WorldWideScience

Sample records for fuel enrichment decrease

  1. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  2. Thermal breeder fuel enrichment zoning

    Science.gov (United States)

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  3. Low-enriched fuel particle performance review

    International Nuclear Information System (INIS)

    Homan, F.; Nabielek, H.; Yang, L.

    1978-08-01

    The available data on low-enriched uranium (LEU) fuel particles were reviewed under the United States-Federal Republic of Germany Agreement. The most influential factors controlling the irradiation performance of LEU fuel particles were found to be plutonium transport, fission product transport, fuel particle mechanical performance, and fuel particle chemical performance

  4. Use of low enriched fuel in research reactors

    International Nuclear Information System (INIS)

    1979-03-01

    The possibility to operate the CEC Reactors HFR and ESSOR with a low enriched U,Alsub(x)/Al plate type fuel has been studied. Assuming that the long term reliable operation of such a fuel has been demonstrated, it is shown that in HFR, the use of a 20% enriched fuel would result in a non negligeable deterioration of the reactor irradiation capabilities. In the ESSOR reactor, with unchanged reactor power and flux levels, the fuel enrichment might be decreased to about 40% by increasing the U loading and the thickness of the cermet meat. Further reduction of uranium enrichment would require in this case a radical modification of the fuel element design

  5. Enrichment measurement in TRIGA type fuels

    International Nuclear Information System (INIS)

    Aguilar H, F.; Mazon R, R.

    2001-05-01

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  6. Experience with a fuel rod enrichment scanner

    International Nuclear Information System (INIS)

    Kubik, R.N.; Pettus, W.G.

    1975-01-01

    This enrichment scanner views all fuel rods produced at B and W's Commercial Nuclear Fuel Plant. The scanner design is derived from the PAPAS System reported by R. A. Forster, H. D. Menlove, and their associates at Los Alamos. The spatial resolution of the system and smoothing of the data are discussed in detail. The cost-effectiveness of multi-detector versus single detector scanners of this general design is also discussed

  7. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  8. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  9. Reduced enriched fuel status at CERCA

    International Nuclear Information System (INIS)

    Tissier, A.; Fanjas, Y.

    1991-01-01

    CERCA's main objective is to satisfy its customers, improving quality of its products, and maintaining the costs as low as possible. Its Research and Development program reveals this goal. Different R and D topics under development at short (recycling of scraps), at medium (X-ray imaging machine) and at long term (improvement of fuel materials) are presented as evidence of this will. (orig.)

  10. The SLOWPOKE-2 reactor with low enrichment uranium oxide fuel

    International Nuclear Information System (INIS)

    Townes, B.M.; Hilborn, J.W.

    1985-06-01

    A SLOWPOKE-2 reactor core contains less than 1 kg of highly enriched uranium (HEU) and the proliferation risk is very low. However, to overcome proliferation concerns a new low enrichment uranium (LEU) fuelled reactor core has been designed. This core contains approximately 180 fuel elements based on the Zircaloy-4 clad UOsub(2) CANDU fuel element, but with a smaller outside diameter. The physics characteristics of this new reactor core ensure the inherent safety of the reactor under all conceivable conditions and thus the basic SLOWPOKE safety philosophy which permits unattended operation is not affected

  11. PULSTAR fuel, low enrichment, long lifetime, economical, proven

    International Nuclear Information System (INIS)

    Carter, Robert E.; Leonard, Bobby E.

    1993-01-01

    In 1962, the Western New York Research Center, Inc., located at the State University of New York at Buffalo, decided they had a need for a reactor with pulsing and high power steady state capabilities. Both General Atomic and the American Machine and Foundry Corporation (AMF) were contacted to ascertain if it were feasible to construct a dual purpose reactor of this type. The General Atomic proposal indicated the feasibility but would not warrant a steady state power of 2 MW with ultimate capability of 5 MW. AMF did provide a conceptual design for such a dual reactor, call the PULSTAR, and sufficient design information to confirm that the operating specifications could be met. The PULSTAR fuel consisted of 6 enrichment UO 2 sintered pellets in zircaloy tubes (pins) mounted in a x 5 array inside a fuel assembly. The fuel design was patterned after fuel that was under development for light water power reactors and that had been extensively tested under high power pulse conditions in the SPERT Test Reactor. The fuel assemblies are rectangular in a horizontal cross section, 315 inches by 2.74 inches, allowing for flat control blades to be inserted in the core grid arrangement. The active height of the core is approximately 24 inches. In the initial Buffalo AMF contract, a collaborative development agreement was signed in conjunction with agreement to construct the facility. After completion of the Buffalo PULSTAR Reactor, the PULSTAR fuel underwent an extensive test program which resulted in some minor changes in the basic design. In 1965, North Carolina State University contracted with AMF for the construction of a dual MW steady state (with ultimate capability of 5 MW and pulsing PULSTAR Research Reactor. Their fuel is identical to the Buffalo fuel except for having an enrichment of 4% U-235. This paper presented basic information about the characteristics and performance of the PULSTAR Research Reactor fuel. The following summarizes this information. The fuel is of

  12. Low enrichment fuel conversion for Iowa State University. Final report

    International Nuclear Information System (INIS)

    Bullen, D.B.; Wendt, S.E.

    1996-01-01

    The UTR-10 research and teaching reactor at Iowa State University (ISU) has been converted from high-enriched fuel (HEU) to low- enriched fuel (LEU) under Grant No. DE-FG702-87ER75360 from the Department of Energy (DOE). The original contract period was August 1, 1987 to July 31, 1989. The contract was extended to February 28, 1991 without additional funding. Because of delays in receiving the LEU fuel and the requirement for disassembly of the HEU assemblies, the contract was renewed first through May 31, 1992, then through May 31, 1993 with additional funding, and then again through July 31, 1994 with no additional funding. In mid-August the BMI cask was delivered to Iowa State. Preparations are underway to ship the HEU fuel when NRC license amendments for the cask are approved

  13. Development for analysis system of rods enrichment of nuclear fuels

    International Nuclear Information System (INIS)

    Rojas C, E.L.

    1998-01-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  14. Study of a Slightly Enriched R Reactor Fuel by Means of a Pulsed Neutron Source

    International Nuclear Information System (INIS)

    Sagot, M.; Tellier, H.

    1962-04-01

    A Be O moderated reactor using slightly enriched uranium oxide as fuel was studied by the pulsed neutron source technique. The neutron lifetime was measured in two different cores without reflector, then attempts were made at the measurement of great negative reactivities introduced into the reactor under the following forms: decrease of the volume of the un reflected core, introduction of absorbing cadmium rods, removal of fuel at the periphery of the critical core while maintaining a constant height, and substitution of fuel elements by less reactive elements. In all cases, the results are compared with the data obtained by another type of experiment or by computation. (author) [fr

  15. Low-enriched uranium-molybdenum fuel plate development

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Prokofiev, I.G.

    2000-01-01

    To examine the fabricability of low-enriched uranium-molybdenum powders, full-size 450 x 60 x 0.5-mm (17.7 x 2.4 x 0.020-in.) fuel zone test plates loaded to 6 g U/cm 3 were produced. U-10 wt.% Mo powders produced by two methods, centrifugal atomization and grinding, were tested. These powders were supplied at no cost to Argonne National Laboratory by the Korean Atomic Energy Research Institute and Atomic Energy of Canada Limited, respectively. Fuel homogeneity indicated that both of the powders produced acceptable fuel plates. Operator skill during loading of the powder into the compacting die and fuel powder morphology were found to be important when striving to achieve homogeneous fuel distribution. Smaller, 94 x 22 x 0.6-mm (3.7 x 0.87 x 0.025-in.) fuel zone, test plates were fabricated using U-10 wt.% Mo foil disks instead of a conventional powder metallurgy compact. Two fuel plates of this type are currently undergoing irradiation in the RERTR-4 high-density fuel experiment in the Advanced Test Reactor. (author)

  16. Performance and exhaust emission characteristics of direct-injection diesel engine fueled with enriched biodiesel

    International Nuclear Information System (INIS)

    Altaie, Mohamad A. Hasan; Janius, Rimfiel B.; Rashid, Umer; Taufiq-Yap, Yun Hin; Yunus, Robiah; Zakaria, Rabitah; Adam, Nor Mariah

    2015-01-01

    Highlights: • Enrichment of PME by MO addition leads to slightly improved BTE. • The enrichment leads to a remarkable reduction in BSFC. • The enrichment did not improve exhaust emissions relative to neat PME. • Cetane number shows to be the key properties that determined the emissions. - Abstract: Biodiesel is a renewable alternative diesel fuel derived from different feedstocks that may have significantly different fatty acid profiles and physiochemical properties. This study aimed to gain further insight into the use of biodiesel in a single-cylinder direct-injection diesel engine. The influences of the properties and compound structure of neat and enriched components of biodiesel on engine performance and exhaust emissions were compared with that of petrodiesel under full load conditions. The enriched blends for testing were prepared by adding methyl oleate (MO) to palm oil methyl ester (PME) at specified volumetric ratios (vol/vol%): PME80:MO20, PME70:MO30, PME60:MO40, and PME50:MO50. Furthermore, various physiochemical properties of neat and enriched blends were evaluated against the ASTM D6751 standard. The impact of key fuel properties of neat and enriched blends associated with the performance of engine and exhaust emissions was discussed. The experimental results exhibited that enriched blends yielded a lower brake torque with higher brake specific fuel consumption (BSFC) than the petroleum diesel because of lower calorific value. Intrinsic reductions in the carbon monoxide (CO) and hydrocarbon (HC) emissions, and exhaust gas temperature (EGT) were also observed, as well as a slight increase in nitrogen oxide (NOx) emission. In addition, enriched blends showed a noticeable improvement in BSFC, with a slight increase in CO emission, HC emission, EGT, and NOx emission over individual PME as a result of lower ignition quality and lower oxygen content. Consequently, biodiesel that possesses more saturated components, and higher oxygen content yields

  17. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  18. Low enriched uranium fuel conversion and fuel shipping guide

    International Nuclear Information System (INIS)

    1997-01-01

    The analysis of reactor core physics and thermal hydraulics was completed in 1993. A supplement to the Final Safety Analysis Report describing the results of these analyses was submitted to the Nuclear Regulatory Commission along with proposed Technical Specifications in May, 1993. Discussions with the NRC staff led to a submittal of revised proposed Technical Specifications in February, 1994. The analytical work is complete. A second portion of the grant was to develop a fuel shipping guide for university research reactors. Such a guide was developed and is available for use by the research reactor community

  19. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  20. Minimization of waste from uranium purification, enrichment and fuel fabrication

    International Nuclear Information System (INIS)

    1999-10-01

    As any industry, nuclear industry generates a diverse range of waste which has to be managed in a safe manner to be acceptable to the public and the environment. The cost of waste management, the risks to the public and employees, and the detriment to the environment are dependent on the quantity and radioactive content of the waste generated. Waste minimization is a necessary activity needed to reduce the impact from nuclear fuel cycle operations and it is included in the national policy of some countries. In recognition of the importance of the subject, the IAEA has decided to review the current status of the work aimed at waste minimization in the nuclear fuel cycle. The waste minimization issues related to the back end of the nuclear fuel cycle are covered in Technical Reports Series No. 377 'Minimization of Radioactive Waste from Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle' published in 1995. The present report deals with the front end of the nuclear fuel cycle, including existing options, approaches, developments and some specific considerations to be taken into account in decision making on waste minimization. It has been recognized that, in comparison with the back end of the nuclear fuel cycle, much less information is available, and this report should be considered as a first attempt to analyse waste minimization practices and opportunities in uranium purification, conversion, enrichment and fuel fabrication. Although mining and milling is an important part of the front end of the nuclear fuel cycle, these activities are excluded from consideration since relevant activities are covered in other IAEA publications

  1. Analysis of the performance of fuel cells PWR with a single enrichment and radial distribution of enrichments

    International Nuclear Information System (INIS)

    Vargas, S.; Gonzalez, J. A.; Alonso, G.; Del Valle, E.; Xolocostli M, J. V.

    2008-01-01

    One of the main challenges in the design of fuel assemblies is the efficient use of uranium achieving burnt homogeneous of the fuel rods as well as the burnt maximum possible of the same ones to the unload. In the case of the assemblies type PWR has been decided actually for fuel assemblies with a single radial enrichment. The present work has like effect to show the because of this decision, reason why a comparison of the neutronic performance of two fuel cells takes place with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The results shown in the present study of the behavior of the neutron flow as well as the power distribution through of assembly sustain the because of a single radial enrichment. (Author)

  2. Neutronic analysis of a fuel element with variations in fuel enrichment and burnable poison

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Martins, Felipe; Velasquez, Carlos E.; Cardoso, Fabiano; Fortini, Angela; Pereira, Claubia, E-mail: rochkdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    In this work, the goal was to evaluate the neutronic behavior during the fuel burnup changing the amount of burnable poison and fuel enrichment. For these analyses, it was used a 17 x 17 PWR fuel element, simulated using the 238 groups library cross-section collapsed from ENDF/BVII.0 and TRITON module of SCALE 6.0 code system. The results confirmed the effective action of the burnable poison in the criticality control, especially at Beginning Of Cycle (BOC) and in the burnup kinetics, because at the end of the fuel cycle there was a minimal residual amount of neutron absorbers ({sup 155}Gd and {sup 157}Gd), as expected. At the end of the cycle, the fuel element was still critical in all simulated situations, indicating the possibility of extending the fuel burn. (author)

  3. The low enriched uranium fuel cycle in Ontario

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-02-01

    Six fuel-cycle strategies for use in CANDU reactors are examined in terms of their uranium-conserving properties and their ease of commercialization for three assumed growth rates of installed nuclear capacity in Ontario. The fuel cycle strategies considered assume the continued use of the natural uranium cycle up to the mid-1990's. At that time, the low-enriched uranium (LEU) cycle is gradually introduced into the existing power generation grid. In the mid-2020's one of four advanced cycles is introduced. The advanced cycles considered are: mixed oxide, intermediate burn-up thorium (Pu topping), intermediate burn-up thorium (U topping), and LMFBR. For comparison purposes an all natural uranium strategy and a natural uranium-LEU strategy (with no advanced cycle) are also included. None of the strategies emerges as a clear, overall best choice. (LL)

  4. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  5. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  6. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.

    1978-09-01

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  7. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    Science.gov (United States)

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  8. RA3: Application of a calculation model for fuel management with SEFE (Slightly Enriched Fuel Elements)

    International Nuclear Information System (INIS)

    Estryk, G.; Higa, M.

    1993-01-01

    The RA-3 (5 MW, MTR) reactor is mainly utilized to produce radioisotopes (Mo-99, I-131, etc.). It started operating with Low Enrichment Uranium (LEU) in 1990, and spends around 12 fuels per year. Although this consumption is small compared to a nuclear power station. It is important to do a good management of them. The present report describes: - A reactor model to perform the Fuel Shuffling. - Results of fuel management simulations for 2 and a half years of operation. Some features of the calculations can be summarized as follows: 1) A 3D calculation model is used with the code PUMA. It does not have experimental adjustments, except for some approximations in the reflector representation and predicts: power, flux distributions and reactivity of the core in an acceptable way. 2) Comparisons have been made with the measurements done in the commissioning with LEU fuels, and it has also been compared with the empirical method (the previous one) which had been used in the former times of operation with LEU fuel. 3) The number of points of the model is approximately 13500, an it can be run in 80386 personal computer. The present method has been verified as a good tool to perform the simulations for the fuel management of RA-3 reactor. It is expected to produce some economic advantages in: - Achieving a better utilization of the fuels. - Leaving more time of operation for radioisotopes production. The activation measurements through the whole core required by the previous method can be significantly reduced. (author)

  9. Exposure to Enriched Environment Decreases Neurobehavioral Deficits Induced by Neonatal Glutamate Toxicity

    Directory of Open Access Journals (Sweden)

    Peter Kiss

    2013-09-01

    Full Text Available Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in

  10. Reduction of fuel enrichment for research reactors built-up in accordance with Russian (Soviet) projects

    International Nuclear Information System (INIS)

    Aleksandrov, A.B.; Enin, A.A.; Tkachyov, A.A.

    2001-01-01

    In accordance with the Russian program of reduced enrichment for research and test reactors (RERTR) built-up in accordance with Russian (Soviet) projects, AO 'NCCP' performs works on FA fabrication with reduced enrichment fuel. The main trends and results of performed works on research reactors FEs and FAs based on UO 2 and U-9%Mo fuel with U 235 19.7% enrichment are described. (author)

  11. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  12. International collaboration to study the feasibility of implementing the use of slightly enriched uranium fuel in the Embalse CANDU reactor

    International Nuclear Information System (INIS)

    Rouben, B.; Chow, H.C.; Leung, L.K.H.; Inch, W.; Fink, J.; Moreno, C.

    2004-01-01

    In the last few years, Nucleoelectrica Argentina S.A. and Atomic Energy of Canada Limited have collaborated on a study of the technical feasibility of implementing Slightly Enriched Uranium (SEU) fuel in the Embalse CANDU reactor in Argentina. The successful conversion to SEU fuel of the other Argentine heavy-water reactor, Atucha 1, served as a good example. SEU presents an attractive incentive from the point of view of fuel utilization: if fuel enriched to 0.9% 235 U were used in Embalse instead of natural uranium, the average fuel discharge burnup would increase significantly (by a factor of about 2), with consequent reduction in fuel requirements, leading to lower fuel-cycle costs and a large reduction in spent-fuel volume per unit energy produced. Another advantage is the change in the axial power shape: with SEU fuel, the maximum bundle power in a channel decreases and shifts towards the coolant inlet end, consequently increasing the thermalhydraulics safety margin. Two SEU fuel carriers, the traditional 37-element bundle and the 43-element CANFLEX bundle, which has enhanced thermalhydraulic characteristics as well as lower peak linear element ratings, have been examined. The feasibility study gave the organizations an excellent opportunity to perform cooperatively a large number of analyses, e.g., in reactor physics, thermalhydraulics, fuel performance, and safety. A Draft Plan for a Demonstration Irradiation of SEU fuel in Embalse was prepared. Safety analyses have been performed for a number of hypothetical accidents, such as Large Loss of Coolant, Loss of Reactivity Control, and an off-normal condition corresponding to introducing 8 SEU bundles in a channel (instead of 2 or 4 bundles). There are concrete safety improvements which result from the reduced maximum bundle powers and their shift towards the inlet end of the fuel channel. Further improvements in safety margins would accrue with CANFLEX. In conclusion, the analyses identified no issues that

  13. Fluid flow plate for decreased density of fuel cell assembly

    Science.gov (United States)

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  14. Optimization of fuel rod enrichment distribution to minimize rod power peaking throughout life within BWR fuel assembly

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari

    1997-01-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. a combinatorial optimization problem grouping fuel rods into a given number of rod groups with the same enrichment, and a problem determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by a linear combination: C 1 X+C 2 X G , where X and X G stand for a control variable to give the constraint respectively for a local power peaking factor and a gadolinium rod power, and C 1 and C 2 are user-definable weighting factor to accommodate the design preference. The algorithm of solving the combinatorial optimization problem starts with finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering, and then the latter problem is solved by using the method of approximation programming. The practical application of the present method is shown for a contemporary 8x8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  15. Proceedings of the international meeting on development, fabrication and application of reduced enrichment fuels for research and test reactors

    International Nuclear Information System (INIS)

    1983-08-01

    Separate abstracts were prepared for each of the papers presented in the following areas: (1) Reduced Enrichment Fuels for Research and Test Reactors (RERTR) Program Status; (2) Fuel Development; (3) Fuel Demonstrations; (4) General Topics; and (5) Specific Reactor Applications

  16. Structure, conduct, and sustainability of the international low-enriched fuel fabrication industry

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey

    2008-01-01

    This paper examines the cost structures of fabricating Low-Enriched Uranium fuel (LEU, enriched to 5% enrichment) light water reactor fuels. The LEU industry is decades old, and (except for high entry cost, i.e., the cost of designing and licensing a fuel fabrication facility and its fuel), labor and additional fabrication lines can be added by industry incumbents at Nth-of-a-Kind cost to the maximum capacity allowed by the license. On the other hand, new entrants face higher First-of-a-Kind costs and high new-facility licensing costs, increasing the scale required for entry thus discouraging small scale entry by countries with only a few nuclear power plants. Therefore, the industry appears to be competitive with sustainable investment in fuel-cycle states, and structural barriers-to-entry increase its proliferation resistance. (author)

  17. Physically scarce (vs. enriched) environments decrease the ability to tell lies successfully.

    Science.gov (United States)

    Ten Brinke, Leanne; Khambatta, Poruz; Carney, Dana R

    2015-10-01

    The successful detection of deception is of critical importance to adaptive social relationships and organizations, and perhaps even national security. However, research in forensic, legal, and social psychology demonstrates that people are generally very successful deceivers. The goal of the current research was to test an intervention with the potential to decrease the likelihood of successful deception. We applied findings in the architectural, engineering, and environmental sciences that has demonstrated that enriched environments (vs. scarce ones) promote the experience of comfort, positive emotion, feelings of power and control, and increase productivity. We hypothesized that sparse, impoverished, scarcely endowed environments (vs. enriched ones) would decrease the ability to lie successfully by making liars feel uncomfortable and powerless. Study 1 examined archival footage of an international sample of criminal suspects (N = 59), including innocent relatives (n = 33) and convicted murderers (n = 26) emotionally pleading to the public for the return of a missing person. Liars in scarce environments (vs. enriched) were significantly more likely to reveal their lies through behavioral cues to deception. Study 2 (N = 79) demonstrated that the discomfort and subsequent powerlessness caused by scarce (vs. enriched) environments lead people to reveal behavioral cues to deception. Liars in scarce environments also experienced greater neuroendocrine stress reactivity and were more accurately detected by a sample of 66 naïve observers (Study 3). Taken together, data suggest that scarce environments increase difficulty, and decrease success, of deception. Further, we make available videotaped stimuli of Study 2 liars and truth-tellers. (c) 2015 APA, all rights reserved).

  18. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  19. Research and training reactors of GDR, use and fuel enrichment status

    International Nuclear Information System (INIS)

    Meyer, K.

    1991-01-01

    A short overview of the main characteristics of research and training reactors of GDR is given, including a description of their main use and fuel enrichment. From the point of view of Non - Proliferation Treaty and Physical Protection Agreements no objections exist against the use of MEU - fuel in two of the five research and training reactors. (orig.)

  20. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  1. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  2. Study on the Calculation of Pebble-Bed Reactor Multiplication Factor As a Function of Fuel Kernel Radius at Various Enrichments

    International Nuclear Information System (INIS)

    Zuhair; Suwoto

    2009-01-01

    Main characteristics of PBR comes from utilization of coated particle fuels dispersed in pebble fuels . Because of vibration, fuel kernel can be grouped into cluster and in these cases, neutronic characteristics of pebble fuel significantly changes . In this study, cluster is modeled structural form consisting of uniform cubic cells with eight neighborhood TRISO particles . Neutronic characteristics was investigated by calculating pebble-bed reactor multiplication factor as a function of fuel kernel radius at various enrichments . The calculation results using MCNP5 code with ENDF/BVI neutron library show that k eff value depends on the average fuel radius and reaches its minimum when all kernels have the same radius, i.e. 0.0280 cm . With this radius, the total kernel surface area achieves maximum value . The dependence of k eff on fuel kernel radius decreases in relation to the increase in uranium enrichment . However, k eff value is not affected by fuel kernel radius when the uranium is 100% enriched . From these result, it can be concluded that, exception of uranium enrichment, the selection of fuel kernel radius should be considered thoroughly in designing a PBR, since this parameter provides significant influences on neutronic characteristics of the reactor. (author)

  3. Atomics International fuel fabrication facility and low enrichment program [contributed by T.A. Moss, AI

    International Nuclear Information System (INIS)

    Moss, T.A.

    1993-01-01

    The AI facility is approximately 30,000 square feet in area and consists of four general areas. One area is devoted to the production of UAl x powder. It consists of a series of arc melting furnaces, crushing lines, glove boxes, and compacting presses. The second area is used for the rolling of fuel plates. The third area is used for the machining of the plates to final size and also the machining of the fuel elements. In the fourth area the fuel plates are swaged into assemblies, and all welding and inspection operations are performed. As part of the lower enrichment program we are scheduled to put a second UAl x powder line into operation and we have had to expand some of our storage area. Under the low enrichment program the AI fuel facility will be modified to accommodate a separate low enrichment Al x production line and compacting line. This facility modification should be done by the end of the fiscal year. We anticipate producing fuel with an enrichment slightly less than 20% We anticipate powder being available for plate production shortly after the facility is completed. Atomics International is scheduled to conduct plate LEU verification work using fully enriched material in the June-July time period, at which time we will investigate what level of uranium loadings we can go to using the current process. It is anticipated that 55 volume percent uranium compound in our fuel form can be achieved

  4. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  5. Economical Feedback of Increasing Fuel Enrichment on Electricity Cost for VVER-1000

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Dwiddar

    2015-08-01

    Full Text Available A methodology of evaluating the economics of the front-end nuclear fuel cycle with a price change sensitivity analysis for a VVER-1000 reactor core as a case study is presented. The effect of increasing the fuel enrichment and its corresponding reactor cycle length on the energy cost is investigated. The enrichment component was found to represent the highly expenses dynamic component affecting the economics of the front-end fuel cycle. Nevertheless, the increase of the fuel enrichment will increase the reactor cycle length, which will have a positive feedback on the electricity generation cost (cent/KWh. A long reactor operation time with a cheaper energy cost set the nuclear energy as a competitive alternative when compared with other energy sources.

  6. Development of an economic model to assess the feasibility of the nuclear industry to produce, handle, and operate commercial fuel with enrichments greater than 5-wt% uranium-235 for PWRs in the United States

    Science.gov (United States)

    Smith, Robert M.

    The nuclear power industry in the United States is currently limited to 5-wt% U235 fuel. Increasing this enrichment limit would enable utilities to decrease the number of spent fuel assemblies, allow upgrades in reactor power, have more flexibility in fuel cycle lengths, and allow for the development of advanced fuel designs. Any increase in fuel enrichments requires an extensive analysis of the entire fuel cycle including enriching, conversion, manufacturing, shipping, and storage of enriched fuel. The cost of the detailed analysis, licensing, and modifications to existing facilities or the construction of new facilities appears to justify the use of higher enriched fuel. The purpose of this study was to develop an economic model to determine the feasibility of using greater than 5-wt% U235 commercial fuel. The study focused on evaluating typical fuel-processing operations to establish limits on current facilities and cost penalties for the required modifications for processing, fabricating, shipping, and storage of higher enriched fuel. The results of this study indicate that incentive to increase enrichments depended on the cycle length utilized. For reactors on an 18-month cycle there was little incentive to increase enrichments. However, potentially millions of dollars per year could be saved by reactors on a 24-month cycle if they increased enrichments up to 6.5-wt% U235. Larger incentives occurred for reactors using longer cycles. The fuel purchase interest rate was the dominant factor in determining the cost savings in using higher than 5.0-wt% fuel. Increases in interest rates alone could result in significant losses if higher enrichments were used. The other dominate factor affecting savings is the separative work charge. However, this cost appears to be stable with new facilities planned. Thus, although interest rates are volatile, the potential gain appears to outweigh any loss that could be seen by increased enrichments beyond the current licensing

  7. Nuclear and thermal-hydraulic characteristics for an LMR core fueled with 20% enriched uranium metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-In; Kim, Young-Gyun; Kim, Sang-Ji; Kim, Young-Jin

    1999-05-01

    As a part of the core design development of KALIMER (150 MWe), the KALIMER core was initially designed with 20% enriched uranium metallic fuel. In this core design, the primary emphasis was given to realize the metallic fueled core design to meet the specific design requirements; 20% and below uranium enrichment and a minimum fuel cycle length of one year. The core was defined by a radially homogeneous core configuration incorporated with several passive design features to give inherent passive means of negative reactivity insertion. The core nuclear performance based on a once-through equilibrium fuel cycle scenario shows that the core has an average breeding ratio of 0.67 and maximum discharge burnup of 47.3 MWD/kg. When comparing with conventional plutonium metallic fueled cores of the same power level, the present uranium metallic fueled core has a lower power density due to its increased physical core size. The negative sodium void reactivity over the core shows a beneficial potential to assure inherent safety characteristics. The transition from the uranium startup to equilibrium cycle is feasible without any design change. Core nuclear performance characteristics in the present core design are attributed to the specific design requirements of enrichment restriction and fuel cycle length.

  8. Development of Nitride Coating Using Atomic Layer Deposition for Low-Enriched Uranium Fuel Powder

    Science.gov (United States)

    Bhattacharya, Sumit

    High-performance research reactors require fuel that operates at high specific power and can withstand high fission density, but at relatively low temperatures. The design of the research reactor fuels is done for efficient heat emission, and consists of assemblies of thin-plates cladding made from aluminum alloy. The low-enriched fuels (LEU) were developed for replacing high-enriched fuels (HEU) for these reactors necessitates a significantly increased uranium density in the fuel to counterbalance the decrease in enrichment. One of the most promising new fuel candidate is U-Mo alloy, in a U-Mo/Al dispersion fuel form, due to its high uranium loading as well as excellent irradiation resistance performance, is being developed extensively to convert from HEU fuel to LEU fuel for high-performance research reactors. However, the formation of an interaction layer (IL) between U-Mo particles and the Al matrix, and the associated pore formation, under high heat flux and high burnup conditions, degrade the irradiation performance of the U-Mo/Al dispersion fuel. From the recent tests results accumulated from the surface engineering of low enriched uranium fuel (SELENIUM) and MIR reactor displayed that a surface barrier coating like physical vapor deposited (PVD) zirconium nitride (ZrN) can significantly reduce the interaction layer. The barrier coating performed well at low burn up but above a fluence rate of 5x 1021 ions/cm2 the swelling reappeared due to formation interaction layer. With this result in mind the objective of this research was to develop an ultrathin ZrN coating over particulate uranium-molybdenum nuclear fuel using a modified savannah 200 atomic layer deposition (ALD) system. This is done in support of the US Department of Energy's (DOE) effort to slow down the interaction at fluence rate and reach higher burn up for high power research reactor. The low-pressure Savannah 200 ALD system is modified to be designed as a batch powder coating system using the

  9. Enrichment measurement in TRIGA type fuels; Medicion de enriquecimiento en combustibles tipo Triga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Mazon R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-05-15

    The Department of Energy of the United States of North America, through the program 'Idaho Operations Nuclear Spent Fuel Program' of the Idaho National Engineering and Environmental Laboratory (INEEL), in Idaho Falls; Idaho USA, hires to Global Technologies Inc. (GTI) to develop a prototype device of detection enrichment uranium (DEU Detection of Enrichment of Uranium) to determine quantitatively the enrichment in remainder U-235 in a TRIGA fuel element at the end of it useful life. The characteristics of the prototype developed by GTI are the following ones: It allows to carry out no-destructive measurements of TRIGA type fuel. Easily transportable due to that reduced of it size. The determination of the enrichment (in grams of U-235) it is obtained with a precision of 5%. The National Institute of Nuclear Research (ININ), in its facilities of the Nuclear Center of Mexico, it has TRIGA type fuel of high and low enrichment (standard and FLIP) fresh and with burnt, it also has the infrastructure (hot cells, armor-plating of transport, etc) and qualified personnel to carry out the necessary maneuvers to prove the operation of the DEU prototype. For this its would be used standard type fuel elements and FLIP, so much fresh as with certain burnt one. In the case of the fresh fuels the measurement doesn't represent any risk, the fuels before and after the measurement its don't contain a quantity of fission products that its represent a radiological risk in its manipulation; but in the case of the fuels with burnt the handling of the same ones represents an important radiological risk reason why for its manipulation it was used the transport armor-plating and the hot cells. (Author)

  10. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  11. Central fuel banking to reduce the number of proliferation sensitive enrichment activities

    International Nuclear Information System (INIS)

    Cserhati, A.

    2008-01-01

    Central fuel banking is a complex international political, economic and technical concept that aims to reduce uncontrolled spreading of uranium enrichment technology in the world in order to prevent proliferation of nuclear weapons. This paper first gives an outline of the notions: 'non-proliferation', the 'front-end' of the fuel cycle, the scope of fuel baking, nuclear fuel and the 60 years of enrichment technology. Enrichment technology is highly concentrated in the nuclear weapon states and other developed countries, but this is not exclusive any more. The technology is spreading. The global demand for enrichment services - parallel to massive nuclear investments in the civil sector and the ageing of older facilities - is constantly growing. Proliferation sensitivity calls for an effective and comprehensive non-proliferation regime. The solution may be multilateralizing the nuclear fuel cycle. After a historical overview, the proposals on multilateral nuclear approaches are presented. The assessment of the proposals is complex in the dimensions of: the non-proliferation aim, the assurance of supply aspect and other variables such as legal issues and non-nuclear inducements. A general evaluation and the recommendations of the Expert Panel of the IAEA are introduced outlining a plan on a middle- and long-term basis. The conclusion of the paper stresses the importance and challenge in finding the 'new balance' between obligations and interests of the members of the global community stating that the answers will have a significant impact on the nuclear indus- try, world wide economics and security policy. (orig.)

  12. Reduced enrichment fuels for Canadian research reactors - Fabrication and performance

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.; Hawley, D.

    1985-01-01

    Our facilities have been upgraded to manufacture fuel rods comprising dispersions of U 3 Si in aluminum, to complement the dispersions of U 3 Si alloyed with 1.5 and 3.0 wt% Al fabricated and tested previously. Further advances have been made in process optimization particularly in core extrusion where production rate has been doubled while maintaining high quality standards. Our mini-element irradiations of Al-61.5 wt% (U,3.5 wt% Si, 1.5 wt% Al) and Al-62.4 wt% (U,3.2 wt% Si, 30 wt% Al) have been completed successfully up to the terminal burnup of 93 atomic percent. Fuel core swelling remained marginally below 1% per 10 atomic percent burnup over the whole irradiation. Also mini-elements containing Al-72.4 wt% USiAl and Al-73.4 wt% USi*Al have been irradiated to 82 atomic percent burnup, their swelling rate marginally exceeding 1% per 10 atomic percent burnup. Three full-size 12-element NRU assemblies containing Al-62.4 wt% USi*Al have been fabricated and installed in the NRU reactor where they have performed normally without problems. The cores for four more full-size 12-element NRU assemblies containing Al-61.0 wt% U 3 Si have been manufactured. (author)

  13. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  14. In-Core Fuel Managements for PWRs: Investigation on solution for optimal utilization of PWR fuel through the use of fuel assemblies with differently enriched {sup 235}U fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Sara

    2004-04-01

    rather significant and are of the order of 0.5 -1.5 %. The differences between the multiplication factor of the standard assemblies and the multiplication factor of the new bundles are of the order of tens of pcm. Generally, the bundles in which the enrichment levels are distributed on a wider range are the most deviated with respect to the standard assemblies. At a core level, focus has been given on the evaluation of the impact that those assemblies that improve the power density properties of the reference assemblies give to the core when replaced to the standard assemblies. In fact, simulations performed on cycle 17 and cycle 18 revealed that the use of assemblies with a higher internal peaking factor than in the reference bundle leads to an increase in the core peaking factors. In particular, the enthalpy raise hot channel factor is above the design limit value. Therefore, the core loading patterns that result from the use of these particular bundles are not acceptable. The two major optimization goals have been: a) lower peaking factors and b) longer cycle lengths. Generally, the use of the new assembly types decreases the core peaking factors more or less significantly in all the cycles, while a very relevant extension of the cycle length can be seen only for the last cycle. In the transition cycles, cycle 18 and 19, in particular, the use of the new fuel assemblies leads to a major loss in the cycle length (of the order of 12 %). In cycle 21, finally the cycle length obtained through the core simulations represents a great gain with respect to the reference cycle, extending the cycle lifetime up to more than 20 %. Cycle 21 represents a more equilibrated cycle in the sense that its core composition is more homogeneous than in the other cycles with respect to the new assembly types. In fact, in cycle 21 more than 99 % of the assemblies present in the core are of the new type. The extension in the cycle length detected in cycle 21 is partially due to the fuel

  15. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  16. Critical experiments in AQUILON with fuels slightly enriched in uranium 235 or in plutonium

    International Nuclear Information System (INIS)

    Chabrillac, M.; Ledanois, G.; Lourme, P.; Naudet, R.

    1964-01-01

    Reactivity comparisons have been, made in Aquilon II between geometrically identical lattices differing only by the composition of the fuel. The fuel elements consist in metallic uranium single rods with either slight differences of the isotopic composition (0.69 - 0.71 - 0.83 - 0.86 per cent of uranium 235) or slight additions of plutonium (0.043 per cent). Five lattices pitches have bean used, in order to produce a large variation of spectrum. Two additional sets of plutonium fuels are prepared to be used in the same conditions. The double comparisons: natural enriched 235 versus natural-enriched plutonium are made in such a way that a very precise interpretation is permitted. The results are perfectly consistent which seems to prove that the calculation methods are convenient. Further it can been inferred that the usual data, namely for the ratio of the η of 235 U and 239 Pu seem reliable. (authors) [fr

  17. Conversion and standardization of university reactor fuels using low-enrichment uranium: Plans and schedules

    International Nuclear Information System (INIS)

    Young, H.H.; Brown, K.R.; Matos, J.E.

    1986-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. To minimize this risk, the US Nuclear Regulatory Commission issued its final rule on ''Limiting the Use of Highly Enriched Uranium in Domestically Licensed Research and Test Reactors,'' in February 1986. This paper describes the plans and schedules developed by the US Department of Energy to coordinate an orderly transition from HEU to LEU fuel in most of these reactors. An important element in the planning process has been the desire to standardize the LEU fuels used in US university reactors and to enhance the performance and utilization of a number of these reactors. The program is estimated to cost about $10 million and to last about five years

  18. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  19. Neutron source, linear-accelerator fuel enricher and regenerator and associated methods

    International Nuclear Information System (INIS)

    Grand, P.; Kouts, H.; Powell, J.R.; Steinberg, M.; Takahashi, H.

    1982-01-01

    A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a lwr are placed in pressure tubes in a vessel surrounding a liquid lead bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor

  20. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  1. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  2. A work-for-food enrichment program increases exploration and decreases stereotypies in four species of bears.

    Science.gov (United States)

    Wagman, Jason D; Lukas, Kristen E; Dennis, Patricia M; Willis, Mark A; Carroscia, Joe; Gindlesperger, Curt; Schook, Mandi W

    2018-01-01

    Zoo-housed bears are prone to exhibiting stereotypic behaviors, generally considered indicators of negative welfare. We explored the effects of a variable-time feeding enrichment schedule on behavioral indicators of welfare in four bear species at Cleveland Metroparks Zoo. We distributed the diets of eight bears in one of five enrichment items, for two consecutive days each, and monitored behavior throughout the day. In Experiment 1, we compared variable-time to fixed-time presentation of enrichment over two, 10-day periods. Overall, bears performed more exploratory behavior when enriched (p bears exhibited increased exploratory behavior (p < 0.0001) and decreased abnormal behaviors compared to baseline (p unadjusted = 0.05, p adjusted = 0.09). We observed no habituation during the 30-day sustained enrichment period for these behaviors. Collectively, these results suggest that daily, variable-schedule feeding enrichment, with intermittent presentation of unique enrichment items, increases behavioral indicators of positive welfare and decreases behavioral indicators of negative welfare. © 2018 Wiley Periodicals, Inc.

  3. Fuel handling accident analysis for the University of Missouri Research Reactor's High Enriched Uranium to Low Enriched Uranium fuel conversion initiative

    Science.gov (United States)

    Rickman, Benjamin

    In accordance with the 1986 amendment concerning licenses for research and test reactors, the MU Research Reactor (MURR) is planning to convert from using High-Enriched Uranium (HEU) fuel to the use of Low-Enriched Uranium (LEU) fuel. Since the approval of a new LEU fuel that could meet the MURR's performance demands, the next phase of action for the fuel conversion process is to create a new Safety Analysis Report (SAR) with respect to the LEU fuel. A component of the SAR includes the Maximum Hypothetical Accident (MHA) and accidents that qualify under the class of Fuel Handling Accidents (FHA). In this work, the dose to occupational staff at the MURR is calculated for the FHAs. The radionuclide inventory for the proposed LEU fuel was calculated using the ORIGEN2 point-depletion code linked to the MURR neutron spectrum. The MURR spectrum was generated from a Monte Carlo Neutron transPort (MCNP) simulation. The coupling of these codes create MONTEBURNS, a time-dependent burnup code. The release fraction from each FHA within this analysis was established by the methodology of the 2006 HEU SAR, which was accepted by the NRC. The actual dose methodology was not recorded in the HEU SAR, so a conservative path was chosen. In compliance to NUREG 1537, when new methodology is used in a HEU to LEU analysis, it is necessary to re-evaluate the HEU accident. The Total Effective Dose Equivalent (TEDE) values were calculated in addition to the whole body dose and thyroid dose to operation personnel. The LEU FHA occupational TEDE dose was 349 mrem which is under the NRC regulatory occupational dose limit of 5 rem TEDE, and under the LEU MHA limit of 403 mrem. The re-evaluated HEU FHA occupational TEDE dose was 235 mrem, which is above the HEU MHA TEDE dose of 132 mrem. Since the new methodology produces a dose that is larger than the HEU MHA, we can safely assume that it is more conservative than the previous, unspecified dose.

  4. A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors

    International Nuclear Information System (INIS)

    McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

    1994-01-01

    The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel's waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts

  5. Neutronic performance of a fusion-fission hybrid reactor designed for fuel enrichment for LWRs

    International Nuclear Information System (INIS)

    Yapici, H.; Baltacioglu, E.

    1997-01-01

    In this study, the breeding performance of a fission hybrid reactor was analyzed to provide fissile fuel for Light Water Reactors (LWR) as an alternative to the current methods of gas diffusion and gas centrifuge. LWR fuel rods containing UO 2 or ThO 2 fertile material were located in the fuel zone of the blanket and helium gas or Flibe (Li 2 BeF 4 ) fluid was used as coolant. As a result of the analysis, according to fusion driver (D,T and D,D) and the type of coolant the enrichment of 3%-4% were achieved for operation periods of 12 and 36 months in case of fuel rods containing UO 2 , respectively and for operation periods of 18 and 48 months in case of fuel rods containing ThO 2 , respectively. Depending on the type of fusion driver, coolant and fertile fuel, varying enrichments of between 3% and 8.9% were achieved during operation period of four years

  6. Status of the natural and enriched uranium market: the basic economical factor for the development of the fuel cycle

    International Nuclear Information System (INIS)

    Nochev, T.

    1999-01-01

    Status of the Natural and Enriched Uranium Market - the Basic. Economical Factor for the Development of the Fuel Cycle An overview of the status of the natural and enriched uranium market has been performed and it offers a possibility to estimate the changes and tendencies, the knowledge of which is needed in negotiations about the fresh fuel. The simplified financial analysis presented here demonstrates the economical profitability of the storage of the spent fuel making now the allocations for the future reprocessing

  7. An enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3

    International Nuclear Information System (INIS)

    Park, Tongkyu; Yang, Won Sik; Kim, Sang-Ji

    2017-01-01

    Highlights: • An enhanced search algorithm for charged fuel enrichment was developed for equilibrium cycle analysis with REBUS-3. • The new search algorithm is not sensitive to the user-specified initial guesses. • The new algorithm reduces the computational time by a factor of 2–3. - Abstract: This paper presents an enhanced search algorithm for the charged fuel enrichment in equilibrium cycle analysis of REBUS-3. The current enrichment search algorithm of REBUS-3 takes a large number of iterations to yield a converged solution or even terminates without a converged solution when the user-specified initial guesses are far from the solution. To resolve the convergence problem and to reduce the computational time, an enhanced search algorithm was developed. The enhanced algorithm is based on the idea of minimizing the number of enrichment estimates by allowing drastic enrichment changes and by optimizing the current search algorithm of REBUS-3. Three equilibrium cycle problems with recycling, without recycling and of high discharge burnup were defined and a series of sensitivity analyses were performed with a wide range of user-specified initial guesses. Test results showed that the enhanced search algorithm is able to produce a converged solution regardless of the initial guesses. In addition, it was able to reduce the number of flux calculations by a factor of 2.9, 1.8, and 1.7 for equilibrium cycle problems with recycling, without recycling, and of high discharge burnup, respectively, compared to the current search algorithm.

  8. Optimization of axial enrichment distribution for BWR fuels using scoping libraries and block coordinate descent method

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2017-03-15

    Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of

  9. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  10. Study of Reduced-Enrichment Uranium Fuel Possibility for Research Reactors

    Directory of Open Access Journals (Sweden)

    Ruppel V.A.

    2015-01-01

    Full Text Available Having analyzed the results obtained in the work, it is possible to conclude that the flux density of fast and thermal neutrons in the shell of fuel elements in EFA in REU-zone decreased on average by 5% for UO2 fuel and by 7% for U9%Mo fuel. Change of neutrons flux density during the cycle does not exceed 4% for both fuel types. On average the fuel burnup in reactor core during the cycle for UO2 and U9%Mo increased by 2.8%. It is 1% less that in HEU-zone, which is conditioned by higher initial loading of 235U in fuel assembly with REU fuel.

  11. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  12. Radiological health aspects of commercial uranium conversion, enrichment, and fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, G.A.; Hoenes, G.R.; Cummings, F.M.; McCormack, W.D.

    1982-11-01

    Detailed information concerning occupational exposures, health physics practices, and regulatory procedures at commercial conversion, enrichment and fuel fabrication facilities is given. Sites visits were the primary source of information, which is divided into four sections. The first section discusses health physics practices that are common to the conversion, enrichment, and fuel fabrication phases of the commercial uranium industry. The next three sections review process descriptions, radiological health practices, and regulatory procedures for the three phases. Nonradiological exposures are considered only as they influence the interpretation of the health effects of radiological exposures. The review of regulatory procedures indicates the types of exposure evaluation records being kept on uranium workers and the responsibility for maintaining the records.

  13. Use of Low Enriched Uranium Fuel in Accelerator Driven Subcritical Systems

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the results and conclusions of an international research collaboration devoted to gaining a better understanding of the physics of Accelerator Driven Subcritical Systems (ADS), with particular emphasis on using low enriched uranium (LEU) fuel. The publication contains information on nine ADS facilities, including descriptions of the hardware deployed, experiments conducted, computational resources and procedures used in the analyses, principal results obtained, and conclusions drawn from the knowledge gained as a consequence of this work. It is intended to provide information for users of ADS systems and those involved in the design of new ADS facilities to use LEU fuel and in the conversion of some existing facilities from using highly enriched Uranium (HEU) to LEU.

  14. Atomics International fuel fabrication facility and low enrichment program. Part 2

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1993-01-01

    Most of you know our company from the last meeting in May in Vienna, so I won't steal your time with explaining and demonstrating the same techniques that we have heard this morning f rom the other speakers. I would just take some words to explain the order of business with highly enriched uranium. NUKEM handles around almost two tons of highly enriched uranium a year and it was necessary to satisfy all the new physical protection philosophies. That means that we have to install storage and safe fabrication sites for a lot of money, 2.5 meter thick concrete walls, and different alarm systems. So just to demonstrate how silly this business is, we have just overcome this for highly enriched uranium, and now we speak about low enriched uranium for which we don't need all of these investments to make this business safe. I would just like to concentrate my words on the status of fabrication and considerations in my company concerning the medium enriched uranium and low enriched uranium. In TABLE I are the different fuel types (see column 1) and then we have the fabrication in column 2; (The reason that I use the blackboard this morning is that I try to demonstrate all the techniques. However, all the speakers before me did this and in theory we are not so far away from each other.) the experience of my company in kg. In column 3 is the irradiation experience of these fuels types. Column 4 shows the studies and calculations made in our company for lower and medium enriched fuels. The preliminary fabrication tests and calculations are in column 5, and in column 6 we have the delivery time for a prototype core in months after UF 6 supply. Column 7 shows the time for the development of specifications including irradiation time in years for 6 and 7, and column 8 is the estimated cost of 6 and 7. There is just one fuel that is not in this summary and that is U-Zr

  15. Atomics international fuel fabrication facility and low enrichment program [contributed by H.W. Hassel, NUKEM

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1993-01-01

    NUKEM handles around almost two tons of highly enriched uranium a year and it was necessary to satisfy all the new physical protection philosophies. That means that we have to install storage and safe fabrication sites for a lot of money, 25 meter thick concrete walls, and different alarm systems. So just to demonstrate how silly this business is, we have just overcome this for highly enriched uranium, and now we speak about low enriched uranium for which we don't need all of these investments to make this business safe. I would-just like to concentrate my words on the status of fabrication and considerations in my company concerning the medium enriched uranium and low enriched uranium. In the table are the different fuel types (see column) and then we have the fabrication in column 2 the experience of my comp any in kg. In column 3 is the irradiation experience of these fuels types. Column 4 shows the studies and calculations made in our company for lower and medium enriched fuels. The preliminary fabrication tests and calculations are in column 5, and in column 6 we have the delivery time for a prototype core in months after UF 6 supply. Column 7 shows the time for the development of specifications including irradiation time in years for 6 and 7 and column is the estimated cost of 6 and 7 There is just one fuel that is not in this summary and that is U-Zr. We now see how complex and sophisticated this business is. I have told you already that we have installed for a lot of millions of Deutsche Mark the physical protection, storage vaults and things like that. Now we have to investigate all these different types of fuels for, as you see, a lot of money. Maybe these are a lot of optimistic figures; anyway the question is, does this make all the overall nuclear situation worldwide easier or not. One cannot answer for the moment, but anyway we have a lot of problems

  16. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  17. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morrell, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jamison, R. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nef, E. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nigg, D. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses, a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.

  18. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  19. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  20. Atomics International fuel fabrication facility and low enrichment program. Part 1

    International Nuclear Information System (INIS)

    Moss, T.A.

    1993-01-01

    The Al facility is approximately 30,000 square feet in area and consists of four general areas. One area is devoted to the production of UAl x powder. It consists of a series of arc melting furnaces, crushing lines, glove boxes, and compacting presses. The second area is used for the rolling of fuel plates. The third area is used for the machining of the plates to final size and also the machining of the fuel elements. In the fourth area the fuel plates are swaged into assemblies, and all welding and inspection operations are performed. As part of the lower enrichment program we are scheduled to put a second UAl x powder line into operation and we have had to expand some of our storage area

  1. Russian-Origin Highly Enriched Uranium Spent Nuclear Fuel Shipment From Bulgaria

    International Nuclear Information System (INIS)

    Cummins, Kelly; Bolshinsky, Igor; Allen, Ken; Apostolov, Tihomir; Dimitrov, Ivaylo

    2009-01-01

    In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

  2. Nuclear magnetic resonance spectroscopic investigation of anode exhaust of direct methanol fuel cells without isotope enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Young Seok; Hwang, Reo Yun; Han, Ochee [Western Seoul Center, Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    Fuel cells are devices that electrochemically convert the chemical energy of fuels such as natural gas, gasoline, and methanol, into electricity. Fuel cells more efficiently use energy than internal combustion engines and do not produce undesirable pollutants, such as NO{sub x} ,SO{sub x} and particulates. Fuel cells can be distinguished from one another by their electrolytes. Among the various direct alcohol fuel cells, direct methanol fuel cells (DMFCs) have been developed most. However, DMFCs have several practical problems such as methanol crossove r from an anode to a cathode and slow methanol oxidation reaction rates. Therefore, understanding the electrochemical reaction mechanisms of DMFCs may provide clues to solve these problems, and various analytical methods have been employed to examine these mechanisms. We demonstrated that {sup 1}H and {sup 13}C NMR spectroscopy can be used for analyzing anode exhausts of DMFCs operated with methanol without any isotope enrichment. However, the low sensitivity of NMR spectroscopy hindered our efforts to detect minor reaction intermediates. Therefore, sensitivity enhancement techniques such as dynamic nuclear polarization (DNP) NMR methods and/or presaturation methods to increase the dynamic range of the proton spectra by pre-saturating large water signals, are expected to be useful to detect low-concentration species.

  3. Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

    Science.gov (United States)

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2012-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2), the maximum power density was 13 mW/m(2), and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application

  4. Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Shun'ichi Ishii

    Full Text Available Microbial fuel cells (MFCs are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2, the maximum power density was 13 mW/m(2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s and regular introduction of microbial competitors. These results contribute significantly toward the

  5. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  6. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  7. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  8. Activity of the RA Reactor Physics group in 1980 - Definition of the Operation conditions for future safe and economical RA reactor operation with 80% enriched fuel

    International Nuclear Information System (INIS)

    Martinc, R.

    1980-01-01

    During 1980. the RA reactor was not in operation. That is why this period was devoted to definition of operating conditions for further reactor operation with 80% enriched fuel. The fuel elements which were in the core at the moment of shutdown in March 1979will not be used again (388 80% enriched fuel elements, and 511 2% enriched fuel elements). The reactor will be operated only with 80% enriched fuel, staring with initiat core configuration with 440 elements on the borders gradually changing to equi;librium core with 720 fuel elements. The analyses were concerned with safety issues of future operation [sr

  9. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  10. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  11. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  12. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  13. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    Science.gov (United States)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  14. Optimization of enrichment distributions in nuclear fuel assemblies loaded with uranium and plutonium via a modified linear programming technique

    Science.gov (United States)

    Cuevas Vivas, Gabriel Francisco

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed OXide (MOX) fuels. MOX isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide-range of applicability of the optimization technique. The features of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or

  15. A specific protein-enriched enteral formula decreases cortisolemia and improves plasma albumin and amino acid concentrations in elderly patients

    Directory of Open Access Journals (Sweden)

    Pérez de la Cruz Antonio

    2010-07-01

    Full Text Available Abstract Background Old age is associated with an involuntary and progressive but physiological loss of muscle mass. The aim of this study was to evaluate the effects of exclusive consumption for 6 months of a protein-enriched enteral diet with a relatively high content of branched-chain amino acids on albuminemia, cortisolemia, plasma amino acids, insulin resistance, and inflammation biomarkers in elderly patients. Methods Thirty-two patients from the Clinical Nutrition Outpatient Unit at our hospital exclusively consumed a protein-enriched enteral diet for 6 months. Data were collected at baseline and at 3 and 6 months on anthropometric and biochemical parameters and on plasma concentrations of amino acids, cortisol, adrenocorticotropic hormone, urea, creatinine, insulin resistance, and inflammation biomarkers. Results The percentage of patients with albumin concentration below normal cut-off values decreased from 18% to 0% by the end of the study. At 6 months, concentrations of total plasma (p = 0.008 and essential amino acids (p = 0.011, especially branched-chain amino acids (p = 0.031, were higher versus baseline values, whereas 3-methylhistidine (p = 0.001, cortisol (p = 0.001 and adrenocorticotropic hormone (p = 0.004 levels were lower. Conclusions Regular intake of specific protein-enriched enteral formula increases plasma essential amino acids, especially branched-chain amino acids, and decreases cortisol and 3-methylhistidine, while plasma urea and creatinine remain unchanged.

  16. Influence of N-15 enrichment on neutronics, costs and C-14 production in nitride fuel cycle scenarios

    International Nuclear Information System (INIS)

    Wallenius, Janne; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The C-14 production for different closed fuel cycle scenarios has been investigated. If nitride fuel is used in fast reactors and ADSs dedicated to management of plutonium and minor actinides, an N-15 enrichment level of about 99% is required for the nitride cores to produce the same amount of C-14 as the oxide cores in the power park. The corresponding cost penalty for fuel fabrication is estimated to be larger than 25%. If reprocessing is included in the costs for fuel operations, the penalty is of the order of 5-10%, provided that a closed gas cycle is implemented for the fabrication. If nitride fuels are used only for minor actinide management in ADS, the required enrichment level is about 93%, and the cost penalty is less than 10%. (author)

  17. Neutronics substantiation of possibility for conversion of the WWR-K reactor core to operation with low-enriched fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Gizatulin, Sh.H.; Zhantikin, T.M.; Koltochnik, S.N.; Takibaev, A.Zh.; Talanov, S.V.; Chakrov, P.V.; Chekushina, L.V.

    2002-01-01

    The studies are aimed to calculation and experimental justification of possibility for conversion of the WWR-R reactor core to low-enriched nuclear fuel (the 19.75-% enrichment in isotope U-235), resulting in reducing the risk of non-sanctioned proliferation of nuclear materials which can be used as weapons materials. The analysis of available published data, related to problem of reduction of enrichment in the fuel used in research thermal reactors, has been carried out. Basing on the analysis results, reference fuel compositions have been chosen, in particular, uranium dioxide (UO 2 ) in aluminum master form and the UA1 4 alloy. Preliminary calculations have shown that, with the WWR-K reactor core preserved existing critical characteristics (the fuel composition: UA1 4 ), the uranium concentration in the fuel element is to be increased by a factor of 2.0-2.2, being impossible technologically. The calculations have been performed by means of the Monte Carlo computational codes. The program of optimal conversion of the WWR-K reactor core to low-enriched fuel has been developed, including: development of calculation models of the reactor core, composed of various designs of fuel elements and fuel assemblies (FA), on a base of corresponding computational codes (diffusion, statistical, etc.); implementation of experiments in the zero-power reactor (critical assembly) with the WWR-C-type FA, in view of correction of the computational constants used in calculations; implementation of reactor core neutronics calculations, in view of selection of the U-235 optimal content in the low-enriched fuel elements and choice of FA reload strategy at the regime of reactor core after burning; determination of the fuel element specification; determination of the critical and operational loads for the reactor core composed of rod/tubular fuel elements; calculation of the efficiency of the protection control system effectors, optimization of its composition, number and locations in the

  18. Argentine activities related to the development of low enriched fuel elements

    International Nuclear Information System (INIS)

    Giorsetti, Domingo R.; Perez, Edmundo E.

    1983-01-01

    Within the framework of the RERTR Program and supported by the technical cooperation work agreed upon between the U.S.A. and Argentina in May 1979, the CNEA Nuclear Fuel Department - Low Enriched Fuel Elements Project (ECBE Project), has carried on its own program for developing fuels with low enrichment for research and test reactors. Up to the present, its main objective has been to replace the highly enriched fuel used in its only reactor (RA-3) for research, development and radioisotopes production. The basic stages of the Argentine Program are shown in Table 1. At a meeting held in Vienna in March, 1980, the CNEA stated that its development of fuels with low enrichment would be in two fuel lines: UAl x -Al and U 3 O 8 -Al, and that its aim would be to reach uranium densities of 18-2.2 g/cm 3 for the UAI x -Al line and 2.4-3.0 g/cm 3 for the U 3 O 8 line. At the international meeting held at ANL in November, 1980, and after having received depleted uranium and uranium with 20% and 45% enrichment (purchased from the U.S.A. for manufacturing miniplates and possible standard fuels) to carry on the proposed development, CNEA anticipated -- after its first tests -- that the conditions were satisfactory for reaching uranium densities of 2.4-3.0 g/cm 3 in U 3 O 8 -Al fuel and of 2.4 g/cm 3 in UAI x -Al fuel. In February 1981, after Argentina accepted the obligation of paying for the irradiation service, authorization was obtained for irradiating miniplates in the Oak Ridge Reactor within the RERTR Program. In June 1981, the first set of miniplates was sent to Oak Ridge National Laboratory (ORNL). The maximum actual densities reached at that time were 3.12 g/cm 3 with U 3 O 8 -Al and 2.52 g/cm 3 with UAl x -Al. During a visit of the CNEA Project Technical Manager to the Argonne National Laboratory (ANL) in July 1981, and after exchanging ideas with ANL professional staff, the CNEA decided to incorporate a new line of development, that of U 3 Si-Al. Three months later

  19. Conversion to low-enriched fuel in research reactor aspects of licensing the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Jacquemin, J.

    1985-01-01

    Conversion to low-enriched fuel and usage of new developed highly densified fuel in research-reactors will be an essential alteration in operating the reactor. According to the German Energy Act this has to be licensed. here might be some risk to the licensee of an older research-reactor by suspending his operating license because he cannot meet current requirements to be fulfilled or because of a court decision.Disposal of irradiated fuel elements of the new fuel type is a further significant problem which has to be solved before issuing a new license. (author)

  20. Contemporary and prospective fuel cycles for WWER-440 based on new assemblies with higher uranium capacity and higher average fuel enrichment

    International Nuclear Information System (INIS)

    Gagarinskiy, A.A.; Saprykin, V.V.

    2009-01-01

    RRC 'Kurchatov Institute' has performed an extensive cycle of calculations intended to validate the opportunities of improving different fuel cycles for WWER-440 reactors. Works were performed to upgrade and improve WWER-440 fuel cycles on the basis of second-generation fuel assemblies allowing core thermal power to be uprated to 107 108 % of its nominal value (1375 MW), while maintaining the same fuel operation lifetime. Currently intensive work is underway to develop fuel cycles based on second-generation assemblies with higher fuel capacity and average fuel enrichment per assembly increased up to 4.87 % of U-235. Fuel capacity of second-generation assemblies was increased by means of eliminated central apertures of fuel pellets, and pellet diameter extended due to reduced fuel cladding thickness. This paper intends to summarize the results of works performed in the field of WWER-440 fuel cycle modernization, and to present yet unemployed opportunities and prospects of further improvement of WWER-440 neutronic and operating parameters by means of additional optimization of fuel assembly designs and fuel element arrangements applied. (Authors)

  1. Plant sterols-enriched diet decreases small, dense LDL-cholesterol levels in children with hypercholesterolemia: a prospective study.

    Science.gov (United States)

    Garoufi, Anastasia; Vorre, Styliani; Soldatou, Alexandra; Tsentidis, Charalampos; Kossiva, Lydia; Drakatos, Antonios; Marmarinos, Antonios; Gourgiotis, Dimitrios

    2014-05-03

    Small dense low density lipoprotein-cholesterol (sdLDL-C) molecules are more atherogenic compared with large buoyant ones. Phytosterols-enriched diets are effective in decreasing total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) concentrations in hyperlipidemic children without significant adverse effects. Limited data on the impact of such a diet on sdLDL-C levels is available in adults while there are no reports concerning children. The purpose of this study is to prospectively evaluate the effect of the daily consumption of 2 g of plant sterols on sdLDL-C levels in children with hypercholesterolemia. Fifty-nine children, 25 with LDL-C ≥ 3.4 mmol/l (130 mg/dl) and 34 with LDL-C yogurt-drink enriched with 2 g of plant sterols was added to the daily diet of hypercholesterolemic children and 6-12 months later lipid profiles were reassessed. Direct quantitative methods were used to measure LDL-C and sdLDL-C levels. The consumption of plant sterols reduced sdLDL-C significantly (p cholesterol (NonHDL-C) and apolipoprotein B (ApoB) levels also decreased significantly (p 10% in sixteen children (64%), independently from baseline levels, sex, age and body mass index (BMI). High density lipoprotein-cholesterol (HDL-C), lipoprotein a [Lp(a)], and triglycerides (TGs) levels remained unaffected. Plant sterols decrease sdLDL-C significantly and may be beneficial for children with hypercholesterolemia.

  2. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  3. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  4. Return of 80% highly enriched uranium fresh fuel from Yugoslavia to Russia

    International Nuclear Information System (INIS)

    Pesic, M.; Sotic, O.; Subotic, K.; Hopwood, W. Jr; Moses, S.; Wander, T.; Smirnov, A.; Kanashov, B.; Eshcherkin, A.; Efarov, S.; Olivieri, C.; Loghin, N. E.

    2003-01-01

    The transport of almost 50 kg of highly enriched (80%) uranium (HEU), in the form of fresh TVR-S fuel elements, from the Vinca Institute of Nuclear Sciences, Yugoslavia, to the Russian Federation for uranium reprocessing was carried out in August 2002. This act was a contribution of the Government of the Federal Republics of Yugoslavia (now Serbia and Montenegro) to the world's joint efforts to prevent possible actions of terrorists against nuclear material that potentially would be usable for the production of nuclear weapons. Basic aspects of this complex operation, carried out mainly by transport teams of the Vinca Institute and of the Institute for Safe Transport of Nuclear Materials from Dimitrovgrad, Russian Federation, are described in this paper. A team of IAEA safety inspectors and experts from the DOE, USA, for transport and non-proliferation, supported the whole operation. (author)

  5. Economical benefits for the use of slightly enriched fuel elements at the Atucha-I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Sosa, M.A.

    1987-01-01

    The fuel represents a very important factor in the operative cost of the Atucha I nuclear power plant. This cost is drastically reduced with the use of fuel elements of slightly enriched uranium. The annual saving is analyzed with actual values for fuel elements with an enrichment of 0.85% by weight of U-235. With the reactor core in equilibrium state the annual saving achieved is approximately 7.5-10 u$s. According to the present irradiation plan, the benefit for the transition period is studied. An analysis of the sensitivity to differential increments in factors determining the cost of fuel elements or to changes in manufacturing losses is also performed, calculating its effect on the waste, the storage of irradiated elements and the amount of UO 2 required. (Author)

  6. Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

    2002-01-01

    The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing

  7. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  8. Conceptual design and economic analysis of a light water reactor fuel enricher/regenerator. FY 1978 year-end report

    International Nuclear Information System (INIS)

    Grand, P.; Kouts, H.J.; Powell, J.R.; Steinberg, M.; Takahashi, H.

    1979-05-01

    A study has been performed to evaluate the use of high-energy particle accelerators as nuclear fuel enrichers and nuclear fuel regenerators. This builds on ideas that have been current for many years. The new study has, however, explored some novel approaches that have not been examined before. A specific conceptual system chosen for more detailed study would stretch the energy available from natural uranium by a factor of about 3, reduce the separative work requirements by a factor of about 4, and reduce the volume of spent fuel to be stored by a factor of 2, compared to the current once-through light water reactor (LWR) fuel cycle. The concept avoids the need for chemical reprocessing of spent fuel, and would permit continued use of LWR's beyond the time when limitations on fuel resources might otherwise lead to their being phased out. This concept, which is called the Linear Accelerator Fuel Enricher/Regenerator, is therefore viewed as offering a practical means of stretching the use of the nuclear fuel resource in the framework of the existing light water reactor fuel cycle. This report describes and analyzes the concept referred to. An explanation of the principles underlying the concept is given. Particular attention is devoted to engineering feasibility, proliferation resistance, and economics. It is seen that the concept draws on only proven technology as regards bothaccelerator design and the fuel irradiation process, and is adapted to existing LWR designs with no change except in fuel-handling practices. A preliminary evaluation of radiation damage, coolant options, and power conversion systems is provided. Neutronic, thermal-hydraulic, and burnup calculations are presented. An analysis is made of fuel economy. Approximate costs of electric power produced using this concept are evaluated and discussed. Estimated development costs of commercialization are provided

  9. Conceptual design and economic analysis of a light water reactor fuel enricher/regenerator. FY 1978 year-end report

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P; Kouts, H J; Powell, J R; Steinberg, M; Takahashi, H

    1979-05-01

    A study has been performed to evaluate the use of high-energy particle accelerators as nuclear fuel enrichers and nuclear fuel regenerators. This builds on ideas that have been current for many years. The new study has, however, explored some novel approaches that have not been examined before. A specific conceptual system chosen for more detailed study would stretch the energy available from natural uranium by a factor of about 3, reduce the separative work requirements by a factor of about 4, and reduce the volume of spent fuel to be stored by a factor of 2, compared to the current once-through light water reactor (LWR) fuel cycle. The concept avoids the need for chemical reprocessing of spent fuel, and would permit continued use of LWR's beyond the time when limitations on fuel resources might otherwise lead to their being phased out. This concept, which is called the Linear Accelerator Fuel Enricher/Regenerator, is therefore viewed as offering a practical means of stretching the use of the nuclear fuel resource in the framework of the existing light water reactor fuel cycle. This report describes and analyzes the concept referred to. An explanation of the principles underlying the concept is given. Particular attention is devoted to engineering feasibility, proliferation resistance, and economics. It is seen that the concept draws on only proven technology as regards bothaccelerator design and the fuel irradiation process, and is adapted to existing LWR designs with no change except in fuel-handling practices. A preliminary evaluation of radiation damage, coolant options, and power conversion systems is provided. Neutronic, thermal-hydraulic, and burnup calculations are presented. An analysis is made of fuel economy. Approximate costs of electric power produced using this concept are evaluated and discussed. Estimated development costs of commercialization are provided.

  10. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    International Nuclear Information System (INIS)

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event ( 20 fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10 20 fissions, the number of fissions equals about 10 28 , which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada

  11. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  12. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  13. Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes

    Energy Technology Data Exchange (ETDEWEB)

    Pisciotta, JM; Zaybak, Z; Call, DF; Nam, JY; Logan, BE

    2012-07-18

    Electron-accepting (electrotrophic) biocathodes were produced by first enriching graphite fiber brush electrodes as the anodes in sediment-type microbial fuel cells (sMFCs) using two different marine sediments and then electrically inverting the anodes to function as cathodes in two-chamber bioelectrochemical systems (BESs). Electron consumption occurred at set potentials of -439 mV and -539 mV (versus the potential of a standard hydrogen electrode) but not at -339 mV in minimal media lacking organic sources of energy. Results at these different potentials were consistent with separate linear sweep voltammetry (LSV) scans that indicated enhanced activity (current consumption) below only ca. -400 mV. MFC bioanodes not originally acclimated at a set potential produced electron-accepting (electrotrophic) biocathodes, but bioanodes operated at a set potential (+11 mV) did not. CO, was removed from cathode headspace, indicating that the electrotrophic biocathodes were autotrophic. Hydrogen gas generation, followed by loss of hydrogen gas and methane production in one sample, suggested hydrogenotrophic methanogenesis. There was abundant microbial growth in the biocathode chamber, as evidenced by an increase in turbidity and the presence of microorganisms on the cathode surface. Clone library analysis of 16S rRNA genes indicated prominent sequences most similar to those of Eubacterium limosum (Butyribacterium methylotrophicum), Desulfovibrio sp. A2, Rhodococcus opacus, and Gemmata obscuriglobus. Transfer of the suspension to sterile cathodes made of graphite plates, carbon rods, or carbon brushes in new BESs resulted in enhanced current after 4 days, demonstrating growth by these microbial communities on a variety of cathode substrates. This report provides a simple and effective method for enriching autotrophic electrotrophs by the use of sMFCs without the need for set potentials, followed by the use of potentials more negative than -400 mV.

  14. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  15. Analysis of gamma ray dose for dried up pond storing low enriched UO2 fuel

    Science.gov (United States)

    Nauchi, Yasushi; Suzuki, Motomu

    2017-09-01

    Gamma ray dose is calculated for loss of coolant accident in spent fuel pond (SFP) storing irradiated fuels used in light water reactors. Influence of modelling of fuel assemblies, source distributions, and loading fraction of fuel assemblies in the fuel rack on the dose are investigated.

  16. Analysis of gamma ray dose for dried up pond storing low enriched UO2 fuel

    Directory of Open Access Journals (Sweden)

    Nauchi Yasushi

    2017-01-01

    Full Text Available Gamma ray dose is calculated for loss of coolant accident in spent fuel pond (SFP storing irradiated fuels used in light water reactors. Influence of modelling of fuel assemblies, source distributions, and loading fraction of fuel assemblies in the fuel rack on the dose are investigated.

  17. Conversion of the RB reactor neutrons by highly enriched uranium fuel and lithium deuteride

    International Nuclear Information System (INIS)

    Strugar, P.; Sotic, O.; Ninkovic, M.; Pesic, M.; Altiparmakov, D.

    1981-01-01

    A thermal-to-fast-neutron converter has been constructed at the RB reactor. The material used for the conversion of thermal neutrons is highly enriched uranium fuel of Soviet production applied in Yugoslav heavy water experimental reactors RA and RB. Calculations and preliminary measurements show that the spectrum of converted neutrons only slightly differs from that of fission neutrons. The basic characteristics of converted neutrons can be expressed by the neutron radiation dose of 800 rad (8 Gy) for 1 h of reactor operation at a power level of 1 kW. This dose is approximately 10 times higher than the neutron dose at the same place without converter. At the same time, thermal neutron and gamma radiation doses are negligible. The constructed neutron converter offers wide possibilities for applications in reactor and nuclear physics and similar disciplines, where neutron spectra of high energies are required, as well as in the domain of neutron dosimetry and biological irradiations in homogeneous fields of larger dimensions. The possibility of converting thermal reactor neutrons with energies of about 14 MeV with the aid of lithium deuteride from natural lithium has been considered too. (author)

  18. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  19. Systems report on the analysis of spent, highly enriched U-235 reactor fuel by delayed neutron interrogation

    International Nuclear Information System (INIS)

    Piper, T.C.; Kirkham, R.J.

    1990-05-01

    Design aspects are briefly given of a neutron source shuffler used to measure fissile material content of spent, highly enriched reactor fuel. The mode of operation used, results of analyzing 176 fuel packages and recommended system improvements are discussed. Four measurements were made on each of the fuel packages with the mean of the 176 standard deviations being 2.03 percent of value. The maximum individual standard deviation was 9.27 percent. Appendixes concerning imprecisions introduced by counting statistics and crane speed irregularities are given. Use of an improved neutron source shuffler, an improved fuel package motion system and modernized computer system should permit system performance to be limited mainly by counting statistics, to about 1.5 percent of measured value. A stronger source could then be installed to further enhance system operation. 16 figs., 3 tabs

  20. DIissolution of low enriched uranium from the experimental breeder reactor-II fuel stored at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Site (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.

  1. Recovery of enriched Uranium (20% U-235) from wastes obtained in the preparation of fuel elements for argonaut type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte, A.; Ramos, L.; Estrada, J.; Val, J. L. del

    1962-07-01

    Results obtained with the two following installations for recovering enriched uranium (20% U-235) from wastes obtained in the preparation of fuel elements for Argonaut type reactors are presented. Ion exchange unit to recover uranium form mother liquors resulting from the precipitation ammonium diuranate (ADU) from UO{sub 2}F{sub 2} solutions. Uranium recovery unit from solid wastes from the process of manufacture of fuel elements, consisting of a) waste dissolution, and b) extraction with 10% (v/v) TBP. (Author) 9 refs.

  2. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  3. Effects of inoculation sources on the enrichment and performance of anode bacterial consortia in sensor typed microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Phuong Tran

    2016-01-01

    Full Text Available Microbial fuel cells are a recently emerging technology that promises a number of applications in energy recovery, environmental treatment and monitoring. In this study, we investigated the effect of inoculating sources on the enrichment of electrochemically active bacterial consortia in sensor-typed microbial fuel cells (MFCs. Several MFCs were constructed, operated with modified artificial wastewater and inoculated with different microbial sources from natural soil, natural mud, activated sludge, wastewater and a mixture of those sources. After enrichment, the MFCs inoculated with the natural soil source generated higher and more stable currents (0.53±0.03 mA, in comparisons with the MFCs inoculated with the other sources. The results from denaturing gradient gel electrophoresis (DGGE showed that there were significant changes in bacterial composition from the original inocula to the enriched consortia. Even more interestingly, Pseudomonas sp. was found dominant in the natural soil source and also in the corresponding enriched consortium. The interactions between Pseudomonas sp. and other species in such a community are probably the key for the effective and stable performance of the MFCs.

  4. Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sease, J.D.; Primm, R.T. III; Miller, J.H.

    2007-01-01

    The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the

  5. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  6. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    International Nuclear Information System (INIS)

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  7. Materials safeguards and accountability in the low enriched uranium conversion-fabrication sector of the fuel cycle

    International Nuclear Information System (INIS)

    Schneider, R.A.; Nilson, R.; Jaech, J.L.

    1978-01-01

    Today materials accounting in the low enriched conversion-fabrication sector of the LWR fuel cycle is of increased importance. Low enriched uranium is rapidly becoming a precious metal with current dollar values in the range of one dollar per gram comparing with gold and platinum at 7-8 dollars per gram. In fact, people argue that its dollar value exceeds its safeguards value. Along with this increased financial incentive for better material control, the nuclear industry is faced with the impending implementation of international safeguards and increased public attention over its ability to control nuclear materials. Although no quantity of low enriched uranium (LEU) constitutes a practical nuclear explosive, its control is important to international safeguards because of plutonium production or further enrichment to an explosive grade material. The purpose of the paper is to examine and discuss some factors in the area of materials safeguards and accountability as they apply to the low enriched uranium conversion-fabrication sector. The paper treats four main topics: basis for materials accounting; our assessment of the proposed new IAEA requirements; adequacy of current practices; and timing and direction of future modifications

  8. Inerting of a Vented Aircraft Fuel Tank Test Article with Nitrogen-Enriched Air

    National Research Council Canada - National Science Library

    Burns, Michael

    2001-01-01

    ...) required to inert a vented aircraft fuel tank. NEA, generated by a hollow fiber membrane gas separation system, was used to inert a laboratory fuel tank with a single vent on top designed to simulate a transport category airplane fuel tank...

  9. Optimization of enrichment distributions in nuclear fuel assemblies loaded with Uranium and Plutonium via a modified linear programming technique

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas Vivas, Gabriel Francisco

    1999-12-01

    A methodology to optimize enrichment distributions in Light Water Reactor (LWR) fuel assemblies is developed and tested. The optimization technique employed is the linear programming revised simplex method, and the fuel assembly's performance is evaluated with a neutron transport code that is also utilized in the calculation of sensitivity coefficients. The enrichment distribution optimization procedure begins from a single-value (flat) enrichment distribution until a target, maximum local power peaking factor, is achieved. The optimum rod enrichment distribution, with 1.00 for the maximum local power peaking factor and with each rod having its own enrichment, is calculated at an intermediate stage of the analysis. Later, the best locations and values for a reduced number of rod enrichments is obtained as a function of a target maximum local power peaking factor by applying sensitivity to change techniques. Finally, a shuffling process that assigns individual rod enrichments among the enrichment groups is performed. The relative rod power distribution is then slightly modified and the rod grouping redefined until the optimum configuration is attained. To verify the accuracy of the relative rod power distribution, a full computation with the neutron transport code using the optimum enrichment distribution is carried out. The results are compared and tested for assembly designs loaded with fresh Low Enriched Uranium (LEU) and plutonium Mixed Oxide (MOX) isotopics for both reactor-grade and weapons-grade plutonium were utilized to demonstrate the wide range of applicability of the optimization technique. The feature of the assembly designs used for evaluation purposes included burnable absorbers and internal water regions, and were prepared to resemble the configurations of modern assemblies utilized in commercial Boiling Water Reactor (BWRs) and Pressurized Water Reactors (PWRs). In some cases, a net improvement in the relative rod power distribution or in the

  10. ALARA (As Low As Reasonable Achievable) procedure applied to fuel assembly fabrication with enriched reprocessing uranium (ERU)

    International Nuclear Information System (INIS)

    Guimaraes, Leonam dos Santos; Degrange, Jean Pierre

    1998-01-01

    The study introduced by this paper compose the first step to the implementation of ALARA (As Low As Reasonable Achievable) for a nuclear fuel assembly factory which one of its two production lines will be designed to work with Enriched Reprocessing Uranium (ERU). This step includes the reference situation analysis is based on previsional dosimetric evaluations for individual and collective exposures of each factory operator (117 in total) working on 7 work stations, considering 6 annual production scenarios (10, 50 75, 100 and 150 ERU tons), which corresponds to an annual production of 600 tons (ERU plus enriched natural uranium ENU). The exposure indicators evolution, expressed in terms of collective dose, annual individual dose and radiological detrimental cost for workers, is also used in a complimentary way to guide the analysis. (author)

  11. Preliminary experience and near future utilization programmes of the MPR-30 fueled by LEU [low enriched uranium

    International Nuclear Information System (INIS)

    Arbie, B.; Soentono, S.

    1987-01-01

    The MTR type reactor MPR-30 G.A. Siwabessy, located at PUSPIPTEK Serpong has recently reached its first criticality. This multipurpose reactor is supposed to be the first MTR type reactor in the world that is designed and constructed to be fueled by low enriched uranium. Preliminary experience covering the approach to the first criticality and the excess reactivity loading as well as some thermal hydraulics and power ascension tests are briefly presented and discussed. The near future utilization programmes during and after commissioning are also presented. (Author)

  12. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  13. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  14. Allocation of uranium enrichment services to fuel foreign and domestic nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    This interim report was made in response to a request for information concerning the sale of U.S. uranium enrichment services to foreign countries and its effect on AEC's ability to meet domestic demands. Long-term enrichment services (June 30, 1974), both domestic and foreign, totaled 364,000 MW, or 44,000 MW more than its available capability. The first-come-first-served policy was modified to give preferential treatment to Yugoslav and Mexican requests because of IAEA commitments, and to shift six standard contracts from Japan. From Aug. to Sept. 1974, standard contracts were signed for all 15 pending domestic requests and for 33 pending foreign requests, with the remaining 45 foreign requests depending on NRC's approval of Pu recycle, although private enrichment or stockpile enriched U could meet these needs. There is no firm commitment in the private sector to build and operate the needed enrichment plant. The acceleration of foreign nuclear programs coupled with ERDA's termination of further long-term contracts, may lead to the emergence of foreign supply sources, and U.S. may lose its favorable balance-of-payments and its influence on international nuclear policies

  15. Determination of U235 enrichment from nuclear fuel by neutronic activation

    International Nuclear Information System (INIS)

    Almeida, M.C.M. de.

    1988-01-01

    The enrichment of 235 U in UO 2 pellets samples through the instrumental neutron activation analysis method (I.N.A.A.) was determined. By high resolution gamma-ray spectrometry (H.R.G.S.), from analysis of isotopic ratios between fission products peaks from 235 U and 239 Np different energies peaks from 238 U, the enrichment was achieved. The 'Boatstrap' statistics technique for the analytical results, which is based in shaping results of an unknown distribution to the Gaussian distribution by B replications in interested statistics such as: the mean and its standard error, was introduced. (M.J.C.) [pt

  16. The development and testing of reduced enrichment fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Wood, J.C.; Foo, M.T.; Berthiaume, L.C.

    1983-01-01

    Fuel rods of uranium silicide dispersed in aluminum and clad in aluminum have been developed and tested in the laboratory and in-reactor. The properties of the dispersion fuel materials proved satisfactory with regard to thermal conductivity, aqueous corrosion resistance, strength and ductility, and thermal stability below 473 K. A vacancy condensation model is proposed to account for the thermally-induced swelling that occurs above 473 K by virtue of the chemical reactions that occur between the dispersed silicide fuel particles and the aluminum matrix. The in-reactor fuel core swelling was less than % after irradiation at high powers 76-131 kW/m) to a high terminal burnup (79.2 at% of U-235 atoms). (author)

  17. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  18. Development program for fuel elements with low enriched uranium for high temperature reactors

    International Nuclear Information System (INIS)

    1987-12-01

    The results of HTR fuel development taking place at the THTR's can be summarized as follows for the main points of core manufacture coating matrix and fuel emenent manufacture: 1. The well known gel precipitation process was modified for the manufacture of UO 2 cores. 2. The TRISO coating (additional SiC layer between two very dense PyC layers) can be applied with the required quality on an economical 10 kg scale. 3. The particle fracture in the complete fuel element due to manufacture was lowered during the course of the project to below the target values of -6 U/U total. For testing fuel elements, the required irradiation samples were designed in agreement with the reactor constructors, were prepared and the first phase of the irradiation program was successfully completed in the context of the HBK project. (orig./HP) [de

  19. Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density.

    Science.gov (United States)

    Magaril, Elena

    2016-04-01

    The environmental and operational characteristics of motor transport, one of the main consumers of motor fuel and source of toxic emissions, soot, and greenhouse gases, are determined to a large extent by the fuel quality which is characterized by many parameters. Fuel density is one of these parameters and it can serve as an indicator of fuel quality. It has been theoretically substantiated that an increased density of motor fuel has a negative impact both on the environmental and operational characteristics of motor transport. The use of fuels with a high density leads to an increase in carbonization within the engine, adversely affecting the vehicle performance and increasing environmental pollution. A program of technological measures targeted at reducing the density of the fuel used was offered. It includes a solution to the problem posed by changes in the refining capacities ratio and the temperature range of gasoline and diesel fuel boiling, by introducing fuel additives and adding butanes to the gasoline. An environmental tax has been developed which allows oil refineries to have a direct impact on the production of fuels with improved environmental performance, taking into account the need to minimize the density of the fuel within a given category of quality.

  20. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    Directory of Open Access Journals (Sweden)

    Varese Giovanna C

    2010-02-01

    Full Text Available Abstract Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure via enrichment (i.e., serial growth transfers on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms on Diesel (G1 and HiQ Diesel (G2, respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia

  1. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    Science.gov (United States)

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  2. Utilization of Cow Milk Enriched with Conjugated Linoleic Acid to Decrease Body Weight, Cholesterol, Low Density Lipoprotein and to Increase Blood High Density Lipoprotein

    OpenAIRE

    Suhartati, FM; Suryapratama, W; Rahayu, S

    2012-01-01

    An experiment to investigate the ability of cow milk enriched with conjugated linoleic acid to decrease body weight, total cholesterol, blood Low Density Lipoprotein (LDL), and to increase blood High Density Lipoprotein (HDL) has been conducted using in vivo experimental method. Research material consisted of 40 8-week-old white female rats (Rattus norvegicus) of Wistar strain (as an animal model). The method used was an experimental method with a Completely Randomized Design. The treatments ...

  3. Delayed Fission Product Gamma-Ray Transmission Through Low Enriched UO2 Fuel Pin Lattices in Air

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, TH [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2004-10-18

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called “channeling” effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute’s Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice.Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins

  4. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  5. Feasibility demonstration of a road vehicle fueled with hydrogen-enriched gasoline

    Science.gov (United States)

    Hoehn, F. W.; Dowdy, M. W.

    1974-01-01

    Evaluation of the concept of using hydrogen-enriched gasoline in a modified internal combustion engine in order to make possible the burning of ultralean mixtures. The use of such an engine in a road vehicle demonstrated that the addition of small quantities of gaseous hydrogen to gasoline resulted in significant reductions in exhaust emissions of carbon monoxide and nitrogen oxides as well as in thermal efficiency improvements of the engine performance.

  6. Cooperative efforts for the removal of high-enriched fresh fuel from the Vinca Institute of Nuclear Sciences

    International Nuclear Information System (INIS)

    Hopwood, W.; Moses, S.; Pesic, M.; Sotic, O.; Wander, T.

    2003-01-01

    In August 2002, the inventory of high-enriched uranium (HEU) fresh fuel at the Vinca Institute in Belgrade, Yugoslavia, was repackaged and shipped to the Russian Federation (R.F.), its country of origin under the former Soviet Union. Several thousand small fuel elements were repackaged by the Vinca Institute into approved shipping containers provided by the RF and loaded onto the approved ground transportation vehicle. The transportation from the Vinca Institute to the Belgrade Airport was done under the planning and protection of Yugoslavian and Serbian military and police organizations, with technical oversight being provided by the Vinca staff that escorted the convoy. Under constant security protection, the Russian crew loaded the fuel containers onto the cargo plane, and later it departed for an airport near Dimitrovgrad, Russia. In addition to the domestic control and accounting provided during this operation, this inventory was under International Atomic Energy Agency (IAEA) safeguards, and its inspectors appropriately confirmed, sealed and documented the inventory. The United States (U.S.) observers were also present, and appropriate data were collected because of nonproliferation interests and contractual support for all phases of the operation. Since this event, the Vinca staff has generated several papers describing the technical background and detailed activities of this operation. This paper describes the removal from the U.S. observers perspectives and recognizes the significant cooperation among the supporting countries and the achievements of the organizations directly involved. (author)

  7. Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters.

    Science.gov (United States)

    Varanasi, Jhansi L; Sinha, Pallavi; Das, Debabrata

    2017-05-01

    To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters. A maximum power density of 1.4 W/m 3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m 3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m 3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%. A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.

  8. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle for use in establishing ''as low as practicable'' guides: fabrication of light-water reactor fuel from enriched uranium dioxide

    International Nuclear Information System (INIS)

    Pechin, W.H.; Blanco, R.E.; Dahlman, R.C.; Finney, B.C.; Lindauer, R.B.; Witherspoon, J.P.

    1975-05-01

    A cost-benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model enriched-uranium, light-water reactor (LWR) fuel fabrication plant, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as practicable'' in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment equipment is added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Some of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. (U.S.)

  9. Detailed description of an SSAC at the facility level for a low-enriched uranium conversion and fuel fabrication facility

    International Nuclear Information System (INIS)

    Jones, R.J.

    1984-09-01

    Some States have expressed a need for more detailed guidance with regard to the technical elements in the design and operation of SSACs for both the national and the international objectives. To meet this need the present document has been prepared, describing the technical elements of an SSAC in considerable detail. The purpose of this document is therefore, to provide a detailed description of a system for the accounting for and control of nuclear material in a model low enriched uranium conversion and fuel fabrication facility which can be used by a facility operator to establish his own system in a way which will provide the necessary information for compliance with a national system for nuclear material accounting and control and for the IAEA to carry out its safeguards responsibilities

  10. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    Science.gov (United States)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  11. Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    OpenAIRE

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Sekiguchi, Yuji; Gorby, Yuri A.; Bretschger, Orianna

    2012-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here w...

  12. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shun' ichi [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan). Bio-Medical Research Inst.; J. Craig Venter Institute, San Diego, CA (United States); Japan Society for the Promotion of Science (JSPS), Tokyo (Japan); Logan, Bruce E. [Penn State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Sekiguchi, Yuji [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan). Bio-Medical Research Inst.

    2012-05-15

    The improvement in electricity generation during the enrichment process of a microbial consortium was analyzed using an air-cathode microbial fuel cell (MFC) repeatedly fed with acetate that was originally inoculated with sludge from an anaerobic digester. The anodic maximum current density produced by the anode biofilm increased from 0.12 mA/cm{sup 2} at day 28 to 1.12 mA/cm{sup 2} at day 105. However, the microbial cell density on the carbon cloth anode increased only three times throughout this same time period from 0.21 to 0.69 mg protein/cm{sup 2}, indicating that the biocatalytic activity of the consortium was also enhanced. The microbial activity was calculated to have a per biomass anode-reducing rate of 374 {mu}mol electron g protein{sup -1} min{sup -1} at day 28 and 1,002 {mu}mol electron g protein{sup -1} min{sup -1} at day 105. A bacterial community analysis of the anode biofilm revealed that the dominant phylotype, which was closely related to the known exoelectrogenic bacterium, Geobacter sulfurreducens, showed an increase in abundance from 32% to 70% of the total microbial cells. Fluorescent in situ hybridization observation also showed the increase of Geobacter-like phylotypes from 53% to 72%. These results suggest that the improvement of microbial current generation in microbial fuel cells is a function of both microbial cell growth on the electrode and changes in the bacterial community highly dominated by a known exoelectrogenic bacterium during the enrichment process. (orig.)

  13. Critical experiment program of heterogeneous core composed for LWR fuel rods and low enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Watanabe, Shouichi; Nakamura, Takemi

    2003-01-01

    In order to stimulate the criticality characteristics of a dissolver in a reprocessing plant, a critical experiment program of heterogeneous cores is under going at a Static Critical Experimental Facility, STACY in Japan Atomic Energy Research Institute, JAERI. The experimental system is composed of 5w/o enriched PWR-type fuel rod array immersed in 6w/o enriched uranyl nitrate solution. First series of experiments are basic benchmark experiments on fundamental critical data in order to validate criticality calculation codes for 'general-form system' classified in the Japanese Criticality Safety Handbook, JCSHB. Second series of experiments are concerning the neutron absorber effects of fission products related to the burn-up credit Level-2. For demonstrating the reactivity effects of fission products, reactivity effects of natural elements such as Sm, Nd, Eu and 103 Rh, 133 Cs, solved in the nitrate solution are to be measured. The objective of third series of experiments is to validate the effect of gadolinium as a soluble neutron poison. Properties of temperature coefficients and kinetic parameters are also studied, since these parameters are important to evaluate the transient behavior of the criticality accident. (author)

  14. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  15. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    Science.gov (United States)

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  16. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  17. HTGR Generic Technology Program. Materials technology reactor operating experience medium-enriched-uranium fuel development. Quarterly progress report for the period ending April 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kaae, J. L.; Lai, G. Y.; Thompson, L. D.; Sheehan, J. E.; Rosenwasser, S. N.; Johnson, W. R.; Li, C. C.; Pieren, W. R.; Smith, A. B.; Holko, K. H.; Baenteli, G. J.; Cheung, K. C.; Orr, J. D.; Potter, R. C.; Baxter, A.; Bell, W.; Lane, R.; Wunderlich, R. G.; Neylan, A. J.

    1978-05-01

    The work reported includes the development of the materials properties data base for noncore components, plant surveillance and testing performed at Fort St. Vrain, and work to demonstrate the feasibility of using medium-enriched fuel in Fort St. Vrain. Studies and analyses plus experimental procedures and results are discussed and data are presented.

  18. Study on the use of slightly enriched uranium fuel cycle in an existing CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae [Institute for Advanced Engineering, Seoul (Korea, Republic of)

    1997-12-31

    To test the viability of CANFLEX-SEU bundles in an existing CANDU 6 reactor, core follow-up simulation has been carried out using the reactor fueling simulation program of the CANDU 6, RFSP computer code, and a lattice physics code, WIMS-AECL. During the core follow-up, bundle and channel powers and zone levels have been checked against their operating limits at each simulation. It is observed from the simulation results that an equilibrium core loaded with 0.9 w/o CANFLEX-SEU bundles could be refueled and maintained for 550 FPD without any significant violations in the channel and bundle power limits and the permissible operating range of the liquid zone controllers. 8 refs., 2 figs., 1 tab. (Author)

  19. On-line item control at a high enriched nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Lewis, T.W.; Lewis, H.M.

    1984-01-01

    The on-line item control system at Nuclear Fuel Services, Inc., is a near-real time method capable of tracking uniquely identified items from creation through disposition. The system provides for improved control, timeliness, accuracy and usability of company information and the necessary data required to support the regulatory program for the protection against diversion of Special Nuclear Materials. The system consists of software applications (approximately 150 programs) with man/machine interface controls which provide facilities for correct data entry and for the protection of data integrity. This system went into stand-alone operation in September, 1983 after a twenty month parallel test run with the previous keybatched (manual forms) item control system

  20. Development for analysis system of rods enrichment of nuclear fuels; Desarrollo de un sistema de analisis de enriquecimiento de barras de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L

    1998-11-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  1. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  2. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    Science.gov (United States)

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Radiometallurgical examination of 1.47 enriched I&E fuel elements for PT-IP-247-A

    Energy Technology Data Exchange (ETDEWEB)

    Teats, R.

    1960-07-19

    Under the conditions of PT-IP-247-A, four columns of self-supported and four columns of rib-supported I&E 1.47% enriched fuel elements were irradiated to determine their relative performance under severe operating conditions. Four of the self-supported and two of the rib-supported control elements were received for nation. The two rib-supported control pieces, which were classified as ``near failures`` had received average exposures of 353 and 359 MWD/T at average specific power levels of 91 and 108 KW/ft before they were discharged because of other ruptured pieces in the tubes. The nominal specified canned fuel dimensions of the rib supported elements was 1.445 in. OD, .310 in bore, and 7.640 in. long. The first two self-supported elements were selected for examination on the basis of high weight losses sustained during irradiation, and the second two were selected to determine the effect of specific power levels on the AlSi bonding. The average specific power levels of the four self-supported elements varied from 79 to 110 KW/ft and the exposure varied from 845 MWD/T to 949 MWD/T. The nominal canned dimensions of the self-supported elements, which were made oversize to attain high annular coolant temperatures with respect to the interior coolant channel, were 1.460 in. OD, .375 in. bore, and 7.640 in. long. The eight bridge rail supports were spot welded on and gave an effective rib outside diameter of 1.600 in. All of the components were X-8001 aluminum alloy.

  4. Proceedings of the international meeting on development, fabrication, and application of Reduced Enrichment fuels for Research and Test Reactors (RERTR). Base technology

    International Nuclear Information System (INIS)

    1983-08-01

    The international effort to develop new fuel materials and designs which will make it feasible to fuel research and test reactors throughout the world with low-enrichment uranium, instead of high-enrichment uranium, has made significant progress during the past year. This progress has taken place at research centers located in many different countries, and is of crucial interest to reactor operators and licensors whose geographical distribution is even more varied. It is appropriate, therefore, that international meetings be held periodically to foster direct communication among the specialists in this area. To achieve this purpose, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the third of a series which begun in 1978. The papers presented at this meeting were divided into sessions according to relevant subject: status of RERTR program and safety issues; development of new fuel types; testing of new fuel elements; specific reactor applications. These proceedings were edited by various members of the RERTR Program

  5. Effect of Long Time Oxygen Exposure on Power Generation of Microbial Fuel Cell with Enriched Mixed Culture

    International Nuclear Information System (INIS)

    Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Mimi Hani Abu Bakar; Pasco, N.F.; Gooneratne, R.; Hong, K.B.; Hong, K.B.; Hong, K.B.

    2016-01-01

    In this study, we are interested in the effect of long time exposure of the microbial fuel cells (MFCs) to air on the electrochemical performance. Here, MFCs enriched using an effluent from a MFC operated for about eight months. After 30 days, the condition of these systems was reversed from aerobic to anaerobic and vice versa, and their effects were observed for 11 days. The results show that for anaerobic MFCs, power generation was reduced when the anodes were exposed to dissolved oxygen of 7.5 ppm. The long exposure of anodic biofilm to air led to poor electrochemical performance. The power generation recovered fully when air supply stopped entering the anode compartment with a reduction of internal resistance up to 53 %. The study was able to show that mixed facultative microorganism able to strive through the aerobic condition for about a month at 7.5 ppm oxygen or less. The anaerobic condition was able to turn these microbes into exoelectrogen, producing considerable power in relative to their aerobic state. (author)

  6. Oscillator measurements of the reactivity changes resulting from the irradiation of low enrichment particulate fuel in the Dragon reactor

    International Nuclear Information System (INIS)

    Burbidge, B.L.H.; Franklin, B.M.; Small, V.G.

    1983-01-01

    This Report describes a series of experiments carried out as a joint UKAEA/CEA/DRAGON project to determine the reactivity changes of low-enrichment particulate fuel samples following their irradiation in the DRAGON reactor to various levels up to approximately 60,000 MWD/Te. The samples are described, together with the method of measurement of reactivity in the Winfrith reactor HECTOR, which was an extension of the well-known Oscillator Technique to yield simultaneously overall reactivity changes and changes in macroscopic absorption cross-sections. Measurements were carried out at room temperature in two reactor spectra; a thermal spectrum and one typical of an HTR type reactor. The resultant reactivity changes are presented together with the relevant sample burn-ups as determined by #betta#-scanning methods and, in some cases, by rigorous chemical analysis. The results of supporting measurements are also reported, carried out to characterise the neutron spectra in which the oscillator measurements were made and to determine the neutron flux distributions in the HECTOR reactor. (author)

  7. Development of ISA procedure for uranium fuel fabrication and enrichment facilities: overview of ISA procedure and its application

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Yamada, Takashi; Takanashi, Mitsuhiro; Sasaki, Noriaki

    2013-01-01

    Integrated Safety Analysis (ISA) procedure for uranium fuel fabrication and enrichment facilities has been developed for aiming at applying risk-informed regulation to these uranium facilities. The development has carried out referring to the ISA (NUREG-1520) by the Nuclear Regulatory Commission (NRC). The paper presents purpose, principles and activities for the development of the ISA procedure, including Risk Level (RL) matrix and grading evaluation method of IROFS (Items Relied on for Safety), as well as general description and features of the procedure. Also described in the paper is current status in application of risk information from the ISA. Japanese four licensees of the uranium facilities have been conducting ISA for their representative processes using the developed procedure as their voluntary safety activities. They have been accumulating experiences and knowledge on the ISA procedure and risk information through the field activities. NISA (Nuclear and Industrial Safety Agency) and JNES (Japan Nuclear Energy Safety Organization) are studying how to use such risk information for the safety regulation of the uranium facilities, taking into account the licensees' experiences and knowledge. (authors)

  8. Smanjenje emisije izduvnih gasova upotrebom alternativnih goriva / Decrease emissions 'green house' gases using alternative fuels

    Directory of Open Access Journals (Sweden)

    Aleksandar Bukvić

    2007-01-01

    Full Text Available Ekološki problemi izazvani saobraćajem pripadaju "prvoj vrsti" zagađenja u urbanim sredinama. Emisije aerozagađenja štetnim materijama, poreklom iz motora SUS, visoke su, bez obzira na mogućnost smanjivanja. Prognoze o rezervama nafte uvek su nametale potrebu i intenzivirale istraživanja supstitucije mineralnih goriva. U svetu je sve aktuelniji trend istraživanja obnovljivih izvora energije. Zaštita životne sredine i smanjenje potrošnje energije glavni su pravci budućeg razvoja motora i vozila. Sa tog aspekta analizirane su emisije prirodnog gasa i biodizela RME u poređenju sa klasičnim gorivom. / Ecology problems of transport appertain "first class" pollution in urban environment. The forecast about the reserves of crude petroleum have always imposed the need for intensified researches on substitution of conventional mineral fuels. The trend of research of renewable sources is more and more actual in the world. Environmental preservation and the reduction of energy consumption are the main directions for future engine and vehicle developments. From that aspect, emissions produced by certain fuels have been analyzed and compared with natural gas and biodiesel RME.

  9. Utilization of Cow Milk Enriched with Conjugated Linoleic Acid to Decrease Body Weight, Cholesterol, Low Density Lipoprotein and to Increase Blood High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    FM Suhartati

    2012-05-01

    Full Text Available An experiment to investigate the ability of cow milk enriched with conjugated linoleic acid to decrease body weight, total cholesterol, blood Low Density Lipoprotein (LDL, and to increase blood High Density Lipoprotein (HDL has been conducted using in vivo experimental method. Research material consisted of 40 8-week-old white female rats (Rattus norvegicus of Wistar strain (as an animal model. The method used was an experimental method with a Completely Randomized Design. The treatments tested were P1 = high-fat ration containing 27.66% fat (HF, P2 = HF + 5 ml of milk/head/day, P3 = HF + 10 ml of milk/head/day, P4 = low-fat ration containing 5% fat (LF. Each treatment was repeated five times to make 20 experiment units, each consisted of two rats. Body weight gain, total cholesterol, LDL-cholesterol and HDL-cholesterol were observed. The data obtained were then analyzed using analysis of variance followed by orthogonal contrast test. Orthogonal polynomials tests was applied to evaluate the response variables. The results showed that 10 ml/head/day of cow milk was needed to decrease body weight of hypercholesterolemic rats and 5 ml/head/day of cow milk was needed to decrease total cholesterol, LDL-cholesterol and to increase blood HDL-cholesterol of hypercholesterolemic rats. Keywords: cow milk, conjugated linoleic acid, body weight gain, cholesterol.   Animal Production 14(2:70-76

  10. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  11. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  12. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  13. Uranium Enrichment, an overview

    International Nuclear Information System (INIS)

    Coates, J.H.

    1994-01-01

    This general presentation on uranium enrichment will be followed by lectures on more specific topics including descriptions of enrichment processes and assessments of the prevailing commercial and industrial situations. I shall therefore avoid as much as possible duplications with these other lectures, and rather dwell on: some theoretical aspects of enrichment in general, underlying the differences between statistical and selective processes, a review and comparison between enrichment processes, remarks of general order regarding applications, the proliferation potential of enrichment. It is noteworthy that enrichment: may occur twice in the LWR fuel cycle: first by enriching natural uranium, second by reenriching uranium recovered from reprocessing, must meet LWR requirements, and in particular higher assays required by high burn up fuel elements, bears on the structure of the entire front part of the fuel cycle, namely in the conversion/reconversion steps only involving UF 6 for the moment. (author). tabs., figs., 4 refs

  14. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  15. High-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells

    Science.gov (United States)

    Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup

    2018-02-01

    To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.

  16. Environmental enrichment decreases avoidance responses in the elevated T-maze and delta FosB immunoreactivity in anxiety-related brain regions.

    Science.gov (United States)

    Lopes, Danielle A; Souza, Thaissa M O; de Andrade, José S; Silva, Mariana F S; Antunes, Hanna K M; Sueur-Maluf, Luciana Le; Céspedes, Isabel C; Viana, Milena B

    2018-02-12

    Environmental enrichment (EE) is an animal management technique, which seems to improve adaptation to the experimental conditions of housing in laboratory animals. Previous studies have pointed to different beneficial effects of the procedure in the treatment of several disorders, including psychiatric conditions such as depression. The anxiolytic effects induced by EE, on the other hand, are not as clear. In fact, it has been proposed that EE acts as a mild stressor agent. To better understand the relationship of EE with anxiety-related responses, the present study exposed rats to one week of EE and subsequently tested these animals in the inhibitory avoidance and escape tasks of the elevated T-maze (ETM). In clinical terms, these responses have been respectively related to generalized anxiety and panic disorder. All animals were tested in an open field, immediately after the ETM, for locomotor activity assessment. Additionally, analysis of delta FosB protein immunoreactivity (FosB-ir) was used to map areas activated by EE exposure and plasma corticosterone measurements were performed. The results obtained demonstrate that exposure to EE for one week impaired avoidance responses, an anxiolytic-like effect, without altering escape reactions. Also, in animals submitted to the avoidance task EE exposure decreased FosB-ir in the cingulate cortex, dorsolateral and intermediate lateral septum, hippocampus (cornus of Ammon), anterior and dorsomedial hypothalamus, medial and basolateral amygdala and ventral region of the dorsal raphe nucleus. Although no behavioral differences were observed in animals submitted to the escape task, EE exposure also decreased FosB-ir in the cingulate cortex, hippocampus (dentate gyrus), lateral amygdala, paraventricular, anterior and ventromedial hypothalamus, dorsomedial periaqueductal gray and ventral and dorsal region of the dorsal raphe. No changes in corticosterone levels, however, were observed. These results contribute to a better

  17. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  18. Feeding the nuclear fuel cycle with a long term view; AREVA's front-end business units, uranium mining, UF6 conversion and isotopic enrichment

    International Nuclear Information System (INIS)

    Capus, G.A.P.; Autegert, R.

    2005-01-01

    As a leading provider of technological solutions for nuclear power generation and electricity transmission, the AREVA group has the unique capability of offering a fully integrated fuel supply, when requested by its customers. At the core of the AREVA group, COGEMA Front End Division is an essential part of the overall fuel supply chain. Composed of three Business Units and gathering several subsidiaries and joint 'ventures, this division enjoys several leading positions as shown by its market shares and historical production records. Current Uranium market evolutions put the natural uranium supply under focus. The uranium conversion segment also recently revealed some concerning evolutions. And no doubt, the market pressure will soon be directed also at the enrichment segment. Looking towards the long term, AREVA strongly believes that a nuclear power renewal is needed, especially to help limiting green house effect gas release. Therefore, to address future supplies needed to fuel the existing fleet of nuclear power plants, but also new ones, the AREVA group is planning very significant investments to build new facilities in all the three front-end market segments. As far as uranium mining is concerned, these new mines will be based upon uranium reserves of outstanding quality. As for uranium conversion and enrichment, two large projects will be based on the most advanced technologies. This paper is aimed at recalling COGEMA Front End Division experience, the current status of its plants and operating entities and will provide a detailed overview of its major projects. (authors)

  19. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  20. International interest in the BONAPARTE measurement bench. Post-irradiation examination of lower-enriched fuel plates

    International Nuclear Information System (INIS)

    2014-01-01

    The Belgian Nuclear Research Center SCK-CEN has developed a measurement bench (BONAPARTE) for the non-destructive analysis on fuel plate and rod type fuel elements. BONAPARTE is a modular device that can be employed for many purposes. The article discusses the employment of the BONAPARTE device for the accurate full post-irradiation mapping of fuel plate swelling with degree of precision of just a few micrometers.

  1. Preoperative oral polymeric diet enriched with transforming growth factor-beta 2 (Modulen) could decrease postoperative morbidity after surgery for complicated ileocolonic Crohn's disease.

    Science.gov (United States)

    Beaupel, Nathan; Brouquet, Antoine; Abdalla, Solafah; Carbonnel, Franck; Penna, Christophe; Benoist, Stéphane

    2017-01-01

    Exclusive polymeric diet enriched with transforming growth factor-beta 2 (ANS-TGF-β2) has been used for remission induction and maintenance in pediatric Crohn's disease (CD). Its use in the preoperative setting has never been evaluated. The aim of this study was to evaluate preoperative ANS-TGF-β2 to decrease postoperative complications after surgery for complicated ileocolonic CD. From 2011 to 2015, data of all consecutive patients who underwent elective surgery for ileocolonic CD were collected prospectively. Preoperative, exclusive ANS-TGF-β2 was administered in high-risk patients with complicated CD. Complicated CD was defined by the presence of obstructive symptoms, and/or steroid treatment, and/or preoperative weight loss >10% and/or perforating CD. Outcomes of high-risk patients receiving preoperative ANS-TGF-β2 were compared to those of low-risk patients with no complicated CD who underwent upfront surgery. Fifty-six patients underwent surgery for ileocolonic CD. Among them, 35 high-risk patients received preoperative ANS-TGF-β2 and 21 low-risk patients underwent upfront surgery. Preoperative full-dose ANS-TGF-β2 was feasible in 34/35 high-risk patients. Discontinuation of steroids during preoperative ANS-TGF-β2 could be achieved in 10/16 patients (62.5%). Postoperative complications rates were 8/35 (23.8%) and 5/21 (22.9%) in high-risk and low-risk patients, respectively (p = 1). Temporary ileocolostomy rates in high-risk patients and in low-risk patients were 4/35 (11%) and 0/21, respectively (p = 0.286) Conclusion: Preoperative ANS-TGF-β2 is feasible in most high-risk patients with complicated ileocolonic CD and could limit the deleterious effects of risk factors of postoperative morbidity. These results need to be confirmed in a large randomized controlled trial.

  2. Operational experience with the first eighteen slightly enriched uranium fuel assemblies in the Atucha-1 nuclear power plant

    International Nuclear Information System (INIS)

    Higa, M.; Perez, R.; Pineyro, J.; Sidelnik, J.; Fink, J.; Casario, J.A.; Alvarez, L.

    1997-01-01

    Atucha I is a 357 Mwe nuclear station, moderated and cooled with heavy water, pressure vessel type of German design, located in Argentina. Fuel assemblies (FA) are 36 active natural UO2 rod clusters, 5.3 meters long and fuel is on power. Average FA exit burnup is 6 MWd/kg U. The reactor core contains 252 FA. To reduce the fuel costs about 6 MU$S/yr a program of utilization of SEU (0.85 %w U235) fuel was started at the beginning of 1995 with the introduction of 12 FA in the first step. The exit burnup of FA is approx. 10 MWd/kgU. It is planned to increase gradually the number of them up to having a full core with SEU fuel with an expected FA average exit burnup of 11 MWd/kgU. The SEU program has also the advantage of a strong reduction of spent fuel volume, and a moderate reduction of fuelling machine use. This paper presents the satisfactory operation experience with the introduction of the first 12 SEU fuel assemblies and the planned activities for the future. The fresh SEU fuel assemblies were introduced in six fuel channels located in an intermediate zone located 136 cm from the center of the reactor and selected because they have higher margins to the channel powers limits to accommodate the initial 15 to 20 % relative channel power increase. To verify the design and fuel management calculations, comparisons have been made of the calculated and measured values of the variation of channel ΔT, regulating rods insertion and flux reading in in-core detectors near to the refueled channel. The agreement was good and in most of the cases within the measurement errors. Cell calculations were made with WIMS-D4, and reactor calculations with PUMA. a fuel management 3D diffusion program developed in Argentina. With SEU fuel with a greater burnup in the central high power core region, new operating procedures were developed to prevent PCI failures in fuel power ramps that arise during operation. Some fuel rod and structural assembly design changes were introduced on the

  3. Construction of the irradiation capsule and irradiation of the natural uranium fuel for verification of the procedure for irradiation of enriched fuel, Vol. II

    International Nuclear Information System (INIS)

    Anastasijevic, P.; Pavlovic, A.

    1967-11-01

    Capsule for irradiation of the natural uranium fuel described in this report was constructed according o the data and results of thermal calculations which are part of this report. Reconstructed reactor channel from the VISA project was used for constructing the capsule. The purpose for constructing this capsule was irradiation of sintered UO 2 fuel element in the RA reactor core [sr

  4. Planning, Preparation, and Transport of the High-Enriched Uranium Spent Nuclear Fuel from the Czech Republic to the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Tyacke; I. Bolshinsky; Frantisek Svitak

    2007-10-01

    The United States, Russian Federation, and the International Atomic Energy Agency have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program, which is part of the Global Threat Reduction Initiative. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. In February 2003, the RRRFR Program began discussions with the Nuclear Research Institute (NRI) in Rež, Czech Republic, about returning their HEU spent nuclear fuel to the Russian Federation for reprocessing. In March 2005, the U.S. Department of Energy signed a contract with NRI to perform all activities needed for transporting their HEU spent nuclear fuel to Russia. After 2 years of intense planning, preparations, and coordination at NRI and with three other countries, numerous organizations and agencies, and a Russian facility, this shipment is scheduled for completion before the end of 2007. This paper will provide a summary of activities completed for making this international shipment. This paper contains an introduction and background of the RRRFR Program and the NRI shipment project. It summarizes activities completed in preparation for the shipment, including facility preparations at NRI in Rež and FSUE “Mayak” in Ozyorsk, Russia; a new transportation cask system; regulatory approvals; transportation planning and preparation in the Czech Republic, Slovakia, Ukraine, and the Russian Federation though completion of the Unified Project and Special Ecological Programs. The paper also describes fuel loading and cask preparations at NRI and final preparations/approvals for transporting the shipment across the Czech Republic, Slovakia, Ukraine, and the Russian Federation to FSUE Mayak where the HEU spent nuclear fuel will be processed, the uranium will be downblended and made into low-enriched uranium fuel for commercial reactor

  5. The fuel cycle

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the fuel cycle is presented. The following fuel cycle steps are described: (1) Front of the fuel cycle (Mining and milling; Treatment; Refining, conversion and enrichment; Fuel fabrication); (2) Use of fuel in nuclear reactors; (3) Back end of the fuel cycle (Interim storage of spent fuel; spent fuel reprocessing; Final disposal of spent fuel)

  6. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  7. Establishing a quality assurance program for in-core fuel management of the Dalat Nuclear Research Reactor using low enriched fuel

    International Nuclear Information System (INIS)

    Huynh Ton Nghiem; Le Vinh Vinh; Nguyen Kien Cuong; Luong Ba Vien; Pham Quang Huy; Tran Quoc Duong

    2015-01-01

    Quality assurance program for calculating of in-core fuel management of research reactor plays very important role in safety operation and effective utilization. The main objective of the program is to ensure the safe, reliable and optimum use of nuclear fuel and to meet the reactor utilization, which remains reactor operation within the limits imposed by the design safety considerations and the operational limits and conditions (OLCs) on the basis of safety analysis. The management of reactor core and nuclear fuel must be organized in a coherent way and comply with safety requirements. After successfully converting from HEU to LEU fuel for Dalat Research Reactor, a work to be in place is to study and implement the management of reactor core and nuclear fuel. This not only helps to ensure safety operation and efficient utilization but also contributes to build the safety culture and to be valuable experience for other nuclear projects. In addition, the application of the quality assurance program for in-core fuel management will contribute to avoid subjective mistakes, to clearly define responsibilities and to ensure legacy of expertise, which is also an urgent requirement. The selected computer code systems, data libraries and computation models must be fully met the requirements for analyzing status and characteristics of reactor core as well as the requirements for selecting, verifying and evaluating according to the regulations of the IAEA. (author)

  8. A study of a zone approach to IAEA [International Atomic Energy Agency] safeguards: The low-enriched-uranium zone of a light-water-reactor fuel cycle

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-06-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the conclusions regarding the effectiveness of safeguards for the individual facilities within a state. In this study it was convenient to define three zones in a state with a closed light-water-reactor nuclear fuel cycle. Each zone contains those facilities or parts thereof which use or process nuclear materials of the same safeguards significance: low-enriched uranium, radioactive spent fuel, or recovered plutonium. The possibility that each zone might be treated as an extended material balance area for safeguards purposes is under investigation. The approach includes defining the relevant features of the facilities in the three zones and listing the safeguards activities which are now practiced. This study has focussed on the fresh-fuel zone, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. There are a number of possible safeguards approaches which fall between the two extremes. The intention is to develop a rational approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the approach involving the zone as a material balance area, and for some reasonable intermediate safeguards approaches

  9. Non-fertile fuels development for plutonium and high-enriched uranium dispositioning in water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C.S.

    1994-09-01

    As a result of dismantling the bomb, there is about 100 MT of excess weapons grade plutonium in the United States and about 150 MT in the Commonwealth of Independent States. In addition, there is another 1000 MT of plutonium in commercial spent fuel that may be used as degraded weapons material. This report discusses one means to disposition weapons grade plutonium is by irradiating the fuel in light water reactors (LWRs) using a non-fertile fuel based on plutonium dispersed in an oxide mixture of zirconia stabilized with calcia or yttria as a solid solution. Plutonium dispersed in a zirconia matrix offers the potential to achieve very high burnups while maintaining mechanical integrity.

  10. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  11. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1995-01-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ''mailbox''. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment

  12. Promotion of uranium enrichment business

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1981-01-01

    The Committee on Nuclear Power has studied on the basic nuclear power policy, establishing its five subcommittees, entrusted by the Ministry of Nternational Trade and Industry. The results of examination by the subcommittee on uranium enrichment business are given along with a report in this connection by the Committee. In order to establish the nuclear fuel cycle, the aspect of uranium enrichment is essential. The uranium enrichment by centrifugal process has proceeded steadily in Power Reactor and Nuclear Fuel Development Corporation. The following matters are described: the need for domestic uranium enrichment, the outlook for overseas enrichment services and the schedule for establishing domestic enrichment business, the current state of technology development, the position of the prototype enrichment plant, the course to be taken to establish enrichment business the main organization operating the prototype and commercial plants, the system of supplying centrifuges, the domestic conversion of natural uranium the subsidies for uranium enrichment business. (J.P.N.)

  13. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Sean R. Morrell

    2012-09-01

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace

  14. Fuel consumption organization at the Kola NPP

    International Nuclear Information System (INIS)

    Matveev, A.A.; Ignatenko, E.I.; Volkov, A.P.; Trofimov, B.A.

    1981-01-01

    Problems of using NPPs in the power systems including hydroelectric power plants and NPPs are considered on the example of the Kola power system. The methods of the WWER-440 reactor fuel loading formation, reactor power forcing, optimization of volumes and time of the NPP main equipment planned maintenance are discussed. It is concluded that the optimal methods for the WWER-440 reactor fuel loading formation are the following: reactor make-up with the lesser number of fuel assemblies with maximum designed enrichment; for the case of decreased loading energy capacity displacement of make-up fuel with 2.4% enrichment by the fuel with 3.6% enrichment when preserving the designed number of make-up fuel assemblies [ru

  15. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  16. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Bodey, Isaac T.; Curtis, Franklin G.; Arimilli, Rao V.; Ekici, Kivanc; Freels, James D.

    2015-01-01

    The findings presented in this report are results of a five year effort led by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor) and have

  17. Investigative studies on the effects of cadmium rabbits on high enriched uranium-fueled and low enriched uranium-fueled cores of Ghana Research Reactor-1 using MCNP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Boffie, J., E-mail: jboffie@yahoo.com [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); Nyarko, B.J.B.; Odoi, H.C.; Tuffour-Achampong, K.; Abrefah, R.G. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE 1, Atomic Energy, Accra (Ghana); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana)

    2013-12-15

    Highlights: • The operating parameters for both the HEU core and proposed LEU core were similar. • The length of the Cd in the capsules must be increased for its use in the LEU core. • Cd rabbits can emergently be used to shut down MNSRs. - Abstract: Miniature Neutron Source Reactors (MNSRs) are noted to be among highly safe research reactors. However, because of its use of one control rod for reactivity control and shutdown purposes, alternative methods of shutting it down are important. The Ghana MNSR uses four cadmium rabbits of approximate dimensions 6.5 cm × 5.0 cm × 0.1 cm and mass of 9.48 g each to emergently shut down the reactor. The Monte Carlo N-Particle code; version 5, (MCNP5) was used to design the high enriched uranium (HEU) and low enriched uranium (LEU) cores of the MNSR with four cadmium rabbits inserted in four inner irradiation sites of each core. The operating parameters and shutdown parameters for both cores with the central control rod (CCR) either fully withdrawn or fully inserted had similar results with the HEU core having slightly better results in terms of safety. However, the results show that the four inserted cadmium rabbits make the HEU core subcritical whiles in the LEU core, it still remains critical (k{sub eff} = 1.00005 ± 0.00007). The length of the cadmium material in each cadmium rabbit must therefore be increased by at least 0.5 cm in order to attain subcriticality (k{sub eff} = 0.99989 ± 0.00006) and shutdown margin of 0.11 mk when inserted in the LEU core.

  18. Investigations of uraniumsilicide-based dispersion fuels for the use of low enrichment uranium (LEU) in research and test reactors

    International Nuclear Information System (INIS)

    Nazare, S.

    1982-07-01

    The work presents at the outset, a review of the preparation and properties of uranium silicides (U 3 Si and U 3 Si 2 ) in so far as these are relevant for their use as dispersants in research reactor fuels. The experimental work deals with the preparation and powder metallurgical processing of Al-clad miniature fuel element plates with U 3 Si- und U 3 Si-Al up to U-densities of 6.0 g U/cm 3 . The compatibility of these silicides with the Al-matrix under equilibrium conditions (873 K) and the influence of the reaction on the dimensional stability of the miniplates is described and discussed. (orig.) [de

  19. Advances of the low enriched uranium utilization project in CNA-1 during 1998 and 1999

    International Nuclear Information System (INIS)

    Fink, Jose M.; Higa, Manabu; Sidelnik, Jorge I.; Perez, Ramon A.; Casario, Jose A.; Alvarez, Luis A.

    1999-01-01

    In this work, a general description of advances of the Enriched Fuel Introduction Project in CNA-1 and the main tasks performed during 1998 and 1999 are presented. The program is being satisfactorily developed and during that period the number of slightly enriched fuels (LEU) introduced had significantly increased in relation to previous years. At present, there are 181 LEU fuel elements in the core and 125 LEU fuel elements have been extracted. The number of full power burnt fuel elements per day decreased from 1.31 FE/dpp in 1994 (when all fuel was natural) to 0.92 in 1998 and 0.83 in 1999, reaching the predicted value for homogeneous LEU core of 0.7. The cost of burnt fuel in 1998 was 25% lower that if only natural fuel would have been used. (author)

  20. Distribution of equilibrium burnup for an homogeneous core with fuel elements of slightly enriched uranium (0.85% U-235) at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Perez, R.A.; Salom, G.F.

    1987-01-01

    At Atucha I, the present fuel management with natural uranium comprises three burnup areas and one irradiation path, sometimes performing four steps in the reactor core, according to the requirements. The discharge burnup is 6.0 Mw d/kg U for a waste reactivity of 6.5 m k and a heavy water purity of 99.75%. This is a preliminary study to obtain the distribution of equilibrium burnup of an homogeneous core with slightly enriched uranium (0.85% by weight U-235), using the time-averaged method implemented in the code PUMA and a representative model of one third of core and fixed rod position. It was found a strategy of three areas and two paths that agrees with the present limits of channel power and specific power in fuel rod. The discharge burnup obtained is 11.6 Mw d/kg U. This strategy is calculated with the same method and a full core representation model is used to verify the obtained results. (Author)

  1. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  2. Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds.

    Science.gov (United States)

    Wu, Weihua; Liu, Fang; Davis, Ryan W

    2018-06-01

    Recent studies have revealed that caryophyllene and its stereoisomers not only exhibit multiple biological activities but also have desired properties as renewable candidates for ground transportation and jet fuel applications. This study presents the first significant production of caryophyllene and caryolan-1-ol by an engineered E. coli with heterologous expression of mevalonate pathway genes with a caryophyllene synthase and a caryolan-1-ol synthase. By optimizing metabolic flux and fermentation parameters, the engineered strains yielded 449 mg/L of total terpene, including 406 mg/L sesquiterpene with 100 mg/L caryophyllene and 10 mg/L caryolan-1-ol. Furthermore, a marine microalgae hydrolysate was used as the sole carbon source for the production of caryophyllene and other terpene compounds. Under the optimal fermentation conditions, 360 mg/L of total terpene, 322 mg/L of sesquiterpene, and 75 mg/L caryophyllene were obtained from the pretreated algae hydrolysates. The highest yields achieved on the biomass basis were 48 mg total terpene/g algae and 10 mg caryophyllene/g algae and the caryophyllene yield is approximately ten times higher than that from plant tissues by solvent extraction. The study provides a sustainable alternative for production of caryophyllene and its alcohol from microalgae biomass as potential candidates for next generation aviation fuels.

  3. Semisolid meal enriched in oat bran decreases plasma glucose and insulin levels, but does not change gastrointestinal peptide responses or short-term appetite in healthy subjects

    DEFF Research Database (Denmark)

    Juvonen, Kristiina R.; Salmenkallio-Marttila, Marjatta; Lyly, Marika

    2011-01-01

    ). Plasma glucose (P = 0.001) and serum insulin (P beta-glucan. In contrast, postprandial ghrelin or PYY responses or appetite sensations did not differ among the meals. CONCLUSION: Oat beta-glucan decreased postprandial plasma...

  4. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Science.gov (United States)

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-07

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups

    Directory of Open Access Journals (Sweden)

    Jinfan Yang

    2018-01-01

    Full Text Available The aim of this study was to develop an effective carbonaceous solid acid for synthesizing green fuel additive through esterification of lignocellulose-derived levulinic acid (LA and n-butanol. Two different sulfonated carbons were prepared from glucose-derived amorphous carbon (GC400 and commercial active carbon (AC400. They were contrastively studied by a series of characterizations (N2 adsorption, X-ray diffraction, elemental analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and NH3 temperature programmed desorption. The results indicated that GC400 possessed stronger acidity and higher –SO3H density than AC400, and the amorphous structure qualified GC400 for good swelling capacity in the reaction solution. Assessment experiments showed that GC400 displayed remarkably higher catalytic efficiency than AC400 and other typical solid acids (HZSM-5, Hβ, Amberlyst-15 and Nafion-212 resin. Up to 90.5% conversion of LA and 100% selectivity of n-butyl levulinate could be obtained on GC400 under the optimal reaction conditions. The sulfonated carbon retained 92% of its original catalytic activity even after five cycles.

  6. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  7. Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice.

    Directory of Open Access Journals (Sweden)

    Kevork Hagopian

    Full Text Available The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6:n-3 ratio on liver mitochondrial H(2O(2 production and electron transport chain (ETC activity. There was an increase in n-3 fatty acids and a decrease in the n-6:n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05 in the activity of ETC complex I and increases (p<0.05 in the activities of complexes III and IV. Mitochondrial H(2O(2 production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05 in the fat-1 mice. This change in H(2O(2 production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I.

  8. Uranium enrichment (a strategy analysis overview)

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-08-01

    An analysis of available information on enrichment technology, separative work supply and demand, and SWU cost is presented. Estimates of present and future enrichment costs are provided for use in strategy analyses of alternate nuclear fuel cycles and systems. (auth)

  9. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls.

    Science.gov (United States)

    Tan, Hwei-Ting; Corbin, Kendall R; Fincher, Geoffrey B

    2016-01-01

    Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy

  10. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls

    Directory of Open Access Journals (Sweden)

    Hwei-Ting Tan

    2016-12-01

    Full Text Available Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tonnes. Lignin is synthesised in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with

  11. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  12. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  13. Food combination based on a pre-hispanic Mexican diet decreases metabolic and cognitive abnormalities and gut microbiota dysbiosis caused by a sucrose-enriched high-fat diet in rats.

    Science.gov (United States)

    Avila-Nava, Azalia; Noriega, Lilia G; Tovar, Armando R; Granados, Omar; Perez-Cruz, Claudia; Pedraza-Chaverri, José; Torres, Nimbe

    2017-01-01

    There is few information about the possible health effects of a food combination based on a pre-hispanic Mexican diet (PMD). This diet rich in fiber, polyphenols, a healthy ratio of omega 6/omega 3 fatty acids, and vegetable protein could improve carbohydrate and lipid metabolism, gut microbiota and cognitive function. We examined the effect of a PMD in a sucrose enriched high-fat model. The PMD contains corn, beans, tomato, nopal, chia and pumpkin seeds in dehydrated form. Following induction of obesity, rats were fed PMD. PMD consumption decreased glucose intolerance, body weight gain, serum and liver triglycerides and leptin. In addition, PMD decreased the size of the adipocytes, and increased the protein abundance of UCP-1, PPAR-α, PGC1-α and Tbx-1 in white adipose tissue. Finally, the PMD significant decreased hepatic levels of ROS, oxidized proteins and GSSG/GSH ratio and an increase in the relative abundance of Bifidobacteria and the improvement of cognitive function. Consumption of a PMD decreased the glucose intolerance and the biochemical abnormalities caused by the obesity by increasing the abundance of proteins involved in fatty acid oxidation, decreasing the oxidative stress and modifying the gut microbiota. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a management protocol for the reduction of fuel consumption and decreasing of the emanations of CO2 as contaminant of environment in air service companies

    International Nuclear Information System (INIS)

    Montoya Maroto, Manuel

    2012-01-01

    A management protocol is developed for air services companies to improve the eco-efficiency of its processes. The application of operational procedures have allowed the reduction of fuel consumption and decreased the emanations of CO 2 into the environment. The methodology of the research has consisted in quantitative and qualitative analysis of the variables and processes that have influenced significantly in the operation of airline fleet. An integral analysis is realized of the procedures of management and use of resources in the cockpits of the aircraft (Cockpit Resource Management) and navigation based in performance (NBP). The results of analysis are used to elaborate a protocol to minimize the fuel consumption and energy through the application of practices and operational procedures more efficient and safe. The environmental burdens associated with the services that are provided in the airline industry are minimized. The application of methods of improvement and procedures that are updated continuously have achieved the sustainability of the protocol. The operational procedures are applied to decrease the fuel consumption. Sensitization programs are developed for the utilization of more efficient operational practices and friendly with the environment. An incentive program is implemented to optimize the fuel consumption safely by pilots. A new procedure of flight scheduling is modified based on performance of the pilots and fleet degradation factors, assigning the pilots who have had higher consumption to airplanes with lower degradation, and the pilots who have had lower consumption, to airplanes with higher degradation. A self-liquidating incentive plan is developed based on the savings achieved in the operation in high-performance, could reinforce the change of attitude necessary for the group of pilots can support the implementation of the protocol [es

  15. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  16. Communication dated 30 May 2007 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA concerning enrichment bonds - A voluntary scheme for reliable access to nuclear fuel

    International Nuclear Information System (INIS)

    2007-01-01

    The Secretariat has received a letter dated 30 May 2007 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the IAEA attaching a UK Non-paper entitled 'Food for Thought: Enrichment Bonds - A Voluntary Scheme for Reliable Access to Nuclear Fuel'. As requested in that letter, the letter and the attachment is now being circulated for the information of all Member States

  17. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  18. Optimization of enrichment zones that maximize the regeneration profits in a fast reactor

    International Nuclear Information System (INIS)

    Jachic, J.

    1983-01-01

    Using a simplified model of Super Phenix reactor, the admissible limits of internal and external enrichment core without control rods, that assure an auto-stability related to fuel Doppler coefficient were determined. A Linear Programming System was developed to solve this problem, using the SIMPLEX method. The solution showed that the regeneration profits could be increased at least in 14% if the internal enrichment core decrease 0.97 and the external 0.3%. (E.G.) [pt

  19. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  20. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  1. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  2. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  3. MOX fuel design and development consideration

    International Nuclear Information System (INIS)

    Yamate, K.; Abeta, S.; Suzuki, K.; Doi, S.

    1997-01-01

    Pu thermal utilization in Japan will be realized in several plants in late 1990's, and will be expanded gradually. For this target, adequacy of methods for MOX fuel design, nuclear design, and safety analysis has been evaluated by the committee of competent authorities organized by government in advance of the licensing application. There is no big difference of physical properties and irradiation behaviors between MOX fuel and UO 2 fuel, because Pu content of MOX fuel for Pu thermal utilization is low. The fuel design code for UO 2 fuel will be applied with some modifications, taking into account of characteristic of MOX fuel. For nuclear design, new code system is to be applied to treat the heterogeneity in MOX fuel assembly and the neutron spectrum interaction with UO 2 fuel more accurately. For 1/3 MOX fueled core in three loop plant, it was confirmed that the fuel rod mechanical design could meet the design criteria, with slight reduction of initial back-fitting pressure, and with appropriate fuel loading patterns in the core to match power with UO 2 fuel. With the increase of MOX fuel fraction in the core, control rod worth and boron worth decrease. Compensating the decrease by adding control rod and utilizing enriched B-10 in safety injection system, 100% MOX fueled core could be possible. Up to 1/3 MOX fueled core in three loop plant, no such modifications of the plant is necessary. The fraction of MOX fuel in PWR is designed to less than 1/3 in the present program. In order to improve Pu thermal utilization in future, various R and D program on fuel design and nuclear design are being performed, such as the irradiation program of MOX fuel manufactured through new process to the extent of high burnup. (author). 8 refs, 9 figs, 2 tabs

  4. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  5. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.; Slater, J.B.

    1986-05-01

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  6. Technical and economic aspects of new gaseous diffusion uranium enrichment capacity

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; O'Donnell, A.J.

    1977-01-01

    Work is well advanced on design and construction of the next major increment of U.S. uranium enrichment capacity. The plant will use the gaseous diffusion process to provide the required capacity and reliability at a competitive enrichment services cost. Gaseous diffusion technology is the base against which other processes are compared in order to assess their commercial viability. While it has generally been described as a mature technology with limited future development potential, work on design of the new U.S. plant has resulted in major improvement in plant design with corresponding decreases in plant capacity and operating costs. The paper describes major technological advances incorporated into the new plant design and their impact on enrichment costs. These include the effects of: - advanced barrier technology; - tandem compressor drive systems; - optimization of number of equipment sizes; - single level plant design; - development of rapid power level change capability; - electrical system simplification; - plant arrangement and layout. Resulting capital costs and projected enrichment costs are summarized. Enrichment costs are placed in the context of total nuclear fuel cycle costs. Trade-offs between uranium feed material quantities and enrichment plant tails assays are described, and optimization of this aspect of the nuclear fuel cycle is discussed. The effect on enrichment plant characteristics is described. Flexibility and capability of the new U.S. enrichment plant to meet these changing optimization conditions are described

  7. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  9. Pressurized water reactor thorium fuel cycle studies

    International Nuclear Information System (INIS)

    Aktogu, Ali.

    1981-06-01

    The use of a thorium fuel cycle in a PWR is studied. The thorium has no fissile isotope and a fissile nuclide must be added to the thorium fuel. This nuclide can be uranium 235, plutonium 239 or uranium 233. In this work we have kept the fuel assembly geometry and the control rod system of an usual PWR. Cell calculations showed that the moderation ratio of an usual PWR can be used with uranium 235 and plutonium 239 fuels. But this moderation ratio must be decreased and accordingly the pumping power must be increased in the case of a uranium 233 fuel. The three fuels can be controlled with soluble boron. The power distribution inside an assembly agrees with the safety rules and the worth of the control rods is sufficient. To be interesting the thorium fuels must be recycled. Because the activity and the residual power are higher for a thorium fuel than for a uranium fuel the shielding of the shipping casks and storage pools must be increased. The Uranium 235-Thorium fuel is the best even if it needs expensive enrichment work. With this type of fuel more natural uranium is saved. The thorium fuel would become very interesting if we observe again in the future an increase of the uranium cost [fr

  10. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  11. Enrichment reduction for research reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1982-01-01

    The worldwide activities on enrichment reduction for research reactors are reviewed and the national and international programs are described. Especially the following points are discussed: Benchmark calculations, reactor safety, fuel element development, irradiation tests, post irradiation examinations, full core demonstrations, activities of the GKSS and economical questions. (orig.) [de

  12. Availability of enrichment services

    International Nuclear Information System (INIS)

    Svenke, E.

    1977-01-01

    The report summarizes major uncertainties which are likely to influence future demands for uranium isotopic enrichment. Since for the next decade the development of nuclear power will be largely concerned with the increment in demand the timely need for enrichment capacity will be particularly sensitive to assumptions about growth rates. Existing worldwide capacity together with capacities under construction will be sufficient well into the 1980's. However, long decision and construction leadtime, uncertainty as to future demand as well as other factors, specifically high capital need, all of which entail financial risks, create hindrances to a timely development of increment. The adequacy of current technology is well demonstrated in plant operation and new technology is under way. Technology is, however, not freely available on a purely commercial basis. Commercial willingness, which anticipates a limited degree of financial risk, is requesting both long term back-up from the utilities that would parallel their firm decisions on the acquisition of nuclear power units, and a protective government umbrella. This situation depends on the symbiotic relationship that exists between the nuclear power generating organizations, the enrichment undertakings and the governments involved. The report accordingly stresses the need for a more cooperative approach and this, moreover, at the multinational level. There is otherwise a risk that proper resources and financing means will not be allocated to the enrichment sector. Export limitations that request the highest degree of industrial processing of nuclear fuel, i.e. the compulsory enrichment of natural uranium, do not serve the interests of overall industrial efficiency

  13. Reprocessing RERTR silicide fuels

    International Nuclear Information System (INIS)

    Rodrigues, G.C.; Gouge, A.P.

    1983-05-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High-density, low-enrichment, aluminum-clad uranium silicide fuels may be substituted for the highly enriched aluminum-clad alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR silicide fuels at Savannah River Plant. Results of dissolution and feed preparation tests and solvent extraction processing demonstrations with both unirradiated and irradiated uranium silicide fuels are presented

  14. Criticality analysis in uranium enrichment plant

    International Nuclear Information System (INIS)

    Okamoto, Tsuyoshi; Kiyose, Ryohei

    1977-01-01

    In a large scale uranium enrichment plant, uranium inventory in cascade rooms is not very large in quantity, but the facilities dealing with the largest quantity of uranium in that process are the UF 6 gas supply system and the blending system for controlling the product concentration. When UF 6 spills out of these systems, the enriched uranium is accumulated, and the danger of criticality accident is feared. If a NaF trap is placed at the forestage of waste gas treatment system, plenty of UF 6 and HF are adsorbed together in the NaF trap. Thus, here is the necessity of checking the safety against criticality. Various assumptions were made to perform the computation surveying the criticality of the system composed of UF 6 and HF adsorbed on NaF traps with WIMS code (transport analysis). The minimum critical radius resulted in about 53 cm in case of 3.5% enriched fuel for light water reactors. The optimum volume ratio of fissile material in the double salt UF 6 .2NaF and NaF.HF is about 40 vol. %. While, criticality survey computation was also made for the annular NaF trap having the central cooling tube, and it was found that the effect of cooling tube radius did not decrease the multiplication factor up to the cooling tube radius of about 5 cm. (Wakatsuki, Y.)

  15. Uranium enrichment: a vital new industry

    International Nuclear Information System (INIS)

    1975-10-01

    The energy problem facing the nation and the need for nuclear power are pointed out. Uranium enrichment and the demand for it are discussed. Reasons for, and obstacles to, private enrichment are outlined. The President's plan (including the Nuclear Fuel Assurance Act) is summarized

  16. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    , Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO 2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO 2 and MOX ceramics (Chromium oxide-doped UO 2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear

  17. Evaluation of Annealing Treatments for Producing Si-Rich Fuel/Matrix Interaction Layers in Low-Enriched U-Mo Dispersion Fuel Plates Rolled at a Low Temperature

    International Nuclear Information System (INIS)

    Keiser, Dennis D. Jr.; Jue, Jan-Fong; Woolstenhulme, Nicolas E.

    2010-01-01

    During fabrication of U-7Mo dispersion fuels, exposure to relatively high temperatures affects the final microstructure of a fuel plate before it is inserted into a reactor. One impact of this high temperature exposure is a chemical interaction that can occur between dissimilar materials. For U-7Mo dispersion fuels, the U-7Mo particles will interact to some extent with the Al or Al alloy matrix to produce interaction products. It has been observed that the final irradiation behavior of a fuel plate can depend on the amount of interaction that occurs at the U-7Mo/matrix interface during fabrication, along with the type of phases that develop at this interface. For the case where a U-7Mo dispersion fuel has a Si-containing Al alloy matrix and is rolled at around 500 C, a Si-rich interaction product has been observed to form that can potentially have a positive impact on fuel performance during irradiation. This interaction product can exhibit stable irradiation behavior and it can act as a diffusion barrier to additional U-Mo/matrix interaction during irradiation. However, for U-7Mo dispersion fuels with softer claddings that are rolled at lower temperatures (e.g., near 425 C), a significant interaction layer has not been observed to form. As a result, the bulk of any interaction layer that develops in these fuels happens during irradiation, and the layer that forms may not exhibit as stable a behavior as one that is formed during fabrication. Therefore, it may be beneficial to add a heat treatment step during the fabrication of dispersion fuel plates with softer cladding alloys that will result in the formation of a uniform, Si-rich interaction layer that is a few microns thick around the U-Mo fuel particles. This type of layer would have characteristics like the one that has been observed in dispersion fuel plates with AA6061 cladding that are fabricated at 500 C, which may exhibit increased stability during irradiation. This report discusses the result of

  18. Evaluation of Annealing Treatments for Producing Si-Rich Fuel/Matrix Interaction Layers in Low-Enriched U-Mo Dispersion Fuel Plates Rolled at a Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Nicolas E. Woolstenhulme

    2010-06-01

    During fabrication of U-7Mo dispersion fuels, exposure to relatively high temperatures affects the final microstructure of a fuel plate before it is inserted into a reactor. One impact of this high temperature exposure is a chemical interaction that can occur between dissimilar materials. For U-7Mo dispersion fuels, the U-7Mo particles will interact to some extent with the Al or Al alloy matrix to produce interaction products. It has been observed that the final irradiation behavior of a fuel plate can depend on the amount of interaction that occurs at the U-7Mo/matrix interface during fabrication, along with the type of phases that develop at this interface. For the case where a U-7Mo dispersion fuel has a Si-containing Al alloy matrix and is rolled at around 500°C, a Si-rich interaction product has been observed to form that can potentially have a positive impact on fuel performance during irradiation. This interaction product can exhibit stable irradiation behavior and it can act as a diffusion barrier to additional U-Mo/matrix interaction during irradiation. However, for U-7Mo dispersion fuels with softer claddings that are rolled at lower temperatures (e.g., near 425°C), a significant interaction layer has not been observed to form. As a result, the bulk of any interaction layer that develops in these fuels happens during irradiation, and the layer that forms may not exhibit as stable a behavior as one that is formed during fabrication. Therefore, it may be beneficial to add a heat treatment step during the fabrication of dispersion fuel plates with softer cladding alloys that will result in the formation of a uniform, Si-rich interaction layer that is a few microns thick around the U-Mo fuel particles. This type of layer would have characteristics like the one that has been observed in dispersion fuel plates with AA6061 cladding that are fabricated at 500°C, which may exhibit increased stability during irradiation. This report discusses the result of

  19. Lean burn versus stoichiometric operation with EGR and 3-way catalyst of an engine fueled with natural gas and hydrogen enriched natural gas

    OpenAIRE

    Saanum, Inge; Bysveen, Marie; Tunestål, Per; Johansson, Bengt

    2007-01-01

    Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn appro...

  20. Important matter by confirmation of administrative office regarding repair of enriched uranium dissolution tanks in reprocessing plant of Power Reactor and Nuclear Fuel Development Corp

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safety Commission acknowledged the policy of handling this matter by Science and Technology Agency after having received a report from the Committee on Examination of Nuclear Fuel Safety on April 11, 1985, and carried out the deliberation. The investigation and deliberation of this matter were instructed by the NSC to the Committee on January 24, 1985. It was confirmed that the repair welding applied to the place of leak of the dissolution tanks would not hinder the expected test dissolution, and if the leak occurs, the measures to detect it properly have been taken. In order to confirm the soundness of the repair welding, the Power Reactor and Nuclear Fuel Development Corp. is to carry out the test dissolution for about 400 hours per one tank dividing into three runs, and the observation of appearance is to be made after every run. The time of test dissolution, the items and contents of inspection were confirmed to be adequate. Moreover, the immersion corrosion test of test pieces and the long term corrosion test in a laboratory are to be carried out. (Kako, I.)

  1. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  2. Guide for the estimation of the {alpha} and {beta} coefficients in the Average enrichment equation as burnt function by fuel type; Guia para la estimacion de los coeficientes {alpha} y {beta} en la ecuacion de enriquecimiento promedio como funcion del quemado por tipo de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J.L.; Cortes C, C.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-08-15

    The objective of the report is to determine manually or by means of a calculation sheet, the coefficients {alpha} and {beta} of the average enrichment equation as function of the fuel burnt (B) using the Lineal Reactivity Pattern, with information generated by the RECORD code of the FMS package. (Author00.

  3. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  5. Low Enrichment Uranium (LEU)-fueled SLOWPOKE-2 nuclear reactor simulation with the Monte-Carlo based MCNP 4A code

    International Nuclear Information System (INIS)

    Pierre, J.R.M.

    1996-01-01

    Following the commissioning of the Low Enrichment Uranium (LEU) Fuelled SLOWPOKE-2 research reactor at the Royal Military College-College Militaire Royal (RMC-CMR), excess reactivity measurements were conducted over a range of temperature and power. The results showed a maximum excess reactivity of 3.37 mk at 33 o C. Several deterministic models using computer codes like WIMS-CRNL, CITATION, TRIVAC and DRAGON have been used to try to reproduce the excess reactivity and temperature trend of both the LEU and HEU SLOWPOKE-2 reactors. The best simulations had been obtained at Ecole Polytechnique de Montreal. They were able to reproduce the temperature trend of their HEU-fuelled reactor using TRIVAC calculations, but this model over-estimated the absolute value of the excess reactivity by 119 mk. Although calculations using DRAGON did not reproduce the temperature trend as well as TRIVAC, these calculations represented a significant improvement on the absolute value at 20 o C reducing the discrepancy to 13 mk. Given the advance in computer technology, a probabilistic approach was tried in this work, using the Monte-Carlo N-Particle Transport Code System MCNP 4A, to model the RMC-CMR SLOWPOKE-2 reactor.

  6. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  7. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  8. Decreased Libido

    Science.gov (United States)

    ... causes decreased libido? Decreased libido often accompanies other sexual disorders. Although most men with erectile dysfunction do not complain of decreased libido, after time, persistent failure with erections and sexual performance can lead to reduced sex drive in ...

  9. Problems associated with high burnup of VVER reactor fuel

    International Nuclear Information System (INIS)

    Reshetnikov, F.G.; Golovin, I.S.; Bibilashvili, Yu.K.; Solyany, V.I.

    1981-01-01

    One of the principal direction of improving the characteristics of the thermal power reactor fuel cycle is to increase the burn-up of fuel in fuel elements. So in future for VVER-1000 elements the planned burn-up of fuel must be up to 40000-50000 MW-day/t U. The realization of those parameters would permit a substantial decrease in the consumption of natural uranium in the open fuel cycle, a considerable reduction of the load on fuel element fabrication and reprocessing plants, which will favourably affect the whole economics of the fuel - power cycle. However, the position of the optimum of the fuel component of the cost depending on burn-up is determined not only by the economy of uranium, the cost of fuel element fabrication processes, uranium enrichment and the chemical reprocessing of burnt fuel, but also by the provision of the required safety of high burn-up fuel elements. Thus, scientists and designing engineers face the problem of designing serviceable and reliable thermal power reactor fuel elements intended for longer service life and higher burn-ups and ensuring the safety of the whole reactor plant. This paper deals with some of the aspects of this most complicated problem for the fuel elements of VVER type only

  10. The benefits of enriched boric acid in PWRs

    International Nuclear Information System (INIS)

    Wiedenmann, Debra; Nordmann, Francis

    2012-09-01

    compounds on the fuel cladding; - the need for design modification to support either larger volume or higher boric acid concentration of safety tanks. Finally, EBA may also be added in units operating with natural boron. As B-10 becomes depleted, a small quantity of EBA (rather than larger quantities of natural boron) can be added to adjust the B-10 proportion within the specified tolerances. In this manner, EBA may be applied to decrease the amount of waste discharged into the environment. If the benefits of EBA deserve economic and technical evaluation in operating plants (which are more difficult and costly to transition), then it seems clear that any new plant should consider a design with the EBA option. This paper provides an overview of the benefits of Enriched Boric Acid (EBA) on PWR radiation field development, increased safety margins, structural component corrosion, reduced volume or concentration of borated water system tanks and waste reduction in support of advanced fuel management trends. (authors)

  11. Simulation of performance and nitrogen oxide formation of a hydrogen-enriched diesel engine with the steam injection method

    Directory of Open Access Journals (Sweden)

    Gonca Guven

    2015-01-01

    Full Text Available In the present study, steam injection method (SIM is implemented to a hydrogen-enriched diesel engine in order to improve the levels of performance and NO emissions. As hydrogen enrichment method increases effective efficiency, NO emissions could be increased. However, the SIM is used to control NO emissions and improve the engine performance. Due to these positive effects, hydrogen enrichment and the SIMare applied into a diesel engine by using a two-zone combustion model for30% hydrogen enrichment of the fuel volume and 20% steam ratio of the fuel mass at full load conditions. The results obtained are compared with conventional diesel engine (D, steam injected diesel engine (D+S20, hydrogen-enriched diesel engine (D+H30 and hydrogen-enriched diesel engine with steam injection (D+H30+S20 in terms of performance and NO emissions. In the results, the effective efficiency and effective power improve up to 22.8% and %3.1, as NO emissions decrease up to 22.1%. Hence, the hydrogen enrichment with steam injection method is more environmentally friendly with better performance.

  12. Novel Accident-Tolerant Fuel Meat and Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Mariani; Pavel G Medvedev; Douglas L Porter; Steven L Hayes; James I. Cole; Xian-Ming Bai

    2013-09-01

    A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 degrees C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

  13. Impact of load modulation on fuel behaviour

    International Nuclear Information System (INIS)

    Grosgeorge, M.

    1988-01-01

    In this paper, the main potential effects of load modulation operation on fuel behaviour are identified: increase of internal rod pressure, cladding fatigue damage, modification in the cladding mechanical equilibrium and subsequent increase of the stress level during a given transient. The magnitude of these effects depends notably on local rod power history. Unfortunately, the ex-core instrumentation system does not allow local power evaluation in the core; consequently, on-line evaluation of the impact of load modulation is not possible. Therefore a conservative method has been developed for load modulation simulation. Fuel management, reactor control and load modulation neutronical calculations are first carried out. Based on these hypotheses, fuel thermomechanical studies yield the maximum values of criterion-limited parameters. For example, in the case of 3,7% enriched fuel operating for 3 cycles, the rod pressure does not exceed 150 bar (155 bar for external coolant pressure); cladding fatigue damage remains in the 30-40% range. For 3,7% Fragema fuel management (900 MWe units), after an initial 75-day period (first cycle excluded), an initial ''credit'' of 66 days is available, decreasing or being restored according to unit power level. Equivalent specifications have to be established for other fuel designs and other plant series (M3, 1300 MWe units, etc...). New fuel designs and/or new fuel managements will be also treated. Corresponding fuel studies will be improved, especially with experimental programs contribution. 2 refs, 9 figs

  14. Fuel with burnable absorber for RBMK-1500

    International Nuclear Information System (INIS)

    Krivosein, G.

    2002-01-01

    Following the accident at the Chernobyl Unit 4, the priority measures to improve RBMK's safety were developed. Under this program, the measures to reduce the void reactivity coefficient were executed on the stage-by-stage terms: As a result of these measures, the void reactivity coefficient was reduced below +1.0β. But there was decrease in fuel burnup to 14.0/14.5 MW.d/kg (design value ∼21/22 MW.d/kg). High power level of a fresh fuel assembly did not allow to employ fuel with higher enrichment without any compensatory measures. The different types of burnable absorbers were considered to be used. From the results of the anticipated calculations, it was specified that the most efficient power neutron flax flattening between fuel channels could be achieved when erbium was used. Ignalina NPP has used 2.4 % enriched fuel assemblies with burnable absorber since 1995. The fuel burnup has been increased by 60 %. The obtained experimental results are analyzed. (author)

  15. Caramel fuel for research reactors

    International Nuclear Information System (INIS)

    Bussy, P.

    1979-11-01

    This fuel for research reactors is made of UO 2 pellets in a zircaloy cladding to replace 93% enriched uranium. It is a cold fuel, non contaminating and non proliferating, enrichment is only 7 to 8%. Irradiation tests were performed until burn-up of 50000 MWD/t [fr

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  17. The effects of container materials and buffer additives on decreasing the iodide concentration in a disposal vault for spent nuclear fuel.

    Science.gov (United States)

    Kim, S S; Chun, K S; Choi, J W; Kim, S K; Cho, W J

    2007-01-01

    To retard the migration of iodine released from a spent fuel after the break of a container, the reducing effects on the concentration of the iodide by container corrosion products and some buffer additives were examined in a solution with bentonite. Iron and copper, and their corrosion products scarcely reduced the iodide concentration. And kaolinite, chalcopyrite, pyrite, copper ore and galena, known as having a sorption property for iodine, did not noticeably sorb the iodide. However, palm active carbon, silver metal and Ag2O lowered the iodide concentration. Especially, Ag2O put into a disposal container would effectively hinder the migration of iodine to the outside of a disposal vault without a great loss if the pore size of the compacted buffer layer is maintained below 1 mu m.

  18. Determination of the exposition rapidity in the level 49.90 of the reactor building for the decrease in the water level of the spent fuel pool

    International Nuclear Information System (INIS)

    Mijangos D, Z. E.; Herrera H, S. F.; Cruz G, M. A.; Amador C, C.

    2014-10-01

    The fuel assemblies storage in the nuclear power plant of Laguna Verde (NPP-L V) represents a crucial aspect, due to the generated dose by the decay heat of the present radio-nuclides in the assemblies retired of the reactor core, after their useful life. These spent assemblies are located inside the spent fuel pool (SFP), in the level 49.90 m in the Reload Floor of the Reactor building of NPP-L V. This leads to the protection at personnel applying the ALARA (As Low As Reasonably Achievable) criteria, fulfilling the established dose criteria by the Regulator Body the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS). Considering the loss scenario of the cooling system of the SFP, in which the SFP water vaporizes, is important to know the water level in which the limit of effective dose equivalent is fulfilled for the personnel. Also, is important for the instrumentation of the SFP, for the useful life of the same instruments. In this work is obtained the exposition rapidity corresponding to different water levels of SFP in the Reload Floor of NPP-L V, to identify the minimum level of water where the limit of effective dose equivalent is fulfilled of 25 rem s to the personnel, established in the Article 48 of the General Regulation of Radiological Safety of CNSNS and the Chapter 50 Section 67 of the 10-Cfr of Nuclear Regulatory Commission in USA. The water level is also identified where the exposition rapidity is of 15 m R/hr, being the value of the set point of the area radiation monitor D21-Re-N003-1, located to 125 cm over the level 49.90 meters of the Reload Floor of NPP-L V. (Author)

  19. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vernaz, Etienne

    2015-10-01

    The author proposes an overview of the different steps of the nuclear fuel cycle: uranium mining (applied processes, formation of Yellow Cake), conversion into uranium hexafluoride (UF 6 ) for enrichment purposes, enrichment (physical methods and plants), nuclear fuel fabrication (description of a fuel assembly), physical, chemical and radiological evolution of the nuclear fuel in the reactor, spent fuel warehousing, spent fuel processing (dissolution, methods of liquid/liquid extraction, output products), effluents and by-products, recycling of valuable materials (URE, MOX, RNR and others), waste containment for the different waste types regarding their radioactivity level and lifetime (vitrification, shell compacting, cementation, and other processes). The author also presents the French policy and choices regarding spent fuel processing and waste management

  20. 1987 nuclear fuel imports and exports of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The statistics of imports and exports of nuclear fuels and source materials compiled by the German Federal Office for Industry (Bundesamt fuer Wirtschaft) and the Federal Ministry for the Environment, Protection of Nature, and Reactor Safety (Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit) shows a 29.1% increase in imports and a 16.9% decrease of exports in 1987 compared to the previous year. A major rise was experienced in imports of natural uranium, uranium enriched up to 3% and to 3-10%, and plutonium, while there was a decline in imports of depleted uranium, source materials, and more highly enriched uranium. Uranium enriched 3-10%, highly enriched uranium, and plutonium were exported in larger quantities, while only smaller quantities of depleted uranium, source materials, natural uranium, uranium enriched up to 3%, and uranium enriched 10-85% were exported. (orig.) [de

  1. Nuclear fuel banks

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In december 2010 IAEA gave its agreement for the creation of a nuclear fuel bank. This bank will allow IAEA to help member countries that renounce to their own uranium enrichment capacities. This bank located on one or several member countries will belong to IAEA and will be managed by IAEA and its reserve of low enriched uranium will be sufficient to fabricate the fuel for the first load of a 1000 MW PWR. Fund raising has been successful and the running of the bank will have no financial impact on the regular budget of the IAEA. Russia has announced the creation of the first nuclear fuel bank. This bank will be located on the Angarsk site (Siberia) and will be managed by IAEA and will own 120 tonnes of low-enriched uranium fuel (between 2 and 4.95%), this kind of fuel is used in most Russian nuclear power plants. (A.C.)

  2. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  3. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris oe National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately

  4. Characteristics of fast reactor core designs and closed fuel cycle

    International Nuclear Information System (INIS)

    Poplavsky, V.M.; Eliseev, V.A.; Matveev, V.I.; Khomyakov, Y.S.; Tsyboulya, A.M.; Tsykunov, A.G.; Chebeskov, A.N.

    2007-01-01

    On the basis of the results of recent studies, preliminary basic requirements related to characteristics of fast reactor core and nuclear fuel cycle were elaborated. Decreasing reactivity margin due to approaching breeding ratio to 1, requirements to support non-proliferation of nuclear weapons, and requirements to decrease amount of radioactive waste are under consideration. Several designs of the BN-800 reactor core have been studied. In the case of MOX fuel it is possible to reach a breeding ratio about 1 due to the use of larger size of fuel elements with higher fuel density. Keeping low axial fertile blanket that would be reprocessed altogether with the core, it is possible to set up closed fuel cycle with the use of own produced plutonium only. Conceptual core designs of advanced commercial reactor BN-1800 with MOX and nitride fuel are also under consideration. It has been shown that it is expedient to use single enrichment fuel core design in this reactor in order to reach sufficient flattening and stability of power rating in the core. The main feature of fast reactor fuel cycle is a possibility to utilize plutonium and minor actinides which are the main contributors to the long-living radiotoxicity in irradiated nuclear fuel. The results of comparative analytical studies on the risk of plutonium proliferation in case of open and closed fuel cycle of nuclear power are also presented in the paper. (authors)

  5. Other enrichment related contracts

    International Nuclear Information System (INIS)

    Hall, J.C.

    1978-01-01

    In addition to long-term enrichment contracts, DOE has other types of contracts: (1) short-term, fixed-commitment enrichment contract; (2) emergency sales agreement for enriched uranium; (3) feed material lease agreement; (4) enriched uranium storage agreement; and (5) feed material usage agreement

  6. Project and supply agreement. The text of the agreement of 15 January 1993 between the International Atomic Energy Agency and the Government of the Republic of Indonesia and the Government of the United States of America concerning the transfer of enriched uranium for materials test reactor fuel development

    International Nuclear Information System (INIS)

    1994-08-01

    The text of the Project and Supply Agreement, which was approved by the Agency's Board of Governors on 4 December 1992 and concluded on 15 January 1993 between the Agency and the Governments of the Republic of Indonesia and the United States of America for the transfer of enriched uranium for materials test reactor fuel development is reproduced herein for the information of all Members. The agreement entered into force on 15 January 1993, pursuant to Article XII.1

  7. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  8. Low enrichment fuel development at INEL

    International Nuclear Information System (INIS)

    Newton, D.G.

    1993-01-01

    EG ampersand G Idaho, Inc. is under contract to the Department of Energy to operate the Idaho National Engineering Laboratory (INEL). The INEL is located in southeastern Idaho. This facility has been operating since 1949 and was originally called the National Reactor Testing Station. Several contractors manage projects on this facility. Most projects at INEL are concerned with either reactor safety or irradiation testing. At Test Area North, for example, experiments are being conducted on the effects of loss of coolant. At the Test Reactor Area the ATR (Advanced Test Reactor) and ETR (Engineering Test Reactor) are used for irradiation testing and, of course, those of you working at Argonne will recognize the Experimental Breeder Reactors I and II

  9. Supply of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA's ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future

  10. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  11. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  12. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  13. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  14. Comparison between the neutron parameters for CANDU-6 standard and SEU-43 fuel cells

    International Nuclear Information System (INIS)

    Balaceanu, V.; Constantin, M.

    2002-01-01

    Nowadays the efforts in nuclear energy industry are focused on the growing of the fuel cycles' efficiency, the decreasing of the spent fuel volumes simultaneously with a decreasing of the production costs. In INR Pitesti the project for a new fuel bundle named SEU-43 (Slightly Enriched Uranium, bundle with 43 elements) was started in the late of '80s (Horhoianu et al., 2001), like an alternative for the CANDU-6 standard bundle (Natural Uranium, bundle with 37 elements). This paper presents a comparison between the SEU-43 fuel and CANDU-6 Standard fuel with the a special regard to the neutron cell parameters (k-inf, multigroup fluxes, pin powers). SEU-43 CANDU cell consists of a single cluster (43-fuel elements bundle, 2 fuel type element sizes). The other elements of the cell are the same as those of the Standard cell. The enrichment in 235 U (nearly 1%) is present. The WIMS-5B library was used (Halsall and Taubman, 1986) for cross-sections generation and CP 2 D, a two-dimensional transport the first collision probability code for detailed fuel assembly hyperfine flux distribution calculation (Constantin, 1999) was used for the computing of the neutron local parameters. A comparison between the SEU-43 and CANDU-6 Standard fuel cell parameters are performed. The analysis shows the SEU-43 fuel can be used successfully in CANDU-6 reactor, its local neutron performances being similar with those of the CANDU-6 Standard fuel. The major advantage of the SEU-43 fuel bundle is that it can reach a maximum burnup of 25000 MWd/tU compared to the Standard 37-fuel bundle where the maximum burnup is about of 13000 MWd/TU (reached only for some fuel bundles of the core). (authors)

  15. The effect of soluble boron on the burnup at different enrichments and assemblies

    International Nuclear Information System (INIS)

    Guenduez, G.; Ajwah, Y.

    1989-01-01

    The effect of boron on the optimum burnup was investigated at different assemblies for enriched fuels. As the enrichment increases, an alternation in the assembly type is needed for the optimum specific power. This alternation can be made at lower enrichments due to presence of boron. The optimum specific power is shifted toward the high enrichment fuel when the assembly number is increased. If a fuel of high enrichment is first burnt in a highly hardened neutron spectrum and later in a softer spectrum than an improvement in power is achieved. (orig.)

  16. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  17. Overview of spent fuel management and problems

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Ernst, P.C.

    1998-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel worldwide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. Some projections of spent fuel inventories to the year 2006 are presented and discussed. (author)

  18. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  19. An evaluation of the potential of the use of wasted hydroelectric capacity to produce hydrogen to be used in fuel cells in order to decrease CO{sub 2} emissions in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Padilha, Janine C.; da Trindade, Leticia G.; de Souza, Roberto F. [Institute of Chemistry, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre, RS 91501-970 (Brazil); Miguel, Marcelo [Itaipu Binacional, Av. Tancredo Neves, 6731, Foz do Iguacu, PR 85856-970 (Brazil)

    2009-10-15

    The use of water wasted in hydroelectric plants as normalization dam excess, which constitute a hydrodynamic potential useful to generate electric energy which can be subsequently used to produce hydrogen and its subsequent consumption in fuel cells, has been considered as an alternative for hydraulic energy-rich countries like Brazil. The case is examined in which all the water wasted in the hydroelectric plants, spilled by dam gates to maintain acceptable water levels, from the 101 largest Brazilian hydroelectric plants was used to produce hydrogen. During the year of 2008, the electric energy produced from this utilisation would have been equivalent to 106.2 TWh, an amount that corresponds to an increase of ca. 30% of the total electric energy produced in the country. Furthermore, if this amount of hydrogen was used in the replacement of internal combustion vehicles by fuel cells, this would have prevented the production of 2,000,000 tons of CO{sub 2} emissions per day. The economic balance (cost of electricity produced using the wasted water minus cost of gasoline consumed) indicates a savings of ca. 200 million US$. This plan would also significantly decrease production and release of greenhouse gases. (author)

  20. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  1. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  2. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  3. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  4. Reduced Enrichment for Research and Test Reactors. Proceedings of the XVIII international meeting

    International Nuclear Information System (INIS)

    2004-01-01

    Almost 50 papers presented were showing the status of the national programs related to conversion of research reactor cores from highly enriched (HEU) to low enriched uranium (LEU) fuel elements. Design of new fuel elements (uranium silicides) and safety related calculations were dealt with taking into account fuel cycle issues, meaning spent fuel storage and transportation. A number of presentations were devoted to Mo-99 production using LEU targets

  5. Profile of World Uranium Enrichment Programs - 2007

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2007-11-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring weapons grade fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, while HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use in fuel for nuclear reactors. However, the same equipment used to produce LEU for nuclear fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is only enriched to LEU, no undeclared LEU is produced, and no uranium is enriched to HEU or secretly diverted. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity, but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 53 million kg-separative work units (SWU) per year, with 22 million in gaseous diffusion and 31 million in gas centrifuge plants. Another 23 million SWU/year of capacity are under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique

  6. Upgrading nuclear-fuel management

    International Nuclear Information System (INIS)

    Spetz, S.W.

    1978-01-01

    Because of the unavailability of nuclear-fuel reprocessing, more efficient methods must be found in using fresh uranium-fuel supplies in LWRs. The lumped-burnable-poison shuffle and multibatch-shuffle schemes are proposed by one reactor supplier as viable means of obtaining this practical and economical objective. Another means of attaining better fuel efficiency might be by increasing the number of fuel assemblies, with a higher uranium-enrichment percentage. Thus, refueling might be made at 18-month intervals

  7. NUCLEAR REACTOR FUEL SYSTEMS

    Science.gov (United States)

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  8. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1988-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century

  9. Uranium enrichment: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Cazalet, J.

    1995-12-31

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs.

  10. Uranium enrichment: an overview

    International Nuclear Information System (INIS)

    Cazalet, J.

    1995-01-01

    This paper is a general presentation of uranium enrichment processes and assessments of the prevailing commercial and industrial situations. It gives first some theoretical aspects of enrichment in general and explains the differences between statistical and selective processes in particular. Then a review of the different processes is made with a comparison between them. Finally, some general remarks concerning applications are given and the risks of proliferation related to enrichment are mentioned. (J.S.). 4 refs., 5 figs., 8 tabs

  11. Uranium enrichment services in the United States

    International Nuclear Information System (INIS)

    Jelinek, P.; Lenders, M.

    1994-01-01

    The United States of America is the world's largest market for uranium enrichment services. After the disintegration of the Soviet Union, Russian uranium is entering the world market on an increasing scale. The U.S. tries to protect its market and, in this connection, also the European market from excessive price drops by taking anti-dumping measures. In order to become more competitive, American companies have adapted modern enrichment techniques from Europe. European - U.S. joint ventures are to help, also technically and economically, to integrate military uranium, accumulating as a consequence of worldwide disarmament, into the commercial fuel cycle for the peaceful use of nuclear power. (orig.) [de

  12. Uranium enrichment. Industrial and commercial aspect

    International Nuclear Information System (INIS)

    Lamorlette, G.

    1983-01-01

    The uranium enrichment, a key stage in the fuel cycle of light-water nuclear power stations, applies sophisticated and protected techniques in installations on a very large scale. This article shows how there was a sudden change from a monopoly position in production to a severe competition in a market which is depressed today but offers good prospects for the future. It indicates how the enrichment industrialist have adapted themselves to the fluctuations of the demand, while safeguarding the reliability of the rendered service and the necessary security of supplies for the proper development of the nuclear electric power [fr

  13. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  14. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  15. Industry of nuclear fuel cycle: Status and prospects

    International Nuclear Information System (INIS)

    Nikipelov, B.V.

    1992-01-01

    The nuclear industry in Russia was started in the late forties and early fifties, it was aimed at solving certain defense problems. During 1948-1949, the first plant for enriching uranium 235 U and an industrial complex for obtaining and reprocessing plutonium for the defense applications were put into operation. By 1991, the country had 47 plants having a total rated power of 37 GW, i.e., 12.5% of the total power generated in the country. After the Chernobyl' accident, the plans for starting new NPPs were curtailed. Towards the end of this century, the total power generation of all the nuclear power plants of the country is estimated at ∼60 GW. In view of the decreased volume of the nuclear equipment, processing of the concentrated uranium for defense purposes was stopped and, consequently, at the present time, the nuclear industry has a capacity exceeding the requirements of the internal market. The author examines in detail the infrastructure of the nuclear industry that is based on the concept of a closed fuel cycle consisting of reprocessing of the spent nuclear fuel using the unburnt uranium, plutonium, and other isotopes separated from it. It includes recovery and processing of the uranium ores, production of uranium hexafluoride, its enrichment to yield 235 U, production of the fuel assemblies (FA), radiochemical processing of the spent nuclear fuel, and reprocessing and open-quotes buryingclose quotes of the radioactive waste materials and the spent nuclear fuel that is not suitable for regeneration. This article includes section on (1) recovery and processing of uranium ores, (2) production of enriched uranium, (3) production of fuel assemblies, control elements, and rolled zirconium alloys, (4) radiochemical processing of spent fuel, and (5) prospects of the Russian nuclear industry through the year 2000

  16. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  17. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  18. Enriched uranium recovery at Los Alamos

    International Nuclear Information System (INIS)

    Herrick, C.C.

    1984-01-01

    Graphite casting scrap, fuel elements and nongraphite combustibles are calcined to impure oxides. These materials along with zircaloy fuel elements and refractory solids are leach-dissolved separately in HF-HNO 3 acid to solubilize the contained enriched uranium. The resulting slurry is filtered and the clear filtrate (to which mineral acid solutions bearing enriched uranium may be added) are passed through solvent extraction. The solvent extraction product is filtered, precipitated with H 2 O 2 and the precipitate calcined to U 3 O 8 . Metal is made from U 3 O 8 by conversion to UO 2 , hydrofluorination and reduction to metal. Throughput is 150 to 900 kg uranium per year depending on the type of scrap

  19. Analysis of organizational options for the uranium enrichment enterprise in relation to asset divesture

    International Nuclear Information System (INIS)

    Harrer, B.J.; Hattrup, M.P.; Dase, J.E.; Nicholls, A.K.

    1986-08-01

    This report presents a comparison of the characteristics of some prominent examples of independent government corporations and agencies with respect to the Department of Energy's (DOE) uranium enrichment enterprise. The six examples studied were: the Bonneville Power Administration (BPA); the Tennessee Valley Authority (TVA); the Synthetic Fuels Corporation (SYNFUELS); the Consolidated Rail Corporation (CONRAIL); the British Telecommunications Corporation (British TELECOM); and the Communications Satellite Organization (COMSAT), in order of decreasing levels of government ownership and control. They range from BPA, which is organized as an agency within DOE, to COMSAT, which is privately owned and free from almost all regulations common to government agencies. Differences in the degree of government involvement in these corporations and in many other characteristics serve to illustrate that there are no accepted standards for defining the characteristics of government corporations. Thus, historical precedent indicates considerable flexibility would be available in the development of enabling legislation to reorganize the enrichment enterprise as a government corporation or independent government agency

  20. The fabrication of nuclear fuel

    International Nuclear Information System (INIS)

    D'Amore, Mead

    1987-01-01

    The chronology of fuel product and core management development over the past 25 years in the USA is explained. Nuclear fuel for Westinghouse reactors is made by converting enriched uranium hexafluoride (UF 6 ) into uranium dioxide (UO 2 ) powder. The powder is pressed into pellets which are loaded into zircalloy fuel tubes (typically over 14 million pellets in 50,952 rods). The fuel rods are arranged in fuel assemblies which are shipped to the reactor site (typically 193 fuel assemblies are needed for one 1000MWe reactor). Each stage of the fuel fabrication cycle (cladding manufacture, chemical conversion UF 6 - UO 2 , pellet production, fuel rod fabrication, grid assembly, skeleton assembly, fuel assembly) is described, with particular reference to the Westinghouse process and plant. (UK)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  2. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564

  3. Economic study of fuel scenarios for a reload

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo M, J. A.; Montes T, J. L.; Perusquia del C, R.

    2014-10-01

    In this work the results to plan different scenarios for designing a nuclear fuel reload are shown. Given a reload with specific energy requirements, the objective is to verify the feasibility of using either a greater number of fresh fuel with less uranium enrichment, or otherwise reduce the number of fresh fuel assemblies and therefore they have a higher average uranium enrichment. For the study a cycle balance 18-month basis with 112 fresh assemblies divided into two lots, with energy produced of 10,075 Mwd/Tu was used. For the designs under the mentioned scenarios, the heuristic techniques known as taboo search and neural networks were used. To verify the feasibility of obtained reloads an economic study of the reload costs was performed. The results showed that is possible to design reloads under the two scenarios, but was more complicated decrease the amount of fresh fuel assemblies. In both scenarios was possible to reduce manufacturing costs of fuel and according to purely static calculation, it would be possible to increase the energy produced. (Author)

  4. Enriched School Libraries

    Directory of Open Access Journals (Sweden)

    Thijs M. J. Nielen

    2015-12-01

    Full Text Available We compared students from schools with an enriched school library—that is, one with a larger and more up-to-date book collection—with students from schools with a typical school library. We tested effects of an enriched school library on reading motivation, reading frequency, and academic skills. Fourth- and fifth-grade students of 14 schools with an enriched library (n = 272 were compared to fourth and fifth graders from 10 control schools (n = 411. Assignment to the experimental group was external and not determined by participants within schools. Students from schools with enriched libraries scored on average half a standard deviation higher on a standardized reading comprehension test than students from control schools. Mediation analysis revealed that for girls, this effect may have been obtained as a result of an increase in reading motivation and reading frequency. For boys, only reading frequency was a significant mediator.

  5. LEU fuel fabrication in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.; Gomez, J.O.; Marajofsky, A.; Kohut, C.

    1985-01-01

    As an Institution, aiming to meet with its own needs, CNEA has been intensively developing reduced enriched fuel to use in its own research and test reactors. Development of the fabrication technology as well as the design, installation and operation of the manufacturing plant, have been carried out with its own funds. Irradiation and post-irradiation of test miniplates have been taking place within the framework of the RERTR program. During the last years, CNEA has developed three LEU fuel types. In the previous RERTR meetings, we presented the technological results obtained with these fuel types. This paper focuses on CNEA LEU fuel element manufacturing status and the trained personnel we can offer in design and manufacture fuel capability. CNEA has its own fuel manufacturing technology; the necessary facilities to start the fuel fabrication; qualified technicians and professionals for: fuel design and behaviour analysis; fuel manufacturing and QA; international recognition of its fuel development and manufacturing capability through its ORR miniplate irradiation; its own natural uranium and the future possibility to enrich up to 20% U 235 ; the probability to offer a competitive fuel manufacturing cost in the international market; the disposition to cooperate with all countries that wish to take part and aim to reach an self-sufficiency in their own fuel supply needs

  6. An Integrated Multicriteria Decision-Making Approach for Evaluating Nuclear Fuel Cycle Systems for Long-term Sustainability on the Basis of an Equilibrium Model: Technique for Order of Preference by Similarity to Ideal Solution, Preference Ranking Organization Method for Enrichment Evaluation, and Multiattribute Utility Theory Combined with Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Saerom Yoon

    2017-02-01

    Full Text Available The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.

  7. An integrated multicriteria decision-making approach for evaluating nuclear fuel cycle systems for long-term sustainability on the basis of an equilibrium model: Technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory combined with analytic hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sae Rom [Dept of Quantum Energy Chemical Engineering, Korea University of Science and Technology (KUST), Daejeon (Korea, Republic of); Choi, Sung Yeol [Ulsan National Institute of Science and Technology, Ulju (Korea, Republic of); Ko, Wonil [Nonproliferation System Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC) is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR) once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.

  8. How is uranium supply affecting enrichment?

    International Nuclear Information System (INIS)

    Steve Kidd

    2007-01-01

    As a result of the enlivened uranium market, momentum has in turn picked up in the enrichment sector. What are the consequences of higher uranium prices? There is, of course, a link between uranium and enrichment supply to the extent that they are at least partial substitutes. On the enrichment supply side, the most obvious feature is the gradual replacement of the old gas diffusion facilities of Usec in the USA and EURODIF in France with more modern and economical centrifuge plants. Assuming Usec can overcome the financing and technical issues surrounding its plans, the last gas diffusion capacity should disappear around 2015 and the entire enrichment market should then be using centrifuges. On the commercial side, the key anticipated developments are mostly in Russia. Although there should still continue to be substantial quantities of surplus Russian HEU available for down blending in the period beyond 2013, it is now reasonable to expect that it will be mostly consumed by internal needs, to fuel Russian-origin reactors both at home and in export markets such as China and India. Finally, as a key sensitive area for the non-proliferation of nuclear weapons, the enrichment sector is likely to be a central point of the new international arrangements which must be developed to support a buoyant nuclear sector throughout this century.

  9. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas

    Ammonia is the major toxicant in full scale anaerobic digesters of animal wastes which are rich in proteins and/or urea, such as pig or poultry wastes. Ammonia inhibition decreases methane production rates, increases volatile fatty acids concentration and leads to economic losses for the biogas...... was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to determine...... microbial community composition. The outcome of the enrichment process was a mesophilic aceticlastic methanogenic enriched culture able to withstand high ammonia loads and utilize acetate and form methane stoichiometrically. FISH analysis showed that the methanogens of the enriched culture belonged...

  10. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  11. Nuclear fuel cycle activities with an utility

    International Nuclear Information System (INIS)

    Schwarz, E.

    1977-01-01

    The lecture will deal with the following topics: Fuel requirements: establishing fuel requirements - first core - reloads. Calculation of required uranium and separation work: reload planning - long term - short term - during refuelling; exactness of calculations: contracts: 1) Uranium and conversion; 2) Enrichment services; 3) Fuel elements; 4) Ownership; 5) Accidential loss of material; 6) Flexibility in time and amounts; 7) Specifications, surcharges; 8) Terms of payment; 9) Fuel containers, ownership, retransport; fuel reserves: 1) Natural uranium (concentrates or reserves in the ground); 2) Enriched uranium; 3) Fuel elements; 4) Cost of reserves; 5) Exchange in case of need. Handling of contracts: 1) Schedule for deliveries; Notes for deliveries; 3) Fuel accounting and balance; 4) Formalities (export and import licenses, customs etc.). Fuel cost: 1) Prices; 2) Fuel cost calculations for comparison of bids and cost forecast. (orig.) [de

  12. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  13. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm 3 was by then in routine use, illustrated how far work has progressed

  14. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  15. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  16. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  17. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  18. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  19. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  20. Profile of World Uranium Enrichment Programs-2009

    Energy Technology Data Exchange (ETDEWEB)

    Laughter, Mark D [ORNL

    2009-04-01

    It is generally agreed that the most difficult step in building a nuclear weapon is acquiring fissile material, either plutonium or highly enriched uranium (HEU). Plutonium is produced in a nuclear reactor, whereas HEU is produced using a uranium enrichment process. Enrichment is also an important step in the civil nuclear fuel cycle, in producing low enriched uranium (LEU) for use as fuel for nuclear reactors to generate electricity. However, the same equipment used to produce LEU for nuclear reactor fuel can also be used to produce HEU for weapons. Safeguards at an enrichment plant are the array of assurances and verification techniques that ensure uranium is not diverted or enriched to HEU. There are several techniques for enriching uranium. The two most prevalent are gaseous diffusion, which uses older technology and requires a lot of energy, and gas centrifuge separation, which uses more advanced technology and is more energy efficient. Gaseous diffusion plants (GDPs) provide about 40% of current world enrichment capacity but are being phased out as newer gas centrifuge enrichment plants (GCEPs) are constructed. Estimates of current and future enrichment capacity are always approximate, due to the constant upgrades, expansions, and shutdowns occurring at enrichment plants, largely determined by economic interests. Currently, the world enrichment capacity is approximately 56 million kilogram separative work units (SWU) per year, with 22.5 million in gaseous diffusion and more than 33 million in gas centrifuge plants. Another 34 million SWU/year of capacity is under construction or planned for the near future, almost entirely using gas centrifuge separation. Other less-efficient techniques have also been used in the past, including electromagnetic and aerodynamic separations, but these are considered obsolete, at least from a commercial perspective. Laser isotope separation shows promise as a possible enrichment technique of the future but has yet to be

  1. Status of the RERTR [Reduced Enrichment Research and Test Reactor] program in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.

    1987-01-01

    The Argentine Atomic Energy Commission started in 1978 the Reduced Enrichment Research and Test Reactors in the field of reactor engineering; engineering, development and manufacturing of fuel elements and research reactors operators. This program was initiated with the conviction that it would contribute to the international efforts to reduce risks of nuclear weapons proliferation owing to an uncontrolled use of highly enriched uranium. It was intended to convert RA-3 reactor to make possible its operation with low enriched fuel (LEU), instead of high enriched fuel (HEU) and to develop manufacturing techniques for said LEU. Afterwards, this program was adapted to assist other countries in reactors conversion, development of the corresponding fuel elements and supply of fuel elements to other countries. (Author)

  2. Fuel rod and fuel assembly

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya.

    1993-01-01

    Burnable poisons are contained in a portion of a pellet constituting a fuel rod. A distribution density of the burnable poison-containing pellets and a concentration of the burnable poisons in the pellet are varied depending on the axial position of the fuel rod. That is, the distribution density of the burnable poison containing-pellets is increased at the central portion of the fuel rod and it is decreased at both ends thereof, and a concentration of the burnable poisons of the burnable poison containing-pellet disposed at the end portions thereof is decreased to less than a concentration of the burnable poison-containing pellet at the central portion. With such a constitution, a central peaking at an early stage of the combustion cycle is decreased. Accordingly, power at the central portion is increased than that in the end portions at the latter half of the cycle, to flatten the power distribution. Further, a burnable poison concentration of the pellets at the end portions is decreased to promote burning of burnable poisons at the end portions which are less burnable relatively, thereby enabling to prevent worsening of neutron economy. (T.M.)

  3. Laser and gas centrifuge enrichment

    Science.gov (United States)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  4. Standard specification for uranium metal enriched to more than 15 % and less Than 20 % 235U

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This specification covers nuclear grade uranium metal that has either been processed through an enrichment plant, or has been produced by the blending of highly enriched uranium with other uranium, to obtain uranium of any 235U concentration below 20 % (and greater than 15 %) and that is intended for research reactor fuel fabrication. The scope of this specification includes specifications for enriched uranium metal derived from commercial natural uranium, recovered uranium, or highly enriched uranium. Commercial natural uranium, recovered uranium and highly enriched uranium are defined in Section 3. The objectives of this specification are to define the impurity and uranium isotope limits for commercial grade enriched uranium metal. 1.2 This specification is intended to provide the nuclear industry with a standard for enriched uranium metal which is to be used in the production of research reactor fuel. In addition to this specification, the parties concerned may agree to other appropriate conditions. ...

  5. 2nd RCM of the CRP on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems (ADS) and Technical Meeting on Low Enriched Uranium (LEU) Fuel Utilization in Accelerator Driven Sub-critical Systems. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The overall objective of the CRP is contributing to the generic R&D efforts in various fields common to innovative fast neutron system development, i.e., heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. Ultimately, the CRP’s overall objective is to make contributions towards the realization of a transmutation demonstration facility

  6. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  7. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  8. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  9. Uranium enrichment management review. Final report

    International Nuclear Information System (INIS)

    Ellett, J.D.; Rieke, W.B.; Simpson, J.W.; Sullivan, P.E.

    1980-01-01

    The uranium enrichment enterprise of the US Department of Energy (DOE) provides enriched nuclear fuel for private and government utilities domestically and abroad. The enterprise, in effect, provides a commercial service and represents a signficant business operation within the US government: more than $1 billion in revenues annually and future capital expenditures estimated at several billions of dollars. As a result, in May 1980, the Assistant Secretary for Resource Applications within DOE requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. The review group was specifically asked to focus on the management activities to which sound business practices could be applied. The group developed findings and recommendations in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. The chapters of this report present first the management review group's recommendations in the six areas evaluated and then the findings and issues in each area. An appendix provides the group's calendar of meetings. A list of major reference sources used in the course of the study is also included. 12 references

  10. Low-enrichment and long-life Scalable LIquid Metal cooled small Modular (SLIMM-1.2) reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed S., E-mail: mgenk@unm.edu [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Department, University of New Mexico, Albuquerque, NM (United States); Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM (United States); Palomino, Luis M.; Schriener, Timothy M. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM (United States); Nuclear Engineering Department, University of New Mexico, Albuquerque, NM (United States)

    2017-05-15

    Highlights: • Developed low enrichment and natural circulation cooled SLIMM-1.2 SMR for generating 10–100 MW{sub th}. • Neutronics analyses estimate operation life and temperature reactivity feedback. • At 100 MW{sub th}, SLIMM-1.2 operates for 6.3 FPY without refueling. • SLIMM-1.2 has relatively low power peaking and maximum UN fuel temperature < 1400 K. - Abstract: The Scalable LIquid Metal cooled small Modular (SLIMM-1.0) reactor with uranium nitride fuel enrichment of 17.65% had been developed for generating 10–100 MW{sub th} continuously, without refueling for ∼66 and 5.9 full power years, respectively. Natural circulation of in-vessel liquid sodium (Na) cools the core of this fast energy spectrum reactor during nominal operation and after shutdown, with the aid of a tall chimney and an annular Na/Na heat exchanger (HEX) of concentric helically coiled tubes. The HEX at the top of the downcomer maximizes the static pressure head for natural circulation. In addition to the independent emergency shutdown (RSS) and reactor control (RC), the core negative temperature reactivity feedback safely decreases the reactor thermal power, following modest increases in the temperatures of UN fuel and in-vessel liquid sodium. The decay heat is removed from the core by natural circulation of in-vessel liquid sodium, with aid of the liquid metal heat pipes laid along the reactor vessel wall, and the passive backup cooling system (BCS) using natural circulation of ambient air along the outer surface of the guard vessel wall. This paper investigates modifying the SLIMM-1.0 reactor design to lower the UN fuel enrichment. To arrive at a final reactor design (SLIMM-1.2), the performed neutronics and reactivity depletion analyses examined the effects of various design and material choices on both the cold-clean and the hot-clean excess reactivity, the reactivity shutdown margin, the full power operation life at 100 MW{sub th}, the fissile production and depletion, the

  11. Uranium enrichment: heading for the abyss

    International Nuclear Information System (INIS)

    Norman, C.

    1983-01-01

    This article discusses the federal government's $2.3 billion a year business enriching uranium for nuclear power plants which is heading toward a major crisis. Due to miscalculations by the Department of Energy, it is caught with billions of dollars of construction in progress just as projected demand for enriched uranium is decreasing. At the center of the controversy is the Gas Centrifuge Plant at Portsmouth, Ohio - estimated to cost $10 billion dollars. A review of how DOE got into this situation and how they plan to solve it is presented

  12. Status of reduced enrichment program for research reactors in Japan

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro; Shimizu, Kenichi

    2003-01-01

    The reduced enrichment programs for the JRR-3M, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI) has been completed until 1999. The KUR of Kyoto University Research Reactor Institute (KURRI) has been partially completed and is still in progress under the Joint Study Program with Argonne National Laboratory (ANL). The JRR-3M using LEU silicide fuel elements has done a functional test by the Japanese Government in 2000, and the property of the reactor core was satisfied. JAERI established a 'U-Mo fuel ad hoc committee' for feasibility study concerning future LEU fuel instead of the silicide fuel in 2001, and an installation of the U-Mo fuel was estimated from 2012, even the irradiation tests are carried out successfully. The U.S. Policy of Foreign Research Reactor Spent Nuclear Fuels is strongly expected to expand the policy until U-Mo fuel installed. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU fuel in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until March 2006, then the full core conversion with LEU fuel will be done. All KUR spent fuel elements will be sent to the U.S. by March 2008. (author)

  13. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  14. Analysis of fuel oxygenates in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.C.; Berg, M.; Haderlein, S.B. [Swiss Federal Inst. for Environmental Science and Technology (EAWAG) (Switzerland); Swiss Federal Inst. of Technology (ETH), Duebendorf (Switzerland); Duong, Hong-Anh [Vietnam National Univ.,Hanoi (Viet Nam). Center for Environmental Chemistry

    2001-07-01

    This paper presents an overview of currently available analytical methods for fuel oxygenates such as methyl tert-butyl ether and ethanol and highlights the advantages and disadvantages of the different methods. The occurrence of fuel oxygenates in water and air is explored, and sampling and enrichment of oxygenates in water are described covering water sampling, direct aqueous injection into a chromatographic column, headspace analysis, purge and trap enrichment, and solid phase microextraction. Methods for sampling and enrichment of oxygenates in air, separation of fuel oxygenates, preparation of standards and calibration, and detection using flame ionisation and photoionisation detection, mass spectrometry, atomic emission detection, and Fourier transform infrared spectroscopy are examined. Environmentally relevant physiochemical parameters of fuel oxygenates are tabulated, and injection and enrichment techniques for water analysis are compared.

  15. Nuclear fuel cycle techniques

    International Nuclear Information System (INIS)

    Pecqueur, Michel; Taranger, Pierre

    1975-01-01

    The production of fuels for nuclear power plants involves five principal stages: prospecting of uranium deposits (on the ground, aerial, geochemical, geophysical, etc...); extraction and production of natural uranium from the deposits (U content of ores is not generally high and a chemical processing is necessary to obtain U concentrates); production of 235 U enriched uranium for plants utilizing this type of fuel (a description is given of the gaseous diffusion process widely used throughout the world and particularly in France); manufacture of suitable fuel elements for the different plants; reprocessing of spent fuels for the purpose of not only recovering the fissile materials but also disposing safely of the fission products and other wastes [fr

  16. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  17. A model to predict failure of irradiated U–Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Senor, David J.; Casella, Andrew M.

    2016-12-15

    Highlights: • Simple model to predict failure of dispersion fuel meat designs. • Evaluated as a function of fabrication parameters and irradiation conditions. • Predictions compare well with experimental measurements of miniature fuel plates. • Interaction layer formation reduces matrix strength and increases temperature. • Si additions to the matrix appear effective only at moderate heat flux and burnup. - Abstract: Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO{sub 2}-stainless steel dispersion fuels and uses currently available thermal–mechanical property information for the materials of interest in the currently proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as onset of pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the {sup 235}U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of

  18. Surplus Highly Enriched Uranium Disposition Program plan

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements

  19. Development of enrichment techniques

    International Nuclear Information System (INIS)

    Mohrhauer, H.; Krey, M.

    1993-01-01

    The experience accumulated in operating the older uranium enrichment plants in Almelo and Capenhurst was the basis for the construction of the Gronau centrifuge plant commissioned in August 1985 after three and a half years of construction. The total capacity of the three Urenco plants as of late 1992 is 2750 t SWU/a. The goal set at the beginning of centrifuge development, i.e. to achive troublefree operation of the centrifuges for more than ten years, has been attained. Enrichment by centrifuges on the whole consumes less than one permil of the electric power generated. Economic calculations show that a laser plant is hardly able to underrun the costs of separative work of a centrifuge plant. (orig.) [de

  20. South Australia, uranium enrichment

    International Nuclear Information System (INIS)

    1976-02-01

    The Report sets out the salient data relating to the establishment of a uranium processing centre at Redcliff in South Australia. It is conceived as a major development project for the Commonwealth, the South Australian Government and Australian Industry comprising the refining and enrichment of uranium produced from Australian mines. Using the data currently available in respect of markets, demand, technology and possible financial return from overseas sales, the project could be initiated immediately with hexafluoride production, followed rapidly in stages by enrichment production using the centrifuge process. A conceptual development plan is presented, involving a growth pattern that would be closely synchronised with the mining and production of yellowcake. The proposed development is presented in the form of an eight-and-half-year programme. Costs in this Report are based on 1975 values, unless otherwise stated. (Author)

  1. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  2. Uranium enrichment with lasers - will South Africa lead or lag?

    International Nuclear Information System (INIS)

    Du Toit, G.

    1992-01-01

    Over 30 percent of the cost of locally made nuclear fuel in South Africa is associated with increasing the concentration of uranium 235. Cheaper enrichment technologies and, in particular, the decision by the Atomic Energy Corporation of South Africa to concentrate its research efforts on laser techniques are therefore of considerable significance. The laser isotope separation programme in South Africa is reviewed. 1 ill

  3. Nickel container of highly-enriched uranium bodies and sodium

    International Nuclear Information System (INIS)

    Zinn, W.H.

    1976-01-01

    A fuel element comprises highly enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel

  4. Status of research reactor spent fuel world-wide

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    2004-01-01

    Results compiled in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialised and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author)

  5. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  6. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  7. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    Niedrig, T.

    1987-01-01

    Nuclear fuel supply is viewed as a buyer's market of assured medium-term stability. Even on a long-term basis, no shortage is envisaged for all conceivable expansion schedules. The conversion and enrichment facilities developed since the mid-seventies have done much to stabilize the market, owing to the fact that one-sided political decisions by the USA can be counteracted efficiently. In view of the uncertainties concerning realistic nuclear waste management strategies, thermal recycling and mixed oxide fuel elements might increase their market share in the future. Capacities are being planned accordingly. (orig.) [de

  8. Thermal analysis of an enriched flame incinerator for aqueous residues

    Energy Technology Data Exchange (ETDEWEB)

    Lacava, Pedro Teixeira; Pimenta, Amilcar Porto [Divisao de Engenharia Aeronautica, Instituto Tecnologico de Aeronautica, Pca. Mal. Eduardo Gomes, 50, Vila das Acacias, 12228-900, Sao Jose dos Campos, SP (Brazil); Carvalho, Joao A. [Departamento de Energia, Campus de Guaratingueta, Universidade Estadual Paulista, Av. Dr. Ariberto Pereira da Cunha, 333, 12516-410, Guaratingueta, SP (Brazil); Ferreira, Marco Aurelio [Laboratorio Associado de Combustao e Propulsao, Instituto Nacional de Pesquisas Espaciais, Rod. Presidente Dutra, km 40, 12630-000, Cachoeira Paulista, SP (Brazil)

    2006-03-01

    The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air. If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50% of O{sub 2} in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase. (author)

  9. The effects of intrinsic enrichment on captive felids.

    Science.gov (United States)

    Damasceno, Juliana; Genaro, Gelson; Quirke, Thomas; McCarthy, Shannen; McKeown, Sean; O'Riordan, Ruth

    2017-05-01

    Environmental enrichment is a well-known technique, which has been used to enhance the welfare of captive animals. The aim of this study is to investigate how three different forms of intrinsic enrichment, namely, a hay ball without scent, a hay ball with catnip, and a hay ball with cinnamon, influenced the behavior of six cheetah and two Sumatran tigers at Fota Wildlife Park, Ireland. Enrichment-directed behaviors, as well as pacing, locomotion, inactive, and exploratory behaviors were investigated. The results indicated that the three forms of enrichment had similar effects, in terms of enrichment-directed behavior, with cinnamon resulting in the highest levels of enrichment-directed behaviors. The cinnamon treatment resulted in a significant decrease in pacing behavior when compared with baseline observations. No evidence of habituation (i.e., a significant reduction in enrichment-directed behaviors) was observed for any of the three enrichments. This means that these low cost, easy to apply, practical forms of enrichment could be frequently applied for these species as part of an enrichment regime. © 2017 Wiley Periodicals, Inc.

  10. Concept of a subcritical transmutation system with fast neutron spectrum and liquid fuel

    International Nuclear Information System (INIS)

    Tittelbach, S.

    2002-11-01

    The annual amount of nearly 9500 t of spent fuel from worldwide industrial nuclear energy utilization has to be disposed as high level waste. The retention of nuclear waste from the biosphere has to be assured until the radiological risk decreases to tolerable levels. The long-term radiological risk of spent fuel is dominated by actinide elements, i.e. plutonium, americium and curium. It is intended to reduce this amount of high level waste by Partitioning and Transmutation, so that the radiotoxicity of the disposed waste falls short of the reference value of fresh fuel decaying naturally after about thousand years. For this time period the retention of high level waste can be assured by technical means. The scope of this work is the design of a subcritical fast transmutation system with liquid metal cooling and liquid metal fuel. The lead bismuth eutectic has been choosen as the liquid metal coolant and fuel carrier. To dissolve at least 3 at% of transuran elements, a minimum fuel temperature of 600 C is required. The calculations were carried out with a fuel composition, which results from two plutonium recycling steps in a thorium fuel cycle. Two homogeneous and two heterogeneous blankets have been designed and evaluated leading to one preferred heterogeneous blanket design, which has been investigated in more detail. This blanket design merges the positive properties of a solid fuel system (better control of fuel and reactivity because of smaller and closed fuel volumina) and a liquid fuel system (continous charge and discharge or extraction of fission products). The blanket design is based on the core design of fast breeder liquid metal reactors. It consists of hexagonal fuel elements housing up to six annular shaped fuel cylinders. The hexagonal shape of the fuel elements leads to three fuel zones positioned concentrically around the central spallation target. There is a strong heterogeneous distribution of power and heat flux in this blanket design. Besides

  11. Y-12 product improvements expected to reduce metal production costs and decrease fabrication losses

    International Nuclear Information System (INIS)

    Hassler, Morris E.

    2005-01-01

    The Y-12 National Security Complex (Y-12) supplies uranium metal and uranium oxide feed material for fabrication into fuel for research reactors around the world. Over the past few years, Y-12 has continued to improve its Low Enriched Uranium (LEU) product. The LEU is produced by taking U.S. surplus Highly Enriched Uranium (HEU) and blending it with depleted or natural uranium. The surplus HEU comes from dismantled U.S. weapons parts. Those research reactors that use LEU from Y-12 are making important contributions to international nuclear nonproliferation by using LEU rather than HEU, and helping to disposition former U.S. weapons material. It is clearly understood that the research reactor community must keep fuel costs as low as possible and Y-12 is making every effort to improve efficiencies in producing the uranium through standardizing the chemical specifications as well as the product mass and dimensional qualities. These production cost reductions allows for the U.S. to keep the LEU product price low even with the dramatic increase in the uranium enrichment and feed component market prices in the last few years. This paper will discuss a new standard specification that has been proposed to existing LEU metal customers and fuel fabricators. It will also cover Y-12's progress on a new mold-design that will result in a more uniform, higher quality product and eliminates two steps of the production process. This new product is expected to decrease fabrication losses by 5-10%, depending on the fabricator's process. The paper will include planned activities and the schedule associated with implementation of the new specification and product form. (author)

  12. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  14. MICROBIOLOGICAL AND NUTRITIONAL QUALITY OF WARANKASHI ENRICHED BREAD

    Directory of Open Access Journals (Sweden)

    O. E. Dudu

    2012-08-01

    Full Text Available The study was carried out to determine the microbiological and nutritional quality, organoleptic, rheological and textural effect as well as the effect on the shelf life of wheat bread enriched with West African cottage cheese (warankashi at different substitution levels (1 %, 3 % and 5 %. The protein and fat content of wheat bread significantly increased but carbohydrate levels decreased significantly as enrichment with Warankashi increased. The amino acid profile of the wheat bread increased with increasing enrichment. The incorporation of Warankashi into wheat flour affected the rheological and textural properties of wheat flour; the rate of water absorption of the wheat flour decreased as Warankashi incorporation levels increased. Also, the dough stability time of the enriched flours was lesser than that of the wheat flour. The 3 % enrichment level had the highest dough consistency (520 BU. The extensibility of 1 % and 3 % wara bread dough were the same while that of wheat flour bread and 5 % Warankashi were the same. The 3 % wara bread dough had the highest resistance to extension. Shelf life of the bread remained unaffected by Warankashi incorporation but the rate of bacteria and fungi (yeast and mould growth decreased significantly (P < 0.05 as enrichment levels increased. There was no significant difference between the organoleptic properties of wheat bread to that of the enriched breads but the 3 % Warankshi enriched bread had the highest consumer acceptability.

  15. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  16. Analysis of enriched UO2 light water moderated lattices using CAROL code

    International Nuclear Information System (INIS)

    Bhatia, H.K.; Thaker, K.

    1978-01-01

    An analysis of uniform lattice experiments for enriched UO 2 rods in light water moderator using CAROL code is presented. The experiments selected have four different enrichments and moderator to fuel volume ratio varying between 1 to 4. The deviation of ksub(eff) has been observed to lie between +- 0.01 over the important range of moderator to fuel volume ratio. In addition to reactivity prediction, the calculated and measured relative reaction rates have also been compared. (author)

  17. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  18. Thorium utilization: conversion ratio and fuel needs in thermal reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1975-01-01

    As a preparatory study for thorium utilization in thermal reactors a study has been made of the fuel comsumption in existing reactor types. A quantitative description is given of the influence of enrichment, burnup, amount of structural material, choise of coolant and control requirements on the convertion ratio. The enrichment is an important factor and a low fuel comsumption can be achieved by increasing the enrichment

  19. The high temperature reactor and its fuel cycle options

    International Nuclear Information System (INIS)

    1979-07-01

    The status of the HTR system in the Federal Republic of Germany as well as the consecutive steps and the probable cost of further development are presented. The considerations are based on a recycling Th/highly enriched uranium (HEU) fuel cycle which has been chosen as the main line of the German HTR R and D efforts. Alternative fuel cycles such as medium-enriched uranium (MEU) and low-enriched uranium (LEU) are discussed as well

  20. Basic research and industrialization of CANDU advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Suk Ho; Park, Joo Hwan; Jun, Ji Su [and others

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. The second objectives is to develop CANDU advanced fuel bundle to utilize advanced fuel cycles such as recovered uranium, slightly enriched uranium, etc. and so to raise adaptability for change in situation of uranium market. Also, it is to develop CANDU advanced fuel technology which improve uranium utilization to cope with a world-wide imbalance between uranium supply and demand, without significant modification of nuclear reactor design and refuelling strategies. As the implementations to achieve the above R and D goal, the work contents and scope of technology development of CANDU advanced fuel using natural uranium (CANFLEX-NU) are the fuel element/bundle designs, the nuclear design and fuel management analysis, the thermalhydraulic analysis, the safety analysis, fuel fabrication technologies, the out-pile thermalhydraulic test and in-pile irradiation tests performed. At the next, the work scopes and contents of feasibility study of CANDU advanced fuel using recycled uranium (CANFLEX-RU) are the fuel element/bundle designs, the reactor physics analysis, the thermalhydraulic analysis, the basic safety analysis of a CANDU-6 reactor with CANFLEX-RU fuel, the fabrication and

  1. Present status of JMTR spent fuel shipment

    International Nuclear Information System (INIS)

    Miyazawa, Masataka; Watanabe, Masao; Yokokawa, Makoto; Sato, Hiroshi; Ito, Haruhiko

    2002-01-01

    The Japan Atomic Energy Research Institute (JAERI) has been consistently making the enrichment reduction of reactor fuels in cooperation with RERTR Program and FRR SNF Acceptance Program both conducted along with the U.S. Nuclear Non-Proliferation Policy and JMTR, 50 MW test reactor in Oarai Research Establishment, has achieved core conversion, from its initial 93% enriched UAl alloy to 45% enriched uranium-aluminide fuel, and then to the current 19.8% enriched uranium-silicide fuel. In order to return all of JMTR spent fuels, to be discharged from the reactor by May 12, 2006, to the U.S.A. by May 12, 2009, JAERI is planning the transportation schedule based on one shipment per year. The sixth shipment of spent fuels to U.S. was carried out as scheduled this year, where the total number of fuels shipped amounts to 651 elements. All of the UAl alloy elements have so far been shipped and now shipments of 45% enriched uranium-aluminide type fuels are in progress. Thus far the JMTR SFs have been transported on schedule. From 2003 onward are scheduled more then 850 elements to be shipped. In this paper, we describe our activities on the transportation in general and the schedule for the SFs shipments. (author)

  2. Advanced Neutron Source enrichment study. Volume 2: Appendices -- Final report, Revision 12/94

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-01-01

    A study has been performed of the impact on performance of using low enriched uranium (20% 235 U) or medium enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations. There are 26 appendices in this volume

  3. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  4. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  5. The uranium enrichment industry and the SILEX process

    International Nuclear Information System (INIS)

    Goldsworthy, M.

    1999-01-01

    Silex Systems Limited has been developing a new laser isotope separation process since 1992. The principle application of the SILEX Technology is Uranium Enrichment, the key step in the production of fuel for nuclear power plants. The Uranium Enrichment industry, today worth ∼ US$3.5 Billion p.a., is dominated by four major players, the largest being USEC with almost 40% of the market. In 1996, an agreement was signed between Silex and USEC to develop SILEX Technology for potential application to Uranium Enrichment. The SILEX process is a low cost, energy efficient scheme which may provide significant commercial advantage over current technology and competing laser processes. Silex is also investigating possible application to the enrichment of Silicon, Carbon and other materials. Significant markets may develop for such materials, particularly in the semiconductor industry

  6. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  7. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  8. Future fuel cycles

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1980-01-01

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  9. DOE hands over uranium enrichment duties to government corporation

    International Nuclear Information System (INIS)

    Simpson, J.

    1993-01-01

    In an effort to renew the United States' competitiveness in the world market for uranium enrichment services, the Department of Energy (DOE) is turning over control of its Paducah, KY, and Portsmouth, OH, enrichment facilities to a for-profit organization, the United States Enrichment Corp. (USEC), which was created by last year's Energy Policy Act. William H. Timbers, Jr., a former investment banker who was appointed acting CEO in March, said the Act's mandate will mean more competitive prices for enriched reactor fuel and greater responsiveness to utility customers. As a government corporation, USEC, with current annual revenues estimated at $1.5 billion, will no longer be part of the federal budget appropriations process, but will use business management techniques, set market-based prices for enriched uranium, and pay annual dividends to the US Treasury-its sole stockholder-from earnings. The goal is to finish privatizing the corporation within two years, and to sell its stock to investors for an estimated $1 to $3 billion. USEC's success will depend in part on developing short- and long-term marketing plants to help stanch the flow of enriched-uranium customers to foreign suppliers. (DOE already has received notice from a number of US utilities that they want to be let out of their long-term enrichment contracts as they expire over the next several years).USEC's plans likely will include exploring new joint ventures with other businesses in the nuclear fuel cycle-such as suppliers, fabricators, and converters-and offering a broader range of enrichment services than DOE provided. The corporation will have to be responsive to utilities on an individual basis

  10. R and D on laser uranium enrichment

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    An AEC Advisory Committee on Uranium Enrichment has completed investigations into the actual condition of laser isotope separation. The working group set up for the purpose has issued a report on the series of investigations made on its development and measures for promoting it. The report says that the development of the process in Japan is at a fundamental stage. Noting that further efforts are needed before its future can be predicted, the report proposes a cource of research and development for the immediate future. For the atomic vapor laser isotope separation (AVLIS), government organizations are engaged in data base buildup and conducting basis engineering tests, and Japan Atomic Energy Research Institute will consider the re-enrichment of uranium recovered from reprocessing. Non-governmental unions of researchers will promote the combination of copper-vapor laser and dye laser. For the molecular laser isotope separation (MLIS), the Institute of Physical and Chemical Research will take up studies with the cooperation of the Power Reactor and Nuclear Fuel Development Corporation. In chapters covering the philosophy of laser uranium enrichment technology development, the report deals with its significance, actual conditions and tasks, and goals and measures for its promotion. (Nogami, K.)

  11. URENCO. Uranium enrichment with advanced technology

    International Nuclear Information System (INIS)

    2011-01-01

    URENCO Deutschland is a subsidiary of URENCO Enrichment Company Limited, an international enterprise founded in 1970 in the State Treaty of Almelo, which offers uranium enrichment for nuclear power plants all over the world with the use of advanced technology. URENCO facilities at present are operated in the United Kingdom, the Netherlands, USA, and in Germany. The German URENCO location is Gronau, Westphalia, where cascades have been in operation since 1985 using centrifuge technology to enrich nuclear fuel to up to 5% uranium-235. The URENCO Group supplies nuclear power plants in Europe and overseas countries with a world market share, at present, of more than 25% with a rising tendency. The first uranium separation plant in Gronau (UTA-1) attained its full separation performance of 1,800 t USW/a in late 2005. In February 2005, construction and operation of another plant had been licensed, which can raise the aggregate capacity on site to 4,500 t USW per annum. Construction of the new plant (UTA-2) was begun in summer 2005. UTA-2 will use the latest, most powerful URENCO centrifuge. URENCO has more than 3,500 visitors a year at its German location alone, thus demonstrating its pro-active information policy and offering to the public a maximum of opportunities to acquire information by attending presentations and tours of the plant. (orig.)

  12. Uranium enrichment: investment options for the long term

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables

  13. The world enrichment market

    International Nuclear Information System (INIS)

    Gunter, L.; McCants, C.; Rutkowski, E.

    1991-01-01

    The enrichment market can be divided into two periods: the near-term market (1991 to 1995) and the long-term market (1995 and beyond). The near-term market is characterized by limited unfilled requirements of 4% per year, to be supplied by national stockpiles and excess inventories. This low-cost material will be drawn down by about 1993, causing a subsequent price rise. As the price rises, primary supplier activity is expected to increase. In the near-term, two contracting activities are apparent: spot; and intermediate-term. The current spot market is expected to last until available low cost inventories are drawn down. Recently, in attempts to gain market share, suppliers have offered attractively priced intermediate-term (3 year) contracts for 1996 to 1998. While a small spot market will continue after 1995, it is anticipated that utilities will prefer a mix of medium- and long-term (5 to 10 year) contracts from primary suppliers for most of their enrichment requirements. As national stockpiles and utility inventories are consumed, low-cost supply available to the spot market is expected to diminish. Consequently, with little low-cost supply available, the only apparent source of material will be from primary suppliers, and the resulting competition over market share is expected to be intense. (author)

  14. Burnup determination of a fuel element concerning different cooling times

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Mutis, O.; Terremoto, Luis A.A.; Zeituni, Carlos A.

    2002-01-01

    In this work we report a complete set of measurements and some relevant results regarding the burnup process of a fuel element containing low enriched nuclear fuel. This fuel element was fabricated at the Plant of Fuel Elements of the Chilean Nuclear Energy Commission (CCHEN). Measurements were carried out using gamma-ray spectroscopy and the absolute burnup of the fuel element was determined. (author)

  15. Advanced fuel cycles for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Semchenkov, Y. M.; Pavlovichev, A. M.; Pavlov, V. I.; Spirkin, E. I.; Styrin, Y. A.; Kosourov, E. K.

    2007-01-01

    Main stages of Russian uranium fuel development regarding improvement of safety and economics of fuel load operation are presented. Intervals of possible changes in fuel cycle duration have been demonstrated for the use of current and perspective fuel. Examples of equilibrium fuel load patterns have been demonstrated and main core neutronics parameters have been presented. Problems on the use of axial blankets with reduced enrichment in WWER-1000 fuel assemblies are considered. Some results are presented regarding core neutronic characteristics of WWER-1000 at the use of regenerated uranium and uranium-plutonium fuel. Examples of equilibrium fuel cycles for the core partially loaded with MOX fuel from weapon-grade plutonium are also considered (Authors)

  16. The effect of fuel burnup and dispersed water intrusion on the criticality of spent high-level nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Studies of the spent fuel waste package have been conducted through the use of a Monte-Carlo neutron simulation program to determine the ability of the fuel to sustain a chain reaction. These studies have included fuel burnup and the effect of water mists on criticality. Results were compared with previous studies. In many criticality studies of spent fuel waste packages, fresh fuel with an enrichment as high as 4.5% is used as the conservative (worst) case. The actual spent fuel has a certain amount of burnup that decreases the concentration of fissile uranium and increases the amount of radionuclides present. The LWR Radiological Data Base from OCRWM has been used to determine the relative radionuclide ratios and KENO 5.1 was used to calculate values of the effective multiplication factor, k eff . Spent fuel is not capable of sustaining a chain reaction unless a suitable moderator, such as water, is present. A completely flooded container has been treated as the worst case for criticality. Results of a previous report that demonstrated that k eff actually peaked at a water-to-mixture ratio of 13% were analyzed for validity. In the present study, these results did not occur in the SCP waste package container

  17. FERC perspectives on nuclear fuel accounting issues

    International Nuclear Information System (INIS)

    McDanal, M.W.

    1986-01-01

    The purpose of the presentation is to discuss the treatment of nuclear fuel and problems that have evolved in industry practices in accounting for fuel. For some time, revisions to the Uniform System of Accounts have been considered with regard to the nuclear fuel accounts. A number of controversial issues have been encountered on audits, including treatment of nuclear fuel enrichment charges, costs associated with delays in enrichment services, the treatment and recognition of fuel inventories in excess of current or projected needs, and investments in and advances to mining and milling companies for future deliveries of nuclear fuel materials. In an effort to remedy the problems and to adapt the Federal Energy Regulatory Commission's accounting to more easily provide for or point out classifications for each problem area, staff is reevaluating the need for contemplated amendments to the Uniform System of Accounts

  18. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells

    Science.gov (United States)

    Tewari, A.; Sambhy, V.; Urquidi Macdonald, M.; Sen, A.

    Carbon dioxide intolerance has impeded the development of alkaline fuel cells as an alternate source of power supply. The CO 2, in a fuel cell system, could come from the anode side (if "dirty" H 2 is used as fuel), from the cathode side (if air instead of pure O 2 is used as an oxidant) or from inside the electrolyte (if methanol is used as a fuel). In this work, an novel analytical approach is proposed to study and quantify the carbon dioxide poisoning problem. Accelerated tests were carried out in an alkaline fuel cell using methanol as a fuel with different electrical loads and varying the concentration of carbon dioxide in a mixture CO 2/O 2 used as oxidant. Two characteristic quantities, t max and R max, were specified which were shown to comprehensively define the nature and extent of carbon dioxide poisoning in alkaline fuel cells. The poisoning phenomenon was successfully quantified by determining the dependence of these characteristic quantities on the operating parameters, viz. atmospheric carbon dioxide concentration and applied electrical load. Such quantification enabled the prediction of the output of a fuel cell operating in a carbon dioxide enriched atmosphere. In addition, static and dynamic analyses of electrolytes were carried out to determine the dependence of cell current on the electrolyte composition in a fuel cell undergoing poisoning. It was observed that there is a critical concentration of KOH in the electrolyte only below which the effect of carbon dioxide poisoning is reflected on the cell performance. Potentiostatic polarization tests confirmed that the underlying reason for the decreased cell performance because of carbon dioxide poisoning is the sluggish kinetics of methanol oxidation in the presence of potassium carbonate in the electrolyte. Moreover, the decreased conductivity of the electrolyte resulting from hydroxide to carbonate conversion was also shown to increase the ohmic loses in an alkaline fuel cell leading to lower

  19. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  20. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  1. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  2. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database.

  3. Proceedings of the 1994 international meeting on reduced enrichment for research and test reactors

    International Nuclear Information System (INIS)

    1997-08-01

    This meeting brought together participants in the international effort to minimize and eventually eliminate the use of highly enriched uranium in civilian nuclear programs. Papers cover the following topics: National programs; fuel cycle; nuclear fuels; analyses; advanced reactors; and reactor conversions. Selected papers have been indexed separately for inclusion to the Energy Science and Technology Database

  4. Enrichment of boron 10

    International Nuclear Information System (INIS)

    Coutinho, C.M.M.; Rodrigues Filho, J.S.R.; Umeda, K.; Echternacht, M.V.

    1990-01-01

    A isotopic separation pilot plant with five ion exchange columns interconnected in series were designed and built in the IEN. The columns are charged with a strong anionic resin in its alkaline form. The boric acid solution is introduced in the separation columns until it reaches a absorbing zone length which is sufficient to obtain the desired boron-10 isotopic concentration. The boric acid absorbing zone movement is provided by the injection of a diluted hydrochloric acid solution, which replace the boric acid throughout the columns. The absorbing zone equilibrium length is proportional to its total length. The enriched boron-10 and the depleted boron are located in the final boundary and in the initial position of the absorbing zones, respectively. (author)

  5. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  6. Fuels for Canadian research reactors

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1993-01-01

    This paper includes some statements and remarks concerning the uranium silicide fuels for which there is significant fabrication in AECL, irradiation and defect performance experience; description of two Canadian high flux research reactors which use high enrichment uranium (HEU) and the fuels currently used in these reactors; limited fabrication work done on Al-U alloys to uranium contents as high as 40 wt%. The latter concerns work aimed at AECL fast neutron program. This experience in general terms is applied to the NRX and NRU designs of fuel

  7. Fuel Fabrication and Nuclear Reactors

    International Nuclear Information System (INIS)

    Karpius, Peter Joseph

    2017-01-01

    The uranium from the enrichment plant is still in the form of UF 6 . UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ''too-cheap to meter'' is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  8. Fuel cell sesquicentennial

    Science.gov (United States)

    Cohn, E. M.

    1979-01-01

    The development of fuel cell technology is summarized, and the potential for utility-type fuel cell installations is assessed on the occasion of the 150th anniversary of the construction of the first fuel cell by Sir William Grove. The only functional fuel-cell systems developed to date, the hydrogen-oxygen cells used by NASA, are indicated, and hydrazine and alcohol (methanol) cells are considered. Areas requiring development before the implementation of fuel cells as general purpose utility-type electric generators include catalysts for naturally occurring hydrocarbons or processes for low-cost methanol or hydrazine production, efficient means of scrubbing and enriching air, self-regulating systems, and 15- to 20-fold power density increases. It is argued that although ideas for eliminating certain of the above-mentioned problems have been proposed, fuel-cell systems can never be expected to equal the efficiency, reliability and low cost of conventional power plants, and thus developmental support should be discontinued.

  9. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  10. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  11. U.S. non-proliferation policy and programs regarding use of high-enriched uranium in research reactors

    International Nuclear Information System (INIS)

    Lewis, Richard A.

    1993-01-01

    Uranium enriched to 90-93%, supplied by the U.S., is now used in 141 research and test reactors in 35 countries around the world with a cumulative power of 1714 MW. Since of the order of 3 kg of 235-U is involved annually in fuel fabrication, fresh fuel transport and storage, reactor operation, and spent fuel cooling and return per megawatt of research reactor power, it is estimated that more than 5000 kg of very high-enriched uranium is handled each year to operate these reactors. Recent U.S. assessments have led to the tentative conclusion that in only approximately 11 of these reactors, generally those of highest power or power density, is the use of 90-93% enriched uranium currently a technical necessity. Universal use of the best state-of-the-art fuel technology would permit an estimated 90 of these reactors to use 20% enriched fuel, and estimated 40 others to use 45% enriched fuel, without significant performance degradation. If advanced research reactor fuel development programs currently under way in the U.S. and elsewhere are successful, it may, in fact, be possible to operate virtually all of these reactors on less than 20% enriched uranium in the longer term. The physical and economic practicality of these developmental fuels must, of course, await future assessments. The wide-spread use of 90-93% enriched uranium today is a result of fuel technology limitations prevailing 15 years ago, the ready availability of uranium of this enrichment from the U.S. in the past, and the costs involved in introduction of new fuel technologies and enrichments into existing fuel fabrication facilities and reactors. Because of the limited reactor fuel market and the substantial costs involved in gaining safety and operating approvals for changes to reactor designs there is great pressure on fuel fabricators and reactor operators to standardize on well-proven fuel designs, and not to adopt marginal technological improvements--particularly in the absence of apparent

  12. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  13. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  14. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  16. The RERTR [Reduced Enrichment Research and Test Reactor] program:

    International Nuclear Information System (INIS)

    Travelli, A.

    1987-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) program is described. After a brief summary of the results which the RERTR program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results and new developments which ocurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U 3 Si 2 -Al and U 3 Si-Al fuels was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U 3 Si 2 -Al fuel at 4.8 g U/cm 3 was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40 % average burnup. Good progress was made in the area of LEU usage for the production of fission 99 Mo, and in the coordination of safety evaluations related to LEU conversions of U.S. university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U 3 Si-Al with 19.75 % enrichment and U 3 Si 2 -Al with 45 % enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR program. (Author)

  17. The activities of COGEMA in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Galaud, G.

    1981-02-01

    COGEMA (Compagnie Generale des Matieres Nucleaires) is a private company entirely owned by the C.E.A. Its activity covers the whole of the fuel cycle: uranium mining, production of concentrates from the extracted ore, conversion into hexafluoride, enrichment, fabrication of fuel assemblies, reprocessing of spent fuel, and packaging of waste. These different types of activity are reviewed [fr

  18. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  19. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  20. Proceedings of the international meeting on reduced enrichment for research and test reactors

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1984-05-01

    The purpose of the Meeting was to exchange and discuss the most up-to-date information on the progress of various programs related to research and test reactor core conversion from high enriched uranium to lower enriched uranium. The papers presented during the Meeting were divided into 9 sessions and one round able discussion which concluded the Meeting. The Sessions were: Program, Fuel Development, Fuel Fabrication, Irradiation testing, Safety Analysis, Special Reactor Conversion, Reactor Design, Critical Experiments, and Reprocessing and Spent Fuel Storage. Thus, topics of this Meeting were of a very wide range that was expected to result in information exchange valuable for all the participants in the RERTR program

  1. Investigation of Burnup Credit Modeling Issues Associated with BWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2000-10-12

    /or decreasing the neutron absorber concentration. However, regulations associated with permanent disposal require consideration of scenarios and/or package conditions that are not relevant or credible for storage or transportation, and as a result, necessitate credit for burnup in BWR fuel to maintain capacity objectives. Burnup credit relies on depletion calculations to provide a conservative estimate of spent fuel contents and subsequent criticality calculations to assess the value of k{sub eff} for a spent fuel cask or a fuel configuration under a variety of postulated conditions. Therefore, validation is necessary to quantify biases and uncertainties between analytic predictions and measured isotopics. However, the design and operational aspects of BWRs result in a more heterogeneous and time-varying reactor configuration than those of PWRs. Thus, BWR spent fuel analyses and validation efforts are significantly more complicated than those of their PWR counterparts. BWR spent fuel assemblies are manufactured with variable enrichments, both radially and axially, are exposed to time- and spatially-varying void distributions, contain integral burnable absorber rods, and are subject to partial control-blade insertion during operation. The latter is especially true in older fuel assemblies. Away-from-reactor depletion tools used for characterization of spent fuel have typically been developed and validated for more homogeneous PWR fuel assemblies without integral burnable absorber rods, and thus must be reassessed for BWR configurations to determine a conservative methodology for estimating the isotopic content of spent BWR fuel. This report examines the use of SAS2H8 for calculating spent BWR fuel isotopics for burnup-credit criticality safety analyses and assesses the adequacy of SAS2H for this task. The effects of SAS2H modeling assumptions on calculated spent BWR fuel isotopics and the effects of depletion assumptions on calculated k{sub inf} values are investigated. Detailed

  2. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  3. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  4. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    International Nuclear Information System (INIS)

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately

  5. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  6. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  7. Reduced Enrichment for Research and Test Reactors. Proceedings of the XIV international meeting

    International Nuclear Information System (INIS)

    Suripto, Asmedi; Hastowo, Hudi; Hersubeno, J.B.

    1995-01-01

    Apart from the progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program the national programs of Indonesia, Japan and China were presented. The major events, findings, and activities of 1991 are reviewed with a brief summary of the results which the RERTR Program had achieved by the end of 1990 in collaboration with its many international partners. The RERTR program, has concentrated its efforts on technology transfer and implementation activities consistent with the guidance received from the Department of Energy at the end of 1990. A number of presentations were devoted to development of new fuel uranium silicide fuel elements, fuel irradiation testing and reactor core conversions from highly enriched (HEU) to slightly enriched uranium (LEU). Calculations and measurements of converted reactor core parameters were shown related to safety test and analysis. Fuel cycle issue were discussed as well. One should note that a significant number of papers were devoted to Indonesian GA SIWABESSY reactor core conversion and related topics

  8. Fuel Arraying and Rod Dimensioning of FCM replacement fuel for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Shin, Chang Hwan; Yang, Yong Sik; Kang, Heung Seok; Kim, Jae Yong; Koo, Yang Hyun; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    After Fukushima accident, necessity of developing an accident-tolerant fuel for existing LWRs has been raised. The joint R and D project (US-DOE funded) on the FCM replacement fuel for LWRs has been recently begun at KAERI. FCM refers to the fully ceramic micro-encapsulated fuel which is compacted hundreds of TRISO particles into ceramic conductive matrix pellet. The project aims to show the fuel feasibility and compatibility with existing LWR cores (OPR1000). They require new design to compensate the low fissile inventory of particle-based fuel and comprehensive qualification of neutronic, thermal hydraulics and mechanical aspect. Figure 1 shows the overall concept of the FCM replacement fuel. For a particle-based fuel, a thick coated layer surrounding UO{sub 2} kernel retains released fission gas within the fuel particle element and significantly reduce fissile inventory per unit fuel volume. On the consideration of low fissile inventory and high enrichment cost, FCM fuel will be a fat fuel with tight inter-rod spacing. Thus, this paper introduces some technical issues related to fuel arraying (fuel lattice formation) and fuel rod dimensioning (fuel rod diameter) of FCM replacement fuel for LWRs, based on the experience of developing dual-cooled annular fuel for existing LWRs

  9. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  10. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  11. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  12. The effects of auditory enrichment on gorillas.

    Science.gov (United States)

    Robbins, Lindsey; Margulis, Susan W

    2014-01-01

    Several studies have demonstrated that auditory enrichment can reduce stereotypic behaviors in captive animals. The purpose of this study was to determine the relative effectiveness of three different types of auditory enrichment-naturalistic sounds, classical music, and rock music-in reducing stereotypic behavior displayed by Western lowland gorillas (Gorilla gorilla gorilla). Three gorillas (one adult male, two adult females) were observed at the Buffalo Zoo for a total of 24 hr per music trial. A control observation period, during which no sounds were presented, was also included. Each music trial consisted of a total of three weeks with a 1-week control period in between each music type. The results reveal a decrease in stereotypic behaviors from the control period to naturalistic sounds. The naturalistic sounds also affected patterns of several other behaviors including locomotion. In contrast, stereotypy increased in the presence of classical and rock music. These results suggest that auditory enrichment, which is not commonly used in zoos in a systematic way, can be easily utilized by keepers to help decrease stereotypic behavior, but the nature of the stimulus, as well as the differential responses of individual animals, need to be considered. © 2014 Wiley Periodicals, Inc.

  13. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  14. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  15. Homogeneous Thorium Fuel Cycles in Candu Reactors

    International Nuclear Information System (INIS)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M.

    2009-01-01

    The CANDU R reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU R is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy of Canada Report, AECL-11937. 2. P

  16. Out-of-core fuel cycle optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1988-01-01

    A methodology has been developed for determining the family of near-optimum fuel management schemes that minimize the levelized fuel cycle costs of a light water reactor over a multicycle planning horizon. Feed batch enrichments and sizes, burned batches to reinsert, and burnable poison loadings are determined for each cycle in the planning horizon. Flexibility in the methodology includes the capability to assess the economic benefits of various partially burned bath reload strategies as well as the effects of using split feed enrichments and enrichment palettes. Constraint limitations are imposed on feed enrichments, discharge burnups, moderator temperature coefficient, and cycle energy requirements

  17. Radiological implications of plutonium recycle and the use of thorium fuels in thermal power reactor operations

    International Nuclear Information System (INIS)

    MacDonald, H.F.; Nair, S.

    1979-01-01

    The Central Electricity Generating Board reactor inventory code RICE has been used to calculate the buildup of activity and radioactive emissions for a range of alternative fuel cycles based on a conceptual high-temperature gas-cooled reactor design. The fuels included in this study were a conventional 235 U-enriched oxide fuel, a mixed PuO 2 /UO 2 fuel employing pressurized water reactor plutonium, and both low- and high-enrichment mixed 235 UO 2 /ThO 2 fuels. The results have been used to quantify the radiological protection implications of these fuel cycles in terms of fuel handling and reprocessing waste management

  18. Neutronic feasibility studies using U-Mo dispersion fuel (9 Wt % Mo, 5.0 gU/cm3) for LEU conversion of the MARIA (Poland), IR-8 (Russia), and WWR-SM (Uzbekistan) research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, E.

    2000-01-01

    U-Mo alloys dispersed in an Al matrix offer the potential for high-density uranium fuels needed for the LEU conversion of many research reactors. On-going fuel qualification tests by the US RERTR Program show good irradiation properties of U-Mo alloy dispersion fuel containing 7-10 weight percent molybdenum. For the neutronic studies in this paper the alloy was assumed to contain 9 wt % Mo (U-9Mo) with a uranium density in the fuel meat of 5.00 gU/cm 3 which corresponds to 32.5 volume % U-9Mo. Fuels containing U-9Mo have been used in Russian reactors since the 1950's. For the three research reactors analyzed here, LEU fuel element thicknesses are the same as those for the Russian-fabricated HEU reference fuel elements. Relative to the reference fuels containing 80-90% enriched uranium, LEU U-9Mo Al-dispersion fuel with 5.00 gU/cm 3 doubles the cycle length of the MARIA reactor and increases the IR-8 cycle length by about 11%. For the WWR-SM reactor, the cycle length, and thus the number of fuel assemblies used per year, is nearly unchanged. To match the cycle length of the 36% enriched fuel currently used in the WWR-SM reactor will require a uranium density in the LEU U-9Mo Al-dispersion fuel of about 5.4 gU/cm 3 . The 5.00 gU/cm 3 LEU fuel causes thermal neutron fluxes in water holes near the edge of the core to decrease by (6-8)% for all three reactors. (author)

  19. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  20. Technical problems in case of utilizing uranium of medium enrichment for a research reactor

    International Nuclear Information System (INIS)

    Kanda, Keiji; Shibata, Shun-ichi

    1979-01-01

    Usually, highly enriched uranium of 90 - 93% is used for research reactors, but the US government proposed the strong policy to use low enriched uranium of the uranium of medium enrichment in unavoidable case from the viewpoint of the resistance to nuclear proliferation in November, 1977. This policy is naturally applied to Japan also. The export of highly enriched uranium will be permitted only when the President approves it after the technical and economical evaluations by the government. The Kyoto University high flux reactor has the features which are not seen in other research reactors, such as medical irradiation, and it is hard to attain the objectives of researches unless HEU is used. The application for the export of HEU was accepted in February, 1978. The nuclear characteristics of the KUHFR when medium or low enriched uranium is used, the criticality experiment in the KUCA using the uranium of medium enrichment, and the burning test on the uranium fuel plates of medium enrichment are described. The research project to lower the degree of enrichment in the fuel for research and test reactors is expected to be continued down to less than 20%. The MEU of 45% enrichment will be actually used in 1983. (Kako, I.)

  1. AEC determines uranium enrichment policy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Advisory Committee on Uranium Enrichment of the Atomic Energy Commission (AEC) has submitted a report to AEC chairman concerning the promotion of the introduction of advanced material, high performance centrifuges to replace conventional metallic drum centrifuges, and the development of next generation advanced centrifuges. The report also called for the postponement until around 1997 of the decision whether the development should be continued or not on atomic vapor laser isotope separation (AVLIS) and molecular laser isotope separation (MLIS) processes, as well as the virtual freezing of the construction of a chemical process demonstration plant. The report was approved by the AEC chairman in August. The uranium enrichment service market in the world will continue to be characterized by oversupply. The domestic situation of uranium enrichment supply-demand trend, progress of the expansion of Rokkasho enrichment plant, the trend in the development of gas centrifuge process and the basic philosophy of commercializing domestic uranium enrichment are reported. (K.I.)

  2. 1988 nuclear fuel imports and exports of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The statistic of imports and exports of nuclear fuels and source materials compiled by the Federal Office for Industry on behalf of the Federal Ministry for the Environment, Nature Conservation, and Reactor Safety show a 32.3% decrease in imports and a 17.6% increase in exports in 1988 compared to the previous year. Most of the imports are made up of source materials, natural uranium, and uranium enriched up to 10%. The term 'source material' as used in these statistics refers only to uranium concentrate. A considerable increase is reported in imports of uranium enriched 3 to 10% and of plutonium. All other products have suffered major or minor decreases. (orig.)

  3. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  4. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Domoto, Noboru; Masuda, Hiroyuki

    1989-01-01

    In a nuclear fuel assembly loaded with a plurality of fuel rods, the inside of a fuel rod disposed at a high neutron flux region is divided into an inner region and an outer region, and more burnable poisons are mixed in the inner region than in the outer region. Alternatively, the central portion of a pellet disposed in a high neutron flux region is made hollow, in which burnable poisons are charged. This can prevent neutron infinite multiplication factor from decreasing extremely at the initial burning stage. Further, the burnable poisons are not rapidly burnt completely and local peaking coefficient can be controlled. Accordingly, in a case of suppressing a predetermined excess reactivity by using a fuel rod incorporated with the burnable poison, the fuel economy can be improved more and the reactor core controllability can also be improved as compared with the usual case. (T.M.)

  5. CLEAN: CLustering Enrichment ANalysis

    Science.gov (United States)

    Freudenberg, Johannes M; Joshi, Vineet K; Hu, Zhen; Medvedovic, Mario

    2009-01-01

    Background Integration of biological knowledge encoded in various lists of functionally related genes has become one of the most important aspects of analyzing genome-wide functional genomics data. In the context of cluster analysis, functional coherence of clusters established through such analyses have been used to identify biologically meaningful clusters, compare clustering algorithms and identify biological pathways associated with the biological process under investigation. Results We developed a computational framework for analytically and visually integrating knowledge-based functional categories with the cluster analysis of genomics data. The framework is based on the simple, conceptually appealing, and biologically interpretable gene-specific functional coherence score (CLEAN score). The score is derived by correlating the clustering structure as a whole with functional categories of interest. We directly demonstrate that integrating biological knowledge in this way improves the reproducibility of conclusions derived from cluster analysis. The CLEAN score differentiates between the levels of functional coherence for genes within the same cluster based on their membership in enriched functional categories. We show that this aspect results in higher reproducibility across independent datasets and produces more informative genes for distinguishing different sample types than the scores based on the traditional cluster-wide analysis. We also demonstrate the utility of the CLEAN framework in comparing clusterings produced by different algorithms. CLEAN was implemented as an add-on R package and can be downloaded at . The package integrates routines for calculating gene specific functional coherence scores and the open source interactive Java-based viewer Functional TreeView (FTreeView). Conclusion Our results indicate that using the gene-specific functional coherence score improves the reproducibility of the conclusions made about clusters of co

  6. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  7. Performance and economic penalties of some LEU [low enriched uranium] conversion options for the Australian Reactor HIFAR

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Robinson, G.S.

    1987-01-01

    Performance calculations for the conversion of HIFAR to low enriched uranium (LEU) fuel have been extended to a wide range of 235 U loadings per fuel element. Using a simple approximate algorithm for the likely costs of LEU compared with highly enriched uranium (HEU) fuel elements, the increases in annual fuelling costs for LEU compared with HEU fuel are examined for a range of conversion options involving different performance penalties. No significant operational/safety problems were found for any of the options canvassed. (Author)

  8. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  9. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  10. Fuel cycle in Japanese Fugen - HWR

    International Nuclear Information System (INIS)

    1979-04-01

    This paper describes the use of plutonium-bearing fuel in the Japanese Fugen-HWR. The Fugen-HWR is a pressure tube type, boiling light water cooled, and heavy water moderated reactor, which by using plutonium fuel (MOX) achieves the advantage of high neutron economy. The characteristics of the reactor are discussed, particularly its ability to operate with several different types of fuel - Pu-natural U MOX, Pu-Depleted U (from spent LWR fuel) MOX, Pu-Depleted U (from enrichment tails) MOX, and enriched UO 2 . The natural U and separative work units saved are given and the fuel management and control of the reactor discussed. Non-proliferation and safety considerations are given. The Fugen-HWR achieved 100% power rating in the autumn of 1979

  11. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  12. Initial report on characterization of excess highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.

  13. Design of a PWR for long cycle and direct recycling of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M.A., E-mail: mnader73@yahoo.com

    2015-12-15

    Highlights: • Single-batch loading PWR with a new fuel assembly for 36 calendar months cycle was designed. • The new fuel assembly is constructed from a number of CANDU fuel bundles. • This design enables to recycle the spent fuel directly in CANDU reactors for high burnup. • Around 56 MWd/kgU burnup is achieved from fuel that has average enrichment of 4.8 w/o U-235 using this strategy. • Safety parameters such as the power distribution and CANDU coolant void reactivity were considered. - Abstract: In a previous work, a new design was proposed for the Pressurized Water Reactor (PWR) fuel assembly for direct use of the PWR spent fuel without processing. The proposed assembly has four zircaloy-4 tubes contains a number of 61-element CANDU fuel bundles (8 bundles per tube) stacked end to end. The space between the tubes contains 44 lower enriched UO{sub 2} fuel rods and 12 guide tubes. In this paper, this assembly is used to build a single batch loading 36-month PWR and the spent CANDU bundles are recycled in the on power refueling CANDU reactors. The Advanced PWR (APWR) is considered as a reference design. The average enrichment in the core is 4.76%w U-235. IFBA and Gd{sub 2}O{sub 3} as burnable poisons are used for controlling the excess reactivity and to flatten the power distribution. The calculations using MCNPX showed that the PWR will discharge the fuel with average burnup of 31.8 MWd/kgU after 1000 effective full power days. Assuming a 95 days plant outage, 36 calendar months can be achieved with a capacity factor of 91.3%. Good power distribution in the core is obtained during the cycle and the required critical boron concentration is less than 1750 ppm. Recycling of the discharged CANDU fuel bundles that represents 85% of the fuel in the assembly, in CANDU-6 or in 700 MWe Advanced CANDU Reactor (ACR-700), an additional burnup of about 31 or 26 MWd/kgU burnup can be achieved, respectively. Averaging the fuel burnup on the all fuel in the PWR

  14. Comparison of the parameters of the IR-8 reactor with different fuel assembly designs with LEU fuel

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1999-01-01

    The estimation of neutron-physical, heat and hydraulic parameters of the IR-8 research reactor with low enriched uranium (LEU) fuel was performed. Two fuel assembly (FA) designs were reviewed: IRT-4M with the tubular type fuel elements and IRT-MR with the rod type fuel elements. UO 2 -Al dispersion 19.75% enrichment fuel is used in both cases. The results of the calculations were compared with main parameters of the reactor, using the current IRT-3M FA with 90% high enriched uranium (HEU) fuel. The results of these comparisons showed that during the LEU conversion of the reactor the cycle length, excess reactivity and peak power of the IRT-MR type FA are higher than for the IRT-3M type FA and IRT-4M type FA. (author)

  15. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  16. Fuel cycles of WWER-1000 based on assemblies with increased fuel mass

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlovichev, A.; Shcherenko, A.

    2011-01-01

    Modern WWER-1000 fuel cycles are based on FAs with the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively. The highest possible fuel enrichment has reached its license limit that is 4.95 %. Research in the field of modernization, safety justification and licensing of equipment for fuel manufacture, storage and transportation are required for further fuel enrichment increase (above 5 %). So in the nearest future an improvement of technical and economic characteristics of fuel cycles is possible if assembly fuel mass is increased. The available technology of the cladding thinning makes it possible. If the fuel rod outer diameter is constant and the clad inner diameter is increased to 7.93 mm, the diameter of the fuel pellet can be increased to 7.8 mm. So the suppression of the pellet central hole allows increasing assembly fuel weight by about 8 %. In this paper we analyze how technical and economic characteristics of WWER-1000 fuel cycle change when an advanced FA is applied instead of standard one. Comparison is made between FAs with equal time interval between refueling. This method of comparison makes it possible to eliminate the parameters that constitute the operation component of electricity generation cost, taking into account only the following technical and economic characteristics: 1)cycle length; 2) average burnup of spent FAs; 3) specific natural uranium consumption; 4)specific quantity of separative work units; 5) specific enriched uranium consumption; 6) specific assembly consumption. Collected data allow estimating the efficiency of assembly fuel weight increase and verifying fuel cycle characteristics that may be obtained in the advanced FAs. (authors)

  17. Economic study of fuel scenarios for a reload; Estudio economico de escenarios de combustible para una recarga

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo M, J. A.; Montes T, J. L.; Perusquia del C, R., E-mail: juanjose.ortiz@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the results to plan different scenarios for designing a nuclear fuel reload are shown. Given a reload with specific energy requirements, the objective is to verify the feasibility of using either a greater number of fresh fuel with less uranium enrichment, or otherwise reduce the number of fresh fuel assemblies and therefore they have a higher average uranium enrichment. For the study a cycle balance 18-month basis with 112 fresh assemblies divided into two lots, with energy produced of 10,075 Mwd/Tu was used. For the designs under the mentioned scenarios, the heuristic techniques known as taboo search and neural networks were used. To verify the feasibility of obtained reloads an economic study of the reload costs was performed. The results showed that is possible to design reloads under the two scenarios, but was more complicated decrease the amount of fresh fuel assemblies. In both scenarios was possible to reduce manufacturing costs of fuel and according to purely static calculation, it would be possible to increase the energy produced. (Author)

  18. Work-family enrichment and psychological health

    Directory of Open Access Journals (Sweden)

    Ameeta Jaga

    2013-09-01

    Research purpose: The objective of this study was to investigate whether work-family enrichment helps to predict psychological health, specifically increased subjective well-being and decreased feelings of emotional exhaustion and depression. Motivation for the study: The burgeoning literature on the work-family interface contains little on the potentially positive benefits of maintaining work and family roles. Research approach, design and method: The authors used a descriptive research design. Employees in two national organisations in the financial retail and logistics industries completed a self-administered survey questionnaire. The authors analysed responses from those who reported both family and work responsibilities (N = 160. Main findings: Consistent with previous research, factor analysis revealed two distinct directions of work-family enrichment: from work to family (W2FE and from family to work (F2WE. Multiple regression analysis showed that F2WE explained a significant proportion of the variance in subjective wellbeing, whilst W2FE explained a significant proportion of the variance in depression and emotional exhaustion. Practical/managerial implications: The findings of this study revealed the individual and organisational benefits of fostering work-family enrichment. Contributions/value add: This study presents empirical evidence for the need to focus on the positive aspects of the work-family interface, provides further support for a positive organisational psychology perspective in organisations and hopefully will encourage further research on interventions in organisations and families.

  19. DOE and the United States enrichment market

    International Nuclear Information System (INIS)

    Rutkowski, E.E.

    1993-01-01

    The US Department of Energy (DOE) and its predecessors have exerted a predominant influence in the uranium enrichment services industry since 1969, when it began to sell its services to private industry under a Requirement-Type Contract (RTC). After almost 25 years of providing these services to utilities throughout the world, DOE is now preparing to hand over responsibility to the emerging US Enrichment Corporation (USEC), which was created by the 1992 Energy Bill and will begin its tenure on July 1, 1993. DOE has had some notable successes, including revenue generation of about $25 billion from its domestic and foreign sales since 1969. Annual revenues from civilian dollars over the next several years. However, most of the sales attributed to these revenues took place in 1986-more than six years ago. Presently, US utility commitments are decreasing significantly; to date, US utilities have committed less than two percent of their total FY2002 enrichment requirements to DOE. In spite of the fact that DOE has enjoyed some success, its past actions, or sometimes inactions, have often been steeped in controversy that resulted in customer alienation and dissatisfaction. It is the legacy of past DOE contracting practices, increased competition, and massive contractual terminations, that USEC will inherit from DOE. Therefore, it is relevant to consider the major issues that have fashioned the current US market and resulted in USEC's initial position in the marketplace

  20. Recent developments in the United States uranium enrichment enterprise

    International Nuclear Information System (INIS)

    Longenecker, J.R.

    1987-01-01

    In the near term, DOE is reducing production costs at the gaseous diffusion plants (GDPs), and we've made significant progress already. GDP production costs are expected to decline even further in the near future. DOE is also negotiating new power contracts for the GDPs. The new power contracts, capital improvements, and the use of more unfirm power should reduce our GDP average cost of production to about $60/SWU in the 1990s. Significant technical progress on the Atomic Vapor Laser Isotope Separation (AVLIS) advanced enrichment technology has been made recently. The highlight has been a series of half-scale integrated enrichment experiments using the Laser Demonstration Facility and the Mars separator. We are also ready to initiate testing in the full-scale Separator Demonstration Facility, including a 100 hour run that will vaporize over 5 tons of uranium. DOE is developing plans to restructure the enterprise into a more businesslike entity. The key objective in 1987 is to work with Congress to advance the restructuring of the U.S. uranium enrichment enterprise, to assure its long term competitiveness. We hope to establish in law the charter, objectives, and goals for the restructured enterprise. DOE expects that the world price for enrichment services will continue to decrease in the future. There should be sufficient excess enrichment capacity in the future to assure that competition will be keen. Such a healthy, competitive, world enrichment market will be beneficial to both suppliers and consumers of uranium enrichment services. (J.P.N.)

  1. Laser-enrichment of the odd isotopes of gadolinium for use as burnable poison in nuclear reactors

    International Nuclear Information System (INIS)

    Santala, M.I.K.; Lauranto, H.M.; Kajava, T.T.; Salomaa, R.R.E.

    1995-01-01

    Gadolinium (Gd) has two isotopes which are strong neutron absorbers. It would be desirable to enrich Gd in those isotopes for use in nuclear fuels. Isotope-selectivity based on spectral isotope shifts has been investigated. Our experimental results indicate that significant enrichment is achievable even with relatively broadband (∼3 GHz) lasers. copyright 1995 American Institute of Physics

  2. Laser-enrichment of the odd isotopes of gadolinium for use as burnable poison in nuclear reactors

    International Nuclear Information System (INIS)

    Santala, M. I. K.; Lauranto, H. M.; Kajava, T. T.; Salomaa, R. R. E.

    1995-01-01

    Gadolinium (Gd) has two isotopes which are strong neutron absorbers. It would be desirable to enrich Gd in those isotopes for use in nuclear fuels. Isotope-selectivity based on spectral isotope shifts has been investigated. Our experimental results indicate that significant enrichment is achievable even with relatively broadband (≅3 GHz) lasers

  3. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  4. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    Science.gov (United States)

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. © The Author(s) 2014.

  5. Irradiation program of highly loaded UAl2-Al fuel plates

    International Nuclear Information System (INIS)

    Brown, K.R.

    1983-01-01

    An irradiation test program was conducted to confirm the performance of high-uranium-density loaded fuel plates at high burnup using UAl/sub x/-Al dispersion fuels. Although the program is being conducted with fuel plates containing 93% enriched uranium, the results are applicable to medium- and low-enriched uranium. No correlation could be established between failed plates and either burnup or plate fuel composition when the plates were removed prior to target burnup due to a fission product release to the ATR primary coolant system. The irradiation test was reinserted to obtain target burnup

  6. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  7. Development of empirical relation for isotope of uranium in enriched uranium matrix

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Vidyasagar, D.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Uranium enriched in 235 U is required in commercial light water reactors to produce a controlled nuclear reaction. Enrichment allows the 235 U isotopes to be increased from 0.71% to a range between 2% to 5% depending upon requirement. The enriched uranium in the form of sintered UO 2 pellet is used for any commercially operating boiling light water reactors. The enriched uranium fuel bundle surface swipes sample is being analysed to assess the tramp uranium as a quality control parameter. It is known that the 234 U isotope also enriched along with 235 U isotope in conventional gaseous diffusion enrichment process. The information about enrichment percentage of 234 U helps to characterize isotopic properties of enriched uranium. A few reports provide the empirical equation and graphs for finding out the specific activity, activity percentage, activity ratio of 234 U isotopes for enriched uranium. Most of them have not provided the reference for the data used and their source. An attempt has been made to model the relationship between 234 U and 235 U as a function of uranium enrichment at low level

  8. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  9. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  10. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  11. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  12. Independent assessment of forseeable problems in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1975-01-01

    Information is presented concerning the U. S. nuclear fuel cycle business including investment requirements; nuclear power growth projection; reliability of uranium supply; enrichment facilities; plutonium recycle; safeguards; and insurance

  13. Research Establishment progress report 1978 - uranium fuel cycle

    International Nuclear Information System (INIS)

    1978-12-01

    A report of research programs continuing in the following areas is presented: mining and treatment of uranium ores, uranium enrichment, waste treatment, reprocessing and the uranium fuel cycle. Staff responsible for each project are indicated

  14. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...... and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  15. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  16. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  17. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  18. Licensed fuel facility status report. Volume 5, No. 2. Inventory difference data, July 1984-December 1984

    International Nuclear Information System (INIS)

    1985-10-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  19. Licensed fuel facility status report. Inventory difference data, July-December 1985. Volume 6, No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  20. Licensed fuel facility status report. Inventory difference data, January-June 1985. Volume 6, No. 1

    International Nuclear Information System (INIS)

    1986-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  1. Licensed fuel facility status report. Inventory difference data, July 1983-December 1983. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1984-08-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  2. Licensed fuel facility status report: Inventory difference data, July 1986-December 1986

    International Nuclear Information System (INIS)

    1987-08-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  3. Licensed fuel facility status report. Inventory difference data, January-June 1983. Volume 4, No. 1

    International Nuclear Information System (INIS)

    1984-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, or uranium-233

  4. Licensed fuel facility status report: Inventory difference data, July 1987-December 1987

    International Nuclear Information System (INIS)

    1988-09-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  5. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  6. 37-Active rods fuel element for Atucha 1 nuclear power plant. Effects of this change in design over the neutronic behavior, decay power and radioactive inventory

    International Nuclear Information System (INIS)

    Villar, Javier E.

    1999-01-01

    The influence of the use of 37-rods fuel element on the behavior of the Atucha 1 nuclear power plant homogeneous core with slightly enriched fuel to 0.85 w % were studied through representative parameters such as average discharge burnup, channel powers, reactivity coefficients, kinetic parameters, radioactive inventory and decay power. In general, the values of mentioned parameters are similar to those corresponding to a core with the 36-rods fuel element actually in use, although it must be emphasized a decrease both in linear power and, in minor degree, in the efficiency of shut-off and control rods and a slight increase in the discharge burnup. The fuel management strategy developed for a core with 36-rods elements can be maintained. (author)

  7. Photocatalysis for renewable energy production using PhotoFuelCells.

    Science.gov (United States)

    Michal, Robert; Sfaelou, Stavroula; Lianos, Panagiotis

    2014-11-27

    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the "photoelectrocatalytic leaf", which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  8. Photocatalysis for Renewable Energy Production Using PhotoFuelCells

    Directory of Open Access Journals (Sweden)

    Robert Michal

    2014-11-01

    Full Text Available The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the “photoelectrocatalytic leaf”, which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  9. Remarks on the demands for the qualification of high density fuel

    International Nuclear Information System (INIS)

    Krull, W.

    1984-01-01

    Research reactors using today highly enriched uranium (HEU) will be obliged within the next years to use low enriched uranium (LEU). The qualification of this fuel is a major task researches are doing world-wide. As qualification can be a relative statement the demands on the qualification of high density fuel from the standpoint of a research reactor operator are given. The needed qualification steps are described: test of miniplates, test fuel elements and whole core conversion. The different demands on the qualified fuel from the fuel fabricator, the licensing procedure and the reactor operator are discussed. Finally the status of qualification for high density fuel is summarized. (orig.) [de

  10. Status of research reactor spent fuel world-wide: Database summary

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1996-01-01

    Results complied in the research reactor spent fuel database are used to assess the status of research reactor spent fuel world-wide. Fuel assemblies, their types, enrichment, origin of enrichment and geological distribution among the industrialized and developed countries of the world are discussed. Fuel management practices in wet and dry storage facilities and the concerns of reactor operators about long-term storage of their spent fuel are presented and some of the activities carried out by the International Atomic Energy Agency to address the issues associated with research reactor spent fuel are outlined. (author). 4 refs, 17 figs, 4 tabs

  11. Critical experiments on STACY homogeneous core containing 10% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Tonoike, Kotaro; Yamane, Yuichi; Watanabe, Shouichi

    2003-01-01

    In order to investigate criticality properties of low enriched uranyl nitrate solution treated in the reprocessing facility for LWR fuel cycle, systematic and high precision critical experiments have been performed at the Static Experiment Critical Facility, STACY since 1995. Criticality benchmark data on 10% enriched uranyl nitrate solution for single core and multiple core systems have been accumulated using cylindrical and slab type core tanks. This paper overviews mains data and related criticality calculation results using standard criticality safety calculation code system. (author)

  12. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  13. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  14. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.

    1986-01-01

    Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)

  15. Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream

    Science.gov (United States)

    John M. Davis; Amy D. Rosemond; Sue L. Eggert; Wyatt F. Cross; J. Bruce. Wallace

    2010-01-01

    We assessed how a 5-yr nutrient enrichment affected the responses of different size classes of primary consumers and predators in a detritus-based headwater stream. We hypothesized that alterations in detritus availability because of enrichment would decrease the abundance and biomass of large-bodied consumers. In contrast, we found that 2 yr of enrichment increased...

  16. Fuel assemblies for use in nuclear reactors

    International Nuclear Information System (INIS)

    Mochida, Takaaki.

    1987-01-01

    Purpose: To increase the plutonium utilization amount and improve the uranium-saving effect in the fuel assemblies of PWR type reactor using mixed uranium-plutonium oxides. Constitution: MOX fuel rods comprising mixed plutonium-uranium oxides are disposed to the outer circumference of a fuel assembly and uranium fuel rods only composed of uranium oxides are disposed to the central portion thereof. In such a fuel assembly, since the uranium fuel rods are present at the periphery of the control rod, the control rod worth is the same as that of the uranium fuel assembly in the prior art. Further, since about 25 % of the entire fuel rods is composed of the MOX fuel rods, the plutonium utilization amount is increased. Further, since the MOX fuel rods at low enrichment degree are present at the outer circumferential portion, mismatching at the boundary to the adjacent MOX fuel assembly is reduced and the problem of local power peaking increase in the MOX fuel assembly is neither present. (Kamimura, M.)

  17. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...... relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky...

  18. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  19. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  20. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  1. Institutional arrangements for uranium enrichment U.S. contribution to INFCE working group 2

    International Nuclear Information System (INIS)

    1978-12-01

    In acquiring enrichment services, by contract or by facility construction, assurance of long term fuel supply and minimizing proliferation risks are two important factors. Various alternative institutional arrangements, ranging from construction of a national facility, reliance on a single foreign supplier or on several foreign sources, to multinational enrichment centers are reviewed. It is argued that for most nations the two specified goals are likely to be met by contracting with one or more foreign suppliers. The possible creation of an international fuel bank is explored briefly

  2. Influence of environmental enrichment techniques in improvement of welfare of Callithrix penicillata (E. Geoffroy, 1812 (Primates: Callitrichidae

    Directory of Open Access Journals (Sweden)

    Mariana Prado Borges

    2011-02-01

    Full Text Available This study applied environmental enrichment techniques to a captive Callithrix penicillata group aiming to improve the welfare of these animals. Enrichment was carried out with six animals, three males and three females, of Sabiá Municipal Park zoo (Uberlândia, MG, Brazil. Data were collected in three phases, before enrichment, during enrichment and after enrichment, each phase with 40h of quantitative observations. We used two sensorial and four feeding enrichment devices. The animals’ responses to the enrichment were positive. We observed an increase in some of the behavioral categories, such as “exploring”, “foraging”, “social” and “territorial”. On the other hand, other behaviors decreased, e.g. “stereotypic” (a behavior that indicates stress. During and after the application of enrichment, new behaviors appeared particularly reproductive behaviors, which we had not seen previously. The behavioral changes observed indicate that the enrichment promoted an increase in welfare.

  3. A Systematic Approach to Marital Enrichment.

    Science.gov (United States)

    Dinkmeyer, Don; Carlson, Jon

    1986-01-01

    Presents a systematic approach to enriching marital relationships. The history and current status of marital enrichment is reviewed. An Adlerian approach to marital enrichment is described. Applications of the program in enrichment groups, marriage therapy and couple groups are included. (Author)

  4. IAEA activities related to research reactor fuel conversion and spent fuel return programs

    International Nuclear Information System (INIS)

    Goldman, Ira N.; Adelfang, Pablo; Ritchie, Iain G.

    2005-01-01

    The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programs have supported research reactor fuel conversion from HEU to low enriched uranium (LEU), and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. (author)

  5. IAEA activities related to research reactor fuel conversion and spent fuel return programmes

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Adelfang, P.; Goldman, I.N.

    2004-01-01

    Full text: The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country of origin where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programmes have supported research reactor fuel conversion from HEU to low enriched uranium, and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. It is hoped that an announcement of the extension of the U.S. Acceptance Programme, which is expected in the very near future, will facilitate the life extensions of many productive TRIGA reactors around the world. (author)

  6. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  7. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  8. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  9. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  10. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermal swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.

  11. Fuel assemblies

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki.

    1986-01-01

    Purpose: To maintain a satisfactory integrity by preventing the increase of corrosion at the outer surface of a fuel can near the point of contact between the fuel can and the spacer due to the use of fuel pellets incorporated with burnable poisons. Constitution: Since reactor coolants are at high temperature and high pressure, zirconium and water are brought into reaction to proceed oxidation at the outer surface of a fuel can to form uniform oxidation layers. However, abrasion corrosion is additionally formed at the contact portion between the spacer and the fuel can, by which the corrosion is increased by about 25 %. For preventing such nodular corrosion, fuel pellets not incorporated with burnable poisons are charged at a portion of the fuel rod where the spacer is supported and fuel pellets incorporated with burnable poisons are charged at the positions other than about to thereby suppress the amount of the corrosion at the portion where the corrosion of the fuel can is most liable to be increased to thereby improve the fuel integrity. That is, radiolysis of coolants due to gamma-rays produced from gadolinium is lowered to reduce the oxygen concentration near the outer surface thereby preventing the corrosion. (Kawakami, Y.)

  12. Neutronic analysis of U-free inert matrix and thoria fuels for plutonium disposition in pressurised water reactors

    Science.gov (United States)

    Lombardi, C.; Mazzola, A.; Padovani, E.; Ricotti, M. E.

    1999-08-01

    Inserting reactor-grade (RG) or weapons-grade (WG) plutonium in uranium-free matrices and burning it in light water reactors (LWRs) is an option gaining a wider consensus in the nuclear community. The main results of our neutronic studies performed in the last few years on this subject are reported. Our attention was mainly concentrated on two kinds of matrices: inert matrix in the form of calcia-stabilised zirconia, and thoria. Both materials are likely to exhibit excellent behaviour under irradiation (already demonstrated for thoria fuels) and high chemical stability. Direct disposal of spent fuel should be made feasible and attractive. A preliminary neutronic analysis was performed on these U-free fuels, imposing the constraint of maintaining the same assembly design and cycle length of a standard enriched-uranium fuel. In particular inert matrix fuel (IMF) showed a high plutonium burning capability, but associated with unacceptable feedback coefficients. Therefore, a whole IMF core results unfeasible, and only a partial core loading is possible. The solution then studied consists in replacing ≈21% of the pins of a standard enriched-U subassembly with IMF pins. Detailed assembly and core calculations were performed. A crucial aspect is the choice of a suitable burnable poison, which has to dampen the power peaks in the different fuel pin types without life penalisation. Among the considered poisons, a thin boron coating on the IMF pellets resulted the only effective one. Preliminary IMF pin cell calculations and the detailed ones gave similar results in terms of burnt plutonium fractions: 90% of fissile and 73% of total plutonium is burnt when RG plutonium is used. The main drawbacks of this fuel are the limited core loading capability and the lack of in-pile technological validation. In the case of Pu-Th fuels, pin cell calculations showed that increasing the plutonia content, decreasing the thoria content, and decreasing the pellet diameter are all possible

  13. A working plan for working group 2 'enrichment' within the scope of INFCE

    International Nuclear Information System (INIS)

    1977-01-01

    A working plan for INFCE/WG.2 is presented, outlining the major questions which the group needs to answer under the headings: 1. Enrichment needs and supply, 2. Models for cross-investment, 3. Market situation, 4. Technical and economic assessment of the different enrichment technologies, and 5. Safeguards aspects. It is suggested that the group's assessment should include: 1. Future enrichment capacities, 2. Multinational or regional fuel cycle centres, 3. Possible patterns for guarantees of supply, and 4. Special needs of developing countries

  14. Uranium enriched granites in Sweden

    International Nuclear Information System (INIS)

    Wilson, M.R.; Aakerblom, G.

    1980-01-01

    Granites with uranium contents higher than normal occur in a variety of geological settings in the Swedish Precambrian, and represent a variety of granite types and ages. They may have been generated by (1) the anatexis of continental crust (2) processes occurring at a much greater depth. They commonly show enrichement in F, Sn, W and/or Mo. Only in one case is an important uranium mineralization thought to be directly related to a uranium-enriched granite, while the majority of epigenetic uranium mineralizations with economic potential are related to hydrothermal processes in areas where the bedrock is regionally uranium-enhanced. (Authors)

  15. Uranium enrichment. 1980 annual report

    International Nuclear Information System (INIS)

    1981-05-01

    This report contains data and related information on the production of enriched uranium at the gaseous diffusion plants and an update on the construction and project control center for the gas centrifuge plant. Power usage at the gaseous diffusion plants is illustrated. The report contains several glossy color pictures of the plants and processes described. In addition to gaseous diffusion and the centrifuge process, three advanced isotope separation process are now being developed. The business operation of the enrichment plants is described; charts on revenue, balance sheets, and income statements are included

  16. Uranium and nuclear. Uranium enrichment, the other challenge for the development of civil nuclear

    International Nuclear Information System (INIS)

    Meyer, Teva

    2013-01-01

    As Iran has just stated it was ready for an agreement with the West, the author proposes a discussion of issues related to uranium enrichment, an activity which is currently possible to perform in industrial quantities only in few installations located in France, Germany, Netherlands, United Kingdom, USA, Russia, China and Japan. The author outlines the existence of a new geographical dynamics of enriched uranium, and that enrichment is however a sensitive technology because of its military applications. The author then discusses three mechanisms aimed at ensuring a continuity in nuclear fuel supply: promotion of an internationalisation of means of production, creation of physical stocks of enriched uranium, and creation of supply guarantees for countries which are already producers. The author then outlines difficulties to apply these mechanisms. A map illustrates situations and levels regarding uranium enrichment production and needs

  17. Status report on the cost and availability of enriched uranium for research reactors

    International Nuclear Information System (INIS)

    Mueller, Hans; Laucht, Juergen

    2005-01-01

    Availability and price development of enriched uranium contained in fuel elements for research reactors plays an important role with regard to reliability and economic and planning reasons. The leading price factors of LEU (19.75% enriched uranium metal), are the contained natural uranium equivalent in the form of UF6 (feed component), the separative work of the enrichment (SWU), conversion of the enriched uranium into metal form and associated services, such as transportation. World market price of feed material for enrichment was more or less stable in the last decades. After very moderate feed price increases between 2001 and mid-2003, the price gained momentum and almost doubled in the short period between the 2nd half of 2003 and year-end 2004. (author)

  18. Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO 2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO 2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO 2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO 2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO 2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO 2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO 2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO 2 diluent conditions for the gasoline engine. Increasing CO 2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO 2 diluent conditions. - Highlights: • CO 2 dilution reduces cooling loss and NOx of H 2 -enriched gasoline engines. • H 2 -blended gasoline engine gains better efficiency after CO 2 dilution. • CoVimep of H 2 -blended gasoline engine is kept at low level after CO 2 addition. • CO 2 dilution has small effect on reducing Bmep of H 2 -blended gasoline engine.

  19. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.