WorldWideScience

Sample records for fuel motion lmfbr

  1. Internal fuel motion as an inherent shutdown mechanism for LMFBR accidents: PINEX-3, PINEX-2, and HUT 5-2A experiments

    International Nuclear Information System (INIS)

    Ferrell, P.C.; Porten, D.R.; Martin, F.J.

    1981-01-01

    The PINEX-2 experiment verified the concept of axial internal molten fuel motion within annular fuel, representing an inherent shutdown mechanism for hypothetical transient overpower excursions on the order of 5$/s. The PINEX-3 experiment, simulating a 50 cents/s transient overpower, showed that limitations on the effectiveness of fuel motion may arise from freezing of the fuel and blockage of the internal movement. Analysis of these experiments was performed to assess the physical processes that dominate fuel relocation potential and to apply them to prototypic LMFBR pin conditions. Results indicate that internal fuel motion should be reliable as a shutdown mechanism in LMFBR's for a range of reactivity insertion rates beyond presently available experimental data

  2. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Dhir, V.K.; Frank, M.; Kastenberg, W.E.; McKone, T.E.

    1979-03-01

    Three aspects of LMFBR safety are discussed. The first concerns the potential reactivity effects of whole core fuel motion prior to pin failure in low ramp rate transient overpower accidents. The second concerns the effects of flow blockages following pin failure on the coolability of a core following an unprotected overpower transient. The third aspect concerns the safety related implications of using thorium based fuels in LMFBR's

  3. Strategies in development of advanced fuels for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo

    1976-12-01

    Overseas strategies in development of advanced fuels for LMFBR are reviewed. Recent irradiation experiment and out-of-pile test data of the fuels are given in detail. The present status of development of oxide fueled LMFBR is also treated. (auth.)

  4. TREAT experimental data base regarding fuel dispersals in LMFBR loss-of-flow accidents

    International Nuclear Information System (INIS)

    Simms, R.; Fink, C.L.; Stanford, G.S.; Regis, J.P.

    1981-01-01

    The reactivity feedback from fuel relocation is a central issue in the analysis of loss-of-flow (LOF) accidents in LMFBRs. Fuel relocation has been studied in a number of LOF simulations in the TREAT reactor. In this paper the results of these tests are analyzed, using, as the principal figure of merit, the changes in equivalent fuel worth associated with the fuel motion. The equivalent fuel worth was calculated from the measured axial fuel distributions by weighting the data with a typical LMFBR fuel-worth function. At nominal power, the initial fuel relocation resulted in increases in equivalent fuel worth. Above nominal power the fuel motion was dispersive, but the dispersive driving forces could not unequivocally be identified from the experimental data

  5. F2 phenomenological test on fuel motion (Interim report)

    International Nuclear Information System (INIS)

    Palm, R.G.; Fink, C.L.; Stewart, R.R.; Gehl, S.M.; Rothman, A.B.

    1976-09-01

    TREAT F-series tests are being conducted to provide data on fuel motion at accident power levels from one to about ten times design for use in development of fuel motion models. Test F2 was conducted to evaluate motion of high power fuel in a hypothetical LMFBR unprotected TUC (transient undercooling) accident. Fuel and fuel-boundary conditions following coolant boiling and dryout under TUC conditions are achieved in each F-series test with a single fuel element surrounded by a nuclear heated wall in a dry test capsule. Test F2 was conducted with a low burnup but restructured fuel element to investigate the effect of fuel vapor pressure on fuel motion. Results are presented and discussed

  6. LMFBR fuel-design environment for endurance testing, primarily of oxide fuel elements with local faults

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1980-01-01

    The US Department of Energy LMFBR Lines-of-Assurance are briefly stated and local faults are given perspective with an historical review and definition to help define the constraints of LMFBR fuel-element designs. Local-fault-propagation (fuel-element failure-propagation and blockage propagation) perceptions are reviewed. Fuel pin designs and major LMFBR parameters affecting pin performance are summarized. The interpretation of failed-fuel data is aided by a discussion of the effects of nonprototypicalities. The fuel-pin endurance expected in the US, USSR, France, UK, Japan, and West Germany is outlined. Finally, fuel-failure detection and location by delayed-neutron and gaseous-fission-product monitors are briefly discussed to better realize the operational limits

  7. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  8. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  9. Airborne effluent control for LMFBR fuel reprocessing plants

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-01-01

    A significant part of the LMFBR fuel reprocessing development program has been devoted to the development of efficient removal systems for the volatile fission products, including 131 I, krypton, tritium, 129 I, and most recently 14 C. Flowsheet studies have indicated that very significant reductions of radioactive effluents can be achieved by integrating advanced effluent control systems with new concepts of containment and ventilation; however, the feasibility of such has not yet been established, nor have the economics been examined. This paper presents a flowsheet for the application of advanced containment systems to the processing of LMFBR fuels and summarizes the status and applicability of specific fission product removal systems

  10. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    International Nuclear Information System (INIS)

    Liebe, R.; Zehlein, H.

    1977-01-01

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analysis of several clustered fuel elements have to account for such flow induced forces. Several idealized models have been proposed to study some aspects of the complex problem. As part of the core mechanics activities at GfK Karlsruhe this paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponing computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response. (Auth.)

  11. ACPR upgrade fuel motion detection system

    International Nuclear Information System (INIS)

    Kelly, J.G.; Stalker, K.T.

    1976-01-01

    Coded aperture imaging techniques are being applied to the problem of fuel motion detection in core disruptive safety experiments in the LMFBR. The upgraded Sandia Annular Core Pulse Reactor will be used for fuel motion studies, and a system is now being developed to image fuel motion through a slot in the core in l- and 7-pin experiments. The γ-rays emitted by the fuel will be modulated by a coded aperture and will form a pseudohologram on a scintillator. This shadowgram will be lens coupled first to an optical image intensifier, and then to a rotating prism framing camera. The goal is to obtain quality images of fuel with approximately 1 mm spatial resolution at about 10 4 frames/sec. Some of the feasibility milestones which have been reached thus far are the following: (1) A fuel pin shaped 252 Cf fission gamma ray source has been imaged through 1.27 cm of steel (simulating reactor containment). (2) A 252 Cf source has been imaged through 1.27 cm of steel with x-ray image intensifier amplification. (3) Collimation and shielding tests indicate that at ACPR it should be possible to obtain adequate signal to noise at the detector when the fuel is observed through a slot in the core

  12. Biological behavior of mixed LMFBR-fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Mahlum, D.D.; Hackett, P.L.; Hess, J.O.; Allen, M.D.

    1979-01-01

    Immediately after exposure of rats to mixed aerosols of sodium-LMFBR fuel, about 80 to 90% of the body burden of 239 Pu is in the gastrointestinal tract; 1.5 to 4% is in the lungs. With fuel-only aerosols, less of the body burden was in the GI tract and more in the lung and the head. Blood and urine values suggest an increased absorption of 239 Pu from sodium-fuel than from fuel-only aerosols

  13. LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements

    International Nuclear Information System (INIS)

    Warinner, D.K.

    1980-01-01

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation

  14. Axial migratin of cesium in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Bridges, A.E.; Jost, J.W.

    1981-11-01

    A correlated model for quantitatively predicting the behavior of cesium in LMFBR fuel pins has been developed. This correlation was shown to be in good agreement with experimental data. It has been used to predict the behavior of cesium in the FFTF driver fuel and as the result of this analysis it has been shown that the accumulation of cesium in the insulator pellets at the ends of the fuel column will not be life limiting

  15. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  16. Upon local blockage formations in LMFBR fuel rod bundles with wire-wrapped spacers

    International Nuclear Information System (INIS)

    Minden, C. v.; Schultheiss, G.F.

    1982-01-01

    A theoretical and experimental study, to improve understanding of local particle depositions in a wire-wrapped LMFBR fuel bundle, has been performed. Theoretical considerations show, that a preferentially axial process of particle depositions occurs. The experiments confirm this and clarify that the blockages arise near the particle source and settle at the spatially arranged minimum gaps in the bundle. The results suggest that, considering flow reduction, cooling and DND-detection, such fuel particle blockages are less dangerous. With reference to these safety-relevant factors, wire-wrapped LMFBR fuel bundles seem to gain advantages compared to the grid design. (orig.) [de

  17. Fueling method in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Inoue, Kotaro.

    1985-01-01

    Purpose: To extend the burning cycle and decrease the number of fuel exchange batches without increasing the excess reactivity at the initial stage of burning cycles upon fuel loading to an LMFBR type reactor. Method: Each of the burning cycles is divided into a plurality of burning sections. Fuels are charged at the first burning section in each of the cycles such that driver fuel assemblies and blanket assemblies or those assemblies containing neutron absorbers such as boron are distributed in mixture in the reactor core region. At the final stage of the first burning section, the blanket assemblies or neutron absorber-containing assemblies present in mixture are partially or entirely replaced with driver fuel assemblies depending on the number of burning sections such that all of them are replaced with the driver fuel assemblies till the start of the final burning section of the abovementioned cycle. The object of this invention can thus be attained. (Horiuchi, T.)

  18. LMFBR operational and experimental in-core local-fault experience, primarily with oxide fuel elements

    International Nuclear Information System (INIS)

    Warinner, D.K.

    Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS-and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation

  19. Deposition of inhaled LMFBR-fuel-sodium aerosols in beagle dogs

    International Nuclear Information System (INIS)

    Hackett, P.L.; Mahlum, D.D.; Briant, J.K.; Catt, D.L.; Peters, L.R.; Clary, A.J.

    1980-01-01

    Initial alveolar deposition of LMFBR-fuel aerosols in beagle dogs amounted to 30% of the inhaled activity, but only 5% of the total inhaled activity was deposited in dogs exposed to sodium-fuel aerosols. Aerosol deposition in the gastrointestinal tract amounted to 4% of the initial body burden of fuel-aerosol exposed dogs and 24% of the burden of animals receiving sodium-fuel aerosols. Preliminary analytical data for the dog exposures appear to agree with rodent data for deposition and distribution patterns of aerosols of similar sodium: fuel ratios

  20. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  1. Work plan: transient release from LMFBR fuel

    International Nuclear Information System (INIS)

    Kress, T.S.; Parker, G.W.; Fontana, M.H.

    1975-09-01

    The proposed LMFBR Transient Release Program at ORNL is designed to investigate, by means of ex-reactor experiments and analytical modeling, the release and transport of fuel, fission products, and transuranic elements from fast reactor cores in the event of certain hypothetical accidents. It is desired to experimentally produce energy depositions that are characteristic of severe hypothetical reactor transients by the application of direct electrical current to mixed-oxide fuels under sodium. The experimental program includes tests with and without sodium, investigations of alternative methods of generating fuel and sodium aerosols, the use of UO 2 as a fuel simulant, additions of tracers as fission product simulants, effects of radiation, and under-water and under-sodium efforts to study the behavior of the vapor bubble itself. Analytical modeling will accompany all phases of the program, and the data will be correlated with models developed. 21 references. (auth)

  2. KANDY - a numerical model to describe phenomena, which - in a heated and voided fuel element of an LMFBR - may occur

    International Nuclear Information System (INIS)

    Thurnay, K.

    1984-02-01

    Kandy is a model developed to describe the essential destructionphenomena of the fuel elements of an LMFBR. The fuel element is assumed to be a voided one, in which the heat generation is still going on. The main process to be modeled is the melting/bursting/evaporating of parts of the fuel pins and the subsequent dislocation of these materials in the coolant channel. The work presented summarizes the assumptions constituting the model, develops the corresponding equations of motion and describes the procedure, turning these into a system of difference-equations ready for coding. As a final part results of a testcase calculation with the Kandy-code are presentend and interpreted. (orig.) [de

  3. LMFBR fuel cycle studies progress report, August 1972, No. 42

    International Nuclear Information System (INIS)

    Unger, W.E.; Blanco, R.E.; Crouse, D.J.; Irvine, A.R.; Watson, C.D.

    1972-10-01

    This report continues a series outlining progress in the development of methods for reprocessing of LMFBR fuels. Development work is reported on problems of irradiated fuel transport to the processing facility, the dissolution of the fuel and the chemical recovery of PuO 2 --UO 2 values, the containment of volatile fission products, product purification, conversion of fuel processing plant product nitrate solutions to solids suitable for shipping and for subsequent fuel fabrication. Pertinent experimental results are presented for the information of those immediately concerned with the field. Detailed description of experimental work and data are included in the topical reports and in the Chemical Technology Division Annual Reports

  4. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2

    International Nuclear Information System (INIS)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa; Bando, Masaru.

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author)

  5. Safety research needs for carbide and nitride fueled LMFBR's. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1975-01-01

    The results of a study initiated at UCLA during the academic year 1974--1975 to evaluate and review the potential safety related research needs for carbide and nitride fueled LMFBR's are presented. The tasks included the following: (1) Review Core and primary system designs for any significant differences from oxide fueled reactors, (2) Review carbide (and nitride) fuel element irradiation behavior, (3) Review reactor behavior in postulated accidents, (4) Examine analytical methods of accident analysis to identify major gaps in models and data, and (5) Examine post accident heat removal. (TSS)

  6. Retention of gaseous fission products in reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Burch, W.D.; Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-05-01

    The report is devoted to status of the development programme at the Oak Ridge National Laboratory on methods for retaining iodine-131 and 129, Krypton-85, Tritium and Carbon-14 in reprocessing LMFBR fuels. The Iodox process, Fluorocarbon absorption process and Voloxidation process are described for retention of iodine, Krypton-85 and Tritium, respectively. Flowsheets for the different processes are given and results of experimental runs in small engineering-scale equipment are reported

  7. A LMFBR for thorium utilization and for the U233/Th fuel rods specification

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Dias, A.F.

    1982-01-01

    The use of U 233 /Th as fuel in the middle part of LMFBR core and the Pu/U in the external part of the core, are proposed. The basic neutronic and safety characteristics and the specifications of fuel rods to be used in the internal core, are presented. (E.G.) [pt

  8. Problems of heat transfer within the containing vessel of high performance LMFBR spent fuel shipping casks

    International Nuclear Information System (INIS)

    Pope, R.B.; Gartling, D.K.; Schimmel, W.P. Jr.; Larson, D.W.

    1976-01-01

    A preliminary assessment of heat transfer problems internal to a LMFBR spent fuel shipping cask is reported. The assessment is based upon previous results obtained in full-scale, electrically heated mockups of an LMFBR assembly located in a containing pipe, and also upon analytical and empirical studies presented in this paper. It is shown that a liquid coolant will be required to adequately distribute the decay heat of short-cooled assemblies from the fuel region to the containing cask structure. Liquid sodium apparently provides the best heat transfer, and sufficient data are available to adequately model the heat transfer processes involved. Dowtherm A is the most efficient organic evaluated to date and presented in the open literature. Since the organic materials have high Prandtl and usually high Rayleigh numbers, natural convection is the predominant mode of heat transfer. It is shown that a more comprehensive understanding of the convective processes will be required before heat transfer with an organic coolant can be adequately modeled. However, in view of systems considerations, Dowtherm A should be further considered as an alternative to sodium for use as a LMFBR spent fuel shipping cask coolant

  9. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)

  10. Role of fuel bubble phenomenology in assessment of LMFBR source term

    International Nuclear Information System (INIS)

    Cho, D.H.; Condiff, D.W.; Chan, S.H.

    1985-01-01

    Phenomenological aspects of a fuel vapor bubble formed in the sodium pool in a hypothetical severe accident are considered. The potential for fuel bubble collapse in the sodium pool is analyzed. It appears that for a wide range of hypothetical LMFBR accidents involving core vaporization, the fuel vapor bubble would likely be quenched and collapse prior to migration to the cover gas region. Such rapid quenching is due mainly to radiative heat transfer from the fuel bubble, coupled with the inherent capability of the sodium pool (large subcooling and high thermal conductivity) to dissipate thermal energy. Major uncertainty in the analysis concerns fuel vapor condensation phenomena at the sodium interface and its effect on the sodium surface radiation absorptivity. This is discussed in detail

  11. Contribution of Clinch River Breeder Reactor plant design and development to the LMFBR fuel cycle

    International Nuclear Information System (INIS)

    Riley, D.R.; Dickson, P.W.

    1981-01-01

    This paper describes how the CRBRP development and CRBRP focus of the LMFBR base technology program have led to advances in the state of the art in physics, thermal-hydraulics, structural analysis, core restraint, seismic analysis, and analysis of hypothetical core-disruptive accident energetics, all of which have been incorporated through disciplined engineering into the final CRBRP design. The total development in the US of fuels and materials, the analytical advances made on CRBRP design, and the incorporation of the latest experimental results into that design have put the US technology in general and the CRBRP design in particular at the forefront of technology. This has placed the US in a position to develop the most favorable LMFBR fuel cycle

  12. Report of the IAEA advisory group meeting on LMFBR fuel reprocessing

    International Nuclear Information System (INIS)

    1976-05-01

    A summary of the papers and discussions of the meeting is presented, reviewing the status of development in LMFBR fuel reprocessing and focusing attention on important problem areas. The following topics are discussed: Transport, storage and removal of sodium; decladding and shearing; dissolution; Purex process; fluoride volatility method; off-gas purification; waste disposal. Status reports of national programmes of Belgium, France, Federal Republic of Germany, Italy, Japan, United Kingdom, USSR and USA are included

  13. In-pile TREAT Test L04: simulating a lead sub-assembly in an unprotected LMFBR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Tylka, J.P.; Bauer, T.H.; Wright, A.E.; Davies, A.L.; Herbert, R.; Woods, W.J.

    1983-01-01

    Test L04 in the PFR/TREAT series is the first multi-pin, in-pile simulation of a LMFBR transient undercooling/overpower (TUCOP) accident using full length prototypic fuel irradiated in a fast reactor. L04 is a gridded 7-pin bundle test performed in the ANL Mk-III integral loop in a flowing sodium environment and uses prototypic, bottom plenum, UK reactor fuel, preirradiated in the PFR to an axial peak burn-up of 4.2 a/o. The objective of L04 was the study, by simulation, of coolant voiding and fuel motion during the initiating phase of a hypothetical TUCOP accident in a large LMFBR. Test L04 is intended to study the behavior of a centrally located, lead subassembly with the highest power-to-flow ratio

  14. Safety consequences of local initiating events in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.; Wang, P.Y.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  15. Safety consequences of local initiating events in an LMFBR

    International Nuclear Information System (INIS)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.; Wang, P.Y.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered

  16. The state of art of the methods for thermohydraulics design of LMFBR fuel elements

    International Nuclear Information System (INIS)

    Fernandez y Fernandez, E.; Carajilescov, P.

    1981-09-01

    The present (experimental and analytical) state of art of the methods for thermohydraulics design of LMFBR fuel elements is analyzed. A development program is suggested, in order to obtain a computer code for modelling the distribution of coolant enthalpy in reactor core. This computer code is in development. (Author) [pt

  17. CAPRICORN subchannel code for sodium boiling in LMFBR fuel bundles

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Smith, D.E.; O'Dell, L.D.

    1983-01-01

    The CAPRICORN computer code analyzes steady-state and transient, single-phase and boiling problems in LMFBR fuel bundles. CAPRICORN uses the same type of subchannel geometry as the COBRA family of codes and solves a similar system of conservation equations for mass, momentum, and energy. However, CAPRICORN uses a different numerical solution method which allows it to handle the full liquid-to-vapor density change for sodium boiling. Results of the initial comparison with data (the W-1 SLSF pipe rupture experiment) are very promising and provide an optimistic basis for proceeding with further development

  18. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  19. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  20. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Betten, P.R.; Tow, D.M.

    1984-04-01

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  1. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  2. Post-accident fuel relocation and heat removal in the LMFBR

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Tsai, S.S.; Gasser, R.D.

    1976-08-01

    Assessment of the dynamics of post-accident fuel relocation and heat removal is an important aspect of the evaluation of the consequences of a hypothetical accident in an LMFBR. Such an assessment is of particular importance in the evaluation of the post-accident radiological doses around the reactor site. In the present evaluation particular attention is given to the design features of the Clinch River Breeder Reactor Plant (CRBR). Fuel relocation and heat removal, assuming certain conditions have resulted in core disruption, are discussed. The discussion of events and phenomena involved in the relocation processes is centered around the resulting patterns of heat source distribution. The factors influencing fuel relocation and distribution in the inlet and outlet plena of the reactor vessel are discussed. The current technology of in-vessel heat removal is applied to the design of the CRBR reactor. Both fuel debris cooling limits and overall coolant flow in the reactor under natural convection conditions are explored. Some of the uncertainties in ex-vessel fuel behavior are addressed. In particular, the effect of melting the cavity bed on the rate of growth of a molten fuel pool is investigated

  3. Accident considerations in LMFBR design

    International Nuclear Information System (INIS)

    Simpson, D.E.; Alter, H.; Fauske, H.K.; Hikido, K.; Keaten, R.W.; Stevenson, M.G.; Strawbridge, L.

    1975-12-01

    LMFBR safety design criteria are discussed from the standpoints of accident severity classification and damage criteria, and the following design events are considered: fuel failure propagation, reactivity addition faults, heat transport system events, steam generator faults, sodium spills, fuel handling and storage faults, and external events

  4. Advanced LMFBR fuel cladding susceptability to stress corrosion due to reprocessing impurities

    International Nuclear Information System (INIS)

    Henslee, S.P.

    1987-03-01

    The potential degradation of LMFBR fuel cladding alloys by chlorides, when used in metallic fuel systems, was evaluated. The alloys tested were D-9 and HT-9 stainless steels, austenitic and ferritic alloys respectively. These two alloys were tested in parallel with and their performance compared to the austenitic stainless steel Type 316. All alloys were tested for 7400 hours in a stress rupture environment with chloride exposure at either 550/degree/C 650/degree/C. None of the alloys tested were found to exhibit any degradation in time-to-rupture by the presence of chlorides under the conditions imposed during testing. 8 refs., 4 figs., 2 tabs

  5. Performance of LMFBR fuel pins with (Pu,Th)O/sub 2-x/ and UO2

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1983-09-01

    The irradiation performance of (Pu,Th)O/sub 2-x/ and UO 2 fueled pins for breeder reactor application were compared to the extensive performance data base for the (U,Pu)O/sub 2-x/ fuel system. Th-Pu and 238 U- 233 U based fuel systems were candidate fuel fertile/fissile isotopic combinations for development of alternatives to the current LMFBR fuel cycle. Initial screening tests were conducted in the EBR-II to obtain comparative performance data because of the limited experience with these fuel systems. In some cases, 235 U was used as a substitute for 233 U because of the difficulties in fabrication of available 233 U due to its high gamma ray emission rate

  6. Overview of the fast reactors fuels program. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  7. Status of LMFBR development project in Japan

    International Nuclear Information System (INIS)

    Nagane, G.; Akebi, M.; Matsuno, Y.

    1987-01-01

    Initiation of the LMFBR development project in Japan was decided by the Atomic Energy Commission of Japan in 1966. In 1967, the Power Reactor and Nuclear Fuel Development Corporation (PNC) was established to realize the project as a part of its tasks of a wide scope covering all the reseatch and development activities concerning fuel cycle. In the present paper the status of experimental fast reactor (Joyo), which is the first milestone of the LMFBR project, prototype fast reactor (Monju) and R and D activities supporting the project including that for larger LMFBRs in the future is described. (author)

  8. Effects of entrained gas on the acoustic detection of sodium boiling in a simulated LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Leavell, W.H.; Sides, W.H.

    1975-01-01

    The relationship between acoustic intensity of nucleate boiling and void fraction was studied in a simulated LMFBR fuel bundle. Results indicate that as the void fraction increases the detected intensity of nucleate boiling decreased until it was indistinguishable from background noise. (JWR)

  9. Measurements of dynamic shape factors of LMFBR aggregate aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.; Briant, J.K.

    1980-01-01

    Dynamic shape factors for branched, chain-like aggregates of LMFBR mixed-oxide fuels have been measured with a LAPS spiral-duct centrifuge. The aerosol was generated by repeatedly pulsing a focused laser beam onto the surface of a typical LMFBR fuel pellet. The measured values of the dynamic shape factor, corrected for slip, vary between kappa = 3.60 at D/sub ae/ = 0.5 μm, and kappa = 2.23 at D/sub ae/ = 1.5 μm

  10. The radiological significance of transuranium radioisotopes released to the environment during operation of the LMFBR fuel cycle

    International Nuclear Information System (INIS)

    Barr, N.F.

    1976-01-01

    Estimates based on current knowledge and conservative assumptions indicate that release of transuranium elements from the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycle are likely to proaduce population dose commitments small compared to those produced by naturally occurring alpha emitters and globally dispersed transuranium radioisotopes from tests of nuclear weapons in the atmosphere. Potential health consequences of these releases to current and future generations are estimated to be very small compared to risks associated with the production of energy by fossil fuels. The estimates are subject to a number of uncertainties imposed by lack of knowledge. Some of the uncertainties are not likely to be greatly reduced until LMFBR facilities are designed and operated. Others may be significantly reduced prior to facility design and operation. The paper discusses the sensitivity of the estimates to uncertainties and approches to reducing those uncertainties that strongly influence the estimates. (author)

  11. CEC activities in the field of LMFBR safety

    International Nuclear Information System (INIS)

    Balz, W.; Finzi, S.; Klersy, R.

    1976-01-01

    The aim of the ECC is to reach a common LMFBR Safety strategy in Europe. To this end the Commission promotes collaboration between the different fast reactor projects in the Community through working groups and collaborative arrangements and contributes with a research activity executed in its Joint Research Centre Ispra. A short description is given of the activity in the working groups and of the Ispra programme on LMFBR Safety. This programme covers: LMFBR thermohydraulics, fuel coolant interactions, dynamic structure loading and response, safety related material properties and whole core accident code development

  12. Results of tests under normal and abnormal operating conditions concerning LMFBR fuel element behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Bergeonneau, P.; Essig, C.; Guerin, Y.

    1985-04-01

    The objective of this paper is to improve the knowledge on LMFBR fuel element behaviour during protected and unprotected transients in RAPSODIE and PHENIX reactors in order to evaluate its reliability. The range of the tests performed in these reactors is sufficiently large to cover normal and also extreme off normal conditions such as fuel melting. Results of such tests allow to better establish transient design limits for reactor structural components in particular for fuel pin cladding which play a lead role in controlling the accident sequence. Three main topics are emphasized in this paper: fuel melting during slow over-power excursions; influence of the fuel element geometrical evolution on reactivity feedback effects and reactor dynamic behaviour; clad damage evaluation during a transient (essentially very severe loss of flow)

  13. Specialists' meeting on theoretical modelling of LMFBR fuel pin behaviour. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-12-01

    The purpose of the meeting was to provide an opportunity for exchanging views of theoretical modelling of LMFBR fuel pin behaviour and to summarise the IWGFR member countries' knowledge in this field. The special emphasis was placed on normal operating conditions. The technical part of the meeting was divided into six sessions, as follows: An overview of fuel modelling studies; Key factors and basic phenomena relevant to fuel pin behaviour modelling; Application to steady state operation and normal transients; Experimental validation through pins in service and specific irradiation experiments; Advanced fuels; and Brief review of existing codes. During the meeting, papers were presented by the delegates on behalf of their countries or organization. The papers, which are included in this report, were either in the form of a general survey of the subject, or on specific technical subjects. In each subject area presentations appropriate to the subject were made from the submitted papers. The presentations were followed by discussions of the questions raised and summary is made.

  14. Specialists' meeting on theoretical modelling of LMFBR fuel pin behaviour. Summary report

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of the meeting was to provide an opportunity for exchanging views of theoretical modelling of LMFBR fuel pin behaviour and to summarise the IWGFR member countries' knowledge in this field. The special emphasis was placed on normal operating conditions. The technical part of the meeting was divided into six sessions, as follows: An overview of fuel modelling studies; Key factors and basic phenomena relevant to fuel pin behaviour modelling; Application to steady state operation and normal transients; Experimental validation through pins in service and specific irradiation experiments; Advanced fuels; and Brief review of existing codes. During the meeting, papers were presented by the delegates on behalf of their countries or organization. The papers, which are included in this report, were either in the form of a general survey of the subject, or on specific technical subjects. In each subject area presentations appropriate to the subject were made from the submitted papers. The presentations were followed by discussions of the questions raised and summary is made

  15. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  16. Flash x-radiography for material motion detection

    International Nuclear Information System (INIS)

    Choate, L.M.; Buckalew, W.H.; Posey, L.D.

    1977-01-01

    A significant part of the experimental program dealing with the behavior of prototypic LMFBR fuel pin bundles under mild to severe power transients is that of the observation of fuel/cladding/coolant motion. The feasibility of using electron beam flash x-radiography as a diagnostic tool for safety test facilities is presently under evaluation. A summary of the objectives and approach of the flash x-radiography program is presented

  17. ORNL experiments to characterize fuel release from the reactor primary containment in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wright, A.L.; Kress, T.S.; Smith, A.M.

    1980-01-01

    This paper presents results from aerosol source term experiments performed in the ORNL Aerosol Release and Transport (ART) Program sponsored by the US NRC. The tests described were performed to provide information on fuel release from an LMFBR primary containment as a result of a hypothetical core-disruptive accident (HCDA). The release path investigated in these tests assumes that a fuel/sodium bubble is formed after disassembly that transports fuel and fission products through the sodium coolant and cover gas to be relased into the reactor secondary containment. Due to the excellent heat transfer characteristics of the sodium, there is potential for large attenuation of the maximum release

  18. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  19. Methods used and kind of results obtained in SCARABEE facility about fuel and clad motion diagnostics. Previsional development for SCARABEE N and CABRI facilities

    International Nuclear Information System (INIS)

    Bardy, J.; Manent, G.; Roche, L.; Tattegrain, A.

    1975-01-01

    Techniques are described for planned LMFBR loss of flow simulation studies using irradiated fuel (SCARABEE N program) and for LMFBR transient overpower studies using both fresh and irradiated fuel (CABRI program)

  20. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Ganguly, C.

    1988-01-01

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO 2 pellet-pins. The advanced PHWR fuels are UO 2 -PuO 2 (≤ 2 per cent), ThO 2 -PuO 2 (≤ 4 per cent) and ThO 2 -U 233 O 2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O 2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO 2 , PuO 2 and ThO 2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  1. Synthesis Report on the understanding of failed LMFBR fuel element performance

    International Nuclear Information System (INIS)

    Plitz, H.; Bagley, K.; Harbourne, B.

    1990-07-01

    In the coarse of LMFBR operation fuel element failures cannot entirely be avoided as experienced during the operation of PFR, PHENIX and KNK II, where 44 failed fuel elements have been registered between 1978 and 1989. In earlier irradiations, post irradiation examinations showed mixed oxide pin diameter increases up to pin pitch distance, urging to stress reactor safety questions on the potential of fuel pin failure propagation within pin bundles. The chemical interaction of sodium with mixed oxide fuel is regarded to be the key for the understanding of failed fuel behavior. Valuable results on the failed fuel pin behavior during operation were obtained from the SILOE sodium loop test. Based on the bulk of experience with the detection of fuel pin failures, with the continued operation and with the handling of failed pins respectively elements, one can state: 1. All fuel pin failures have been detected securely in time and have been located. 2. Small defects are developing slowly. 3. Even large defects at end-of-life pins resulted in limited fuel loss. 4. Clad failures behave benign in main aspects. 5. The chemical interaction of sodium with mixed oxide is an important factor in the behavior of failed fuel pins, especially at high burnup. 6. Despite different pin designs and different operation conditions, on the basis of 44 failed elements in PFR, PHENIX and KNK II no pin-to-pin propagation was observed and fuel release was rather low, often not detectable. 7. In no case hazard conditions affecting reactor safety have been experienced

  2. Fission-gas bubble modeling for LMFBR accidents

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1977-01-01

    The behavior of fission-gas bubbles in unrestructured oxide fuel can have a dominant effect on the course of a core disruptive accident in an LMFBR. The paper describes a simplified model of bubble behavior and presents results of that model in analyzing the relevant physical assumptions and predicting gas behavior in molten fuel

  3. Transactions of the second technical exchange meeting on fuel- and clad-motion diagnostics for LMFBR safety test facilities

    Energy Technology Data Exchange (ETDEWEB)

    DeVolpi, A. (comp.)

    1976-01-01

    Papers are presented which deal with diagnostic requirements and fuel motion monitoring capabilities of hodoscopes, coded aperture systems, x-ray radiography, and in-core detectors. Separate abstracts and indexing were prepared for each paper. (DG)

  4. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  5. Theoretical studies of flash x-ray diagnostics for fuel motion experiments

    International Nuclear Information System (INIS)

    Halbleib, J.A. Sr.; Phillips, A.R.

    1975-09-01

    The results of preliminary theoretical studies concerning the possible employment of short-pulse, high-current field emission diodes as sources for the flash x-ray diagnostics of fuel-pin motion are reported. The predicted thick-target photon environments are obtained from state-of-the-art coupled electron/photon transport models. Through qualitative figures of merit these environments are used to study the importance of source current and voltage. For a selected experimental configuration a comparison is made between the absolute flash x-ray imaging signals predicted for these environments and Monte Carlo/analytic calculations of absolute fission-gamma backgrounds. These preliminary data suggest that field emission sources operating at voltages in the 1-to 5-MeV range and at currents of the order of 100-kA or greater may be adequate diagnostic sources for test-pin configurations as complex as a full LMFBR subassembly

  6. Materials properties utilization in a cumulative mechanical damage function for LMFBR fuel pin failure analysis

    International Nuclear Information System (INIS)

    Jacobs, D.C.

    1977-01-01

    An overview is presented of one of the fuel-pin analysis techniques used in the CRBRP program, the cumulative mechanical damage function. This technique, as applied to LMFBR's, was developed along with the majority of models used to describe the mechanical properties and environmental behavior of the cladding (i.e., 20 percent cold-worked, 316 stainless steel). As it relates to fuel-pin analyses the Cumulative Mechanical Damage Function (CDF) continually monitors cladding integrity through steady state and transient operation; it is a time dependent function of temperature and stress which reflects the effects of both the prior mechanical history and the variations in mechanical properties caused by exposure to the reactor environment

  7. Seismic behaviour of LMFBR reactor cores. The SYMPHONY program

    International Nuclear Information System (INIS)

    Broc, Daniel

    2001-01-01

    As part of a comprehensive program on the seismic behaviour of the LMFBR reactor cores, the SYMPHONY experimental program, performed at the CEA Saclay, is carried out from 1993 up to now. LMFBR reactor cores are composed of fuel assemblies and neutronic shields, immersed in sodium (the primary coolant) or water (for the experimental tests). The main objective of the seismic studies is to evaluate the assembly motions, with consequences on the reactivity and the control rod insertability, and to verify the structural integrity of the assemblies under the impact forces. The experimental program has reached its objectives. Tests have been performed in a satisfying way. Instrumentation allowed to collect displacements, accelerations, and shock forces. All the results constitute a comprehensive base of valuable and reliable data. The interpretation of the tests is based on beam models, taking into account the Fluid Structure Interaction, and the shocks between the assemblies. Theoretical results are in a quite good agreement with the experimental ones. The interpretation of the hexagonal tests in water pointed out very strong coupling between the assemblies and lead to the development of a specific Fluid Structure Interaction, taking into account not only inertial effects, but dissipative effects also. (author)

  8. A probabilistic design method for LMFBR fuel rods

    International Nuclear Information System (INIS)

    Peck, S.O.; Lovejoy, W.S.

    1977-01-01

    Fuel rod performance analyses for design purposes are dependent upon material properties, dimensions, and loads that are statistical in nature. Conventional design practice accounts for the uncertainties in relevant parameters by designing to a 'safety factor', set so as to assure safe operation. Arbitrary assignment of these safety factors, based upon a number of 'worst case' assumptions, may result in costly over-design. Probabilistic design methods provide a systematic way to reflect the uncertainties in design parameters. PECS-III is a computer code which employs Monte Carlo techniques to generate the probability density and distribution functions for time-to-failure and cumulative damage for sealed plenum LMFBR fuel rods on a single rod or whole core basis. In Monte Carlo analyses, a deterministic model (that maps single-valued inputs into single-valued outputs) is coupled to a statistical 'driver'. Uncertainties in the input are reflected by assigning probability densities to the input parameters. Dependent input variables are considered multivariate normal. Independent input variables may be arbitrarily distributed. Sample values are drawn from these input densities, and a complete analysis is done by the deterministic model to generate a sample point in the output distribution. This process is repeated many times, and the number of times each output value occurs is accumulated. The probability that some measure of rod performance will fall within given limits is estimated by the relative frequency with which the Monte Carlo samples fall within tho

  9. User's guide to EPIC, a computer program to calculate the motion of fuel and coolant subsequent to pin failure in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Pizzica, P.A.; Garner, P.L.; Abramson, P.B.

    1979-10-01

    The computer code EPIC models fuel and coolant motion which results from internal fuel pin pressure (from fission gas or fuel vapor) and possibly from the generation of sodium vapor pressure in the coolant channel subsequent to pin failure in a liquid-metal fast breeder reactor. The EPIC model is restricted to conditions where fuel pin geometry is generally preserved and is not intended to treat the total disruption of the pin structure. The modeling includes the ejection of molten fuel from the pin into a coolant channel with any amount of voiding through a clad breach which may be of any length or which may extend with time. One-dimensional Eulerian hydrodynamics is used to treat the motion of fuel and fission gas inside a molten fuel cavity in the fuel pin as well as the mixture of two-phase sodium and fission gas in the coolant channel. Motion of fuel in the coolant channel is tracked with a type of particle-in-cell technique. EPIC is a Fortran-IV program requiring 400K bytes of storage on the IBM 370/195 computer. 21 refs., 2 figs.

  10. Fuel pin response to an overpower transient in an LMFBR

    International Nuclear Information System (INIS)

    Grosberg, A.J.; Head, J.L.

    1979-01-01

    This paper describes a method by which the ability of a whole-core code accurately to predict the time and location of the first fuel pin failures may be tested. The method involves the use of a relatively simple whole-core code to 'drive' a sophisticated fuel pin code, which is far too complex to be used within a whole-core code but which is potentially capable of modelling reliably the response of an individual fuel pin. The method cannot follow accurately the subsequent course of the transient because the simple whole-core code does not model the reactivity effects of events which may follow pin failure. The codes used were the simple whole-core code FUTURE and the fuel pin behaviour code FRUMP. The paper describes an application of the method to analyse a hypothetical LMFBR accident in which the control rods were assumed to be driven from the core at maximum speed, with all trip circuits failed. Taking 0.5% clad strain as a clad failure criterion, failure was predicted to occur at the top of the active core at about 10s into the transient. A repeat analysis, using an alternative clad yield criterion which is thought to be more realistic, indicated failure at the same position but 24s into the transient. This is after the onset of sodium boiling. Pin failure at the top of the core are likely to cause negative reactivity changes. In this hypothetical accident, pin failures are likely, therefore, to have a moderating effect on the course of the transient. (orig.)

  11. Detailed design consideration on wire-spaced LMFBR fuel subassemblies under the effects of uncertainties and non-nominal geometries

    International Nuclear Information System (INIS)

    Hishida, H.

    1979-01-01

    This paper explains some analytical methods for evaluating the effects of deviation in subchannel coolant flow rate from the nominal value due to fuel pin bundle deflection and manufacturing tolerances and of inter-sub-channel coolant mixing and local temperature rise due to a wire-spacer on the hot spot temperature. Numerical results are given in each chapter with respect to a prototype LMFBR core. (author)

  12. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  13. Proposal for computer investigation of LMFBR core meltdown accidents

    International Nuclear Information System (INIS)

    Boudreau, J.E.; Harlow, F.H.; Reed, W.H.; Barnes, J.F.

    1974-01-01

    The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors

  14. Comparative analysis of a hypothetical loss-of-flow accident in an irradiated LMFBR core using different computer models for a common benchmark problem

    International Nuclear Information System (INIS)

    Wider, H.U.; Devos, J.; Nguyen, H.; Goethem, G. Van.; Miles, K.J.; Tentner, A.M.; Pizzica, P.

    1989-01-01

    This report summarizes the results of an international exercise to compare whole-core accident calculations of the initiation phase of an unprotected LOF accident in a large irradiated LMFBR. The results for the accident phase before pin failure are in rather good agreement except for the fuel pin mechanics predictions. There are also some differences in the sodium boiling calculations but the voiding rates which are of key importance are very similar. The post - failure fuel motion and sodium voiding predictions show significant differences. However, the majority of these calculations agree that temporary fuel accumulations occur which increase the power beyond that caused by sodium voiding alone

  15. Hydrodynamic analysis of the LMFBR prompt burst excursion (PBE) experiment

    International Nuclear Information System (INIS)

    Young, M.F.

    1977-01-01

    A series of in-pile experiments has been conducted at Sandia Laboratories to provide information on pressure levels and conversion of thermal energy into mechanical work in LMFBR cores during hypothetical, superprompt-critical excursions. Pressures generated in these experiments are recorded by a pressure transducer located at the top and bottom of a sodium channel surrounding a single, fresh UO 2 fuel pin. Work energy conversion is measured by a linear motion transducer connected to a piston at the top of the sodium column. Since the pressure transducers are located fairly far from the location of pin failure, it becomes necessary to determine the effect of channel geometry and piston motion on the observed pressure data. A two-dimensional, hydrodynamic analysis of pressure pulse propagation in the fuel pin-coolant channel geometry was therefore performed using the CSQII computer code. The initial series of PBE experiments consists of single, fresh UO 2 pins surrounded by a sodium-filled or dry-coolant channel contained in a closed test capsule. The capsule is subjected to a maximum pulse in the Annular Core Pulse Reactor (ACPR) resulting in an energy deposition of from 2350 to 2900 J/g (14 and 20 percent enriched pins). The pulse width at half maximum (PWHM) is about 5 ms

  16. Effect of operating temperature on LMFBR core performance

    International Nuclear Information System (INIS)

    Noyes, R.C.; Bergeron, R.J.; di Lauro, G.F.; Kulwich, M.R.; Stuteville, D.W.

    1977-01-01

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies

  17. Design and economic implications of heterogeneity in an LMFBR core

    International Nuclear Information System (INIS)

    Orechwa, Y.

    1983-01-01

    Much emphasis is currently being placed in LMFBR design on reducing both the capital cost and the fuel cycle cost of an LMFBR to insure its economic competativeness without a rapid increase in the uranium prices. In this study the relationship between two core design options, their neutronic consequences, and their effect on fuel cycle cost are analyzed. The two design options are the selection of pin diameter and the degree of heterogeneity. In the case of a heterogeneous core, with a low sodium void reactivity worth this ratio of fertile internal blanket to driver assemblies is generally about 0.40. However, some advantages of cores with heterogeneity of 0.08 to 0.2 for a fixed pin diameter have been reported

  18. LMFBR fuel analysis. Task A: Oxide fuel dynamics. Final report, October 1, 1976--September 30, 1977

    International Nuclear Information System (INIS)

    Dhir, V.K.; Doshi, J.; Frank, M.; Hauss, B.; Kastenberg, W.E.; Wong, K.

    1977-10-01

    The study presented deals with several areas of uncertainty in the analysis of the unprotected overpower transient for the Clinch River Breeder Reactor. These areas of uncertainty include the time, place, and mode of fuel pin failure; pre-failure fuel motion; fuel freezing, plugging, and plate-out following pin failure; and the potential for re-criticality. Internal molten fuel motion prior to pin failure was found to be sensitive to ramp rate and burnup. The strain-limit fuel failure criterion was found to be inappropriate for analysis based on existing data. The coupling of pre-transient- and transient-induced stresses tended to force the failure location towards the core midplane

  19. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters

  20. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, W.L. (comp.)

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters.

  1. Fuel-motion diagnostics and cineradiography

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1982-09-01

    Nuclear and non-nuclear applications of cineradiography are reviewed, with emphasis on diagnostic instrumentation for in-pile transient-reactor safety testing of nuclear fuel motion. The primary instrument for this purpose has been the fast-neutron hodoscope, which has achieved quantitative monitoring of time, location, mass, and velocity of fuel movement under the difficult conditions associated with transient-reactor experiments. Alternative diagnostic devices that have been developed have not matched the capabilities of the hodoscope. Other applications for the fuel-motion diagnostic apparatus are also evolving, including time-integrated radiography and direct time- and space-resolved fuel-pin power monitoring. Although only two reactors are now actively equipped with high-resolution fuel-motion diagnostic systems, studies and tests have been carried out in and for many other reactors

  2. Development of LIFE4-CN: a combined code for steady-state and transient analyses of advanced LMFBR fuels

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Zawadzki, S.; Billone, M.C.; Nayak, U.P.; Roth, T.

    1979-01-01

    The methodology used to develop the LMFBR carbide/nitride fuels code, LIFE4-CN, is described in detail along with some subtleties encountered in code development. Fuel primary and steady-state thermal creep have been used as an example to illustrate the need for physical modeling and the need to recognize the importance of the materials characteristics. A self-consistent strategy for LIFE4-CN verification against irradiation data has been outlined with emphasis on the establishment of the gross uncertainty bands. These gross uncertainty bands can be used as an objective measure to gauge the overall success of the code predictions. Preliminary code predictions for sample steady-state and transient cases are given

  3. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  4. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1977--May 31, 1977

    International Nuclear Information System (INIS)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1977-01-01

    Progress is summarized in the following tasks: (1) bundle flow studies (wrapped and bare rods); (2) subchannel flow studies (bare rods); (3) LMFBR outlet plenum flow mixing; and (4) theoretical determination of local temperature fields in LMFBR fuel rod bundles

  5. Coded aperture material motion detection system for the ACPR

    International Nuclear Information System (INIS)

    McArthur, D.A.; Kelly, J.G.

    1975-01-01

    Single LMFBR fuel pins are being irradiated in Sandia's Annular Core Pulsed Reactor (ACPR). In these experiments single fuel pins have been driven well into the melt and vaporization regions in transients with pulse widths of about 5 ms. The ACPR is being upgraded so that it can be used to irradiate bundles of seven LMFBR fuel pins. The coded aperture material motion detection system described is being developed for this upgraded ACPR, and has for its design goals 1 mm transverse resolution (i.e., in the axial and radial directions), depth resolution of a few cm, and time resolution of 0.1 ms. The target date for development of this system is fall 1977. The paper briefly reviews the properties of coded aperture imaging, describes one possible system for the ACPR upgrade, discusses experiments which have been performed to investigate the feasibility of such a system, and describes briefly the further work required to develop such a system. The type of coded aperture to be used has not yet been fixed, but a one-dimensional section of a Fresnel zone plate appears at this time to have significant advantages

  6. Route survey for LMFBR spent fuel transportation analysis

    International Nuclear Information System (INIS)

    Foley, J.T.

    1977-05-01

    Descriptions are given of surveys that were made along segments of interstate highways to obtain information on objects near the right-of-ways and on highway features that constitute hazards in the event of transportation accidents. Data collected during the surveys are summarized. The work was done in support of the LMFBR Hazards Analysis which was being performed for the Division of Reactor Development and Demonstration of the U.S. Energy Research and Development Administration

  7. Basic analysis and a comparison of the characteristics GCFRs and the LMFBR with the thorium cycle in one-group diffusion theory

    International Nuclear Information System (INIS)

    Sabundjian, G.; Ishiguro, Y.

    1991-09-01

    A preliminary study of neutronics of thorium cycle fast breeder reactor has been done using simplified reactor models and analyses methods with the aim of finding a type of breeder reactor suitable for an efficient utilization of thorium that is abundant in Brazil. Basic methods of cross section processing and reactor calculation are studied and applied to analyse breeding characteristics of GCFRs and LMFBRs. The GCFR is fueled with oxide pins and cooled with helium. The LMFBR is fueled with thin metallic pins to achieve high power densities. Neutronics characteristics are determined as functions of the average power density and the fuel volume fraction. Results show that a high power density and a high fuel volume fraction are desirable to achieve short doubling times, that the GCFR is inferior to the LMFBR in regard to the doubling time and that the LMFBR can achieve reactor doubling times ten years with an average power density of ∼ 600MW/m 3 and fuel volume fraction of 40%. (author)

  8. Analysis of a postulated accident scenario involving loss of forced flow in a LMFBR

    International Nuclear Information System (INIS)

    Moreira, M.L.

    1985-01-01

    A model to analyse a postulated accident scenario involving loss of forced flow in the reactor vessel of a LMFBR is used. Five phases of the accident are analysed: Natural Circulation, Subcooled Boiling, Nucleate Boiling, Core Dryout and Cladding melt. The heat conduction in the fuel cladding, coolant and lower and upper plenum are calculated by a lump-parameter model. Physical data of a prototype LMFBR reactor were used for the calculation. (author)

  9. On the hazard accumulation of actinide waste in a Pu-fueled LMFBR power economy with and without by-product actinide recycling

    International Nuclear Information System (INIS)

    Anselmi, L.; Caruso, K.; Hage, W.; Schmidt, E.

    1979-01-01

    The actinide waste arisings in terms of hazard potential for ingestion and inhalation are given for a Pu-fueled LMFBR Power Economy as function of decay time. The data were assessed for two simplified fuel cycles, one considering the recycling of by-product actinides and the other their complete discharge to the high-level waste. Two durations of nuclear power and several loss fractions of actinides to the waste were considered. The major contributors in form of chemical elements or isotopes to the actinide waste hazard built up during the nuclear power duration were identified for various decay intervals

  10. Thermohydraulic and thermal stress aspects of a porous blockage in an LMFBR fuel assembly

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Marr, W.W.; Helenberg, H.W.; Ariman, T.; Wilson, R.E.; Pedersen, D.R.

    1979-01-01

    The current safety scenarios of Liquid Metal Fast Breeder Reactors (LMFBR) under local fault propagation include the study of a hypothetical accident initiated by the formation of an external debris porous blockage in a fuel subassembly. In this preliminary experimental and analytical investigation, a non-heat-generating porous blockage was postulated to cover 18 flow channels of a 37 pin Fast Test Reactor (FTR) type fuel subassembly. The axial extent of the blockage is 50 mm. The blockage material is stainless steel (SS 316) with 30 percent average porosity (percent void volume). The blockage and the pins were modeled with a finite element technique and the thermal field in the blockage was predicted. This thermal field was utilized to do a planar thermal stress analysis of the postulated blockage. To verify the analytical model and also to better understand the thermal-hydraulics of such a porous blockage out-of-pile tests were conducted in a sodium loop. Data from the out-of-pile tests was utilized to calibrate and improve the analytical model

  11. LMFBR safety program. Annual technical progress report. Government fiscal year, 1977

    International Nuclear Information System (INIS)

    1977-01-01

    Information is presented concerning the development of the SOMIX-1 computer code for sodium drop burning analysis; experimental analysis of burning sodium drops; aerosol leakage from containment buildings; high-temperature-concentration aerosols; aerosol source term from vaporized fuel; properties of high-temperature fuel mixtures; and development of the COMRADEX computer code for analysis of radiological doses in the environment from LMFBR accidents

  12. Manipulator for fuel assemblies in a spent fuel pool, especially for a LMFBR

    International Nuclear Information System (INIS)

    Dalmas, R.

    1988-01-01

    The spent fuel manipulator has - a travelling crane moving longitudinally: - a carriage moving on the travelling crane in a direction perpendicular to its motion so that the carriage is positioned over each assembly, - a telescopic rod carried by the carriage and terminating in a vertically mobile grapple, - a tubular shielded hood on the carriage extending downwards to house the rod, grapple and fuel assembly and maintaining a biologically acceptable level of radiation above the surface of the pool [fr

  13. Final report of fuel dynamics Test E7

    International Nuclear Information System (INIS)

    Doerner, R.C.; Murphy, W.F.; Stanford, G.S.; Froehle, P.H.

    1977-04-01

    Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release [there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow]; (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4) less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets

  14. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  15. Seismic criteria studies and analyses. Quarterly progress report No. 3. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-03

    Information is presented concerning the extent to which vibratory motions at the subsurface foundation level might differ from motions at the ground surface and the effects of the various subsurface materials on the overall Clinch River Breeder Reactor site response; seismic analyses of LMFBR type reactors to establish analytical procedures for predicting structure stresses and deformations; and aspects of the current technology regarding the representation of energy losses in nuclear power plants as equivalent viscous damping.

  16. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, F.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  17. Uranium plutonium oxide fuels

    International Nuclear Information System (INIS)

    Cox, C.M.; Leggett, R.D.; Weber, E.T.

    1981-01-01

    Uranium plutonium oxide is the principal fuel material for liquid metal fast breeder reactors (LMFBR's) throughout the world. Development of this material has been a reasonably straightforward evolution from the UO 2 used routinely in the light water reactor (LWR's); but, because of the lower neutron capture cross sections and much lower coolant pressures in the sodium cooled LMFBR's, the fuel is operated to much higher discharge exposures than that of a LWR. A typical LMFBR fuel assembly is shown. Depending on the required power output and the configuration of the reactor, some 70 to 400 such fuel assemblies are clustered to form the core. There is a wide variation in cross section and length of the assemblies where the increasing size reflects a chronological increase in plant size and power output as well as considerations of decreasing the net fuel cycle cost. Design and performance characteristics are described

  18. LMFBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1988-01-01

    Purpose: To flatten the power distribution while maintaining the flattening in the axial power distribution in LMFBR type reactors. Constitution: Main system control rods are divided into control rods used for the operation and starting rods used for the starting of the reactor, and the starting rods are disposed in the radial periphery of the reactor core, while the control rods are disposed to the inside of the starting rods. With such a constitution, adjusting rods can be disposed in the region where the radial power peaking is generated to facilitate the flattening of the power distribution even in such a design that the ratio of the number of control rods to that of fuel assemblies is relatively large. That is, in this reactor, the radial power peaking is reduced by about 10% as compared with the conventional reactor core. As a result, the maximum linear power density during operation is reduced by about 10% to increase the thermal margin of the reactor core. If the maximum linear power density is set identical, the number of the fuel assemblies can be decreased by about 10%, to thereby reduce the fuel production cost. (K.M.)

  19. LMFBR technology. FFTF cover-gas leakage calculation

    International Nuclear Information System (INIS)

    Deboi, H.

    1974-01-01

    The FFTF LMFBR is intended to have a near zero release of radioactive gases during normal reactor operation with 1% failed fuel. This report presents calculations which provide an approximation of these cover gas leakages. Data from ongoing static and dynamic seal leak tests at AI are utilized. Leakage through both elastomeric and metallic seals in all sub-assemblies and penetrations comprising the reactor cover gas containment during reactor operation system are included

  20. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  1. Visual observations of fuel disruption in in-pile LMFBR accident experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.

    1982-01-01

    Sandia National Laboratories has been investigating initiation phase phenomena in a series of Fuel Disruption (FD) experiments since 1977. In this program high speed cinematography is used to observe fuel disruption in in-pile experiments that simulate loss of flow accidents. Thus, these experiments provide high resolution measurements of initial fuel and clad motion with prototypic materials and prototypic heating conditions. The main objective of the FD experiment is to determine the timing (relative to fuel temperature) and the mode of fuel disruption under LOF heating conditions. Observed modes of disruption include fuel swelling, solid state breakup, cracking, ejection of a molten fuel jet, slumping, and rapid expansion of small particles. Because the temperature and character of the fuel at disruption are known, disruption can be correlated with the mechanisms driving the disruption such as fuel vapor pressure, molten fuel expansion, fission gases, and impurity gases

  2. LARA: Expert system for acoustic localization of robot in a LMFBR

    International Nuclear Information System (INIS)

    Lhuillier, C.; Malvache, P.

    1986-12-01

    The expert system LARA (Acoustic Localization of Autonomic Robot) has been developed to show the interest of introducing artificial intelligency for fine automatic positioning of refuelling machine in a LMFBR reactor. LARA which is equipped with an acoustic detector gives rapidly a good positioning on the fuel [fr

  3. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1979-03-01

    This document contains up-to-date data on existing or firmly decided prototype or demonstration LMFBR reactors (Table I), on planned commercial size LMFBR according to the present status of design (Table II) and on experimental fast reactors such as BOR-60, DFR, EBR-II, FERMI, FFTF, JOYO, KNK-II, PEC, RAPSODIE-FORTISSIMO (Table III). Only corrected and revised parameters submitted by the countries participating in the IWGFR are included in this document

  4. Finite element analysis of irradiation-induced dilation of the fuel subassembly duct in LMFBR

    International Nuclear Information System (INIS)

    Gao Fuhai; Fu Hao; Li Nan; Yang Kongli; Wang Mingzhen

    2013-01-01

    Background: The calculation of irradiation-induced dilation of the fuel subassembly duct in LMFBR is important for fast reactor core design.. Purpose: To investigate how to calculate the dilation by using finite element method (FEM). Methods: First, irradiation-induced creep and swelling material models are introduced. Then, a theoretical solution based on a simplified bending plate model is briefly given. Finally, a stress update scheme for the adopted material models is presented and furthermore embedded into ABAQUS user interface UMAT to conduct finite element analysis. Both solutions are compared and discussed. Results: FEM successfully predicts the duct dilation and its solution agrees well with theoretical one in small deformation. Conclusions: The proposed stress update scheme is effective, The accuracy of the theory solution declines when dilation becomes larger. The maximum stress occurs at the duct corner point, and the location has stress relaxation effect. (authors)

  5. LMFBR flexible pipe joint development program. Annual technical progress report, government fiscal year 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Currently, the ASME Boiler and Pressure Vessel Code does not allow the use of flexible pipe joints (bellows) in Section III, Class 1 reactor primary piping systems. Studies have shown that the primary piping loops of LMFBR's could be simplified by using these joints. This simplification translates directly into shorter primary piping runs and reduced costs for the primary piping system. Further cost savings result through reduced vault sizes and reduced containment building diameter. In addition, the use of flexible joints localizes the motions from thermally-induced piping growth into components which are specifically designed to accommodate this motion. This reduces the stress levels in the piping system and its components. It is thus economically and structurally important that flexible piping joints be available to the LMFBR designer. The overall objective of the Flexible Joint Program is to provide this availability. This will be accomplished through the development of ASME rules which allow the appropriate use of such joints in Section III, Class 1 piping systems and through the development and demonstration of construction methods which satisfy these rules. The rule development includes analytic and testing methodology formulations which will be supported by subscale bellows testing. The construction development and demonstration encompass the design, fabrication, and in-sodium testing of prototypical LMFBR plant-size flexible pipe joints which meet all ASME rule requirements. The satisfactory completion of these developmental goals will result in an approved flexible pipe joint design for the LMFBR. Progress is summarized in the following efforts undertaken during 1977 to accomplish these goals: (1) code case support, (2) engineering and design, (3) material development, (4) testing, and (5) manufacturing development

  6. Analytical work on local faults in LMFBR subassembly

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Miyaguchi, K.; Hirata, N.; Kasahara, F.

    1979-01-01

    Analytical codes have been developed for evaluating various severe but highly unlikely events of local faults in the LMFBR subassembly (S/A). These include: (1) local flow blockage, (2) two-phase thermohydraulics under fission gas release, and (3) inter-S/A failure propagation. A simple inter-S/A thermal failure propagation analysis code, FUMES, is described that allows an easy parametric study of propagation potential of fuel fog in a S/A. 7 refs

  7. Status of U.S. LMFBR programme

    International Nuclear Information System (INIS)

    Yevich, J.

    1978-01-01

    The determents of the decision for deterrence of commercial reprocessing and further demonstration of the plutonium breeder were based on two premises: time is needed to establish the programme for non-proliferating fuel cycle and there is a lessened sense of urgency for the USA to establish a commercial breeder in the near future. A strong, well funded base technology effort remains and will continue until institutional and technical solutions can be found to minimize or eliminate the proliferation risk. An LMFBR option will be maintained. The FFTF will be coming on line providing a powerful tool in breeder fuel and materials development and a baseline from which to scale up heat transfer systems and components. Sodium system hardware development and testing will continue to have high priority

  8. Seismic analysis methods for LMFBR core and verification with mock-up vibration tests

    International Nuclear Information System (INIS)

    Sasaki, Y.; Kobayashi, T.; Fujimoto, S.

    1988-01-01

    This paper deals with the vibration behaviors of a cluster of core elements with the hexagonal cross section in a barrel under the dynamic excitation due to seismic events. When a strong earthquake excitation is applied to the core support, the cluster of core elements displace to a geometrical limit determined by restraint rings in the barrel, and collisions could occur between adjacent elements as a result of their relative motion. For these reasons, seismic analysis on LMFBR core elements is a complicated non-linear vibration problem, which includes collisions and fluid interactions. In an actual core design, it is hard to include hundreds of elements in the numerical calculations. In order to study the seismic behaviors of core elements, experiments with single row 29 elements (17 core fuel assemblies, 4 radial blanket assemblies, and 8 neutron shield assemblies) simulated all elements in MONJU core central row, and experiments with 7 cluster rows of 37 core fuel assemblies in the core center were performed in a fluid filled tank, using a large-sized shaking table. Moreover, the numerical analyses of these experiments were performed for the validation of simplified and detailed analytical methods. 4 refs, 18 figs

  9. Analysis of clad motion during a loss of flow (LOF) accident in a fast sodium cooled reactor

    International Nuclear Information System (INIS)

    Henkel, P.

    1985-10-01

    A new model describing clad motion during a Loss of Flow (LOF) accident in a Liquid Metal Cooled Fast (Breeder) Reactor (LMFBR) is presented. Its special features are Clad motion is treated within a fuel pin bundle. The bundle geometry is represented by an equivalent annular geometry which serves as the descriptional basis for the clad motion analysis; Several flow regimes are considered. These include a wave or film flow along the fuel pin surfaces as well as a drop flow within the coolant channels. A new entrainment criterion is successfully applied to describe the entrainment of molten cladding and the coolant flow is modelled as a two-dimensional, monstationary flow. Therefore, radial cross flows in a pin bundle can be calculated. Especially, thermal incoherency effects can be treated consistently. The analysis of clad motion in the two experiments STAR1 and STAR2 using the subsequently presented SANDCMOT model gives good agreement with the experimental data. (orig.) [de

  10. VENUS-2, Reactor Kinetics with Feedback, 2-D LMFBR Disassembly Excursions

    International Nuclear Information System (INIS)

    Jackson, J.F.; Nicholson, R.B.; Weber, D.P.

    1980-01-01

    1 - Description of problem or function: VENUS-2 is an improved edition of the VENUS fast-reactor disassembly program. It is a two- dimensional (r-z) coupled neutronics-hydrodynamics code that calculates the dynamic behavior of an LMFBR during a prompt-critical disassembly excursion. It calculates the power history and fission energy release as well as the space-time histories of the fuel temperatures, core material pressures, and core material motions. Reactivity feedback effects due to Doppler broadening and reactor material motion are taken into account. 2 - Method of solution: The power and energy release are calculated using a point-kinetics formulation with up to six delayed neutron groups. The reactivity is a combination of an input driving function and feedback effects due to Doppler broadening and material motion. An adiabatic model is used to calculate the temperature increase throughout the reactor based on an initial temperature distribution and power profile provided as input data. These temperatures are, in turn, converted to fuel pressures through one of several equation of state options provided. The material motion that results from the pressure buildup is calculated by a direct finite difference solution of a set of two-dimensional (r-z) hydrodynamics equations. This is done in Lagrangian coordinates. The reactivity change associated with this motion is calculated by first-order perturbation theory. The displacements are also used to adjust the fuel densities as required for the density dependent equation-of- state option. An automatic time-step-size selection scheme is provided. 3 - Restrictions on the complexity of the problem: VENUS-2 is written so that the dimensions of the storage arrays can be readily changed to accommodate a broad range of problem sizes. In the base version, the total number of mesh intervals is restricted such that (NR+3)*(NZ+3) is less than 700, where NR and NZ are the total number of mesh intervals in the r and z

  11. Molten fuel motion during a fast-reactor overpower transient

    International Nuclear Information System (INIS)

    Kolesar, D.C.; Padilla, A. Jr.; Lewis, C.H.; Waltar, A.E.

    1976-01-01

    Mechanistic models for postfailure fuel behavior during hypothetical transient overpower accidents are currently being developed for incorporation into the MELT accident analysis code. A new model for the fuel-coolant interaction and for the motion of fuel in the coolant channel has been developed and incorporated into the MELT-III code. A major limitation of the mechanistic fuel motion model is its dependence on the uniform interaction region of MELT-III. Consequently, a parallel effort is currently in progress to incorporate a non-uniform interaction region into the MELT code. Combination of the fuel motion and the nonuniform interaction region models will provide the framework for development of a mechanistic fuel plateout/blockage model for transient overpower accidents

  12. Evaluation of organic coolants for the transportation of LMFBR spent fuel rods

    International Nuclear Information System (INIS)

    Arnold, C. Jr.

    1978-05-01

    The physical and chemical processes that are likely to occur when sodium coated LMFBR spent fuel rods are submerged in various aromatic organic coolants was defined by means of immersion experiments carried out with sodium coated 304 stainless steel coupons. Upon immersion of sodium coated coupons at 220 0 C in hydrocarbon type coolants such as Therminol 88, a mixture of terphenyls, not only was the metallic sodium retained on the coupon, but a carbonaceous coating formed on the surface of the sodium. In contrast, coolants that contained aromatic ether bonds, such as Dowtherm A, reacted with sodium at 220 0 C to form phenolate and other salts, which precipitated from the coolant in the form of a dark sludge. With Dowtherm A, removal of metallic sodium from the coupon was essentially complete in a matter of hours at temperatures of 160--220 0 C. Data on the rate and efficiency of sodium removal upon immersion in Dowtherm A at elevated temperatures were obtained. In addition the kinetics and chemistry of the sodium/Dowtherm A reaction were defined. Because sodium sludges are potentially incompatible with the containing structural materials and the fuel elements, it is recommended that sodium be removed prior to immersion in the coolant via reaction with benzoic acid; this method should be adaptable to the facilities at reactor sites. In aging studies Dowtherm A was found to be thermally stable up to 400 0 C and radiatively stable at ambient conditions. The combined effect of heat and radiation was not defined

  13. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  14. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  15. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  16. LMFBR core flowering response to an impulse load

    International Nuclear Information System (INIS)

    Brochard, D.; Petret, J.C.; Queval, J.C.; Gibert, R.J.

    1993-01-01

    Some incidental situations like MFCI (Meeting Fuel Coolant Incident) may induce a core flowering and lead to consider impulse loans applied to LMFBR core. These highly dynamic loads are very different considering their spatial repartition and their frequency content from the seismic loads which have been deeply studied. Recently, tests have been performed on the LMFBR core mock-up RAPSODIE in order to validate the calculation methods for centered impulse load. These tests consist in injecting water quickly in the mock-up through a specific device replacing the core central assembly. The influence of the injection pressure and the influence of the injection axial position have been investigate. During the tests, the top displacements of some assemblies have been measured. The aim of this paper is first to present the experimental device and the test results. Then a non linear numerical model is described; this model includes the impact between subassemblies and is based on an homogenization method allowing to take into account with accuracy the fluid structure interaction.The comparisons between calculation results an test results will finally be presented

  17. Replaceable LMFBR core components

    International Nuclear Information System (INIS)

    Evans, E.A.; Cunningham, G.W.

    1976-01-01

    Much progress has been made in understanding material and component performance in the high temperature, fast neutron environment of the LMFBR. Current data have provided strong assurance that the initial core component lifetime objectives of FFTF and CRBR can be met. At the same time, this knowledge translates directly into the need for improved core designs that utilize improved materials and advanced fuels required to meet objectives of low doubling times and extended core component lifetimes. An industrial base for the manufacture of quality core components has been developed in the US, and all procurements for the first two core equivalents for FFTF will be completed this year. However, the problem of fabricating recycled plutonium while dramatically reducing fabrication costs, minimizing personnel exposure, and protecting public health and safety must be addressed

  18. Present status of fuel motion detection by radiation

    International Nuclear Information System (INIS)

    Sumita, Kenji; Mizuta, Hiroshi; Ishizuka, Makoto; Ara, Katsuyuki; Nakata, Hirokatsu.

    1978-05-01

    In reactor safety research, it is important to know transient fuel behavior under accidental conditions. Transient histories such as temperature and axial expansion of fuel and cladding and internal pressure of fuel rod are thus measured in experiments simulating accidents. If fuel motion could then be observed during and after fuel failure, this would greatly make for fuel behavior research. The present status is reviewed of fuel motion detections by radiations such as neutron, γ-ray and X-ray, including the principle and system. A neutron hodoscope among them is used already with practical results in in-reactor safety experiments of sodium-cooled fast breeder reactor. So, this is described in detail and its conceptual design as applied to the NSRR is presented. (auth.)

  19. Issues in the selection of the LMFBR steam cycle

    International Nuclear Information System (INIS)

    Buschman, H.W.; McConnell, R.J.

    1983-01-01

    Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available

  20. Component design for LMFBR's

    International Nuclear Information System (INIS)

    Fillnow, R.H.; France, L.L.; Zerinvary, M.C.; Fox, R.O.

    1975-01-01

    Just as FFTF has prototype components to confirm their design, FFTF is serving as a prototype for the design of the commercial LMFBR's. Design and manufacture of critical components for the FFTF system have been accomplished primarily using vendors with little or no previous experience in supplying components for high temperature sodium systems. The exposure of these suppliers, and through them a multitude of subcontractors, to the requirements of this program has been a necessary and significant step in preparing American industry for the task of supplying the large mechanical components required for commercial LMFBR's

  1. Accuracy of fuel motion measurements using in-core detectors

    International Nuclear Information System (INIS)

    Dupree, S.A.

    1975-01-01

    An initial assessment has been made as to how accurately fuel motion can be measured with in-core detectors. A portion of this assessment has involved the calculation of the response of various detectors to fuel motion and the development of a formalism for correlating uncertainties in a neutron flux measurement to uncertainties in the fuel motion. Initially, four idealized configurations were studied in one dimension. These configurations consisted of (1) a single fuel-pin test using ACPR, (2) a seven fuel-pin test using ACPR, (3) a full subassembly (271 pin) test using a Class I ANL-type SAREF, and (4) a full subassembly plus six partial subassemblies (approximately 1000 pin) test using a Class III GE-type SAREF. It was assumed that melt would occur symmetrically at the center of the test fuel and that fuel would therefore disappear from the center of the geometry. For each case of series of calculations was performed in which detector responses were determined at several radial locations for the unperturbed core and for the core with various fractions of the fuel replaced with Na. This fuel loss was assumed to occur essentially instantaneously such that the power level in the remaining portion of the test fuel remained unchanged from that of the initial unperturbed condition

  2. Experimental Study of Fuel Element Motion in HTR-PM Conveying Pipelines

    International Nuclear Information System (INIS)

    Wang Xin; Zhang Haiquan; Nie Junfeng; Li Hongke; Liu Jiguo; He Ayada

    2014-01-01

    The motion action of sphere fuel element (FE) inside fuel pipelines in HTR-PM is indeterminate. Fuel motion is closely connected with the interaction of FE and inner surface of fuel conveying pipe. In this paper, motion method of fuel elements in its conveying pipe is Experimental studied. Combined with the measurement of the fuel passing speed in stainless steel pipe and the track left by sphere ball for experiment, interaction modes of fuel and inner-surface of pipe, which is sliding friction, rolling friction and Collision, has been found. The modes of interaction can affect the speed of fuel conveying, amount of sphere waste and operation stability of fuel handling of high temperature reactor-pebble bed modules (HTR-PM). Furthermore, the motion process of fuel passing a big-elbow which is lying on the top of fuel pneumatic hoisting pipe were experimented. The result shows that the speed before and the speed after the elbow is positive correlation. But with the increase of speed before the elbow, the speed after the elbow increase less. Meanwhile the fuel conveying mode changes from friction to collision. And the conveying process is still steady. The effect can be used to controlling the speed of fuel conveying in fuel handling process of HTR-PM. (author)

  3. Applicability of the Reactor Safety Study (WASH-1400) to LMFBR risk assessments

    International Nuclear Information System (INIS)

    El-Sheikh, K.A.; Feller, K.G.; Fleischer, L.; Greebler, P.; McDonald, A.; Sultan, P.; Temme, M.I.; Fullwood, R.R.

    1976-01-01

    The feasibility of applying the WASH-1400 methods and data to LMFBR risk assessment is evaluated using the following approach for a selected LMFBR: (1) Structuring the LMFBR risk assessment problem in a modular form similar to WASH-1400; (2) Comparing the predictive tools applicable to each module; (3) Comparing the dependencies among the various modules. It is concluded that the WASH-1400 applicability is limited due to LWR-LMFBR differences in operating environments and accident phenomena. WASH-1400 and LMFBR specific methods applicable to LMFBR risk assessments are indicated

  4. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    International Nuclear Information System (INIS)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO 2 ) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO 2 pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs

  5. X-ray cinematography on the nuclear fuel and cladding motion diagnostics

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Uruwashi, Shinichi.

    1979-01-01

    X-ray cinematography has been used for monitoring fuel motion in the out-of-pile fuel pin joule melting experiments for nuclear, liquid metal cooled fast breeder reactor, safety studies related to fuel pin failure, initial fuel motion and thermal fuel-coolant interaction (FCI) of the hypothetical core distractive accident. In order to visually observe the nuclear fuel motion, the X-ray cinematography system consists of an X-ray source located about 5 cm from the test section and an image intensifier located at a corresponding position on the opposite side of the test section. The image from the image intensifier has been recorded both with a high speed camera and video recorder. (author)

  6. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  7. A study on reactor core failure thresholds to safety operation of LMFBR

    International Nuclear Information System (INIS)

    Kazuo, Haga; Hiroshi, Endo; Tomoko, Ishizu; Yoshihisa, Shindo

    2006-01-01

    Japan Nuclear Safety Organization (JNES) has been developing the methodology and computer codes for applying level-1 PSA to LMFBR. Many of our efforts have been directed to the judging conditions of reactor core damage and the time allowed to initiate the accident management. Several candidates of the reactor core failure threshold were examined to a typical proto-type LMFBR with MOX fuel based on the plant thermal-hydraulic analyses to the actual progressions leading to the core damage. The results of the present study showed that the judging condition of coolant-boundary integrity failure, 750 degree-C of the boundary temperature, is enough as the threshold of core damage to PLOHS (protected loss-of-heat sink). High-temperature fuel cladding creep failure will not take place before the coolant-boundary reaches the judging temperature and sodium boiling will not occur due to the system pressure rise. In cases of ATWS (anticipated transient without scrum) the accident progression is so fast and the reactor core damage will be inevitable even a realistic negative reactivity insertion due to the temperature rise is considered. Only in the case of ULOHS (unprotected loss-of-heat sink) a relatively long time of 11 min will be allowed till the shut-down of the reactor before the core damage. (authors)

  8. Quasi-steady state boiling downstream of a central blockage in a 19-rod simulated LMFBR subassembly (FFM bundle 3B)

    International Nuclear Information System (INIS)

    Hanus, N.; Fontana, M.H.; Gnadt, P.A.; MacPherson, R.E.; Smith, C.M.; Wantland, J.L.

    1976-01-01

    Results of sodium boiling tests in a centrally blocked 19-rod simulated LMFBR subassembly are discussed. The tests were part of the experimental series conducted with bundle 3B in the Fuel Failure Mockup (FFM) at ORNL

  9. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Todreas, N.E.

    1982-07-01

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  10. Performance analysis of LMFBR control rods

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Control rods in the FFTF and LMFBR's will consist of pin bundles of stainless steel-clad boron carbide pellets. In the FFTF reference design, sixty-one pins of 0.474-inch diameter each containing a 36-inch stack of 0.362-inch diameter boron carbide pellets comprise a control rod. Reactivity control is provided by the 10 B (n,α) 7 Li reaction in the boron carbide. This reaction is accompanied by an energy release of 2.8 MeV, and heating from this reaction typically approaches 100 watts/cm 3 for natural boron carbide pellets in an LMFBR flux. Performance analysis of LMFBR control rods must include an assessment of the thermal performance of control pins. In addition, irradiation performance with regard to helium release, pellet swelling, and reactivity worth depletion as a function of service time must be evaluated

  11. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  12. Fast breeder fuel cycle, worldwide and French prospects

    International Nuclear Information System (INIS)

    Rapin, M.

    1982-01-01

    A review is given of fast breeder fuel cycle development from both the technological and the economical points of view. LMFBR fuel fabrication, reactor operation, spent fuel storage and transportation, reprocessing and fuel cycle economics are topics considered. (U.K.)

  13. Improvements in TREAT hodoscope fuel-motion capabilities

    International Nuclear Information System (INIS)

    Fink, C.L.; Boyar, R.E.; Eichholz, J.J.; DeVolpi, A.

    1982-01-01

    The fast-neutron detection system of the hadoscope has been a major ingredient in the success of the hodoscope as a fuel-motion monitoring device. While the original Hornyak-button detector system has met most of the current fuel-motion needs, the more stringent requirements of improved reactor-safety codes, and of new experimental test facilities necessitate improved detection capabilities. Development efforts have centered on three areas: the construction of an array of proton-recoil proportional counters to be used in conjunction with the Hornyak-button detectors, the upgrading of the Hornyak-button detectors to increase linearity and signal-to-background ratio, and the intercalibration of detectors using a modified horizontal and a new vertical scan system

  14. Molten fuel studies at Winfrith

    International Nuclear Information System (INIS)

    Edwards, A.J.; Knowles, J.B.; Tattersall, R.B.

    1988-01-01

    This report describes the experimental facilities available for molten fuel studies at Winfrith. These include a large facility capable of testing components at full LMFBR subassembly scale and also a high pressure facility for experiments at pressures up to 25 MPa, covering the whole range of temperatures and pressures of interest for the PWR. If the hypothetical accident conditions initiating the release of molten fuel do not produce an explosive transfer of thermal energy on contact of molten fuel with the reactor coolant, then an intermediate rate of heat transfer over several hundred milliseconds may occur. Theoretical work is described which is being carried out to predict the resulting pressurisation and the degree of mechanical loading on the reactor structure. Finally the current programme of molten fuel studies and recent progress are reviewed, and future plans, which are chiefly focussed on the study of thermal interactions between molten fuel and sodium coolant for the LMFBR are outlined. (author)

  15. LMFBR accident delineation study: approach and preliminary results

    International Nuclear Information System (INIS)

    Williams, D.C.; Sholtis, J.A.; Rios, M.; Worledge, D.H.; Conrad, P.W.; Varela, D.W.; Pickard, P.S.

    1979-01-01

    Event trees have been constructed for all phases of LMFBR accidents. The trees proved useful for identifying meaningful initiating accident categories and containment responses. In these areas, quantification appears feasible, given an adequate data base. Event trees were also used to represent in-core phenomenological questions governing accident progression and energetics, but here quantification appears impracticable because pervasive phenomenological uncertainties exist. Infrequent accident initiation is the dominant factor in assuring low risk. Nevertheless, containment promises an additional measure of risk reduction provided severe energetics are highly unlikely. The delineation served to systematize LMFBR safety issues and should aid in evaluating LMFBR R and D priorities

  16. LMFBR plant parameters

    International Nuclear Information System (INIS)

    1985-07-01

    This document has been prepared on the basis of information compiled by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains parameters of 25 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBR). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA) are presented because its design was nearly finished and most of the components were fabricated at the time when the project was terminated. Three reactors (RAPSODIE (France), DFR (UK) and EFFBR (USA)) have been shut down. However, they are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. The first LMFBRs (CLEMENTINE (USA), EBR-1 (USA), BR-2 (USSR), BR-5 (USSR)) and very special reactors (LAMPRE (USA), SEFOR (USA)) were not recommended by the members of the IWGFR to be included in the report

  17. Maintenance and repair of LMFBR steam generators: specialists` meeting, O-Arai Engineering Center, Japan, 4-8 June 1984. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    The Specialists` Meeting on "Maintenance and Repair of LMFBR Steam Generators" was held in Oarai, Japan, from 4-8 June 1984. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by the Power Reactor and Nuclear Fuel Development Corporation of Japan. The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topical areas were discussed by participants: national review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; research and development work on maintenance and repair; and experience on steam generator maintenance and repair.

  18. Seismic isolation structure for pool-type LMFBR - isolation building with vertically isolated floor for NSSS

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiojiri, H.; Aoyagi, S.; Matsuda, T.; Fujimoto, S.; Sasaki, Y.; Hirayama, H.

    1987-01-01

    The NSSS isolation floor vibration characteristics were made clear. Especially, the side support bearing (rubber bearing) is effective for horizontal floor motion restraint and rocking motion control. Seismic isolation effects for responses of the reactor components can be sufficiently expected, using the vertical seismic isolation floor. From the analytical and experimental studies, the following has been concluded: (1) Seismic isolation structure, which is suitable for large pool-type LMFBR, were proposed. (2) Seismic response characteristics of the seismic isolation structure were investigated. It was made clear that the proposed seismic isolation (Combination of the isolated building and the isolated NSSS floor) was effective. (orig./HP)

  19. Comments on US LMFBR steam generator base technology

    International Nuclear Information System (INIS)

    Simmons, W.R.

    1984-01-01

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  20. Preliminary review of critical shutdown heat removal items for common cause failure susceptibility on LMFBR's. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Allard, L.T.; Elerath, J.G.

    1976-02-01

    This document presents a common cause failure analysis for Critical LMFBR Shutdown Heat Removal Systems. The report is intended to outline a systematic approach to defining areas with significant potential for common causes of failure, and ultimately provide inputs to the reliability prediction model. A preliminary evaluation of postulatd single initiating causes resulting in multiple failures of LMFBR-SHRS items is presented in Appendix C. This document will be periodically updated to reflect new information and activity.

  1. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  2. Fuel motion in overpower tests of metallic integral fast reactor fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Bauer, T.H.; Stanford, G.S.; Regis, J.P.; Dickerman, C.E.

    1992-01-01

    In this paper results from hodoscope data analyses are presented for transient overpower (TOP) tests M5, M6, and M7 at the Transient Reactor Test Facility, with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding breach and prefailure elongation of D9-clad ternary (U-Pu-Zr) integral fast reactor-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT-9-clad binary (U-Zr) Fast Flux Test Facility driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure

  3. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    International Nuclear Information System (INIS)

    Grand, P.; Takahashi, H.

    1984-01-01

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables

  4. Joint studies of LOF and TOP incidents for a 1300 MW(E) LMFBR using the computer codes SAS3D/EPIC and FRAX-2

    International Nuclear Information System (INIS)

    Leslie, R.; Billington, D.E.; Mann, J.E.

    1982-04-01

    The results of joint studies carried out for a 1300MW(E) LMFBR are described. The incidents examined were a slow TOP (3c/s) and a LOF (pump rundown with 9s flow halving time), both with failure to trip. For the TOP incident a benign outcome was predicted largely as a consequence of the prediction of clad failure near the top of the core. For the LOF incident highly energetic outcomes were not predicted for the reference case because the incident was terminated by disassembly (by fuel vapour pressure) in voided channels and failures in low-rated flooded channels with MFCI potential were not predicted. In the variant cases where MFCIs were predicted before shutdown, and rapid enough extension of the clad rips was allowed, low energetics were still predicted as a consequence of fuel sweepout. The strength of the MFCIs (as represented by a Cho-Wright treatment) does not appear to be an important factor but the results are dependent on the prediction of negative reactivity addition through fuel sweepout. The physical conditions obtaining at the time of fuel failure are such as to suggest that internal fuel motion following failure should not have an important effect on accident energetics, unless the development of the initial rip is delayed by several milliseconds. This is an area where only limited experimental evidence is available. Other areas of uncertainty are associated with the position of failure, of clad rip propagation and the influence of incoherency on the progression of the incident. Clad motion effects were shown not to influence accident energetics significantly for the reactor model considered. (author)

  5. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  6. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  7. Transient feedback from fuel motion in metal IFR [Integral Fast Reactor] fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Stanford, G.S.; Regis, J.P.; Bauer, T.H.; Dickerman, C.E.

    1990-01-01

    Results from hodoscope data analyses are presented for TREAT transient-overpower tests M5 through M7 with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding branch and prefailure elongation of D9-clad ternary (U-Pu-Zr) IFR-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT9-clad binary (U-Zr) FFTF-driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure. 4 refs., 6 figs

  8. A review of the breeding potentials of carbide, nitride and oxide fueled LMFBRs and GCFRs

    International Nuclear Information System (INIS)

    Handa, Muneo

    1977-11-01

    The effects of design parameters in large variation on compound system doubling time of large advanced-fueled LMFBR are described on the base of recent U.S. results. The fuel element design by Combustion Engineering Inc. in step-by-step substitution of the initial oxide fuel subassemblies with carbide ones is explained. Breeding characteristics of the oxide-fueled LMFBR and its potential design modifications are expounded. The gas cooled fast breeder program in West Germany and in the United States are briefed. Definitions of the breeding ratio and doubling time in overall fuel cycle are given. (auth.)

  9. Use of reliability in the LMFBR industry

    International Nuclear Information System (INIS)

    Penland, J.R.; Smith, A.M.; Goeser, D.K.

    1977-01-01

    This mission of a Reliability Program for an LMFBR should be to enhance the design and operational characteristics relative to safety and to plant availability. Successful accomplishment of this mission requires proper integration of several reliability engineering tasks--analysis, testing, parts controls and program controls. Such integration requires, in turn, that the program be structured, planned and managed. This paper describes the technical integration necessary and the management activities required to achieve mission success for LMFBR's

  10. Fuel pins irradiation: experimental devices and analytical behaviour

    International Nuclear Information System (INIS)

    Lemaignan, C.

    1996-01-01

    In this text we present the general characteristics of adapted irradiation loops in research reactors and the main results that we can expected with these loops in the behaviour field of PWR and LMFBR fuels( fuel densification, fuel cladding interactions, fission products release, reactor accidents)

  11. Bubble behavior in LMFBR core disruptive accidents. Annual report, June 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Reynolds, A.B.; Erdman, C.A.; Garner, P.L.; Kennedy, M.F.; Rao, S.P.; Refling, J.G.

    1976-08-01

    The work reported here is part of the Aerosol Release and Transport program for LMFBR safety assessment for the Reactor Safety Research Division of the U.S. Nuclear Regulatory Commission. Six areas were at various stages of investigation during this reporting period. A study of nonequilibrium mass transfer during fuel expansion and a study of the dynamics of fuel expansion into the sodium pool were completed. Studies are underway on condensation on above-core structures and on generation of aerosols from condensation. Studies were initiated on small-particle generation from hydrodynamic fragmentation, on particle kinematics and on particle-surface interaction

  12. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo; Takahashi, Ryoichi.

    1994-01-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author)

  13. Structural and containment response to LMFBR accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.; Fistedis, S.H.; Baker, L. Jr.; Stepnewski, D.D.; Peak, R.D.; Gluekler, E.L.

    1978-01-01

    The results of current developments in analysing the response of reactor structures and containment to LMFBR accidents are presented. The current status of analysis of the structural response of LMFBR's to core disruptive accidents, including head response, potential missile generation and the effects of internal structures are presented. The results of recent experiments to help clarify the thermal response of reactor structures to molten core debris are summarized, including the use of this data to calculate the response of the secondary containment. (author)

  14. Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Appendixes D and E. Research project 620-25

    International Nuclear Information System (INIS)

    Barthold, W.P.; Orechwa, Y.; Su, S.F.; Hutter, E.; Batch, R.V.; Beitel, J.C.; Turski, R.B.; Lam, P.S.K.

    1979-11-01

    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. the effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance

  15. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-07-01

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  16. Cesium migration in LMFBR fuel pins

    International Nuclear Information System (INIS)

    Karnesky, R.A.; Jost, J.W.; Stone, I.Z.

    1978-10-01

    The factors affecting the axial migration of cesium in mixed oxide fuel pins and the effects of cesium migration on fuel pin performance are examined. The development and application of a correlated model which will predict the occurrence of cesium migration in a mixed oxide (75 w/o UO 2 + 25 w/o PuO 2 ) fuel pins over a wide range of fabrication and irradiation conditions are described

  17. Two-dimensional steady-state thermal and hydraulic analysis code for prediction of detailed temperature fields around distorted fuel pin in LMFBR assembly: SPOTBOW

    International Nuclear Information System (INIS)

    Shimizu, T.

    1983-01-01

    SPOTBOW computer program has been developed for predicting detailed temperature and turbulent flow velocity fields around distorted fuel pins in LMFBR fuel assemblies, in which pin to pin and pin to wrapper tube contacts may occur. The present study started from the requirement of reactor core designers to evaluate local hot spot temperature due to the wire contact effect and the pin bowing effect on cladding temperature distribution. This code calculates for both unbaffled and wire-wrapped pin bundles. The Galerkin method and iterative procedure were used to solve the basic equations which govern the local heat and momentum transfer in turbulent fluid flow around the distorted pins. Comparisons have been made with cladding temperatures measured in normal and distorted pin bundle mockups to check the validity of this code. Predicted peak temperatures in the vicinity of wire contact point were somewhat higher than the measured values, and the shape of the peaks agreed well with measurement. The changes of cladding temperature due to the decrease of gap width between bowing pin and adjacent pin were predicted well

  18. Contribution of metallic fission product inclusions to axial fuel motion potential

    International Nuclear Information System (INIS)

    Sasa, P.; Cronenberg, A.; Stevenson, M.

    1979-01-01

    In the analysis of postulated nuclear reactor accidents, axial fuel motion within the fuel pin prior to cladding failure can have an important mitigating effect. The question of primary importance is whether or not metallic inclusions have the potential to vaporize during an overheating event and thus contribute to fuel motion. To assess this potential, two limiting calculations were made: 1) The inclusion constituent assumed insoluble in one another and 2) The constituents assumed totally miscible in one another. Thermodynamic considerations indicate that the metallic fission products found within inclusions of fuel rods irradiated in a fast neutron spectrum, would form homogeneous solutions. Therefore, it is concluded that the metallic fission products would not enhance fuel swelling during an overheating event. 16 refs

  19. Development of concept and neutronic calculation method for large LMFBR core

    International Nuclear Information System (INIS)

    Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.

    1991-01-01

    Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)

  20. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  1. Ongoing experiments: diagnostics requirements

    International Nuclear Information System (INIS)

    Dickerman, C.E.

    1976-01-01

    The paper reviews the fuel motion diagnostics needs for ongoing LMFBR safety experiments over approximately the next five years, with the discussion centered on TREAT. Brief comments on the direction in which clad motion diagnostics requirements are expected to develop are also presented

  2. Hydrogen formation and control under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Wierman, R.W.

    1976-09-01

    The objective of this study is to experimentally investigate the potential for autoignition and combustion of hydrogen-sodium mixtures which may be produced in LMFBR accidents. The purpose and ultimate usefulness of this work is to provide data that will establish the validity and acceptability of mechanisms inherent to the LMFBR that could either prevent or delay the accumulation of hydrogen gas to less than 4 percent (V) in the Reactor Containment Building (RCB) under accident conditions. The results to date indicate that sodium and sodium-hydrogen mixtures such as may be expected during LMFBR postulated accidents will ignite upon entering an air atmosphere and that the hydrogen present will be essentially all consumed until such time that the oxygen concentration is depleted

  3. Coded aperture imaging system for nuclear fuel motion detection

    International Nuclear Information System (INIS)

    Stalker, K.T.; Kelly, J.G.

    1980-01-01

    A Coded Aperature Imaging System (CAIS) has been developed at Sandia National Laboratories to image the motion of nuclear fuel rods undergoing tests simulating accident conditions within a liquid metal fast breeder reactor. The tests require that the motion of the test fuel be monitored while it is immersed in a liquid sodium coolant precluding the use of normal optical means of imaging. However, using the fission gamma rays emitted by the fuel itself and coded aperture techniques, images with 1.5 mm radial and 5 mm axial resolution have been attained. Using an electro-optical detection system coupled to a high speed motion picture camera a time resolution of one millisecond can be achieved. This paper will discuss the application of coded aperture imaging to the problem, including the design of the one-dimensional Fresnel zone plate apertures used and the special problems arising from the reactor environment and use of high energy gamma ray photons to form the coded image. Also to be discussed will be the reconstruction techniques employed and the effect of various noise sources on system performance. Finally, some experimental results obtained using the system will be presented

  4. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  5. Studies of LMFBR: method of analysis and some results

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Dias, A.F.; Nascimento, J.A. do.

    1983-01-01

    Some results of recent studies of LMFBR characteristics are summarized. A two-dimensional model of the LMFBR is taken from a publication and used as the base model for the analysis. Axial structures are added to the base model and a three-dimensional (Δ - Z) calculation has been done. Two dimensional (Δ and RZ) calculations are compared with the three-dimensional and published results. The eigenvalue, flux and power distributions, breeding characteristics, control rod worth, sodium-void and Doppler reactivities are analysed. Calculations are done by CITATION using six-group cross sections collapsed regionwise by EXPANDA in one-dimensional geometries from the 70-group JFS library. Burnup calculations of a simplified thorium-cycle LMFBR have also been done in the RZ geometry. Principal results of the studies are: (1) the JFS library appears adequate for predicting overall characteristics of an LMFBR, (2) the sodium void reactivity is negative within - 25 cm from the outer boundary of the core, (3) the halflife of Pa-233 must be considered explicitly in burnup analyses, and (4) two-dimensional (RZ and Δ) calculations can be used iteratively to analyze three-dimensional reactor systems. (Author) [pt

  6. Analytical throughput-estimating methods for the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Keyes, R.W.; Phipps, R.D.

    1983-01-01

    The Hot Fuel Examination Facility (HFEF) supports the operation and experimental programs of the major Liquid Metal Fast Breeder Reactor (LMFBR) test facilities; specifically, the Fast Flux Test Facility (FFTF), the Experimental Breeder Reactor II (EBR-II), and the Transient Reactor Test (TREAT) Facility. Successful management of HFEF and of LMFBR safety and fuels and materials programs, therefore, requires reliable information regarding HFEF's capability to handle expected or proposed program work loads. This paper describes the 10-step method that has been developed to consider all variables which significantly affect the HFEF examination throughput and quickly provide the necessary planning information

  7. Tank type LMFBR type reactors

    International Nuclear Information System (INIS)

    Shimizu, Hiroshi

    1985-01-01

    Purpose: To detect the abnormality in the suspended body or reactor core supporting structures thereby improve the safety and reliability of tank type LMFBR reactors. Constitution: Upon inspection during reactor operation period, the top end of the gripper sensing rod of a fuel exchanger is abutted against a supporting bed and the position of the reactor core supporting structures from the roof slab is measured by a stroke measuring device. Then, the sensing rod is pulled upwardly to abut against the arm portion and the position is measured by the stroke measuring device. The measuring procedures are carried out for all of the sensing rods and the measured values are compared with a previously determined value at the initial stage of the reactor operation. As a result, it is possible to detect excess distortions and abnormal deformation in the suspended body or reactor core supporting structures. Furthermore, integrity of the suspended body against thermal stresses can be secured by always measuring the coolant liquid level by the level measuring sensor. (Kamimura, M.)

  8. A risk-based evaluation of LMFBR containment response under core disruptive accident conditions

    International Nuclear Information System (INIS)

    Hartung, J.; Berk, S.

    1978-01-01

    Probabilistic risk methodology is utilized to evaluate the failure modes and effects of LMFBR containment systems under Core Disruptive Accident (CDA) conditions. First, the potential causes of LMFBR containment failure under CDA conditions are discussed and categorized. Then, a simple scoping-type risk assessment of a reference design is presented to help place these potential causes of failure in perspective. The highest risk containment failure modes are identified for the reference design, and several design and research and development options which appear capable of reducing these risks are discussed. The degree to which large LMFBR containment systems must mitigate the consequences of CDA's to achieve a level of risk (for LMFBR's) comparable to the already very low risk of contemporary LWR's is explored. Based on the results of this evaluation, several suggestions are offered concerning CDA-related design goals and research and development priorities for large LMFBR's. (author)

  9. Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Design and performance of reference cores. Research project 620-25

    International Nuclear Information System (INIS)

    Barthold, W.P.; Orechwa, Y.; Su, S.F.; Hutter, E.; Batch, R.V.; Beitel, J.C.; Turski, R.B.; Lam, P.S.K.

    1979-11-01

    A parameter study was conducted to determine the interrelated effects of: loosely of tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. The effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance

  10. Experimental program on fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Languille, A.; Cecchi, P.

    1985-01-01

    During LMFBR plant operation, fuel developments are primarily concerned with the fuel pin irradiation behaviour under steady-state conditions up to high burn-up levels. But additional studies under off-normal conditions are necessary in order to assess fuel pin performance and to define operational limits. (author)

  11. Reactor transients tests for SNR fuel elements in HFR reactor

    International Nuclear Information System (INIS)

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  12. Pipe supports and anchors - LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1983-06-01

    Pipe design and support design can not be treated as separate disciplines. A coordinated design approach is required if LMFBR pipe system adequacy is to be achieved at a reasonable cost. It is particularly important that system designers understand and consider those factors which influence support train flexibility and thus the pipe system dynamic stress levels. The system approach must not stop with the design phase but should continue thru the erection and acceptance test procedures. The factors that should be considered in the design of LMFBR pipe supports and anchors are described. The various pipe support train elements are described together with guidance on analysis, design and application aspects. Post erection acceptance and verification test procedures are then discussed

  13. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  14. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Morewitz, H.A.; Johnson, R.P.; Nelson, C.T.; Vaughan, E.U.; Guderjahn, C.A.; Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1978-01-01

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m 3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m 3 ), high turbulence, and high temperature (approximately 2000 0 C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  15. Chemical factors affecting fission product transport in severe LMFBR accidents

    International Nuclear Information System (INIS)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly

  16. Neutronic characteristics simulation of LMFBR of great size

    International Nuclear Information System (INIS)

    Kim, Y.C.

    1987-09-01

    The CONRAD experimental program to be executed on the critical mockup MASURCA in Cadarache and use all the european plutonium stock. The objectives of this program are to reduce the uncertainties on important project parameters such as the reactivity value of control rods, the flux distribution to valid calcul methods and data to use for new LMFBR conception (heterogeneous axial core by example) and to resolve the neutronic control problems for a LMFBR of great size. The present study has permitted to define this program and its physical characteristics [fr

  17. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  18. Visual in-pile fuel disruption experiments

    International Nuclear Information System (INIS)

    Cano, G.L.; Ostensen, R.W.; Young, M.F.

    1978-01-01

    In a loss-of-flow (LOF) accident in an LMFBR, the mode of disruption of fuel may determine the probability of a subsequent energetic excursion. To investigate these phenomena, in-pile disruption of fission-heated irradiated fuel pellets was recorded by high speed cinematography. Instead of fuel frothing or dust-cloud breakup (as used in the SAS code) massive and very rapid fuel swelling, not predicted by analytical models, occurred. These tests support massive fuel swelling as the initial mode of fuel disruption in a LOF accident. (author)

  19. LMFBR: safety aspects

    International Nuclear Information System (INIS)

    Natta, M.

    1990-01-01

    This presentation of LMFBR safety is limited at Super Phenix reactor. After a brief description of the reactor, some details on safety systems, in normal or accidental conditions, are given. The main functions studied are: chain reaction trip, residual power evacuation, reactor containment. In heavy accident the behaviour of Super Phenix is studied which its particular characteristics and the possibilities of operators reactions. The probability of appearance and the maximum consequences of heavy accidents are given [fr

  20. Status of the LMFBR thermo- and fluid-dynamic activities at KFK

    International Nuclear Information System (INIS)

    Hoffmann, H.; Hofmann, F.; Rehme, K.

    1979-01-01

    The aim of the thermo- and fluiddynamic analysis is to determine the spatial velocity and temperature distributions in LMFBR-core elements with high accuracy. Knowledge of these data is a necessary prerequisite for determining the mechanical behavior of fuel rods and of structural material. Three cases are distinguished: Nominal geometry and steady state conditions; non-nominal geometry and quasi-steady state conditions; nominal geometry and non-steady state conditions. The present situation for the design calculations of fuel elements is based mainly on undisturbed normal operation. Most of the thermo- and fluiddynamic activities performed under the Fast Breeder Programme at KFK are related to this case. The present status of theoretical and experimental research work briefly presented in this paper, can be subdivided into the following main topics: 1. Physical and mathematical modelling of single phase rod bundle thermo- and fluiddynamics, 2. Experimental investigations on heat transfer and fluid flow in rod bundles

  1. 54Mn release from LMFBR cores

    International Nuclear Information System (INIS)

    Polley, M.V.

    1976-10-01

    The inventory of 54 Mn per unit exposed area of stainless steel in LMFBR cores may be calculated using a formula originally derived at HEDL. This treats the simultaneous production by activation and release by corrosion and diffusion of 54 Mn and assumes that the concentration at the steel surface is zero. The inventory per unit exposed area is calculated as a function of temperature and is compared with that calculated simply by assuming stoichiometric corrosion. An effective diffusion coefficient is used in the calculations which include contributions from both lattice and grain boundary diffusion. A general relationship is derived for the effective diffusion coefficient and it is shown how values may be obtained using the Levine-MacCallum and the Fisher theories of grain boundary diffusion. Values of the lattice diffusion coefficient were obtained by analysing data obtained from sodium loop experiments. The effect on the inventory due to the possible formation of a ferrite layers on the exposed surface is discussed and it is also shown how the inventory over several fuel cycles may be calculated. (U.K.)

  2. Fast reactors fuel Cycle: State in Europe

    International Nuclear Information System (INIS)

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  3. Neutronic feasibility of an LMFBR super long-life core (SLLC)

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Aoki, Katsutada; Arie, Kazuo; Tsuboi, Yasushi

    1988-01-01

    The LMFBR Super Long-Life Core (SLLC) concept has evolved over the last few years as one of the targets of innovative approaches for future FBR cost reduction. An idea for SLLC has been developed wherein the core lifetime is extended up to the plant life of about 30 years by applying the radially and axially multi-zoned core concept (the improved homogeneous core concept). The main purpose of the present study is placed on the evaluation of neutronic feasibility of the 1000 MWe class SLLC concept. The core size of the present SLLC, which is approximately 3 to 4 times as large as those of the current 1000 MWe core design, was determined by the limit of the maximum fast neutron fluence level, which was tentatively assumed to be 5-6x10 23 nvt as the target of the future development of advanced cladding materials. Emphasis is placed on the discussion of neutronic performances of cores with oxide fuels rather than metal or carbide fuels. The present study has shown that proper zoning of the different plutonium enrichment fuels at the initial core makes it possible to achieve small enough reactivity loss during 30-year burnup while satisfying mild variation of the subassembly power distributions using a higher fuel volume fraction of about 50%. Effects of important neutronic parameters on the core performances are also discussed. (orig.)

  4. Loss-of-flow test L5 on FFTF-type irradiated fuel

    International Nuclear Information System (INIS)

    Simms, R.; Gehl, S.M.; Lo, R.K.; Rothman, A.B.

    1978-03-01

    Test L5 simulated a hypothetical loss-of-flow accident in an LMFBR using three (Pu, U)O 2 fuel elements of the FTR type. The test elements were irradiated before TREAT Test L5 in the General Electric Test Reactor to 8 at. % burnup at about 40 kW/m. The preirradiation in GETR caused a fuel-restructuring range characteristic of moderate-power structure relative to the FTR. The test transient was devised so that a power burst would be initiated at incipient cladding melting after the loss of flow. The test simulation corresponds to a scenario for FTR in which fuel in high-power-structure subassemblies slump, resulting in a power excursion. The remaining subassemblies are subjected to this power burst. Test L5 addressed the fuel-motion behavior of the subassemblies in this latter category. Data from test-vehicle sensors, hodoscope, and post-mortem examinations were used to construct the sequence of events within the test zone. From these observations, the fuel underwent a predominantly dispersive event just after reaching a peak power six times nominal at, or after, scram. The fuel motion was apparently driven by the release of entrained fission-product gases, since fuel vapor pressure was deliberately kept below significant levels for the transient. The test remains show a wide range of microstructural evolution, depending on the extent of heat deposition along the active fuel column. Extensive fuel swelling was also observed as a result of the lack of the cladding restraint. The results of the thermal-hydraulic calculations with the SAS3A code agreed qualitatively with the postmortem results with respect to the extent of the melting and the dispersal of cladding and fuel. However, the calculated times of certain events did not agree with the observed times

  5. Spent fuel shipping cask accident evaluation

    International Nuclear Information System (INIS)

    Fields, S.R.

    1975-12-01

    Mathematical models have been developed to simulate the dynamic behavior, following a hypothetical accident and fire, of typical casks designed for the rail shipment of spent fuel from nuclear reactors, and to determine the extent of radioactive releases under postulated conditions. The casks modeled were the IF-300, designed by the General Electric Company for the shipment of spent LWR fuel, and a cask designed by the Aerojet Manufacturing Company for the shipment of spent LMFBR fuel

  6. Hydrogen jet recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1977-01-01

    Certain conditions may be postulated in LMFBR risk assessments for which the potential of hydrogen release to the reactor containment building needs to be evaluated. The inherent self-ignition characteristics of hydrogen jets entering the air atmosphere of the reactor containment building should be understood for such analyses. If hydrogen jets were to self-ignite (recombine) at the source where they enter the reactor containment building, then undesirable hydrogen accumulation would not occur. Therefore, experiments have been conducted investigating the phenomena associated with the recombination of hydrogen jets under conditions similar to those postulated for LMFBR studies. The data presented define the conditions required for self-ignition of the hydrogen jets

  7. Status of gamma-ray heating characterization in LMFBR

    International Nuclear Information System (INIS)

    Gold, R.

    1975-11-01

    Efforts to define gamma-ray heating in Liquid Metal Fast Breeder Reactor (LMFBR) environments have been surveyed. Emphasis is placed on both current practice for the Experimental Breeder Reactor-II (EBR-II) and future needs of the Fast Flux Test Facility (FFTF). Experimental and theoretical work are included in this preliminary survey for both high and low power environments. Current ''state-of-the-art'' accuracies and limitations are assessed. On this basis, it is concluded that a broad and sustained effort be initiated to meet requested FFTF goal accuracies. To this end, recommendations are advanced for improving the current status of gamma heating characterization and temperature measurements in LMFBR

  8. Mode of failure of LMFBR fuel pins

    International Nuclear Information System (INIS)

    Washburn, D.F.

    1975-01-01

    The objectives of the irradiation test described were to evaluate mixed-oxide fuel performance and to confirm the design adequacy of the FFTF fuel pins. After attainment of the initial objectives the irradiation of several of the original fuel pins was continued until a cladding breach occurred. The consequences of a cladding breach were evaluated by reconstituting the original 37-pin subassembly into two 19-pin subassemblies after a burnup at 50,000 MWd/MTM (5.2 a/o). The original pins were supplemented with fresh pins as necessary. Irradiation of the subassemblies was continued until a cladding breach occurred. Results are presented and discussed

  9. COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies

    International Nuclear Information System (INIS)

    Rhodes, C.A.

    1984-12-01

    This report describes the computer program COXPRO-II, which was written for performing thermal analyses of irradiated fuel assemblies in a gaseous environment with no forced cooling. The heat transfer modes within the fuel pin bundle are radiation exchange among fuel pin surfaces and conduction by the stagnant gas. The array of parallel cylindrical fuel pins may be enclosed by a metal wrapper or shroud. Heat is dissipated from the outer surface of the fuel pin assembly by radiation and convection. Both equilateral triangle and square fuel pin arrays can be analyzed. Steady-state and unsteady-state conditions are included. Temperatures predicted by the COXPRO-II code have been validated by comparing them with experimental measurements. Temperature predictions compare favorably to temperature measurements in pressurized water reactor (PWR) and liquid-metal fast breeder reactor (LMFBR) simulated, electrically heated fuel assemblies. Also, temperature comparisons are made on an actual irradiated Fast-Flux Test Facility (FFTF) LMFBR fuel assembly

  10. Numerical and modeling techniques used in the EPIC code

    International Nuclear Information System (INIS)

    Pizzica, P.A.; Abramson, P.B.

    1977-01-01

    EPIC models fuel and coolant motion which result from internal fuel pin pressure (from fission gas or fuel vapor) and/or from the generation of sodium vapor pressures in the coolant channel subsequent to pin failure in an LMFBR. The modeling includes the ejection of molten fuel from the pin into a coolant channel with any amount of voiding through a clad rip which may be of any length or which may expand with time. One-dimensional Eulerian hydrodynamics is used to model both the motion of fuel and fission gas inside a molten fuel cavity and the mixture of two-phase sodium and fission gas in the channel. Motion of molten fuel particles in the coolant channel is tracked with a particle-in-cell technique

  11. Power DRAC for rapid LMFBR deployment and consequent CO2 mitigation

    International Nuclear Information System (INIS)

    Schenewerk, W.E.

    2006-01-01

    A metallic-sodium LMFBR (Liquid Metal Fast Breeder Reactor) can control fuel temperature after a full power SCRAM using natural convection. A 3 percent nominal DRAC (Direct Reactor Auxiliary Cooling) does this without moving parts. DRAC is promoted from tertiary to primary decay heat removal, resulting in what is referred to as a Power DRAC. Power DRAC operates continuously before and after SCRAM, rejecting 3 per cent pile power. Power DRAC operability is validated by having it reject 75 MWt from a 2500 MWt pile at all times. IHX (Intermediate Heat Exchanger) is not required to be operable for primary, secondary, or tertiary core over temperature protection. Original DRAC concept (venturi DRAC) was a 1 per cent nominal tertiary decay heat removal system. Tertiary DRAC patent has expired. Power DRAC rejects 75 MWt through its own secondary sodium heat transfer loop to power a 25 MWe air Brayton cycle. Power DRAC eliminates requiring steam plant operability for decay heat removal. Intermediate sodium heat transfer system and steam plant can be optimized for maximum thermal efficiency. 2.5 GWt pile makes 1.0 GWe net power. Power DRAC maintains pile inlet and outlet temperatures while going from power to post-SCRAM conditions. Steam pressure is maintained post-SCRAM to mitigate SCRAM thermal transient. Not requiring steam plant operability for decay heat removal eases licensing and allows early LMFBR deployment. Each GWe atomic power delays Co2 doubling one week. (author)

  12. Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles

    International Nuclear Information System (INIS)

    Tuttle, R.F.; Loyalka, S.K.

    1982-12-01

    Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method

  13. Compendium of computer codes for the safety analysis of LMFBR's

    International Nuclear Information System (INIS)

    1975-06-01

    A high level of mathematical sophistication is required in the safety analysis of LMFBR's to adequately meet the demands for realism and confidence in all areas of accident consequence evaluation. The numerical solution procedures associated with these analyses are generally so complex and time consuming as to necessitate their programming into computer codes. These computer codes have become extremely powerful tools for safety analysis, combining unique advantages in accuracy, speed and cost. The number, diversity and complexity of LMFBR safety codes in the U. S. has grown rapidly in recent years. It is estimated that over 100 such codes exist in various stages of development throughout the country. It is inevitable that such a large assortment of codes will require rigorous cataloguing and abstracting to aid individuals in identifying what is available. It is the purpose of this compendium to provide such a service through the compilation of code summaries which describe and clarify the status of domestic LMFBR safety codes. (U.S.)

  14. Applications of simulation experiments in LMFBR core materials technology

    International Nuclear Information System (INIS)

    Appleby, W.K.

    1976-01-01

    The development of charged particle bombardment experiments to simulate neutron irradiation induced swelling in austenitic alloys is briefly described. The applications of these techniques in LMFBR core materials technology are discussed. It is shown that use of the techniques to study the behavior of cold-worked Type-316 was instrumental in demonstrating at an early date the need for advanced materials. The simulation techniques then were used to identify alloying elements which can markedly decrease swelling and thus a focused reactor irradiation program is now in place to allow the future use of a lower swelling alloy for LMFBR core components

  15. Influence of fuel vibration on PWR neutron noise associated with core barrel motion

    International Nuclear Information System (INIS)

    Sweeney, F.J.; March-Leuba, J.

    1984-01-01

    Ex-core neutron detector noise has been utilized to monitor core support barrel (CSB) vibrations. In order to observe long-term changes, noise signals at Sequoyah-1 were monitored continuously during the whole first fuel cycle and part of the second cycle. Results suggest that neutron noise measurements performed infrequently may not provide adequate surveillance of the CSB because it may be difficult to separate noise amplitude changes due solely to CSB motion from changes caused by fuel motion and burnup

  16. Microstructure characterizaton of advanced oxide fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Gerber, E.W.; McCord, R.B.

    1977-01-01

    Preirradiation porosity, grain size, and microcomposition characteristics are presented for selected advanced oxide (PuO 2 -UO 2 ) LMFBR developmental fuels fabricated for irradiation testing in EBR-II. Quantitative microscopy, electron microprobe analysis, and a recently developed quantitative autoradiographic technique are utilized to relate microstructure characteristics to fabrication parameters

  17. Development of a coded aperture fuel motion diagnostics system for the ACPR (UPGRADE)

    International Nuclear Information System (INIS)

    Kelly, J.G.; Stalker, K.T.

    1979-01-01

    As part of Sandia Laboratories' program to study simulated core disruptive accidents in reactor safety research, a fuel motion detection system based on coded aperture imaging is being developed for the Annular Core Pulsed Reactor (ACPR). Although fuel motion has been observed at the TREAT by the fast neutron hodoscope and with a Vidicon pinhole camera technique, the coded aperture system offers a potential for lower cost, higher spatial resolution, three dimensional imaging, and higher frame rates at lower fluences than either of the other techniques

  18. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  19. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    Forbes, I.A.; Driscoll, M.J.; Rasmussen, N.C.; Lanning, D.D.; Kaplan, I.

    1971-01-01

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238 U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  20. Blockages in LMFBR fuel assemblies: a review

    International Nuclear Information System (INIS)

    Han, J.T.; Fontana, M.H.

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions

  1. Blockages in LMFBR fuel assemblies: a review

    Energy Technology Data Exchange (ETDEWEB)

    Han, J T; Fontana, M H

    1977-01-01

    Experimental and analytical investigations performed in the United States, Germany, Great Britain, and Japan on the effects of partial flow blockages in liquid-metal fast breeder reactor fuel assemblies are reviewed and the results presented. Generalized models are developed from experimental data obtained for blockages of various sizes, shapes, and porosity, with and without pins, utilizing water and sodium as the coolant. Generally, the recirculating flow in the wake behind a blockage is a relatively effective heat transfer mechanism. Experiments where sodium boiling was made to occur behind the blockages indicate that boiling is stable for the configurations tested; these results are predicted by analytical models. Blockages at the inlet of fuel assemblies tend to have insignificant effects in the fuel assembly unless flow is reduced grossly and therefore would be detectable. Blockages in the heat generating zone have to be quite large to cause sodium boiling under normal reactor operating conditions.

  2. THE LMFBR, key to the future

    International Nuclear Information System (INIS)

    Chipman, G.L. Jr.

    1982-01-01

    This survey explains the United States prospects for utilizing the LMFBR as a mean of meeting future energy demands. Nuclear option will represent a good financial investment only when breeder will be proved as a cost-effective option. International cooperation and combined programs are very helpful to develop breeder reactor power resource

  3. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  4. Operating conditions of steam generators for LMFBR's

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, W

    1975-07-01

    Operating conditions considered to be appropriate for a LMFBR steam generator are discussed on the example of the SNR 300. The areas covered are steady state and transient conditions, upset and emergency temperature transients, and requirements due to sodium-water reactions. (author)

  5. Operating conditions of steam generators for LMFBR's

    International Nuclear Information System (INIS)

    Ratzel, W.

    1975-01-01

    Operating conditions considered to be appropriate for a LMFBR steam generator are discussed on the example of the SNR 300. The areas covered are steady state and transient conditions, upset and emergency temperature transients, and requirements due to sodium-water reactions. (author)

  6. Water confinement effects on fuel assembly motion and damping

    International Nuclear Information System (INIS)

    Brenneman, B.; Shah, S.J.; Williams, G.T.; Strumpell, J.H.

    2003-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect - the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel

  7. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  8. Irradiation effects on low-friction coatings for LMFBR applications

    International Nuclear Information System (INIS)

    Ward, A.L.; Johnson, R.N.; Guthrie, G.L.; Aungst, R.C.

    1975-11-01

    A variety of wear-resistant low-friction materials has been irradiated in the EBR-II in order to assess their reponse to LMFBR environments. Pre- and postirradiation testing and examination efforts have concentrated on candidate materials for application to the wear pads on FTR ducts (fuel, control, and reflector assemblies), and a significant result has been qualification of a proprietary detonation-gun-applied chromium carbide coating which employs a Ni Cr binder. Additional materials such as Inconel-718, Haynes-273, aluminides, and various chromium carbide/binder combinations, and other application processes such as plasma-spray, weld-overlays, diffusion bonding and explosive bonding, have also been studied. The most detailed examinations were conducted on selected chromium carbide coatings and included visual inspection, weight and dimensional measurements, metallography, electron microprobe, epoxy-lift-off, and x-ray diffraction analysis. Chromium carbide coatings applied by the detonation-gun process have demonstrated a marked superiority to those applied by plasma-spray techniques

  9. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    International Nuclear Information System (INIS)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface

  10. Seismic response and damping tests of small bore LMFBR piping and supports

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.; Lindquist, M.R.

    1984-01-01

    Seismic testing and analysis of a prototypical Liquid Metal Fast Breeder Reactor (LMFBR) small bore piping system is described. Measured responses to simulated seismic excitations are compared with analytical predictions based on NRC Regulatory Guide 1.61 and measured system damping values. The test specimen was representative of a typical LMFBR insulated small bore piping system, and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps

  11. Feasibility study on large pool-type LMFBR

    International Nuclear Information System (INIS)

    1984-01-01

    A feasibility study has been conducted from 1981 FY to 1983 FY, in order to evaluate the feasibility of a large pool-type LMFBR under the Japanese seismic design condition and safety design condition, etc. This study was aimed to establish an original reactor structure concept which meets those design conditions especially required in Japan. In the first year, preceding design concepts had been reviewed and several concepts were originated to be suitable to Japan. For typical two of them being selected by preliminary analysis, test programs were planned. In the second year, more than twenty tests with basic models had been conducted under severe conditions, concurrently analytical approaches were promoted. In the last year, larger model tests were conducted and analytical methods have been verified concerning hydrodynamic effects on structure vibration, thermo-hydraulic behaviours in reactor plena and so on. Finally the reactor structure concepts for a large pool-type LMFBR have been acknowledged to be feasible in Japan. (author)

  12. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  13. Quantitative fuel motion determination with the CABRI fast neutron hodoscope

    International Nuclear Information System (INIS)

    Baumung, K.; Augier, G.

    1991-01-01

    The fast neutron hodoscope installed at the CABRI reactor in Cadarache, France, is employed to provide quantitative fuel motion data during experiments in which single liquid-metal fast breeder reactor test pins are subjected to simulated accident conditions. Instrument design and performance are reviewed, the methods for the quantitative evaluation are presented, and error sources are discussed. The most important findings are the axial expansion as a function of time, phenomena related to pin failure (such as time, location, pin failure mode, and fuel mass ejected after failure), and linear fuel mass distributions with a 2-cm axial resolution. In this paper the hodoscope results of the CABRI-1 program are summarized

  14. Safety criteria for the future LMFBR's in France and main safety issues for the rapide 1500 project

    International Nuclear Information System (INIS)

    Justin, F.; Natta, M.; Orzoni, G.

    1985-04-01

    The main safety criteria for future LMFBR in France and the related issues for the RAPIDE 1500 project are presented and discussed. The evolutions with respect to SUPERPHENIX options and requirements are emphasized, in particular for the concerns of the prevention of core melt accidents, fuel damage limits and related required performances of the protection system, since one main option is not to consider whole core melt accidents in the containment design. One shall also point out the advantages of some mitigating features which were nevertheless added in the containment design, although without any explicit consideration for core melt accidents

  15. Experimental motion behavior of submerged fuel racks

    International Nuclear Information System (INIS)

    Ellingson, F.J.; Wachter, W.; Moscardini, R.L.

    1989-01-01

    The design of submerged nuclear storage racks for light water reactor nuclear fuel has undergone a change from fixed position to a free-standing arrangement. Seismic analysis of the motion of the free-standing racks requires three-dimensional computer modeling that uses past studies of hydrodynamic mass and hydraulic coupling for rigid flat plates. This paper describes the results of experiments that show a reduced value for hydrodynamic mass and coupling forces when flexible elements are involved. To support this work, experiments were run with two full-scale welded box sections submerged in a water tank. The preliminary results indicate reduction in hydrodynamic mass due to box wall flexibility, a lack of impacting of box wall to box wall over the entire frequency range, and large hydrodynamic coupling forces under all test conditions. It is hypothesized that the coupling forces are sufficiently strong to prevent rotational motion of one rack when surrounded by adjacent racks

  16. Fabrication details for wire wrapped fuel assembly components

    International Nuclear Information System (INIS)

    Bosy, B.J.

    1978-09-01

    Extensive hydraulic testing of simulated LMFBR blanket and fuel assemblies is being carried out under this MIT program. The fabrication of these test assemblies has involved development of manufacturing procedures involving the wire wrapped pins and the flow housing. The procedures are described in detail in the report

  17. Fuel pin transient behavior technology applied to safety analyses. Presentation to AEC Regulatory Staff 4th Regulatory Briefing on safety technology, Washington, D.C., November 19--20, 1974

    International Nuclear Information System (INIS)

    1974-11-01

    Information is presented concerning LMFBR fuel pin performance requirements and evaluation; fuels behavior codes with safety interfaces; performance evaluations; ex-reactor materials and simulation tests; models for fuel pin failure; and summary of continuing fuels technology tasks. (DCC)

  18. Failed fuel detection and location of LMFBR

    International Nuclear Information System (INIS)

    Mimoto, Yasuhide; Hukuda, Tooru; Nakamoto, Koichiro

    1974-01-01

    This is a summary report on Failed Fuel Detection and Location Methods of liquid metal cooled fast breeder reactors, and describes an outline of related research and development conducted by PNC. (auth.)

  19. Potential of high speed x-ray cinematography as a fuel motion diagnostic for safety test facilities

    International Nuclear Information System (INIS)

    Stalker, K.T.; Choate, L.M.; Posey, L.D.

    1979-01-01

    Experiments have been performed which indicate the feasibility of using X-ray cinematography as a diagnostic tool for monitoring fuel motion in large pin bundle advanced reactor safety tests. This capability was demonstrated by imaging motion in a 37-pin bundle of simulated fuel elements at a data rate of 400 pictures per second using an active detector system coupled with a 10 MeV accelerator. 5 refs

  20. Fuel-motion diagnostics for PFR/TREAT experiments

    International Nuclear Information System (INIS)

    DeVolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.

    1984-01-01

    In all the transients in the PFR/TREAT series, fuel motion had been monitored by the fast-neutron hodoscope. This paper treats the enhancements in hodoscope operation and data analysis since the start of the PFR/TREAT tests. The hodoscope has a maximum viewing height of 1.2 m. Data collection intervals for the series have been in the order of 1 ms, depending on the duration of the transient. Mass-displacement resolutions of about 0.1 g are achievable for the single-pin tests and 1 g for 7-pin tests. The hodoscope system can accommodate the full dynamic range of power

  1. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  2. A review of ANL base technology studies in support of the U.S. LMFBR vibration program

    International Nuclear Information System (INIS)

    Wambsganss, M.W.; Chen, S.S.; Mulcahy, T.M.; Shin, Y.S.

    1977-01-01

    Argonne National Laboratory (ANL) is the center for base technology studies of flow induced vibration for the U.S. LMFBR Program. This paper reviews and summarizes published results, reports on the status of ongoing programs, and discusses future needs as outlined in the U.S. LMFBR Vibrations Program Plan. (author)

  3. A review of ANL base technology studies in support of the U.S. LMFBR vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Wambsganss, M W; Chen, S S [Components Technology Division, Argonne National Laboratory, Argonne, IL (United States); Mulcahy, T M; Shin, Y S

    1977-12-01

    Argonne National Laboratory (ANL) is the center for base technology studies of flow induced vibration for the U.S. LMFBR Program. This paper reviews and summarizes published results, reports on the status of ongoing programs, and discusses future needs as outlined in the U.S. LMFBR Vibrations Program Plan. (author)

  4. Reprocessing of irradiated fuel: pros and cons

    International Nuclear Information System (INIS)

    Lebedev, O.G.; Novikov, V.M.

    1991-01-01

    The acceptable-safety nuclear reactors (APWR, LMFBR, MSBR, MSCR) can be provided by the enrichment industry and by plutonium reserves. But steady accumulation of spent fuel will inevitably make to return to the problems of fuel recycle. PUREX-processing increases a danger of radionuclides spreading due to the presence of large buffer tanks. Using of compact fluoride - volatility process will sharply reduce a nuclide leakage likewise permit to reprocess a fuel with a burnup as high as possible. Success of a powerful robots development give an opportunity to design a fluoride-volatility plant twice cheaper than PUREX. (author)

  5. Effect of reactor size on the breeding economics of LMFBR blankets

    International Nuclear Information System (INIS)

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's

  6. SAVIT: a dymanic model to predict vibratory motion within a spent fuel shipping cask; rail car system

    International Nuclear Information System (INIS)

    Fields, S.R.

    1978-03-01

    A dynamic model of a spent fuel shipping cask-rail car system has been developed to provide estimates of the vibratory motion of LWR spent fuel assemblies during transport and to estimate the effects of this motion on the condition of the assemblies when they arrive at receiving and storage facilities. Results of preliminary test computations are presented to illustrate the capabilities of the model

  7. LMFBR subassembly response to local pressure loadings: an experimental approach

    International Nuclear Information System (INIS)

    Marciniak, T.J.; Ash, J.E.; Marchertas, A.H.; Cagliostro, D.J.

    1975-01-01

    An experimental program to determine the response of LMFBR-type subassemblies to local subassembly accidents caused by pressure loadings is described. Some results are presented and compared with computer calculations

  8. Water storage of liquid-metal fast-breeder-reactor fuel

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1982-01-01

    The purpose of this paper is to present a general overview of a concept proposed for receiving and storing liquid metal fast breeder reactor (LMFBR) spent fuel. This work was done as part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL). The CFRP has as its major objective the development of technology for reprocessing advanced nuclear reactor fuels. The program plans that research and development will be carried through to a sufficient scale, using irradiated spent fuel under plant operating conditions, to establish a basis for confident projection of reprocessing capability to support a breeder industry

  9. Gas cooled fast breeder reactors using mixed carbide fuel

    International Nuclear Information System (INIS)

    Kypreos, S.

    1976-09-01

    The fast reactors being developed at the present time use mixed oxide fuel, stainless-steel cladding and liquid sodium as coolant (LMFBR). Theoretical and experimental designing work has also been done in the field of gas-cooled fast breeder reactors. The more advanced carbide fuel offers greater potential for developing fuel systems with doubling times in the range of ten years. The thermohydraulic and physics performance of a GCFR utilising this fuel is assessed. One question to be answered is whether helium is an efficient coolant to be coupled with the carbide fuel while preserving its superior neutronic performance. Also, an assessment of the fuel cycle cost in comparison to oxide fuel is presented. (Auth.)

  10. 3-D modeling and motion simulation of fuel rod-replacing equipment

    International Nuclear Information System (INIS)

    Ding Jie; Zhu Libing

    2010-01-01

    In this paper, the process of 3-D modeling and motion simulation of fuel rod-replacing equipment using SolidWorks is described, and the application of SolidWorks in manufacturing and design improvement is discussed. Complexity of the manufacturing is reduced and reliability of the design is improved. (authors)

  11. Spent and fresh fuel shipping cask considerations

    International Nuclear Information System (INIS)

    Shappert, L.B.; Unger, W.E.; Freedman, J.M.

    1975-01-01

    A program to provide basic information for cask design and safety has been conducted for over ten years at Oak Ridge National Laboratory. Principal problem areas in Liquid Metal Fast Breeder Reactor (LMFBR) casks are identified as heat transfer, structures and containment, criticality and shielding. Solutions in the problem areas, as well as the need for future work, are addressed by describing an LMFBR conceptual design cask. A new program, which is underway at Sandia Laboratories, Albuquerque, New Mexico, is aimed at producing technology useful to industry and government. Technologies are being developed in areas of hazards analysis, heat transfer, shielding, structures and containment, and spent fuel characterization, substantiated by hot laboratory verification. Particular emphasis will be placed on establishing qualification tests based on accident experience. Handling requirements and limitations are discussed. (auth)

  12. Materials engineering issues, LMFBR steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Challenger, K.D.; Day, R.A.; Dutina, D.; Ring, P.J.

    1976-01-01

    Selection of 2-1/4 Cr-1 Mo as the reference construction material for LMFBR steam generators assumed a balance between its known intrinsic properties and our ability to accommodate certain of its deficiencies through design allowance. A comprehensive development program was undertaken to define base data needed, confirm assumptions made relative to desired performance, minimize defects by optimization of melting, fabrication and heat treatment processes, and prepare specifications for purchasing reactor components

  13. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-01-01

    This paper focuses on the use and potential of oxide fuel systems for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Examples are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  14. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-04-01

    This paper focuses on the use and potential of oxide fuel system for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Exampled are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  15. LMFBR safety experiment facility planning and analysis

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Scott, J.H.

    1976-01-01

    In the past two years considerable effort has been placed on the planning and design of new facilities for the resolution of LMFBR safety issues. The paper reviews the key issues, the experiments needed to resolve them, and the design aspects of proposed new facilities. In addition, it presents a decision theory approach to selecting an optimal combination of modified and new facilities

  16. Fuel exchanger in FBR type reactor

    International Nuclear Information System (INIS)

    Shinden, Kazuhiko; Tanaka, Osamu.

    1990-01-01

    The present invention concerns a fuel exchanger for exchanging fuels in an LMFBR type reactor using liquid metals as coolants. An outer gripper cylinder rotating device for rotating an outer gripper cylinder that holds a gripper is driven, to lower the gripper driving portion and the outer gripper cylinder, fuels are caught by the finger at the top end of the outer gripper cylinder and elevated to extract the fuels from the reactor core. Then, the gripper driving portion casing and the outer gripper cylinder are rotated to rotate the fuels caught by the gripper. Subsequently, the gripper driving portion and the outer gripper cylinder are lowered to charge the fuels in the reactor core. This can directly shuffle the fuels in the reactor core without once transferring the fuels into a reactor storing pot and replacing with other fuels, thereby shortening the shuffling time. (I.N.)

  17. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Pierce, R.D.; Pedersen, D.R.; Ariman, T.

    1977-01-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. Thermal analyses were performed with the Argonne-modified version fo the general heat transfer code THTB, based on the instantaneous addition of 3200 0 K molten fuel with a decay heat of 9 W/gm and 1920 0 K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The stress analysis showed that the Inconel vessel would not fail from the pressure loading, it was also shown that brittle fracture of the tungsten liner from thermal gradients is unlikely. Therefore, the melt-down cup meets the structural design requirements. (Auth.)

  18. Present status of uranium-plutonium mixed carbide fuel development for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo; Suzuki, Yasufumi.

    One Oarai characteristic of a carbide fuel is that its doubling time is about 13 years which is only about half as long as that of an oxide fuel. The development of carbide fuels in the past ten years has been truly remarkable. Especially, through the new fuel development program initiated in 1974 in the United States, success has been achieved with respect to He- and Na-bond fuels in obtaining a 16 a/o burning rate without damage to cladding tubes. In 1984 at FFTF, a radiation of a fuel assembly consisting 91 fuel pins is contemplated. On the other hand, in Japan, in 1974, a Fuel Research Wing specializing in the study of carbide fuels was constructed in the Oarai Laboratory of the Atomic Energy Research Institute and in the fall of 1982, was successful in fabricating two carbide fuel pins having different chemical compositions

  19. Use of fuel failure correlations in accident analysis

    International Nuclear Information System (INIS)

    O'Dell, L.D.; Baars, R.E.; Waltar, A.E.

    1975-05-01

    The MELT-III code for analysis of a Transient Overpower (TOP) accident in an LMFBR is briefly described, including failure criteria currently applied in the code. Preliminary results of calculations exploring failure patterns in time and space in the reactor core are reported and compared for the two empirical fuel failure correlations employed in the code. (U.S.)

  20. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  1. Flow-induced vibration in LMFBR steam generators: a state-of-the-art review

    International Nuclear Information System (INIS)

    Shin, Y.S.; Wambsganss, M.W.

    1975-05-01

    This state-of-the-art review identifies and discusses existing methods of flow-induced vibration analysis applicable to steam generators, their limitations, and base-technology needs. Also included are discussions of five different LMFBR steam-generator configurations and important design considerations, failure experiences, possible flow-induced excitation mechanisms, vibration testing, and available methods of vibration analysis. The objectives are to aid LMFBR steam-generator designers in making the best possible evaluation of potential vibration in steam-generator internals, and to provide the basis for development of design guidelines to avoid detrimental flow-induced vibration

  2. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  3. Proceedings of the third specialist meeting on sodium/fuel interaction in fast reactors

    International Nuclear Information System (INIS)

    1976-01-01

    This specialist meeting, sponsored by the OECD-NEA and organized by the Power Reactor and Nuclear Fuel Development Corporation, was attended by 56 delegates from 6 countries and the CEC (Commission of the European Communities). The purpose of the meeting was to bring together and discuss in depth the Fuel-Sodium Interaction, a phenomenon of major importance in the assessment of the Hypothetical Core Disruptive Accident in the Liquid Metal Fast Breeder Reactor. The meeting was essentially a follow-up of an earlier meeting held at Ispra in December 1973. In all, 29 papers were presented, covering the following topics: 1. Current perspective on sodium-fuel interaction in LMFBR safety; 2. Basic experimental and theoretical studies including other materials; 3. In-pile and out-of-pile experimental studies on sodium-fuel interaction; 4. Theoretical models for the interpretation of experiments and for application to reactor situations. The meeting is considered useful in narrowing down the chain of events necessary to get energetic interaction, large work potential, but many points are being clarified on the gap between the basic vapor explosions and the real fuel sodium interactions in the HCDA scenario of LMFBR. Finally another meeting of the same nature as this one has been recommended

  4. Analysis of pressure wave transients and seismic response in LMFBR piping systems using the SHAPS code

    International Nuclear Information System (INIS)

    Zeuch, W.R.; Wang, C.Y.

    1985-01-01

    This paper presents some of the current capabilities of the three-dimensional piping code SHAPS and demonstrates their usefulness in handling analyses encountered in typical LMFBR studies. Several examples demonstrate the utility of the SHAPS code for problems involving fluid-structure interactions and seismic-related events occurring in three-dimensional piping networks. Results of two studies of pressure wave propagation demonstrate the dynamic coupling of pipes and elbows producing global motion and rigorous treatment of physical quantities such as changes in density, pressure, and strain energy. Results of the seismic analysis demonstrate the capability of SHAPS to handle dynamic structural response within a piping network over an extended transient period of several seconds. Variation in dominant stress frequencies and global translational frequencies were easily handled with the code. 4 refs., 10 figs

  5. Cumulative damage fraction design approach for LMFBR metallic fuel elements

    International Nuclear Information System (INIS)

    Johnson, D.L.; Einziger, R.E.; Huchman, G.D.

    1979-01-01

    The cumulative damage fraction (CDF) analytical technique is currently being used to analyze the performance of metallic fuel elements for proliferation-resistant LMFBRs. In this technique, the fraction of the total time to rupture of the cladding is calculated as a function of the thermal, stress, and neutronic history. Cladding breach or rupture is implied by CDF = 1. Cladding wastage, caused by interactions with both the fuel and sodium coolant, is assumed to uniformly thin the cladding wall. The irradiation experience of the EBR-II Mark-II driver fuel with solution-annealed Type 316 stainless steel cladding provides an excellent data base for testing the applicability of the CDF technique to metallic fuel. The advanced metal fuels being considered for use in LMFBRs are U-15-Pu-10Zr, Th-20Pu and Th-2OU (compositions are given in weight percent). The two cladding alloys being considered are Type 316 stainless steel and a titanium-stabilized Type 316 stainless steel. Both are in the cold-worked condition. The CDF technique was applied to these fuels and claddings under the assumed steady-state operating conditions

  6. Universal high-temperature heat treatment furnace for FBR mixed uranium and plutonium carbide fuel

    International Nuclear Information System (INIS)

    Handa, Muneo; Takahashi, Ichiro; Watanabe, Hitoshi

    1978-10-01

    A universal high-temperature heat treatment furnace for LMFBR advanced fuels was installed in Plutonium Fuel Laboratory, Oarai Research Establishment. Design, construction and performance of the apparatus are described. With the apparatus, heat treatment of the fuel under a controlled gas atmosphere and quenching of the fuel with blowing helium gas are possible. Equipment to measure impurity gas release of the fuel is also provided. Various plutonium enclosure techniques, e.g., a gas line filter with new exchange mechanics, have been developed. In performance test, results of the enclosure techniques are described. (author)

  7. Implications of plutonium utilization strategies on the transition from a LWR economy to a breeder economy

    International Nuclear Information System (INIS)

    Newman, D.F.; Fleischman, R.M.; White, M.K.

    1977-02-01

    The plutonium interface between the LWR and LMFBR fuel cycles is examined for typical nuclear growth projections both with and without plutonium recycle in LWRs. In order to guarantee a fuel supply for projected LMFBR growth rates, significant multiple Pu recycle in LWRs will not be possible. However, about 78% of the benefit of multiple plutonium recycle between now and the turn of the century is realized by one recycle and then stockpiling spent MOX for the LMFBR. LMFBR reprocessing schecules are estimated based on accumulation of reprocessing load. These schedules are used to estimate the amount of plutonium recovered from LMFBR fuels and determine the residual LWR plutonium required to meet LMFBR demand. The stockpile of LWR produced plutonium in spent MOX is sufficient to fuel the LMFBR until commercial LMFBR reprocessing can be justified. After that time, recycle of plutonium in LWRs will be significantly limited by a continuing LMFBR demand for LWR plutonium due to the projected high LMFBR growth rate. LWR reprocessing requirements are estimated for the assumed condition that LWR plutonium recycle is not approved, but the LMFBR is still pursued as an energy option. The uncertainties presented by this condition are addressed qualitatively. However, in our judgment these uncertainties in the plutonium market would likely delay LMFBR growth to levels significantly below current projections

  8. German position paper on structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Angerbauer, A.; Link, F.

    1983-01-01

    During the design period of the German LMFBR, the SNR-300, extensive work had been done in the field of elastic and inelastic analysis. Furthermore, special design rules have been developed. A review of these activities and their state-of-the art is outlined in this paper

  9. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  10. Safety problems related to microheterogeneities in physically mixed oxide fuels

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.; Vanhellemont, G.

    1976-01-01

    The safety aspects of microheterogeneities in LMFBR mixed oxide fuel are reviewed from the point of view of the pin behaviour dynamic study, the fabrication and the quality control. The paper emphasizes some significant parameters in transient conditions, the prevention means in the fabrication process and the analysis methods for the control

  11. LMFBR operational safety: the EBR-II experience

    International Nuclear Information System (INIS)

    Sackett, J.I.; Allen, N.L.; Dean, E.M.; Fryer, R.M.; Larson, H.A.; Lehto, W.K.

    1978-01-01

    The mission of the Experimental Breeder Reactor II (EBR-II) has evolved from that of a small LMFBR demonstration plant to a major irradiation-test facility. Because of that evolution, many operational-safety issues have been encountered. The paper describes the EBR-II operational-safety experience in four areas: protection-system design, safety-document preparation, tests of off-normal reactor conditions, and tests of elements with breached cladding

  12. MONJU fuel pin performance analysis

    International Nuclear Information System (INIS)

    Kitagawa, H.; Yamanaka, T.; Hayashi, H.

    1979-01-01

    Monju fuel pin has almost the same properties as other LMFBR fuel pins, i.e. Phenix, PFR, CRBR, but would be irradiated under severe conditions: maximum linear heat rate of 381 watt/cm, hot spot cladding temperature of 675 deg C, peak burnup of 131,000 MWd/t, peak fluence (E greater than 0.1 MeV) of 2.3 10 23 n/cm 2 . In order to understand in-core performance of Monju fuel pin, its thermal and mechanical behaviour was predicted using the fast running performance code SIMPLE. The code takes into account pellet-cladding interaction due to thermal expansion and swelling, gap conductance, structural changes of fuel pellets, fission product gas release with burnup and temperature increase, swelling and creep of fuel pellets, corrosion of cladding due to sodium flow and chemical attack by fission products, and cumulative damage of the cladding due to thermal creep

  13. Input parameters to codes which analyze LMFBR wire-wrapped bundles

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chan, Y.N.; Todreas, N.E.

    1980-12-01

    This report provides a current summary of recommended values of key input parameters required by ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  14. LMFBR Emergency Deployment Assuming 45 year Time-Delay Excess CO2 Removal

    International Nuclear Information System (INIS)

    Schenewerk, William Ernest

    2008-01-01

    Atmospheric CO 2 is presently increasing 2.25% per year in proportion to 2.25% per year exponential fossil fuel consumption increase. CO 2 removal is modeled as being proportional to 45-year-earlier CO 2 amount above 280 ppmV-C. This is: Exp (-0.0225/year * 45 years) = 0.36 fraction CO 2 removed from anthropological emissions, apparently by seawater. LMFBRs use 15 year doubling time. Deploying 30000 GWe atomic power by year-2080 results in CO 2 doubling year-2065 if World primary energy consumption continues increasing 2.25% per year. CO 2 remains roughly twice pre-industrial until year-2100. Beginning year-2080, CO 2 declines at 2.25% per year. CO 2 will presumably decline back to roughly the year-2000 value by year-2200 if the 45-year-delay sink remains effective. LMFBR and GCFR fleet expands to 30000 GWe by 2080. 1000 GWe LWR fleet consumes 5 Mt HM (Heavy Metal). Breeder first cores require 1 Mt HM. (author)

  15. Assessment of inspectability of LMFBR designs. Final report

    International Nuclear Information System (INIS)

    1981-09-01

    This two-volume report provides a comprehensive review of the inspectability of specific portions of loop- and pool-type LMFBR (1000-MWe) designs selected by EPRI. The designs were developed during the mid to late 1970s by three independent design teams (General Electric Co., Rockwell International, and Westinghouse) under the sponsorship of DOE (formerly ERDA) and EPRI. The requirements for normal, contingency, and post-repair inspections, addressed in this report, were established from Draft 12 of the ASME Boiler and Pressure Vessel Code, Section XI Division 3, issued in September 1979. These requirements, the intrinsic characteristics of the designs, the environmental (radiation, thermal, and atmospheric) aspects, and the available (present and near-term) inspection techniques, formed the basis for assessing the selected portions of the design or (1) accessibility, (2) feasibility, (3) practicality, and (4) costs to perform the above-specified inspections. Changes and additions fly ash has been as a concrete additive; however, extensive pilot scale development is underway to advance ash use in the TVA region in such areas as mineral and magnetite recovery, and mineral wool insulation. Recommended studies include: (1) the feasibility of converting existing wet fly d by the fuels include: residential (which includes residential and commercial), elthodology will be developed and verified in Phase II

  16. Synthesis of clad motion experiments interpretation: codes and validation

    International Nuclear Information System (INIS)

    Papin, J.; Fortunato, M.; Seiler, J.M.

    1983-04-01

    This communication deals with clad melting and relocation phenomena related to LMFBR safety analysis of loss of flow accidents. We present: - the physical models developed at DSN/CEN Cadarache in single channel and bundle geometry. The interpretation with these models of experiments performed by the STT (CEN Grenoble). It comes out that we have now obtained a good understanding of the involved phenomena in single channel geometry. On the other hand, further studies are necessary for a better knowledge of clad motion phenomena in bundle cases with conditions close to reactor ones

  17. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  18. Acoustics and voiding dynamics during SLSF simulations of LMFBR undercooling transients

    International Nuclear Information System (INIS)

    Anderson, T.T.; Kuzay, T.M.; Marr, W.W.; Miles, K.J.; Pedersen, D.R.; Thompson, D.H.; Wilson, R.E.

    1978-01-01

    The SLSF is the largest U.S. in-reactor test vehicle for steady-state and transient experiments in an environment typical of a LMFBR core. The SLSF experiment program, sponsored by the Department of Energy, contributes to the LMFBR safety assurance program by providing data on key phenomena that occur during postulated reactor accidents. This paper describes completed SLSF experiments, in-core instrumentation used, and methods of data interpretation to determine sodium boiling and voiding dynamics. Boiling inception is shown to be identifiable from several types of in-core instruments. Location of the boiling front and void growth derived from experimental data are compared with analytical predictions. These and other data form the basis to improve understanding of accidents and to validate or guide the development of accident analysis methods

  19. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  20. Shielding plug for LMFBR type reactors

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1979-01-01

    Purpose: To enable effective removal of liquid metals deposited, if any, in the gaps between a rotary plug and a fixed plug in LMFBR type reactors. Constitution: A plate incorporated with a heater and capable of projecting in a gap between a rotary plug and a fixed plug, and a scraper connected in perpendicular to it are provided to the rotary plug. Solidified liquid metals such as sodium deposited in the gap are effectively removed by the heating with the heater and the scraping action due to the rotation. (Horiuchi, T.)

  1. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Cunningham, G.W.

    1977-01-01

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  2. Future development LMFBR-steam generators SNR2

    International Nuclear Information System (INIS)

    Essebaggers, J.; Pors, J.G.

    1975-01-01

    The development work for steam generators for large LMFBR plants by Neratoom will be reviewed consisting of: 1. Development engineering information. 2. Concept select studies followed by conceptual designs of selected models. 3. Development manufacturing techniques. 4. Detail design of a prototype unit. 5. Testing of sub-constructions for prototype steam generators. In this presentation item 1 and 2 above will be high lighted, identifying the development work for the SNR-2 steam generators on short term basis. (author)

  3. Water tests for determining post voiding behavior in the LMFBR

    International Nuclear Information System (INIS)

    Hinkle, W.D.

    1976-06-01

    The most serious of the postulated accidents considered in the design of the Liquid Metal Cooled Fast Breeder Reactor (LMFBR) is the Loss of Pipe Integrity (LOPI) accident. Analysis models used to calculate the consequences of this accident assume that once boiling is initiated film dryout occurs in the hot assembly as a result of rapid vapor bubble growth and consequent flow stoppage or reversal. However, this assumption has not been put to any real test. Once boiling is initiated in the hot assembly during an LMFBR LOPI accident, a substantial gravity pressure difference would exist between this assembly and other colder assemblies in the core. This condition would give rise to natural circulation flow boiling accompanied by pressure and flow oscillations. It is possible that such oscillations could prevent or delay dryout and provide substantial post-voiding heat removal. The tests described were conceived with the objective of obtaining basic information and data relating to this possibility

  4. Confirmatory simulation of safety and operational transients in LMFBR systems

    International Nuclear Information System (INIS)

    Guppy, J.G.; Agrawal, A.K.

    1978-01-01

    Operational and safety transients (anticipated, unlikely, or extremely unlikely) that may originate anywhere in a liquid-metal fast breeder reactor (LMFBR) system must be adequately simulated to assist in safety evaluation and plant design efforts. An advanced thermohydraulic transient code, the Super System Code (SSC), is described that may be used for confirmatory safety evaluations of plant-wide events, such as assurance of adequate decay heat removal capability under natural circulation conditions. Results obtained with SSC illustrating the degree of modeling detail present in the code as well as the computing efficiency are presented. A version of the SSC code, SSC-L, applicable to any loop-type LMFBR design, has been developed at Brookhaven. The scope of SSC-L is to enable the simulation of all plant-wide transients covered by Plant Protection System (PPS) action, including sodium pipe rupture and coastdown to natural circulation conditions. The computations are stopped when loss of core integrity (i.e., clad melting temperature exceeded) is indicated

  5. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.

    1979-01-01

    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  6. Fuel-coolant interaction-phenomena under prompt burst conditions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2 (190 MPa peak).

  7. A study of sodium-cooled fast breeder reactor with thorium blanket for supply of U-233 to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Yoshida, H.; Nishimura, H.; Osugi, T.

    1978-08-01

    Symbiotic energy system between fast breeder reactor and thermal reactor would have a potential merit for nuclear proliferation problem. And when using HTGR as the thermal reactor in the system, the energy system appears to be promising as an energy system self-sufficient in fuels, which can generate both electricity and high temperature process heat. In the system the fast breeder reactor has to supply sufficient amount of fissile plutonium to keep the reactor going, and also produce U-233 necessary to the associated U-233 fuelled process heat production HTGR. Three types of LMFBR concepts with thorium blanket, conventional homogeneous core LMFBR, and axial and radial parfait heterogeneous core LMFBRs, have been investigated to find out suitable configurations of LMFBR for supply of U-233 to the HTGR with relatively high conversion ratio of 0.85, in the symbiotic energy system between LMFBR and HTGR. The investigation on LMFBR has been made on fuel sufficiency of the system, inherent safety such as sodium-void and Doppler coefficients, and fuel cycle cost. The followings were revealed; (1) Conventional homogeneous core LMFBR with thorium radial blanket well satisfies the condition of fuel sufficiency, if adequate radial blanket thickness is chosen. However, the sodium-void coefficient and fuel cycle cost are inferior to the other concepts. (2) Axial parfait heterogeneous core LMFBR can be regarded as one of the best LMFBR concepts installed in the symbiotic energy system, from the viewpoints of fuel sufficiency, inherent safety and fuel cycle cost. However, further investigations should be needed on reliability and operationability of the concept. (3) Radial parfait heterogeneous core LMFBR seems inadequate as the LMFBR in the system, because the configurations based on this concept does not satisfy plutonium and U-233 breedings, simultaneously. This LMFBR concept, however, has excellent breeding performance in the internal radial blanket. So further

  8. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  9. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  10. A critical experimental study of integral physics parameters in simulated LMFBR meltdown cores

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.; Wade, D.C.; Bucher, R.G.; Smith, D.M.; McKnight, R.D.; Lesage, L.G.

    1978-01-01

    Integral physics parameters of several representative, idealized meltdown LMFBR configurations were measured in mockup critical assemblies on the ZPR-9 reactor at Argonne National Laboratory. The experiments were designed to provide data for the validation of analytical methods used in the neutronics part of LMFBR accident analysis. Large core distortions were introduced in these experiments (involving 18.5% core volume) and the reactivity worths of configuration changes were determined. The neutronics parameters measured in the various configurations showed large changes upon core distortion. Both diffusion theory and transport theory methods were shown to mispredict the experimental configuration eigenvalues. In addition, diffusion theory methods were shown to result in a non-conservative misprediction of the experimental configuration change worths. (author)

  11. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  12. Studies on modeling to failed fuel detection system response in LMFBR

    International Nuclear Information System (INIS)

    Miyazawa, T.; Saji, G.; Mitsuzuku, N.; Hikichi, T.; Odo, T.; Rindo, H.

    1981-05-01

    Failed Fuel Detection (FFD) system with Fission Products (FP) detection is considered to be the most promissing method, since FP provides direct information against fuel element failure. For designing FFD system and for evaluating FFD signals, some adequate FFD signal response to fuel failure have been required. But few models are available in nowadays. Thus Power Reactor and Nuclear Fuel Development Corporation (PNC) had developed FFD response model with computer codes, based on several fundamental investigations on FP release and FP behavior, and referred to foreign country experiences on fuel failure. In developing the model, noble gas and halogen FP release and behavior were considered, since FFD system would be composed of both cover gas monitoring and delayed neutron monitoring. The developed model can provide typical fuel failure response and detection limit which depends on various background signals at cover gas monitoring and delayed neutron monitoring. According to the FFD response model, we tried to assume fuel failure response and detection limit at Japan experimental fast reactor ''JOYO''. The detection limit of JOYO FFD system was estimated by measuring the background signals. Followed on the studies, a complete computer code has been now made with some improvement. On the paper, the details of the model, out line of developed computer code, status of JOYO FFD system, and trial assumption of JOYO FFD response and detection limit. (author)

  13. Design approaches to achieve competitive LMFBR capital costs

    International Nuclear Information System (INIS)

    Arnold, W.H.; Ehrman, C.S.; Sharbaugh, J.E.; Young, W.H.

    1982-01-01

    Through analysis of the essential functional elements of an LMFBR, numerous ways were found to simplify system design, reduce the size of components and equipment, and eliminate some components and systems. The projected capital cost per net kW of this design is competitive with that of current PWRs. RandD programs and the construction and operation of CRBRP now are needed to prove out the features of this new design

  14. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  15. Measurement of Quasi-periodic Oscillating Flow Motion in Simulated Dual-cooled Annular Fuel Bundle

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    In order to increase a significant amount of reactor power in OPR1000, KAERI (Korea Atomic Energy Research Institute) has been developing a dual-cooled annular fuel. The dual-cooled annular fuel is simultaneously cooled by the water flow through the inner and the outer channels. KAERI proposed the 12x12 dual-cooled annular fuel array which was designed to be structurally compatible with the 16x16 cylindrical solid fuel array by maintaining the same array size and the guide tubes in the same locations, as shown in Fig. 1. In such a case, due to larger outer diameter of dual-cooled annular fuel than conventional solid fuel, a P/D (Pitch-to-Diameter ratio) of dual cooled annular fuel assembly becomes smaller than that of cylindrical solid fuel. A change in P/D of fuel bundle can cause a difference in the flow mixing phenomena between the dual-cooled annular and conventional cylindrical solid fuel assemblies. In this study, the rod bundle flow motion appearing in a small P/D case is investigated preliminarily using PIV (Particle Image Velocimetry) for dual-cooled annular fuel application

  16. Specialists' meeting on maintenance and repair of LMFBR steam generators. Summary report

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topic areas were discussed by participants: National review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; Research and Development work on maintenance and repair; Experience on steam generator maintenance and repair. During the meeting papers were presented by the participants on behalf of their countries and organizations. A final discussion session was held and summaries, general conclusions and recommendations were approved by consensus

  17. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  18. Nuclear fuel shipping inspection device

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Hada, Koji.

    1988-01-01

    Purpose: To provide an nuclear fuel shipping inspection device having a high detection sensitivity and capable of obtaining highly reliable inspection results. Constitution: The present invention concerns a device for distinguishing a fuel assembly having failed fuel rods in LMFBR type reactors. Coolants in a fuel assembly to be inspected are collected by a sampling pipeway and transferred to a filter device. In the filter device, granular radioactive corrosion products (CP) in the coolants are captured, to reduce the background. The coolants, after being passed through the filter device, are transferred to an FP catching device and gamma-rays of iodine and cesium nuclides are measured in FP radiation measuring device. Subsequently, the coolants transferred to a degasing device to separate rare gas FP in the coolants from the liquid phase. In a case if rare gas fission products are detected by the radiation detector, it means that there is a failed fuel rod in the fuel assembly to be inspected. Since the CP and the soluble FP are separated and extracted for the radioactivity measurement, the reliability can be improved. (Kamimura, M.)

  19. Experience related to the safety of advanced LMFBR fuel elements

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1975-07-01

    Experiments and experience relative to the safety of advanced fuel elements for the liquid metal fast breeder reactor are reviewed. The design and operating parameters and some of the unique features of advanced fuel elements are discussed breifly. Transient and steady state overpower operation and loss of sodium bond tests and experience are discussed in detail. Areas where information is lacking are also mentioned

  20. Fuel- and clad-motion diagnostics: licensing needs

    International Nuclear Information System (INIS)

    Bari, R.A.; Meyer, J.F.

    1976-01-01

    The paper addresses the current state of uncertainty with respect to fuel and clad motion during a hypothetical core-disruptive accident in a liquid metal fast breeder reactor as it relates to licensing needs. It should be noted that the paper does not represent an official position of the U.S. Nuclear Regulatory Commission, but rather, represents, in part, opinions and conclusions of its contractors. Particular attention is given to the needs for an assessment of the course of events during a hypothetical core-disruptive accident in the Clinch River Breeder Reactor. However, some of the issues discussed are likely to be relevant to larger breeder reactors as well. The issues addressed are related to the needs associated with analyses of the loss-of-flow (LOF) accident without scram and the transient overpower (TOP) accident, without scram

  1. Cover-gas seals: 11-LMFBR seal-test program

    International Nuclear Information System (INIS)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    The objective of the Cover Gas Seal Material Development Program is to perform the engineering development required to provide reliable seals for LMFBR application. Specific objectives are to verify the performance of commercial solid cross-section and inflatable seals under reactor environments including radiation, to develop advanced materials and configurations capable of achieving significant improvement in radioactive gas containment and seal temperature capabilities, and to optimize seal geometry for maximum reliability and minimal gas permeation

  2. Development of acidic processes for decontaminating LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E F [Rockwell International, Atomics International Division, Canoga Park (United States); Colburn, R P; Lutton, J M; Maffei, H P [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components.

  3. Development of acidic processes for decontaminating LMFBR components

    International Nuclear Information System (INIS)

    Hill, E.F.; Colburn, R.P.; Lutton, J.M.; Maffei, H.P.

    1978-01-01

    The objective of the DOE decontamination program is to develop a well characterized chemical decontamination process for application to LMFBR primary system components that subsequently permits contact maintenance and allows requalification of the components for reuse in reactors. The paper describes the subtasks of deposit characterization, development of requalification and process acceptance criteria, development of process evaluation techniques and studies which led to a new acidic process for decontaminating 304 stainless steel hot leg components

  4. LMFBR safety criteria: cost-benefit considerations under the constraint of an a priori risk criterion

    International Nuclear Information System (INIS)

    Hartung, J.

    1979-01-01

    The role of cost-benefit considerations and a priori risk criteria as determinants of Core Disruptive Accident (CDA)-related safety criteria for large LMFBR's is explored with the aid of quantitative risk and probabilistic analysis methods. A methodology is described which allows a large number of design and siting alternatives to be traded off against each other with the goal of minimizing energy generation costs subject to the constraint of both an a priori risk criterion and a cost-benefit criterion. Application of this methodology to a specific LMFBR design project is described and the results are discussed. 5 refs

  5. LMFBR thermal-striping evaluation

    International Nuclear Information System (INIS)

    Brunings, J.E.

    1982-10-01

    Thermal striping is defined as the fluctuating temperature field that is imposed on a structure when fluid streams at different temperatures mix in the vicinity of the structure surface. Because of the uncertainty in structural damage in LMFBR structures subject to thermal striping, EPRI has funded an effort for the Rockwell International Energy Systems Group to evaluate this problem. This interim report presents the following information: (1) a Thermal Striping Program Plan which identifies areas of analytic and experimental needs and presents a program of specific tasks to define damage experienced by ordinary materials of construction and to evaluate conservatism in the existing approach; (2) a description of the Thermal Striping Test Facility and its operation; and (3) results from the preliminary phase of testing to characterize the fluid environment to be applied in subsequent thermal striping damage experiments

  6. Evaluation of fuel release rate and mechanism tests under RBCB conditions

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1981-09-01

    This task includes theoretical evaluation of fuel/fission product release behavior from failed LMFBR fuel elements as well as an on-going experimental investigation of the mechanism of oxide fuel dispersal into flowing liquid sodium. The primary objectives of this work are to develop a fuel source term that can be used in predictive models for primary heat transfer system contamination and to understand the separate influences of important system variables (such as flow rate, oxygen impurity level) on this source term. The present report is written in two parts: the first, in condensed form, is an updated evaluation of fuel (U,Pu) and fission product release data, and the second describes the current status of supporting experimental work at General Electric's Vallecitos Laboratory

  7. Comparative analysis of LMFBR licensing in the United States and other countries - notably France. Executive summary

    International Nuclear Information System (INIS)

    Golay, M.W.; Castillo, M.

    1981-01-01

    The safety-related design aspects and licensing experiences of LMFBR projects in other democratic countries have been studied and contrasted to those in the United States in order to understand the importance of different approaches to safety, and also to understand better the system of the United States. The regulatory systems and LMFBR programs of France and the United States are contrasted in detail, and that of West Germany is also studied. The programs of Japan and the United Kingdom receive considerably less attention, and that of the Soviet Union is ignored

  8. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  9. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  10. Frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr--Mo steel for fuel cladding, piping, and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging fromm 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature

  11. UK irradiation experience relevant to advanced carbide fuel concepts for LMFBR's

    International Nuclear Information System (INIS)

    Bagley, K.Q.; Batey, W.; Paris, R.; Sloss, W.M.; Snape, G.P.

    1977-01-01

    Despite discouraging prognoses of fabrication and reprocessing problems, it is recognized that the quest for a carbide fuel pin design which fully exploits the favourable density and thermal conductivity of (U,Pu) monocarbide must be maintained. Studies in aid of carbide fuel development have, therefore, continued in the UK in parallel with those on oxide, albeit at a substantially lower level of effort, and a sufficient body of irradiation experience has been accumulated to allow discrimination of realistic fuel pin designs

  12. Fuel penetration of intersubassembly gaps in LMFBRs: a calculational method with the SIMMER-II code

    International Nuclear Information System (INIS)

    DeVault, G.P.

    1983-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor (LMFBR) undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. A possible avenue for early fuel removal in heterogeneous core LMFBRs is the failure of duct walls in disrupted driver subassemblies followed by fuel penetration into the gaps between blanket subassemblies. The SIMMER-II code was modified to simulate flow between subassembly gaps. Calculations with the modified SIMMER-II code indicate the capabilities of the method and the potential for fuel mass reduction in the active core

  13. Analytical approach for confirming the achievement of LMFBR reliability goals

    International Nuclear Information System (INIS)

    Ingram, G.E.; Elerath, J.G.; Wood, A.P.

    1981-01-01

    The approach, recommended by GE-ARSD, for confirming the achievement of LMFBR reliability goals relies upon a comprehensive understanding of the physical and operational characteristics of the system and the environments to which the system will be subjected during its operational life. This kind of understanding is required for an approach based on system hardware testing or analyses, as recommended in this report. However, for a system as complex and expensive as the LMFBR, an approach which relies primarily on system hardware testing would be prohibitive both in cost and time to obtain the required system reliability test information. By using an analytical approach, results of tests (reliability and functional) at a low level within the specific system of interest, as well as results from other similar systems can be used to form the data base for confirming the achievement of the system reliability goals. This data, along with information relating to the design characteristics and operating environments of the specific system, will be used in the assessment of the system's reliability

  14. A new approach to the design of LMFBR liners

    International Nuclear Information System (INIS)

    Polentz, L.M.

    1980-01-01

    An advance in the state-of-the-art of LMFBR liners which permits notable savings in construction costs without any sacrifice of safety is described. The application of the new design concept to the rework of the upper reactor vault liner of the FFTF is discussed. Factors which affect the application of the new design approach to other LMFBRs are delineated and discussed. (author)

  15. Evaluation of denatured thorium fuel cycles in pressurized water reactors

    International Nuclear Information System (INIS)

    Matzie, R.A.; Rec, J.R.; Terney, A.N.

    1977-01-01

    A developing national energy policy that is based in part on a substantial expansion of the LWR-based electrical generating capacity with deferment of the LMFBR has prompted a re-evaluation of our nuclear fuel resources and their utilization. The ancillary policy of minimizing nuclear weapons proliferation through diversion of bred fissile material has left in doubt the viability of fuel recycling as a means of extending these fuel resources. A substantial, government-sponsored effort is in progress to examine alternate fuel cycles and advanced reactor concepts which can lead to improved resource utilization while minimizing proliferation potential. This paper evaluates several improved fuel cycles for use in current design PWRs and develops selected scenarios for their use within the framework of the safeguarded Nuclear Energy Center (NEC) concept

  16. Benchmark calculation programme concerning typical LMFBR structures

    International Nuclear Information System (INIS)

    Donea, J.; Ferrari, G.; Grossetie, J.C.; Terzaghi, A.

    1982-01-01

    This programme, which is part of a comprehensive activity aimed at resolving difficulties encountered in using design procedures based on ASME Code Case N-47, should allow to get confidence in computer codes which are supposed to provide a realistic prediction of the LMFBR component behaviour. The calculations started on static analysis of typical structures made of non linear materials stressed by cyclic loads. The fluid structure interaction analysis is also being considered. Reasons and details of the different benchmark calculations are described, results obtained are commented and future computational exercise indicated

  17. SASSYS LMFBR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies

  18. Current developments in TREAT hodoscope technology

    International Nuclear Information System (INIS)

    De Volpi, A.

    1975-01-01

    The development of fuel motion monitoring is traced from its inception through present operation and into future programs. After noting the role of fuel motion studies in terms of safety assurance for the LMFBR, the history of in-pile fuel monitoring is reviewed. The operational record of the present TREAT fast neutron hodoscope is summarized with attention to various performance features. Development plans for the TREAT hodoscope are described in some detail. Application of the hodoscope has been considered for eight safety facilities other than TREAT. In addition, there is a possible role for fuel monitoring techniques to be extended to real-time ex-vessel core surveillance in operating reactors. Certain intrinsic strengths of the hodoscope technique for material monitoring are identified. The pattern of development may be characterized as an adaptation of several technologies to fit available requirements and resources

  19. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  20. Alternative fuel cycle options: performance characteristics and impact on nuclear power growth potential

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.; Rudolph, R.R.; Deen, J.R.; King, M.J.

    1977-09-01

    The fuel utilization characteristics for LWR, SSCR, CANDU and LMFBR reactor concepts are quantified for various fuel cycle options, including once-through cycles, thorium cycles, and denatured cycles. The implications of various alternative reactor deployment strategies on the long-term nuclear power growth potential are then quantified in terms of the maximum nuclear capacity that can be achieved and the growth pattern over time, subject to the constraint of a fixed uranium-resource base. The overall objective of this study is to shed light on any large differences in the long-term potential that exist between various alternative reactor/fuel cycle deployment strategies

  1. Technical considerations relative to removal of sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J S; Asquith, J G

    1975-07-01

    Reviewed in this paper are technical considerations which are of importance in choosing between an alcohol process and a moist nitrogen process for the removal of sodium from LMFBR components. Results observed in laboratory tests and in the cleaning of large scale components (e.g. a 28 MWt Modular Steam Generator Test Unit) are presented and discussed. (author)

  2. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  3. Fuel and coolant motions following pin failure: EPIC models and the PBE-5S experiment

    International Nuclear Information System (INIS)

    Garner, P.L.; Abramson, P.B.

    1979-01-01

    The EPIC computer code has been used to analyze the post-fuel-pin-failure behavior in the PBE-5S experiment performed at Sandia Laboratories. The effects of modeling uncertainties on the calculation are examined. The calculations indicate that the majority of the piston motion observed in the test is due to the initial pressurization of the coolant channel by fuel vapor at cladding failure. A more definitive analysis requires improvements in calculational capabilities and experiment diagnostics

  4. New approach to the design of core support structures for large LMFBR plants

    International Nuclear Information System (INIS)

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-01-01

    The paper describes an innovative design concept for a LMFBR Core Support Structure. A hanging Core Support Structure is described and analyzed. The design offers inherent safety features, constructibility advantages, and potential cost reductions

  5. Fusion fuel cycle solid radioactive wastes

    International Nuclear Information System (INIS)

    Gore, B.F.; Kaser, J.D.; Kabele, T.J.

    1978-06-01

    Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m 3 /GWe. This may be compared to 500 to 1300 m 3 /GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste

  6. LMFBR subassembly response to simulated local pressure loadings

    International Nuclear Information System (INIS)

    Marciniak, T.J.; Ash, J.E.; Marchertas, A.H.; Cagliostro, D.J.

    1976-01-01

    The structural response of liquid metal fast breeder reactor (LMFBR) subassemblies to local accidental events is of interest in assessing the safety of such systems. Problems to be resolved include failure propagation modes from pin to pin and from subassembly to subassembly. Factors which must be considered include: (a) the geometry of the structure, (b) uncertainty of the pressure-energy source, (c) uncertainty of materials properties under reactor operating conditions, and (d) the difficulty in performing in-pile or out-of-pile experiments which would simulate the above conditions. The main effort in evaluating the subassembly response has been centered around the development of appropriate analyses based on the finite element technique. Analysis has been extended to include not only the subassembly duct structure itself, but also the fluid environment, both within subassemblies and between them. These models and codes have been devised to cover a wide range of accident loading conditions, and can treat various materials as their properties become known. The effort described here is centered mainly around an experimental effort aimed at verfying, modifying or extending the models used in treating subassembly damage propagation. To verify the finite element codes under development, a series of out-of-pile room temperature experiments has been performed on LMFBR-type subassembly ducts under various loading conditions. (Auth.)

  7. Hydrodynamic and thermal modeling of solid particles in a multi-phase, multi-component flow

    International Nuclear Information System (INIS)

    Tentner, A.M.; Wider, H.U.

    1984-01-01

    This paper presents the new thermal hydraulic models describing the hydrodynamics of the solid fuel/steel chunks during an LMFBR hypothetical core disruptive accident. These models, which account for two-way coupling between the solid and fluid phases, describe the mass, momentum and energy exchanges which occur when the chunks are present at any axial location. They have been incorporated in LEVITATE, a code for the analysis of fuel and cladding dynamics under Loss-of-Flow (LOF) conditions. Their influence on fuel motion is presented in the context of the L6 TREAT experiment analysis. It is shown that the overall hydrodynamic behavior of the molten fuel and solid fuel chunks is dependent on both the size of the chunks and the power level. At low and intermediate power levels the fuel motion is more dispersive when small chunks, rather than large ones, are present. At high power levels the situation is reversed

  8. Impact of LMFBR operating experience on PFBR design

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chetal, S.C.; Chellapandi, P.; Govindarajan, S.; Lee, S.M.; Kameswara Rao, A.S.L.; Prabhakar, R.; Raghupathy, S.; Sodhi, B.S.; Sundaramoorthy, T.R.; Vaidyanathan, G.

    2000-01-01

    PFBR is a 500 MWe, sodium cooled, pool type, fast breeder reactor currently under detailed design. It is essential to reduce the capital cost of PFBR in order to make it competitive with thermal reactors. Operating experience of LMFBRs provides a vital input towards simplification of the design, improving its reliability, enhancing safety and achieving overall cost reduction. This paper includes a summary of LMFBR operating experience and details the design features of PFBR as influenced by operating experience of LMFBRs. (author)

  9. Activities at the Institute of Materials and Solid State Research of the Karlsruhe Nuclear Research Centre in the field of fuel pin modelling

    International Nuclear Information System (INIS)

    Elbel, H.

    1979-01-01

    Fuel pin modelling has been pursued at the Institute of Materials and Solid State Research (IMF) of the Karlsruhe Nuclear Research Centre (KfK) with the main objective to provide a detailed quantitative analysis of the fuel pin behaviour in a LMFBR under normal and off-normal operation conditions. The computer programs and models developed at the IMF serve the purpose to aid effectively in the development of an optimized fuel pin concept for a LMFBR. What extent of clad deformation can be tolerated without running into clad failure? What is the influence of neutron dose, temperature, corrosion attack, arid cyclic forces on the state of the clad? What may be the reasons for clad failure? In answering these questions computer programs can play an important role. The activities at the IMF in the field of fuel pin modelling cover the following topics: development of computer programs and models; validation of these programs and models, application to the design of fuel pins for irradiation experiments; assistance in the evaluation of operation data and post- irradiation results, and parametric studies on the influence of design parameters, operation conditions and certain material phenomena on the in-pile behaviour of the fuel pin

  10. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    International Nuclear Information System (INIS)

    Serell, D.C.; Kaplan, S.

    1980-09-01

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers

  11. Natural circulation in simulated LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

    1985-01-01

    Natural circulation experiments have been performed using simulated liquid metal fast breeder reactor fuel assemblies in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale sodium loop. Objective of these tests has been to provide experimental data under conditions that might be encountered during a partial or total loss of the shutdown heat removal system (SHRS) in a reactor. The experiments have included single- and two-phase tests under quasi-steady and transient conditions, at both nominal and non-nominal system conditions. Results from these test indicate that the potential for reactor damage during degraded SHRS operation is extremely slight, and that natural circulation can be a major contributor to safe operation of the system in both single- and two-phase flow during such operation

  12. Characteriztion of particulate plutonium released in fuel cycle operations

    International Nuclear Information System (INIS)

    Seefeldt, W.B.; Mecham, W.J.; Steindler, M.J.

    1976-05-01

    An estimate of the plutonium source terms is made for the fuel cycles of three reactor types on the basis of currently applied, currently available, and estimated future technology. The three reactors are LWR-U, LWR-Pu, and LMFBR. The source terms are characterized as to quantity, form, and particle size distribution. Historical operating data for existing plants and the state of the art of the technology of air cleaning are reviewed

  13. Refractory metal carbide coatings for LMFBR applications: a systems approach

    International Nuclear Information System (INIS)

    Gotschall, H.L.; Ople, F.S.; Riccardella, P.C.

    1975-01-01

    The selection, testing and improvement of high density, tightly bonded plasma and detonation gun coatings designed to meet LMFBR core component criteria are described. The process descriptions include a review of the important developments in substrate surface preparation which were required to ensure strong bonding and to minimize interface contamination. Coating finishing techniques which were developed to optimize friction behavior are also described

  14. Small leak shutdown, location, and behavior in LMFBR steam generators

    International Nuclear Information System (INIS)

    Sandusky, D.W.

    1976-01-01

    The paper summarizes an experimental study of small leaks tested under LMFBR steam generator conditions. Defected tubes were exposed to flowing sodium and steam. The observed behavior of the defected tubes is reported along with test results of shutdown methods. Leak location methods were investigated. Methods were identified to open plugged defects for helium leak testing and detect plugged leaks by nondestructive testing

  15. Influence of LMFBR fuel pin temperature profiles on corrosion rate

    International Nuclear Information System (INIS)

    Shiels, S.A.; Bagnall, C.; Schrock, S.L.; Orbon, S.J.

    1976-01-01

    The paper describes the sodium corrosion behavior of 20 percent cold worked Type 316 stainless steel fuel pin cladding under a simulated reactor thermal environment. A temperature gradient, typical of a fuel pin, was generated in a 0.9 m long heater section by direct resistance heating. Specimens were located in an isothermal test section immediately downstream of the heater. A comparison of the measured corrosion rates with available data showed an enhancement factor of between 1.5 and 2 which was attributed to the severe axial temperature gradient through the heater. Differences in structure and surface chemistry were also noted

  16. A survey of the French creep-fatigue design rules for LMFBR

    International Nuclear Information System (INIS)

    Tribout, J.; Cordier, G.; Moulin, D.

    1987-01-01

    The paper provides a survey of the creep-fatigue design rules for the LMFBR in France. These rules are the ones currently implemented in French component manufacturing. The background of each item is discussed and the trends for improvements currently investigated are described. The creep-fatigue rules apply to elastic analysis only. (orig.)

  17. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  18. KALIMER fuel system preliminary design description

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B.O.; Nam, C.; Paek, S.K.

    1998-10-01

    This document provides general design concepts, design basis, preliminary design specification and design technologies which are needed for designing the fuel/non-fuel rods and assembly ducts of the KALIMER fuel system. The core of LMFBR consists of driver fuel assembly, blanket assembly, reflector assembly, shielding assembly, control assembly and GEM (Gas Expansion Module) as well as USS, dummy assembly, detector assembly. These core components must be designed to withstand the high temperature, high flux for a long irradiation exposure time. Due to the high temperature and high flux, irradiation creep and swelling as well as thermal-mechanical deformation are occurred at the fuel/non-fuel system and cause the deformations of materials and the geometric deflections at fuel/non-fuel rods, assembly ducts and components. In order to overcome these intricate phenomena through the engineering design, the design basis including theoretical analysis methodologies and design considerations, material characteristics of fuel system, and the specifications and drawings of fuel/non-fuel rods and assembly ducts, respectively, are presented. This document is preliminary design description which is produced in the conceptual design stage, and does not present the detailed and finalized design data which can be for the manufacturing. (author). 22 refs

  19. CAMDYN: a new model to describe the axial motion of molten fuel inside the pin of a fast breeder reactor during accident conditions

    International Nuclear Information System (INIS)

    Peter, G.

    1991-01-01

    The new in-pin fuel motion model CAMDYN (Cavity Material Dynamics) describes the axial motion of both partially and fully molten fuel inside the pin of a fast breeder reactor during accident conditions. The motion of the two types of molten fuel and the imbedded fission gas bubbles is treated both before and after cladding failure. The basic modelling approach consists of the treatment of two one-dimensional flows which are coupled by interaction terms. Each of these flows is treated compressively and with axially variable flow cross sections. The mass and energy equations of both fields are solved explicitly using upwind differencing on a fixed Eulerian grid. The two momentum equations are solved simultaneously, using the convective momentum fluxes of the previous timestep. Both partially and fully molten fuel can move axially into a central hole extending to the plenum in the case of certain hollow pellet designs. The fuel temperature calculation includes the determination of a radial temperature profile. A simple conduction freezing model is included. After cladding failure, ejection into the coolant channel is modeled

  20. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C. A. [Argonne National Lab., IL (United States); Ariman, T. [Univ. of Notre Dame, IN (United States); Pierce, R. D.; Pedersen, D. R. [Argonne National Lab., IL (United States)

    1977-07-01

    The test trains for the Sodium Loop Safety Facility (SLSF) in-reactor experiments, which simulate hypothetical LMFBR accidents, have a meltdown cup to protect the primary containment from the effects of molten materials. Thermal and stress analyses were performed on the cup which is designed to contain 3.6 kg of molten fuel and 2.4 kg of molten steel. The cup principal components are: 1. A 38 mm diameter tungsten spike which provides initial fuel quenching and prevents fuel boiling, 2. A 73 mm inside diameter tungsten liner to isolate the support vessel from the molten material high initial temperature, 3. An insulator which is an expedient for extending the experiment time, and 4. An Inconel 625 vessel which provides the structural support to withstand the thermal and pressure stresses. The spike, liner, and insulator are supported by a hemispherical tungsten end cap which fits inside the hemispherical bottom of the support vessel. This vessel is attached to the 316 stainless steel test train with an Inconel 750 wire-formed retaining ring. Thermal analyses were performed with the Argonne-modified version of the general heat transfer code THTB, based on the instantaneous addition of 3200/sup 0/K molten fuel with a decay heat of 9 W/gm and 1920/sup 0/K molten steel. These analyses have shown that the cup will adequately cool the molten materials. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The maximum temperature occurs at the center of the fuel region but it is always less than the fuel boiling point. The most severe heating occurs when there is no sodium flow outside the cup. For this case the sodium boils (approximately 1200/sup 0/K) and the Inconel vessel and tungsten liner temperatures are approximately 1250/sup 0/K and 2420/sup 0/K, respectively.

  1. Evaluation of air cleaning system concepts for emergency use in LMFBR plants

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1976-12-01

    Nineteen different air cleaning concepts are arranged into twenty-four systems and evaluated for use as accident mitigating systems in LMFBR plants. Both single, low-leakage containment plants and once-through operation applicable to containment/confinement plants are considered. Plant characteristics affecting air cleaning requirements are defined for 1000 MW(e) plants and a sodium and radiological release term is postulated. The accident conditions under which the emergency air cleaning system (EACS) must function is established by use of SOFIRE-II and HAA-3B computer codes. Criteria are developed for evaluating the various systems and for assigning comparative ratings. The numerical ratings are combined with information on cost and development potential to arrive at recommendations for the most promising systems. The conclusion is made that reliable and effective systems are feasible for use as engineered safety features for LMFBR plants, but that development effort is required for all the air cleaning concepts evaluated

  2. Overview of current activities relevant to structural analysis on LMFBR in Japan

    International Nuclear Information System (INIS)

    Ichimiya, Masakazu

    1983-01-01

    This paper presents the structural analysis activities on LMFBR in Japan. The structural analysis activities on LMFBR in Japan have been made mainly toward the validation of the rules of high temperature structural design guide which is to be used for the design of Class 1 components for elevated temperature service of the prototype fast breeder reactor, Monju. Main features of these analyses are as follows. (1) Since the design by elastic analysis is intended in the high temperature structural design guide of Monju, a large progress has been made in the bounding technique for high temperature inelastic behaviors, particularly the elastic follow-up. (2) There has been a progress in the clarification of the creep behavior in order to evaluate creep damage adequately. (3) Analysis techniques and design rules for piping have been developed with considerable emphasis. In addition, buckling analyses were performed considering the thin structures with low internal pressure in Monju components. Further test and analysis were made on ratcheting. (author)

  3. The development of automated fuel dismantling equipment for a future head-end plant

    International Nuclear Information System (INIS)

    Haberlin, M.M.

    1987-01-01

    For future reprocessing plants, practicable methods for dismantling fuel elements are being examined at Springfields Nuclear Power Development Laboratories which would meet the requirements of a high throughput facility. This paper contains the initial results of an experimental programme undertaken to develop and evaluate an automated high speed single/multiple pin extraction unit. Concomitant parts of the programme include the design and evaluation of single and multi-pin extraction chucks. Dummy fuel elements, a 325 pin gridded LMFBR assembly and a 17 x 17 pin gridded LWR assembly were used to assess process efficacy

  4. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    Science.gov (United States)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  5. Transient analysis of LMFBR reinforced/prestressed concrete containment

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Belytschko, T.B.; Bazant, Z.P.

    1979-01-01

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containments must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. Furthermore, for the sake of convenience, all of these features should be available in a single computer code. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. The use of explicit time integration has the advantage that it can easily treat the complicated constitutive model which arises from the considerations of concrete cracking and it can handle the slip between reinforcing tendons and the concrete through the use of the well known sliding interface options. However, explicit time integration programs are usually not well suited to the simulation of static processes such as prestressing. Nevertheless, explicit time integration programs can handle static processes through the introduction of damping by what is known as a dynamic relaxation procedure. For this reason, the dynamic relaxation procedure was refined through the introduction of lumped mass, viscous damping. This provision made the prestressing operation of the concrete structures by means of the explicit formulation rather convenient. (orig.)

  6. The benefits and problems of base seismic isolation for LMFBR reactor plants

    International Nuclear Information System (INIS)

    Seidensticker, R.W.

    1988-01-01

    The use of seismic isolation as an approach to aseismic design has gained increasing interest as a viable and efficient engineering solution to earthquake ground motion both within and outside of the nuclear field. Seismic isolation design is fundamentally different from conventional design practice. In the conventional approach, seismic loads are resisted by making the structures, equipment, piping, and associated supports strong enough to resist seismic loads and to provide high levels of ductility. The use of seismic isolation approaches the problem by decoupling the structure (and its contents) from the seismic input resulting from ground shaking. Because LMFBR systems operate at virtually atmospheric pressure, vessels, piping, and associated components tend to be quite thin-walled. The problem is that these thin-walled items have little inherent resistance to earthquake effects and are vulnerable to seismic load effects. As a result, earthquake loads have an even greater influence on LMR designs than they already are in LWR plants. The potential benefits of seismic isolation for an LMR plant are considerable, including minimization of high-cost commodities such as stainless steel, large reductions in internal equipment loads, increased margins of safety for beyond-design-basis loads, and enhancement of plant standardization design. There are, of course, a number of issues and concerns in the use of seismic isolation for a nuclear power plant. These issues cover a number of items such as the lack of experience in actual earthquakes, effects of long-period ground motion, effect of vertical loads, traveling waves, and other related concerns. This paper presents an evaluation of the benefits and problems in the use of seismic isolation in LMR plants. 12 refs, 7 figs

  7. The RCC-MR design code for LMFBR components. A useful basis for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1986-01-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials, temperature service level, loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain. (author)

  8. Thermal performance of the nuclear fuel rods submitted to angular variation of the heat exchanger coefficients

    International Nuclear Information System (INIS)

    Carvalho, A.M.M. de.

    1984-01-01

    Generally, LMFBR fuel rods consist of fuel pellets encapsulated in cladding tubes. These tubes are wrapped by a helical wire, working as a spacer. Distortions in the rod temperature distribution and in the external heat flux can be generated by angular variations in the local heat transfer coefficients due to the wire, by excentricity between pellet and clad or by ovalization of the cladding tube. Also, the temperature distributions can be affected by fuel densification, reestructuring and swelling. The present work consists of the development of a computer code in order to analyse the fuel rod performance as function of geometrical and operational effects, in steady state regime. (Author) [pt

  9. Welding development for LMFBR applications

    International Nuclear Information System (INIS)

    Slaughter, G.M.; Edmonds, D.P.; Goodwin, G.M.; King, J.F.; Moorhead, A.J.

    1976-01-01

    High-quality welds with suitable properties for long-time elevated-temperature nuclear service are among the most critical needs in today's welding technology. Safe, reliable, and economic generation of future power depends on welded construction in systems such as Liquid Metal Fast Breeder Reactors (LMFBRs). Rapid thermal transients in LMFBR systems at coolant temperatures around 590 to 650 0 C (1000 to 1200 0 F) could cause creep and creep-fatigue damage that is not encountered in lower temperature reactor systems. The undesirable consequences of interaction between the two working fluids - sodium and steam - in the steam generators are also of major concern. Thus sound welds that have excellent reliability over a 30-year service life are essential. Several programs are actively underway at ORNL to satisfy this critical need and selected portions of three of these programs are discussed briefly

  10. Investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments

    International Nuclear Information System (INIS)

    No, H.C.; Kazimi, M.S.

    1983-03-01

    This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied

  11. A frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr-Mo steel for fuel cladding, piping and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging from 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a considerable decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature. (author)

  12. Fuel assembly for FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki.

    1995-01-01

    Ordinary sodium bond-type fuel pins using nitride fuels, carbide fuels or metal fuels and pins incorporated with hydride moderators are loaded in a wrapper tube at a ratio of from 2 to 10% based on the total number of fuel pins. The hydride moderators are sealed in the hydride moderator incorporated pins at the position only for a range from the upper end to a reactor core upper position of substantially 1/4 of the height of the reactor core from the upper end of the reactor core as a center. Then, even upon occurrence of ULOF (loss of flow rate scram failure phenomenon), it gives characteristic of reducing the power only by a doppler coefficient and not causing boiling of coolant sodium but providing stable cooling to the reactor core. Therefore, a way of thinking on the assurance of passive safety is simplified to make a verification including on the reactor structure unnecessary. In an LMFBR type reactor using the fuel assembly, a critical experiment for confirming accuracy of nuclear design is sufficient for the item required for study and development, which provides a great economical effect. (N.H.)

  13. Transfer hook for nuclear fuel assemblies and nuclear reactor having a such hook

    International Nuclear Information System (INIS)

    Thevenot, L.P.

    1990-01-01

    For removing irradiated nuclear fuel assemblies above the level of the liquid metal in the vessel without loss of cooling, the hook mechanism has a guide tube with two annular cavities and a pump to circulate the reactor cooling fluid which flows out by gravity. A such hook used in a LMFBR reduces the height of the reactor vessel and consequently the initial capital cost [fr

  14. Shielding design method for LMFBR validation on the Phenix factor

    International Nuclear Information System (INIS)

    Cabrillat, J.C.; Crouzet, J.; Misrakis, J.; Salvatores, M.; Rado, V.; Palmiotti, G.

    1983-05-01

    Shielding design methods, developed at CEA for shielding calculations find a global validation by the means of Phenix power reactor (250 MWe) measurements. Particularly, the secondary sodium activation of pool type LMFBR such as Super Phenix (1200 MWe) which is subject to strict safety limitation is well calculated by the adapted scheme, i.e. a two dimension transport calculation of shielding coupled to a Monte-Carlo calculation of secondary sodium activation

  15. Part I. Fuel-motion diagnostics in support of fast-reactor safety experiments. Part II. Fission product detection system in support of fast reactor safety experiments

    International Nuclear Information System (INIS)

    Devolpi, A.; Doerner, R.C.; Fink, C.L.; Regis, J.P.; Rhodes, E.A.; Stanford, G.S.; Braid, T.H.; Boyar, R.E.

    1986-05-01

    In all destructive fast-reactor safety experiments at TREAT, fuel motion and cladding failure have been monitored by the fast-neutron/gamma-ray hodoscope, providing experimental results that are directly applicable to design, modeling, and validation in fast-reactor safety. Hodoscope contributions to the safety program can be considered to fall into several groupings: pre-failure fuel motion, cladding failure, post-failure fuel motion, steel blockages, pretest and posttest radiography, axial-power-profile variations, and power-coupling monitoring. High-quality results in fuel motion have been achieved, and motion sequences have been reconstructed in qualitative and quantitative visual forms. A collimated detection system has been used to observe fission products in the upper regions of a test loop in the TREAT reactor. Particular regions of the loop are targeted through any of five channels in a rotatable assembly in a horizontal hole through the biological shield. A well-type neutron detector, optimized for delayed neutrons, and two GeLi gamma ray spectrometers have been used in several experiments. Data are presented showing a time history of the transport of Dn emitters, of gamma spectra identifying volatile fission products deposited as aerosols, and of fission gas isotopes released from the coolant

  16. Fission gas release from oxide fuels at high burnups (AWBA development program)

    International Nuclear Information System (INIS)

    Dollins, C.C.

    1981-02-01

    The steady state gas release, swelling and densification model previously developed for oxide fuels has been modified to accommodate the slow transients in temperature, temperature gradient, fission rate and pressure that are encountered in normal reactor operation. The gas release predictions made by the model were then compared to gas release data on LMFBR-EBRII fuels obtained by Dutt and Baker and reported by Meyer, Beyer, and Voglewede. Good agreement between the model and the data was found. A comparison between the model and three other sets of gas release data is also shown, again with good agreement

  17. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    International Nuclear Information System (INIS)

    Khan, E.U.

    1980-04-01

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist

  18. Comparative analysis of a hypothetical 0.1 $/SEC transient overpower accident in an irradiated LMFBR core using different computer models

    International Nuclear Information System (INIS)

    Cacciabue, P.C.; Fremont, R. de; Renard, A.

    1982-01-01

    The Report gives the results of comparative calculations performed by the Whole Core Accident Codes Group which is a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee for a hypothetical transient overpower accident in an irradiated LMFBR core. Different computer codes from members of the European Community and the United States were used. The calculations are based on a Benchmark problem, using commonly agreed input data for the most important phenomena, such as the fuel pin failure threshold, FCl parameters, etc. Beside this, results with alternative assumptions for theoretical modelling are presented with the scope to show in a parametric way the influence of more advanced modelling capabilities and/or better (so-called best estimate) input data for the most important phenomena on the accident sequences

  19. Structural analysis for elevated temperature design of the LMFBR

    International Nuclear Information System (INIS)

    Griffin, D.S.

    1976-02-01

    In the structural design of LMFBR components for elevated temperature service it is necessary to take account of the time-dependent, creep behavior of materials. The accommodation of creep to assure design reliability has required (1) development of new design limits and criteria, (2) development of more detailed representations of material behavior, and (3) application of the most advanced analysis techniques. These developments are summarized and examples are given to illustrate the current state of technology in elevated temperature design

  20. Transport-diffusion comparisons for small core LMFBR disruptive accidents

    International Nuclear Information System (INIS)

    Tomlinson, E.T.

    1977-11-01

    A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly

  1. Cesium chemistry in GCFR fuel pins

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1979-01-01

    The fuel rod design for the Gas Cooled Fast-Breeder Reactor (GCFR) is similar to that employed for the Liquid Metal Fast Breeder Reactor (LMFBR) with the exception of the unique features inherent to the use of helium as the coolant. These unique design features include the use of (1) vented and pressure-equalized fuel rods, and (2) ribbed cladding along 75% of the fuel section. The former design feature enables reduction in cladding thickness and prevention of possible creep collapse of the cladding due to the high coolant pressure (8.5 MPa). The latter design feature brings about improved heat transfer characteristics. Each GCFR fuel rod is vented to a manifold whereby gaseous fission products diffusing out of the fuel pin are retained on charcoal traps. As a result, the internal pressure of a GCFR fuel pin does not increase during irradiation. In addition, the venting system also maintains the pressure within the fuel pin slightly below (0.3 to 0.5 MPa) the coolant pressure outside the fuel pin. Consequently, should a breach occur in the cladding, helium flows into the breached fuel pin thereby minimizing fission product contamination of the coolant. These desirable aspects of a GCFR fuel pin can be maintained only as long as axial gas transport paths are available and operating within the fuel pin

  2. The RCC-MR design code for LMFBR components. A useful basic for fusion reactor design tools development

    International Nuclear Information System (INIS)

    Acker, D.; Chevereau, G.

    1985-11-01

    LMFBR and fusion reactors exhibit common features with regard to structural materials (Stainless steels), temperature service level (550-600 0 C), loading types. So, design and construction rules used in France for LMFBR, that is to say RCC-MR Code, can constitute a good basis for fusion reactors design. Some original aspects of RCC-MR design rules are described, relating to unsignificant creep, ratchetting effect, fatigue and creep damage limits, creep damage evaluation, fatigue damage evaluation, buckling. The main originality of RCC-MR consists to propose comprehensive simplified rules based on elastic calculations and extended from classical cold temperatures to the elevated temperature domain

  3. Liquid Metal Fast Breeder Reactor program. Volume IV. Environmental statement

    International Nuclear Information System (INIS)

    1974-12-01

    A broad overview is presented of the many implications of LMFBR program implementation, up to and encompassing a fully developed LMFBR power plant economy, including the secondary impacts, the unavoidable adverse environmental impacts, cumulative environmental impacts, and cost-benefit analyses, and alternative energy strategies. Under the heading of secondary impacts, the national implications of the availability of electricity from LMFBRs, and the specific economic impacts of the LMFBR program are examined. The currently feasible alternatives and potential future alternatives for mitigating adverse environmental impacts of the LMFBR fuel cycle are described. The problems of safeguarding special nuclear material from potential diversion to unauthorized purposes are analyzed. The cumulative environmental effects of LMFBR operation to the Year 2020, the decommissioning of LMFBRs and fuel cycle facilities upon the completion of their useful life, the irreversible and irretrievable commitments of resources that will accompany implementation of an LMFBR economy, and an analysis of the costs and benefits of implementing the LMFBR Program are included. (U.S.)

  4. Simulating control rod and fuel assembly motion using moving meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, D. [Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)], E-mail: gilbertdw1@gmail.com; Roman, J.E. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garland, Wm. J. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada); Poehlman, W.F.S. [Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)

    2008-02-15

    A prerequisite for designing a transient simulation experiment which includes the motion of control and fuel assemblies is the careful verification of a steady state model which computes k{sub eff} versus assembly insertion distance. Previous studies in nuclear engineering have usually approached the problem of the motion of control rods with the use of nonlinear nodal models. Nodal methods employ special approximations for the leading and trailing cells of the moving assemblies to avoid the rod cusping problem which results from the naive volume weighted cell cross-section approximation. A prototype framework called the MOOSE has been developed for modeling moving components in the presence of diffusion phenomena. A linear finite difference model is constructed, solutions for which are computed by SLEPc, a high performance parallel eigenvalue solver. Design techniques for the implementation of a patched non-conformal mesh which links groups of sub-meshes that can move relative to one another are presented. The generation of matrices which represent moving meshes which conserve neutron current at their boundaries, and the performance of the framework when applied to model reactivity insertion experiments is also discussed.

  5. Status of the LMFBR development

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J J

    1975-01-01

    The development of any new power generation system which can make a major contribution to our energy needs is a multi-faceted task involving the utilization of major human and material resources. The LMFBR development, which has the potential for supplying abundant energy for generations, is therefore a large, multi-faceted program. This summary will cover (1) the need for the liquid metal fast breeder reactor, (2) an overall perspective of its development throughout the world, (3) a brief look at the in-depth technological development program in the United States, (4) a description and status of the two major projects now under way in the program, the Fast Flux Test Facility and the Clinch River Breeder Reactor Plant, and (5) a review of the plans for continued development to achieve a reliable, safe and economic power generation system for practical commercial use on the utility networks of the country.

  6. LMFBR plant parameters 1991

    International Nuclear Information System (INIS)

    1991-03-01

    The document has been prepared on the basis of information provided by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains updated parameters of 27 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBRs). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA), PEC (Italy), RAPSODIE (France), DFR (UK) and EFFBR (USA) are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. Two more reactors appeared in the list: European Fast Reactor (EFR) and PRISM (USA). Parameters of these reactors included in this publication are based on the data from the papers presented at the 23rd Annual Meeting of the IWGFR. All in all more than four hundred corrections and additions have been made to update the document. The report is intended for specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors

  7. Technology development program for safe shipment of spent fuel from liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Freedman, J.M.; Humphreys, J.R.

    1975-10-01

    A comprehensive plan to develop shipping cask technology is described. Technical programs in the disciplines of heat transfer, structures and containment, spent fuel characterization, hot laboratory verification, shielding, and hazards analysis are discussed. Both short- and long-term goals in each discipline are delineated and how the disciplines interrelate is shown. The technologies developed will be used in the design, fabrication, and testing of truck-mounted and rail-car casks. These casks will be used for safely transporting short-cooled, high-burnup Liquid Metal Fast Breeder Reactor (LMFBR) spent fuel from reactors to reprocessing plants

  8. Thermal evaluation facility for LMFBR spent fuel transport

    International Nuclear Information System (INIS)

    Wesley, D.A.

    1980-04-01

    A full-scale mock-up of a 217 pin breeder reactor fuel assembly in a cylindrical pipe was initially designed and constructed by Oak Ridge National Laboratory (ORNL). It was transferred to Sandia where it was extensively redesigned and modified. The 217 pin hexagonal core assembly was installed in a smaller diameter stainless steel pipe which more closely represents the diameter of a shipping canister or shipping cask basket wall. Two-hundred four of the tubes are electrically heated over an active length of 4-feet and the remaining thirteen are instrumented with multiple junction thermocouples which can be traversed axially. Thermocouples and heat-flux gauges are located on the hex core and canister perimeters at several axial locations

  9. Seismic analysis of a large LMFBR with fluid-structure interactions

    International Nuclear Information System (INIS)

    Ma, D.C.

    1985-01-01

    The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs

  10. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    Jones, A.V.

    1977-01-01

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  11. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    International Nuclear Information System (INIS)

    Dillon, R.D.

    1975-01-01

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  12. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  13. A survey of LMFBR cavitation technology in the U.S.A

    International Nuclear Information System (INIS)

    Cha, Y.S.; Huebotter, P.R.; Hopenfeld, J.

    1976-01-01

    Several experimental programmes of a basic and applied nature were established in the USA in order to develop guidelines to ensure design and operation of LMFBR hydraulic components free from cavitation and/or cavitation damage. As of March 1976, most of these experimental programs are still in progress. Each programme is briefly described. The available interium data are presented. References that are relevant are provided

  14. CRAB-II: a computer program to predict hydraulics and scram dynamics of LMFBR control assemblies and its validation

    International Nuclear Information System (INIS)

    Carelli, M.D.; Baker, L.A.; Willis, J.M.; Engel, F.C.; Nee, D.Y.

    1982-01-01

    This paper presents an analytical method, the computer code CRAB-II, which calculates the hydraulics and scram dynamics of LMFBR control assemblies of the rod bundle type and its validation against prototypic data obtained for the Clinch River Breeder Reactor (CRBR) primary control assemblies. The physical-mathematical model of the code is presented, followed by a description of the testing of prototypic CRBR control assemblies in water and sodium to characterize, respectively, their hydraulic and scram dynamics behavior. Comparison of code predictions against the experimental data are presened in detail; excellent agreement was found. Also reported are experimental data and empirical correlations for the friction factor of the absorber bundle in the entire flow range (laminar to turbulent) which represent an extension of the state-of-the-art, since only fuel and blanket assemblies friction factor correlations were previously reported in the open literature

  15. Review of pertinent thermal-hydraulic data for LMFBR core natural circulation analyses

    International Nuclear Information System (INIS)

    Bishop, A.A.; Coffield, R.D. Jr.; Markley, R.A.

    1980-01-01

    A literature review and summary of significant data is presented relative to LMFBR core natural convection cooling analysis. First, a brief review of computer codes and respective input data needs is made, significant data areas are then addressed and data for verifying the code calculations are described. Recommendations and conclusions with regard to the data are included

  16. PBDOWN - a computer code for simulating core material discharge and thermal to mechanical energy conversion in LMFBR hypothetical accidents

    International Nuclear Information System (INIS)

    Royl, P.

    1981-01-01

    PBDOWN is a computer code that simulates the blowdown of confined boiling materials ('pools') into a colder upper coolant plenum as time dependent ejection and expansion with consideration of a few selected exchange processes. Its application is restricted to situations resulting from hypothetical loss of flow (LOF) accidents in LMFBR's, where enough voiding has occured, that in core sodium vapor pressures become negligible. PBDOWN considers one working fluid for the discharge process (either fuel or steel) and a maximum of two working fluids (either fuel and sodium or steel and sodium) for the expansion process in the upper coolant plenum. Entrainment of sodium at the accelerated bubble liquid interfaces is mechanistically calculated by a Taylor instability entrainment model. Simulation of a hemispherical expansion form together with this mechanistic entrainment model gives a new integrated calculation of the time dependent sodium mass in the bubble. The paper summarizes the basic equations and assumptions of this computer model. Sample results compare different heat transfer and Na entrainment models during steel and fuel driven discharge processes. Mechanistic sodium entrainment simulation for SNR-type reactors coupled with a realistic heat transfer model is shown to reduce the integral mechanical work potential by a factor of 1.3 to 2.0 over the isentropic energy of the discharge working fluids. (orig.)

  17. Simple LMFBR axial-flow friction-factor correlation

    International Nuclear Information System (INIS)

    Chan, Y.N.; Todreas, N.E.

    1981-09-01

    Complicated LMFBR axial lead-length averaged friction factor correlations are reduced to an easy, ready-to-use function of bundle Reyonlds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer pre-processor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accuracte values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest

  18. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  19. A fundamental study on sodium-water reaction in the double pool LMFBR, (3)

    International Nuclear Information System (INIS)

    Uotani, Masaki; Kumagai, Hiromichi; Nishi, Yoshihisa; Yoshida, Kazuo

    1989-01-01

    The double pool LMFBR is an innovative reactor that Central Research Institute of Electric Power Industry proposed for the purpose of reducing the construction cost of FBRs, and it is characterized by immersing steam generators in the annular plenum formed between the primary vessel and the outer secondary vessel. Therefore, it is expected that the pressure behavior at the time of sodium-water reaction due to the breaking of heating tubes is largely different from the case of steam generators of conventional FBRs. In order to ensure the soundness of the primary vessel that containes the reactor core, it is necessary to sufficiently grasp the pressure behavior in the plenum, and this basic experiment and analysis are related to the pressure behavior due to piston motion that arises in the initial period of quasi-steady pressure. About 1/10 scale annular plenum was used, and the generation of reaction product gas was simulated by the release of nitrogen. When gas was released in the plenum, the highest pressure rise occurred in the initial period of release, and thereafter, periodic variation arose. The pressure waveform and the value of pressure rise as the results of the model analysis agreed well with the measured results. (K.I.)

  20. Zero risk fuel fabrication: a systems analysis

    International Nuclear Information System (INIS)

    1979-01-01

    Zero risk is a concept used to ensure that system requirements are developed through a systems approach such that the choice(s) among alternatives represents the balanced viewpoints of performance, achievability and risk. Requirements to ensure characteristics such as stringent accountability, low personnel exposure and etc. are needed to guide the development of component and subsystems for future LMFBR fuel supply systems. To establish a consistent and objective set of requirements, RF and M-TMC has initiated a systems requirements analysis activity. This activity pivots on judgement and experience provided by a Task Force representing industrial companies engaged in fuel fabrication in licensed facilities. The Task Force members are listed in Appendix A. Input developed by this group is presented as a starting point for the systems requirements analysis

  1. Sodium Loop Safety Facility W-2 experiment fuel pin rupture detection system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Kirchner, T.L.; Meyers, S.C.

    1980-05-01

    The objective of the Sodium Loop Safety Facility (SLSF) W-2 experiment is to characterize the combined effects of a preconditioned full-length fuel column and slow transient overpower (TOP) conditions on breeder reactor (BR) fuel pin cladding failures. The W-2 experiment will meet this objective by providing data in two technological areas: (1) time and location of cladding failure, and (2) early post-failure test fuel behavior. The test involves a seven pin, prototypic full-length fast test reactor (FTR) fuel pin bundle which will be subjected to a simulated unprotected 5 cents/s reactivity transient overpower event. The outer six pins will provide the necessary prototypic thermal-hydraulic environment for the center pin.

  2. Sodium water reaction R and D for French LMFBR

    International Nuclear Information System (INIS)

    Cambillard, E.; Finck, P.; Lapicore, A.; Simeon, C.

    1985-01-01

    This paper presents the research and development which is underway for the French LMFBR steam generator safety study. The program comprises three major areas: (1) the analysis of realistic leaks, which includes the leak evolution and its consequences; (2) the response time of leak detection systems compared to leak propagation phenomena; and (3) the guillotine rupture (DBA) studies relative to source term evaluation by experimental/calculational approach and mechanical calculations. This program has provided information for the demonstrations of the steam generator safety in respect to a sodium-water reaction

  3. LMFBR safety. 6. Review of current issues and bibliography of literature (1977)

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1978-01-01

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development. Selected bibliographic information on LMFBRs relative to the development and safety of the breeder reactor is presented for the year 1977. The bibliography consists of approximately 198 abstracts covering research and development, operating experience, and design practices. Keyword, author, and permuted-title indexes are included for completeness

  4. Cadmium depletion impacts on hardening neutron spectrum for advanced fuel testing in ATR

    International Nuclear Information System (INIS)

    Chang, Gray S.

    2011-01-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim-Effect in the test region. (author)

  5. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  6. Nuclear welding, application for an LMFBR

    International Nuclear Information System (INIS)

    Patriarca, P.; Goodwin, G.M.

    1975-01-01

    Fabrication of an LMFBR system is discussed, with emphasis on areas where joint welding innovations have been introduced. Each major component of the system, including reactor vessel, intermediate heat exchanger, steam generator, and sodium-containment piping, is treated separately. Developmet of special filler metals to avoid the low elevated-temperature creep ductility obtained with conventional austenitic stainless steel weldments is reported. Bore-side welding of steam generator tube-to-tubesheet joints with and without filler metal is desirable to improve inspectability and eliminate the crevice inherent with face-side weld design, thus minimizing corrosion problems. Automated welding methods for sodium-containment piping are summarized which iminimize and control distortion and ensure welds of high integrity. Selection of materials for the various components is discussed for plants presently under construction, and materials predictions are made for future concepts. (U.S.)

  7. Development of gas-cooled fast reactor and its thermo-hydraulics

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi

    1977-10-01

    Development, thermo-hydraulics and safety of GCFR are reviewed. The Development of Gas-Cooled Fast Reactor (GCFR) utilizes helium technology of HTGR and fuel technology of LMFBR. The breeding ratio of GCFR will be larger than that of LMFBR by about 0.2. Features of GCFR are a fuel with roughened surface to raise the heat transfer and vent system for the pressure equalization in the fuel rod. Helium as coolant of GCFR is chemically stable and stays in the single phase. So, there is no fuel-coolant interaction unlike the case of LMFBR. Since the helium must be pressurized, possibility of a depressurization accident is not negligible. In the United States, a 300MWe demonstration plant program is about to start; the collaboration with European countries is now quite active in this field. Though the development of GCFR started behind that of LMFBR, GCFR is equally promising as a fast breeder reactor. When realized, it will present possibility of a choice between these two. (auth.)

  8. Methodology for the economic evaluation of the strategies for spent fuel

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1981-08-01

    A methodology for the economic evaluation of the spent fuel and a comparative analysis of the various available strategies for its treatment, is developed. For the realization of the proposed studies a computer program METACIR was developed, which incorporates the necessary computational methodology, and it was performed a analysis of the present situation and future tendencies of the stages that constitute a PWR nuclear fuel cycle. According to the obtained results, the eternal disposal of the spent fuel is less advantageous than the reprocessing and recycle options; between the last options, the uranium recycle in PWR's is the most attractive until nearly the end of the 1990's, when the uranium and plutonium recycle in LMFBR's becomes the most convenient. The economic value of the spent fuel varies with the reactor discharge date, being considered a onus during the 1980's, and a bonus only in the next decade. (Author) [pt

  9. Selection of engineering materials and fabrication of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Patriarca, P.

    1975-01-01

    Information is presented graphically and pictorially concerning the need for nuclear power; basic nuclear concepts including BWR, PWR, HTGR, and LMFBR; the fissioning process; nuclear reactor fuel; fabrication of reactor vessels for LMFBR's; fabrication of intermediate heat exchangers for LMFBR's; piping fabrication for LMFBR's; transition welds; steam generators for LMFBR demonstration plants worldwide; stress corrosion cracking of steam generator materials and weldments; post--test examination of the Alco/BLH sodium-heated steam generator; alternate steam generator designs; and alternate structural materials. (DCC)

  10. Irradiation performance of experimental fast reactor 'JOYO' MK-1 driver fuel assemblies

    International Nuclear Information System (INIS)

    Itaki, Toshiyuki; Kono, Keiichi; Tachi, Hirokatsu; Yamanouchi, Sadamu; Yuhara, Shunichi; Shibahara, Itaru

    1985-01-01

    The experimental fast reactor ''JOYO'' completed it's breeder core (MK-I) operation in January 1982. The MK-I driver fuel assemblies were removed from the core sequencially in order of burnup increase and have been under postirradiation examination (PIE). The PIE has almost been completed for 30 assemblies including the highest burnup assemblies of 48,000 MWD/MTM. It has been confirmed that all fuel assemblies have exhibited satisfactory performance without detrimental assembly deformation or without any indications of fuel pin breach. The irradiation conditions of the MK-I core were somewhat more moderate than those conditions envisioned for prototypic reactor. However the results of the examination revealed the typical irradiation behavior of LMFBR fuels, although such characteristics were benign as compared with those anticipated in high burnup fuels. Systematic performance data have been accumulated through the fuel fabrication, irradiation and postirradiation examination processes. Based on these data, the MK-I fuel designing and fabrication techniques were totally confirmed. This technical experience and the associated insight into irradiation behavior have established a milestone to the next step of fast reactor fuel development. (author)

  11. Specialists meeting on LMFBR flow induced vibrations. Summary report

    International Nuclear Information System (INIS)

    1977-12-01

    A Specialists' Meeting on LMFBR Flow-Induced Vibrations was held at ANL in the United States which was sponsored by the International Atomic Energy Agency (IAEA) on the recommendations of the International Working Group on Fast Reactors (IWGFR). It was attended by participants from France, the Federal Republic of Germany, Italy, Japan, Netherlands, the United Kingdom, the Union of Soviet Socialist Republics, the United States and the IAEA. The purpose of the meeting was to provide, for the first time, a common forum for the exchange of information on flow-induced vibration programs of the member countries. As this was a first meeting, information was sought in the broad areas of: 1. Design Criteria and Problem Areas in LMFBR Design; 2. Current Design Procedures; and 3. Ongoing Research. A session was devoted to each of the above topics wherein papers were presented and discussed followed by open discussions on the session topic. The objective of the open discussions was to identify, from a review of specific reactor designs, (a) flow induced vibration problem areas (expected and observed) and their potential for occurrence; (b) failure modes and associated design criteria; (c) specific components that are susceptible to flow induced vibration; and (d) probable excitation mechanisms. It was aimed to assess the current state-of-the-art in designing to avoid flow induced vibration with consideration of licensing requirements; to evaluate existing methods of analysis, testing, and surveillance, along with their limitations and to identify areas requiring research and review ongoing research programmes relative to these research needs

  12. Specialists meeting on LMFBR flow induced vibrations. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-01

    A Specialists' Meeting on LMFBR Flow-Induced Vibrations was held at ANL in the United States which was sponsored by the International Atomic Energy Agency (IAEA) on the recommendations of the International Working Group on Fast Reactors (IWGFR). It was attended by participants from France, the Federal Republic of Germany, Italy, Japan, Netherlands, the United Kingdom, the Union of Soviet Socialist Republics, the United States and the IAEA. The purpose of the meeting was to provide, for the first time, a common forum for the exchange of information on flow-induced vibration programs of the member countries. As this was a first meeting, information was sought in the broad areas of: 1. Design Criteria and Problem Areas in LMFBR Design; 2. Current Design Procedures; and 3. Ongoing Research. A session was devoted to each of the above topics wherein papers were presented and discussed followed by open discussions on the session topic. The objective of the open discussions was to identify, from a review of specific reactor designs, (a) flow induced vibration problem areas (expected and observed) and their potential for occurrence; (b) failure modes and associated design criteria; (c) specific components that are susceptible to flow induced vibration; and (d) probable excitation mechanisms. It was aimed to assess the current state-of-the-art in designing to avoid flow induced vibration with consideration of licensing requirements; to evaluate existing methods of analysis, testing, and surveillance, along with their limitations and to identify areas requiring research and review ongoing research programmes relative to these research needs.

  13. A Swiss contribution to a secure LMFBR fuel cycle

    International Nuclear Information System (INIS)

    Nicolet, M.; Bischoff, K.; Hausmann, W.; Stofer, B.

    1978-12-01

    Since 1967, EIR has been using the sphere-pac fuel concept, which takes advantage of the wet route fabrication of (U,Pu) carbide-microspheres using an internal gelation method, followed by carbothermic reduction of the precipitated metal-oxides. Some of the promises of the wet process are a shorter fabrication route than for pellet manufacture, no dust problems, reduced fire hazard for carbides, and last but not least the improvement of Pu safeguards. The method is particularly suitable for direct coupling to a reprocessing plant, where coprocessing of both U and Pu and spiked solutions will be possible. (Auth.)

  14. SIMMER-I: an S/sub n/, Implicit, Multifield, Multicomponent, Eulerian, Recriticality code for LMFBR disrupted core analysis

    International Nuclear Information System (INIS)

    Bell, C.R.; Bleiweis, P.B.; Boudreau, J.E.; Parker, F.R.; Smith, L.L.

    1976-08-01

    Physical models, numerical methods, and program description are presented for SIMMER-I, a computer program which predicts the neutronic and fluid dynamic behavior of an LMFBR during a hypothetical core disruptive accident

  15. Confirmatory simulation of safety and operational transients in LMFBR systems

    International Nuclear Information System (INIS)

    Guppy, J.G.; Agrawal, A.K.

    1978-01-01

    Operational and safety transients that may originate anywhere in an LMFBR system must be adequately simulated to assist in safety evaluation and plant design efforts. This paper describes an advanced thermohydraulic transient code, the Super System Code (SSC), that may be used for confirmatory safety evaluations of plant wide events, such as assurance of adequate decay heat removal capability under natural circulation conditions, and presents results obtained with SSC illustrating the degree of modelling detail present in the code as well as the computing efficiency. (author)

  16. Users' guide to CACECO containment analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Peak, R.D.

    1979-06-01

    The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. The code is included in the National Energy Software Center Library at Argonne National Laboratory as Program No. 762. This users' guide describes the CACECO code and its data input requirements. The code description covers the many mathematical models used and the approximations used in their solution. The descriptions are detailed to the extent that the user can modify the code to suit his unique needs, and, indeed, the reader is urged to consider code modification acceptable.

  17. Creep strain accumulation in a typical LMFBR piperun

    International Nuclear Information System (INIS)

    Johnstone, T.L.

    1975-01-01

    The analysis described allows the strain concentrations in typical LMFBR two anchor point uniplanar piperuns to be calculated. Account is taken of the effect of pipe elbows in attracting creep strain to themselves as well as possible movements of the thrust line due to strain redistribution. The influence of the initial load conditions is also examined. The stress relaxation analysis is facilitated by making the assumption that a cross-sectional stress distribution determined by the asymptotic fully developed state of creep exists at all times. Use is then made of Hoff(s) analogy between materials with a creep law of the Norton type and those with a corresponding non-linear elastic stress strain law, to determine complementary strain energy rates for straight pipes and bends. Ovalisation of the latter produces an increased strain energy rate which can be simply calculated by comparison with an equal length of straight pipe through employing a creep flexibility factor due to Spence. Deflection rates at any location in the pipework can then be evaluated in terms of the thermal restraint forces at that location by an application of Castigliano's principle. In particular for an anchor point the deflection rates are identically zero and this leads to the generation of 3 simultaneous differential equations determining the relaxation of the anchor reactions. Indicative results are presented for the continuous relaxation at 570 deg C of the thermally induced stress in a planar approximation to a typical LMFBR pipe run chosen to have peak elbow stresses close to the code maximum. The results indicate a ratio, after 10 5 hours, of 3 for creep strain concentration relative to initial peak strain (calculated on the assumption of fully elastic behavior) in the most severely affected elbow, when either austenitic 316 or 321 creep properties are employed

  18. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Dhir, V.K.; Hauss, B.; Kastenberg, W.E.; Saqui, R.; Sun, Y.H.; Wong, K.

    1976-11-01

    The report summarizes the results of studies conducted in support of the U.S. Nuclear Regulatory Commission's review of the Preliminary Safety Analysis Report for the Clinch River Breeder Reactor. In particular it deals with three aspects of the unprotected transient overpower accident. The first aspect is the response of the Clinch River Breeder Reactor to low reactivity insertion rates. Second, the investigation of a new method for computing the time, place and mode of fuel pin failure is studied. Lastly, the question of post-failure, fuel freezing, and plate-out is addressed. Several areas of uncertainty in the analysis of these accidents is also discussed

  19. Fuel disruption mechanisms determined in-pile in the ACRR

    International Nuclear Information System (INIS)

    Wright, S.A.; Fischer, E.A.

    1984-09-01

    Over thirty in-pile experiments were performed to investigate fuel disruption behavior for LMFBR loss of flow (LOF) accidents. These experiments reproduced the heating transients for a variety of accidents ranging from slow LOF accidents to rapid LOF-driven-TOP accidents. In all experiments the timing and mode of the fuel disruption were observed with a high speed camera, enabling detailed comparisons with a fuel pin code, SANDPIN. This code transient intra- and inter-granular fission gas behavior to predict the macroscopic fuel behavior, such as fission gas induced swelling and frothing, cracking and breakup of solid fuel, and fuel vapor pressure driven dispersal. This report reviews the different modes of fuel disruption as seen in the experiments and then describes the mechanism responsible for the disruption. An analysis is presented that describes a set of conditions specifying the mode of fuel disruption and the heating conditions required to produce the disruption. The heating conditions are described in terms of heating rate (K/s), temperature gradient, and fuel temperature. A fuel disruption map is presented which plots heating rate as a function of fuel temperature to illustrate the different criteria for disruption. Although this approach to describing fuel disruption oversimplifies the fission gas processes modeled by SANDPIN, it does illustrate the criteria used to determine which fuel disruption mechanism is dominant and on what major fission gas parameters it depends

  20. LMFBR conceptual design study: an overview of environmental and safety concerns

    International Nuclear Information System (INIS)

    Brenchley, D.L.

    1981-06-01

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE

  1. LMFBR conceptual design study: an overview of environmental and safety concerns

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D.L.

    1981-06-01

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE.

  2. Computer code for the analysis of destructive pressure generation process during a fuel failure accident, PULSE-2

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1978-03-01

    The computer code PULSE-2 has been developed for the analysis of pressure pulse generation process when hot fuel particles come into contact with the coolant in a fuel rod failure accident. In the program, it is assumed that hot fuel fragments mix with the coolant instantly and homogeneously in the failure region. Then, the rapid vaporization of the coolant and transient pressure rise in failure region, and the movement of ejected coolant slugs are calculated. The effect of a fuel-particle size distribution is taken into consideration. Heat conduction in the fuel particles and heat transfer at fuel-coolant interface are calculated. Temperature, pressure and void fraction in the mixed region are calculated from the average enthalpy. With physical property subroutines for liquid sodium and water, the model is usable for both LMFBR and LWR conditions. (auth.)

  3. Emergency air cleaning system development for LMFBR containments

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.; Muhlestein, L.D.

    1975-01-01

    Criteria for evaluating the various types of Emergency Air Cleaning Systems which may be used in LMFBR plants have been established for both single containment and containment-confinement arrangements. These two plant arrangements have quite different air cleaning requirements for postulated design base accident conditions. Work is currently in progress to select from a list of candidate air cleaning systems those which best meet the criteria requirements. By means of a weighted rating system, areas of strength or weakness can be found and the conceptual system design then optimized. The final system arrangements will be ranked and several of the most promising systems selected for large-scale tests in the former CSE vessel at Hanford. 8 references. (U.S.)

  4. Environmental control aspects for fabrication, reprocessing and waste disposal of alternative LWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Nolan, A.M.; Lewallen, M.A.; McNair, G.W.

    1979-11-01

    Environmental control aspects of alternative fuel cycles have been analyzed by evaluating fabrication, reprocessing, and waste disposal operations. Various indices have been used to assess potential environmental control requirements. For the fabrication and reprocessing operations, 50-year dose commitments were used. Waste disposal was evaluated by comparing projected nuclide concentrations in ground water at various time periods with maximum permissible concentrations (MPCs). Three different fabrication plants were analyzed: a fuel fabrication plant (FFP) to produce low-activity uranium and uranium-thorium fuel rods; a plutonium fuel refabrication plant (PFRFP) to produce plutonium-uranium and plutonium-thorium fuel rods; and a uranium fuel refabrication plant (UFRFP) to produce fuel rods containing the high-activity isotopes 232 U and 233 U. Each plant's dose commitments are discussed separately. Source terms for the analysis of effluents from the fuel reprocessing plant (FRP) were calculated using the fuel burnup codes LEOPARD, CINDER and ORIGEN. Effluent quantities are estimated for each fuel type. Bedded salt was chosen for the waste repository analysis. The repository site is modeled on the Waste Isolation Pilot Program site in New Mexico. Wastes assumed to be stored in the repository include high-level vitrified waste from the FRP, packaged fuel residue from the FRP, and transuranic (TRU) contaminated wastes from the FFP, PFRFP, and UFRFP. The potential environmental significance was determined by estimating the ground-water concentrations of the various nuclides over a time span of a million years. The MPC for each nuclide was used along with the estimated ground-water concentration to generate a biohazard index for the comparison among fuel compositions

  5. Comparative study of heterogeneous and homogeneous LMFBR cores in some accident conditions

    International Nuclear Information System (INIS)

    Renard, A.; Evrard, G.

    1978-01-01

    An heterogeneous design and a homogeneous one of a LMFBR core with the same power and similar dimensions are compared from the safety point-of-view. The comparison is performed for several accident conditions, such as Loss-of-Flow and Transient Overpower, with the same failure criteria and model assumptions for both cores. Qualitative trends are deduced from the behaviour of the core designs in the investigated transient conditions. (author)

  6. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Vaze, M.K.K.

    1983-01-01

    The use of elastic analysis for structural design of LMFBR components is discussed. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed Prototype Fast Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is same as that of Rapsodie. Nevertheless, the design had to be checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, ASME Code Section III and the Code Case N-47 are used for high temperature design. The problems faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's shakedown and plastic cycling criteria for ratchet free operation to biaxial stress fields

  7. Safety-licensing assessment of NASAP reactor concepts and fuel cycle facilities

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Prohammer, F.G.; van Erp, J.B.; Seefeldt, W.B.

    1978-06-01

    Assessments are presented of the safety/licensability of reactor concepts based on information supplied by the Nonproliferation Alternative Systems Assessment Program (NASAP) characterization contractors in their updated responses to the data package for NASAP Rolling Report II. The assessment of the LMFBR includes information from a characterization contractor on alternate fuel cycles but does not include information provided by a characterization contractor on plant-related safety issues. The information provided by the characterization contractors was supplemented by assessments provided by the U. S. Nuclear Regulatory Commission

  8. Analysis of hypothetical LMFBR whole-core accidents in the USA

    International Nuclear Information System (INIS)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    The issue of hypothetical whole-core accidents continues to play a significant role in assessment of the potential risk to the public associated with LMFBR operation in the USA. The paper briefly characterizes the changing nature of this role, with emphasis on the current risk-oriented perspective. It then describes the models and codes used for accident analysis in the USA which have been developed under DOE sponsorship and summarizes some specific applications of the codes to the current generation of fast reactors. An assessment of future trends in this area concludes the paper

  9. LMFBR steam generator leak detection development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Magee, P M; Gerrels, E E; Greene, D A [General Electric Company, Sunnyvale, CA (United States); McKee, J [Argonne National Laboratory, Argonne, IL (United States)

    1978-10-01

    Leak detection for Liquid Metal Fast Breeder Reactor steam generators is an important economic factor in the shutdown, repair and restart of a plant. Development of leak detection systems in the U.S. has concentrated on four areas: (1) chemical (H{sub 2} and O{sub 2}) leak detection meters; (2) acoustic leak detection/location techniques; (3) investigation of leak behavior (enlargement, damage effects, plugging and unplugging); and (4) data management for plant operations. This paper discusses the status, design aspects, and applications of leak detection technology for LMFBR plants. (author)

  10. LMFBR steam generator leak detection development in the United States

    International Nuclear Information System (INIS)

    Magee, P.M.; Gerrels, E.E.; Greene, D.A.; McKee, J.

    1978-01-01

    Leak detection for Liquid Metal Fast Breeder Reactor steam generators is an important economic factor in the shutdown, repair and restart of a plant. Development of leak detection systems in the U.S. has concentrated on four areas: (1) chemical (H 2 and O 2 ) leak detection meters; (2) acoustic leak detection/location techniques; (3) investigation of leak behavior (enlargement, damage effects, plugging and unplugging); and (4) data management for plant operations. This paper discusses the status, design aspects, and applications of leak detection technology for LMFBR plants. (author)

  11. LMFBR design and its evolution. (2) Core design of LMFBR

    International Nuclear Information System (INIS)

    Uto, Nariaki; Mizuno, Tomoyasu

    2003-01-01

    Sodium-cooled core design studies are performed. MOX fuel core with axial blanket partial elimination subassembly due to safety consideration is studied. This type of core with high internal conversion ratio possesses capability of achieving 26 months of operation cycle length and 100 GWd/t of burnup averaged over core and blanket, which are superior characteristics in view of reducing cost of power generation. Metal fuel core is also studied, and its higher breeding capability reveals a potential of better core performance such as longer operation cycle length for the same level of electricity generation, though core outlet temperature is limited to lower level due to steel cladding-metal fuel compatibility concerns. Another metal fuel core concept using single Pu enrichment and two radial regions with individual fuel pin diameters achieves 550degC of core outlet temperature identical to that of MOX fuel core, keeping operation cycle length comparable with that of MOX fuel core. This series of study results show that sodium-cooled MOX and metal fuel cores have a high flexibility in satisfying various needs including fuel cycle cost and breeding capability, depending on the stage of introducing commercialized fast reactor cycle system. (author)

  12. Theoretical study and experimental investigation of mixed and natural circulation in LMFBR core subassemblies

    International Nuclear Information System (INIS)

    Leteinturier, D.; Blanc, D.; Menant, B.; Basque, G.

    1980-02-01

    A presentation is made of theoretical and experimental studies carried out in France on mixed and natural convection in LMFBR wire wrapped bundles. Two codes are described, one for mixed convection THERNAT and the other for natural convection BACCHUS. THe related experimental program FETUNA, with electrically heated bundles in sodium loops, is also presented

  13. Summary and evaluation: fuel dynamics loss-of-flow experiments (tests L2, L3, and L4)

    International Nuclear Information System (INIS)

    Barts, E.W.; Deitrich, L.W.; Eberhart, J.G.; Fischer, A.K.; Meek, C.C.

    1975-09-01

    Three similar experiments conducted to support the analyses of hypothetical LMFBR unprotected-loss-of-flow accidents are summarized and evaluated. The tests, designated L2, L3, and L4, provided experimental data against which accident-analysis codes could be compared, so as to guide further analysis and modeling of the initiating phases of the hypothetical accident. The tests were conducted using seven-pin bundles of mixed-oxide fuel pins in Mark-II flowing-sodium loops in the TREAT reactor. Test L2 used fresh fuel. Tests L3 and L4 used irradiated fuel pins having, respectively, ''intermediate-power'' (no central void) and ''high-power'' (fully developed central void) microstructure. 12 references

  14. Sodium boiling and mixed oxide fuel thermal behavior in FBR undercooling transients; W-1 SLSF experiment results

    International Nuclear Information System (INIS)

    Henderson, J.M.; Wood, S.A.; Knight, D.D.

    1981-01-01

    The W-1 Sodium Loop Safety Facility (SLSF) Experiment was conducted to study fuel pin heat release characteristics during a series of LMFBR Loss-of-Piping Integrity (LOPI) transients and to investigate a regime of coolant boiling during a second series of transients at low, medium and high bundle power levels. The LOPI transients produced no coolant boiling and showed only small changes in coolant temperatures as the test fuel microstructure changed from a fresh, unrestructured to a low burnup, restructured condition. During the last of seven boiling transients, intense coolant boiling produced inlet flow reversal, cladding dryout and moderate cladding melting

  15. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  16. Microprocessor-based integrated LMFBR core surveillance

    International Nuclear Information System (INIS)

    Gmeiner, L.

    1984-06-01

    This report results from a joint study of KfK and INTERATOM. The aim of this study is to explore the advantages of microprocessors and microelectronics for a more sophisticated core surveillance, which is based on the integration of separate surveillance techniques. Due to new developments in microelectronics and related software an approach to LMFBR core surveillance can be conceived that combines a number of measurements into a more intelligent decision-making data processing system. The following techniques are considered to contribute essentially to an integrated core surveillance system: - subassembly state and thermal hydraulics performance monitoring, - temperature noise analysis, - acoustic core surveillance, - failure characterization and failure prediction based on DND- and cover gas signals, and - flux tilting techniques. Starting from a description of these techniques it is shown that by combination and correlation of these individual techniques a higher degree of cost-effectiveness, reliability and accuracy can be achieved. (orig./GL) [de

  17. Subassembly faults diagnostic of an LMFBR type reactor by the measurement of temperature noise

    International Nuclear Information System (INIS)

    Kokorev, B.V.; Palkin, I.I.; Turchin, N.M.; Pallagi, D.; Horanyi, S.

    1979-09-01

    The subassembly faults detection possibility by temperature noise analysis of an LMFBR is described. The paper contains the results of diagnostical examinations obtained on electrically heated NaK test rigs. On the basis of these results the measurement of temperature noise RMS value seems to be a practicable method to detect local blockages in an early phase. (author)

  18. Corrosion critique of the 2 1/4 Cr--1 Mo steel for LMFBR steam generation system applications

    International Nuclear Information System (INIS)

    Zima, G.E.

    1977-07-01

    The unstabilized ferritic steel of nominal composition, 2 1 / 4 Cr-1Mo, has been proposed for critical structural assignments in LMFBR powerplants, specifically: the tubing, tubesheet and shell of the evaporator and superheater components. The interest in this steel has been based on a presumably favorable general corrosion property spectrum, acceptable mechanical properties and fabricability, and certain economies associated with the low alloy content. This report is an attempt at a general corrosion assessment for the 2 1 / 4 Cr-1Mo steel and an identification of corrosion problem areas potential to this steel from the sodium and water/steam systems of the proposed working environment. There is a considerable area of uncertainty in the sodium-side response of 2 1 / 4 Cr-1Mo steel, centered in the loss and redisposition of carbon during long-term exposure to sodium of various impurity backgrounds. It is submitted that present evidence relating to the water/steam-side corrosion behavior of the 2 1 / 4 Cr-1Mo steel, under nominal and conceivable perturbed environmental conditions, constitutes the principal concern for the proposed LMFBR powerplant applications of this steel. It is suggested that this unfavorable corrosion aspect represents an inherent limitation of the low alloy content of this steel, probably largely independent of melting and processing recourses, and it is a sufficient basis to question the incentive for a continuation of the collateral studies of this steel for the proposed LMFBR steam generation system assignments

  19. Immersed acoustical transducers and their potential uses in LMFBR

    International Nuclear Information System (INIS)

    Argous, J.P.; Brunet, M.; Baron, J.; Lhuillier, C.; Segui, J.L.

    1980-04-01

    Six years satisfactory operation in PHENIX has proved the reliability and effectivness of under-sodium viewing (VISUS) and Acoustic Detection. This fact has been strong incentive to maintain, on the future LMFBR the visus as well as the Acoustic Detection functions. These two functions are performed on SUPER PHENIX, by two sets of distinct systems using the well-known solution. Taking into account of recent improvements in sodium immersible acoustic transducers technology, CEA decided to undertake the development of a multi-functions instrument. This paper gives an outline of this new concept, which should be able to reduce the cost and the complexity of core instrumentation

  20. Accommodation of unprotected accidents by inherent safety design features in metallic and oxide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Su, S.F.; Cahalan, J.E.; Sevy, R.H.

    1985-01-01

    This paper presents the results of a systematic study of the effectiveness of intrinsic design features to mitigate the consequences of unprotected accidents in metallic and oxide-fueled LMFBRs. The accidents analyzed belong to the class generally considered to lead to core disruption; unprotected loss-of-flow (LOF) and transient over-power (TOP). The results of the study demonstrate the potential for design features to meliorate accident consequences, and in some cases to render them benign. Emphasis is placed on the relative performance of metallic and oxide-fueled core designs, and safety margins are quantified in sensitivity studies. All analyses were carried out using the SASSYS LMFBR systems analysis code (1)

  1. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  2. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  3. Breeder Spent Fuel Handling (BSFH) cask study for FY83. Final report

    International Nuclear Information System (INIS)

    Diggs, J.M.

    1985-01-01

    This report documents a study conducted to investigate the applicability of existing LWR casks to shipment of long-cooled LMFBR fuel from the Clinch River Breeder Reactor Plant (CRBRP) to the Breeder Reprocessing Engineering Test (BRET) Facility. This study considered a base case of physical constraints of plants and casks, handling capabilities of plants, through-put requirements, shielding requirements due to transportation regulation, and heat transfer capabilities of the cask designs. Each cask design was measured relative to the base case. 15 references, 4 figures, 6 tables

  4. Acoustic leak detection of LMFBR steam generator

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Yoshida, Kazuo

    1993-01-01

    The development of a water leak detector with short response time for LMFBR steam generators is required to prevent the failure propagation caused by the sodium-water reaction and to maintain structural safety in steam generators. The development of an acoustic leak detector assuring short response time has attracted. The purpose of this paper is to confirm the basic detection feasibility of the active acoustic leak detector, and to investigate the leak detection method by erasing the background noise by spectrum analysis of the passive acoustic leak detector. From a comparison of the leak detection sensitivity of the active and the passive method, the active method is not influenced remarkably by the background noise, and it has possibility to detect microleakage with short response time. We anticipate a practical application of the active method in the future. (author)

  5. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  6. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  7. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  8. Validation study of the COBRA-WC computer program for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Khan, E.U.; Bates, J.M.

    1982-01-01

    The COBRA-WC (Whole Core) computer program has been developed as a benchmark code to predict flow and temperature fields in LMFBR rod bundles. Consequently, an extensive validation study has been conducted to reinforce its credibility. A set of generalized parameters predicts data well for a wide range of geometries and operating conditions which include conventional (current generation LMFBRs) fuel and blanket assembly geometry in the forced, mixed, and natural convection regimes. The data base used for validating COBRA-WC was obtained from out-of-pile and in-pile tests. Most of the data was obtained in fully heated bundles with bundle power skew across flats up to 3:1 (max:min), Reynolds number between 500 and 80,000, and coolant mixed-mean temperature rise (δ anti T) in the range, 78 0 F less than or equal to δ anti T less than or equal to 340 0 F. Within the bundle, 95% of the predicted coolant temperature data points fall within +-25 0 F for 150 0 F less than or equal to δ anti T less than or equal to 340 0 F and within +-17 0 F for 78 0 F less than or equal to δ anti T less than or equal to 150 0 F

  9. A miniature inductive temperature sensor to monitor temperature noise in the coolant of an LMFBR

    International Nuclear Information System (INIS)

    Dean, S.A.; Sandham, C.W.

    1980-01-01

    A description is given of the design and performance of miniature inductive sensors developed to monitor fast temperature fluctuations in the sodium coolant above the core of a LMFBR. These instruments, designed to be installed within existing thermocouple containment thimbles, also provide a steady-state temperature indication for reactor control purposes. (author)

  10. Study of thermal-hydraulic characteristics in an LMFBR intermediate plenum

    International Nuclear Information System (INIS)

    Uotani, M.; Naohara, N.; Kinoshita, I.

    1985-01-01

    Experimental studies using water and liquid metal were conducted in order to investigate the thermal-hydraulic characteristics of an LMFBR intermediate plenum. The present study is an attempt to evaluate the effect of natural convection on the temperature field and to validate the prediction method of temperature profile in a thermally stratified cavity. The experimental results indicated that the effect of the natural convection on flow velocity and heat transfer in the cavity is reduced with increasing the modified stratification parameter. The calculation by FEM code and a simple 1-D model are effective to predict the temperature profile in the cavity

  11. Sodium mists behavior in cover gas space of an LMFBR

    International Nuclear Information System (INIS)

    Himeno, Y.; Takahashi, J.

    1978-03-01

    This paper present the sodium mist behavior in Argon cover gas space of an LMFBR experimentally using a test vessel of 1,400 mm in axial length, 305.5 mm in inner diameter and about 100 l in volume. Experiments are consisted with measurements of the mist concentration and the mist gravitational settling flux between the sodium pool temperature range of 290 0 to 520 0 C. The results are discussed under the monosize assumption of the particles, and the particle sizes and evaporation rate are derived. Transient and steady state mist concentration behavior were also investigated. (author)

  12. Techniques for the thermal/hydraulic analysis of LMFBR check valves

    International Nuclear Information System (INIS)

    Cho, S.M.; Kane, R.S.

    1979-01-01

    A thermal/hydraulic analysis of the check valves in liquid sodium service for LMFBR plants is required to provide temperature data for thermal stress analysis of the valves for specified transient conditions. Because of the complex three-dimensional flow pattern within the valve, the heat transfer analysis techniques for less complicated shapes could not be used. This paper discusses the thermal analysis techniques used to assure that the valve stress analysis is conservative. These techniques include a method for evaluating the recirculating flow patterns and for selecting appropriately conservative heat transfer correlations in various regions of the valve

  13. Comparison of different LMFBR primary containment codes applied to a Benchmark problem

    International Nuclear Information System (INIS)

    Benuzzi, A.

    1986-01-01

    The Cont Benchmark calculation exercise is a project sponsored by the Containment Loading and Response Group, a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee - CEC. A full-size typical Pool type LMFBR undergoing a postulated Core Disruptive Accident (CDA) has been defined by Belgonucleaire-Brussels under a study contract financed by the CEC and has been submitted to seven containment code calculations. The results of these calculations are presented and discussed in this paper

  14. Monte-Carlo validation of secondary sodium activation in a pool-type LMFBR

    International Nuclear Information System (INIS)

    Plamiotti, G.; Rado, V.; Salvatores, M.

    1980-09-01

    The secondary sodium activation in a pool-type LMFBR is the main parameter to be accurately evaluated in the shield design. In the present work a complete two dimensional description of the system, including core, shielding and sodium up to Heat Exchangers, is coupled to local Heat Exchanger Monte-Carlo calculations. This refined calculation is used to deduce a simplified method to take into account the coupling of radial propagation in the Heat Exchanger and its finite cylindrical structure

  15. LMFBR system-wide transient analysis: the state of the art and US validation needs

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Guppy, J.G.; Cerbone, R.J.

    1982-01-01

    This paper summarizes the computational capabilities in the area of liquid metal fast breeder reactor (LMFBR) system-wide transient analysis in the United States, identifies various numerical and physical approximations, the degree of empiricism, range of applicability, model verification and experimental needs for a wide class of protected transients, in particular, natural circulation shutdown heat removal for both loop- and pool-type plants

  16. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-10-01

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors.

  17. Specialists meeting on leak detection and location in LMFBR steam generators. Summary report

    International Nuclear Information System (INIS)

    1978-10-01

    The following topics covered at the meeting were: with leak detection and location methods and equipment, including concentration measurements, helium tests, and electromagnetic methods; acoustic leak detection and related equipment; techniques and experiences in ensuring and measuring steam generator tightness during manufacturing, installation and repair, tube inspection methods for periodic control and damage assessment following leaks, influence of these methods on design of steam generators for LMFBR type reactors

  18. Optimization of binary breeder reactor. 2. Preliminary base for control analysis and fuel management

    International Nuclear Information System (INIS)

    Dias, A.F.; Nascimento, J.A. do; Ishiguro, Y.

    1985-01-01

    Neutronic calculations to verify the reactivity effects, of sodium voids and Doppler, with the variation of the composition of parasitic absorbers were done. A LMFBR type reactor loaded with mixed fuel, (U 233 -Th 232 )O 2 in the internal core and (U 238 -Pu 239 )O 2 in external core, was considered. In reactivity calculations the EXPANDA and CITATION computer codes were utilized. Buckling effects and importance of determination of the spatial selfshielding factors were analysed. (M.C.K.) [pt

  19. Research report on design allowable values of structural materials for LMFBR

    International Nuclear Information System (INIS)

    1978-11-01

    The present report is composed of following two main parts. i) review and re-evaluation on test results by FCI Sub-committee studies, performed from 1973 to 1976, ii) review on procedures for determining design allowable values of structural materials for LMFBR components. Re-evaluation works have been made on monotonic tensile properties at elevated temperatures, creep and creep rupture properties, creep-fatigue properties (strain rate and tensile strain hold time effects on strain fatigue properties at elevated temperatures) of Types 316 and 304 stainless steel and 2 1/4Cr-1Mo steel (base and weld metals) produced in Japan. In the first half of the present report, creep-fatigue test results obtained by FCI Sub-committee studies are subjected to re-evaluation by the present P-FCI Sub-committee. Reviews have been made on testing methods on FCI's-creep-fatigue experiments with other test data of the test materials; high temperature monotonic tensile data, creep and creep rupture data, and origin of the test materials. The data of FCI studies are compared with other reference data obtained by several Japanese laboratories. In the latter half of the present report, procedures including ASME's are reviewed for setting design allowable values for LMFBR components on the basis of high temperature strength properties obtained with materials produced in Japan. A creep rupture data of Japanese steels are issued and examined to make proposal for a design allowable stress of S sub(t) through parameter survey. (author)

  20. Development and application of capacitor discharge vaporization technique for fuel aerosol studies

    International Nuclear Information System (INIS)

    Kelly, M.J.; Kress, T.S.; Parker, G.W.; Rochelle, J.M.; Fontana, M.H.

    1976-01-01

    Investigations into the behavior of LMFBR fuel as it responds to the levels of energy deposition projected for prompt-critical excursions have been limited because of the difficulty of experimentally achieving the resultant high thermodynamic states in a laboratory. In order to conduct ''source-term'' assessment and fuel aerosol behavioral experiments, the Aerosol Release and Transport program at ORNL has been developing a Capacitor Discharge Vaporization (CDV) technique for using electrical energy, via the discharge from capacitors, to achieve HCDA-like energy state in UO 2 . The paper reports the details of the technique, the developmental test results that have demonstrated feasibility, and a brief description of the proposed experiments that will use the CDV system for safety related studies

  1. Review of advanced core designs for LMFBRs

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1986-01-01

    It is a matter of great importance for the development of LMFBR to reduce its power cost to the level of the other power generating means. For this purpose, some ideas that use advanced core concepts to reduce LMFBR's power cost by improving its fuel cycle economics have recently been proposed. In this report, two hopeful ideas that use advanced core concepts: (1) Ultra Long Life Core (ULLC) - non-refueling over LMFBR power plant life; (2) Integral Fast Reactor (IFR) concept - metal fueled core and pyrometallurgical reprocessing; are picked up and their economical effect and technical probrems are investigated. (author)

  2. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    1983-01-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start

  3. PNC status report on leak detector development for LMFBR steam generators

    International Nuclear Information System (INIS)

    Kuroha, M.; Sato, M.

    1984-01-01

    Chemical and acoustic type leak detectors have been developed for detecting a small sodium-water reaction in an LMFBR steam generator. This paper presents a summary of the development. (1) Test results on PNC type in-sodium hydrogen meters including a description of the structure, the long-term reliability and the durability, and the improved meter with an orifice, (2) Development of in-cover gas hydrogen meters, (3) Hydrogen detection tests and analyses, (4) Operating experiences of electrochemical in-sodium oxygen meters, and (5) Basic studies on acoustic characteristics of the sodium-water reaction. (author)

  4. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  5. SATURN-FS 1: A computer code for thermo-mechanical fuel rod analysis

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Heck, M.

    1993-09-01

    The SATURN-FS code was written as a general revision of the SATURN-2 code. SATURN-FS is capable to perform a complete thermomechanical analysis of a fuel pin, with all thermal, mechanical and irradiation-based effects. Analysis is possible for LWR and for LMFBR fuel pins. The thermal analysis consists of calculations of the temperature profile in fuel, gap and in the cladding. Pore migration, stoichiometry change of oxide fuel, gas release and diffusion effects are taken into account. The mechanical modeling allows the non steady-state analysis of elastic and nonelastic fuel pin behaviour, such as creep, strain hardening, recovery and stress relaxation. Fuel cracking and healing is taken into account as well as contact and friction between fuel and cladding. The modeling of the irradiation effects comprises swelling and fission gas production, Pu-migration and irradiation induced creep. The code structure, the models and the requirements for running the code are described in the report. Recommendations for the application are given. Program runs for verification and typical examples of application are given in the last part of this report. (orig.) [de

  6. Low cycle fatigue of irradiated LMFBR materials

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data

  7. Gas-cooled fast reactor fuel-cost assessment. Final report, October 1978-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.

    1979-01-01

    This program, contracted to provide a Gas Cooled Fast Reactor (GCFR) fuel assembly fabrication cost assessment, comprised the following basic activities: establish agreement on the ground rules for cost assessment, prepare a fuel factory flow sheet, and prepare a cost assessment for fuel assembly fabrication. Two factory sizes, 250 and 25 MTHM/year, were considered for fuel assembly fabrication cost assessment. The work on this program involved utilizing GE LMFBR cost assessment and fuel factory studies experience to provide a cost assessment of GCFR fuel assembly fabrication. The recent impact of highly sensitive safety and safeguards environment policies on fuel factory containment, safety, quality assurance and safeguards costs are significantly higher than might have been expected just a few years ago. Fuel assembly fabrication costs are significant because they represent an estimated 30 to 60% of the total fuel cycle costs. In light of the relative high cost of fabrication, changes in the core and assembly design may be necessary in order to enhance the overall fuel cycle economics. Fabrication costs are based on similar operations and experience used in other fuel cycle studies. Because of extrapolation of present technology (e.g., remote fuel fabrication versus present contact fabrication) and regulatory requirements, conservative cost estimates were made.

  8. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  9. Fretting and wear of stainless and ferritic steels in LMFBR steam generators

    International Nuclear Information System (INIS)

    Lewis, M.W.J.; Campbell, C.S.

    1981-01-01

    Steam generators for LMFBR's may be subject to both fretting wear as a result of flow-induced vibrations and to wear from larger amplitude sliding movements from thermal changes. Results of tests simulating the latter are given for stainless and ferritic steels. For the assessment of fretting wear damage, vibration assessments must be combined with data on specific wear rates. Test mechanisms used to study fretting in sodium covering impact, impact-slide and pure rubbing are described and results presented. (author)

  10. Joint motion clusters in servomanipulator operation

    International Nuclear Information System (INIS)

    Draper, J.V.; Sundstrom, E.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear fuel reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. This paper reports the results of a recent experiment which investigated how users interact with a multi-degree-of-freedom servomanipulator. Principal components analysis performed on data collected during completion of typical remote maintenance tests indicates that joint motions may be summarized by two orthogonal clusters, one which represents fine-adjusting motions and one which represents slewing motions. Implications of these findings for servomanipulator design are discussed. 5 refs., 1 fig., 2 tabs

  11. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  12. System for nondestructive assay of spent fuel subassemblies: comparison of calculations and measurements

    International Nuclear Information System (INIS)

    Ragan, G.L; Ricker, C.W.; Chiles, M.M.; Ingersoll, D.T.; Slaughter, G.G.; Williams, L.R.

    1979-01-01

    A nondestructive assay system was developed for determining the total fissile content of spent fuel subassemblies at the head end of a reprocessing plant. The system can perform an assay in 20 min with an uncertainty of <5%. Antimony-beryllium neutrons interrogate the subassemblies, and proton recoil counters detect the resulting fission neutrons. Pulse-height discrimination differentiates between the low-energy interrogation neutrons and the higher-energy fission neutrons. Calculated and measured results were compared for (1) interrogation-neutron penetrability, (2) fission-neutron detectability, (3) radial variation of assay sensitivity, (4) axial variation of assay sensitivity, and (5) the variation of detector count rate as a function of the number of fuel rods in a special 61-rod, LMFBR-type subassembly

  13. Final summary report of fuel-dynamics tests H2 and E4

    International Nuclear Information System (INIS)

    Doerner, R.C.; Rothman, A.B.; De Volpi, A.; Dickerman, C.E.; Deitrich, L.W; Stahl, D.; Murphy, W.F.

    1976-02-01

    Results of two failure experiments using LMFBR-type fuel during simulated unprotected transient overpower accidents are reported and analyzed. In both experiments, a single fresh fuel pin in a Mark-IIA loop was subjected to a temperature-limited, step-reactivity irradiation in the TREAT reactor. Total energy was 490 MJ in Test H2 and 690 MJ in Test E4. Except for their timing, the sequence of events in the failure scenario was the same for both tests. Local coolant boiling began 25-50 msec before failure. Significant upward fuel flow in the center of the pin started as early as 100 msec before cladding failure. Cladding failure was due to melting after contact with molten fuel and occurred at the top of the fuel column. Formation of an outlet flow-channel blockage began about 10 msec after failure and was complete by 50 msec. Inlet blockage began later and was less extensive. No significant amount of fuel sweepout was observed. Fuel remains separated into a small group of 50-1000-μm fragments and a macroscopic group of chunks and clinkers. The final distribution of fuel remains may have resulted from a delayed fuel/steel interaction in the inlet region

  14. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  15. Complementary role of critical integral experiment and power reactor start-up experiments for LMFBR neutronics data and method validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1986-09-01

    Both critical experiments and power reactor results play at present a complementary role in reducing the uncertainties in Key design parameters for LMFBR, which can be relevant for the economic performances of this type of reactors

  16. Sloshing behaviors in liquid metal reactors

    International Nuclear Information System (INIS)

    Choun, Young Sun; Yoo, Bong; Lee, Jae Han

    1998-04-01

    It is very difficult to predict sloshing response in the LMFBR which contains many internal components, since the sloshing response of a coolant depends not only upon the frequency contents of input ground motion, but also upon the configuration of reactor vessel and internal components, arrangement of internal components, and excitation direction of ground motion. Therefore, clear understanding of sloshing in the reactor vessel and development of proper technologies to predict sloshing response are necessary to establish the safety of the LMFBR against earthquake. The purpose of this report is to review sloshing behaviors in the LMFBR for the clear understanding of sloshing characteristics and to propose some interesting topics to be studied in future. (author). 34 refs., 12 tabs., 50 figs

  17. Transient behaviour and inherent safety research of LMFBR power plants

    International Nuclear Information System (INIS)

    Zhu Jizhou; Wang Ping; Yu Baoan

    1995-06-01

    Fast Breeder Reactor will be the next generation reactor for nuclear electricity production, the development of FBR will give the profits of efficient utilization of nuclear resources. The fast reactor safety analysis is the foundation and key of FBR research work. Therefore, a block-oriented mathematical model for the primary system of LMFBRs was constructed, and the dynamic simulating results which have been carried out on micro-computer are presented for various transients, i.e. TOP, LOFS, LOHS. The results agree well with the corresponding results of the code NATDEMO and experiment results of EBR-II. Based on previous analysis, various methods are discussed to confirm the inherent safety of LMFBR

  18. Sodium fire studies in France safety tests and applications on an LMFBR

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; de Cuy, G.D.; Justin, J.; Duco, J.; Fourest, B.

    1976-01-01

    The risk of sodium fires in an LMFBR requires thorough analysis, and the possible consequences of an accidental fire must be accurately determined. Not only must means of prevention and detection be perfected, but techniques must be developed to limit the damage caused by a fire: extinguishment, aerosol containment, protection of reactor structures. The program currently undertaken by the CEA's Nuclear Safety Department covering these problems is described. The major results obtained as well as their application to the SUPER-PHENIX reactor are included

  19. Recent development of a CEC'S elasto-plastic-creep cyclic benchmark programme relevant to LMFBR structural integrity

    International Nuclear Information System (INIS)

    Corsi, F.; Terzaghi, A.

    1984-01-01

    It's presented the programme of elasto-plastic benchmark calculations relevant to LMFBr, which started in 1977 with the support and coordination of the Commission of the European Communities (CEC) and the participation of nuclear engineering and manufacturing companies as well as nuclear research centers of France, Germany, Italy and the United Kingdom. (E.G.) [pt

  20. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  1. A fundamental study on sodium-water reaction in the double-pool-type LMFBR

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Akimoto, Tokuzo

    1987-01-01

    In order to evaluate the pressure rise by large sodium-water reaction in the Double-Pool LMFBR, basic tests on pressure wave celerity in rectangular tube are carried out. The initial spike pressure in rectangular-shelled steam generator of the Double Pool reactor, strongly depends on pressure wave celerity. In this study, celerity was measured as a function of pressure wave rising time and pulse height, and influence of water around the test section on celerity was investigated. (author)

  2. Development of an 85,000 gpm (19,303 m3/h) LMFBR primary pump

    International Nuclear Information System (INIS)

    Zerinvary, M.C.; Wagner, E.W.

    1984-01-01

    The development of an 85,000 gpm two-stage primary pump for liquid metal fast breeder reactor (LMFBR) applications is described. The design was supported by air and cavitation model testing of the hyraulics, and development and feature testing of the level control system and the adjustable frequency solid state power supply. Important fabrication and water test items are also discussed, along with some unique assembly tooling requirements

  3. Study on the seismic response of reactor vessel of pool type LMFBR including fluid-structure interaction

    International Nuclear Information System (INIS)

    Tanimoto, K.; Ito, T.; Fujita, K.; Kurihara, C.; Sawada, Y.; Sakurai, A.

    1988-01-01

    The paper presents the seismic response of reactor vessel of pool type LMFBR with fluid-structure interaction. The reactor vessel has bottom support arrangement, the same core support system as Super-Phenix in France. Due to the bottom support arrangement, the level of core support is lower than that of the side support arrangement. So, in this reactor vessel, the displacement of the core top tends to increase because of the core's rocking. In this study, we investigated the vibration and seismic response characteristics of the reactor vessel. Therefore, the seismic experiments were carried out using one-eighth scale model and the seismic response including FSI and sloshing were investigated. From this study, the effect of liquid on the vibration characteristics and the seismic response characteristics of reactor vessel were clarified and sloshing characteristics were also clarified. It was confirmed that FEM analysis with FSI can reproduce the seismic behavior of the reactor vessel and is applicable to seismic design of the pool type LMFBR with bottom support arrangement. (author). 5 refs, 14 figs, 2 tabs

  4. A technique for computing bowing reactivity feedback in LMFBR's

    International Nuclear Information System (INIS)

    Finck, P.J.

    1987-01-01

    During normal or accidental transients occurring in a LMFBR core, the assemblies and their support structure are subjected to important thermal gradients which induce differential thermal expansions of the walls of the hexcans and differential displacement of the assembly support structure. These displacements, combined with the creep and swelling of structural materials, remain quite small, but the resulting reactivity changes constitute a significant component of the reactivity feedback coefficients used in safety analyses. It would be prohibitive to compute the reactivity changes due to all transients. Thus, the usual practice is to generate reactivity gradient tables. The purpose of the work presented here is twofold: develop and validate an efficient and accurate scheme for computing these reactivity tables; and to qualify this scheme

  5. Failed fuel detection device

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Hayashida, Yoshihisa; Niidome, Jiro.

    1985-01-01

    Purpose: To prevent intrusion of background neutrons to neutron detectors thereby improve the S/N ratio of the detectors in the failed fuel detection device of LMFBR type reactors. Constitution: Neutrons from the reactor core pass through the gaps around the penetration holes in which the primary pipeways pass through the concrete shielding walls and pass through the gaps between the thermal shielding members and the neutron moderating shielding members of the failed fuel detection device and then intrude into the neutron detectors. In view of the above, inner neutron moderating shielding members and movable or resilient neutron shielding members are disposed to the inside of the neutron moderating shielding member. Graphite or carbon hydrides such as paraffin or synthetic resin with a large neutron moderation effect are used as the outer moderating shielding member and materials such as boron or carbon are used for the inner members. As a result, the background neutrons are shielded by the inner neutron moderating shielding members and the resilient neutron shielding members, by which the S/N ratio of the neutron detectors can be increased to 2 - 4 times. (Moriyama, K.)

  6. Development of the delyed-neutron triangulation technique for locating failed fuel in LMFBR

    International Nuclear Information System (INIS)

    Kryter, R.C.

    1975-01-01

    Two major accomplishments of the ORNL delayed neutron triangulation program are (1) an analysis of anticipated detector counting rates and sensitivities to unclad fuel and erosion types of pin failure, and (2) an experimental assessment of the accuracy with which the position of failed fuel can be determined in the FFTF (this was performed in a quarter-scale water mockup of realistic outlet plenum geometry using electrolyte injections and conductivity cells to simulate delayed-neutron precursor releases and detections, respectively). The major results and conclusions from these studies are presented, along with plans for further DNT development work at ORNL for the FFTF and CRBR. (author)

  7. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  8. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  9. Teaching Motion with the Global Positioning System

    Science.gov (United States)

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  10. Combustion and emissions control in diesel-methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion

    International Nuclear Information System (INIS)

    Carlucci, Antonio P.; Laforgia, Domenico; Saracino, Roberto; Toto, Giuseppe

    2011-01-01

    Highlights: → We studied dual fuel combustion in diesel engines. → Bulk flow structure of in-cylinder charge and methane supply method were investigated. → Swirl charge motion is capable to enhance air-methane mixture oxidation at low loads. → Methane port injection is capable to reduce unburned hydrocarbons and nitric oxides. - Abstract: In this paper, the results of an extensive experimental campaign about dual fuel combustion development and the related pollutant emissions are reported, paying particular attention to the effect of both the in-cylinder charge bulk motion and methane supply method. A diesel common rail research engine was converted to operate in dual fuel mode and, by activating/deactivating the two different inlet valves of the engine (i.e. swirl and tumble), three different bulk flow structures of the charge were induced inside the cylinder. A methane port injection method was proposed, in which the gaseous fuel was injected into the inlet duct very close to the intake valves, in order to obtain a stratified-like air-fuel mixture up to the end of the compression stroke. For comparison purposes, a homogeneous-like air-fuel mixture was obtained injecting methane more upstream the intake line. Combining the different positions of the methane injector and the three possible bulk flow structures, seven different engine inlet setup were tested. In this way, it was possible to evaluate the effects on dual fuel combustion due to the interaction between methane injector position and charge bulk motion. In addition, methane injection pressure and diesel pilot injection parameters were varied setting the engine at two operating conditions. For some interesting low load tests, the combustion development was studied more in detail by means of direct observation of the process, using an in-cylinder endoscope and a digital CCD camera. Each combustion image was post-processed by a dedicated software, in order to extract only those portions with flame

  11. Study on the phenomena of natural circulation in LMFBR

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Koga, Tomonari

    1993-01-01

    Decay heat removal with natural circulation is to be introduced to the LMFBR operation under loss of the electric power supply. The natural circulation is highly reliable, but the phenomenon is essentially unstable and subtle, which makes fine prediction difficult. The difficulties of experimental prediction are explained by facts that the phenomena are ruled by the delicate balance between the buoyancy force and the low pressure loss and are influenced by the various parameters such as local geometry, heat capacity and so on. Therefore the similarity rule for the natural circulation has not been fully understood. This study has been conducted to establish the simulation method for the natural circulation phenomena and the detailed phenomena have been reviewed. For the natural circulation in an LMFBR plant, there are no readily available reference velocity and temperature. These values are related only with the heating and cooling rate, the characteristic length and physical properties of the testing fluid. Basic equations were transformed by these values, and dimensionless equations were derived and then two dimensionless numbers, the Gr' number and the Bo' number, were identified. In order to examine the similarity rule for natural circulation we performed experiments using the different scale water models, a 1/20th and a 1/6th model. The temperatures and velocities at typical points were measured in the transient condition with various heating rate as a parameter. Measured temperatures and velocities were transformed to dimensionless forms for comparison and the effects of the Bo' number and the Gr' number were examined. As a result, it was clarified that the effect of the Gr' number is negligibly small but the effect of Bo' number still remained in our experimental range. The Bo' number of an actual plant is within the range of this experiment. Accordingly similitude of the Bo' number becomes important in an experiment to simulate an actual plant. (author)

  12. Modelling the role of pellet crack motion in the (r-θ) plane upon pellet-clad interaction in advanced gas reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, T.A. [Centre for Nuclear Engineering & Department of Materials, Imperial College London, Exhibition Rd., London SW7 2AZ (United Kingdom); Ball, J.A. [EDF Energy, Barnett Way, Gloucester GL4 3RS (United Kingdom); Wenman, M.R., E-mail: m.wenman@imperial.ac.uk [Centre for Nuclear Engineering & Department of Materials, Imperial College London, Exhibition Rd., London SW7 2AZ (United Kingdom)

    2017-04-01

    Highlights: • Finite element modelling of pellet relocation in the (r-θ) plane of nuclear fuel. • ‘Soft’ and ‘hard’ PCI have been predicted in a cracked nuclear fuel pellet. • Stress concentration in the cladding ahead of radial pellet cracks is predicted. • The model is very sensitive to the coefficient of friction and power ramp duration. • The model is less sensitive to the number of cracks assumed. - Abstract: A finite element model of pellet fragment relocation in the r-θ plane of advanced gas-cooled reactor (AGR) fuel is presented under conditions of both ‘hard’ and ‘soft’ pellet-clad interaction. The model was able to predict the additional radial displacement of fuel fragments towards the cladding as well as the stress concentration on the inner surface resulting from the azimuthal motion of pellet fragments. The model was subjected to a severe ramp in power from both full power and after a period of reduced power operation; in the former, the maximum hoop stress in the cladding was found to be increased by a factor of 1.6 as a result of modelling the pellet fragment motion. The pellet-clad interaction was found to be relatively insensitive to the number of radial pellet crack. However, it was very sensitive to both the coefficient of friction used between the clad and pellet fragments and power ramp duration.

  13. Equation of state for L.M.F.B.R. fuel (measurement of fission gas release during transients)

    International Nuclear Information System (INIS)

    Combette, P.; Barthelemy, P.

    1979-01-01

    A sample of fuel (UO 2 or UPuO 2 ) can be heated by fission in a heating transient up to energy deposition 4000 j/g, in the Silene reactor. The Kistler type capsule, the calorimeter device and the radiochemical analysis of fission products enable the pressure pulse and the fuel energy deposition to be measured. So, the relationship between the fuel vapour pressure and the fuel specific energy can be deduced. Peaks pressure (about 1 MPa) coming from fresh UO 2 vaporization, have been measured on a 7 milliseconds time scale. There is a good agreement with the E.O.S. for fresh UO 2 , which is well known for low pressure (1 MPa). Numerous tests have been done with 93% enriched UO 2 and a first test with highly active fuel containing plutonium (15 at %) has been performed. The capsule allows the released gas coming from the irradiated fuel to be retained for measurements and analysis. To investigate the mode of fuel disruption, in-pile fission-heated fuel pellets has been recorded by high speed cinematography

  14. Multi-channel grouping techniques for conducting reactor safety studies

    International Nuclear Information System (INIS)

    Waltar, A.E.; Wilburn, N.P.

    1975-01-01

    In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF

  15. Validation of turbulence models for LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Chen, Y.B.; Golay, M.W.

    1977-01-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds number (Re) values of 33000 and 70000 in a 1/15 - scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different two-equation turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet flow field, importantly also upon the degree of inlet turbulence, and also upon the turbulent momentum exchange model used in the calculations. In the FFTF geometry, the TEACH-T predictions agree well with the experiments. 7 refs

  16. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  17. Intelligent type sodium instrumentations for LMFBR

    International Nuclear Information System (INIS)

    Chen Daolong

    1996-07-01

    The constructions and performances of lots of newly developed intelligent type sodium instrumentations are described. The graduation characteristic equations for corresponding transducer using the medium temperature as the parameter are given. These intelligent type sodium instrumentations are possessed of good linearity. The accurate measurement data of sodium process parameters (flowrate, pressure and level) can be obtained by means of their on-line compensation function of the temperature effect. Moreover, these intelligent type sodium instrumentations are possessed of the self-inspection, the electric shutoff protection, the setting of full-scale, the setting of alarm limits (two upper limits and two lower limits alarms), the thermocouple breaking alarm, mutual isolative the 0∼10 V direct-current analogue output and the CENTRONICS standard digital output, and the alarm relay contact output. Theses intelligent type sodium instrumentations are suitable particularly for the instrument, control and protective systems of LMFBR by means of these excellent functions based on microprocessor. The basic errors of the intelligent type sodium flowmeter, immersed sodium flowmeter, sodium manometer and sodium level gauge are +-2%, +-2.3%, +-0.3% and +-1.9% of measuring ranges respectively. (9 figs.)

  18. MENT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    Betten, P.R.; Tow, D.M.

    1984-01-01

    Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly

  19. Analytical treatment of large leak pressure behavior in LMFBR steam generators

    International Nuclear Information System (INIS)

    Hori, Masao; Miyake, Osamu

    1980-07-01

    Simplified analytical methods applicable to the estimation of initial pressure spike in case of a large leak accident in LMFBR steam generators were devised as follows; (i) Estimation of the initial water leak rate by the centered rarefaction wave method, (ii) Estimation of the initial pressure spike by the one-dimensional compressible method with either the columnar bubble growth model or the spherical bubble growth model. These methods were compared with relevant experimental data or other more elaborate analyses and validated to be usable in simple geometry and limited time span cases. Application of these methods to an actual steam generator case was explained and demonstrated. (author)

  20. Economic incentives of short out-of-reactor time for fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Bentley, B.W.; Haffner, D.R.

    1975-01-01

    Economic benefits (primarily reduced uranium ore and enrichment expenditures) can be realized by reducing the LMFBR out-of-reactor fuel cycle time only if process cost penalties and R and D costs can be minimized. The results of the evaluation presented show the potential gross benefits of reducing the out-of-reactor time and the effects of various associated cost penalties on these benefits. The gross benefit results estimate the potential savings in electrical power generation in the next 50 years using constant 1975 dollars and discounting the costs at 7 1 / 2 percent per year

  1. Transference of advanced LMFBR control technology to the aerospace power system program

    International Nuclear Information System (INIS)

    Chisholm, G.H.

    1984-01-01

    Much recent R and D has been devoted to the safety of liquid metal fast breeder reactors (LMFBR's). Part of the resulting technology, especially advanced control systems, appears to be directly transferable to the space nuclear power program. Some of the ideas described herein have been already culminated in successful products that are available for application, e.g. analytical redundancy and fault-tolerant computers. Others, in various stages of R and D, are being developed as elements to support the design goals outlined in the following section, e.g. automated software verification, automated hardware verification, and system validation

  2. Trip report: United States LMFBR Steam Generator Team. IAEA symposium, Bensberg, Germany, October 14--17, 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Information is presented concerning steam generator design characteristics for the AFR reactor, SNR reactor, PHENIX reactor, SUPER PHENIX reactor, MONJU reactor, and BN-350 reactor; steam generator development programs for West Germany, France, Japan, U. K., and the U. S. S. R.; and the fabrication and inspection of steam generator components. Steam generator performance and maintenance requirements for operating LMFBR reactors are reviewed. (U.S.)

  3. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-01-01

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included

  4. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-01-01

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness

  5. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-02-24

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included.

  6. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-06-08

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness.

  7. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-08-16

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  8. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-01-01

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  9. Comparative evaluation of fuel temperature coefficient of standard and CANFLEX fuels in CANDU 6

    International Nuclear Information System (INIS)

    Kim, Woosong; Hartant, Donny; Kim, Yonghee

    2012-01-01

    The fuel temperature reactivity coefficient (FTC) of CANDU 6 has become a concerning issue. The FTC was found to be slightly positive for the operating condition of CANDU 6. Since CANDU 6 has unique fuel arrangement and very soft neutron spectrum, its Doppler reactivity feedback of U 238 is rather weak. The upscattering by oxygen in fuel and Pu 239 buildup with fuel depletion are responsible for the positive FTC value at high temperature. In this study, FTC of both standard CANDU and CANFLEX fuel lattice are re evaluated. A Monte Carlo code Serpent2 was chosen as the analysis tool because of its high calculational speed and it can account for the thermal motion of heavy nuclides in fuel by using the Doppler Broadening Rejection Correction (DBRC) method. It was reported that the fuel Doppler effect is noticeably enhanced by accounting the target thermal motion. Recently, it was found that the FTC of the CANDU 6 standard fuel is noticeably enhanced by the DBRC

  10. Evaluation of high-pressure containment buildings for LMFBR's

    International Nuclear Information System (INIS)

    Armstrong, G.R.

    1981-01-01

    A study was conducted on the use of High Pressure LMFBR Containment Buildings for 1000 MW(e) LMFBRs. Two principal aspects were investigated: accident consequence mitigation and cost. Two types of hypothetical accidents were analyzed to establish consequence mitigation: melt-through and energetic expulsion. Three Containment Building (CB) design pressures were investigated: 69 kPa (10 psig), 207 kPa (30 psig), and 414 kPa (60 psig). Four types of design structures were analyzed to establish cost: steel, steel with confinement building, reinforced concrete, and prestressed/post-tensioned concrete. Results show that: it is within reason that a high pressure containment for a 1000 MW(e) reactor can be fabricated that will retain its integrity during postulated severe hypothetical accidents, if available measures are taken to reduce or prevent hydrogen production and the cost differential between basic high (414 kPa) and low (69 kPa) pressure containments is $10 x 10 6 or less

  11. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  12. Preliminary investigation of fuel cycle in fast reactors by the correlations method and sensitivity analyses of nuclear characteristics

    International Nuclear Information System (INIS)

    Amorim, E.S. do; Castro Lobo, P.D. de.

    1980-11-01

    A reduction of computing effort was achieved as a result of the application of space - independent continuous slowing down theory in the spectrum averaged cross sections and further expressing then in a quadratic corelation whith the temperature and the composition. The decoupling between variables that express some of the important nuclear characteristics allowed to introduce a sensitivity analyses treatment for the full prediction of the behavior, over the fuel cycle, of the LMFBR considered. As a potential application of the method here in developed is to predict the nuclear characteristics of another reactor, face some reference reactor of the family considered. Excellent agreement with exact calculation is observed only when perturbations occur in nuclear data and/or fuel isotopic characteristics, but fair results are obtained whith variations in system components other than the fuel. (Author) [pt

  13. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  14. Overview of the fast reactors fuels program

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  15. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    International Nuclear Information System (INIS)

    Magnaud, J.P.; Rouzaud, P.

    1985-09-01

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  16. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J. [University of Vigo, E.T.S. Ingenieros Industriales, Lagoas-Marcosende s/n, 36200-Vigo (Spain)

    2010-04-15

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies. (author)

  17. The motion of discs and spherical fuel particles in combustion burners based on Monte Carlo simulation

    International Nuclear Information System (INIS)

    Granada, E.; Patino, D.; Porteiro, J.; Collazo, J.; Miguez, J.L.; Moran, J.

    2010-01-01

    The position of pellet fuel particles in a burner largely determines their combustion behaviour. This paper addresses the simulated motion of circles and spheres, equivalent to pellet, and their final position in a packed bed subject to a gravitational field confined inside rigid cylindrical walls. A simplified Monte Carlo statistical technique has been described and applied with the standard Metropolis method for the simulation of movement. This simplification provides an easier understanding of the method when applied to solid fuels in granular form, provided that they are only under gravitational forces. Not only have we contrasted one parameter, as other authors, but three, which are radial, bulk and local porosities, via Voronoi tessellation. Our simulations reveal a structural order near the walls, which declines towards the centre of the container, and no pattern was found in local porosity via Voronoi. Results with this simplified method are in agreement with more complex previously published studies.

  18. Structural consideration for hot and cold pipe clamps in LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.; Huang, S.N.; Kappauf, H.; Wagner, S.E.; Wirtz, K.H.

    1983-01-01

    A series of analytical studies are described which evaluate stress levels induced in a 600 mm high temperature, thin-wall sodium pipeline by two alternate clamp designs. The first design consists of a band mounted directly on the pipe and is called the hot clamp. The second design consists of a band mounted using insulation standoffs and is called the cold clamp. Pipe stress levels induced by transient thermal dead weight and seismic loads are discussed. Pipe stress levels and system dynamic spring rates are presented. Procedures utilized to combine clamp induced pipe stress with other short and long term pipe system stresses are detailed. Recommendations for practical application in LMFBR pipe systems are made

  19. Structural considerations for hot and cold pipe clamps in LMFBR applications

    International Nuclear Information System (INIS)

    Anderson, M.J.; Huang, S.N.; Wagner, S.E.; Kappauf, H.; Wirtz, K.H.

    1983-01-01

    A series of analytical studies are described which evaluate stress levels induced in a 600 mm high temperature, thin-wall sodium pipeline by two alternate clamp designs. The first design consists of a band mounted directly on the pipe and is called the hot clamp. The second design consists of a band mounted using insulation standoffs and is called the cold clamp. Pipe stress levels induced by transient thermal dead weight and seismic loads are discussed. Pipe stress levels and system dynamic spring rates are presented. Procedures utilized to combine clamp induced pipe stress with other short and long term pipe system stresses are detailed. Recommendations for practical application in LMFBR pipe systems are made

  20. Inherent safety phenomenon of fission-gas induced axial extrusion in oxide and metal fueled LMFBRs

    International Nuclear Information System (INIS)

    Miles, K.J.; Kalimullah.

    1985-01-01

    The current emphasis in LMFBR design is to develop reactor systems that contain as many features as possible to limit the severity of hypothetical accidents and provide the maximum time before corrective action is required while maintaining low capital costs. One feature is the possibility of fission-gas induced axial extrusion of the fuel within the intact cladding. The potential exists for this phenomenon to enable the reactor to withstand most accidents of the TOP variety, or at least provide an extended time for corrective action to be taken. Under transient conditions which produce a heating of the fuel above its nominal operating temperature, thermal expansion of the material axially produces a negative reactivity effect. This effect is presently considered in most accident analysis codes. The phenomenon of fission-gas induced axial extrusion has received renewed interest because of the consideration of metal alloys of uranium and plutonium for the fuel in some current reactor designs

  1. Whole-core thermal-hydraulic transient code development and verification for LMFBR analysis

    International Nuclear Information System (INIS)

    Spencer, D.R.

    1979-04-01

    Predicted performance during both steady state and transient reactor operation determines the steady state operating limits on LMFBRs. Unnecessary conservatism in performance predictions will not contribute to safety, but will restrict the reactor to more conservative, less economical steady state operation. The most general method for reducing analytical conservatism in LMFBR's without compromising safety is to develop, validate and apply more sophisticated computer models to the limiting performance analyses. The purpose of the on-going Natural Circulation Verification Program (NCVP) is to develop and validate computer codes to analyze natural circulation transients in LMFBRs, and thus, replace unnecessary analytical conservatism with demonstrated calculational capability

  2. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  3. Research and development of bellows for LMFBR in Japan

    International Nuclear Information System (INIS)

    Takahashi, T.; Mukai, K.; Yamamoto, K.

    1980-01-01

    Bellows are employed as useful mechanical elements with their flexibility and imperviousness to liquid and gas in the system in which such chemically active substances as sodium are handled. Since the early time of development of Japanese LMFBR, bellows have been used e.g. for the shaft seal of small sodium valves. Bellows are employed in the fast experimental reactor JOYO which is now in operation and the fast prototype reactor MONJU whose design program is in final stage at the following parts: control rod drive mechanism; intermediate heat exchanger; small valve; mechanical penetration assembly of the containment boundary; outer piping of the double-walled primary system (for JOYO only). In addition, the application of bellows as thermal expansion joint to the main piping system is under consideration for future FBRs. This paper outlines the research and development work on bellows for FBR use in Japan. (author)

  4. Research and development of bellows for LMFBR in Japan

    International Nuclear Information System (INIS)

    Takahashi, Tadao; Mukai, Kazuo; Yamamoto, Ken.

    1979-11-01

    The bellows is employed as a useful mechanical element with its flexibility and imperviousness to liquid and gas in the system in which such chemically active substance as sodium is handled. Since the early time of development of Japanese LMFBR, bellows have been used e.g. for the shaft seal of small sodium valves. Bellows are employed in the fast experimental reactor JOYO which is now in operation and the fast prototype reactor MONJU whose design program is in final stage at the following parts: - control rod drive mechanism, - intermediate heat exchanger, - small valve, - mechanical penetration assembly of the containment boundary, - outer piping of the double-walled primary system (for JOYO only). In addition, the application of bellows as thermal expansion joint to the main piping system is under consideration for future FBRs. This paper outlines the research and development work on bellows for the FBR use in Japan. (author)

  5. Probabilistic assessment of critically flawed LMFBR PHTS piping elbows

    International Nuclear Information System (INIS)

    Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

    1982-01-01

    One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results

  6. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  7. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-01-01

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  8. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-03-21

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  9. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    International Nuclear Information System (INIS)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-01-01

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  10. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-11-22

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  11. Summary of treat experiments on oxide core-disruptive accidents

    International Nuclear Information System (INIS)

    Dickerman, C.E.; Rothman, A.B.; Klickman, A.E.; Spencer, B.W.; DeVolpi, A.

    1979-02-01

    A program of transient in-reactor experiments is being conducted by Argonne National Laboratory in the Transient Reactor Test (TREAT) facility to guide and support analyses of hypothetical core-disruptive accidents (HCDA) in liquid-metal fast breeder reactors (LMFBR). Test results provide data needed to establish the response of LMFBR cores to hypothetical accidents producing fuel failure, coolant boiling, and the movement of coolant, molten fuel, and molten cladding. These data include margins to fuel failure, the modes of failure and movements, and evidence for identification of the mechanisms which determine the failure and movements. A key element in the program is the fast-neutron hodoscope, which detects fuel movement as a function of time during experiments

  12. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  13. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  14. Contact-type displacement measuring mechanism for fuel assembly in reactor

    International Nuclear Information System (INIS)

    Yokota, Yoshio; Ko, Kuniaki.

    1995-01-01

    The measuring mechanism of the present invention, which is used in a lmfbr type reactor, is suspended by a gripper of a fuel handing machine, and it comprises a combination of a displacement amount measuring jig allowed to be inserted into a handling head of a fuel assembly and a displacement amount measuring ring disposed at the lower portion in the handling head. The displacement amount measuring jig has a structure comprising a releasable handle and a columnar or cylindrical measuring portion allowable to be inserted into the handling head formed at the lower portion of the handle, which are connected with each other. When an interference (contact) occurred between the displacement amount measuring jig and the stepwise displacement amount measuring ring during the measurement, change of load and a phenomenon that the fuel handing machine can not be lowered are recognized, so that core displacement amount can be recognized based on the stroke of the gripper portion. Then, remote measurement is possible for displacement and deformation of the fuel assembly in the reactor container, and the measurement can be conducted by the same procedures and in the same period of time as in a case of ordinary fuel exchange operation. A flow channel for coolants passing through the fuel assembly can be ensured, thereby enabling to measure the amount of core displacement which is closer to an actual value in the reactor. (N.H.)

  15. Safety evaluation for the LMFBR plant using probabilistic risk assessment techniques

    International Nuclear Information System (INIS)

    Kani, Y.; Aizawa, K.

    1987-01-01

    This paper presents an application of probabilistic risk assessment techniques to a typical loop-type liquid metal fast breeder reactor (LMFBR) plant in the detailed design stage. A comprehensive systems analysis has been performed to identify event sequences leading to core damage and provide insights into the importance of accident contributors. While traditional event tree/fault tree modeling was used for the analysis, this study involved a thorough investigation of initiating events and of support system faults. The qualification of accident sequences has been conducted by combining the fault trees based on the event trees and obtaining sequence cut sets with the use of the SETS code. This study also attempted to quantify the potential for operator recovery actions in the course of each accident sequence. (author)

  16. Emergency core cooling system for LMFBR type reactors

    International Nuclear Information System (INIS)

    Tamano, Toyomi; Fukutomi, Shigeki.

    1980-01-01

    Purpose: To enable elimination of decay heat in an LMFBR type reactor by securing natural cycling force in any state and securing reactor core cooling capacity even when both an external power supply and an emergency power supply are failed in emergency case. Method: Heat insulating material portion for surrounding a descent tube of a steam drum provided at high position for obtaining necessary flow rate for flowing resistance is removed from heat transmitting surface of a recycling type steam generator to provide a heat sink. That is, when both an external power supply and an emergency power supply are failed in emergency, the heat insulator at part of a steam generator recycling loop is removed to produce natural cycling force between it and the heat transmitting portion of the steam generator as a heat source for the heat sink so as to secure the flow rate of the recycling loop. When the power supply is failed in emergency, the heat removing capacity of the steam generator is secured so as to remove the decay heat produced in the reactor core. (Yoshihara, H.)

  17. Finite element elastic-plastic analysis of LMFBR components

    International Nuclear Information System (INIS)

    Levy, A.; Pifko, A.; Armen, H. Jr.

    1978-01-01

    The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)

  18. Assessment of LMFBR spent fuel shipping cask concepts for the CRBRP and the US conceptual design study

    International Nuclear Information System (INIS)

    Pope, R.B.; Ortman, J.M.; Eakes, R.G.; Leisher, W.B.; Dupree, S.A.

    1980-01-01

    Study of conceptual shipping systems for CRBRP and CDS spent fuel has shown that systems significantly different from those used for LWR spent fuel will be required. In the conceptual design, liquid sodium was assumed to be the coolant in canisters containing the spent fuel assemblies, and multiple levels of containment were provided by canisters, an inner cask lid and an outer cask lid. Cask cooling at the reactor site during loading, and cooldown at the receiving site prior to unloading are significant but tractable problems

  19. Acoustic noise and pattern recognition studies at ORNL

    International Nuclear Information System (INIS)

    Sides, W.H.

    1976-01-01

    Experiments in acoustic detection of boiling in sodium were performed in the Fuel Failure Mockup (FFM) Facility at ORNL under the Liquid-Metal Fast Breeder Reactor (LMFBR) Safety and Core Systems Program. The FFM is a sodium flow facility that has the capability of simulating LMFBR fuel subassemblies using 19 electric cartridge heaters having prototypic configuration, power density, pressure, specific flow, and temperature. The sodium boiling experiments were performed to measure the transient temperatures throughout the bundle to the start of boiling and to generate an acoustic signal for tests of the boiling detection system

  20. Review of fast reactor activities in Switzerland - March 1986

    International Nuclear Information System (INIS)

    Wydler, P.

    1986-01-01

    During 1985 the different research activities at EIR were funded at similar levels to the previous year. Of the total Government funded R and D budget of 48 million Swiss Francs, 4.4 million (or 9%) have been expended for LMFBR related activities. These comprise an LMFBR safety programme and an advanced fuel development programme with respective expenditures of 1.9 and 2.5 million Francs. In the budget for 1986, 2.8 million Francs are allocated to the safety and 3.5 million Francs to the fuel development programme