The above-mentioned inaccuracy of the core calculation procedures can thus be tracked down to the insufficiency of these correlations. Therefore, the suggestion is that the above mentioned deficiency of the core calculation codes can be eliminated or reduced if the fuel temperature correlations are improved. An improved model, called the 30% model, is implemented in SIMULATE-3, the core calculation code used at Ringhals. The accuracy of the 30% model was compared to that of the present model by considering a number of cases, where measured values of the boron concentration at low power were available, and comparing them with calculated values using both the present and the new model. It was found that on the whole, the new fuel temperature

  3. Quality control of nuclear fuel plates using digital image processing techniques

    International Nuclear Information System (INIS)

    Salinas, Renato; Radd, Ulrich; Coronado, Harold; Olivares, Luis

    2003-01-01

    The Chilean Atomic Energy Commission (CCHEN) has developed the technology requires to manufacture low enriched uranium-235 nuclear fuel elements used in non-power reactor applications and in research. These fuel plates are assembled in two nuclear facilities located at La Reina (RECH-1) and Lo Aguirre where the present work was developed. Furthermore since high quality standards have been met, these facilities are able to export these nuclear fuel plates to foreign countries. Each MTR fuel elements consists of 16 low enriched uranium silicide (U 3 Si 2 ) fuel plates. A stringent quality assurance program requires among others, homogeneity measurements of uranium surface density values of these fuel plates, which are traditionally accomplished with optical densitometry methods. We have implemented and alternative technique which uses computer vision to determine uranium surface density values in these fuel plates. Both techniques are compared. Advantages of machine vision methods include considerable time saving and a complete quantitative evaluation of uranium densities as compared to the sparse technique involved in the optical densitometry method (Au)

  4. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    Energy Technology Data Exchange (ETDEWEB)

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  5. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  6. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  7. Mechanical Calculations on U-Mo Dispersion fuel plates with MAIA

    International Nuclear Information System (INIS)

    Marelle, V.; Huet, F.; Lemoine, P.

    2005-01-01

    CEA has developed a 2D thermo-mechanical code, called MAIA, for modelling the behaviour of U-Mo dispersion fuel. MAIA uses a finite element method for the resolution of the thermal and mechanical problems. Physical models, issued of the DOE-ANL code PLATE, evaluate the fission products swelling and the volume fraction of the interaction between U-Mo and Al. They allow establishing strains in the meat imposed as loading for the mechanical calculation. MAIA has been validated on the irradiations IRIS 1 and RERTR-3 and a rather good agreement is obtained with post irradiation examinations. MAIA is used to calculate the last irradiation of the French UMo group, IRIS 2. MAIA predicts a maximum temperature of 112 deg. C and meat swelling of 16%. Mechanical calculations are finally performed to evaluate the sensitivity to some mechanical hypotheses such as constitutive laws and the way the meat swelling is applied. (author)

  8. Parametric study of the deformation of U3Si2-Al dispersion fuel plates

    International Nuclear Information System (INIS)

    Vieira, Edeval

    2011-01-01

    The Nuclear and Energy Research Institute - IPEN-CNEN/SP produces routinely the nuclear fuel necessary for operating its research reactor, IEA-R1. This fuel consists of fuel plates containing U 3 Si 2 -Al composites as the meat, which are fabricated by rolling. The rolling process currently deployed was developed with base on information obtained from literature, which were used as premises for defining the current manufacturing procedures, according to a methodology with essentially empirical character. Despite the current rolling process to be perfectly stable and highly reproducible, it is not well characterized and therefore is not fully known. The objective of this work is to characterize the rolling process for producing fuel plates, specifically the evolution of dimensional parameters of the fuel plate as a function of its deformation in the rolling process. Results are presented in terms of the evolution of the thickness of the fuel meat and cladding of the fuel plate along the deformation, as well as the terminals defects, microstructure and porosity of the fuel meat. (author)

  9. Influence of the silicon content on the core corrosion properties of dispersion type fuel plates

    International Nuclear Information System (INIS)

    Calvo, C.; Saenz de Tejada, L. M.; Diaz Diaz, J.

    1969-01-01

    A new process to produce aluminium base dispersion type fuel plates has been developed at the Spanish JEN (Junta de Energia Nuclear). The dispersed fuel material is obtained by an aluminothermic process to render a stoichiometric cermet of UAI 3 and AI 2 O 3 according to the reaction. (Author)

  10. The improvement of technology for high-uranium-density Al-base dispersion fuel plates

    International Nuclear Information System (INIS)

    Shouhui, Dai; Rongxian, Sun; Hejian, Mao; Baosheng, Zhao; Changgen, Yin

    1987-01-01

    An improved rolling process was developed for manufacturing Al-base dispersion fuel plates. When the fuel content in the meat increased up to 50 vol%, the non-uniformity of uranium is not more than ± 7.2%, and the minimum cladding thickness is not less than 0.32 mm. (Author)

  11. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  12. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  13. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report

  14. Tensile mechanical properties of U3Si2-Al fuel plate

    International Nuclear Information System (INIS)

    Xu Yong; Hu Huawei; Zhuang Hongquan; Wang Xishu

    2003-01-01

    The fuel plate made of fuel meat, with the U 3 Si 2 -Al dispersion fuel center, and 6061 Al alloy cladding, is a new kind of fuel used in research reactors. The mechanical property data of the fuel meat is the basic data in the design of fuel group, but the mechanical property of this fuel meat has not been studied all over the world till now. In this paper, the mechanical properties of U 3 Si 2 -Al fuel meats of different sizes used in research reactors are investigated and analyzed, and at the same time the carrying capacity of tensile in different directions are also compared. In order to get more knowledge about the mechanical properties of the fuel meat, the tensile experiment has been carried out repeatedly. Considering the lower ratio of elongation and the brittleness, the microscope has been used to examine the zone of fracture after tensile test. (authors)

  15. Analysis of fuel end-temperature peaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)

    2013-07-01

    During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)

  16. Connection between end plates and rods in a BWR fuel element

    International Nuclear Information System (INIS)

    Cali', G.P.

    1975-01-01

    The problem of the connection between the end plates and the rods of a BWR fuel element is analytically formulated. The behaviour of the springs coupling the rods with the upper plate is analyzed with particular detail since the deformation of these springs affects the forces at the interface of the fuel element structure components. A tool is given to design the springs according to some considerations regarding the mechanical strength of the interacting components as well as the influence of the possible geometrical unevennes of the system that can arise during the fuel element lifetime. (Cali', G.P.)

  17. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  18. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  19. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Science.gov (United States)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  20. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  1. Experimental investigation of critical velocity in a parallel plate research reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alfredo J.A.; Scuro, Nikolas L.; Andrade, Delvonei A., E-mail: ajcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The fuel elements of a MTR (Material Testing Reactor) type nuclear reactor are mostly composed of aluminum coated fuel plates containing the core of uranium silica (U{sub 3}Si{sub 2}) dispersed in an aluminum matrix. These plates have a thickness of the order of millimeters and are much longer in relation to their thickness. They are arranged in parallel in the assembly of the fuel element to form channels between them a few millimeters in thickness, through which there is a flow of the coolant. This configuration, combined with the need for a flow at high flow rates to ensure the cooling of the fuel element in operation, may create problems of mechanical failure of fuel plate due to the vibration induced by the flow in the channels. In the case of critical velocity excessive permanent deflections of the plates can cause blockage of the flow channel in the reactor core and lead to overheating in the plates. For this study an experimental bench capable of high volume flows and a test section that simulates a plate-like fuel element with three cooling channels were developed. The dimensions of the test section were based on the dimensions of the Fuel Element of the Brazilian Multipurpose Reactor (RMB), whose project is being coordinated by the National Commission of Nuclear Energy (CNEN). The experiments performed attained the objective of reaching Miller's critical velocity condition. The critical velocity was reached with 14.5 m/s leading to the consequent plastic deformation of the flow channel plates. (author)

  2. Computational simulation of the microstructure of irradiation damaged regions for the plate type fuel of UO2 microspheres dispersed in stainless steel matrix

    International Nuclear Information System (INIS)

    Reis, S.C. dos; Lage, A.F.; Braga, D.; Ferraz, W.B.

    2006-01-01

    Plate type fuel elements have high efficiency of thermal transference what benefits the heat flux with high rates of power output. In reactor cores, fuel elements, in general, are subject to a high neutrons flux, high working temperatures, severe corrosion conditions, direct interference of fission products that result from nuclear reactions and radiation interaction-matter. For plate type fuels composed of ceramic particles dispersed in metallic matrix, one can observe the damage regions that arise due to the interaction fission products in the metallic matrix. Aiming at evaluating the extension of the damage regions in function of the particles and its diameters, in this paper, computational geometric simulations structure of plate type fuel cores, composed of UO 2 microspheres dispersed in stainless steel in several fractions of volume and diameters were carried out. The results of the simulations were exported to AutoCAD R where it was possible its visualization and analysis. (author)

  3. Prediction for the flow distribution and the pressure drop of a plate type fuel assembly

    International Nuclear Information System (INIS)

    Park, Jong Hark; Jo, Dea Sung; Chae, Hee Taek; Lee, Byung Chul

    2011-01-01

    A plate type fuel assembly widely used in many research reactors does not allow the coolant to mix with neighboring fuel channels due to the completely separated flow channels. If there is a serious inequality of coolant distribution among channels, it can reduce thermal-hydraulic safety margin, as well as it can cause a deformation of fuel plates by the pressure difference between neighboring channels, thus the flow uniformity in the fuel assembly should be confirmed. When designing a primary cooling system (PCS), the pressure drop through a reactor core is a dominant value to determine the PCS pump size. The major portion of reactor core pressure drop is caused by the fuel assemblies. However it is not easy to get a reasonable estimation of pressure drop due to the geometric complexity of the fuel assembly and the thin gaps between fuel assemblies. The flow rate through the gap is important part to determine the total flow rate of PCS, so it should be estimated as reasonable as possible. It requires complex and difficult jobs to get useful data. In this study CFD analysis to predict the flow distribution and the pressure drop were conducted on the plate type fuel assembly, which results would be used to be preliminary data to determine the PCS flow rate and to improve the design of a fuel assembly

  4. Temperature Calculation of Annular Fuel Pellet by Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Lim, Ik Sung; Song, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    KAERI has started an innovative fuel development project for applying dual-cooled annular fuel to existing PWR reactor. In fuel design, fuel temperature is the most important factor which can affect nuclear fuel integrity and safety. Many models and methodologies, which can calculate temperature distribution in a fuel pellet have been proposed. However, due to the geometrical characteristics and cooling condition differences between existing solid type fuel and dual-cooled annular fuel, current fuel temperature calculation models can not be applied directly. Therefore, the new heat conduction model of fuel pellet was established. In general, fuel pellet temperature is calculated by FDM(Finite Difference Method) or FEM(Finite Element Method), because, temperature dependency of fuel thermal conductivity and spatial dependency heat generation in the pellet due to the self-shielding should be considered. In our study, FDM is adopted due to high exactness and short calculation time.

  5. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  6. Development of methanol evaporation plate to reduce methanol crossover in a direct methanol fuel cell

    Science.gov (United States)

    Zhang, Ruiming

    This research focuses on methanol crossover reduction in direct methanol fuel cells (DMFC) through separating the methanol vapor from its liquid phase and feeding the vapor passively at low temperature range. Membrane electrode assemblies (MEAs) were fabricated by using commercial available membrane with different thickness at different anode catalyst loading levels, and tested under the operating conditions below 100°C in cell temperature and cathode exit open to ambient pressure. Liquid methanol transport from the anode through the membrane into cathode ("methanol crossover") is identified as one of the major efficiency losses in a DMFC. It is known that the methanol crossover rate in the vapor phase is much lower than in liquid phase. Vapor feed can be achieved by heating the liquid methanol to elevated temperatures (>100°C), but other issues limit the performance of the cell when operating above 100°C. High temperature membranes and much more active cathode catalyst structures are required, and a complex temperature control system must be employed. However, methanol vapor feed can also occur at a lower temperature range (evaporation through a porous body. The methanol crossover with this vapor feed mode is lower compared with the direct liquid methanol feed. A new method of using a methanol evaporation plate (MEP) to separate the vapor from its liquid phase to reduce the liquid methanol crossover at low temperature range is developed. A MEP plays the roles of liquid/vapor methanol phase separation and evaporation in a DMFC. The goal of this study is to develop a MEP with the proper properties to achieve high methanol phase separation efficiency and fast methanol evaporation rate over a wide range of temperature, i.e., from room temperature up to near boiling temperature (100°C). MEP materials were selected and characterized. MEPs made from three different types were tested extensively with different MEA and porous back layer configurations. The benefits of

  7. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  8. Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Linfa; Lai, Xinmin; Liu, Dong' an; Hu, Peng [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-03-15

    Bipolar plate is one of the most important and costliest components of polymer electrolyte membrane (PEM) fuel cells. Micro-hydroforming is a promising process to reduce the manufacturing cost of PEM fuel cell bipolar plates made of metal sheets. As for hydroformed bipolar plates, the main defect is the rupture because of the thinning of metal sheet during the forming process. The flow channel section decides whether high quality hydroformed bipolar plates can be successively achieved or not. Meanwhile, it is also the key factor that is related with the reaction efficiency of the fuel cell stacks. In order to obtain the optimum flow channel section design prior the experimental campaign, some key geometric dimensions (channel depth, channel width, rib width and transition radius) of flow channel section, which are related with both reaction efficiency and formability, are extracted and parameterized as the design variables. By design of experiments (DOE) methods and an adoptive simulated annealing (ASA) optimization method, an optimization model of flow channel section design for hydroformed metal bipolar plate is proposed. Optimization results show that the optimum dimension values for channel depth, channel width, rib width and transition radius are 0.5, 1.0, 1. 6 and 0.5 mm, respectively with the highest reaction efficiency (79%) and the acceptable formability (1.0). Consequently, their use would lead to improved fuel cell efficiency for low cost hydroformed metal bipolar plates. (author)

  9. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  10. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  11. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    International Nuclear Information System (INIS)

    Burkes, D.; Medvedev, P.; Chapple, M.; Amritkar, A.; Wells, P.; Charit, I

    2009-01-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed

  12. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  13. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    Science.gov (United States)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  14. Parametric study of fission-induced U-Mo fuel creep and structural analysis of fuel plates in view of implications for microstructure evolution

    International Nuclear Information System (INIS)

    Kim, Y.S.; Hofman, G.L.; Choo, Y.S.; Robinson, A.B.

    2010-01-01

    U-Mo fuel deformation during irradiation in U-Mo/Al dispersion plates is investigated by using the irradiation data from the RERTR-3 through -9 tests. The observation of fuel particle sintering during irradiation is also presented and its influence for fuel performance is discussed. Structural analysis was also performed to examine the relationship between the stress distribution in the plate and the location of matrix-pore formation in the plate. (author)

  15. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  16. Fission gas behaviour modelling in plate fuel during a power transient

    International Nuclear Information System (INIS)

    Portier, S.

    2003-01-01

    This thesis is dedicated to the identification and modelization of the phenomena which are at the origin of the release of the fission gas formed in UO 2 plate fuels during the irradiation in a power transient. In the first experimental part, samples of plate fuels, irradiated at 36 GWj/tU, have been annealed to temperatures from 1100 C to 1500 C in a device that enabled the measurement of gas release in real time. At 1300 C, post-annealing observations demonstrated a link between the measured gas releases to a rapid formation of labyrinths at the grain surface. These labyrinths, which were formed by intergranular bubble interconnection, create release paths for the gas atoms which reach the grain surface. At this stage, the available experimental results (annealing and observations) were interpreted considering that it is the spreading of the gas atoms from the grains to the grain boundaries that is at the origin of the observed releases. This interpretation generates the hypothesis that a) at the end of the basic irradiation, the gas is at the atomic state and b) during the annealing, the spreading is reduced by the intragranular bubbles of the gas atoms. The last part of the work is dedicated to the modelization of the main phenomena at the origin of the gas release. The model developed, based on the model of the gas behaviour in MARGARET PWR, highlighted the great influence of the irradiation conditions on the gas distribution at the end of the irradiation and also its influence on the fission gas release during the power transient. (author) [fr

  17. Development of core technology for research reactors using plate type fuels

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Lee, Doo Jeong; Park, Cheol

    2009-12-01

    Around 250 research reactors are under operation over the world. However, about 2/3 have been operated more than 30 years and demands for replacements are expected in the near future. The number of expected units is around 110, and around 55 units from 40 countries will be expected to be bid in the world market. In 2007, Netherlands started international bidding process to construct a new 80MW RR (named PALLAS) with the target of commercial operation in 2016, which will replace the existing HFR(45MW). KAERI consortium has been participated in that bid. Most of RRs use plate type fuels as a fuel assembly, Be and Graphite as a reflector. On the other hand, in Korea, the KAERI is operating the HANARO, which uses a rod type fuel assembly and heavy water as a reflector. Hence, core technologies for RRs using plate type fuels are in short. Therefore, core technologies should be secured for exporting a RR. In chapter 2, the conceptual design of PALLAS which use plate type fuels are described including core, cooling system and connected systems, layout of general components. Experimental verification tests for the plate type fuel and second shutdown system and the code verification for nuclear design are explained in Chapter 3 and 4, respectively

  18. Electroplating of Ni-Mo Coating on Stainless Steel for Application in Proton Exchange Membrane Fuel Cell Bipolar Plate

    Directory of Open Access Journals (Sweden)

    H. Rashtchi

    2018-03-01

    Full Text Available Stainless steel bipolar plates are preferred choice for use in Proton Exchange Membrane Fuel Cells (PEMFCs. However, regarding the working temperature of 80 °C and corrosive and acidic environment of PEMFC, it is necessary to apply conductive protective coatings resistant to corrosion on metallic bipolar plate surfaces to enhance its chemical stability and performance. In the present study, by applying Ni-Mo and Ni-Mo-P alloy coatings via electroplating technique, corrosion resistance was improved, oxid layers formation on substrates which led to increased electrical conductivity of the surface was reduced and consequently bipolar plates fuction was enhanced. Evaluation tests included microstructural and phase characterizations for evaluating coating components; cyclic voltammetry test for electrochemical behavior investigations; wettability test for measuring hydrophobicity characterizations of the coatings surfaces; interfacial contact resistance measurements of the coatings for evaluating the composition of applied coatings; and polarization tests of fuel cells for evaluating bipolar plates function in working conditions. Finally, the results showed that the above-mentioned coatings considerably decreased the corrosion and electrical resistance of the stainless steel.

  19. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    Science.gov (United States)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y

  20. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  1. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  2. Conceptual design of control rod regulating system for plate type fuels of Triga-2000 reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Saminto

    2016-01-01

    Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor has been made. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor was made with refer to study result of instrument and control system which is used in BATAN'S reactor. Conceptual design of the control rod regulating system for plate type fuel of TRIGA-2000 reactor consist of 4 segments that is control panel, translator, driver and display. Control panel is used for regulating, safety and display control rod, translator is used for signal processing from control panel, driver is used for driving control rod and display is used for display control rod level position. The translator was designed in 2 modes operation i.e operation by using PLC modules and IC TTL modules. These conceptual design can be used as one of reference of control rod regulating system detail design. (author)

  3. Thermal Hydraulic Fortran Program for Steady State Calculations of Plate Type Fuel Research Reactors

    International Nuclear Information System (INIS)

    Khedr, H.

    2008-01-01

    The safety assessment of Research and Power Reactors is a continuous process over their life and that requires verified and validated codes. Power Reactor codes all over the world are well established and qualified against a real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume much more running time. On the other hand, most of the Research Reactor codes still requiring more data for validation and qualification. Therefore it is benefit for a regulatory body and the companies working in the area of Research Reactor assessment and design to have their own program that give them a quick judgment. The present paper introduces a simple one dimensional Fortran program called THDSN for steady state best estimate Thermal Hydraulic (TH) calculations of plate type fuel RRs. Beside calculating the fuel and coolant temperature distribution and pressure gradient in an average and hot channel the program calculates the safety limits and margins against the critical phenomena encountered in RR such as the burnout heat flux and the onset of flow instability. Well known TH correlations for calculating the safety parameters are used. THDSN program is verified by comparing its results for 2 and 10 MW benchmark reactors with that published in IAEA publications and good agreement is found. Also the program results are compared with those published for other programs such as PARET and TERMIC. An extension for this program is underway to cover the transient TH calculations

  4. Porous Composite for Bipolar Plate in Low Emission Hydrogen Fuel Cells

    Directory of Open Access Journals (Sweden)

    Renata Katarzyna Włodarczyk

    2018-01-01

    Full Text Available The paper presents the results of graphite-stainless steel composites for the bipolar plates in low-temperature fuel cells. The sinters were performed by powder metallurgy technology. The influenceof technological parameters, especially molding pressure were examined. Following the requirements formulated by the DOE concerning the parameters of the materials, it indicated by the value of the parameters. The density, flowabilit, particle size of graphite and stainless steel powders have been evaluated. Composites have been tested by microstructure and phase analysis, properties of strength, functional properties: wettability, porosity, roughness. The special attention was paid to the analysis of corrosion resistance obtained sinters and influenceof technological parameters on the corrosion. Corrosion tests were carried out under conditions simulating the environment of the fuel cell under anode and cathode conditions. The effectof pH solution during working of the cell on corrosion resistance of composites have been evaluated. Contact resistance depends on roughness of sinters. Low ICR determined high contact area GDL-BP and high electrical conductivity on the contact surface. The ICR in anode conditions after corrosion tests are not change significantly; composite materials can be used for materials for B in terms of H 2 .

  5. Evaluation of Corrosion of the Dummy ''EE'' Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    International Nuclear Information System (INIS)

    Brower, Jeffrey Owen; Glazoff, Michael Vasily; Eiden, Thomas John; Rezvoi, Aleksey Victor

    2016-01-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and ''horseshoeing'' defects were readily observable on the surface of the several YA-type fuel elements (these are ''dummy'' plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth ''S'' curve, was represented by a series temperature rise ''humps,'' which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In the case

  6. Structural analysis of hatch cover plates on Fuels and Materials Examination Facility high bay mezzanine

    International Nuclear Information System (INIS)

    Dixson, G.E.

    1997-01-01

    In order to move the Idaho National Engineering Laboratory (INEL) Light Duty Utility Arm (LDUA) trailer into position for testing on the Fuels and Materials Examination Facility (FMEF) 42 ft level mezzanine one of the trailer's wheels will have to sit on a circular hatch cover fabricated from one-inch thick steel plate. The attached calculations verify that the hatch cover plate is strong enough to support the weight of the INEL LDUA trailer's wheel

  7. Evaluation of Erosion of the Dummy ''EE'' Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    International Nuclear Information System (INIS)

    Brower, Jeffrey O.; Glazoff, Michael V.; Eiden, Thomas J.; Rezvoi, Aleksey V.

    2016-01-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR, and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady-state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and ''horseshoeing'' defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum ''dummy'' plates that contain no fuel). In order to understand these erosion phenomena, a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth ''S'' curve, was represented by a series temperature rise ''humps,'' which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed scalloping and

  8. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    International Nuclear Information System (INIS)

    Selamat, Mohd Zulkefli; Yusuf, Muhammad Yusri Md; Wer, Tio Kok; Sahadan, Siti Norbaya; Malingam, Sivakumar Dhar; Mohamad, Noraiham

    2016-01-01

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm"3 respectively.

  9. Effect of formation temperature on properties of graphite/stannum composite for bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Selamat, Mohd Zulkefli, E-mail: azulkeflis@utem.edu.my; Yusuf, Muhammad Yusri Md, E-mail: yusri.cheras@gmail.com; Wer, Tio Kok, E-mail: to91@hotmail.my; Sahadan, Siti Norbaya, E-mail: norbaya@utem.edu.my; Malingam, Sivakumar Dhar, E-mail: sivakumard@utem.edu.my; Mohamad, Noraiham, E-mail: noraiham@utem.edu.my [Centre of Advanced Research on Energy (CARe), Faculty of Mechanical Engineering, UniversitiTeknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2016-03-29

    Bipolar plates are key components in Proton Exchange Membrane (PEM) fuel cells. They carry current away from the cell and withstand the clamping force of the stack assembly. Therefore, PEM fuel cell bipolar plates must have high electrical conductivity and adequate mechanical strength, in addition to being light weight and low cost in terms of both applicable materials and production methods. In this research, the raw materials used to fabricate the high performance bipolar plate are Graphite (Gr), Stannum (Sn) and Polypropylene (PP). All materials used was in powder form and Gr and Sn act as fillers and the PP acts as binder. The ratio of fillers (Gr/Sn) and binder (PP) was fixed at 80:20. For the multi-conductive filler, small amount of Sn, which is 10 up to 20wt% (from the total weight of fillers 80%) have been added into Gr/Sn/PP composite. The fillers were mixed by using the ball mill machine. The second stage of mixing process between the mixer of fillers and binder is also carried out by using ball mill machine before the compaction process by the hot press machine. The effect of formation temperatures (160°C-170°C) on the properties of Gr/Sn/PP composite had been studied in detail, especially the electrical conductivity, bulk density, hardness and microstructure analysis of Gr/Sn/PP composite. The result shows that there are significant improvement in the electrical conductivity and bulk density, which are exceeding the US-DoE target with the maximum value of 265.35 S/cm and 1.682g/cm{sup 3} respectively.

  10. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling

    International Nuclear Information System (INIS)

    Kahraman, Huseyin; Orhan, Mehmet F.

    2017-01-01

    Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.

  11. Corrosion of metal bipolar plates for PEM fuel cells: A review

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato A. [Engenharia de Materiais, Universidade Federal do ABC (UFABC), 09210-170 Santo Andre, SP (Brazil); Oliveira, Mara Cristina L.; Ett, Gerhard; Ett, Volkmar [Electrocell Ind. Com. Equip. Elet. LTDA, Centro de Inovacao, Empreendedorismo e Tecnologia (CIETEC), 05508-000 Sao Paulo, SP (Brazil)

    2010-04-15

    PEM fuel cells are of prime interest in transportation applications due to their relatively high efficiency and low pollutant emissions. Bipolar plates are the key components of these devices as they account for significant fractions of their weight and cost. Metallic materials have advantages over graphite-based ones because of their higher mechanical strength and better electrical conductivity. However, corrosion resistance is a major concern that remains to be solved as metals may develop oxide layers that increase electrical resistivity, thus lowering the fuel cell efficiency. This paper aims to present the main results found in recent literature about the corrosion performance of metallic bipolar plates. (author)

  12. Fabrication of high-uranium-loaded U{sub 3}O{sub 8}-Al developmental fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, G L; Martin, M M [Oak Ridge National Laboratory, TN (United States)

    1983-08-01

    A common plate-type fuel for Research and Test Reactors (RERTR) is U{sub 3}0{sub 8} dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the {sup 235}U enrichment from above 90% to below 20% for these fuels to lessen the risk of diversion of the uranium for non-peaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. This paper describes work at ORNL to determine the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service. We fabricated developmental fuel plates with cores containing from 60 to 100 wt U{sub 3}0{sub 8} in aluminum encapsulated in 6061 aluminum alloy and evaluated them for aspects of fabricability, nondestructive testing, and expected performance. We recommend 75 wt U{sub 3}0{sub 8}-Al 3.1 Mg U/m{sup 3}) as the highest loading in the initial irradiation test. This upper limit is based on a qualitative assessment of the mechanical integrity of the core made by using current fabrication techniques and materials. As the oxide loading is increased beyond this point, planar areas and extensive stringers of oxide and voids develop, which leave little strength in the thickness direction. Fuel plates may then blister over these areas as fission gases collect during irradiation. Current size plates are easily fabricable to the 75 wt % U{sub 3}0{sub 8}-Al core loading by current fabrication techniques. Dogboning is a potential problem at this loading for some applications; however, this can be easily solved by using tapered compact ends. Current nondestructive radiography and transmission x-ray scanning are applicable to the highly loaded plates. Ultrasonic testing for non-bonds is marginal because of the abrupt change in conductance at the cladding-core interface. Plate thickness can be increased if desired; we fabricated 75 wt % plates with

  13. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  14. Post-irradiation studies of test plates for low enriched fuel elements for research reactors

    International Nuclear Information System (INIS)

    Groos, E.; Buecker, H.J.; Derz, H.; Schroeder, R.

    1988-07-01

    In developing new fuels for research reactor elements that allow the use of low enriched uranium (LEU) 3 Si 2 , U 3 Si 1.5 , U 3 Si 1.3 and U 3 Si. Even up to high burnup rates (80% fifa) U 3 Si 2 was proved to be a reliable fuel that according to the test results achieved to date complies with all necessary requirements above all with respect to dimensional stability. U 3 Si showed significant changes of the fuel microstructure associated with considerably higher fuel swelling, that will probably exclude its use in research reactor operation. The irradiation of U 3 Si 1.3 and U 3 Si 1.5 plates had to be terminated untimely. Up to a burnup of 40% fifa these plates behaved quite well. An extrapolation to higher burnup rates, however only seems to be possible with reservations. (orig./HP) [de

  15. Study on characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates

    International Nuclear Information System (INIS)

    Liu Lijian; Yin Changgeng; Chen Jiangang; Sun Changlong; Liu Yunming

    2014-01-01

    In this paper, we analyzed the characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates. The results show that the interaction layers (IL) are with irregular morphology and uneven thickness, and are mainly formed in the internal micro cracks of the dispersion fuel particles or at the interface between the particles and the substrates. The diffusion mechanism of U-Mo/Al-Si is the vacancy diffusion, Al and Si are migrating elements, and the diffusion reaction is that Al and Si diffuse to U-Mo alloy. Inside the interaction layers, the Al content keeps constant basically, but the Si content gradually increases with the substrate-fuel direction, and the maximum content of Si appears interaction layers near the U-Mo side. Adding about 5 wt% Si into Al matrix can restrain the diffusion reaction, and improve the performance of dispersion fuel plates finally. (authors)

  16. Study of the influence of water properties dependency with the temperature in a laminar downward flow between parallel flat plates

    International Nuclear Information System (INIS)

    Delmastro, Dario F.; Chasseur, A.F.; Garcia, Juan C.

    2007-01-01

    In this work we develop a model that contemplates stationary completely developed laminar downward flow between flat parallel plates with uniform and constant heat fluxes. The Boussinesq approach is used in the momentum equation, taking into account the change of the density with the temperature only in the gravitational term. The system is at atmospheric pressure and the dependencies of the density and the thermal conductivity with the temperature are also considered. The velocity and temperature profiles, the friction factor, the heat transfer coefficient and the Nusselt Number are calculated, for different flow rates and heating powers. The results allow to obtain some conclusions that can be of interest in the study of research reactors with forced downward refrigeration and flat plate fuels, although these calculations do not exactly represent the real behavior inside these channels. (author) [es

  17. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P.J.; Pollet, B.G. [PEM Fuel Cell Research Group, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2010-08-15

    This review describes some recent developments in the area of flow field plates (FFPs) for proton exchange membrane fuel cells (PEMFCs). The function, parameters and design of FFPs in PEM fuel cells are outlined and considered in light of their performance. FFP materials and manufacturing methods are discussed and current in situ and ex situ characterisation techniques are described. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Thermal-hydraulic behavior of physical quantities at critical velocities in a nuclear research reactor core channel using plate type fuel

    Directory of Open Access Journals (Sweden)

    Sidi Ali Kamel

    2012-01-01

    Full Text Available The thermal-hydraulic study presented here relates to a channel of a nuclear reactor core. This channel is defined as being the space between two fuel plates where a coolant fluid flows. The flow velocity of this coolant should not generate vibrations in fuel plates. The aim of this study is to know the distribution of the temperature in the fuel plates, in the cladding and in the coolant fluid at the critical velocities of Miller, of Wambsganss, and of Cekirge and Ural. The velocity expressions given by these authors are function of the geometry of the fuel plate, the mechanical characteristics of the fuel plate’s material and the thermal characteristics of the coolant fluid. The thermal-hydraulic study is made under steady-state; the equation set-up of the thermal problem is made according to El Wakil and to Delhaye. Once the equation set-up is validated, the three critical velocities are calculated and then used in the calculations of the different temperature profiles. The average heat flux and the critical heat flux are evaluated for each critical velocity and their ratio reported. The recommended critical velocity to be used in nuclear channel calculations is that of Wambsganss. The mathematical model used is more precise and all the physical quantities, when using this critical velocity, stay in safe margins.

  19. The Effect of Uncertainties on the Operating Temperature of U-Mo/Al Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sweidana, Faris B.; Mistarihia, Qusai M.; Ryu Ho Jin [KAIST, Daejeon (Korea, Republic of); Yim, Jeong Sik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, uncertainty and combined uncertainty studies have been carried out to evaluate the uncertainty of the parameters affecting the operational temperature of U-Mo/Al fuel. The uncertainties related to the thermal conductivity of fuel meat, which consists of the effects of thermal diffusivity, density and specific heat capacity, the interaction layer (IL) that forms between the dispersed fuel and the matrix, fuel plate dimensions, heat flux, heat transfer coefficient and the outer cladding temperature were considered. As the development of low-enriched uranium (LEU) fuels has been pursued for research reactors to replace the use of highly-enriched uranium (HEU) for the improvement of proliferation resistance of fuels and fuel cycle, U-Mo particles dispersed in an Al matrix (UMo/Al) is a promising fuel for conversion of the research reactors that currently use HEU fuels to LEUfueled reactors due to its high density and good irradiation stability. Several models have been developed for the estimation of the thermal conductivity of U–Mo fuel, mainly based on the best fit of the very few measured data without providing uncertainty ranges. The purpose of this study is to provide a reasonable estimation of the upper bounds and lower bounds of fuel temperatures with burnup through the evaluation of the uncertainties in the thermal conductivity of irradiated U-Mo/Al dispersion fuel. The combined uncertainty study using RSS method evaluated the effect of applying all the uncertainty values of all the parameters on the operational temperature of U-Mo/Al fuel. The overall influence on the value of the operational temperature is 16.58 .deg. C at the beginning of life and it increases as the burnup increases to reach 18.74 .deg. C at a fuel meat fission density of 3.50E+21 fission/cm{sup 3}. Further studies are needed to evaluate the behavior more accurately by including other parameters uncertainties such as the interaction layer thermal conductivity.

  20. New options to fuel plate for MTR reactor

    International Nuclear Information System (INIS)

    Macedo, C.R.

    1988-01-01

    The main datas of fuel elements and the new materials for good performance of the MTR reactor are described. A study to verify the possibility of introduction a new element on the alloy is presented. After verification the stages of nucleus fabrication with dispersion cermets of uranium oxide is gave a special emphasis to cermet fabrication of uranium-aluminium alloys. (C.G.C.) [pt

  1. Development method for measuring thickness of nuclei and coating of fuel plates

    International Nuclear Information System (INIS)

    Borges Junior, Reinaldo

    2013-01-01

    One of the most important components of a nuclear reactor is the Nuclear Fuel. Currently, the most advanced commercial fuel, whose applicability in Brazilian reactors has been developed by IPEN since 1985, is the silicide U 3 Si 2 . This is formed by fuel plates with nuclei dispersion (where the fissile material (U 3 Si 2 ) is homogeneously dispersed in a matrix of aluminum) coated aluminum. This fuel is produced in Brazil with developed technology, the result of the efforts made by the group of manufacturing nuclear fuel (CCN - Center of Nuclear Fuel) of IPEN. Considering the necessity of increasing the power of the IEA- R1 and Brazilian Multipurpose Reactor Building (RMB), for the production of radioisotopes - mainly for the area of medicine - there will be significant increase in the production of nuclear fuel at IPEN. Given this situation, if necessary, make the development of more modern and automated classification techniques. Aiming at this goal, this work developed a new computational method for measuring thickness of core and cladding of fuel plates, which are able to perform such measurements in less time and with more meaningful statistical data when compared with the current method of measurement. (author)

  2. Test of high temperature fuel element, (1)

    International Nuclear Information System (INIS)

    Akino, Norio; Shiina, Yasuaki; Nekoya, Shin-ichi; Takizuka, Takakazu; Emori, Koichi

    1980-11-01

    Heat transfer experiment to measure the characteristics of a VHTR fuel in the same condition of the reactor core was carried out using HTGL (High Temperature Helium Gas Loop) and its test section. In this report, the details of the test section, related problems of construction and some typical results are described. The newly developed heater with graphite heat transfer surface was used as a simulated fuel element to determine the heat transfer characteristics. Following conclusions were obtained; (1) Reynolds number between turbulent and transitional region is about 2600. (2) Reynolds number between transitional and laminar region is about 4800. (3) The laminarization phenomena have not been observed and are hardly occurred in annular tubes comparing with round tube. (4) Measured Nusselt numbers agree to the established correlations in turbulent and laminar regions. (author)

  3. EXACT SOLUTION FOR TEMPERATURE-DEPENDENT BUCKLING ANALYSIS OF FG-CNT-REINFORCED MINDLIN PLATES

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavi

    2016-03-01

    Full Text Available This research deals with the buckling analysis of nanocomposite polymeric temperature-dependent plates reinforced by single-walled carbon nanotubes (SWCNTs. For the carbon-nanotube reinforced composite (CNTRC plate, uniform distribution (UD and three types of functionally graded (FG distribution patterns of SWCNT reinforcements are assumed. The material properties of FG-CNTRC plate are graded in the thickness direction and estimated based on the rule of mixture. The CNTRC is located in a elastic medium which is simulated with temperature-dependent Pasternak medium. Based on orthotropic Mindlin plate theory, the governing equations are derived using Hamilton’s principle and solved by Navier method. The influences of the volume fractions of carbon nanotubes, elastic medium, temperature and distribution type of CNTs are considered on the buckling of the plate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the stiffness of plates.

  4. Numerical simulation research on rolling process of monolithic nuclear fuel plate

    International Nuclear Information System (INIS)

    Wan Jibo; Kong Xiangzhe; Ding Shurong; Xu Hongbin; Huo Yongzhong

    2015-01-01

    For the strain-rate-dependent constitutive relation of zircaloy cladding in UMo monolithic nuclear fuel plates, the three-dimensional stress updating algorithm was derived out, and the corresponding VUMAT subroutine to define its constitutive relation was developed and validated; the finite element model was built to simulate the frame rolling process of UMo monolithic nuclear fuel plates; with the explicit dynamic finite element method, the evolution rules of the deformation and contact pressure during the rolling process within the composite slab were obtained and analyzed. The research results indicate that it is convenient and efficient to define the strain-rate- dependent constitutive relations of materials with the user-defined material subroutine VUMAT; the rolling-induced contact pressure between the fuel meat and the covers varies with time, and the maximum pressure exits at the symmetric plane along the plate width direction. This study supplies a foundation and a computation method for optimizing the processing parameters to manufacture UMo monolithic nuclear fuel plates. (authors)

  5. Heat conduction in a plate-type fuel element with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Maiorino, J.R.

    1981-01-01

    A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt

  6. Analysis of the production of U3O8 powder for low enrichment fuel plates

    International Nuclear Information System (INIS)

    Boero, N.L.; Celora, J.; Parodi, C.A.; Ponieman, G.; Kellner, M.; Marajofsky, A.

    1987-01-01

    Description is made of the processes used in the production of U 3 O 8 powder for low enrichment plates for fuel elements for Research Reactors. The analysis of the efficiency of each batch is foccused on the relationship between milling and sieving times and the morphology of the product in each production step. (Author)

  7. Flat plate bonded fuel elements. Quarterly report No. 3, October 11, 1953--December 10, 1953

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1953-12-31

    This document is Report No. 3 (covering the period 10/11/53 to 12/10/53) on Flat Plate Bonded Fuel Elements at the Savannah River Plant. It contains information on the fabrication and testing of the uranium components as well as the structural components (aluminium).

  8. Postirradiation Examination Of U3O8-AL Plate Type Dispersion Fuel Element

    International Nuclear Information System (INIS)

    Nasution-Hasbullah; Sugondo; Amin, D.L.; Siti-Amini

    1996-01-01

    Postirradiation examination of plate type spent fuel element RIE-01 has been carried out in order to observer its physical changes and performance under irradiation in the reactor. The irradiation has been time more than two years with a declared burnup of 51.04 %. The examination included visual and dimensional measurement, measurement of burn-up distribution, wipe test and metallographic analysis. The results showed that all fuel plates retained their integrity. The colour changes were occurred on most of the plates significant suggesting that it was generated from the oxide layer formation. From gamma-scanning examination it could be deducted that the highest burn-up distribution of the plate was at position of 30 cm from the bottom. A more homogeneous distribution was found in the middle plate of the bundle. The increased plate thickness, as revealed by dimensional measurements as in agreement with the burn-up distribution pattern. Despite the changes observed in could be concluded that all changes occurred were still within the allowable limits and therefore it can recommended that an increase of the burn-up level above 51,04 % is still quite possible

  9. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  10. Study on the Applicability of Electron Beam Welding Methods to Assembly a Fuel Compact and Al Cover Plate of Research Reactor Plate Type Fuel

    International Nuclear Information System (INIS)

    Lee, Hae In; Lee, Yoon Sang; Lee, Don Dae; Jeong, Yong Jin; Kwon, Sun Chil; Kim, Soo Sung; Park, Jong Man

    2012-01-01

    Among the research reactor plate type fuel fabrication processes, there is an assembly process between fuel meat compact and Al cover plates using a welding method prior to rolling process. The assembly process is such as the Al frame and Al cover plate should be welded properly as shown in Fig. 1. For welding, TIG(Tungsten Inert Gas) welding methods has been used conventionally, but in this study an electron beam welding(EB welding) technique which uses the electron beam of a high velocity for joining two materials is introduced to the assembly. The work pieces are melted as the kinetic energy of the electron beam is transformed into heat to join the two parts of the weld. The welding is often done in the conditions in a vacuum to prevent dispersion of the electron beam. The electron beam welding process has many ad-vantages such as contamination of the welds could be prevented, the penetration of the weld is deep, and also the strain of the welding area is less than other methods. In this study, to find optimal condition of the EB welding process, a welding speed, a beam current and an acceleration voltage were changed. To analyzing the welding results, the shape of the beads and defects of welding area was used. The width and depth of the beads were measured as well

  11. LOFT fuel rod surface temperature measurement testing

    International Nuclear Information System (INIS)

    Eaton, A.M.; Tolman, E.L.; Solbrig, C.W.

    1978-01-01

    Testing of the LOFT fuel rod cladding surface thermocouples has been performed to evaluate how accurately the LOFT thermocouples measure the cladding surface temperature during a loss-of-coolant accident (LOCA) sequence and what effect, if any, the thermocouple would have on core performance. Extensive testing has been done to characterize the thermocouple design. Thermal cycling and corrosion testing of the thermocouple weld design have provided an expected lifetime of 6000 hours when exposed to reactor coolant conditions of 620 K and 15.9 MPa and to sixteen thermal cycles with an initial temperature of 480 K and peak temperatures ranging from 870 to 1200K. Departure from nucleate boiling (DNB) tests have indicated a DNB penalty (5 to 28% lower) during steady state operation and negligible effects during LOCA blowdown caused by the LOFT fuel rod surface thermocouple arrangement. Experience with the thermocouple design in Power Burst Facility (PBF) and LOFT nonnuclear blowdown testing has been quite satisfactory. Tests discussed here were conducted using both stainless steel and zircaloy-clad electrically heated rod in the LOFT Test Support Facility (LTSF) blowdown simulation loop

  12. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.; Williams, Walter J.

    2017-02-01

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutron radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.

  13. Thick nickel plating of spent fuel transport and storage casks CASTOR and POLLUX

    International Nuclear Information System (INIS)

    Wilbuer, K.

    1991-01-01

    Spent fuel elements have to be safely handled in containers for transport and storage. These large casks (100-120 t) are made by various firms according to the specifications given by the nuclear plant operator. For shielding and protection of the hazardous material, the casks' inner surface is coated with a nickel plating about 3000 μm thick. The product and the production process are subject to very stringent requirements, due to the hazardous potential of the material to be shipped or stored. Therefore, both the extremely high quality standards to be met by the nickel plating and the dimensions and capability of the plating plant required for the process are problems that cannot be solved by a usual commercial plating plant. The new concept and process that had to be established are explained in the paper. (orig./MM) [de

  14. Stress Linearization and Strength Evaluation of the BEP's Flow Plates for a Dual Cooled Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Yoon, Kyung Ho; Kang, Heung Seok; Lee, Young Ho; Lee, Kang Hee; Kim, Hyung Kyu

    2009-01-01

    A fuel assembly is composed of 5 major components, such as a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT) and fuel rods (FRs). There are no ASME criteria about all components except for a TEP/BEP. The TEP/BEP should satisfy stress intensity limits in case of condition A and B of ASME, Section III, Division 1 . Subsection NB. In a dual cooled fuel assembly, the array and position of fuels are changed from those of a conventional PWR fuel assembly to achieve a power uprating. The flow plates of top/bottom end pieces (TEP/BEP) have to be modified into proper shape to provide flow holes to direct the heated coolant into/out of the fuel assembly but structural intensity of these plates within a 22.241 kN axial loading should satisfy Tresca stress limits in ASME code. In this paper, stress linearization procedure and strength evaluation of a newly designed BEP for the dual cooled fuel assembly are described

  15. Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh, R., E-mail: rakesh.rad87@gmail.com [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Kohli, D. [DAE Graduate Fellows, IIT Bombay, Powai, Mumbai 400076 (India); Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Sinha, V.P.; Prasad, G.J. [Metallic Fuels Division, BARC, Trombay, Mumbai 400085 (India); Samajdar, I. [Department of Metallurgical Engineering and Materials Science, IIT Bombay, Powai, Mumbai 400076 (India)

    2014-02-01

    Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum–aluminum (case A) and aluminum–aluminum + yttria (Y{sub 2}O{sub 3}) dispersion (case B). Case B approximated aluminum–uranium silicide (U{sub 3}Si{sub 2}) ‘fuel-meat’ in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in ‘out-of-plane’ residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.

  16. Temperature behavior of 12 wt.% U TRIGA fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levine, S H; Geisler, G C; Totenbier, R E [Pennsylvania State University (United States)

    1974-07-01

    Stainless steel clad 12 wt % U TRIGA fuel elements have been used to refuel the Penn State University's Breazeale Reactor (PSBR). When 12 wt % U fuel containing nominally 55 gms of {sup 235}U per fuel element is substituted for the 8.5 wt % U fuel containing nominally 38 gms {sup 235}U, higher fuel temperatures were produced in the 12 wt % U fuel than in the 8.5 wt % U fuel at the same reactor powers. The higher fuel temperature can be related to the higher power densities in the 12 wt % U fuel. The power density is calculated to be 35% higher in the 12 wt % U fuel when 6 of these fuel elements are substituted for 8.5 wt % U fuel in the innermost ring, the B ring. Temperatures have been calculated for the 12 wt % U fuel in the above configuration for both steady state and pulse conditions, assuming a 35% higher fuel density in the 12 wt % U fuel and the results compare favorably with the experimental measurements. This is particularly true when the comparison is made with temperature data taken after exposing the new fuel elements to a series of pulses. These calculations and data will be presented at the meeting. (author)

  17. Analysis of pressure distribution originated over the external plate window of the RA-10 nuclear fuel

    International Nuclear Information System (INIS)

    Gramajo, M A; Garcia, J.C

    2012-01-01

    The RA10 is a pool type multipurpose research reactor. The core consists of a rectangular array of MTR fuel type. The refrigeration system at full power and normal operations conditions is carried out by an ascendant flow through the core. To ensure the refrigeration in the sub-channel formed between two adjacent fuels, there is a window orifice over the outer fuel plate. Part of the coolant flow that gets into the fuel will be derived by the window orifice to the sub-channel. Due to the change in the coolant flow direction is necessary to establish the pressure distribution originated over the window In order to achieve this goal a CFD commercial code (FLUENT v6.3.26) was used to perform numerical simulations to obtain the pressure distribution over the window. A quarter of the fuel was modeled using proper symmetry and boundaries conditions (author)

  18. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  19. Heat transfer effects on flow past an exponentially accelerated vertical plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2008-01-01

    Full Text Available An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.

  20. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  1. International interest in the BONAPARTE measurement bench. Post-irradiation examination of lower-enriched fuel plates

    International Nuclear Information System (INIS)

    2014-01-01

    The Belgian Nuclear Research Center SCK-CEN has developed a measurement bench (BONAPARTE) for the non-destructive analysis on fuel plate and rod type fuel elements. BONAPARTE is a modular device that can be employed for many purposes. The article discusses the employment of the BONAPARTE device for the accurate full post-irradiation mapping of fuel plate swelling with degree of precision of just a few micrometers.

  2. Fabrication of AA6061-T6 Plate Type Fuel Assembly Using Electron Beam Welding Process

    International Nuclear Information System (INIS)

    Kim, Soosung; Seo, Kyoungseok; Lee, Donbae; Park, Jongman; Lee, Yoonsang; Lee, Chongtak

    2014-01-01

    AA6061-T6 aluminum alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW. However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the shrinkage measurement and weld inspection using computed tomography. This study was carried out to determine the suitable welding parameters and to evaluate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory electron beam welding process of the full-sized sample was being developed. Based on this fundamental study, fabrication of the plate-type fuel assembly will be provided for the future Ki-Jang research reactor project

  3. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  4. Determination of elastic constants of fuels plates based on uranium by ultrasound testing

    International Nuclear Information System (INIS)

    Moreira Castro, Martin Ignacio

    2015-01-01

    Current nuclear reactors use as U-235 U-enriched compounds enriched with U-235, requiring U-alloys that increase the amount of atoms available for nuclear fission in a convenient way. This study was carried out on fuel plates manufactured in the Chilean Nuclear Energy Commission, whose cores are composed of a dispersed mixture Al-U_3Si_2 and Al-U_7Mo, with different densities of uranium, covered by a coating of Al6061. The objective was to characterize elastically and classify the fuel plates analyzed. Specifically, five Al-U_3Si_2 fuel plates with 1.7 gU/cm"3, eight A-U_3Si_2 with 3.4 gU/cm"3, five of A-l U_3Si_2 with 4.8 gU/cm"3 were successfully studied. The apparent elastic constants (Young and Shear modules, and Poisson coefficient) were determined in the area where the fuel is located (MEAT) by means of an ultrasound sampling technique, thus being able to characterize them and classify them according to their composition. The behavior of the elastic constants generally shows a tendency to decrease as the amount of U_3Si_2 particles dispersed in the MEAT zone of the fuel plates increases. In addition, the non-destructive test method used made it possible to detect several differences between the fuel plates analyzed, such as the amount of reduction in rolling, among others. Additionally, six experimental fuel miniplates were analyzed whose meat were formed by a dispersion of the Al-UMo type, specifically: two of Al-U_7Mo with 6.0 gU/cm"3, two of Al-U_7Mo with 7.0 gU/ cm"3 and two of Al-U_7Mo with 8.0 gU/cm"3. The response of the U-Mo fuel miniplates against this technique was not good, so several ideas were proposed to improve this situation

  5. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  6. Corrosion and pyrophoricity of ZPPR fuel plates: Implications for basin storage

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.; Pahl, R.G.; Crawford, D.C.

    1997-01-01

    This paper presents the results of recent experimentation and analysis of the pyrophoric behavior of corroded Zero Power Physics Reactor (ZPPR) HEU fuel plates and the implications of these results for the handling, drying, and passivation of uranium metal fuels stored in water basins. The ZPPR plates were originally clad in 1980; crevice corrosion of the uranium metal in a dry storage environment has occurred due to the use of porous cladding end plugs. The extensive corrosion has resulted in bulging and, in some cases, breaching of the cladding over a 15 year storage period. Processing of the plates has been initiated to recover the highly enriched uranium metal and remove the storage vulnerability identified with the corroded plates, which have been shown to contain significant quantities of the pyrophoric compound uranium hydride (UH 3 ). Experiments were undertaken to determine effective passivation techniques for the corrosion product; analysis and modeling was performed to determine whether heat generated by rapid hydride re-oxidation could ignite the underlying metal plates. The results of the initial passivation experiment showed that simple exposure of the hydride-containing corrosion product to an Ar-3 vol.% O 2 environment was insufficient to fully passivate the hydride--flare-up of the product occurred during subsequent vigorous handling in air. A second experiment demonstrated that corrosion product was fully stable following grinding of the product to a fine powder in the Ar-3 vol.% O 2 atmosphere. Numerical modeling of a corroded plate indicated that ignition of the plate due to the heat from hydride re-oxidation was likely if hydride fractions in the corrosion product exceeded 30%

  7. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  8. A cellular automaton method to simulate the microstructure and evolution of low-enriched uranium (LEU) U–Mo/Al dispersion type fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Drera, Saleem S., E-mail: saleem.drera@gmail.com [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Hofman, Gerard L. [Argonne National Laboratory, Chicago, IL 60439 (United States); Kee, Robert J. [Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 (United States); King, Jeffrey C. [Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-10-15

    Highlights: • This article presents a cellular automata (CA) algorithm to synthesize the growth of intermetallic interaction layers in U–Mo/Al dispersion fuel. • The method utilizes a 3D representation of the fuel, which is discretized into separate voxels that can change identy based on derived CA rules. • The CA model is compared to ILT measurements for RERTR experimental data. • The primary objective of the model is to synthesize three-dimensional microstructures that can be used in subsequent thermal and mechanical modeling. • The CA model can be used for predictive analysis. For example, it can be used to study the dependence of temperature on interaction layer growth. - Abstract: Low-enriched uranium (LEU) fuel plates for high power materials test reactors (MTR) are composed of nominally spherical uranium–molybdenum (U–Mo) particles within an aluminum matrix. Fresh U–Mo particles typically range between 10 and 100 μm in diameter, with particle volume fractions up to 50%. As the fuel ages, reaction–diffusion processes cause the formation and growth of interaction layers that surround the fuel particles. The growth rate depends upon the temperature and radiation environment. The cellular automaton algorithm described in this paper can synthesize realistic random fuel-particle structures and simulate the growth of the intermetallic interaction layers. Examples in the present paper pack approximately 1000 particles into three-dimensional rectangular fuel structures that are approximately 1 mm on each side. The computational approach is designed to yield synthetic microstructures consistent with images from actual fuel plates and is validated by comparison with empirical data on actual fuel plates.

  9. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    Science.gov (United States)

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  10. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    Energy Technology Data Exchange (ETDEWEB)

    Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.

    2018-02-01

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Sicoated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, is temperature and fission-rate dependent. In order to simulate the U-Mo/Al inter-diffusion layer (IL) growth behavior in full-size dispersion fuel plates, the existing IL growth correlation was modified with a temperaturedependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the intermixing rate in ion-irradiated bi-layer systems.

  11. Medium-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Natural Resources Canada, Ottawa, ON (Canada). Materials Technology Lab

    2000-07-01

    The Materials Technology Laboratory (MTL) of Natural Resources Canada has been conducting research on the development of a solid oxide fuel cell (SOFC) for the past decade. Fuel cells convert chemical energy directly into electric energy in an efficient and environmentally friendly manner. SOFCs are considered to be good stationary power sources for commercial and residential applications and will likely be commercialized in the near future. The research at MTL has focused on the development of new electrolytes for use in SOFCs. In the course of this research, monolithic planar single cell SOFCs based on doubly doped ceria and lanthanum gallate have been fabricated and tested at 700 degrees C. This paper compared the performance characteristics of both these systems. The data suggested the presence of a significant electronic conductivity in the SOFC incorporating doubly doped ceria, resulting in lower than expected voltage output. The stability of the SOFC, however, did not appear to be negatively affected. The lanthanum gallate based SOFC performed well. It was concluded that reducing the operating temperature of SOFCs would improve their reliability and enhance their operating life. First generation commercial SOFCs will use a zirconium oxide-based electrolytes while second generation units might possibly use ceria-based and/or lanthanum gallate electrolytes. 24 refs., 6 figs.

  12. Temperature feedback of TRIGA MARK-II fuel

    Science.gov (United States)

    Usang, M. D.; Minhat, M. S.; Rabir, M. H.; M. Rawi M., Z.

    2016-01-01

    We study the amount of temperature feedback on reactivity for the three types of TRIGA fuel i.. ST8, ST12 and LEU fuel, are used in the TRIGA MARK II reactor in Malaysia Nuclear Agency. We employ WIMSD-5B for the calculation of kin f for a single TRIGA fuel surrounded by water. Typical calculations of TRIGA fuel reactivity are usually limited to ST8 fuel, but in this paper our investigation extends to ST12 and LEU fuel. We look at the kin f of our model at various fuel temperatures and calculate the amount reactivity removed. In one instance, the water temperature is kept at room temperature of 300K to simulate sudden reactivity increase from startup. In another instance, we simulate the sudden temperature increase during normal operation where the water temperature is approximately 320K while observing the kin f at various fuel temperatures. For accidents, two cases are simulated. The first case is for water temperature at 370K and the other is without any water. We observe that the higher Uranium content fuel such as the ST12 and LEU have much smaller contribution to the reactivity in comparison to the often studied ST8 fuel. In fact the negative reactivity coefficient for LEU fuel at high temperature in water is only slightly larger to the negative reactivity coefficient for ST8 fuel in void. The performance of ST8 fuel in terms of negative reactivity coefficient is cut almost by half when it is in void. These results are essential in the safety evaluation of the reactor and should be carefully considered when choices of fuel for core reconfiguration are made.

  13. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  14. An experimental investigation of the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1996-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins yield the induced stress is defined as secondary stress. In design it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represents a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the Advanced Neutron Source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  15. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  16. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  17. An experimental investigation on the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1997-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins to yield the induced stress is defined as secondary stress. In design, it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represent a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses, and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the advanced neutron source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  18. Assessment of fuel damage of pool type research reactor in the case of fuel plates blockage

    Energy Technology Data Exchange (ETDEWEB)

    Jalil, Jafari; Samad, Khakshournia [AEOI, Karegar Ave. School of R and D of Nuclear Reactors and Accelerators, Teheran (Iran, Islamic Republic of); D' Auria, F. [Pisa Univ., DIMNP (Italy)

    2007-07-01

    Tehran Research Reactor (TRR) is a pool type 5 MW research reactor. It is assumed that external objects or debris that may fall down to reactor core cause obstruction of coolant flow through one of the fuel assemblies. Thermal hydraulic analysis of this event, using the RELAP5 system code has been studied. The reported transient is related to the partial and total obstruction of a single Fuel Element (FE) cooling channel of 27 FE equilibrium core of TRR. Such event constitutes a severe accident for this type of reactor since it may lead to local dryout and eventually to loss of the FE integrity. Two scenarios are analysed to emphasize the severity of the accident. The first one is a partial blockage of an average FE considering four different obstruction levels: 25%, 50%, 75% and 97% of nominal flow area. The second one is an extreme scenario consisting of total blockage of the same FE. This study constitutes the first step of a larger work which consists of performing a 3-dimensional simulation using the Best Estimate coupled code technique. However, as a first approach the instantaneous reactor power is derived through the point kinetic calculation included in the RELAP5 code. Main results obtained from the RELAP5 calculations are as following. First, in the case of flow blockage under 97% of the nominal flow area of an average FE, only an increase of the coolant and clad temperatures is observed without any consequences for the integrity of the FE. The mass flow rate remains sufficient to cool the clad safely. Secondly, in the case of total obstruction of the nominal flow area, it is seen that transient turns out to be a severe accident due to the dryout conditions are reached shortly and melting of the cladding occurs. Thirdly, the use of the point kinetic approach leads to conservative results. A best estimate simulation of such kind of transients requires the use of 3-dimensional kinetic calculations, which could be done using the current Coupled Codes

  19. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  20. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries

    Science.gov (United States)

    Minke, Christine; Hickmann, Thorsten; dos Santos, Antonio R.; Kunz, Ulrich; Turek, Thomas

    2016-02-01

    Carbon-polymer-composite bipolar plates (BPP) are suitable for fuel cell and flow battery applications. The advantages of both components are combined in a product with high electrical conductivity and good processability in convenient polymer forming processes. In a comprehensive techno-economic analysis of materials and production processes cost factors are quantified. For the first time a technical cost model for BPP is set up with tight integration of material characterization measurements.

  1. System for uranium superficial density measurement in U3Si2 MTR fuel plates using radiography

    International Nuclear Information System (INIS)

    Hey, Martin A.; Gomez Marlasca, Fernando

    2003-01-01

    The paper describes a method for measuring uranium superficial density in high density uranium silicide (U 3 Si 2 ) MTR fuel plates, through the use of industrial radiography, a set of patterns built for this purpose, a transmission optical densitometer, and a quantitative model of analysis and measurement. Our choice for this particular method responds to its high accuracy, low cost and easy implementation according to the standing quality control systems. (author)

  2. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  3. Evaluation of Electron Beam Welding Performance of AA6061-T6 Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Kim, Soo-Sung; Seo, Kyoung-Seok; Lee, Don-Bae; Park, Jong-Man; Lee, Yoon-Sang; Lee, Chong-Tak

    2014-01-01

    As one of the most commonly used heat-treatable aluminum alloys, AA6061-T6 aluminum alloy is available in a wide range of structural materials. Typically, it is used in structural members, auto-body sheet and many other applications. Generally, this alloy is easily welded by conventional GTAW (Gas Tungsten Arc Welding), LBW (Laser Beam Welding) and EBW(Electron Beam Welding). However, certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes possess the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the plate-type nuclear fuel fabrication and assembly, a fundamental electron beam welding experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the suitable welding process, and satisfy the requirements of the weld quality, EBW apparatus using an electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. The EB weld quality of AA6061-T6 aluminum alloy for the plate-type fuel assembly has been also studied by the weld penetrations of side plate to end fitting and fixing bar and weld inspections using computed tomography

  4. Tensile Test of Welding Joint Parts for a Plate-type Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Kim, J. Y.; Kim, H. J.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The tensile tests were performed using an INSTRON 4505 (universal tensile) testing machine. These welding joints are composed of two parts for the soundness of the fuel assembly; one is the side plate with a fixing bar and the other is a side plate with an end fitting. These two joint parts are fabricated by TIG welding method. The tensile tests of the welding joints of a plate-type FA are executed by a tensile test. The fixture configurations for the specimen are very important to obtain the strict test results. The maximum strength has an approximately linear correlation with the unit bonding length of the welding joints. In spite of these results, the maximum strengths of the welding joints are satisfied according to the minimum requirement. These tensile tests of the joint parts for a plate-type fuel assembly (FA) have to be executed to evaluate the structural strength. For the tensile test, the joint parts of a FA used in the test are made of aluminum alloy (Al6061-T6)

  5. Tensile Test of Welding Joint Parts for a Plate-type Fuel Assembly

    International Nuclear Information System (INIS)

    Yoon, K. H.; Kim, J. Y.; Kim, H. J.; Yim, J. S.

    2013-01-01

    The tensile tests were performed using an INSTRON 4505 (universal tensile) testing machine. These welding joints are composed of two parts for the soundness of the fuel assembly; one is the side plate with a fixing bar and the other is a side plate with an end fitting. These two joint parts are fabricated by TIG welding method. The tensile tests of the welding joints of a plate-type FA are executed by a tensile test. The fixture configurations for the specimen are very important to obtain the strict test results. The maximum strength has an approximately linear correlation with the unit bonding length of the welding joints. In spite of these results, the maximum strengths of the welding joints are satisfied according to the minimum requirement. These tensile tests of the joint parts for a plate-type fuel assembly (FA) have to be executed to evaluate the structural strength. For the tensile test, the joint parts of a FA used in the test are made of aluminum alloy (Al6061-T6)

  6. The velocity measurement by LDV at the simulated plate fuel assembly

    International Nuclear Information System (INIS)

    Tae Sung Ha

    2001-01-01

    For a more accurate safety analysis for McMaster Nuclear Reactor (MNR), local velocity measurements in a mock-up of the 18-plate fuel assembly are conducted over the range of M=2.0kg/s to 5.0kg/s (u=0.59m/s to 1.48m/s). To enable the measurement of the mass flow distribution through the channels by Laser Doppler Velocimeter(LDV), the curved fuel plate assembly is modified to flat fuel plates. The experimental result shows that the velocity profile is fairly symmetric for the 1st channel to the 17th subchannel at its center. The velocity in the peripheral area is slightly decreased while that directly above the circular pipe is correspondingly increased due to the effect of blockage by the exit endfitting. The mass flow rate fraction is fairly well distributed from the 1st to the 9th channels; at the outmost channels (1st and 3rd subchannels) the flow is approximately 95-97% of the average channel flow and at the central channels (4th and 8th subchannels) the flow is about 102-105% of the average channel mass flow rate. It is shown that the measured mass flow distribution is consistent with the results of the numerical calculation except 1st and 17th channels. (author)

  7. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    Science.gov (United States)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  8. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  9. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  10. Analysis of gamma heating at TRIGA mark reactor core Bandung using plate type fuel

    International Nuclear Information System (INIS)

    Setiyanto; Tukiran Surbakti

    2016-01-01

    In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0.87 W/g), but very low value for Lazy Susan position (lest then 0.11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. (author)

  11. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  12. LEU fuel development at CERCA. Status as of October 1997. Preliminary developments of MTR plates with UMo fuel

    International Nuclear Information System (INIS)

    Durand, J.P.; Lavastre, Y.; Grasse, M.

    1997-01-01

    UMo fuels are considered by the RERTR programme because of their higher density as compared to U 3 Si 2 . This paper is focused on the preliminary results about the manufacture feasibility of Uranium/Molybdenum fuel plates carried out by CERCA. A special procedure of casting and heat treatment has been developed in order to get an homogeneous gamma phase of UMo alloy Although U-5%Mo allows to reach densities up to 9.9 U/cm3 with the advanced process developed by CERCA for the high loaded plates, it is not a good candidate on the thermal stability point of view. U-9%Mo alloy seems to gather all the criteria for a good fuel alloy but it is a little less effective on the Uranium density point of view as compared to U-5%Mo alloy. In any case, the preliminary feasibility results are very much encouraging because UMo alloys seem to be compatible with the Aluminium matrix when taking special care while manufacturing. A good compromise could be an intermediate percentage of Molybdenum or the addition of metal traces in order to thermally stabilise 5%Mo. (author)

  13. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage (∼0.9) and large particle size (∼10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab

  14. The interaction of thermal radiation on vertical oscillating plate with variable temperature and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available Thermal radiation effects on unsteady free convective flow of a viscous incompressible flow past an infinite vertical oscillating plate with variable temperature and mass diffusion has been studied. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with respect to time and the concentration level near the plate is also raised linearly with respect to time. An exact solution to the dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity, temperature and concentration are studied for different parameters like phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time are studied. It is observed that the velocity increases with decreasing phase angle ωt. .

  15. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  16. Suitability of x-ray paper as an inspection tool for flat plate nuclear fuel

    International Nuclear Information System (INIS)

    Barna, B.A.

    1979-01-01

    The flat plate nuclear fuel used in the Advanced Test Reactor (ATR) has several attributes which are best examined by radiography. These are fuel core dimensions and location, homogeneity of the uranium aluminide alloy that composes the core, and the location and sizing of fuel particles in the fuel free edge borders of the plates. The most economiccal approach is to inspect for all three attributes from a single radiograph which requires accommodation of a large contrast range. Currently radiography is conducted using Kodak type M double emulsion film which provides a high quality image for evaluation. A promising alternative to film exists however in paper radiography. The two media are very similar except that paper uses a single emulsion which is deposited on an opaque diffuse reflecting surface. This requires that the image be viewed with reflected rather than transmitted light. This type of physical structure results in lower materials and processing costs. For example, Kodak Industrex 600 paper is approximately 50% the cost of type M film. In addition the image can be developed and viewed (although not fixed) in as little as 10 seconds. The results of test to ascertain the suitability of paper radiography for these purposes are described. Whole there was some degradation of the image with the use of paper, the paper was judged suitable for identification of edge border location, homogeneity, and floking

  17. Design and Control of High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    E-cient fuel cell systems have started to appear in many dierent commercial applications and large scale production facilities are already operating to supply fuel cells to support an ever growing market. Fuel cells are typically considered to replace leadacid batteries in applications where...... to conventional PEM fuel cells, that use liquid water as a proton conductor and thus operate at temperatures below 100oC. The HTPEM fuel cell membrane in focus in this work is the BASF Celtec-P polybenzimidazole (PBI) membrane that uses phosphoric acid as a proton conductor. The absence of water in the fuel cells...... enables the use of designing cathode air cooled stacks greatly simplifying the fuel cell system and lowering the parasitic losses. Furthermore, the fuel impurity tolerance is signicantly improved because of the higher temperatures, and much higher concentrations of CO can be endured without performance...

  18. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation

    Directory of Open Access Journals (Sweden)

    Liliane Pimenta de Melo

    2017-01-01

    Full Text Available The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

  19. Corrosion Behavior of Nickel-Plated Alloy 600 in High Temperature Water

    International Nuclear Information System (INIS)

    Kim, Ji Hyun; Hwang, Il Soon

    2008-01-01

    In this paper, electrochemical and microstructural characteristics of nickel-plated Alloy 600 wee investigated in order to identify the performance of electroless Ni-plating on Alloy 600 in high-temperature aqueous condition with the comparison of electrolytic nickel-plating. For high temperature corrosion test of nickel-plated Alloy 600, specimens were exposed for 770 hours to typical PWR primary water condition. During the test, open circuit potentials (OCP's) of all specimens were measured using a reference electrode. Also, resistance to flow accelerated corrosion (FAC) test was examined in order to check the durability of plated layers in high-velocity flow environment at high temperature. After exposures to high flow rate aqueous condition, the integrity of surfaces was confirmed by using both scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). For the field application, a remote process for electroless nickel-plating was demonstrated using a plate specimen with narrow gap on a laboratory scale. Finally, a practical seal design was suggested for more convenient application

  20. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  1. Miniaturized polymer electrolyte fuel cell (PEFC) stack using micro structured bipolar plate

    Energy Technology Data Exchange (ETDEWEB)

    Veziridis, Z; Scherer, G G; Marmy, Ch; Glaus, F [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In Polymer Electrolyte Fuel Cell (PEFC) technology the reducing of volume and mass of the fuel cell stack and the improvement of catalyst utilization are of great interest. These parameters affect applicability and system cost. In this work we present an alternative way for reducing the stack volume by combining gas distribution and catalytic active area in one plate. Micro machined glassy carbon electrodes serve as support material for the platinum catalyst, as well as gas distributor at the same time. A comparison of these electrodes with conventional platinum-black gas diffusion electrodes under fuel cell conditions shows that the new system is a promising electrode type for enhanced power density and catalyst utilization. (author) 3 figs., 5 refs.

  2. Application of the beta particles backscattering technique for determining the thickness of the cladding in nuclear fuels plate

    International Nuclear Information System (INIS)

    Koshimizu, S.; Ferreira, P.I.; Lima, L.F.C.P. de; Vieira, J.M.; Perez, H.E.B.

    1984-01-01

    A prototype of an instalation to measure thickness of cladding and core of nuclear fuels plate using the beta particles backscattering technique is constructed. The method and calibration system is described. The thickness measurements of the cladding and core were done in a natural uranium fuel plate developed at IPEN. The reliability of the method is confirmed by the metalographic measures analysis. (E.G.) [pt

  3. Electrode Kinetics in High Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Bay, Lasse

    1998-01-01

    ^3s and 10^5s for a cathodic current. For the deactivation is the time constant about 10^4s. The origin for the hysteresis is not clear, but expansion of the three phase boundary (TPB) or change of the catalytic properties due to surface segregation are suggested.The hysteresis phenomenon is also......-electrolyte interface show dynamics of the YSZ surface and formation of a bank of YSZ along the TPB. These changes are induced by passage of current. The origin of the dynamics behaviour may be a localised temperature increase or it might be driven by segregation. The dynamics of the YSZ surface seems...... to be irreversible to annealing at 1000^oC.A separated part of the project was performed at National Institute of Materials and Chemical Research, Tsukuba, Japan. Here YSZ, Pr doped YSZ and Y doped SrCeO_3 were tested as electrolytes in a one chamber fuel cell. Electrochemical measurements and SIMS analysis...

  4. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor

    Directory of Open Access Journals (Sweden)

    Milošević-Mitić Vesna

    2014-01-01

    Full Text Available The subject of the paper is the temperature distribution in the thin metallic ferromagnetic plate influenced by moving linear high frequency induction heater. As a result of high frequency electromagnetic field, conducting currents appear in the part of the plate. Distribution of the eddy-current power across the plate thickness is obtained by use of complex analysis. The influences of the heater frequency, magnetic field intensity and plate thickness on the heat power density were discussed. By treating this power as a moving heat source, differential equations governing distribution of the temperature field are formulated. Temperature across the plate thickness is assumed to be in linear form. Differential equations are analytically solved by using integral-transform technique, Fourier finite-sine and finite-cosine transform and Laplace transform. The influence of the heater velocity to the plate temperature is presented on numerical examples based on theoretically obtained results. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  5. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  6. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2006-01-01

    Full Text Available An exact solution to the flow of a viscous incompressible unsteady flow past an infinite vertical oscillating plate with variable temperature and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. Both the plate temperature and the concentration level near the plate are raised linearly with respect to time. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter. .

  7. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong

    2012-02-15

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  8. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    International Nuclear Information System (INIS)

    Sohn, Hee Dong

    2012-02-01

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  9. Effect of temperature on the multi-gap resistive plate chamber operation

    International Nuclear Information System (INIS)

    Zhao, Y.E.; Wang, X.L.; Liu, H.D.; Chen, H.F.; Li, C.; Wu, J.; Xu, Z.Z.; Shao, M.; Zeng, H.; Zhou, Y.

    2005-01-01

    In order to obtain a quantitative understanding of the influence of temperature on the multi-gap resistive plate chamber (MRPC) operation, we tested the performance of a 6-gap, 6.1x20 cm 2 active area MRPC with cosmic rays at different temperatures. Results of measurements of noise rate, dark current and detection efficiency are presented

  10. On the prediction of condenser plate temperatures in a cross-flow condenser

    NARCIS (Netherlands)

    Ganzevles, F.L.A.; Geld, van der C.W.M.

    2002-01-01

    A prediction method is presented for the gas-sided plate temperatures at the inlet and at the outlet of a compact, cross-flow condenser. The method employs measured (or predicted) heat flow rates and temperatures of both coolant and gas, at inlet and outlet. The method is validated using infrared

  11. Temperature conditions of foundation plates under nuclear power plant reactor compartments

    International Nuclear Information System (INIS)

    Ehsaulov, S.L.

    1990-01-01

    Method for calculation of temperature conditions for foundation plates under reactor compartments located in the main building, used in construction of the second stage of the Kostroma nuclear power plant, is considered. The obtained calculation data can be used for determining the most suitable period of concrete placement, composition, initial temperature, manufacturing technology and ways of delivery of concrete mixture

  12. Elastoplastic Stability and Failure Analysis of FGM Plate with Temperature Dependent Material Properties under Thermomechanical Loading

    Directory of Open Access Journals (Sweden)

    Kanishk Sharma

    Full Text Available Abstract The present paper explores the stability and failure response of elastoplastic Ni/Al2O3 functionally graded plate under thermomechanical load using non-linear finite element formulation based on first-order shear deformation theory and von-Karman’s nonlinear kinematics. The temperature dependent thermoelastic material properties of FGM plate are varied in the thickness direction by controlling the volume fraction of the constituent materials (i.e., ceramic and metal with a power law, and Mori-Tanaka homogenization scheme is applied to evaluate the properties at a particular thickness coordinate of FGM plate. The elastoplastic behavior of FGM plate is assumed to follow J2-plasticity with isotropic hardening, wherein the ceramic phase is considered to be elastic whereas the metal is assumed to be elastic-plastic in accordance with the Tamura-Tomota-Ozawa model. Numerical studies are conducted to examine the effects of material and geometrical parameters, viz. material in-homogeneity, slenderness and aspect ratios on the elastoplastic bucking and postbuckling behavior and the failure response of FGM plate. It is revealed that material gradation affects the stability and failure behavior of FGM plate considerably. Furthermore, it is also concluded that FGM plate with elastic material properties exhibits only stable equilibrium path, whereas the elastoplastic FGM plate shows destabilizing response after the ultimate failure point.

  13. Time dependent shear stress and temperature distribution over an insulated flat plate moving at hypersonic speed.

    Science.gov (United States)

    Rodkiewicz, C. M.; Gupta, R. N.

    1971-01-01

    The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.

  14. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  15. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  16. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in

  17. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  18. Spacer grid for fuel assembly of nuclear reactor comprising opposite support points made with elastic thin plates

    International Nuclear Information System (INIS)

    Feutrel, C.

    1983-01-01

    Two series of thin walls form square cells, each containing a fuel pencil. Support points are made in the cells walls. Splines obtained by two parallel slots in the length of the cells. The reaction of fuel pencil produce a deformation of the elastic splines made in the plate, for compensation of the tolerance allowed on the diameter of the pencils [fr

  19. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    Science.gov (United States)

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  20. High Temperature PEM Fuel Cells and Organic Fuels

    DEFF Research Database (Denmark)

    Vassiliev, Anton

    of the products. The observation of internal reforming was indirectly confirmed by electrochemical impedance spectroscopy, where the best fits were obtained when a Gerischer element describing preceding chemical reaction and diffusion was included in the equivalent circuit of a methanol/air operated cell...... evaporated liquid stream supply to either of the electrodes. A large number of MEAs with different component compositions have been prepared and tested in different conditions using the constructed setups to obtain a basic understanding of the nature of direct DME HT-PEM FC, to map the processes occurring...... inside the cells and to determine the lifetime. Additionally, comparison was made with methanol as fuel, which is the main competitor to DME in direct oxidation of organic fuels in fuel cells. For the reference, measurements have also been done with conventional hydrogen/air operation. All...

  1. Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition

    International Nuclear Information System (INIS)

    Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

    1995-01-01

    A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization

  2. Utilization of radiographic and ultrasonic testing for an evaluation of plate type fuel elements during manufacturing stages

    International Nuclear Information System (INIS)

    Brito, Mucio Jose Drummond de; Silva Junior, Silverio Ferreira da; Messias, Jose Marcos; Braga, Daniel Martins; Paula, Joao Bosco de

    2005-01-01

    Structural discontinuities can be introduced in the plate type fuel elements during the manufacturing stages due to mechanical processing conditions. The use of nondestructive testing methods to monitoring the fuel elements during the manufacturing stages presents a significant importance, contributing for manufacturing process improvement and cost reducing. This paper describes a procedure to be used detection and evaluation of structural discontinuities in plate type fuel elements during the manufacturing stages using the ultrasonic testing method and the radiographic testing method. The main results obtained are presented and discussed. (author)

  3. Exact solution of thermal radiation on vertical oscillating plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available Thermal radiation effects on unsteady flow past an infinite vertical oscillating plate in the presence of variable temperature and uniform mass flux is considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised linearly with time and the mass is diffused from the plate to the fluid at an uniform rate. The dimensionless governing equations are solved using the Laplace transform technique. The velocity, concentration and temperature are studied for different physical parameters like the phase angle, radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing phase angle ωt.

  4. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  5. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  6. Influence of Fuel Meat Porosity on Heat Capacities of Fuel Element Plate U3Si2-Al

    International Nuclear Information System (INIS)

    Ginting, Aslina Br.; Supardjo; Sutri Indaryati

    2007-01-01

    Analyze of heat capacities of Al powder, AIMg 2 cladding, U 3 Si 2 powder and PEB U 3 Si 2 -Al with the meat porosity of 4.9; 5.53 ; 6.25 ; 6.95 %; 7.90; 8.66% have been done. Analysis was conducted by using Differential Scanning Calorimeter (DSC) at temperature 30℃ to 450℃ with heating rate 1℃ /minute in Argon gas media. The purpose of analyze is to know the influence of increasing of fuel meat porosity on heat capacities because increasing of percentage of meat porosity will cause degradation the of heat capacities of PEB U 3 Si 2 -Al. Result of analysis showed that the heat capacities of Al powder, AIMg 2 cladding increase by temperature, while heat capacities of U 3 Si 2 powder was stable with increasing of temperature up to 450℃. Analysis of heat capacities toward PEB U 3 Si 2 -Al indicate that increasing of fuel meat porosity of caused degradation of the heat capacities of PEB U 3 Si 2 -Al. Data obtained were expected to serve the purpose of input to fabricator of research reactor fuel in for design of fuel element type silicide with high loading. (author)

  7. A modelling study of the inter-diffusion layer formation in U-Mo/Al dispersion fuel plates at high power

    Science.gov (United States)

    Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.

    2018-02-01

    Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Si- coated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, transited at a threshold temperature/fission rate. The existing inter-diffusion layer (IL) growth correlation, which does not describe the transition behavior of IL growth, was modified by applying a temperature-dependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the inter-mixing rate in ion-irradiated bi-layer systems.

  8. Residual strains in a stainless steel perforated plate subjected to reverse loading at high temperature

    International Nuclear Information System (INIS)

    Durelli, A.J.; Buitrago, J.

    1974-01-01

    An investigation was made to determine strains in a stainless steel perforated plate subjected to a temperature of 1100 0 F and to a successively applied tensile and compressive in-plane loading sufficiently large to produce creep and plastic strains. The duration of the test was 1000 hours. Square grids of lines (at distance of 0.25 in.) and crossed-gratings (500 lines-per-inch) were engraved on both surfaces of the plate before the test. After the plate was unloaded and brought back to room temperature the grids were analyzed using traveling microscopes, and the gratings using the moire effect. Both Cartesian strains were determined from the moire isothetics along the axes of the plate, along the two lines tangent to the hole and parallel to those axes and along the edges of the plate. Grid measurements were made at specific points. The deformed shapes of the hole and of the plate are also given. It is estimated that strains larger than 0.001 can be determined with the techniques and methods used. (U.S.)

  9. Flat plate bonded fuel elements: Report number 2, 11 August--10 October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-12-31

    Attention has continued to be concentrated on routes employing either wrought uranium or powder metallurgy product for the making of flat plate fuel elements of approximately 0.180-inch uranium metal core thickness bonded to either ribbed or ribless aluminum sheaths. Intermediate goals of the program are to have elements 18 inches long for MTR irradiation tests this fall and to make sufficient advance in the overall program in 1954 so that an initial reactor charge of 15-foot long fuels can be provided as early as possible in 1955. The development of a satisfactory process tube for retaining an assembly of several fuel elements is also required. Uranium of satisfactory quality for fabrication into fuel elements appears to have been produced by the August high alpha rolling at Superior Steel, and it seems likely from the electroplating results that the metal can be employed for electroplating and bonding without such surface preparation as vapor blasting, grinding, or machining. Difficulty in obtaining aluminum components, both sheaths and process tubes, remains a bottleneck in the development program and specifically has delayed work on the wrought metal samples for MTR tests.

  10. High Temperature PEM Fuel Cells - Degradation and Durability

    DEFF Research Database (Denmark)

    Araya, Samuel Simon

    for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich...... be stored in liquid alcohols such as methanol, which can be sources of hydrogen for fuel cell applications. In addition, fuel cells unlike other technologies can use a variety of other fuels that can provide a source of hydrogen, such as biogas, methane, butane, etc. More fuel flexibility combined....... On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed...

  11. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  12. System for controlling the operating temperature of a fuel cell

    Science.gov (United States)

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  13. Flow induced deformation and collapse of a thin rectangular plate with application to the Engineering Test Reactor nuclear fuel elements

    International Nuclear Information System (INIS)

    Davis, C.D.

    1981-01-01

    This work examines a single flat fuel plate bounded by two channels and determines static plate deflections, resultant forces and bending stresses due to pressure differential and hydrodynamic loadings. The classical then reactangular plate equations are used to model the fuel plate. These equations contain as an input the hydrodynamic loading function for modeling the fluid-structural interaction. Two models of the channel flow are developed. One assumes the accelerating potential core flow is laminar with developing two-dimensional laminar boundary layers being formed on the channel walls. The Schlichting entry length solution for developing laminar flow is found to be valid the entire length of the channel. The second model assumes the core flow is fully-developed turbulent the entire length of the channel. Hydrodynamic loading functions are developed for both flow models containing parameters for fluid density, fluid velocity, Reynolds number and channel and plate dimensions. Hence the effects of each parameter can be examined independently. A criterion is developed for predicting ETR fuel plate collapse at high channel flow velocities, 1067 cm/s (420 in/sec) (R/sub e/ = 60,000). The criterion predicts that in order to prevent ETR plate collapse the inlet velocities between channels must not differ by more than 2%

  14. Experimental study of thermoacoustic effects on a single plate. Pt. 1. Temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, M.; Herman, C. [Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Mech. Eng.

    2000-03-01

    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. (orig.)

  15. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  16. A numerical investigation of turbulent flow in an 18-plate nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yu, R.; Lightstone, M.F.

    2003-01-01

    A numerical simulation of the fluid flow in the core of the McMaster Nuclear Reactor (MNR) was performed. The standard k - ε turbulence model together with a two-layer wall boundary model was used in the current study. A two-dimensional numerical model for the MNR 18-plate nuclear fuel assembly was developed using the advanced commercial computational fluid dynamics (CFD) code CFX-TASCflow. The numerical predictions were compared with experimental data for the MNR 18-plate assembly at the same flow conditions. In general, the code over predicts the pressure drop for the range of the mass flow rate investigated, however, the difference decreases as the mass flow rate (or Reynolds number) increases. Errors of less than 4% were obtained for mass flows greater than 4.0 kg/s. The comparison shows that the predicted flow distribution and velocities are very close to the measured data for the high Reynolds number flows. It is found that the k - ε model with the two-layer wall boundary model can predict the flow in the vertical parallel plate channels in the low Reynolds number region (Re=3000 to 10,000) very well. (author)

  17. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Science.gov (United States)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  18. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    Directory of Open Access Journals (Sweden)

    Milewski Jarosław

    2013-02-01

    Full Text Available Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC and molten carbonate fuel cell (MCFC have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV for projects was estimated and commented.

  19. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  20. The dew point temperature as a criterion for optimizing the operating conditions of proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Berning, Torsten

    2012-01-01

    In this article an analytical method to calculate the dew point temperatures of the anode and cathode exit gas streams of a proton exchange membrane fuel cell is developed. The results of these calculations are used to create diagrams that show the dew point temperatures as function of the operat...... for conventional flow field plates. The diagrams presented here are created for completely dry inlet gases, but they can be easily corrected for a nonzero inlet relative humidity....

  1. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  2. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  3. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  4. Development of evaluation method of fuel failure fraction during the High Temperature Engineering Test Reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Yoshimuta, Shigeharu; Tobita, Tsutomu; Sato, Masashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-05-01

    The High Temperature Engineering Test Reactor (HTTR) uses coated particles as fuel. During normal operation, short-lived noble gases are mainly released by diffusion from fuel particles with defects in their coating layers (i.e., failed particle). Since noble gases do not plate out on the inner surfaces of primary cooling system, their activities in primary coolant reflect fuel failure fraction in the core. An evaluation method was developed to predict failure fraction of coated fuel particles during normal operation of the HTTR. The method predicts core-average and hot plenum regionwise failure fractions based on the fractional releases, (R/B)s, of noble gases. The (R/B)s are calculated by fission gas concentration measurements in the primary cooling system of the HTTR. Recent fabrication data show that through-coatings failure fraction is extremely low. Then, fractional release from matrix contamination uranium, which is background for accurate evaluation of the fuel failure fraction, should be precisely predicted. This report describes an evaluation method of fuel failure fraction from measurements in the HTTR together with a fission gas release model from fuel compact containing failed particles and matrix contamination uranium. (author)

  5. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...17026 7 Temperature Jump Pyrolysis at AFRL Edwards Rapid heating of a metal filament at a rate of 600 – 800 K/s, and the set temperature is held for

  6. Recent status and future aspect of plate type fuel element technology with high uranium density at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.-W.

    1983-01-01

    According to the present state of development full size test fuel elements with UAl x , U 3 O 8 , and U 3 Si 2 fuel were fabricated at Nukem in production scale. The maximum uranium densities amount to 1.8 g/cc for UAI x , 2.9 g/cc for U 3 O 8 , and 4.76 g/cc for U 3 Si 2 . The irradiation performance of these fuel elements is good: Up to the end of September 1982 the following burnups were achieved: 73% with UA1 x , 60% with U 3 O 8 , 39% with U 3 Si 2 ; no defects could be detected. For an economical fuel element production with reduced 235-U enrichment chemical uranium recycling methods were developed allowing immediate scrap recovery at minimum waste generation. In addition test plates with UAl x and U 3 O 8 fuel were successfully irradiated in the ORR up to a burnup of 75 %. The relatively high uranium meat densities of these test plates amount to 2.2 g/cc for UAI x , and 3.14 g/cc for U 3 O 8 fuel. Apart from plates with standard geometry also plates with increased meat thickness were inserted. (author)

  7. Measurement of the fuel temperature and the fuel-to-coolant heat transfer coefficient of Super Phenix 1 fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1995-12-01

    A new measurement method for measuring the mean fuel temperature as well as the fuel-to-coolant heat transfer coefficient of fast breeder reactor subassemblies (SA) is reported. The method is based on the individual heat balance of fuel SA's after fast reactor shut-downs and uses only the plants normal SA outlet temperature and neutron power signals. The method was used successfully at the french breeder prototype Super Phenix 1. The mean SA fuel temperature as well as the heat transfer coefficient of all SPX SA's have been determined at power levels between 15 and 90% of nominal power and increasing fuel burn-up from 3 to 83 EFPD (Equivalent of Full Power-Days). The measurements also provided fuel and whole SA time constants. The estimated accuracy of measured fuel parameters is in the order of 10%. Fuel temperatures and SA outlet temperature transients were also calculated with the SPX1 systems code DYN2 for exactly the same fuel and reactor operating parameters as in the experiments. Measured fuel temperatures were higher than calculated ones in all cases. The difference between measured and calculated core mean values increases from 50 K at low power to 180 K at 90% n.p. This is about the double of the experimental error margins. Measured SA heat transfer coefficients are by nearly 20% lower than corresponding heat transfer parameters used in the calculations. Discrepancies found between measured and calculated results also indicate that either the transient heat transfer in the gap between fuel and cladding (gap conductance) might not be exactly reproduced in the computer code or that the gap in the fresh fuel was larger than assumed in the calculations. (orig.) [de

  8. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  9. On a non-linear problem posed by the temperature determination in an electrically heated plate

    International Nuclear Information System (INIS)

    Gerber, R.

    1958-01-01

    Let us consider a flat plate, electrically heated, with one face thermally insulated and the other face isothermal. It is shown that a two-dimensional perturbation of the insulated face has no influence on the temperature of this face. (author) [fr

  10. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  11. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Energy Technology Data Exchange (ETDEWEB)

    Leenaers, A., E-mail: aleenaer@sckcen.be [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Van den Berghe, S.; Koonen, E.; Kuzminov, V. [Nuclear Materials Science Institute, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium)

    2015-03-15

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK• CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% {sup 235}U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL–matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium–Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)–matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  12. Fuel swelling and interaction layer formation in the SELENIUM Si and ZrN coated U(Mo) dispersion fuel plates irradiated at high power in BR2

    Science.gov (United States)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Kuzminov, V.; Detavernier, C.

    2015-03-01

    In the framework of the SELENIUM project two full size flat fuel plates were produced with respectively Si and ZrN coated U(Mo) particles and irradiated in the BR2 reactor at SCK•CEN. Non-destructive analysis of the plates showed that the fuel swelling profiles of both SELENIUM plates were very similar to each other and none of the plates showed signs of pillowing or excessive swelling at the end of irradiation at the highest power position (local maximum 70% 235U). The microstructural analysis showed that the Si coated fuel has less interaction phase formation at low burn-up but at the highest burn-ups, defects start to develop on the IL-matrix interface. The ZrN coated fuel, shows a virtual absence of reaction between the U(Mo) and the Al, up to high fission densities after which the interaction layer formation starts and defects develop in the matrix near the U(Mo) particles. It was found and is confirmed by the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) experiment that there are two phenomena at play that need to be controlled: the formation of an interaction layer and swelling of the fuel. As the interaction layer formation occurs at the U(Mo)-matrix interface, applying a diffusion barrier (coating) at that interface should prevent the interaction between U(Mo) and the matrix. The U(Mo) swelling, observed to proceed at an accelerating rate with respect to fission density accumulation, is governed by linear solid state swelling and fission gas bubble swelling due to recrystallization of the fuel. The examination of the SELENIUM fuel plates clearly show that for the U(Mo) dispersion fuel to be qualified, the swelling rate at high burn-up needs to be reduced.

  13. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  14. The technique for determination of surface contamination by uranium on U3Si2-Al plate-type fuel elements

    International Nuclear Information System (INIS)

    Li Shulan; He Fengqi; Wang Qingheng; Han Jingquan

    1993-04-01

    The NDT method for determining the surface contamination by uranium on U 3 Si 2 -Al plate-type fuel elements, the process of standard specimen preparation and the graduation curve are described. The measurement results of U 3 Si 2 -Al plate-type fuel elements show that the alpha counting method to measure the surface contamination by uranium on fuel plate is more reliable. The UB-1 type surface contamination meter, which was recently developed, has many advantages such as high sensitivity to determine the uranium pollution, short time in measuring, convenience for operation, and the minimum detectable amount of uranium is 5 x 10 -10 g/cm 2 . The measuring device is controlled by a microcomputer. Besides data acquisition and processing, it has functions of statistics, output data on terminal or to printer and alarm. The procedures of measurement are fully automatic. All of these will meet the measuring needs in batch process

  15. Simplified CFD model of coolant channels typical of a plate-type fuel element: an exhaustive verification of the simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mantecón, Javier González; Mattar Neto, Miguel, E-mail: javier.mantecon@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    The use of parallel plate-type fuel assemblies is common in nuclear research reactors. One of the main problems of this fuel element configuration is the hydraulic instability of the plates caused by the high flow velocities. The current work is focused on the hydrodynamic characterization of coolant channels typical of a flat-plate fuel element, using a numerical model developed with the commercial code ANSYS CFX. Numerical results are compared to accurate analytical solutions, considering two turbulence models and three different fluid meshes. For this study, the results demonstrated that the most suitable turbulence model is the k-ε model. The discretization error is estimated using the Grid Convergence Index method. Despite its simplicity, this model generates precise flow predictions. (author)

  16. Simplified CFD model of coolant channels typical of a plate-type fuel element: an exhaustive verification of the simulations

    International Nuclear Information System (INIS)

    Mantecón, Javier González; Mattar Neto, Miguel

    2017-01-01

    The use of parallel plate-type fuel assemblies is common in nuclear research reactors. One of the main problems of this fuel element configuration is the hydraulic instability of the plates caused by the high flow velocities. The current work is focused on the hydrodynamic characterization of coolant channels typical of a flat-plate fuel element, using a numerical model developed with the commercial code ANSYS CFX. Numerical results are compared to accurate analytical solutions, considering two turbulence models and three different fluid meshes. For this study, the results demonstrated that the most suitable turbulence model is the k-ε model. The discretization error is estimated using the Grid Convergence Index method. Despite its simplicity, this model generates precise flow predictions. (author)

  17. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  18. Evaluation of Corrosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey Owen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Glazoff, Michael Vasily [Idaho National Lab. (INL), Idaho Falls, ID (United States); Eiden, Thomas John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rezvoi, Aleksey Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady state conditions. However, after the cycle was over, several thousand of the flow-assisted corrosion pits and “horseshoeing” defects were readily observable on the surface of the several YA-type fuel elements (these are “dummy” plates that contain no fuel). In order understand these corrosion phenomena a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed sscalloping and possibly pitting degradation on the YA-M fuel elements. In

  19. Evaluation of Erosion of the Dummy “EE” Plate 19 in YA Type ATR Fuel Element During Reactor PALM Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Glazoff, Michael V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Eiden, Thomas J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor; Rezvoi, Aleksey V. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Advanced Test Reactor

    2016-08-01

    Advanced Test Reactor (ATR) Cycle 153B-1 was a 14-day, high-power, powered axial locator mechanism (PALM) operating cycle that completed on April 12, 2013. Cycle 153B-1 was a typical operating cycle for the ATR, and did not result in any unusual plant transients. ATR was started up and shut down as scheduled. The PALM drive physically moves the selected experiments into and out of the core to simulate reactor startup and heat up, and shutdown and cooldown transients, while the reactor remains in steady-state conditions. However, after the cycle was over, when the fuel elements were removed from the core and inspected, several thousand flow-assisted erosion pits and “horseshoeing” defects were readily observed on the surface of the several YA-type fuel elements (these are aluminum “dummy” plates that contain no fuel). In order to understand these erosion phenomena, a thermal-hydraulic model of coolant channel 20 on a YA-M fuel element was generated. The boundaries of the model were the aluminum EE plate of a YA-M fuel element and a beryllium reflector block with 13 horizontal saw cuts which represented regions of zero flow. The heat generated in fuel plates 1 through 18 was modeled to be passing through the aluminum EE plate. The coolant channel 20 width was set at 0.058 in. (58 mils). It was established that the horizontal saw cuts had a significant effect on the temperature of the coolant. The flow, which was expected to vary linearly with gradual heating of the coolant as it passed through the channel, was extremely turbulent. The temperature rise, which was expected to be a smooth “S” curve, was represented by a series temperature rise “humps,” which occurred at each horizontal saw cut in the beryllium reflector block. Each of the 13 saw cuts had a chamfered edge which resulted in the coolant flow being re-directed as a jet across the coolant channel into the surface of the EE plate, which explained the temperature rise and the observed

  20. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    Science.gov (United States)

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  1. Study of the residual porosity in fuel plate cores based on U3O8 - Al dispersions

    International Nuclear Information System (INIS)

    Durazzo, M.

    2005-01-01

    The residual porosity in the meat of nuclear dispersion fuel plates, the fabrication voids, explains the corrosion behaviour of the meats when exposed to the water used as coolant and moderator of MTR type research reactors. The fabrication voids also explain variations in irradiation performance of many fuel dispersion for nuclear reactors. To obtain improved corrosion and irradiation performance, we must understand the fabrication factors that control the amount of void volume in fuel plate meats. The purpose of this study was to investigate the void content of aluminum-base dispersion-type U 3 O 8 -Al fuel plates depending on the characteristics of the starting fuel dispersion used to produce the fuel meat, which is fabricated by pressing. The void content depends on the U 3 O 8 concentration. For a particular U 3 O 8 content, the rolling process establishes a constant void concentration, which is called equilibrium porosity. The equilibrium quantity of voids is insensitive to the initial density of the fuel compact. (author)

  2. Investigation of the fuel temperature evaluation method at BOL

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Asaga, Takeo; Nemoto, Junichi

    1999-06-01

    It is one of the major subjects in the improvement of the design method for determining the thermal conditions of the solid type Mixed - Oxide (MOX) fuels in FBR to evaluate the fuel temperature at BOL as precisely as possible. Therefore, we have planned to modify the fuel temperature evaluation method 'FEVER', which was developed by JNC in 1988, as one of the investigation for the establishment of the precise fuel temperature evaluation method. And, we also have planned to use the modified FEVER, named FEVER-M', for estimation of the irradiation conditions of the PTM test in Joyo, called 'B10 test', planning to perform in 2000. In this work, the following results were obtained; 1) As a result of the modification, the uncertainty in the fuel temperature evaluation of 'FEVER-M' is reduced to about ±60 K. 2) Estimating the irradiation conditions of 'B10' test using the method 'FEVER-M', it is found that the appropriate maximum linear heat rate for the test is 620 W/cm. The detail plans of the 'B10' test were also determined based on the results. 3) Based on the results of this work, it is found that one of the effective procedure for the improvement of the accuracy of the fuel temperature evaluation method seems to calculate the fuel temperature taking the pellet relocation phenomena into account. In future, although there are a lot of matters to be discussed in this phenomena, the design method for the thermal conditions of the MOX fuels in FBR should be performed with taking the pellet relocation phenomena into account. (author)

  3. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  4. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  5. HIGH-TEMPERATURE SAFETY TESTING OF IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D.; Demkowicz, Paul A.; Reber, Edward L.; Chrisensen, Cad L.

    2016-11-01

    High-Temperature Safety Testing of Irradiated AGR-1 TRISO Fuel John D. Stempien, Paul A. Demkowicz, Edward L. Reber, and Cad L. Christensen Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415, USA Corresponding Author: john.stempien@inl.gov, +1-208-526-8410 Two new safety tests of irradiated tristructural isotropic (TRISO) coated particle fuel have been completed in the Fuel Accident Condition Simulator (FACS) furnace at the Idaho National Laboratory (INL). In the first test, three fuel compacts from the first Advanced Gas Reactor irradiation experiment (AGR-1) were simultaneously heated in the FACS furnace. Prior to safety testing, each compact was irradiated in the Advanced Test Reactor to a burnup of approximately 15 % fissions per initial metal atom (FIMA), a fast fluence of 3×1025 n/m2 (E > 0.18 MeV), and a time-average volume-average (TAVA) irradiation temperature of about 1020 °C. In order to simulate a core-conduction cool-down event, a temperature-versus-time profile having a peak temperature of 1700 °C was programmed into the FACS furnace controllers. Gaseous fission products (i.e., Kr-85) were carried to the Fission Gas Monitoring System (FGMS) by a helium sweep gas and captured in cold traps featuring online gamma counting. By the end of the test, a total of 3.9% of an average particle’s inventory of Kr-85 was detected in the FGMS traps. Such a low Kr-85 activity indicates that no TRISO failures (failure of all three TRISO layers) occurred during the test. If released from the compacts, condensable fission products (e.g., Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, and Sr-90) were collected on condensation plates fitted to the end of the cold finger in the FACS furnace. These condensation plates were then analyzed for fission products. In the second test, five loose UCO fuel kernels, obtained from deconsolidated particles from an irradiated AGR-1 compact, were heated in the FACS furnace to a peak temperature of 1600 °C. This test had two

  6. Fabrication of high-uranium-loaded U/sub 3/O/sub 8/-Al developmental fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, G.L.; Martin, M.M.

    1980-12-01

    A common plate-type fuel for research and test reactors is U/sub 3/O/sub 8/ dispersed in aluminum and clad with an aluminum alloy. There is an impetus to reduce the /sup 235/U enrichment from above 90% to below 20% for these fuels to lessen the risk of diversion of the uranium for nonpeaceful uses. Thus, the uranium content of the fuel plates has to be increased to maintain the performance of the reactors. This paper describes work at ORNL to determine the maximal uranium loading for these fuels that can be fabricated with commercially proven materials and techniques and that can be expected to perform satisfactorily in service.

  7. Preliminary results for the Co-Rolling process fabrication of plate-type nuclear fuel based in U-10Mo monolithic meat and zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Pedrosa, Tercio A.; Brina, Jose Giovanni M.; Paula, Joao Bosco de; Lameiras, Fernando S.; Ferraz, Wilmar B.

    2013-01-01

    The fabrication process of plate-type nuclear fuel with monolithic meat is under development at CDTN. The U-10Mo alloy was chosen as the meat material due to its high density, corrosion resistance and the higher dimensional stability proportioned by the metastable gamma phase, which presents a lesser extension of the breakaway swelling phenomena occurrence during irradiation tests. The monolithic meat was cut from an U-10Mo ingot, that was induction melted at CDTN. The co-rolling process was adopted due to the higher mechanical properties and melting point of the Zircalloy-4 cladding material, which presents a lesser discrepancy in relation to the meat material properties, when compared to the aluminum 6061 alloy. Preliminary plates were obtained by means of the co-rolling process, performed at 650, 800, 950 deg C with total thickness reduction of 80%, followed by a pickling step and cold co-rolling passes. The plates were characterized through bending tests, optical microscopy and radiography. The co-rolling temperature of 800 deg C presented the best results, with a homogeneous distribution of the total thickness reduction between the cover plates and the meat, and the absence of delamination in the bending test samples. It was observed the occurrence of meat thickening in its ends, according to its longitudinal axle, parallel to the rolling direction, that is known as the d og bone , for the three co-rolling temperatures. (author)

  8. Ultrahigh flux reactor design probing the limits of plate fuel technology

    International Nuclear Information System (INIS)

    Lake, J.A.; Parsons, D.K.; Liebenthal, J.L.; Ryskamp, J.M.; Fillmore, G.N.; Deboisblanc, D.R.

    1986-01-01

    The need for a new steady-state thermal neutron source of unprecedented intensity has been the subject of numerous national meetings and discussions. The National Research Council Committee on Major Facilities for Materials Research recently issued a high priority recommendation that site-independent design studies for such a facility begin immediately. The high intensity neutron source is projected to open new frontiers in the use of neutrons as a probe in various aspects of materials and biological research and fundamental physics. The challenge put forth by the research community is to produce a source with a tenfold increase in intensity over any currently operating or planned facility and, therefore, to thrust the thermal neutron flux intensity into the 10 16 n/(cm 2 s) range. The purpose of the recent Idaho National Engineering Laboratory (INEL) activities in this area has been to identify and examine the limitations and the capabilities of the historically well-characterized plate-fuel technology to achieve the required performance levels in a user-friendly environment. Workbench design concepts were identified, upon which constraints and performance limitations could be evaluated and parametric trade-off analyses and preliminary design optimization studies could be performed. Although considerable optimization remains to be performed and a large number of cost/benefit trade-offs exist, it appears that a reactor core with innovative geometry, constructed of plate-type fuel elements, can achieve the 10 16 n/(cm 2 s) goal thermal flux level in a large external volume which has the quality and accessibility for beam research. (orig.)

  9. Development of MTR fuel plate with U-Al dispersion core constituents

    International Nuclear Information System (INIS)

    Bressiani, Jose Carlos

    1979-01-01

    This work is a contribution to the development of fuel plates for Research Nuclear Reaction Materials Test Reactors. The plates have the core constituted by dispersions of metallic uranium in aluminum. The main topics of this work are: 1) The preparation of uranium powder with particle sizes in the 53-105μm diameter range; 2) The mixture and cold-pressing of uranium and aluminum powders for different uranium concentrations; 3) The behavior of the dispersions in the roll milling conditions; 4) Blister, radiographic, metallographic and irradiation tests for quality control of the plates. The irradiation test was performed in the IEA-R1 swimming-pool reactor using a prototype with a dispersion of aluminum and natural uranium (45 w/o ), reaching an integrated neutron flux of 8.663 X 10 18 n/cm 2 , no visual changes being noticed after the completion of the experiment. The behavior of the uranium-aluminum reaction for dispersions with 45% w/o uranium also studied. X-ray diffraction experiments showed the formation of UAl 2 UAl 3 and UAl 4 , while energy dispersive analysis of X-rays(EDAX) demonstrated that the diffusion of aluminum in uranium is the mechanism responsible for that reaction. The activation energy for the U-Al reaction was determined by dilatometric experiments yielding 20.2 kcal/mol.The aluminum-uranium reaction reaches an end when extended to 96 h at 600 deg C, namely, when all the uranium is found in the UAl 4 composition. (author)

  10. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  11. ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL

    Directory of Open Access Journals (Sweden)

    Setiyanto Setiyanto

    2016-10-01

    Full Text Available ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities and central irradiation position (CIP, especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g, but very low value for Lazy Susan position (lest then 0,11 W/g. Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung

  12. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  13. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  14. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  15. The interpretation of fuel centre temperature measurements on a suspected leaking fuel pin

    International Nuclear Information System (INIS)

    Ainscough, J.B.; Lang, C.; Clough, D.J.

    1983-01-01

    In order to study fuel densification a series of single instrumented pin irradiations has been carried out in the High Pressure Water Loop of DIDO at Harwell. The behaviour of two of these pins was different from that expected. In the fifth test, where the fuel was 95% dense pellet UO 2 and expected to densify readily in-reactor, the fuel centre temperature increased from its starting value of approx. 1300 deg. C at a rate somewhat higher than expected on the basis of predicted densification rates. After about six days, the temperature increased rapidly and unexpectedly to 2100-2200 deg. C and remained steady at this level for a further eight days until a reactor trip occurred and the pin was unloaded. Predictions made using the HOTROD code imply a maximum fuel temperature of less than 1500 deg. C after densification. Post-irradiation examination confirmed that fission gas release had occurred, that the measured temperatures were consistent with the fuel microstructure and that the pin had a high internal gas pressure. The fourth pin in the series contained 97% dense UO 2 which was also expected to be dimensionally unstable. Qualitatively its behaviour was similar to that of the fifth pin though the temperatures throughout were lower. This pin experienced a number of major power cycles and failed after about 30 days in-reactor. It is probable that coolant ingress occurred in both pins via the thermocouple Hoke seal, degrading the filling gas conductivity and allowing the fuel to densify rapidly with consequent increase in the fuel/clad gap and hence in fuel temperature. These irradiations show that, for a short time at least, an apparently unfailed pin could operate undetected with temperatures significantly higher than those predicted for normal operation. (author)

  16. Neutron analysis of the fuel of high temperature nuclear reactors

    International Nuclear Information System (INIS)

    Bastida O, G. E.; Francois L, J. L.

    2014-10-01

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  17. Recovery of UMo alloy from UMo/Al dispersion fuel plates by dissolution

    International Nuclear Information System (INIS)

    Ren Meng; Li Jia; Liu Jinhong; Zhu Changgui

    2011-01-01

    Methods for dissolving UMo/Al dispersion fuel plates in the compounded mixed basic aqueous (NaOH and NaNO 3 ) are studied on laboratory scale. After removing the clad and the matrix of the substandard UMo/Al dispersion fuel elements, the U loss ratios are calculated and the granularity distributions of the recovered UMo alloy powder are analyzed by the metallurgical microscope. Besides, the phase structure and the composition of the recovered UMo alloy powder are analyzed by the XRD. The results indicate that as the concentration of NaOH increases, uranium loss ratio increases; but as the concentration of NaNO 3 increases, U loss ration increases firstly and then decreases subsequently; generally, the U recovery ratios are more than 99.3%. The granularity of recovered UMo powders are very small and most parts of γ-U have been oxidated to UO 2 . Therefore, further study is required to determined whether the recovered UMo alloy could be returned to the product line. (authors)

  18. Reirradiation of mixed-oxide fuel pins at increased temperatures

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, E.T.

    1976-05-01

    Mixed-oxide fuel pins from EBR-II irradiations were reirradiated in the General Electric Test Reactor (GETR) at higher temperatures than experienced in EBR-II to study effects of the increased operating temperatures on thermal/mechanical and chemical behavior. The response of a mixed-oxide fuel pin to a power increase after having operated at a lower power for a significant portion of its life-time is an area of performance evaluation where little information currently exists. Results show that the cladding diameter changes resulting from the reirradiation are strongly dependent upon both prior burnup level and the magnitude of the temperature increase. Results provide the initial rough outlines of boundaries within which mixed-oxide fuel pins can or cannot tolerate power increases after substantial prior burnup at lower powers

  19. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  20. Coil-springs used as mechanical filter. Modification of the bottom tie plate of a fuel assembly

    International Nuclear Information System (INIS)

    Nylund, O.

    1993-01-01

    Describes an improved design of the bottom tie plate of a fuel assembly. The improvement of the design is an arrangement of horizontal channels holding coil-springs and crossing the vertical channels for the cooling water. The coil-springs work as strainers for the cooling water

  1. Development of an alternative process for recovery of uranium from rejected plates in the manufacture of MTR type fuel elements

    International Nuclear Information System (INIS)

    Flores Gonzalez, Jocelyn Natalia

    2011-01-01

    This work discusses the recovery of enriched uranium in U 235 , from fuel plates rejected during the fuel elements manufacturing process for the La Reina Nuclear Studies Center, RECH-1, CCHEN. The plates have an aluminum based alloy coating, AISI-SAE 6061, with U 3 Si 2 powder distributed evenly inside and dispersed in an aluminum matrix. The high cost of enriched uranium means that it must be recovered from plates rejected in the production process because of non-compliance with the plate specifications, and also because some of them undergo destructive testing, to measure the aluminum coating's thickness on each side of the plate. The thickness of the uranium nucleus is measured as well and the size of the defects on the ends of the plate such as 'dog bone' and 'fish tail', that is, for the purposes of quality control. The first step in the process is carried out by dissolving the aluminum in a hot solution of NaOH in order to release the uranium silicide powder that is insoluble in the soda. A second step involves dissolving the uranium silicide in a hot HNO 3 solution, followed by washing and filtering, and then extracting the SX and analyzing its behavior during this stage. During the process 98.9% of the uranium is recovered together with a solution that is enough for the SX process given the experiences that were carried out in the extraction stage

  2. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  3. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  4. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    OpenAIRE

    Itamar Iliuk; José Manoel Balthazar; Ângelo Marcelo Tusset; José Roberto Castilho Piqueira

    2016-01-01

    Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was prop...

  5. Radiation effects on flow past an impulsively started vertical plate with variable temperature and mass flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2005-01-01

    Full Text Available An analysis is performed to study the thermal radiation effects on unsteady free convective flow over a moving vertical plate in the presence of variable temperature and uniform mass flux. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The temperature is raised linearly with time and the concentration level near the plate are raised linearly with time. The dimensionless governing equations are solved using the Laplace transform technique. The velocity and skinfriction are studied for different parameters like the radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing radiation parameter.

  6. Dynamics of a Circular Mindlin Plate under Mechanical Loading and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Warminska Anna

    2016-01-01

    Full Text Available Dynamics of a nonlinear circular Midlin plate is studied in the paper. The mathematical model represented by partial differential equations includes nonlinear geometrical terms resulted from large displacements. The plate is subjected to mechanical and thermal loadings. The dynamics of a coupled thermo-mechanical problem is reduced from partial to ordinary differential equations. Considering the first mode reduction and uniformly distributed temperature just a single nonlinear differential equation is obtained. The bifurcation analysis shows that elevated temperature shifts the rezonanse curve and new solutions arise. Depending on initial conditions this may lead to buckling phenomenon and then relatively small oscillations around this state, symmetric periodic oscillations of large amplitude, or irregular oscillations.

  7. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  8. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degrees C and 23 degrees C for the low heat dissipation and high dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degrees C and 6 degrees C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degrees C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include a experimental uncertainity in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This works demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  9. Numerically predicting horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    A comparison between numerical calculations with use of commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower than the experimental data for the low and medium heat dissipation levels. The temperature predictions are 1 degree C and 6 degree C lower than the experimental data for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects, such as axial heat transfer through the spent fuel rods, will be increasingly important as the amount of dissipated heat increases

  10. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-01-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy's (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 F to 600 F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young's modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper

  11. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  12. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  13. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  14. Influence of LMFBR fuel pin temperature profiles on corrosion rate

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Schrock, S.L.; Orbon, S.J.

    1976-01-01

    The paper describes the sodium corrosion behavior of 20 percent cold worked Type 316 stainless steel fuel pin cladding under a simulated reactor thermal environment. A temperature gradient, typical of a fuel pin, was generated in a 0.9 m long heater section by direct resistance heating. Specimens were located in an isothermal test section immediately downstream of the heater. A comparison of the measured corrosion rates with available data showed an enhancement factor of between 1.5 and 2 which was attributed to the severe axial temperature gradient through the heater. Differences in structure and surface chemistry were also noted

  15. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Characteristic of The RSG-Gas Oxide Fuel Element Temperature Under Forced Convection And Natural Convection Mode

    International Nuclear Information System (INIS)

    Sudarmono

    2000-01-01

    One of the methods used for fuel element plate temperature measurement in RSG-Gas is a direct measurement. Evaluation on the measurement results were done by using HEATHYDE and NATCON code, which was then compared to the safety margin criteria. Results of thermalhydraulic measurement on transitional core both under forced and natural convection were compared with the results of calculations using the two codes. Measurement result for maximum fuel element plate temperature at typical working core of 30 MW, was 121 o C. The deviation between calculation and measurement result was under 9.75 %. Under normal operation, safety margin on DNB and OFI are 3.56 and 2.60, respectively. Natcon calculation result showed that the typical working core under the natural circulation mode, an onset of nucleate boiling (ONB)occurred at a core power level of 826 kW (2.8% of the nominal power)

  17. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  18. Fundamental research in the area of high temperature fuel cells in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Dyomin, A.K.

    1996-04-01

    Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levels that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.

  19. Comparative evaluation of fuel temperature coefficient of standard and CANFLEX fuels in CANDU 6

    International Nuclear Information System (INIS)

    Kim, Woosong; Hartant, Donny; Kim, Yonghee

    2012-01-01

    The fuel temperature reactivity coefficient (FTC) of CANDU 6 has become a concerning issue. The FTC was found to be slightly positive for the operating condition of CANDU 6. Since CANDU 6 has unique fuel arrangement and very soft neutron spectrum, its Doppler reactivity feedback of U 238 is rather weak. The upscattering by oxygen in fuel and Pu 239 buildup with fuel depletion are responsible for the positive FTC value at high temperature. In this study, FTC of both standard CANDU and CANFLEX fuel lattice are re evaluated. A Monte Carlo code Serpent2 was chosen as the analysis tool because of its high calculational speed and it can account for the thermal motion of heavy nuclides in fuel by using the Doppler Broadening Rejection Correction (DBRC) method. It was reported that the fuel Doppler effect is noticeably enhanced by accounting the target thermal motion. Recently, it was found that the FTC of the CANDU 6 standard fuel is noticeably enhanced by the DBRC

  20. Viscous and Joule heating effects on MHD free convection flow with variable plate temperature

    International Nuclear Information System (INIS)

    Hossain, M.A.

    1990-09-01

    A steady two-dimensional laminar boundary layer flow of a viscous incompressible and electrically conducting fluid past a vertical heated plate with variable temperature in the presence of a transverse uniform magnetic field has been investigated by bringing the effect of viscous and Joules heating. The non-dimensional boundary layer equations are solved using the implicit finite difference method along with Newton's approximation for small Prandtl number chosen as typical of coolant liquid metals at operating temperature. (author). 10 refs, 2 figs, 1 tab

  1. Simulating the temperature noise in fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    Characteristics of temperature noise at various modes of coolant flow in fast reactor fuel assemblies (FA) and for different points of sensor installation are investigated. Stationary mode of coolant flow and mode with a partial overlapping of FA through cross section, resulting in local temperature increase and sodium boiling, are considered. Numerical simulation permits to evaluate time characteristicsof temperature noise and to formulate requirements for dynamic characteristics of the sensors, and also to clarify the dependence of coolant distribution parameters on the sensor location and peculiarities of stationary temperature profile

  2. The influence of walls and upper tie plate slots on the flooding mechanism in fuel elements with and without heat transfer between steam and water

    International Nuclear Information System (INIS)

    Spatz, R.; Mewes, D.

    1989-01-01

    The counter-current flow of steam and water was experimentally investigated for the upper part of a PWR fuel element. The actual geometrical shape of the nuclear equipment was simulated by various types of plates, in which bore holes and slots were arranged in different positions. The experiments were performed with and without an installed, unheated rod bundle below the plates. The water was injected at saturated and subcooled temperatures in order to observe the effects of heat transfer on counter-current flow. With increasing steam velocity the flooding occurs initially in the tie-plate area. If the rod bundle is installed in the flow duct, a part of the downwards flowing water is transported upwards from the region of the upper grid spacer to the plate. Heat transfer between the phases can cause in the counter-current flow region an instable transition from downward to near complete upward directed liquid flow. In comparison to experiments with saturated water injection, flooding occurs at larger steam velocities. Different flooding correlations, which are known from the literature, were compared with the experimental data to appraise their applicability to counter-current flow in the core of PWRs. (orig.)

  3. Zircaloy sheathed thermocouples for PWR fuel rod temperature measurements

    International Nuclear Information System (INIS)

    Anderson, J.V.; Wesley, R.D.; Wilkins, S.C.

    1979-01-01

    Small diameter zircaloy sheathed thermocouples have been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Surface mounted thermocouples were developed to measure the temperature of zircaloy clad fuel rods used in the Thermal Fuels Behavior Program (TFBP), and embedded thermocouples were developed for use by the Loss-of-Fluid Test (LOFT) Program for support tests using zircaloy clad electrically heated nuclear fuel rod simulators. The first objective of this developmental effort was to produce zircaloy sheathed thermocouples to replace titanium sheathed thermocouples and thereby eliminate the long-term corrosion of the titanium-to-zircaloy attachment weld. The second objective was to reduce the sheath diameter to obtain faster thermal response and minimize cladding temperature disturbance due to thermocouple attachment

  4. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  5. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed......V higher than that of methanol, indicating less fuel crossover....

  6. Development of neutronics and thermal hydraulics coupled code – SAC-RIT for plate type fuel and its application to reactivity initiated transient analysis

    International Nuclear Information System (INIS)

    Singh, Tej; Kumar, Jainendra; Mazumdar, Tanay; Raina, V.K.

    2013-01-01

    Highlights: • A point reactor kinetics code coupled with thermal hydraulics of plate type fuel is developed. • This code is applicable for two phase flow of coolant. • Safety analysis of IAEA benchmark reactor core is carried out. • Results agree well with the results available in literature. - Abstract: A point reactor kinetics code SAC-RIT, acronym of Safety Analysis Code for Reactivity Initiated Transient, coupled with thermal hydraulics of two phase coolant flow for plate type fuel, is developed to calculate reactivity initiated transient analysis of nuclear research and test reactors. Point kinetics equations are solved by fourth order Runge Kutta method. Reactivity feedback effect is included into the code. Solution of kinetics equations gives neutronic power and it is then fed into a thermal hydraulic code where mass, momentum and thermal energy conservation equations are solved by explicit finite difference method to find out fuel, clad and coolant temperatures during transients. In this code, all possible flow regimes including laminar flow, transient flow and turbulent flow have been covered. Various heat transfer coefficients suitable for single liquid, sub-cooled boiling, saturation boiling, film boiling and single vapor phases are incorporated in the thermal hydraulic code

  7. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  8. Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, S.-L.

    2006-01-01

    This paper uses molecular dynamics simulation based on the Lennard-Jones potential to study the effects that temperature and velocity have on, the nanojet droplet ejection process, when the droplet is ejected at an angle onto a moving plate's surface. According to the analysis, it was found that the width of the spreading droplet increased as the temperature and the time were increased. Also found was an energy wave phenomenon. The contact angle of the droplet deposited on the plate decreased as the temperature was increased. Furthermore, the layer phenomena became apparent when the atoms were deposited on a moving plate. Thinner film layers were obtained as the velocity of the moving plate was increased. The contact angle on the left side of the droplet was larger than that on the right side when the plate was moving from right to left

  9. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  10. New polymer electrolytes for low temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sundholm, F.; Elomaa, M.; Ennari, J.; Hietala, S.; Paronen, M. [Univ. of Helsinki (Finland). Lab. of Polymer Chemistry

    1998-12-31

    Proton conducting polymer membranes for demanding applications, such as low temperature fuel cells, have been synthesised and characterised. Pre-irradiation methods are used to introduce sulfonic acid groups, directly or using polystyrene grafting, in stable, preformed polymer films. The membranes produced in this work show promise for the development of cost-effective, highly conducting membranes. (orig.)

  11. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  12. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  13. 400 W High Temperature PEM Fuel Cell Stack Test

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2006-01-01

    This work demonstrates the operation of a 30 cell high temperature PEM (HTPEM) fuel cell stack. This prototype stack has been developed at the Institute of Energy Technology, Aalborg University, as a proof-of-concept for a low pressure cathode air cooled HTPEM stack. The membranes used are Celtec...

  14. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  15. Molten fuel-coolant interactions resulting from power transients in aluminium plate/water moderated reactors

    International Nuclear Information System (INIS)

    Storr, G.J.

    1989-08-01

    The behaviour of two reactors SL1 and SPERT D12, which underwent fast nuclear power transients prior to core destruction by a molten fuel-coolant interaction (MFCI) has been analysed and the results compared with measured data. The calculated spatial melt distribution and the mechanical work done during the events leads to high (∼ 250 kJ/kg) conversion efficiencies for this type of interaction when compared with molten drop experiments. A simple model for the steam explosion, using static thermodynamic properties of high temperature and pressure steam is used to calculate the dynamics of the reactors following the MFCI. 26 refs., 5 figs., 5 tabs

  16. PLACA/DPLACA: a code to simulate the behavior of a monolithic/dispersed plate type fuel

    International Nuclear Information System (INIS)

    Denis, Alicia; Soba, Alejandro

    2005-01-01

    The PLACA code was originally built to simulate monolithic plate fuels contained in a metallic cladding, with a gap in between. The international program of high density fuels was recently oriented to the development of a plate-type fuel of a uranium rich alloy with a molybdenum content between 6 to 10 w %, without gap and with a Zircaloy cladding. To give account of these fuels, the DPLACA code was elaborated as a modification of the original code. The extension of the calculation tool to disperse fuels involves a detailed study of the properties and models (still in progress). Of special interest is the material formed by U Mo particles dispersed in an Al matrix. This material has appeared as a candidate fuel for high flux research reactors. However, the interaction layer that grows around the particles has a deleterious effect on the material performance in operation conditions and may represent a limit for its applicability. A number of recent experiments carried out on this material provide abundant information that allows testing of the numerical models. (author)

  17. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  18. Improvement of critical heat flux correlation for research reactors using plate-type fuel

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Yamamoto, Kazuyoshi; Sudo, Yukio

    1998-01-01

    In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as Loss of the primary coolant flow'. Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal. The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study. (author)

  19. Calculation of the heat flow peak in case of local defect of the fuel plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Fabrega, Serge

    1965-11-01

    The author reports the calculation of the local thermal flow which exits a fuel plate in a nuclear reactor, where a fabrication defect creates a much localized peak of the power density released in the plate. He first reports the development of the problem equations: hypotheses and data, equation elaboration, simplification and resolution. He presents the results of a numeric application to actual cases, and describes how the conduction in the sheath is taken into account (study of the influence of peak width and shape), and gives a synthetic presentation of the formula for the approximate calculation of the heat flow in case of local defect [fr

  20. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  1. Intermediate Temperature Fuel Cell Using Gypsum Based Electrolyte And Electrodes

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagai, Masayuki; Katagiri, Yuji

    2011-01-01

    The proton conductive electrolyte membrane and the electrodes for intermediate temperature fuel cell were made from the phosphoric acid treated gypsum as a proton conductor. The membrane and the electrodes were built into single cell and tested at intermediate temperature region. The power density of the fuel cell was 0.56 mW/cm -2 at 150 deg. C without any humidification and 1.38 mW/cm -2 at 150 deg. C, 5% relative humidity. The open circuit voltage of the cell was increased higher than 0.7 V when the electrodes were annealed at 150 deg. C, 5%R.H., however the reasons for this are still to be further investigated. The results show that the potential of the phosphoric acid treated gypsum for the intermediate temperature proton conductor.

  2. High temperature compression tests performed on doped fuels

    Energy Technology Data Exchange (ETDEWEB)

    Duguay, C.; Mocellin, A.; Dehaudt, P. [Commissariat a l`Energie Atomique, CEA Grenoble (France); Fantozzi, G. [INSA Lyon - GEMPPM, Villeurbanne (France)

    1997-12-31

    The use of additives of corundum structure M{sub 2}O{sub 3} (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO{sub 2} doped with these oxides has been investigated and compared with that of pure UO{sub 2} with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.) 5 refs.

  3. High temperature compression tests performed on doped fuels

    International Nuclear Information System (INIS)

    Duguay, C.; Mocellin, A.; Dehaudt, P.; Fantozzi, G.

    1997-01-01

    The use of additives of corundum structure M 2 O 3 (M=Cr, Al) is an effective way of promoting grain growth of uranium dioxide. The high-temperature compressive deformation of large-grained UO 2 doped with these oxides has been investigated and compared with that of pure UO 2 with a standard microstructure. Such doped fuels are expected to exhibit enhanced plasticity. Their use would therefore reduce the pellet-cladding mechanical interaction and thus improve the performances of the nuclear fuel. (orig.)

  4. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  5. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cavitation erosion of silver plated coating at different temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Shuji; Motoi, Yoshihiro [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fuku-shi, Fukui 910-8507 (Japan); Kikuta, Kengo; Tomaru, Hiroshi [IHI Corperation, TOYOSU IHI BUILDING, 1-1, Toyosu 3-chome, Koto-ku, Tokyo 1358710 (Japan)

    2014-04-11

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K–400K) and pressures (0.10MPa–0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter Σ proposed by Brennen [9], suppression pressure p–p{sub v} (p{sub v}: saturated vapor pressure) and acoustic impedance ρc (ρ: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter Σ, suppression pressure p–p{sub v} and acoustic impedance ρc.

  7. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    Directory of Open Access Journals (Sweden)

    POPOVICI Ovidiu

    2012-10-01

    Full Text Available The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  8. Influence of the Ambient Temperature, to the Hydrogen Fuel Cell Functioning

    OpenAIRE

    POPOVICI Ovidiu; HOBLE Dorel Anton

    2012-01-01

    The reversible fuel cell can be used to produce hydrogen. The hydrogen is further the chemical energy source to produce electrical energy using the fuel cell. The ambient temperature will influence theparameters of the hydrogen fuel cell.

  9. Scanning electron microscopy analysis of fuel/matrix interaction layers in highly-irradiated U-Mo dispersion fuel plates with Al and Al-Si alloy matrices

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, Dennis D. Jr; Jue, Jan Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adom B.; Medvedev, Pavel; Madden, James; Wachs, Dan; Meyer, Mitch [Nuclear Fuels and Materials Division, Idaho National Laboratory (United States)

    2014-04-15

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifically, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (-4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

  10. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system co...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  11. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P. [Riso National Lab. (Denmark)

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  12. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    International Nuclear Information System (INIS)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-01-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today

  13. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  14. Characteristics of martensite as a function of the Ms temperature in low-carbon armour steel plates

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Stumpf, Waldo; Berg, Nic van der

    2009-01-01

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M s temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M s temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  15. Characteristics of martensite as a function of the M{sub s} temperature in low-carbon armour steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Maweja, Kasonde, E-mail: mawejak@yahoo.fr [Council for Scientific and Industrial Research, CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001 (South Africa); Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Stumpf, Waldo [Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria 0002 (South Africa); Berg, Nic van der [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2009-08-30

    The microstructure, morphology, crystal structure and surface relief of martensite in a number of experimental armour steel plates with different M{sub s} temperatures were analysed. Atomic force microscopy, thin foil transmission electron microscopy and scanning electron microscopy allowed the identification of three groups of low-carbon martensitic armour steels. The investigation showed that the size of individual martensite products (plates or packets, laths or blocks) increases as the M{sub s} temperature increases. Comparison of ballistic performances suggests that the morphology (plate or lath) and size of the individual martensite products dictate the effective 'grain size' in resisting fracture or perforation due to ballistic impact.

  16. Fundamental Study of Electron Beam Welding of AA6061-T6 Aluminum Alloy for Nuclear Fuel Plate Assembly (II)

    International Nuclear Information System (INIS)

    Kim, Soosung; Lee, Haein; Lee, Donbae; Park, Jongman; Lee, Yoonsang

    2013-01-01

    Certain characteristics, such as solidification cracking, porosity, HAZ (Heat-affected Zone) degradation must be considered during welding. Because of high energy density and low heat input, especially LBW and EBW processes posses the advantage of minimizing the fusing zone and HAZ and producing deeper penetration than arc welding processes. In present study, to apply for the nuclear fuel plate fabrication and assembly, a fundamental EBW experiment using AA6061-T6 aluminum alloy specimens was conducted. Furthermore, to establish the welding process, and satisfy the requirements of the weld quality, EBW apparatus using a electron welding gun and vacuum chamber was developed, and preliminary investigations for optimizing the welding parameters of the specimens using AA6061-T6 aluminum plates were also performed. In this experiment, a feasibility test was carried out by tensile tester, bead-on-plate welding and metallographic examination to comply with the aluminum welding procedure. The EB weld quality of AA6061-T6 aluminum alloy for the fuel plate assembly has been also studied by the mechanical testing and microstructure examinations. This study was carried out to determine the suitable welding process and to investigate tensile strength of AA6061-T6 aluminum alloy. In the present experiment, satisfactory EBW of the square butt weld specimens was developed. In comparison with the rolling directions of test specimens, the tensile strengths were no difference between the longitudinal and transverse welds. Based on this fundamental study, fabrication and assembly of the nuclear fuel plates will be provided for the future Kijang research reactor project

  17. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  18. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith [Delphi Automotive Systems, LLC, Troy, MI (United States)

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  19. Temperature Analysis and Failure Probability of the Fuel Element in HTR-PM

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Tang Chunhe

    2014-01-01

    Spherical fuel element is applied in the 200-MW High Temperature Reactor-Pebble-bed Modular (HTR-PM). Each spherical fuel element contains approximately 12,000 coated fuel particles in the inner graphite matrix with a diameter of 50mm to form the fuel zone, while the outer shell with a thickness of 5mm is a fuel-free zone made up of the same graphite material. Under high burnup irradiation, the temperature of fuel element rises and the stress will result in the damage of fuel element. The purpose of this study is to analyze the temperature of fuel element and to discuss the stress and failure probability. (author)

  20. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  1. Improving 6061-Al Grain Growth and Penetration across HIP-Bonded Clad Interfaces in Monolithic Fuel Plates: Initial Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hackenberg, Robert E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCabe, Rodney J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Edwards, Randall L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crapps, Justin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, R. Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aikin, Beverly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vargas, Victor D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lienert, Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forsyth, Robert T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harada, Kiichi L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-05-06

    Grain penetration across aluminum-aluminum cladding interfaces in research reactor fuel plates is desirable and was obtained by a legacy roll-bonding process, which attained 20-80% grain penetration. Significant grain penetration in monolithic fuel plates produced by Hot Isostatic Press (HIP) fabrication processing is equally desirable but has yet to be attained. The goal of this study was to modify the 6061-Al in such a way as to promote a much greater extent of crossinterface grain penetration in monolithic fuel plates fabricated by the HIP process. This study documents the outcomes of several strategies attempted to attain this goal. The grain response was characterized using light optical microscopy (LOM) electron backscatter diffraction (EBSD) as a function of these prospective process modifications done to the aluminum prior to the HIP cycle. The strategies included (1) adding macroscopic gaps in the sandwiches to enhance Al flow, (2) adding engineering asperities to enhance Al flow, (3) adding stored energy (cold work), and (4) alternative cleaning and coating. Additionally, two aqueous cleaning methods were compared as baseline control conditions. The results of the preliminary scoping studies in all the categories are presented. In general, none of these approaches were able to obtain >10% grain penetration. Recommended future work includes further development of macroscopic grooving, transferred-arc cleaning, and combinations of these with one another and with other processes.

  2. The Assessment Of High Temperature Reactor Fuel (Characteristics Of HTTR Fuel)

    International Nuclear Information System (INIS)

    Dewita, Erlan; Tuka, Veronica; Gunandjar

    1996-01-01

    HTTR is one of the reactor type with Helium coolant and outlet coolant temperature of 950 o C. One possibility of HTTR application is the coo generation of steam in high temperature and electric power for supply energy to industry in the future. Considering to the high operating temperature of HTTR, therefore it is needed the reactor fuel which have good mechanical, chemical and physical stability to the high temperature, and stable to the influence of fission fragment and neutron during irradiation. This assessment of the HTTR fuel characteristic based on the experiment data to find information of HTTR operation feasibility. Result of the assessment indicated that fission gas release at burn-up of 3.6 % FIMA which was the same as the maximum burn up in the HTTR design was fairly lower than the maximum release estimated in the design (5 x 10 - 4), which is R/B from the fuel fabricated by the prismatic block fuel method would be low (between 10 - 9 dan 10 - 8)

  3. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  4. Efficiency of poly-generating high temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Brown, Tim; Brouwer, Jacob; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2011-02-15

    High temperature fuel cells can be designed and operated to poly-generate electricity, heat, and useful chemicals (e.g., hydrogen) in a variety of configurations. The highly integrated and synergistic nature of poly-generating high temperature fuel cells, however, precludes a simple definition of efficiency for analysis and comparison of performance to traditional methods. There is a need to develop and define a methodology to calculate each of the co-product efficiencies that is useful for comparative analyses. Methodologies for calculating poly-generation efficiencies are defined and discussed. The methodologies are applied to analysis of a Hydrogen Energy Station (H{sub 2}ES) showing that high conversion efficiency can be achieved for poly-generation of electricity and hydrogen. (author)

  5. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  6. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  7. High Temperature PEM Fuel Cell Stacks with Advent TPS Meas

    Directory of Open Access Journals (Sweden)

    Neophytides Stylianos

    2017-01-01

    Full Text Available High power/high energy applications are expected to greatly benefit from high temperature Polymer Electrolyte Membrane Fuel Cells (PEMFCs. In this work, a combinatorial approach is presented, in which separately developed and evaluated MEAs, design and engineering are employed to result in reliable and effective stacks operating above 180°C and having the characteristics well matched to applications including auxiliary power, micro combined heat and power, and telecommunication satellites.

  8. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  9. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  10. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  11. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    International Nuclear Information System (INIS)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D.D.; Jue, J.F.; Rabin, B.; Moore, G.; Sohn, Y.H.

    2014-01-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr 2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr 2 and U10Mo, while the Mo 2 Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si) 3 Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo 2 Zr, and UZr 2 phases

  12. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.; Yoo, J.; Huang, K. [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816 (United States); Keiser, D.D.; Jue, J.F.; Rabin, B.; Moore, G. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83401 (United States); Sohn, Y.H., E-mail: Yongho.sohn@ucf.edu [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr{sub 2} phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr{sub 2} and U10Mo, while the Mo{sub 2}Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si){sub 3}Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo{sub 2}Zr, and UZr{sub 2} phases.

  13. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    Science.gov (United States)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.

  14. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  15. Thermal-hydraulic analysis under partial loss of flow accident hypothesis of a plate-type fuel surrounded by two water channels using RELAP5 code

    Directory of Open Access Journals (Sweden)

    Itamar Iliuk

    2016-01-01

    Full Text Available Thermal-hydraulic analysis of plate-type fuel has great importance to the establishment of safety criteria, also to the licensing of the future nuclear reactor with the objective of propelling the Brazilian nuclear submarine. In this work, an analysis of a single plate-type fuel surrounding by two water channels was performed using the RELAP5 thermal-hydraulic code. To realize the simulations, a plate-type fuel with the meat of uranium dioxide sandwiched between two Zircaloy-4 plates was proposed. A partial loss of flow accident was simulated to show the behavior of the model under this type of accident. The results show that the critical heat flux was detected in the central region along the axial direction of the plate when the right water channel was blocked.

  16. The Recovery of Uranium From The Rejected Fuel Plate Dispersion Type of U3O8-Al and U3Si2Al by NaOH

    International Nuclear Information System (INIS)

    Widodo, G; Aji, D

    1998-01-01

    The recovery of uranium from the rejected fuel plate dispersion type of U 3 O 8 -AI And U 3 Si 2 -AI with a dissolution has been performed.Each of 5 fragment of fuel plate dispersion of U 3 O 8 -AI or U 3 Si 2 Al of 1x4 cm size was put in the distilled glass content of 250 ml NaOH solution whit The concentration variation 10,15,20,25,and 30%,and than was heated at temperature of 102 o C and was stirred constantly by magnetic stirred.Uranium in the form of U 3 O 8 or U 3 Si 2 was separated by filtration and Either residu and filtrate was analyzed by potentiometry using modified Devies Gray method. From the experiment data it was found in the residu that presentation of uranium was 83.99-84.05% and 84.67-86.556% while in filtrate it was found 53.90 ppm and 69.3 ppm

  17. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  18. Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study

    Directory of Open Access Journals (Sweden)

    Charoula Kousiatza

    2017-02-01

    Full Text Available In Fused Deposition Modeling (FDM, which is a common thermoplastic Additive Manufacturing (AM method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation.

  19. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  20. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  1. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  2. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  3. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  4. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  5. Improvement of visualization efficiency for the nondestructive inspection image of internal defects in plate type nuclear fuel

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Park, Nak Kyu; Baik, Sung Hoon; Lee, Yoon Sang; Cheong, Yong Moo; Kang, Young June

    2012-01-01

    Plate type nuclear fuel has been adopted in most research reactors. The production quality of the fuel is a key part for an efficient and stable generation of thermal energy in research reactors. Thus, a nondestructive quality inspection for the internal defects of plate type nuclear fuel is a key process during the production of nuclear fuel for safety insurance. Nondestructive quality inspections based on X rays and ultrasounds have been widely used for the defect detection of plate type nuclear fuel. X ray testing is a simple and fast inspection method, and provides an image in real time as the inspection results. Thus, the testing can be carried out by a non expert field worker. However, it is hard to detect closed type defects that should be detected during the production of plate type nuclear fuel. Ultrasonic testing is a powerful tool to detect internal defects including open type and closed type defects in plate type nuclear fuel. However, the inspection process is complicated because an immersion test should be carried out in a water tank. It is also a time consuming inspection method because area testing to acquire image is based on the scanning of the point by point inspections. Among nondestructive inspection techniques, the techniques based on laser interferometry and infrared thermography have been widely used in the detection of internal defects of plate type composite materials, such as aircraft, automotive etc. While infrared thermography technique (IRT) analyses the thermal behavior of the specimen surface, laser interferometry technique (LIT) analyses the deformation field. Both techniques are useful tools for detection and evaluation of internal defects in composite materials. Especially, the laser interferometry technique can provide the depth information of internal defects. Laser interferometry technique (LIT) is a non contact inspection method faster than thermography. Also, this technique requires less energy than thermography and the

  6. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  7. Recent status of development and irradiation performance for plate type fuel elements with reduced 235U enrichment at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.F.; Hassel, H.W.

    1984-01-01

    According to the present state of development full size test fuel elements with the maximum uranium densities of 2,2 g U/cm 3 meat for UAlsub(x), 3,2 g U/cm 3 meat for U 3 O 8 and 4,8 g U/cm 3 meat for U 3 Si 2 can be fabricated at NUKEM in production scale. Special chemical procedures for the uranium recovery were developed ensuring an economic fuel fabrication process. The post irradiation examinations (PIE) of 12 UAlsub(x) (U density 2,2 g U/cm 3 meat) and U 3 O 8 (up to 3,1 g U/cm 3 meat) test plates irradiated in the ORR, Oak Ridge research reactor, were terminated. All 12 test plates show unobjectionable irradiation behavior. Extensive irradiation tests on full size fuel elements were performed. All inserted elements show perfect irradiation behavior. The PIE of the first HFR Petten U 3 O 8 fuel elements are in progress. The full size ORR U 3 Si 2 fuel elements with so far highest uranium density of 4,76 g U/cm 3 meat achieved a burnup of 50 % loss of 235 U up to May 1983. One element was withdrawn from the reactor for PIE, the second will be irradiated to a burnup of 75 % loss of 235 U. The further development is concentrated on Usub(x)Sisub(y) fuel with highest uranium density. U 3 Si miniplates with up to 6,1 g U/cm 3 meat are supplied meeting the required specification, U 3 Si miniplates with 6,7 g U/cm 3 are in fabrication. (author)

  8. Axial temperatures and fuel management models for a HTR system

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U

    1971-11-12

    In the HTR system, there is a large difference in temperature between different parts of the reactor core. The softer neutron spectrum in the upper colder core regions tends to shift the power productions in the fresh fuel upwards. As uranium 235 depletes and plutonium with its higher cross sections in the lower hot regions is built-up, an axial power flattening takes place. These effects have been studied in detail for a single column in an equilibrium environment. The aim of this paper is to relate these findings to a whole reactor core and to investigate the influence of axial temperatures on the overall performance and in particular, the fuel management scheme chosen for the reference design. A further objective has been to calculate the reactivity requirements for different part load conditions and for various daily and weekly load diagrams. As the xenon cross section changes significantly with temperature these investigations are performed for an equilibrium core with due representation of axial temperature zones.

  9. Mechanical and temperature contact in fuel rod cladding

    International Nuclear Information System (INIS)

    Fredriksson, B.E.; Rydholm, S.G.

    1977-01-01

    The paper presents results for the effect of different types of slip rules on the contact stress distribution. It is shown that the contact shear stress is smaller for the hardening model than for the ideal model. It is also shown that a crack in the fuel increases the contact stresses and that at temperature decrease high tensile stresses arise after eventual welding. It is also shown how particles between fuel and cladding influence the stresses. Also here the effect of eventual welding is studied. The present method is well suited to study cracks and crack propagation. The surfaces of the existing cracks are defined as contact surfaces and the crack extension work is calculated by releasing the nodes at the crack tip. As the crack surfaces are defined as contact surfaces eventual crack closure is automatically taken into account. Crack extension work is calculated for existing cracks in the cladding. It is shown that cracks in the fuel and particles between fuel and cladding will increase the crack extension work

  10. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  11. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  12. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  13. Coated particle fuel for high temperature gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl; Nabielek, Heinz [Research Center Julich (FZJ), Julich (Germany); Kendall, James M. [Global Virtual L1c, Prescott (United States)

    2007-10-15

    applications at 850-900 .deg. C and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 {mu}m diameter UO{sub 2} kernel of 10% enrichment is surrounded by a 100 {mu}m thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 {mu}m thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level.

  14. Coated particle fuel for high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Verfondern, Karl; Nabielek, Heinz; Kendall, James M.

    2007-01-01

    and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 μm diameter UO 2 kernel of 10% enrichment is surrounded by a 100 μm thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 μm thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level

  15. Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles

    International Nuclear Information System (INIS)

    Walraven, Daniël; Laenen, Ben; D’haeseleer, William

    2014-01-01

    Highlights: • Binary cycles for low-temperature heat sources are investigated. • Shell-and-tube and plate heat exchangers are modeled. • System optimization of the cycle variables and heat exchanger geometry. • ORCs with plate heat exchangers obtain in most cases higher efficiencies. - Abstract: Organic Rankine cycles (ORCs) can be used for electricity production from low-temperature heat sources. These ORCs are often designed based on experience, but this experience will not always lead to the most optimal configuration. The ultimate goal is to design ORCs by performing a system optimization. In such an optimization, the configuration of the components and the cycle parameters (temperatures, pressures, mass flow rate) are optimized together to obtain the optimal configuration of power plant and components. In this paper, the configuration of plate heat exchangers or shell-and-tube heat exchangers is optimized together with the cycle configuration. In this way every heat exchanger has the optimum allocation of heat exchanger surface, pressure drop and pinch-point-temperature difference for the given boundary conditions. ORCs with plate heat exchangers perform mostly better than ORCs with shell-and-tube heat exchangers, but one disadvantage of plate heat exchangers is that the geometry of both sides is the same, which can result in an inefficient heat exchanger. It is also shown that especially the cooling-fluid inlet temperature and mass flow have a strong influence on the performance of the power plant

  16. Implementation of the non-destructive ultrasound testing by immersion through the transmission technique, applied to the quality control of nuclear fuel plates

    International Nuclear Information System (INIS)

    Medina Jofre, David Christian

    2014-01-01

    Within the framework of global development, which seeks to reduce the enrichment of U 235 in nuclear fuels for research reactors, the Fuel Elements Plant (PEC) of the Chilean Nuclear Energy Commission (CCHEN) has worked with the Idaho National Laboratory (INL-USA), for the fabrication of high density fuel plates based on the dispersion of Uranium-Molybdenum alloy powders (UMo), which are subjected to inspections and tests to qualify as a compliant product for use in nuclear research reactors. It is in this matter where the Non Destructive Test (NDT) of immersion ultrasound used in both facilities differs in its acceptance criteria, when is used different testing techniques; On the one hand, the PEC uses the pulse-echo technique, while the INL uses the transmission technique. Therefore, the present work is focused on the implementation of the ultrasound by immersion using the transmission technique. During the development of the work, the physical and virtual configuration of the ultrasound equipment was possible and elaborate an operation procedure, which allows to inspect through this technique, a series of fuel plates based on UMo and U 3 Si 2 powders, with different characteristics. The results allow to characterize the signals obtained in fuel plates according to the nuclear fuel material used. There is an inverse relationship between the uranium load per unit volume (uranium density, gU/cm 3 ) used in the fuel plate and the transmittance of the ultrasonic beam through the areas where there is nuclear fuel material (meat); the effect produced by a dispersed combustible material is observed and it is possible to identify discontinuities that may be present in the fuel plate. Finally, an inspection technical instruction for U 3 Si 2 fuel plates is elaborated, where acceptance and rejection criteria are defined

  17. Carbonization plant for low temperature carbonization of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    1948-02-13

    A carbonization plant for the low-temperature carbonization of solid fuels, consists of a heat-treating retort including an outer vertical stationary tube, a second inner tube coaxial with the first tube, adapted to rotate round its axis and defining the first tube, and an annular gap where the solid fuel is treated. The inside of the inner tube is divided in two parts, the first fed with superheated steam which is introduced into the annular gap through vents provided in the wall of the inner tube, the second part communicating with the gap by means of vents provided in the wall of the inner tube through which gases and oil vapors evolved from the fuel are evacuated. A combustion furnace is provided in which the hot solid residues evacuated at the bottom of the annular gap are burned and from which hot fumes are evacuated, a conduit surrounding, in the form of a helical flue, outer cylinder of the retort, and in which flow hot fumes; a preliminary drier for the raw solid fuel heated by the whole or a part of the fumes evacuated from the combustion furnace. Means for bringing solid fuels from the outlet of the preliminary drier to the upper inlet of the gap of the retort a pipe line receiving steam and bringing it into the first inside part of the inner tube, this pipe line has portions located within the conduit for the fumes in order to superheat the steam, and an expansion chamber in which the gases and oil vapors are trapped at the bottom of the second inside part of the inner tube are included.

  18. Low Temperature Steam Methane Reforming Over Ni Based Catalytic Membrane Prepared by Electroless Palladium Plating.

    Science.gov (United States)

    Lee, Sang Moon; Hong, Sung Chang; Kim, Sung Su

    2018-09-01

    A Pd/Ni-YSZ porous membrane with different palladium loadings and hydrazine as a reducing reagent was prepared by electroless plating and evaluated for the steam methane reforming activity. The steam-reforming activity of a Ni-YSZ porous membrane was greatly increased by the deposition of 4 g/L palladium in the low-temperature range (600 °C). With an increasing amount of reducing reagent, the Pd clusters were well dispersed on the Ni-YSZ surface and were uniform in size (∼500 nm). The Pd/Ni-YSZ catalytic porous membrane prepared by 1 of Pd/hydrazine ratio possessed an abundant amount of metallic Pd. The optimal palladium loadings and Pd/hydrazine ratio increased the catalytic activity in both the steam-reforming reaction and the Pd dispersion.

  19. Experimental study on thermal interaction between a high-temperature molten jet and plates

    International Nuclear Information System (INIS)

    Sato, K.; Saito, M.; Furutani, A.; Isozaki, M.; Imahori, S.; Konishi, K.

    1994-01-01

    This paper summarizes the recent simulant experiments to study molten corium-structure interactions under postulated core disruptive accident (CDA) conditions in liquid-metal fast breeder reactors (LMFMRs). These experiments were conducted in the MELT-II facility generating high-temperature molten simulants by an induction heating technique. From a series of molten jet-structure interaction experiments, the effects of the solidified crust layer and molten layer on the erosion behavior were identified, and analytical models were developed to assess the structure erosion rate with and without crust formation. Especially, we revealed the inherent mitigation mechanism that when the molten oxide jet with high melting point falls down onto the structure plate, solidified crust of the oxide can significantly reduce the erosion rate. (author)

  20. The study of development of welded compact plate heat exchanger for high temperature and pressure

    International Nuclear Information System (INIS)

    Park, Jae Hong; Lim, Hyug; Kim, Jung Kyu; Cho, Sung Youl; Kwon, Oh Boong

    2009-01-01

    In view of space saving, the design of more compact heat exchangers is relatively important. Also, to meet the demand for saving energy and resources today, manufacturers are trying to enhance efficiency and reduce the size and weight of heat exchangers. Over the past decade, there has been tremendous advancement in the manufacturing technology of high efficiency heat exchangers. This has allowed the use of smaller and high performance heat exchangers. Consequently, the use of smaller and high performance heat exchanger becomes popular in the design of heat exchangers. Welded compact plate heat exchanger is used in high temperature and pressure. In the design of heat exchanger, it is necessary to understand the heat transfer characteristics, so performance data are provided to help design of this type heat exchanger.

  1. Temperature measurement on Zircaloy-clad fuel pins during high temperature excursions

    International Nuclear Information System (INIS)

    Meservey, R.H.

    1976-04-01

    The development of a sheathed thermocouple suitable for attachment to zircaloy-clad fuel rods and for use during high temperature (2,800 0 F) excursions under loss-of-coolant accident conditions is described. Development, fabrication, and testing of the thermocouples is covered in detail. In addition, the development of a process for laser welding the thermocouples to fuel rods is discussed. The thermocouples and attachment welds have been tested for resistance to corrosion and nuclear radiation and have been subjected to fast thermal cycle, risetime, and blowdown accident tests

  2. Development of a 400 W High Temperature PEM Fuel Cell Power Pack

    DEFF Research Database (Denmark)

    Schaltz, Erik; Jespersen, Jesper Lebæk; Rasmussen, Peter Omand

    2006-01-01

    reformer design because CO removal is not needed. A fuel like methanol would be a preferable choice for reforming when using HTPEM fuel cells because of its high energy density and low reforming temperatures. The thermal integration and use of HTPEM fuel cells with methanol reformers show promising results......When using pressurized hydrogen to fuel a fuel cell, much space is needed for fuel storage. This is undesirable especially with mobile or portable fuel cell systems, where refuelling also often is inconvenient. Using a reformed liquid carbonhydrate can reduce this fuel volume considerably. Nafion...... based low temperature PEM (LTPEM) fuel cells are very intolerant to reformate gas because of the presence of CO. PBI based high temperature PEM (HTPEM) fuel cells can operate stable at much higher CO concentrations. This makes the HTPEM very suitable for applications using a reformer, and could simplify...

  3. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  4. An assessment of temperature history on concrete silo dry storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    Lee, Dong-Gyu; Sung, Nak-Hoon; Park, Jea-Ho; Chung, Sung-Hwan

    2016-01-01

    Highlights: • We performed thermal analysis to predict the temperature distribution in the concrete silo. • Thermal analysis of the concrete silo was based on CFD code. • Temperature distribution and history for storage period was presented. • Thermal analysis results and test results agreed well. • The correlations can predict the maximum fuel temperature over storage period. - Abstract: Concrete silo is a dry storage system for spent fuel generated from CANDU reactors. The silo is designed to remove passively the decay heat from spent fuel, as well as to secure the integrity of spent fuel during storage period. Dominant heat transfer mechanisms must be characterized and validated for the thermal analysis model of the silo, and the temperature history along storage period could be determined by using the validated thermal analysis model. Heat transfer characteristics on the interior and exterior of fuel basket in the silo were assessed to determine the temperature history of silo, which is necessary for evaluating the long-term degradation behavior of CANDU spent fuel stored in the silo. Also a methodology to evaluate the temperature history during dry storage period was proposed in this study. A CFD model of fuel basket including fuel bundles was suggested and temperature difference correlation between fuel bundles and silo’s internal member, as a function of decay heat of fuel basket considering natural convection and radiation heat transfer, was deduced. Temperature difference between silo’s internal cavity and ambient air was determined by using a concept of thermal resistance, which was validated by CFD analysis. Fuel temperature was expressed as a function of ambient temperature and decay heat of fuel basket in the correlation, and fuel temperature along storage period was determined. Therefore, it could be used to assess the degradation behavior of spent fuel by applying the degradation mechanism expressed as a function of spent fuel

  5. Quality verification for plate-type uranium-aluminum fuel elements for use in research reactors (Revision 1) - July 1976

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Paragraph (a) (7) of 50.34, Contents of Applications: Technical Information, of 10 CFR Part 50, Licensing of Production and Utilization Facilities, requires that each applicant for a construction permit to build a production or utilization facility include in its Preliminary Safety Analysis Report (PSAR) a description of the quality assurance program to be applied to the design, fabrication, construction, and testing of the structures, systems, and components of the facility. The Regulatory Guide presented describes a method acceptable to the NRC staff for establishing and executing a quality assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research reactors

  6. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  7. Refinements to temperature calculations of spent fuel assemblies when in a stagnant gas environment

    International Nuclear Information System (INIS)

    Rhodes, C.A.; Haire, M.J.

    1984-01-01

    Undesirably high temperatures are possible in irradiated fuel assemblies because of the radioactive decay of fission products formed while in the reactor. The COXPRO computer code has been used for some time to calculate temperatures in spent fuel when the fuel is suspended in a stagnant gas environment. This code assumed radiation to be the only mode of heat dissipation within the fuel pin bundle. Refinements have been made to include conduction as well as radiation heat transfer within this code. Comparison of calculated and measured temperatures in four separate and independent tests indicate that maximum fuel assembly temperatures can be predicted to within about 6%. 2 references, 5 figures

  8. Detection of delamination defects in plate type fuel elements applying an automated C-Scan ultrasonic system

    International Nuclear Information System (INIS)

    Katchadjian, P.; Desimone, C.; Ziobrowski, C.; Garcia, A.

    2002-01-01

    For the inspection of plate type fuel elements to be used in Research Nuclear Reactors it was applied an immersion pulse-echo ultrasonic technique. For that reason an automated movement system was implemented according to the axes X, Y and Z that allows to automate the test and to show the results obtained in format of C-Scan, facilitating the immediate identification of possible defects and making repetitive the inspection. In this work problems found during the laboratory tests and factors that difficult the inspection are commented. Also the results of C-Scans over UMo fuel elements with pattern defects are shown. Finally, the main characteristics of the transducer with the one the better results were obtained are detailed. (author)

  9. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  10. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  11. Effect of power variations across a fuel bundle and within a fuel element on fuel centerline temperature in PHWR bundles in uncrept and crept pressure tubes

    International Nuclear Information System (INIS)

    Onder, E.N.; Roubtsov, D.; Rao, Y.F.; Wilhelm, B.

    2017-01-01

    Highlights: • Pressure tube creep effect on fuel pin power and temperatures was investigated. • Noticeable effects were observed for 5.1% crept pressure tube. • Bundle eccentricity effect on power variations was insignificant for uncrept channels. • Difference of 112 °C was observed between top & bottom elements in 5.1% crept channel. • Not discernible fission gas release was expected with temperature difference of 112 °C. - Abstract: The neutron flux and fission power profiles through a fuel bundle and across a fuel element are important aspects of nuclear fuel analysis in multi-scale/multi-physics modelling of Pressurized Heavy Water Reactors (PHWRs) with advanced fuel bundles. Fuel channels in many existing PHWRs are horizontal. With ageing, pressure tubes creep and fuel bundles in these pressure tubes are eccentrically located, which results in an asymmetric coolant flow distribution between the top and bottom of the fuel bundles. The diametral change of the pressure tube due to creep is not constant along the fuel channel; it reaches a maximum in the vicinity of the maximum neutron flux location. The cross-sectional asymmetric positioning of fuel bundles in a crept pressure tube contributes to an asymmetric power distribution within a ring of fuel elements. Modern reactor physics lattice codes (such as WIMS-AECL) are capable of predicting the details of power distribution from basic principles. Thermalhydraulics subchannel codes (such as ASSERT-PV) use models to describe inhomogeneous power distribution within and across fuel elements (e.g., flux tilt model, different powers in different ring elements, or radial power profiles). In this work, physics and thermalhydraulics codes are applied to quantify the effect of eccentricity of a fuel bundle on power variations across it and within a fuel element, and ultimately on the fuel temperature distribution and fuel centerline temperature, which is one of the indicators of fuel performance under normal

  12. Nuclear Fuel Fretting Mechanisms in a Room Temperature Unlubricated Condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ho; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, efforts for evaluating the fretting wear mechanism have been carried out by many researchers in various conditions. In an unlubricated condition, especially, effects of a wear debris and/or its layer on the fretting wear behavior were proposed that the formation of a well-developed glaze layer has a beneficial effect for decreasing a friction coefficient. Otherwise, a wear rate was accelerated by a third-body abrasion. At this time, it is well known that wear debris behaviors are affected by test variables such as a temperature, environment, material characteristics, etc. In a nuclear fuel fretting, however, its contact condition is quite different when compared with general fretting wear studies and could be summarized as the following; first, a fuel rod is supported by spacer grid springs and dimples that were elastically deformable. This results in a unique friction loop and a different fretting mechanism when a fuel rod is vibrated due to a flow-induced vibration (FIV). Next, it is possible that some region of the wear scar area with a specific spring shape condition could be hidden due to different wear debris behavior. So, some of the wear debris layers could be found on the worn surfaces in previous studies even though fretting wear tests were performed in a water lubricated condition. Finally, initial contact condition could be changed both an actual operating condition in power plants (i.e. high temperature and pressurized water (HTHP) under severe irradiation conditions) and the fretting wear tests for evaluating the wear resistant spring in lab conditions (i.e. from room temperature to HTHP without irradiation conditions) due to material degradations and the formation of the wear scar, respectively. In summary, the spring shape effect and the variation of the contact condition with increasing fretting cycle should be evaluated in order to improve the wear resistance of the spacer grid spring. So, in this study, fretting wear tests have been

  13. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Ploger, Scott A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Morris, Robert N.; Baldwin, Charles A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Harp, Jason M.; Winston, Philip L. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Gerczak, Tyler J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Rooyen, Isabella J. van [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Montgomery, Fred C.; Silva, Chinthaka M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2016-09-15

    Highlights: • Post-irradiation examination was performed on AGR-1 coated particle fuel. • Cesium release from the particles was very low in the absence of failed SiC layers. • Silver release was often substantial, and varied considerably with temperature. • Buffer and IPyC layers were found to play a key role in TRISO coating behavior. • Fission products palladium and silver were found in the SiC layer of particles. - Abstract: The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of {sup 110m}Ag from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10{sup −4} to 5 × 10{sup −4} for {sup 154}Eu and 8 × 10{sup −7} to 3 × 10{sup −5} for {sup 90}Sr. The average {sup 134}Cs fractional release from compacts was <3 × 10{sup −6} when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10{sup 5} in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving {sup 134}Cs fractional release in two capsules to approximately 10{sup −5}. Identification and characterization of these particles has provided unprecedented insight into

  14. A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lin, G.; Shih, A.J.; Hu, S.J. [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-01-01

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells. (author)

  15. Evaluation of fuel-temperature feedback mechanisms in TRAC-PF1/MOD2/NESTLE

    International Nuclear Information System (INIS)

    Knepper, Paula L.; Feltus, Madeline; Hochreiter, L.E.; Ivanov, Kostadin

    1999-01-01

    Coupled spatial kinetics and thermal-hydraulics system codes provide a means to model transient nuclear reactor behavior more accurately. Transients marked by strong perturbations, both with thermal-hydraulics and neutronics, such as a control-rod ejection or a main steam-line break, are especially of interest. It is now feasible to model complex reactor behavior with a coupled thermal-hydraulics and spatial kinetics code that provides a means to forecast safety margins. Recently, the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, was coupled with the NESTLE code. This coupled code (TRAC-PF1/MOD2/NESTLE) is used to examine effective fuel-temperature models. The Electric Power Research Institute (EPRI) rod-ejection benchmark was analyzed to evaluate the influence of effective fuel temperature. The rod-ejection transient tests only the fuel-rod, heat-conduction coupling. The coolant thermal-hydraulic coupling is not tested because of the speed of the transient. The neutronics solution changes extremely rapidly, whereas the convective heat transfer at the fuel surface requires more time to influence the coolant temperature of the system. The need to model the response of the system coolant temperature is not crucial in this analysis. The influence of the effective fuel temperature is the key component of this study. Various models were examined using the coupled code to calculate effective fuel temperatures. The influence of different, effective fuel-temperature models on the coupled-code results is studied. Three effective fuel-temperature models are examined: (l) volume average effective fuel temperature, (2) the effective fuel-temperature model suggested by the Office of Economic Cooperation and Development (OECD) rod-ejection benchmark, and (3) the NESTLE effective fuel-temperature model. A discussion is provided describing the effective fuel-temperature models examined in TRAC-PF1/MOD2/NESTLE and the influence of effective fuel temperature in

  16. The influence of composition, annealing treatment, and texture on the fracture toughness of Ti-5Al-2.5Sn plate at cryogenic temperatures

    Science.gov (United States)

    Vanstone, R. H.; Shannon, J. L., Jr.; Pierce, W. S.; Low, J. R., Jr.

    1977-01-01

    The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature).

  17. Process for the production of fuel combined articles for addition in block shaped high temperature fuel elements

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1976-01-01

    There is provided a process for the production of fuel compacts consisting of an isotropic, radiation-resistant graphite matrix of good heat conductivity having embedded therein coated fuel and/or fertile particles for insertion into high temperature fuel elements by providing the coated fuel and/or fertile particles with an overcoat of molding mixture consisting of graphite powder and a thermoplastic resin binder. The particles after the overcoating are provided with hardener and lubricant only on the surface and subsequently are compressed in a die heated to a constant temperature of about 150 0 C, hardened and discharged therefrom as finished compacts

  18. Process for the production of prismatic graphite molded articles for high temperature fuel elements

    International Nuclear Information System (INIS)

    Huschka, H.; Rachor, L.; Hrovat, M.; Wolff, W.

    1976-01-01

    Prismatic graphite molded objects for high temperature fuel elements are prepared by producing the outer geometry and the holes for cooling channels and for receiving fuel and fertile materials in the formation of the carbon object

  19. Irradiation performance of AGR-1 high temperature reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization

  20. Optimization of electrical conduction and passivity properties of stainless steels used for PEM fuel cell bipolar plates

    International Nuclear Information System (INIS)

    Andre, J.

    2007-10-01

    Among the new technologies for energy for sustainable development, PEMFC (proton exchange membrane fuel cells) offer seducing aspects. However, in order to make this technology fit large scale application requirements, it has to comply with stringent cost, performance, and durability criteria. In such a frame, the goal of this work was to optimize electrical conduction properties and passivity of stainless steels for the conception of PEMFC bipolar plates, used instead of graphite, the reference material. This work presents the possible ways of performance loss when using stainless steels and some methods to solve this problem. Passive film properties were studied, as well as their modifications by low cost industrial surface treatments, without deposition. Ex situ characterizations of corrosion resistance and electrical conduction were performed. Electrochemical impedance spectroscopy, water analysis, surface analysis by microscopy and photoelectron spectroscopy allowed to study the impact of ageing on two alloys in different states, and several conditions representative of an exposure to PEMFC media. Correlations between semi-conductivity properties, composition, and structure of passive layers were considered, but not leading to clear identification of all parameters responsible for electrical conduction and passivity. The plate industrial state is not convenient for direct use in fuel cell to comply with durability and performance requirements. A surface modification studied improves widely electrical conduction at initial state. The performance is degraded with ageing, but maintaining a level higher than the initial industrial state. This treatment increases also corrosion resistance, particularly on the anode side. (author)

  1. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Perez, E.; Yao, B. [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Keiser, D.D. [Nuclear Fuels and Materials Division, Idaho National Laboratory, Scoville, ID 83415 (United States); Sohn, Y.H., E-mail: ysohn@mail.ucf.ed [Advanced Materials Processing and Analysis Center, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr{sub 2}, {gamma}-UZr, Zr solid-solution and Mo{sub 2}Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si){sub 2}Zr, (Al, Si)Zr{sub 3} (Al, Si){sub 3}Zr, and AlSi{sub 4}Zr{sub 5}. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  2. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    Science.gov (United States)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  3. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. The maximum rod temperature is a limiting factor in the amount of spent fuel that can be loaded in a transportation cask. The scope of this work is to demonstrate that reasonable and conservative spent fuel rod temperature predictions can be made using commercially available thermal analysis codes. The demonstration is accomplished by a comparison between numerical temperature predictions, with a commercially available thermal analysis code, and experimental temperature data for electrical rod heaters simulating a horizontally oriented spent fuel rod bundle

  4. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  5. Characterisation of micro direct methanol fuel cells with silicon plate supported integrated ionomer membranes

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Kallesee, C.

    2013-01-01

    This work deals with the investigation and fabrication of Micro Direct Methanol Fuel Cells (μDMFC). They are investigated as a possible alternative for zinc-air batteries in small size consumer devices such as hearing aids. In such devices the conventional rechargeable batteries such as lithium......-ion batteries have insufficiently low energy density in the range 240 Wh/L to 300 Wh/L Methanol is a promising fuel for such devices due to the high energy density, with pure methanol having an energy density of 4400 Wh/L. Using a liquid fuel also allows refueling, which can be achieved much faster than battery...

  6. PATE - a computer code for the calculation of temperature distribution in cylindrical fuel rods

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Roberty, N.C.; Carmo, E.G.D. do.

    1983-08-01

    An analytical solution for the temperature profile in the fuel cladding is presented, having the coolant temperature as boundary conditions and using a first-order polynomial for the zircalloy thermal conductivity. The temperature profile in the fuel pellet is determined solving an algebraic equation by iterative methods. (E.G.) [pt

  7. Monte Carlo simulation of irradiation of MTR fuel plates in the BR2 reactor using a full-scale 3-d model with inclined channels

    International Nuclear Information System (INIS)

    Kuzminov, V. V; Koonen, E.; Ponsard, B.

    2002-01-01

    A three-dimensional full-scale Monte Carlo model of the BR2 reactor has been developed for simulation of irradiation conditions of materials and fuel loaded in various irradiation devices. This new reactor model includes a detailed geometrical description of the inclined reactor channels, the irradiation devices loaded in these channels including the materials to be tested/loaded in these devices, the burn-up of the BR2 fuel elements and the poisoning of the beryllium matrix. Recently a benchmark irradiation of new irradiation device for testing and qualification of MTR fuel plates has been performed. For this purpose the detailed irradiation conditions of fuel plates had to be predetermined. Monte Carlo calculations of neutron fluxes and heat load distributions in irradiated MTR fuel plates were performed taking into account the contents of all loaded experimental devices in the reactor channels. A comparison of the calculated and measured values of neutron fluxes and of heat loads in the BR2 reactor is presented in this paper. The comparison is part of the validation process of the new reactor model. It also serves to establish the capability to conduct a fuel plate irradiation program under requested and well- known irradiation conditions. (author)

  8. Bending of fuel fast reactor fuel elements under action of non-uniform temperature gradients and radiation-induced swelling

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.; Karasik, E.A.

    1984-01-01

    The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties

  9. Standardization of specifications and inspection procedures for LEU plate-type research reactor fuels

    International Nuclear Information System (INIS)

    1988-06-01

    With the transition to high density uranium LEU fuel, fabrication costs of research reactor fuel elements have a tendency to increase because of two reasons. First, the amount of the powder of the uranium compound required increases by more than a factor of five. Second, fabrication requirements are in many cases nearer the fabrication limits. Therefore, it is important that measures be undertaken to eliminate or reduce unnecessary requirements in the specification or inspection procedures of research reactor fuel elements utilizing LEU. An additional stimulus for standardizing specifications and inspection procedures at this time is provided by the fact that most LEU conversions will occur within a short time span, and that nearly all of them will require preparation of new specifications and inspection procedures. In this sense, the LEU conversions offer an opportunity for improving the rationality and efficiency of the fuel fabrication and inspection processes. This report focuses on the standardization of specifications and inspection processes of high uranium density LEU fuels for research reactors. However, in many cases the results can also be extended directly to other research reactor fuels. 15 refs, 1 fig., 3 tabs

  10. Fuel cell cassette with compliant seal

    Science.gov (United States)

    Karl, Haltiner, Jr. J.; Anthony, Derose J.; Klotzbach, Darasack C.; Schneider, Jonathan R.

    2017-11-07

    A fuel cell cassette for forming a fuel cell stack along a fuel cell axis includes a cell retainer, a plate positioned axially to the cell retainer and defining a space axially with the cell retainer, and a fuel cell having an anode layer and a cathode layer separated by an electrolyte layer. The outer perimeter of the fuel cell is positioned in the space between the plate and the cell retainer, thereby retaining the fuel cell and defining a cavity between the cell retainer, the fuel cell, and the plate. The fuel cell cassette also includes a seal disposed within the cavity for sealing the edge of the fuel cell. The seal is compliant at operational temperatures of the fuel cell, thereby allowing lateral expansion and contraction of the fuel cell within the cavity while maintaining sealing at the edge of the fuel cell.

  11. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  12. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  13. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    Science.gov (United States)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  14. Calculation of fuel element temperature TRIGA 2000 reactor in sipping test tubes using CFD

    International Nuclear Information System (INIS)

    Sudjatmi KA

    2013-01-01

    It has been calculated the fuel element temperature in the sipping test of Bandung TRIGA 2000 reactor. The calculation needs to be done to ascertain that the fuel element temperatures are below or at the limit of the allowable temperature fuel elements during reactor operation. ensuring that the implementation of the test by using this device, the temperature is still within safety limits. The calculation is done by making a model sipping test tubes containing a fuel element surrounded by 9 fuel elements. according to the position sipping test tubes in the reactor core. by using Gambit. Dimensional model adapted to the dimensions of the tube and the fuel element in the reactor core of Bandung TRIGA 2000 reactor. Sipping test Operation for each fuel element performed for 30 minutes at 300 kW power. Calculations were performed using CFD software and as input adjusted parameters of TRIGA 2000 reactor. Simulations carried out on the operation of the 30, 60, 90, 120, 150, 180 and 210 minutes. The calculation result shows that the temperature of the fuel in tubes sipping test of 236.06 °C, while the temperature of the wall is 87.58 °C. The maximum temperature in the fuel center of TRIGA 2000 reactor in normal operation is 650 °C. and the boiling is not allowed in the reactor. So it can be concluded that the operation of the sipping test device are is very safe because the fuel center temperature is below the temperature limits the allowable fuel under normal operating conditions as well as the fuel element wall temperature is below the boiling temperature of water. (author)

  15. Effect of cavity inclination on a temperature and concentration controlled double diffusive convection at ice plate melting

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, M.; Ishikura, T. [Akita University, Department of Mechanical Engineering, Akita (Japan); Beer, H. [Technische Unversitat Darmstadt, Institut fur Technische Thermodynamik, Darmstadt (Germany)

    2005-03-01

    This paper is concerned with the double diffusive convection due to the melting of an ice plate into a calcium chloride aqueous solution inside a rectangular cavity. It is mainly considered the effect of the cavity inclination {theta} on the melting rate and the mean melting Nusselt- and Sherwood-numbers, experimentally as well as numerically. The ice plate melts spontaneously with decreasing temperature at the melting front even if initially there does not exist a temperature difference between the ice and the liquid. The concentration- and temperature-gradients near the melting front induce double diffusive convection in the liquid, which will affect the melting rate. Experiments reveal that the mean melting mass increases monotonically with increasing cavity inclination. The numerical analysis based on the laminar assumption predicts well the melting mass in the range of {theta}=0-90 , however, under-predicts the melting mass in the range of {theta}=90-180 as compared with the experimental results. (orig.)

  16. An inspection standard of fuel for the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Kobayashi, Fumiaki; Shiozawa, Shusaku; Sawa, Kazuhiro; Sato, Sadao; Hayashi, Kimio; Fukuda, Kosaku; Kaneko, Mitsunobu; Sato, Tsutomu.

    1992-06-01

    The High Temperature Engineering Test Reactor (HTTR) uses the fuel comprising coated fuel particles. A general inspection standard for the coated particle fuel, however, has not been established in Japan. Therefore, it has been necessary to prescribe the inspection standard of the fuel for HTTR. Under these circumstances, a fuel inspection standard of HTTR has been established under cooperation of fuel specialists both inside and outside of JAERI on referring to the inspection methods adopted in USA, Germany and Japan for HTGR fuels. Since a large number of coated fuel particle samples is needed to inspect the HTTR fuel, the sampling inspection standard has also been established considering the inspection efficiency. This report presents the inspection and the sampling standards together with an explanation of these standards. These standards will be applied to the HTTR fuel acceptance tests. (author)

  17. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiming; Yan Xiaoqing [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.co [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  18. The passive safety characteristics of modular high temperature gas-cooled reactor fuel elements

    International Nuclear Information System (INIS)

    Goodin, D.T.; Kania, M.J.; Nabielek, H.; Schenk, W.; Verfondern, K.

    1988-01-01

    High-Temperature Gas-Cooled Reactors (HTGR) in both the US and West Germany use an all-ceramic, coated fuel particle to retain fission products. Data from irradiation, postirradiation examinations and postirradiation heating experiments are used to study the performance capabilities of the fuel particles. The experimental results from fission product release tests with HTGR fuel are discussed. These data are used for development of predictive fuel performance models for purposes of design, licensing, and risk analyses. During off normal events, where temperatures may reach up to 1600/degree/C, the data show that no significant radionuclide releases from the fuel will occur

  19. Analysis of the temperature field in a reactor fuel element of complex geometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, D; Vehauc, A [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1969-06-15

    An effective analytical method for determining the steady integral thermal conductivity and temperature distributions in cluster fuel elements has been developed. This method takes into account: distribution of heat generation, given by nonsymmetric function over the fuel rod cross section, q = q(r,{phi}); the thermal conductivity of the fuel and cladding material dependent on temperature, {lambda} = {lambda}(t), {lambda}{sub k} = {lambda}{sub k} (t); the fuel element cooling conditions defined by boundary conditions of the first, second or third kind. The second part of the paper presents the application of the developed method to a given fuel element. (author)

  20. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  1. Electricity generation of single-chamber microbial fuel cells at low temperatures

    KAUST Repository

    Cheng, Shaoan; Xing, Defeng; Logan, Bruce E.

    2011-01-01

    Practical applications of microbial fuel cells (MFCs) for wastewater treatment will require operation of these systems over a wide range of wastewater temperatures. MFCs at room or higher temperatures (20-35°C) are relatively well studied compared

  2. Elevated-temperature benchmark tests of simply supported beams and circular plates subjected to time-varying loadings

    International Nuclear Information System (INIS)

    Corum, J.M.; Richardson, M.; Clinard, J.A.

    1977-01-01

    This report presents the measured elastic-plastic-creep responses of eight simply supported type 304 stainless steel beams and circular plates that were subjected to time-varying loadings at elevated temperature. The tests were performed to provide experimental benchmark problem data suitable for assessing inelastic analysis methods and for validating computer programs. Beams and plates exhibit the essential features of inelastic structural behavior; yet they are relatively simple and the experimental results are generally easy to interpret. The stress fields are largely uniaxial in beams, while multiaxial effects are introduced in plates. The specimens tested were laterally loaded at the center and subjected to either a prescribed load or a center deflection history. The specimens were machined from a common well-characterized heat of material, and all the tests were performed at a temperature of 593 0 C (1100 0 F). Test results are presented in terms of the load and center deflection behaviors, which typify the overall structural behavior. Additional deflection data, as well as strain gage results and mechanical properties data for the beam and plate material, are provided in the appendices

  3. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  4. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  5. Implementation of a quality assurance system for the design and manufacturing of fuel assembly MTR-plate type

    International Nuclear Information System (INIS)

    Koll, J.H.

    1987-01-01

    Since more than 30 years ago, fuel assemblies (FA) of the MTR-Plate type, for research reactors, have been developed and produced using well known technologies, with different methods for the design, manufacturing, quality control and subsequent verification of FA behaviour, as well as of the design data. The FA and its reliability has been improved through the recycling of the obtained information. No nuclear accidents or major incidents have taken place that can be blamed to FA due to design, manufacturing or its use. Since the 70's, the use of Quality Assurance methodology has been increased, especially for Nuclear Power Plants, in order to ensure safety for these reactors. The use of QA for reactors for research, testing or other uses, has also been steadily increased, not only due to safety reasons, but also because of its convenience for a good operation, being presently a common requirement of the operator of the installation. Herewith is described the way the QA system that has been developed for the design, manufacturing, quality control and supply of MTR-plate type FA, at the Development Section of the Argentine Atomic Energy Commission (CNEA). (Author)

  6. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada)

    2007-02-10

    A solid oxide fuel cell with Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) electrolyte of 10 {mu}m in thickness and Ni-SDC anode of 15 {mu}m in thickness on a 0.8 mm thick Ni-YSZ cermet substrate was fabricated by tape casting, screen printing and co-firing. A composite cathode, 75 wt.% Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSCo) + 25 wt.% SDC, approximately 50 {mu}m in thickness, was printed on the co-fired half-cell, and sintered at 950 C. The cell showed a high electrochemical performance at temperatures ranging from 500 to 650 C. Peak power density of 545 mW cm{sup -2} at 600 C was obtained. However, the cell exhibited severe internal shorting due to the mixed conductivity of the SDC electrolyte. Both the amount of water collected from the anode outlet and the open circuit voltage (OCV) indicated that the internal shorting current could reach 0.85 A cm{sup -2} or more at 600 C. Zr content inclusions were found at the surface and in the cross-section of the SDC electrolyte, which could be one of the reasons for reduced OCV and oxygen ionic conductivity. Fuel loss due to internal shorting of the thin SDC electrolyte cell becomes a significant concern when it is used in applications requiring high fuel utilization and electrical efficiency. (author)

  7. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  8. Importance of low-temperature distillation of coal for German fuel economics

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, F

    1942-01-01

    Improved processes are available to give low-temperature distillation products economic importance. Low-temperature distillation is limited to the utilization of high-volatile nut coals and briquets. The coke formed can be used as a smokeless fuel, and the tar directly as a fuel oil. Phenols can be extracted, in order to work up the residue into fuel oil and motor fuel. Large deposits of coal in Upper Silesia and in the Saar District are suitable for low-temperature distillation.

  9. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  10. Experimental study on DNB heat flux of plate-type fuel in pressurized condition

    International Nuclear Information System (INIS)

    Komori, Yoshihiro; Oshima, Kunio; Ishitsuka, Etsuo; Sakurai, Fumio; Sudo, Yukio; Saito, Minoru; Futamura, Yoshiaki; Kaminaga, Masanori.

    1992-07-01

    Experimental study was carried out in order to determine the DNB correlation for the safety analysis of the JMTR low enrichment fuel core. Since it is essential to examine applicability and safety margin of the correlation for the safety analysis, DNB heat fluxes were measured with the test section of rectangular flow channel simulating JMTR fuel element subchannel in the pressure range of 1 ∼ 13 kg/cm 2 abs and the velocity range of 0 ∼ 4.4 m/s. Reviewing existed DNB correlations based on the experimental data, Sudo correlations scheme was selected for the JMTR safety analysis with minor modification for the high flow rate region. Comparing the correlations scheme with experimental data, allowable limit of the minimum DNBR was determined to be 1.5. (author)

  11. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating