WorldWideScience

Sample records for fuel elements irradiated

  1. Transportation of irradiated fuel elements

    Preece, A.H.

    1980-01-01

    The report falls under the headings: introduction (explaining the special interest of the London Borough of Brent, as forming part of the route for transportation of irradiated fuel elements); nuclear power (with special reference to transport of spent fuel and radioactive wastes); the flask aspect (design, safety regulations, criticisms, tests, etc.); the accident aspect (working manual for rail staff, train formation, responsibility, postulated accident situations); the emergency arrangements aspect; the monitoring aspect (health and safety reports); legislation; contingency plans; radiation - relevant background information. (U.K.)

  2. Gamma irradiation plants using reactor fuel elements

    Suckow, W.

    1976-11-01

    Recent irradiation plants utilizing fuel elements are described. Criteria for optimizing such plants, evaluation of the plants realized so far, and applications for the facilities are discussed. (author)

  3. Transportation of irradiated fuel elements

    1980-01-01

    A critique is presented of current methods of transporting spent nuclear fuel and the inadequacies of the associated contingency plans, with particular reference to the transportation of irradiated fuel through London. Anti-nuclear and pro-nuclear arguments are presented on a number of factors, including tests on flasks, levels of radiation exposure, routine transport arrangements and contingency arrangements. (U.K.)

  4. Device for taking gaseous samples from irradiated fuel elements

    Lengacker, B.

    1983-01-01

    The described device allows to take gaseous samples from irradiated fuel elements. It is connected with a gas analyzer and a pressure gage, so that in opening the fuel can the internal pressure can be determined

  5. Examination of irradiated fuel elements using gamma scanning technique

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  6. Element bow profiles from new and irradiated CANDU fuel bundles

    Dennier, D.; Manzer, A.M.; Ryz, M.A.

    1996-01-01

    Improved methods of measuring element profiles on new CANDU fuel bundles were developed at the Sheridan Park Engineering Laboratory, and have now been applied in the hot cells at Whiteshell Laboratories. For the first time, the outer element profiles have been compared between new, out-reactor tested, and irradiated fuel elements. The comparison shows that irradiated element deformation is similar to that observed on elements in out-reactor tested bundles. In addition to the restraints applied to the element via appendages, the element profile appears to be strongly influenced by gravity and the end loads applied by local deformation of the endplate. Irradiation creep in the direction of gravity also tends to be a dominant factor. (author)

  7. The permission of transport of irradiated nuclear fuel elements

    Klomberg, T.J.M.

    2000-01-01

    In July and October 2000 the Dutch government granted permits for the transportation of irradiated nuclear fuel elements. The environmental organization Greenpeace objected against the permit, but that was rejected by the Dutch Council of State. A brief overview is given of the judgements and the state-of-the-art with respect to the transportation of the elements from Dutch reactors and storage facilities in Petten, Dodewaard and Borssele to Cogema in La Hague, France and BNFL in Sellafield, England

  8. Pre-irradiation testing of experimental fuel elements

    Basova, B.G.; Davydov, E.F.; Dvoretskij, V.G.; Ivanov, V.B.; Syuzev, V.N.; Timofeev, G.A.; Tsykanov, V.A.

    1979-01-01

    The problems of testing of experimental fuel elements of nuclear reactors on the basis of complex accountancy of the factors defining operating capacity of the fuel elements are considered. The classification of the parameters under control and the methods of initial technological testing, including testing of the fuel product, cladding and fished fuel element, is given. The requirements to the apparatus used for complex testing are formulated. One of the possible variants of representation of the information obtained in the form of the input certificate of a single fuel element under study is proposed. The processing flowsheet of the gathered information using the computer is given. The approach under consideration is a methodological basis of investigation of fuel element operating life at the testing stage of the experimental fuel elements

  9. Formation of actinides in irradiated HTGR fuel elements

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  10. Formation of actinides in irradiated HTGR fuel elements

    Santos, A.M. dos.

    1976-03-01

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for actinide isolation were tested with highly irradiated ThO 2 . Separation and decontamination factors are presented. Actinide nuclide formation can be described by exponential functions of the type ln msub(nuclide) = A + B x % fifa. The empirical factors A and B were calculated performing a least squares analysis. Build-up of 232 U was discussed. According to the experimental results, 232 U is mainly produced from 230 Th, a certain amount (e.g. about 20% at a 10 5 MWd/t burnup) originated from a (n,2n) reaction of 233 U; a formation from 233 Th by a (n,2n) followed by a (n,γ) reaction was not observed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. After a 1,000 years' storage time, the elements Pa, Am and Cm will no longer influence the total hazard index. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal in consideration of the reprocessing technology which is available presently. (orig.) [de

  11. Equipment for detach the fuel elements of the irradiated candu fuel bundle

    Cojocaru, V.; Dinuta, G.

    2013-01-01

    Monitoring the behaviour of the fuel bundles during their combustion provides useful information for the operation of the nuclear power plant as well as for the fuel manufacturer. Before placing it inside the reactor, the fuel bundle is inspected visually, dimensionally and, during combustion in the reactor, its radioactive behaviour is monitored. The purpose of the presented equipment is to allow the visual external inspection of the damaged fuel bundle in order to identify visible defects and to detach the fuel element by breaking the welded connection between the cap and grid. These devices are operated using the handler devices already existing in the hot cells Post-Irradiation Examination Laboratory (LEPI). This equipment has been used successfully in the LEPI laboratory at SCN Pitesti to inspect the damaged fuel from Cernavoda NPP, in March 2013. (authors)

  12. Repurposing an irradiated instrumented TRIGA fuel element for regular use

    Oliveira, Paulo F.; Souza, Luiz C.A., E-mail: pfo@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    TRIGA IPR-R1 is a research reactor also used for training and radioisotope production, located at the Centro de Desenvolvimento da Tecnologia Nuclear da Comissao Nacional de Energia Nuclear (Nuclear Technology Development Centre, Brazilian National Nuclear Energy Commission - CDTN/CNEN). Its first criticality occurred in November 1960. All original fuel elements were aluminum-clad. In 1971 nine new fuel elements, stainless steel-clad were acquired. One of them was an instrumented fuel element (IFE), equipped with 3 thermocouples. The IFE was introduced into the core only on August 2004, and remained there until July 2007. It was removed from the core after the severing of contacts between the thermocouples and their extension cables. After an unsuccessful attempt to recover electrical access to the thermocouples the IFE was transferred from the reactor pool to an auxiliary spent fuel storage well, with water, in the reactor room. In December 2011 the IFE was transferred to an identical well, dry, where it remains so far. This work is a proposal for recovery of this instrumented fuel element, by removing the cable guide rod and adaptation of a superior terminal plug similar to conventional fuel elements. This will enable its handling through the same tool used for regular fuel elements and its return to the reactor core. This is a delicate intervention in terms of radiological protection, and will require special care to minimize the exposure of operators. (author)

  13. Irradiation tests of THTR fuel elements in the DRAGON reactor (irradiation experiment DR-K3)

    Burck, W.; Duwe, R.; Groos, E.; Mueller, H.

    1977-03-01

    Within the scope of the program 'Development of Spherical Fuel Elements for HTR', similar fuel elements (f.e.) have been irradiated in the DRAGON reactor. The f.e. were fabricated by NUKEM and were to be tested under HTR conditions to scrutinize their employability in the THTR. The fuel was in the form of coated particles moulded into A3 matrix. The kernels of the particles were made of mixed oxide of uranium and thorium with an U 235 enrichment of 90%. One aim of the post irradiation examination was the investigation of irradiation induced changes of mechanical properties (dimensional stability and elastic behaviour) and of the corrosion behaviour which were compared with the properties determined with unirradiated f.e. The measurement of the fission gas release in annealing tests and ceramografic examinations exhibited no damage of the coated particles. The measured concentration distribution of fission metals led to conclusions about their release. All results showed, that neither the coated particles nor the integral fuel spheres experienced any significant changes that could impair their utilization in the THTR. (orig./UA) [de

  14. Irradiation of MEU and LEU test fuel elements in DR 3

    Haack, K.

    1984-01-01

    Irradiation of three MEU and three LEU fuel elements in the Danish reactor DR 3. Thermal and fast neutron flux density scans of the core have been made and the results, related to the U235-content of each fuel element, are compared with the values from HEU fuel elements. The test elements were taken to burn-up percentages of 50-60%. Reactivity values of the test elements at charge and at discharge have been measured and the values are compared with those of HEU fuel elements. (author)

  15. The source regime for irradiation plant operated with fuel elements

    Suckow, W.

    1976-11-01

    The rapid and irregular decay of the gamma radiation from reactor fuel elements requires the establishment of an optimal source regime in order to utilise reactor fuel elements as radiation sources on a technological basis. Critical values have been derived which enable the determination of optimal conditions. In this context all technologically interesting types of source regimes have been examined. Methods to achieve a high gamma yield and a satisfactory dose consistency with time have been developed and important values for these two aspects have been derived. The conditions for optimal radiation source regimes are described in the final conclusions. (author)

  16. Post irradiation examination of HANARO nucler mini-element fuel (metallographic and density test)

    Yoo, Byung Ok; Hong, K. P.; Park, D. G.; Choo, Y. S.; Baik, S. J.; Kim, K. H.; Kim, H. C.; Jung, Y. H.

    2001-05-01

    The post irradiation examination of a HANARO mini-element nuclear fuel, KH96C-004, was done in June 6, 2000. The purpose of this project is to evaluate the in-core performance and reliability of mini-element nuclear fuel for HANARO developed by the project T he Nuclear Fuel Material Development of Research Reactor . And, in order to examine the performance of mini-element nuclear fuel in normal output condition, the post irradiation examination of a nuclear fuel bundle composed by 6 mini nuclear fuel rods and 12 dummy fuel rods was performed. Based on these examination results, the safety and reliability of HANARO fuel and the basic data on the design of HANARO nuclear fuel can be ensured and obtained,

  17. Comparison of irradiation behavior of different uranium silicide dispersion fuel element designs

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1995-01-01

    Calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 were performed for various dispersion fuel element designs. Breakaway swelling criteria in the form of critical fuel volume fractions were derived with data obtained from U 3 SiAl-Al plate irradiations. The results of the analysis show that rod-type elements remain well below the pillowing threshold. However, tubular fuel elements, which behave essentially like plates, will likely develop pillows or blisters at around 90% 235 U burnup. The U 3 Si 2 -Al compounds demonstrate stable swelling behavior throughout the entire burnup range for all fuel element designs

  18. Fabrication of MOX fuel element clusters for irradiation in PWL, CIRUS

    Roy, P.R.; Purushotham, D.S.C.; Majumdar, S.

    1983-01-01

    Three clusters, each containing 6 zircaloy-2 clad short length fuel elements of either MOX or UO 2 fuel pellets were fabricated for irradiation in pressurized water loop of CIRUS. The major objectives of the programme were: (a) to optimize the various fabrication parameters for developing a flow sheet for MOX fuel element fabrication; (b) to study the performance of the MOX fuel elements at a peak heat flux of 110 W/cm 2 ; and (c) to study the effect of various fuel pellet design changes on the behaviour of the fuel element under irradiation. Two clusters, one each of UO 2 and MOX, have been successfully irradiated to the required burn-up level and are now awaiting post irradiation examinations. The third MOX cluster is still undergoing irradiation. Fabrication of these fuel elements involved considerable amount of developing work related to the fabrication of the MOX fuel pellets and the element welding technique and is reported in detail in this report. (author)

  19. Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti

    Horhoianu, Grigore [Institute for Nuclear Research, Pitesti (Romania). Nuclear Fuel Engineering Lab.; Sorescu, Ion [Institute for Nuclear Research, Pitesti (Romania). TRIGA Reactor Loop Facility; Parvan, Marcel [Institute for Nuclear Research, Pitesti (Romania). Hot Cells Lab.

    2012-12-15

    Nine PHWR type fuel elements with reduced length were irradiated in loop A of the TRIGA Research Reactor of INR Pitesti. The primary objective of the test was to determine the performance of nuclear fuel fabricated at INR Pitesti at high linear powers in pressurized water conditions. Six fuel elements were irradiated with a ramp power history, achieving a maximum power of 45 kW/m during pre-ramp and of 64 kW/m in the ramp. The maximum discharge burnup was of 216 MWh/kgU. Another three fuel elements with reduced length were irradiated with declining power history. At the beginning of irradiation the fuel elements achieved a maximum linear power of 66 kW/m. The maximum fuel power was about 1.3 times the maximum expected in PHWR. The maximum discharge burnup was 205 MWh/kgU. The elements were destructively examined in the hot cells of INR Pitesti. Temperature-sensitive parameters such as UO{sub 2} grain growth, fission-gas release and sheath deformations were examined. The tests proved the feasibility of irradiating PHWR type fuel elements at linear powers up to 66 kW/m under pressurized water conditions and demonstrated the possibility of more flexible operation of this fuel in power reactors. This paper presents the results of the investigation. (orig.)

  20. Cracking and bulk movement in irradiated uranium oxide fuel elements

    Bain, A.S.

    1963-09-01

    UO 2 pellets were fabricated with simulated circumferential or diametral cracks, and with voids formed by drilling axial or radial holes. Under irradiation the cracks healed in a region extending out slightly beyond the area of discernible grain growth. Cracks in the cooler outer annulus formed early and remained during the irradiation. Similarly voids in the outer annulus were unchanged, whereas those in the grain-growth region closed. Tungsten wire markers stayed in their original positions, demonstrating that the surrounding columnar grains in the UO 2 had not formed during the solidification of a melt. Decreases in diameter of 1 mm thick Zircaloy-2 sheathing assembled with large fuel/sheath diametral clearances were due to multi-axial stresses arising from axial elongation and the lack of diametral restraint. (author)

  1. Cracking and bulk movement in irradiated uranium oxide fuel elements

    Bain, A S

    1963-09-15

    UO{sub 2} pellets were fabricated with simulated circumferential or diametral cracks, and with voids formed by drilling axial or radial holes. Under irradiation the cracks healed in a region extending out slightly beyond the area of discernible grain growth. Cracks in the cooler outer annulus formed early and remained during the irradiation. Similarly voids in the outer annulus were unchanged, whereas those in the grain-growth region closed. Tungsten wire markers stayed in their original positions, demonstrating that the surrounding columnar grains in the UO{sub 2} had not formed during the solidification of a melt. Decreases in diameter of 1 mm thick Zircaloy-2 sheathing assembled with large fuel/sheath diametral clearances were due to multi-axial stresses arising from axial elongation and the lack of diametral restraint. (author)

  2. Analysis of gamma irradiator dose rate using spent fuel elements with parallel configuration

    Setiyanto; Pudjijanto MS; Ardani

    2006-01-01

    To enhance the utilization of the RSG-GAS reactor spent fuel, the gamma irradiator using spent fuel elements as a gamma source is a suitable choice. This irradiator can be used for food sterilization and preservation. The first step before realization, it is necessary to determine the gamma dose rate theoretically. The assessment was realized for parallel configuration fuel elements with the irradiation space can be placed between fuel element series. This analysis of parallel model was choice to compare with the circle model and as long as possible to get more space for irradiation and to do manipulation of irradiation target. Dose rate calculation were done with MCNP, while the estimation of gamma activities of fuel element was realized by OREGEN code with 1 year of average delay time. The calculation result show that the gamma dose rate of parallel model decreased up to 50% relatively compared with the circle model, but the value still enough for sterilization and preservation. Especially for food preservation, this parallel model give more flexible, while the gamma dose rate can be adjusted to the irradiation needed. The conclusion of this assessment showed that the utilization of reactor spent fuels for gamma irradiator with parallel model give more advantage the circle model. (author)

  3. Post-irradiation examination of fuel elements of Tarapur Atomic Power Station (Report-I)

    Bahl, J.K.; Sah, D.N.; Chatterjee, S.; Sivaramkrishnan, K.S.

    1979-01-01

    Detailed post-irradiation examination of three initial load fuel elements of the Tarapur Atomic Power Station (TAPS) has been carried out. The causes of the element failures have been analysed. It was observed that almost 90% of the length of the elements exoerienced nodular corrosion. It has been estimated that nodular corrosion would seriously affect the wall thickness and surface temperature of higher rated elements. Lunar shaped fret marks have also been observed at some spacer grid locations in the elements. The depth of the largest fret mark was measured to be 16.9% clad wall thickness. Detailed metallographic examination of the clad and fuel in the three elements has been done. The temperatures at different structural regions of the fuel cross-sections have been estimated. The change in fuel density during irradiation has been evaluated by comparing the irradiated fuel diameter with the mean pellet design diameter. The performance of the end plug welds and spacer grid sites in the elements has been assessed. The burnup distribution along the length of the elements has been evaluated by gamma scanning. The redistribution of fission products in the fuel has been examined by gamma scanning and beta-gamma autoradiography. Mechanical properties of the irradiated cladding have been examined by ring tensile testing. (auth.)

  4. Irradiation of Superheater Test Fuel Elements in the Steam Loop of the R2 Reactor

    Ravndal, F

    1967-12-15

    The design, fabrication, irradiation results, and post-irradiation examination for three superheater test fuel elements are described. During the spring of 1966 these clusters, each consisting of six fuel rods, were successfully exposed in the superheater loop No. 5 in the R2 reactor for a maximum of 24 days at a maximum outer cladding surface temperature of {approx} 650 deg C. During irradiation the linear heat rating of the rods was in the range 400-535 W/cm. The diameter of the UO{sub 2} pellets was 11.5 and 13.0 mm; the wall thickness of the 20/25 Nb and 20/35 cladding was in every case 0.4 mm. The diametrical gap between fuel and cladding was one of the main parameters and was chosen to be 0.05, 0.07 and 0.10 mm. These experiments, to be followed by one high cladding temperature irradiation ({approx} 750 deg C) and one long time irradiation ({approx} 6000 MWd/tU), were carried out to demonstrate the operational capability of short superheater test fuel rods at steady and transient operational environments for the Marviken superheater fuel elements and also to provide confirmation of design criteria for the same fuel elements.

  5. Radiation protection aspects in the metallurgical examination of irradiated fuel elements

    Janardhanan, S.; Pillai, P.M.B.; Jacob, J.; Kutty, K.N.; Wattamwar, S.B.; Mehta, S.K. (Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.)

    The operational safety requirements of hot cell facilities for metallurgical examination of irradiated natural and enriched uranium fuel elements are highlighted. The cell shielding is designed for handling activities equivalent of 10/sup 2/ to 10/sup 5/ curies of gamma energy of 1.3 Mev. A brief outline of the built-in design features relevant to safety assessment is also incorporated. Reference is made to some salient features of Radiometallurgy Cells at Trombay. Metallurgical operations include investigations on cladding failure of irradiated material structure and specimen preparation from hot fuel element. The radiation protection aspects presented in this paper show that handling low irradiated fuel elements in these beta-gamma cells do not cause serious operational safety problems. The procedures followed and the containment provided would adequately restrict exposure of operational staff to acceptable limits.

  6. Radiation protection aspects in the metallurgical examination of irradiated fuel elements

    Janardhanan, S.; Pillai, P.M.B.; Jacob, John; Kutty, K.N.; Wattamwar, S.B.; Mehta, S.K.

    1981-01-01

    The operational safety requirements of hot cell facilities for metallurgical examination of irradiated natural and enriched uranium fuel elements are highlighted. The cell shielding is designed for handling activities equivalent of 10 2 to 10 5 curies of gamma energy of 1.3 Mev. A brief outline of the built-in design features relevant to safety assessment is also incorporated. Reference is made to some salient features of Radiometallurgy Cells at Trombay. Metallurgical operations include investigations on cladding failure of irradiated material structure and specimen preparation from hot fuel element. The radiation protection aspects presented in this paper show that handling low irradiated fuel elements in these beta-gamma cells do not cause serious operational safety problems. The procedures followed and the containment provided would adequately restrict exposure of operational staff to acceptable limits. (author)

  7. Application of FE-SEM with elemental analyzer for irradiated fuel materials

    Sasaki, Shinji; Maeda, Koji; Yamada, A.

    2012-01-01

    It is important to study the irradiation behavior of the uranium-plutonium mixed oxide fuels (MOX fuels) for development of fast reactor fuels. During irradiation in a fast reactor, the changes of microstructures and the changes of element distributions along radial direction occur in the MOX fuels because of a radial temperature gradient. In order to make detailed observations of microstructure and elemental analyses of fuel samples, a field emission scanning electron microscope (FE-SEM) equipped with a wavelength-dispersive X-ray spectrometer (WDX) and an energy-dispersive X-ray spectrometer (EDX) were installed in a hot laboratory. Because fuel samples have high radioactivities and emit α-particles, the instrument was modified correspondingly. The notable modified points were as follows. 1) To prevent leakage of radioactive materials, the instrument was attached to a remote control air-tight sample transfer unit between a shielded hot cell and the FE-SEM. 2) To protect operators and the instruments from radiation, the FE-SEM was installed in a lead shield box and the control unit was separately located outside the box. After the installation, the microscopy and elemental analyses were made on low burnup fuel samples. High resolution images were obtained on the fuel sample surface. The characteristic X-rays (U, Pu) emitted from the fuel sample surface measured along radial direction successfully. Thereby, it was able to grasp the change of U, Pu radial distribution after irradiation. The technique has the great advantage of being able to evaluate the changes of microstructures and the changes of element distributions of MOX fuels due to irradiation. In future work, samples of even higher radioactivity will be observed and analyzed. (author)

  8. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  9. Conceptual design for irradiation device used to irradiate experimental LFR fuel element in TRIGA reactor, ACPR zone

    Ioan, M.

    2013-01-01

    The paper presents the main steps followed to conceive a small, versatile and rather cheep irradiation device used for irradiation of an experimental fuel element, specific for Lead cooled Fast Reactor (LFR), adapted to TRIGA reactor, ACPR zone. This device must be instrumented with at least 4 thermocouples and a pressure transducer. The fuel element (150 mm fuel pellets column) will be immersed in maximum 0.350 kg pure hot lead (400 deg C). The system has three protection barriers, as follows: first is the fuel tube, second is the lead container (maximum 20 mm inner diameter) and third is the external container (maximum 180 mm outside diameter). Before the reactor pulse, the temperature of the lead is set at the prescribed value using an electrical heater (300 W), coil on the second barrier. Outside the second barrier a very good thermal insulation is provided. (authors)

  10. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    Nickel, H.

    1990-05-01

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO 2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10 -5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.) [de

  11. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  12. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility

    Coragem, Helio Boemer de Oliveira

    1980-01-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  13. Application of neutron radiography to the nondestructive testing of fuel elements before and after irradiation

    Barbalat, R.; Bayon, G.; Laporte, A.

    1983-12-01

    The neutron radiography installations of Saclay using collimated neutron sources from reactors for non-destructive testing of nuclear fuels and components of the nuclear industry are described. The first installation in a pool for experimental devices before, during and after irradiation near the core allowing imaging of highly radioactive materials. The second, a dry installation, is used for monitoring active fuel elements. The last is used for inactive materials coming from industry [fr

  14. Study of candu fuel elements irradiated in a nuclear power plant

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  15. Finite element method programs to analyze irradiation behavior of fuel pellets

    Yamada, Rayji; Harayama, Yasuo; Ishibashi, Akihiro; Ono, Masao.

    1979-09-01

    For the safety assessment of reactor fuel, it is important to grasp local changes of fuel pins due to irradiation in a reactor. Such changes of fuel result mostly from irradiation of fuel pellets. Elasto-plastic analysis programs based on the finite element method were developed to analyze these local changes. In the programs, emphasis is placed on the analysis of cracks in pellets; the interaction between cracked-pellets and cladding is not taken into consideration. The two programs developed are FEMF3 based on a two-dimensional axially symmetric model (r-z system) and FREB4 on a two-dimensional plane model (r-theta system). It is discussed in this report how the occurrence and distribution of cracks depend on heat rate of the fuel pin. (author)

  16. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    Rest, J.; Hofman, G.L.

    1997-01-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U 3 SiAl-Al and U 3 Si 2 -Al for various dispersion fuel element designs with the data

  17. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  18. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    Jiang Yijie; Wang Qiming; Cui Yi; Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Ding Shurong, E-mail: dsr1971@163.com [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)

    2011-06-15

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent

  19. A review on the welding technology for the sealing of irradiation test fuel element

    Lee, J. W.; Kang, Y. H.; Kim, B. G.; Joo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T

    2000-02-01

    For the irradiation test of nuclear fuel in a research reactor, the fuel manufacturing technology should be developed in advance. Highly radioactive fission products are produced and can be released from the fuel materials during irradiation. Therefore, The sealing of the test is one of the most important procedure among the test fuel manufacturing processes, considering its impacts on the safety of a reactor operation.many welding techniques such as TIG, EBW, LBW, upset butt welding and flash welding are applied in sealing the end of fuel elements. These welding techniques are adopted in conjunction with the weld material, weldability, weld joint design and cost effectiveness. For fuel irradiation test, the centerline temperature of fuel pellets is one of the important item to be measured. For this, a thermocouple is installed into the center of the fuel pellet. The sealing of the penetration hole of the thermocouple sheath should be conducted and the hole should be perfectly sealed using the dissimilar metal joining technique. For this purpose, the dissimilar metal welding between zircaloy-4 and Inconel or stainless steel is needed to be developed. This report describes the techniques sealing the end cap and the penetration of a thermocouple sheath by welding. (author)

  20. Gamma spectrometry at OSIRIS. Determination of the power and combustion rate of irradiated fuel elements

    Destot, M.; Musso, J.F.; Cerles, J.M.

    1975-12-01

    An original gamma spectrometer is available at Saclay near the core of the Osiris reactor. With such a device, it is possible to investigate nuclear fuel elements irradiated at Osiris or originating from power reactors. It is quite possible to build devices based on this principle in nuclear power reactors, more particularly in water reactors. With such a device, it is possible to follow the evolution in space and with time of a large number of fission products, and from there to draw precious conclusions relative to reactor safety (e.g. failed element detection) and to fuel economy (i.e. determination of combustion rate). The general characteristics of the device are given as well as its applications: determination of the mass combustion and of the linear power of an irradiated element. A non-destructive, versatile and fast means of investigation is therefore given by the installation of gamma spectroscopy inside a reactor [fr

  1. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Boussard, F.; Huillery, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d`Etudes des Combustibles; Averseng, J.L.; Serpantie, J.P. [Novatome Industries, 92 - Le Plessis-Robinson (France)

    1994-12-31

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs.

  2. Spent fuels conditioning and irradiated nuclear fuel elements examination: the STAR facility and its abilities

    Boussard, F.; Huillery, R.

    1994-01-01

    This paper is a presentation of the STAR facility, a high activity laboratory located in Cadarache Nuclear Research Center (France). The purpose of the STAR facility and of the associated processes, is the treatment, cleaning and conditioning of spent fuels from Gas Cooled Reactors (GCR) and in particular of about 2300 spent GCR fuel cartridges irradiated more than 20 years ago in Electricite de France (EDF) or CEA Uranium Graphite GCR. The processes are: to separate the nuclear fuel from the clad remains, to chemically stabilize the nuclear material and to condition it in sealed canisters. An additional objective of STAR consists in non-destructive or destructive examinations and tests on PWR rods or FBR pins in the frame of fuel development programs. The paper describes the STAR facility conceptual design (safety design rules, hot cells..) and the different options corresponding to the GCR reconditioning process and to further research and development works on various fuel types. (J.S.). 3 figs

  3. Irradiation performance of helium-bonded uranium--plutonium carbide fuel elements

    Latimer, T.W.; Petty, R.L.; Kerrisk, J.F.; DeMuth, N.S.; Levine, P.J.; Boltax, A.

    1979-01-01

    The current irradiation program of helium-bonded uranium--plutonium carbide elements is achieving its original goals. By August 1978, 15 of the original 171 helium-bonded elements had reached their goal burnups including one that had reached the highest burnup of any uranium--plutonium carbide element in the U.S.--12.4 at.%. A total of 66 elements had attained burnups over 8 at.%. Only one cladding breach had been identified at that time. In addition, the systematic and coordinated approach to the current steady-state irradiation tests is yielding much needed information on the behavior of helium-bonded carbide fuel elements that was not available from the screening tests (1965 to 1974). The use of hyperstoichiometric (U,Pu)C containing approx. 10 vol% (U,Pu) 2 C 3 appears to combine lower swelling with only a slightly greater tendency to carburize the cladding than single-phase (U,Pu)C. The selected designs are providing data on the relationship between the experimental parameters of fuel density, fuel-cladding gap size, and cladding type and various fuel-cladding mechanical interaction mechanisms

  4. Dimensional measurements and eddy currents control of the sheath integrity for a set of irradiated candu fuel elements

    Gheorghe, G.; Man, I.

    2015-01-01

    During irradiation in the nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of sheath surface condition as well, which can lead to damages and even loss of integrity. This paper presents the results of dimensional measurements and of examination technique with eddy currents for three fuel elements of an irradiated CANDU fuel bundle. One of the fuel elements (FE), which is studied in detail, presented a crack about 40 mm long. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. This paper contains images of defects and interpretations of the causes of their occurrence. (authors)

  5. Postirradiation examination of a low enriched U3Si2-Al fuel element manufactured and irradiated at Batan, Indonesia

    Suripto, A.; Sugondo, S.; Nasution, H.

    1994-01-01

    The first low-enriched U 3 Si 2 -Al dispersion plate-type fuel element produced at the Nuclear Fuel Element Center, BATAN, Indonesia, was irradiated to a peak 235 U burnup of 62%. Postirradiation examinations performed to data shows the irradiation behavior of this element to be similar to that of U 3 Si 2 -Al plate-type fuel produced and tested at other institutions. The main effect of irradiation on the fuel plates is a thickness increase of 30--40 μm (2.5-3.0%). This thickness increase is almost entirely due to the formation of a corrosion layer (Boehmite). The contribution of fuel swelling to the thickness increase is rather small (less than 10 μm) commensurate with the burnup of the fuel and the relatively moderate as-fabricated fuel volume fraction of 27% in the fuel meat

  6. Irradiation behaviour of a 500 mm long hollow U{sub 3}Si fuel element irradiated under BLW conditions

    Feraday, M A; Chalder, G H; Cotnam, K D

    1969-07-15

    A 500 mm long Zircaloy-clad element of U{sub 3}Si (4.3 wt% Si) containing a 13% central void was irradiated to an average burnup of 3600 MWd/tonne U at an average linear power output of 790 W/cm, in boiling water coolant at 55 bars pressure. A larger diameter increase (1.5%) at the mid-plane of the element than elsewhere was attributed to the reduced restraint imposed on the fuel in this area as a consequence of {beta} annealing a section of the cold worked sheath. Diameter increases in the cold worked portions of the sheath (average 0.7%) were greater than in similar elements irradiated in pressurized water at 96 bars pressure the difference is attributed to higher linear power output of the element in this test. External swelling of the element before filling of the central void was complete is attributed to the higher silicon content of the fuel compared with previous tests. No reaction between U{sub 3}Si and Zircaloy was observed at a fuel sheath interface temperature near 400{sup o}C. (author)

  7. Irradiation behaviour of a 500 mm long hollow U3Si fuel element irradiated under BLW conditions

    Feraday, M.A.; Chalder, G.H.; Cotnam, K.D.

    1969-07-01

    A 500 mm long Zircaloy-clad element of U 3 Si (4.3 wt% Si) containing a 13% central void was irradiated to an average burnup of 3600 MWd/tonne U at an average linear power output of 790 W/cm, in boiling water coolant at 55 bars pressure. A larger diameter increase (1.5%) at the mid-plane of the element than elsewhere was attributed to the reduced restraint imposed on the fuel in this area as a consequence of β annealing a section of the cold worked sheath. Diameter increases in the cold worked portions of the sheath (average 0.7%) were greater than in similar elements irradiated in pressurized water at 96 bars pressure the difference is attributed to higher linear power output of the element in this test. External swelling of the element before filling of the central void was complete is attributed to the higher silicon content of the fuel compared with previous tests. No reaction between U 3 Si and Zircaloy was observed at a fuel sheath interface temperature near 400 o C. (author)

  8. Irradiation program of slightly enriched fuel elements at the Atucha I nuclear power plant

    Casario, J.A.; Cesario, R.H.; Perez, R.A.; Sidelnik, J.I.

    1987-01-01

    An irradiation program of fuel elements with slightly enriched uranium is implemented, tending to the homogenization of core at Atucha I nuclear power plant. The main benefits of the enrichment program are: a) to extend the average discharge burnup of fuel elements, reducing the number of elements used to generate the same amount of energy. This implies a smaller annual consumption of elements and consequently the reduction of transport and replacement operations and of the storage pool systems as well as that of radioactive wastes; b) the saving of uranium and structural materials (Zircaloy and others). In the initial stage of program an homogeneous core enrichment of 0.85% by weight of U-235 is anticipated. The average discharge burnup of fuel elements, as estimated by previous studies, is approximately 11.6 MW d/kg U. The annual consumption of fuel elements is reduced from 396 of natural uranium to 205, with a load factor of 0.85. It is intended to reach the next equilibrium steps with an enrichment of 1.00 and 1.20% in U-235. (Author)

  9. Facilities for post-irradiation examination of experimental fuel elements at Chalk River Nuclear Laboratories

    Mizzan, E.; Chenier, R.J.

    1979-10-01

    Expansion of post-irradiation facilities at the Chalk River Nuclear Laboratories and steady improvement in hot-cell techniques and equipment are providing more support to Canada's reactor fuel development program. The hot-cell facility primarily used for examination of experimental fuels averages a quarterly throughput of 40 elements and 110 metallographic specimens. New developments in ultrasonic testing, metallographic sample preparation, active storage, active waste filtration, and fissile accountability are coming into use to increase the efficiency and safety of hot-cell operations. (author)

  10. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  11. Post-irradiation studies of test plates for low enriched fuel elements for research reactors

    Groos, E.; Buecker, H.J.; Derz, H.; Schroeder, R.

    1988-07-01

    In developing new fuels for research reactor elements that allow the use of low enriched uranium (LEU) 3 Si 2 , U 3 Si 1.5 , U 3 Si 1.3 and U 3 Si. Even up to high burnup rates (80% fifa) U 3 Si 2 was proved to be a reliable fuel that according to the test results achieved to date complies with all necessary requirements above all with respect to dimensional stability. U 3 Si showed significant changes of the fuel microstructure associated with considerably higher fuel swelling, that will probably exclude its use in research reactor operation. The irradiation of U 3 Si 1.3 and U 3 Si 1.5 plates had to be terminated untimely. Up to a burnup of 40% fifa these plates behaved quite well. An extrapolation to higher burnup rates, however only seems to be possible with reservations. (orig./HP) [de

  12. Post-irradiation examination of U3SIX-AL fuel element manufactured and irradiated in Argentina

    Ruggirello, Gabriel; Calabroni, Hector; Sanchez, Miguel; Hofman, Gerard

    2002-01-01

    As a part of CNEA's qualification program as a supplier of low enriched Al-U 3 Si 2 dispersion fuel elements for research reactors, a post irradiation examination (PIE) of the first prototype of this kind, called P-04, manufactured and irradiated in Argentina, was carried out. The main purpose of this work was to set up various standard PIE techniques in the hot cell, looking forward to the next steps of the qualification program, as well as to acquire experience on the behaviour of this nuclear material and on the control of the manufacturing process. After an appropriate cooling period, on May 2000 the P-04 was transported to the hot cell in Ezeiza Atomic Centre. Non destructive and destructive tests were performed following the PIE procedures developed in Argonne National Laboratory (ANL), this mainly included dimensional measurement, microstructural observations and chemical burn-up analyses. The methodology and results of which are outlined in this report. The results obtained show a behaviour consistent with that of other fuel elements of the same kind, tested previously. On the other hand the results of this PIE, specially those concerning burn-up analysis and stability and corrosion behaviour of the fuel plates, will be of use for the IAEA Regional Program on the characterization of MTR spent fuel. (author)

  13. Safety analysis of LWR irradiated fuel element pool storages before reprocessing

    Lefort, G.; Leclerc, J.; Hoffman, A.; Frejaville, C.; Domage, M.

    1984-01-01

    The protection of operators and environment requires imperatively that the safety must be taken into account as early as the design of the pools takes place and working conditions are defined. The analysis of criticality, irradiation, contamination, external or internal aggression hazards... allows to draw the main constraints which must be retained in the sizing of these pools: the criticality risk needs distances between fuel elements which results in a not very good utilization of the available area which leads to the utilization of neutron shieldings or requires a safe knowledge of the fuel elements burn up; the irradiation and contamination risks require a special quality of the pool water (temperature, activity, purity...) a good tightness of the basins to locate and to isolate the dubions fuel elements; the external or internal aggression risks such as earthquakes, missiles or loads drops, explosion, imply the civil engineering and involve the use of special technical devices. A brief presentation of the pool storages of the next UP2-800 and UP3 A reprocessing plants allows to show how the requirement drawn by safety analysis have been enforced, while carrying out civil engineering works without equivalent in the world, in this field. The foreseeable evolution of the uranium enrichment rate and burn-up of next PWR fuel elements have an effect upon the risk evaluations; a device apparatus, developed in CEA, for the measurement of burn up and cooling time is presented. At least, a short presentation of the mechanical structure durability studies of the reception and storage spent fuels installations are allowed to improve our knowledge in working conditions and in case of serious accidents

  14. Results of the irradiation of mixed UO2 - PuO2 oxide fuel elements

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L.

    1966-01-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO 2 containing about 10 per cent of PuO 2 . The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm 3 and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and γ-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [fr

  15. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  16. Eutectic penetration times in irradiated EBR-II driver fuel elements

    Betten, P.R.; Bottcher, J.H.; Seidel, B.R.

    1983-01-01

    The experimental test procedure employed the use of a high-temperature furnace which heated pre-irradiated elements to temperature and maintained the environment until element-cladding breach occurred. Pre-irradiated elements of the Mark-II design were first encapsulated in a close-fitting sealed tube that was instrumented with a pressure transducer at the top of the tube and a thermocouple at the element's top-of-fuel axial location. The volume of the capsule was evacuated in order to better identify the pressure pulse which would occur on breach and to minimize contaminants. Next, a three-zone fast-recovery furnace was heated and an axial temperature profile, similar to that experienced in the EBR-II core, was established. The encapsulated element was then quickly inserted into the furnace and remained there until clad breach occurred. The element was then removed from the furnace immediately. Visual and metallurgical examination of the rupture site was done later. A total of seven elements were tested in the above manner

  17. Irradiation of mixed UO2-PuO2 oxide samples for fast neutron reactor fuel elements

    Mikailoff, H.; Mustelier, J.; Bloch, J.; Conte, M.; Hayet, L.; Lauthier, J.C.; Leclere, J.

    1968-01-01

    Thermal flux irradiation testings of small mixed oxide pellets UPuO 2 fuel elements were performed in support of the fuel reference design for the Phenix fast reactor. The effects of different parameters (stoichiometry, pellet density, pellet clad gap). on the behaviour of the oxide (temperature distribution, microstructural changes, fission gas release) were investigated in various irradiation conditions. In particular, the effect of fuel density decrease and power rate increase on thermal performances were determined on short term irradiations of porous fuels. (authors) [fr

  18. Finite element analysis of irradiation-induced dilation of the fuel subassembly duct in LMFBR

    Gao Fuhai; Fu Hao; Li Nan; Yang Kongli; Wang Mingzhen

    2013-01-01

    Background: The calculation of irradiation-induced dilation of the fuel subassembly duct in LMFBR is important for fast reactor core design.. Purpose: To investigate how to calculate the dilation by using finite element method (FEM). Methods: First, irradiation-induced creep and swelling material models are introduced. Then, a theoretical solution based on a simplified bending plate model is briefly given. Finally, a stress update scheme for the adopted material models is presented and furthermore embedded into ABAQUS user interface UMAT to conduct finite element analysis. Both solutions are compared and discussed. Results: FEM successfully predicts the duct dilation and its solution agrees well with theoretical one in small deformation. Conclusions: The proposed stress update scheme is effective, The accuracy of the theory solution declines when dilation becomes larger. The maximum stress occurs at the duct corner point, and the location has stress relaxation effect. (authors)

  19. Long term storage effects of irradiated fuel elements on power distribution and reactivity

    Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba [FURNAS, Rio de Janeiro, RJ (Brazil); Fetterman, R.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-12-31

    The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs.

  20. Long term storage effects of irradiated fuel elements on power distribution and reactivity

    Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba; Fetterman, R.J.

    1995-01-01

    The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs

  1. Fuel element

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  2. Fuel element

    Kennedy, S.T.

    1982-01-01

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  3. An estimate of radiation fields in a gamma irradiation facility using fuel elements from a swimming pool reactor

    Narain, Rajendra

    2002-01-01

    A simple gamma irradiation facility set up using a few irradiated or partially irradiated swimming pool elements can be assembled to provide a convenient facility for irradiation of small and medium sized samples for research. The paper presents results of radiation levels with an arrangement using four elements from a reactor core operating at a power of 20 MW. A maximum gamma field of higher than 1 KGy/h at locations adjacent to fuel elements with negligible neutron contamination can be achieved. (author)

  4. Microstructure and elemental distribution of americium containing MOX fuel under the short term irradiation tests

    Tanaka, Kosuke; Hirosawa, Takashi; Obayashi, Hiroshi; Koyama, Shin Ichi; Yoshimochi, Hiroshi; Tanaka, Kenya

    2008-01-01

    In order to investigate the effect of americium addition to MOX fuels on the irradiation behavior, the 'Am-1' program is being conducted in JAEA. The Am-1 program consists of two short term irradiation tests of 10-minute and 24 hour irradiations and a steady-state irradiation test. The short-term irradiation tests were successfully completed and the post irradiation examinations (PIEs) are in progress. The PIEs for Am-containing MOX fuels focused on the microstructural evolution and redistribution behavior of Am at the initial stage of irradiation and the results to date are reported

  5. Trefoil bundles of NPD 7-element size fuel irradiated to 9100 MWd/tonne U

    Bain, A S; Christie, J; Daniel, A R

    1964-01-15

    NPD prototype elements (1 in. OD, 19 in. long) were assembled into trefoil bundles and irradiated in the X-5 pressurized-water loop of NRX. The first tests were for only a few weeks but showed that elements made by sheathing UO{sub 2} pellets in Zircaloy-2 behaved well under irradiation; later similar elements were irradiated for 18000 hours to a burn-up of 9100 MWd/tonne U at {integral}kd{theta} = 40 W/cm. The dimensional stability of all the elements was good. Only those subjected to long irradiation showed progressive diametral increases, and these were attributed to relocation of the UO{sub 2} during interim inspections. Length measurements demonstrated that pellet end-dishing is effective in controlling axial expansion, but that for a given depth of dishing the amount of expansion depends on the shoulder width. The extent of grain growth in the UO{sub 2} was compatible with previously reported results when the duration of irradiation, density of the fuel, and variations in growth characteristics of the different batches of UO{sub 2} are considered. The elements taken to high irradiation released up to 135 ml of fission-product gases, which is 2% of the amount formed. The transverse tensile strength of ring samples from the Zircaloy-2 sheaths increased from 75000 to 95000 lb/in{sup 2} at room temperature, but the ductility dropped. The completely brittle fracture of some rings was due to ZrH{sub 2} precipitation. The failure of one element was caused by increased stress due to a higher heat rating, combined with low ductility of the Zircaloy-2 resulting from radiation damage and with precipitation of ZrH{sub 2} because of a lower coolant temperature. The fission-product release from the split was not excessive, and the element was easily withdrawn from the loop after operating at full power for four days from the time of the failure. (author)

  6. Consequences of the improvement of fast reactor material behavior under irradiation on fuel element performance

    Leclere, J.; Dupouy, J.M.; Marcon, J.P.

    1979-01-01

    The most important problems in fast reactor fuel element come from the excessive swelling of the structural materials used. The limitations of irradiation time for a given reactor result from the cladding or hexagonal wrapper deformations. Irradiation creep plays a major role, either in inducing additional deformations, or in providing possible ways of accommodation of bending stresses. Progress has been made in designing swelling resistant and/or low irradiation creep modulus materials. For instance in FRANCE, annealed 316 SS has been eliminated from pin and subassembly, and replaced by cold worked 316; we are now considering introduction of stabilizing elements in 316 SS as a further improvement and studying different alloys (nickel alloys, or ferritic steels). It has to be checked that the improvement of irradiation characteristic is not counterbalanced by losses on other properties (embrittlement for instance). Considering that pushing off or eliminating a limit may lead to the onset of a new one, it is porposed to make a review of the consequences of substantial improvement of structural material behavior

  7. The use of irradiation zones in the fuel element lattice of research piles

    Delattre, P.; Genthon, J.P.

    1960-01-01

    The first part of this report examines the advantages and disadvantages of the various types of canal which may be found in the fuel element lattice of research piles. Some examples relative to the piles EL2 and EL3 are discussed in detail. From the conclusions drawn in the last part, several norms are extracted which make it possible to define the conditions the various canals must fulfil in order that they can be used to the best possible advantage for each type of irradiation. (author) [fr

  8. Irradiation behavior of U 6Mn-Al dispersion fuel elements

    Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.

    2000-02-01

    Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.

  9. The Analysis of RSG-GAS Spent Fuel Elements Utilization as a Gamma Irradiator

    Pudjijanto MS; Setiyanto

    2004-01-01

    A gamma irradiator using RSG-GAS spent fuels was analyzed. The cylindrical geometry of the irradiator was designed using spent fuels placed in the cylindrical periphery. The analysis especially was focused to evaluate the feasibilities of the irradiator for foods and non-foods which need not too high dose rates. While the spent fuels activities were calculated by ORIGEN2 code, the dose rates at the irradiation positions were determined by linear attenuation model with transport coefficient. The evaluated results showed that the cylindrical geometry of the irradiator with diameter around 1-1.5 m gave the effective dose rate for irradiation needs the dose rate about 2 kGy/hr. Regarding this work, it can be concluded that one can use the unutilized spent fuels effectively as a gamma irradiator for certain applications. (author)

  10. Criticality analysis of the storage tubes for irradiated fuel elements from the IEA-R1 with the MCNP code

    Maragni, M.G.; Moreira, J.M.L.

    1992-01-01

    A criticality safety analysis has been carried out for the storage tubes for irradiated fuel elements from the IEA-R1 research reactor. The analysis utilized the MCNP computer code which allows exact simulations of complex geometries. Aiming reducing the amount of input data, the fuel element cross-sections have been spatially smeared out. The earth material interstice between fuel elements has been approximated conservatively as concrete because its composition was unknown. The storage tubes have been found subcritical for the most adverse conditions (water flooding and un-irradiated fuel elements). A similar analysis with the KENO-IV computer code overestimated the KEF result but still confirmed the criticality safety of the storage tubes. (author)

  11. Recent status of development and irradiation performance for plate type fuel elements with reduced 235U enrichment at NUKEM

    Hrovat, M.F.; Hassel, H.W.

    1984-01-01

    According to the present state of development full size test fuel elements with the maximum uranium densities of 2,2 g U/cm 3 meat for UAlsub(x), 3,2 g U/cm 3 meat for U 3 O 8 and 4,8 g U/cm 3 meat for U 3 Si 2 can be fabricated at NUKEM in production scale. Special chemical procedures for the uranium recovery were developed ensuring an economic fuel fabrication process. The post irradiation examinations (PIE) of 12 UAlsub(x) (U density 2,2 g U/cm 3 meat) and U 3 O 8 (up to 3,1 g U/cm 3 meat) test plates irradiated in the ORR, Oak Ridge research reactor, were terminated. All 12 test plates show unobjectionable irradiation behavior. Extensive irradiation tests on full size fuel elements were performed. All inserted elements show perfect irradiation behavior. The PIE of the first HFR Petten U 3 O 8 fuel elements are in progress. The full size ORR U 3 Si 2 fuel elements with so far highest uranium density of 4,76 g U/cm 3 meat achieved a burnup of 50 % loss of 235 U up to May 1983. One element was withdrawn from the reactor for PIE, the second will be irradiated to a burnup of 75 % loss of 235 U. The further development is concentrated on Usub(x)Sisub(y) fuel with highest uranium density. U 3 Si miniplates with up to 6,1 g U/cm 3 meat are supplied meeting the required specification, U 3 Si miniplates with 6,7 g U/cm 3 are in fabrication. (author)

  12. Irradiation behavior of U{sub 6}Mn-Al dispersion fuel elements

    Meyer, M.K. E-mail: mitchell.meyer@anl.gov; Wiencek, T.C.; Hayes, S.L.; Hofman, G.L

    2000-04-01

    Irradiation testing of U{sub 6}Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U{sub 6}Mn in an unrestrained plate configuration performs similarly to U{sub 6}Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3x10{sup 27} m{sup -3}. Fuel plate failure occurs by fission gas pressure driven 'pillowing' on continued irradiation.

  13. Welding of metallic fuel elements for the irradiation test in JOYO. Preliminary tests and welding execution tests (Joint research)

    Kikuchi, Hironobu; Nakamura, Kinya; Iwai, Takashi; Arai, Yasuo

    2009-10-01

    Irradiation tests of metallic fuels elements in fast test reactor JOYO are planned under the joint research of Japan Atomic Energy Agency (JAEA) and Central Research Institute of Electric Power Industry (CRIEPI). Six U-Pu-Zr fuel elements clad with ferritic martensitic steel are fabricated in Plutonium Fuel Research Facility (PFRF) of JAEA-Oarai for the first time in Japan. In PFRF, the procedures of fabrication of the fuel elements were determined and the test runs of the equipments were carried out before the welding execution tests for the fuel elements. Test samples for confirming the welding condition between the cladding tube and top and bottom endplugs were prepared, and various test runs were carried out before the welding execution tests. As a result, the welding conditions were finalized by passing the welding execution tests. (author)

  14. Post-irradiation examination of the first SAP clad UO{sub 2} fuel elements irradiated in the X-7 organic loop

    MacDonald, R. D.; Aspila, K.

    1962-02-15

    Seven fuel elements composing the first in-reactor test at Chalk River of SAP sheathing were irradiated in the X-7 organic loop. Activity, denoting a fuel failure, was detected in the loop coolant immediately after reactor start up; the fuel string was consequently removed from the loop nine hours later. Leak tests disclosed that five of the seven elements were defective. Inspection of the specimens showed essentially no change in element dimensions. Practically no organic fouling film was observed on the surface of the SAP cladding; organic coolant was found inside four of the defective elements. The appearance of the UO{sub 2} fuel was consistent with the irradiation time and the heat ratings achieved during the test. (author)

  15. Recent irradiation tests of uranium-plutonium-zirconium metal fuel elements

    Pahl, R.G.; Lahm, C.E.; Villarreal, R.; Hofman, G.L.; Beck, W.N.

    1986-09-01

    Uranium-Plutonium-Zirconium metal fuel irradiation tests to support the ANL Integral Fast Reactor concept are discussed. Satisfactory performance has been demonstrated to 2.9 at.% peak burnup in three alloys having 0, 8, and 19 wt % plutonium. Fuel swelling measurements at low burnup in alloys to 26 wt % plutonium show that fuel deformation is primarily radial in direction. Increasing the plutonium content in the fuel diminishes the rate of fuel-cladding gap closure and axial fuel column growth. Chemical redistribution occurs by 2.1 at.% peak burnup and generally involves the inward migration of zirconium and outward migration of uranium. Fission gas release to the plenum ranges from 46% to 56% in the alloys irradiated to 2.9 at.% peak burnup. No evidence of deleterious fuel-cladding chemical or mechanical interaction was observed

  16. Fuel element

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  17. Safeguards approach for irradiated fuel

    Harms, N.L.; Roberts, F.P.

    1987-03-01

    IAEA verification of irradiated fuel has become more complicated because of the introduction of variations in what was once presumed to be a straightforward flow of fuel from reactors to reprocessing plants, with subsequent dissolution. These variations include fuel element disassembly and reassembly, rod consolidation, double-tiering of fuel assemblies in reactor pools, long term wet and dry storage, and use of fuel element containers. This paper reviews future patterns for the transfer and storage of irradiated LWR fuel and discusses appropriate safeguards approaches for at-reactor storage, reprocessing plant headend, independent wet storage, and independent dry storage facilities

  18. Examination of the creep behaviour of ceramic fuel elements under neutron irradiation

    Brucklacher, D.

    1978-01-01

    This paper examines the creeping of UO 2 , UO 2 -PuO 2 and UN under neutron irradiation. It starts with the experimental results about the relation between the thermal creep rate and the load, the temperature, as well as characteristic material values, stoichiometry, grain size and porosity. These correlation are first qualitatively discussed and then compared with the statements of actual quantitative equations. From the models and theories on which these equations are based a modified Nabarro-Heering-equation results for the correlation between the creep rate of ceramic fuels, stress, temperature and the fission rate. In the experimental part of the examination, length-changes of creep samples of UO 2 , (U,Pu)O 2 and UN were measured in specially developed irradiation creep casings in different reactors. The measuring data were corrected and evaluated considering the thermal expansion effects, irregular temperature distribution and swelling effects in such a way that the dependences of the creep rate of UO 2 , UO 2 -PuO 2 and UN under irradiation on stress, temperature, fission rate, burn-up and porosity is obtained. It shows that creeping of fuels under irradiation at high temperatures is equivalent to thermally activated creeping, while at low temperature the creep rate induced by irradiation is much higher than the condition without irradiation. The increment of oxidic nuclear fuels is greater than in UN, the stress dependence on low burn-up is proportional in both cases, and the influence of temperature is quite small. (orig.) [de

  19. Nuclear fuel elements design, fabrication and performance

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  20. Irradiation of four pencils fuel element clusters in the periphery of OSIRIS. Qualification of the calculation method by dosimetry

    Alberman, A.; Morin, C.

    1983-09-01

    The programs of qualification of PWR fuels required many irradiations in research reactors. In the periphery of the OSIRIS reactor (70 MW), two devices (IRENE and ISABELLE loops) recreating the environment of the fuel rods in power reactors have been put into service. In each device a fuel element cluster including four pencils was irradiated. The problem set by dosimetry was to calculate the enrichments of the pencils to obtain the required power level and to compensate the neutron flux gradient (in front of/behind) to obtain the same power on each one of the four pencils. The required accuracy is about 5%. Fuels dosimetry achieved on loops mockups in the ISIS reactor allowed to test the validity of the calculations and to calibrate the probes according to the nuclear power [fr

  1. Analysis of irradiated Magnox fuel for fission product and actinide elements

    Foster, E.; Fudge, A.J.; Glover, K.M.; Wiltshire, R.A.P.

    1980-03-01

    This report describes the methods used for, and the results obtained from, chemical and isotopic analysis of four Magnox fuel samples of known irradiation history. The analysis of this material was carried out in conjunction with CEGB, Berkeley Nuclear Laboratories and BNFL. The data obtained was used to evaluate the accuracy of fuel composition as predicted by computer codes such as RICE (Reactor Inventory Code). (author)

  2. Irradiation behavior of low-enriched U/sub 6/Fe-Al dispersion fuel elements

    Hofman, G.L.; Domagala, R.F.; Copeland, G.L.

    1987-10-01

    An irradiation test of miniature fuel plates containing low-enriched (20% /sup 235/U)U/sub 6/Fe dispersed and clad in Al was performed. The postirradiation examination shows U/sub 6/Fe to form extensive fission gas bubbles at burnups of only approx. = 20% of the original 20% fuel enrichment. Plate failure by fission gas-driven pillowing occurred at approx. = 40% burnup. This places U/sub 6/FE at the lowest burnup capability among low enriched dispersion fuels that have been tested for use in research and test reactors

  3. Qualification program for JHR fuel elements: Irradiation of the first JHR test assembly in the BR2-Evita loop

    Anselmet, M.-C.; Lemoine, P.; Koonen, E.; Benoit, P.; Gouat, P.; Claes, W.; Geens, F.; Miras, G.; Brisson, S.

    2010-01-01

    An experimental program has been designed by CEA to qualify the behaviour of the JHR fuel under conditions representative of the reactor operating ones. This program uses the SCK.CEN facilities, irradiating JHR lead test elements in the BR2 reactor, inside its central channel which has been particularly arranged for this objective (Evita loop). As a first step in the program, a two cycle irradiation (4 weeks by cycle) started mid-July 2009 and ended mid-November (EVITA-1). After a cooling phase, this first JHR lead test element will be submitted to post-irradiation examination. The second JHR test element began its irradiation in the first quarter of 2010; its unloading is planned before the end of 2010, after 5 cycles in the BR2 reactor. The results of these two experiments are expected as input information for the Safety Authority Report. This paper presents the qualification program with the objectives assigned to each phase (irradiation, examination). A first interpretation of the irradiation data for the first element is presented, so as the information available on the progress of the following phases of the programme. (author)

  4. Irradiation of a CANDU UOsub(2) fuel element with twenty-three machined slits cut through the zircaloy sheath

    DaSilva, R.L.

    1984-09-01

    A CANDU fuel element was purposely defected, exposing a minimum UOsub(2) fuel stack area of 272 mmsup(2), by machining 23 longitudinal slits through the Zircaloy-4 sheathing. The element was then irradiated in the X-2 loop of the NRX reactor for a period of 14.64 effective full power days at a linear heat rating of 48 kW/m to investigate the relationship between fission product release and UOsub(2) oxidation behaviour in an element with minimal fuel-to-gap fission gas trapping. The fission product releases, as measured by on-line gamma-ray spectroscopy, revealed that the noble gases and radioiodines are both released from the UOsub(2) fuel matrix directly to the coolant via simple diffusion kinetics, and that their diffusivities in hyperstoichiometric UOsub(2) are approximately equal. The oxidation of UOsub(2) to the higher states UOsub(2+x), Usub(4)Osub(9) and Usub(3)Osub(8), was accompanied by substantial fuel swelling and sheath deformation preferentially located in the lower powered end of the element. The spalling and erosion behaviour of the fuel pellets was correlated to the rate of fuel oxidation

  5. Fuel element

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  6. Irradiation tasks within development of fuel elements in Sweden; Rad na ozracivanju u okviru razvoja gorivnih elemenata u Svedskoj

    Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This report contains description of the hot laboratory RMA for irradiation in the R-2 reactor in Studsvik. Activities of the AB Atomenegiyu concerning irradiation and testing of fuel rods and fuel elements are described, as well as methods for testing of irradiated samples in hot cells. Concerning the importance of the problem, determination of burnup level and neutron flux were examined particularly. Dat je opis vruce metalurske laboratorije RMA i sistema za ozracivanje u reaktoru R-2 u Studsviku. Prikazana je aktivnost AB Atomenergy u okviru razvoja gorivnih elemenata na ozracivanju i ispitivanju ozracenog goriva, gorivnih sipki i sklopova gorivnih elemenata. Prikazane su metode ispitivanja ozracenih uzoraka u vrucim celijama. S obzirom na vaznost problema, posebno je razradjeno pitanje odredjivanja stepena izgaranja i fluksa neutrona (author)

  7. Hydrogen in CANDU fuel elements

    Sejnoha, R.; Manzer, A.M.; Surette, B.A.

    1995-01-01

    Unirradiated and irradiated CANDU fuel cladding was tested to compare the role of stress-corrosion cracking and of hydrogen in the development of fuel defects. The results of the tests are compared with information on fuel performance in-reactor. The role of hydriding (deuteriding) from the coolant and from the fuel element inside is discussed, and the control of 'hydrogen gas' content in the element is confirmed as essential for defect-free fuel performance. Finally, implications for fuel element design are discussed. (author)

  8. Qualification of the on-line power determination of fuel elements in irradiation devices in the BR2 reactor

    Vermeeren, L.; Dekeyser, J.; Gouat, P.; Kalcheva, S.; Koonen, E.; Kuzminov, V.; Verwimp, A.; Weber, M.

    2005-01-01

    Fuel irradiation tests require an on-line monitoring of the fuel power. In the BR2 reactor, this is performed by continuously measuring the enthalpy change in the coolant of the irradiation device and complementing this information with data on power losses, heating of structure parts and spatial power profiles from mock-up test experiments and from calculations. Since a few years Monte Carlo codes (MCNP) are used, describing the BR2 core in great detail for every reactor cycle with its specific core load, yielding not only reliable relative values, but also calculated absolute local power values in agreement with data from PIE analyses. Several methods were conceived to combine the experimental and calculated data for the on-line calculation of the local linear power in the fuel elements; their internal consistency and the consistency with gamma spectroscopy data and data from radiochemical fission product analysis was checked. The data show that fuel irradiations in BR2 can be performed in a well-controlled way, with an accurate and reliable on-line follow-up of the fuel power. (author)

  9. Fabrication of ORNL Fuel Irradiated in the Peach Bottom Reactor and Postirradiation Examination of Recycle Test Elements 7 and 4

    Long, Jr. E.L.

    2001-01-01

    Seven full-sized Peach Bottom Reactor fuel elements were fabricated in a cooperative effort by Oak Ridge National Laboratory (ORNL) and Gulf General Atomic (GGA) as part of the National HTGR Fuel Recycle Development Program. These elements contain bonded fuel rods and loose beds of particles made from several combinations of fertile and fissile particles of interest for present and future use in the High-Temperature Gas-Cooled Reactor (HTGR). The portion of the fuel prepared for these elements by ORNL is described in detail in this report, and it is in conjunction with the GGA report (GA-10109) a complete fabrication description of the test. In addition, this report describes the results obtained to date from postirradiation examination of the first two elements removed from the Peach Bottom Reactor, RTE-7 and -4. The fuel examined had relatively low exposure, up to about 1.5 x 10 21 neutrons/cm* fast (>0.18 MeV) fluence, compared with the peak anticipated HTGR fluence of 8.0 x 10 21 , but it has performed well at this exposure. Dimensional data indicate greater irradiation shrinkage than expected from accelerated test data to higher exposures. This suggests that either the method of extrapolation of the higher exposure data back to low exposure is faulty, or the behavior of the coated particles in the neutron spectrum characteristic of the accelerated tests does not adequately represent the behavior in an HTGR spectrum

  10. Swelling of uranium dioxide and deformation behavior of the fuel element at high temperature irradiation

    Gontar, A.S.; Gutnik, V.S.; Nelidov, M.V.; Nikolaev, Yu.V.

    1993-01-01

    As post-reactor investigations showed, significant difference of swelling rates is connected with the fact that swelling of UO 2 with the equiaxial structure is mainly the result of fission gas bubbles accumulation along grain boundaries, and, in the case of the column structure, with formation of fine bubbles inside grains. The data given testify to usefulness of such investigations to predict TFE lifetime. As proven in this study one can see rates of radial deformation of fuel element cladding of a multi-cell TFE as a result of UO 2 swelling. They were calculated using the code SDS. Typical sizes were taken for calculation: cladding diameter--20 mm, cladding temperature at the central section of the fuel element--1,900 K, energy generation rate--145 W/cm 3 . These parameters provide output electric power of the TFE 600 W at the active zone length--400 mm

  11. Fuel element loading system

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  12. Burnup determination of power reactor fuel elements by gamma spectrometry; Determination par spectrometrie {gamma} du taux d'irradiation des elements combustibles des reacteurs de puissance

    Robin, M; Jastrzeb, M; Boisliveau, S; Boyer, R; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report describes a method for determining by {gamma} spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of {gamma} rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by {gamma} spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors) [French] Ce rapport expose une methode de determination par spectrometrie {gamma} du taux d'irradiation et de la puissance specifique des elements combustibles irradies dans les reacteurs de puissance. Une installation simple utilisant un detecteur d'iodure de sodium et un selecteur multicanaux mesure le spectre en energie du rayonnement {gamma} emis par les produits de fission. Afin d'extraire du spectre une quantite proportionnelle au taux de combustion, il faut: - isoler une activite specifique a un emetteur, - donner la meme importance aux fissions survenues dans l'uranium et le plutonium, - prendre en compte la decroissance radioactive pendant et apres l'irradiation. Les mesures ont porte sur une centaine d'elements combustibles et les taux de combustion obtenus par spectrometrie {gamma} sont compares aux resultats des analyses chimiques. Des mesures preliminaires montrent que l'utilisation d'un detecteur de germanium augmente considerablement la precision des resultats, en raison de son excellente resolution. (auteurs)

  13. Fuel irradiation experience at Halden

    Vitanza, Carlo

    1996-01-01

    The OECD Halden Reactor Project is an international organisation devoted to improved safety and reliability of nuclear power station through an user-oriented experimental programme. A significant part of this programme consists of studies addressing fuel performance issues in a range of conditions realised in specialised irradiation. The key element of the irradiation carried out in the Halden reactor is the ability to monitor fuel performance parameters by means of in-pile instrumentation. The paper reviews some of the irradiation rigs and the related instrumentation and provides examples of experimental results on selected fuel performance items. In particular, current irradiation conducted on high/very high burn-up fuels are reviewed in some detail

  14. Postirradiation results and evaluation of helium-bonded uranium--plutonium carbide fuel elements irradiated in EBR-II. Interim report

    Latimer, T.W.; Barner, J.O.; Kerrisk, J.F.; Green, J.L.

    1976-02-01

    An evaluation was made of the performance of 74 helium-bonded uranium-plutonium carbide fuel elements that were irradiated in EBR-II at 38-96 kW/m to 2-12 at. percent burnup. Only 38 of these elements have completed postirradiation examination. The higher failure rate found in fuel elements which contained high-density (greater than 95 percent theoretical density) fuel than those which contained low-density (77-91 percent theoretical density) fuel was attributed to the limited ability of the high-density fuel to swell into the void space provided in the fuel element. Increasing cladding thickness and original fuel-cladding gap size were both found to influence the failure rates for elements containing low-density fuel. Lower cladding strain and higher fission-gas release were found in high-burnup fuel elements having smear densities of less than 81 percent. Fission-gas release was usually less than 5 percent for high-density fuel, but increased with burnup to a maximum of 37 percent in low-density fuel. Maximum carburization in elements attaining 5-10 at. percent burnup and clad in Types 304 or 316 stainless steel and Incoloy 800 ranged from 36-80 μm and 38-52 μm, respectively. Strontium and barium were the fission products most frequently found in contact with the cladding but no penetration of the cladding by uranium, plutonium, or fission products was observed

  15. Structural design of a shipping container of fuel elements, non-irradiated, for research reactors

    Morales Uzqueda, Eduardo Mario

    2013-01-01

    This work is part of a project whose ultimate goal the creation and subsequent discharge of a transport container fuel assemblies for use by the Chilean Commission for Energy Nuclear. In principle it is covered in the design stage, considering the materials and methods used, to further develop a stage of checking voltages in the container to be manufactured. To achieve the first phase of the study is necessary to understand and warn the importance, geometry and content of the fuel elements to be transported, for which there are standards that provide fundamental material for proper classification of both content and container design. Once approved the design of the structure is critical examine both in normal operation and in the case of accidents that are established by international bodies. for appropriate analytical methods that seek to achieve is use a appropriate representation of the behavior of the structure. in addition to strengthen the theory computer simulations of the tests used applied, where the results will be contrasted with the first method of calculation. Results are obtained for the stress field and displacement total delivering the information necessary to approve the container

  16. Transport of irradiated nuclear fuel

    1980-01-01

    In response to public interest in the transport by rail through London of containers of irradiated fuel elements on their way from nuclear power stations to Windscale, the Central Electricity Generating Board and British Rail held three information meetings in London in January 1980. One meeting was for representatives of London Borough Councils and Members of Parliament with a known interest in the subject, and the others were for press, radio and television journalists. This booklet contains the main points made by the principal speakers from the CEGB and BR. (The points covered include: brief description of the fuel cycle; effect of the fission process in producing plutonium and fission products in the fuel element; fuel transport; the fuel flasks; protection against accidents; experience of transporting fuel). (U.K.)

  17. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    ALEKSEY. L. IZHUTOV; VALERIY. V. IAKOVLEV; ANDREY. E. NOVOSELOV; VLADIMIR. A. STARKOV; ALEKSEY. A. SHELDYAKOV; VALERIY. YU. SHISHIN; VLADIMIR. M. KOSENKOV; ALEKSANDR. V. VATULIN; IRINA. V. DOBRIKOVA; VLADIMIR. B. SUPRUN; GENNADIY. V. KULAKOV

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; th...

  18. Fabrication of flasks for the transport of irradiated Magnox fuel elements

    Hamill, R.K.; Sandlan, R.

    1979-01-01

    A programme for the manufacture of rectangular box shaped fuel element flasks was undertaken and the paper sets out to describe some of the associated technical work. Alternative ways of making the flask bodies were considered in the light of the specified fracture toughness requirements and the successful achievement of these properties by the use of forgings is described in the paper. Welding to the body forgings, particularly of the fins attached around the four sides was characterised by extremely tight alignment tolerances. The reasons for adopting the method chosen and the success achieved are outlined. Particular attention was paid to preheat and the means of maintaining the requirement throughout manufacture are described. Procedure development work was conducted to establish and qualify the cladding of the top face by Type 347 stainless steel using the submerged arc strip method. A more unusual aspect of the manufacturing sequence was the attachment of thin nickel sheet to the base and cover plate of each flask to provide thermal insulation. The method adopted was spot welding using the MIG process and some of the problems which had to be overcome both in the welding itself and in the subsequent dressing of the spot welds are described. (author)

  19. Cells for the examination of irradiated plutonium fuel elements - two years operation - may 1961/may 1963 (1963)

    Valentin, A.

    1963-01-01

    Within the framework of the 'Rapsodie' fast reactor program, prototype plutonium fuel elements are irradiated and then examined in an α β γ laboratory at Saclay. This laboratory consists of five in line cells and a lead enclosure microscope. Each cell contains an α sealed removable box 4 ft 3 in. high, 4 ft 11 in. wide and 5 ft 1 in. deep, fitted with one or two magnetic transmission indirect manipulators. The boxes are contained in an β γ shielded enclosure whose front face is constructed of cast iron panels 21-2/3 in. thick. Nitrogen circulating in a closed loop forms the atmosphere of the boxes. This laboratory is essentially intended for metallurgical research. The functions of the various cells are as follows: transferring and packing, cutting, density measurement and cathodic etching, storage and metallography. Work on radioactive materials began in April 1961. Operational incidents have always been of a material nature only. (author) [fr

  20. Nuclear reactor fuel elements

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  1. Nuclear reactor fuel elements

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Irradiation temperature memorization by retention of krypton-85. Application to the temperature determination for the internal cladding surface of fuel elements in PWR

    Fremiot, Claude

    1977-01-01

    The temperature of the inner surface of the cladding fuel elements, which can not be measured directly, can be determined after irradiation. During its stage within the reactor, the cladding is bombarded by krypton-85 fission product, which is trapped in the metallic lattice defects. The experience shows that the krypton release during postirradiation heating takes place at the irradiation temperature. This method was applied for PWR fuel element. A very simple model for retention and release of the krypton is proposed. The krypton trap-energy in zircaloy partakes in this model. This technique can be ordered amongst the Hot'Lab' control methods and expert appraisements. It is pointed out that the principal interest in that method is the fact that it does not need any fuel element instrumentation. At the present, this method is being used by CEA for routine-control. [fr

  3. Nuclear fuel elements

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  4. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements

    Domingos, Douglas Borges

    2010-01-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U 3 O 8 -Al and U 3 Si 2 - Al dispersion fuels, LEU type (19.75 % 235 U) with uranium densities of, respectively, 3.2 gU/cm 3 and 4.8 gU/cm 3 . The fuel miniplates will be irradiated to nominal 235 U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  5. Nuclear fuel element

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  6. Fuel or irradiation subassembly

    Seim, O.S.; Hutter, E.

    1975-01-01

    A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins

  7. Irradiation and study of irradiated full elements and sintered UO{sub 2} fuel; Ozracivanje i ispitivanje ozracenih gorivnih elemenata i goriva na bazi sinterovanog UO{sub 2}

    Stevanovic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    This review contains the activities related to the development of UO{sub 2} fuel elements, based on study of the processes in the fuel. This work was done during development, irradiation and testing of certain type of fuel rods and fuel assemblies. A feasibility study for irradiation of fuel elements in our country or abroad was done by analysing the defined problem and our capabilities in this field. Izlozen je pregled potrebnih radova na ozracivanju vezanih za razvoj gorivnih elemenata sa UO{sub 2} gorivom, prikazan kroz rad na osnovnim usmerenim istrazivanjima procesa i pojave u gorivu, kroz razvoj odredjenog tipa gorivnih elemenata ozracivanjem i ispitivanjem ozracenih gorivnih sipki i sklopova gorivnih elemenata. Na osnovu tako postavljenog problema i nasih mogucnosti za rad na ovom polju izvrsena je analiza celishodnosti ozracivanja gorivnih elemenata (goriva) kod nas, odnosno u inostranstvu (author)

  8. Nuclear fuel element

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  9. Irradiated fuel bundle counter

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported. (U.S.)

  10. Irradiated fuel bundle counter

    Campbell, J.W.; Todd, J.L.

    1975-01-01

    The design of a prototype safeguards instrument for determining the number of irradiated fuel assemblies leaving an on-power refueled reactor is described. Design details include radiation detection techniques, data processing and display, unattended operation capabilities and data security methods. Development and operating history of the bundle counter is reported

  11. Status report on the irradiation testing and post-irradiation examination of low-enriched U3O8-Al and UAlsub(x)-Al fuel element by the Netherlands Energy Research Foundation (ECN)

    Pruimboom, H.; Lijbrink, E.; Otterdijk, K. von; Swanenburg de Veye, R.J.

    1984-01-01

    Within the framework of the RERTR-programme four low-enriched (20%) MTR-type fuel elements have been irradiated in the High Flux Reactor at Petten (The Netherlands) and are presently subjected to postirradiation examination. Two of the elements contain UAlsub(x)-Al and two contain U 3 O 8 -Al fuel. The test irradiation has been completed up to the target burn-up values of 50% and 75% respectively. An extensive surveillance programme carried out during the test period has confirmed the excellent in-reactor behaviour of both types. Post-irradiation examination of the 50% burn-up test elements, comprising of dimensional measurements, burn-up determination, fuel metallography and blister testing, has sofar confirmed the irradiation experiences. Good agreement between calculated and measured power and burn-up characteristics has been found. A survey of the test element characteristics, their irradiation history, the irradiation tests and the preliminary PIE results is given in the paper. (author)

  12. Nuclear fuel element

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  13. RECH-1 test fuel irradiation status report

    Marin, J.; Lisboa, J.; Olivares, L.; Chavez, J.

    2005-01-01

    Since May 2003, one RECH-1 fuel element has been submitted to irradiation at the HFR-Petten, Holland. By November 2004 the irradiation has achieved its pursued goal of 55% burn up. This irradiation qualification service will finish in the year 2005 with PIE tests, as established in a contractual agreement between the IAEA, NRG, and CCHEN. This report presents the objectives and the current results of this fuel qualification under irradiation. Besides, a brief description of CHI/4/021, IAEA's Technical Cooperation Project that has supported this irradiation test, is also presented here. (author)

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  15. Fast breeder fuel element development

    Marth, W.; Muehling, G.

    1983-08-01

    This report is a compilation of the papers which have been presented during a seminar ''Fast Breeder Fuel Element Development'' held on November 15/16, 1982 at KfK. The papers give a survey of the status, of the obtained results and of the necessary work, which still has to be done in the frame of various development programmes for fast breeder fuel elements. In detail the following items were covered by the presentations: - the requirements and boundary conditions for the design of fuel pins and elements both for the reference concept of the SNR 300 core and for the large, commercial breeder type of the future (presentation 1,2 and 6); - the fabrication, properties and characterization of various mixed oxide fuel types (presentations 3,4 and 5); - the operational fuel pin behaviour, limits of different design concepts and possible mechanism for fuel pin failures (presentations (7 and 8); - the situation of cladding- and wrapper materials development especially with respect to the high burn-up values of commercial reactors (presentations 9 and 10); - the results of the irradiation experiments performed under steady-state and non-stationary operational conditions and with failed fuel pins (presentations 11, 12, 13 and 14). (orig./RW) [de

  16. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-12-15

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60%{sup 235}U; the mini-rods were irradiated to an average burnup of ∼ 85%{sup 235}U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  17. Comparative Analysis of Structural Changes In U-Mo Dispersed Fuel of Full-Size Fuel Elements And Mini-Rods Irradiated In The MIR Reactor

    Izhutov, Aleksey L.; Iakovlev, Valeriy V.; Novoselov, Andrey E. and others

    2013-01-01

    The paper summarizes the irradiation test and post-irradiation examination (PIE) data for the U-Mo low-enriched fuel that was irradiated in the MIR reactor under the RERTR Program. The PIE data were analyzed for both full-size fuel rods and mini-rods with atomized powder dispersed in Al matrix as well as with additions of 2%, 5% and 13% of silicon in the matrix and ZrN protective coating on the fuel particles. The full-size fuel rods were irradiated up to an average burnup of ∼ 60% 235 U; the mini-rods were irradiated to an average burnup of ∼ 85% 235 U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%

  18. Nuclear fuel element

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  19. Nuclear fuel element

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  20. Nuclear reactor fuel elements

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  1. Interaction between uranium oxide alloyed with Al2O3·SiO2 and pyrocarbon coating during irradiation of micro fuel elements

    Chernikov, A.S.; Khromov, Y.F.; Svistunov, D.E.; Chuiko, E.E.

    1989-01-01

    The thermodynamics of the interaction between uranium oxide and carbon was previously studied in the presence of Al 2 O 3 ·SiO 2 , SiC, and UC 1.86 ; in this case, the quantity of the reacting substances does not have any effect on the attainment of the equilibrium state. Based on the obtained results, it is interesting to study the characteristic features of the interaction between the alloyed UO x cores (kernels) with the PyC-coating under the conditions involving irradiation of the micro fuel elements with thermal neutrons and the formation of solid fission products. The data concerning the characteristics of a micro fuel element (the weight of the core, its composition, etc.) are useful for carrying out a quantitative evaluation of the additives required for fixing the alkali-earth fission products by obtaining stable compounds of aluminosilicates with Ba, Sr, Rb, and Cs at different levels of depletion (burnup) of the oxide fuel. An analysis of the interaction processes in such a complex system as the irradiated alloyed uranium oxide fuel located in a micro fuel element is carried out by comparing the chemical potential of oxygen (RT ln P O 2 ) for the competing constituents of the system

  2. Utilization of plastic detector for pool water radioactivity control of IEA-R1 reactor. Examination of fuel element irradiation behaviour fabricated at IPEN/CNEN-SP

    Berretta, J.R.; Mesquita, C.H. de; Madi Filho, T.

    1989-01-01

    For the examination of fuel element irradiation behavior that were fabricated at IPEN/CNEN/SP Metalurgical Departament, it was provided a detection system for pool water radioactivity measurements. This system uses a plastic scintillator detector produced at IPEN/CNEN-SP Health Physics Department, with dimensions and shape apropriated for such work. The detection system shows a sensibility of 4.125x10 -2 dps/cm 3 and 20% of efficiency for 131 I radiations. (author) [pt

  3. Nuclear fuel elements

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  4. Out-of-pile burnout experiments in a full-scale simulation of an irradiation rig in a HIFAR hollow fuel element facility

    Chapman, A.G.; Hargreaves, N.D.

    1986-06-01

    Flow measurement and burnout experiments were performed in an out-of-pile test rig which simulates the conditions of UO 2 irradiation rig in a hollow fuel element facility of the HIFAR reactor. One per cent of the coolant flow in the fuel element passed through the irradiation rig. A burnout heat flux of 90 W cm -2 was observed at the surface of an electrically-heated, dummy irradiation can. When the coolant flow rate in the irradiation rig was increased by a factor of 2.5, the burnout heat flux rose by 30 per cent to 117 W cm -2 . A simple modification to the supporting frame for the cans improved the burnout heat flux by 3 per cent at 1 per cent of the coolant flow, but enhanced it by 17 per cent at 2.5 per cent of the coolant flow. Of ten burnout events observed, eight were located upstream of the end of the heated length of the can. The burnout results form a self-consistent, credible set of data and provide a rational basis for the establishment of maximum permissible operating heat fluxes in irradiation rigs of the type simulated. Recommendations are made for the practical application of the results

  5. Nuclear fuel element

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  6. Hydriding failure in water reactor fuel elements

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  7. Calculation simulation of equivalent irradiation swelling for dispersion nuclear fuel

    Cai Wei; Zhao Yunmei; Gong Xin; Ding Shurong; Huo Yongzhong

    2015-01-01

    The dispersion nuclear fuel was regarded as a kind of special particle composites. Assuming that the fuel particles are periodically distributed in the dispersion nuclear fuel meat, the finite element model to calculate its equivalent irradiation swelling was developed with the method of computational micro-mechanics. Considering irradiation swelling in the fuel particles and the irradiation hardening effect in the metal matrix, the stress update algorithms were established respectively for the fuel particles and metal matrix. The corresponding user subroutines were programmed, and the finite element simulation of equivalent irradiation swelling for the fuel meat was performed in Abaqus. The effects of the particle size and volume fraction on the equivalent irradiation swelling were investigated, and the fitting formula of equivalent irradiation swelling was obtained. The results indicate that the main factors to influence equivalent irradiation swelling of the fuel meat are the irradiation swelling and volume fraction of fuel particles. (authors)

  8. Loading procedures for shipment of irradiated fuel

    Bates, E F; Feltz, D E; Sandel, P S; Schoenbucher, B [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  9. Loading procedures for shipment of irradiated fuel

    Bates, E.F.; Feltz, D.E.; Sandel, P.S.; Schoenbucher, B.

    1974-01-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  10. Fuel element transport container

    Benna, P.; Neuenfeldt, W.

    1979-01-01

    The reprocessing system includes a large number of waterfilled ponds next to each other for the intermediate storage of fuel elements from LWR's. The fuel element transport device is allocated to a middle pond. The individual ponds are separated from each other by walls, and are only accessible from the middle pond via narrow passages. The transport device includes a telescopic running rail for a trolley with a grab device for the fuel element. The running rail is supported in turn by a second trolley, which can be moved by wheels on rails. Part of the drive of the first trolley is arranged on the second one. Using this transport device, adjacent ponds can be served through the passage openings. (DG) [de

  11. Fuel Element Technical Manual

    Burley, H.H. [ed.

    1956-08-01

    It is the purpose of the Fuel Element Technical Manual to Provide a single document describing the fabrication processes used in the manufacture of the fuel element as well as the technical bases for these processes. The manual will be instrumental in the indoctrination of personnel new to the field and will provide a single data reference for all personnel involved in the design or manufacture of the fuel element. The material contained in this manual was assembled by members of the Engineering Department and the Manufacturing Department at the Hanford Atomic Products Operation between the dates October, 1955 and June, 1956. Arrangement of the manual. The manual is divided into six parts: Part I--introduction; Part II--technical bases; Part III--process; Part IV--plant and equipment; Part V--process control and improvement; and VI--safety.

  12. Nuclear fuel elements

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  13. Nuclear fuel elements

    Obara, Hiroshi.

    1981-01-01

    Purpose: To suppress iodine release thereby prevent stress corrosion cracks in fuel cans by dispersing ferrous oxide at the outer periphery of sintered uranium dioxide pellets filled and sealed within zirconium alloy fuel cans of fuel elements. Constitution: Sintered uranium dioxide pellets to be filled and sealed within a zirconium alloy fuel can are prepared either by mixing ferric oxide powder in uranium dioxide powder, sintering and then reducing at low temperature or by mixing iron powder in uranium dioxide powder, sintering and then oxidizing at low temperature. In this way, ferrous oxide is dispersed on the outer periphery of the sintered uranium dioxide pellets to convert corrosive fission products iodine into iron iodide, whereby the iodine release is suppressed and the stress corrosion cracks can be prevented in the fuel can. (Moriyama, K.)

  14. Improved nuclear fuel element

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  15. Fuel element store

    Wieser, R.

    1987-01-01

    The spherical fuel elements are stored dry in cans. The cans themselves are stacked in parallel storage shafts, which are combined into a rectangular storage space. The storage space is made earthquake-proof by surrounding it with concrete. It consists of a ceiling assembled from several steel parts, which is connected to the floor by support elements. A cooling air ventilation station supplies the individual storage shaft and therefore the cans with cooling air via incoming and outgoing pipes. (DG) [de

  16. COMPARATIVE ANALYSIS OF STRUCTURAL CHANGES IN U-MO DISPERSED FUEL OF FULL-SIZE FUEL ELEMENTS AND MINI-RODS IRRADIATED IN THE MIR REACTOR

    ALEKSEY. L. IZHUTOV

    2013-12-01

    The full-size fuel rods were irradiated up to an average burnup of ∼ 60%235U; the mini-rods were irradiated to an average burnup of ∼ 85%235U. The presented data show a significant increase of the void fraction in the U-Mo alloy as the U-235 burnup rises from ∼ 40% up to ∼ 85%. The effect of irradiation test conditions and U-235 burnup were analyzed with regard to the formation of an interaction layer between the matrix and fuel particles as well as generation of porosity in the U-Mo alloy. Shown here are changes in distribution of U fission products as the U-235 burnup increases from ∼ 40% up to ∼ 85%.

  17. Results of the irradiation of mixed UO{sub 2} - PuO{sub 2} oxide fuel elements; Resultats d'irradiation d'elements combustibles en oxyde mixte UO{sub 2} - PuO{sub 2}

    Mikailoff, H.; Mustelier, J.P.; Bloch, J.; Ezran, L.; Hayet, L. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO{sub 2} containing about 10 per cent of PuO{sub 2}. The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm{sup 3} and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and {gamma}-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [French] Afin d'etudier le comportement des elements combustibles destines a la premiere charge du reacteur Rapsodie, une premiere serie de onze aiguilles a ete irradiee dans le reacteur EL3 et examinee apres irradiation. Ces aiguilles (aux caracteristiques geometriques tres proches de celles des aiguilles definitives) etaient constituees d'un empilement de pastilles frittees en oxyde mixte UO{sub 2} a 10 pour cent environ de PuO{sub 2}, dont la densite etait comprise entre 85 et 97 pour cent de la densite theorique. Le jeu diametral entre l'oxyde et la

  18. Results of the irradiation of mixed UO{sub 2} - PuO{sub 2} oxide fuel elements; Resultats d'irradiation d'elements combustibles en oxyde mixte UO{sub 2} - PuO{sub 2}

    Mikailoff, H; Mustelier, J P; Bloch, J; Ezran, L; Hayet, L [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    In order to study the behaviour of fuel elements used for the first charge of the reactor Rapsodie, a first batch of eleven needles was irradiated in the reactor EL3 and then examined. These needles (having a shape very similar lo that of the actual needles to be used) were made up of a stack of sintered mixed-oxide pellets: UO{sub 2} containing about 10 per cent of PuO{sub 2}. The density was 85 to 97 per cent of the theoretical, value. The diametral gap between the oxide and the stainless steel can was between 0,06 and 0,27 mm. The specific powers varied from 1230 to 2700 W/cm{sup 3} and the can temperature was between 450 and 630 C. The maximum burn-up attained was 22000 MW days/tonne. Examination of the needles (metrology, radiography and {gamma}-spectrography) revealed certain macroscopic changes, and the evolution of the fuel was shown by micrographic studies. These observations were used, together with flux measurements results, to calculate the temperature distribution inside the fuel. The volume of the fission gas produced was measured in some of the samples; the results are interpreted taking into account the temperature distribution in the oxide and the burn-up attained. Finally a study was made both of the behaviour of a fuel element whose central part was molten during irradiation, and of the effect of sodium which had penetrated into some of the samples following can rupture. (author) [French] Afin d'etudier le comportement des elements combustibles destines a la premiere charge du reacteur Rapsodie, une premiere serie de onze aiguilles a ete irradiee dans le reacteur EL3 et examinee apres irradiation. Ces aiguilles (aux caracteristiques geometriques tres proches de celles des aiguilles definitives) etaient constituees d'un empilement de pastilles frittees en oxyde mixte UO{sub 2} a 10 pour cent environ de PuO{sub 2}, dont la densite etait comprise entre 85 et 97 pour cent de la densite theorique. Le jeu diametral entre l'oxyde et la gaine en acier

  19. Predictions of the thermomechanical code ''RESTA'' compared with fuel element examinations after irradiation in the BR3 reactor

    Petitgrand, S.

    1980-01-01

    A large number of fuel rods have been irradiated in the small power plant BR3. Many of them have been examined in hot cells after irradiation, giving thus valuable experimental information. On the other hand a thermomechanical code, named RESTA, has been developed by the C.E.A. to describe and predict the behaviour of a fuel pin in a PWR environment and in stationary conditions. The models used in that code derive chiefly from the C.E.A.'s own experience and are briefly reviewed in this paper. The comparison between prediction and experience has been performed for four power history classes: (1) moderate (average linear rating approximately equal to 20 kw m -1 ) and short (approximately equal to 300 days) rating, (2) moderate (approximately equal to 20 kw m -1 ) and long (approximately equal to 600 days) rating, (3) high (25-30 kw m -1 ) and long (approximately equal to 600 days) rating and (4) very high (30-40 kw m -1 ) and long (approximately equal to 600 days) rating. Satisfactory agreement has been found between experimental and calculated results in all cases, concerning fuel structural change, fission gas release, pellet-clad interaction as well as clad permanent strain. (author)

  20. Improved nuclear fuel element

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  1. Irradiation of novel MTR fuel plates in BR2

    Verboomen, B.; Aoust, Th.; Beeckmans De Westmeerbeeck, A.; De Raedt, Ch.

    2000-01-01

    Since the end of 1999, novel MTR fuel plates with very high-density meat are being irradiated in BR2. The purpose of the irradiation is to investigate the behaviour of these fuel plates under very severe reactor operation conditions. The novel fuel plates are inserted in two standard six-tube BR2 fuel elements in the locations normally occupied by the standard outer fuel plates. The irradiation in BR2 was prepared by carrying out detailed neutron Monte Carlo calculations of the whole BR2 core containing the two experimental fuel elements for various positions in the reactor and for various azimuthal orientations of the fuel elements. Comparing the thus determined fission density levels and azimuthal profiles in the new MTR fuel plates irradiated in the various channels allowed the experimenters to choose the most appropriate BR2 channel and the most appropriate fuel element orientation. (author)

  2. VVER fuel. Results of post irradiation examination

    Smirnov, V.P.; Markov, D.V.; Smirnov, A.V.; Polenok, V.S.; Perepelkin, S.O.; Ivashchenko, A.A.

    2005-01-01

    The present paper presents the main results of post-irradiation examination of more than 40 different fuel assemblies (FA) operated in the cores of VVER-1000 and VVER-440-type power reactors in a wide range of fuel burnup. The condition of fuel assembly components from the viewpoint of deformation, corrosion resistance and mechanical properties is described here. A serviceability of the FA design as a whole and interaction between individual FA components under vibration condition and mechanical load received primary emphasis. The reasons of FA damage fuel element failure in a wide range of fuel burnup are also analyzed. A possibility and ways of fuel burnup increase have been proved experimentally for the case of high-level serviceability maintenance of fuel elements to provide for advanced fuel cycles. (author)

  3. Nondestructive analysis of irradiated fuels

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  4. Nuclear reactor fuel elements

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  5. Nuclear reactor fuel elements

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  6. Irradiation behaviour of solid and hollow U{sub 3}Si fuel elements: results to 15,000 MWd/tonne U

    Feraday, M A; Chalder, G H; Cotnam, K D

    1969-06-15

    U{sub 3}Si fuel elements clad in zirconium alloy sheaths have been irradiated to burnups close to 15,000 MWd/tonne U in pressurized water at 220{sup o}C, 98 bars. The results show that the external swelling can be controlled by incorporating free volume in the element. The dimensional stability of such elements is adequate to permit their use in power reactor fuel bundles. A diameter increase of 1.2% had occurred in an element initially containing 12.8% total free volume, after a burnup of 14,700 MWd/tonne U. There was no change in diameter between burnups of 5200 and 14,700 MWd/tonne U. Elements containing 3% total free volume had increased in diameter about 2.5% at 2000 MWd/tonne U compared to 0.2% at 9500 MWd/tonne U for elements containing 22% total free volume. The observed swelling in the U{sub 3}Si is discussed in terms of possible mechanisms. (author)

  7. Nuclear reactor fuel element

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  8. Nuclear fuel element

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  9. FRESCO-II: A computer program for analysis of fission product release from spherical HTGR-fuel elements in irradiation and annealing experiments

    Krohn, H.; Finken, R.

    1983-06-01

    The modular computer code FRESCO has been developed to describe the mechanism of fission product release from a HTGR-Core under accident conditions. By changing some program modules it has been extended to take into account the transport phenomena (i.e. recoil) too, which only occur under reactor operating conditions and during the irradiation experiments. For this report, the release of cesium and strontium from three HTGR-fuel elements has been evaluated and compared with the experimental data. The results show that the measured release can be described by the considered models. (orig.) [de

  10. Status of fuel irradiation tests in HANARO

    Kim, Hark Rho; Lee, Choong Sung; Lee, Kye Hong; Jun, Byung Jin; Lee, Ji Bok

    1999-01-01

    Since 1996 after finishing the long-term operational test, HANARO (High-Flux Advanced Neutron Application Reactor) has been extensively used for material irradiation tests, beam application research, radioisotope production and neutron activation analysis. This paper presents the fuel irradiation test activities which are now conducted or have been finished in HANARO. KAERI developed LEU fuel using an atomization method for the research reactors. Using this LEU, we have set up and conducted three irradiation programs: (1) medium power irradiation test using a short-length mini-assembly made of 3.15 gU/cc U 3 Si, (2) high power irradiation tests using full-length test assemblies made of 3.15 gU/cc U 3 Si, and (3) irradiation test using a short-length mini-plate made of 4.8 gU/cc U 3 Si 2 . DUPIC (Direct Use of spent PWR fuels in CANDU Reactors) simulation fuel pellets, of which compositions are very similar to DUPIC pellets to keep the similarity in the thermo-mechanical property, were developed. Three mini-elements including 5 pellets each were installed in a capsule. This capsule has been irradiated for 2 months and unloaded from the HANARO core at the end of September 1999. Another very important test is the HANARO fuel qualification program at high power, which is required to resolve the licensing issue. This test is imposed on the HANARO operation license due to insufficient test data under high power environment. To resolve this licensing issue, we have been carrying out the required irradiation tests and PIE (Post-irradiation Examination) tests. Through this program, it is believed that the resolution of the licensing issue is achieved. In addition to these programs, several fuel test plans are under way. Through these vigorous activities of fuel irradiation test programs, HANARO is sure to significantly contribute to the national nuclear R and D programs. (author)

  11. Vented nuclear fuel element

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  12. Container for irradiated fuel

    Guy, R.

    1978-01-01

    The transport container for irradiated or used nuclear fuel is provided with an identical heat shield against fires on the top and bottom sides. Each heat shield consists of two inner nickel plates, whose contact surfaces are polished to a mirror finish and an outer plate of stainless steel. The nickel plate on the box is spot welded to it while the second nickel plate is spot welded to the steel plate. Both together are in turn welded so as to be leaktight to the edges of the box. For extreme heat effects and based on the different (bimetal) coefficients of expansion, the steel plate with the nickel plate attached to it bulges away from the box. The second nickel plate remains at the box, so that a subpressure space is formed with the mirror nickel surfaces. The heat radiation and heat conduction to the box are greatly reduced by this. (DG) [de

  13. Integral nuclear fuel element assembly

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  14. Requirements for materials of dispersion fuel elements

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  15. Cells for the examination of irradiated plutonium fuel elements - two years operation - may 1961/may 1963 (1963); Cellules pour examen d'elements combustibles au plutonium irradies - deux ans d'exploitation - mai 1961/mai 1963 (1963)

    Valentin, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Within the framework of the 'Rapsodie' fast reactor program, prototype plutonium fuel elements are irradiated and then examined in an {alpha} {beta} {gamma} laboratory at Saclay. This laboratory consists of five in line cells and a lead enclosure microscope. Each cell contains an {alpha} sealed removable box 4 ft 3 in. high, 4 ft 11 in. wide and 5 ft 1 in. deep, fitted with one or two magnetic transmission indirect manipulators. The boxes are contained in an {beta} {gamma} shielded enclosure whose front face is constructed of cast iron panels 21-2/3 in. thick. Nitrogen circulating in a closed loop forms the atmosphere of the boxes. This laboratory is essentially intended for metallurgical research. The functions of the various cells are as follows: transferring and packing, cutting, density measurement and cathodic etching, storage and metallography. Work on radioactive materials began in April 1961. Operational incidents have always been of a material nature only. (author) [French] Dans le cadre du projet de reacteur rapide Rapsodie, des elements combustibles prototypes au plutonium sont, apres irradiation, examines a Saclay dans un laboratoire {alpha} {beta} {gamma}. Celui-ci comprend cinq cellules en ligne et une enceinte en plomb contenant un microscope telecommande. Chaque cellule est constituee d'un caisson etanche (1, 3 m x 1, 5 m x 1, 56m) equipee d'un ou deux manipulateurs indirects a transmissions magnetiques. Les caissons sont places, dans une enceinte {beta} {gamma} dont la face avant est formee de blocs en fonte ayant 55 cm d'epaisseur. L'atmosphere des caissons est de l'azote, circulant en circuit ferme. Ce laboratoire est destine essentiellement a des recherches metallurgiques. Les fonctions des differentes cellules sont: conditionnement et transferts, tronconnage, mesure de densite et polissage ionique, stockage, metallographie. Le travail sur materiaux radioactifs a commence en avril 1961. Les incidents d'exploitation ont toujours ete d

  16. Cells for the examination of irradiated plutonium fuel elements - two years operation - may 1961/may 1963 (1963); Cellules pour examen d'elements combustibles au plutonium irradies - deux ans d'exploitation - mai 1961/mai 1963 (1963)

    Valentin, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    Within the framework of the 'Rapsodie' fast reactor program, prototype plutonium fuel elements are irradiated and then examined in an {alpha} {beta} {gamma} laboratory at Saclay. This laboratory consists of five in line cells and a lead enclosure microscope. Each cell contains an {alpha} sealed removable box 4 ft 3 in. high, 4 ft 11 in. wide and 5 ft 1 in. deep, fitted with one or two magnetic transmission indirect manipulators. The boxes are contained in an {beta} {gamma} shielded enclosure whose front face is constructed of cast iron panels 21-2/3 in. thick. Nitrogen circulating in a closed loop forms the atmosphere of the boxes. This laboratory is essentially intended for metallurgical research. The functions of the various cells are as follows: transferring and packing, cutting, density measurement and cathodic etching, storage and metallography. Work on radioactive materials began in April 1961. Operational incidents have always been of a material nature only. (author) [French] Dans le cadre du projet de reacteur rapide Rapsodie, des elements combustibles prototypes au plutonium sont, apres irradiation, examines a Saclay dans un laboratoire {alpha} {beta} {gamma}. Celui-ci comprend cinq cellules en ligne et une enceinte en plomb contenant un microscope telecommande. Chaque cellule est constituee d'un caisson etanche (1, 3 m x 1, 5 m x 1, 56m) equipee d'un ou deux manipulateurs indirects a transmissions magnetiques. Les caissons sont places, dans une enceinte {beta} {gamma} dont la face avant est formee de blocs en fonte ayant 55 cm d'epaisseur. L'atmosphere des caissons est de l'azote, circulant en circuit ferme. Ce laboratoire est destine essentiellement a des recherches metallurgiques. Les fonctions des differentes cellules sont: conditionnement et transferts, tronconnage, mesure de densite et polissage ionique, stockage, metallographie. Le travail sur materiaux radioactifs a commence en avril 1961. Les incidents d

  17. Metallographic analysis of irradiated U3Si2/Al fuel element plate of 2.96 gU/cm3 density

    Maman Kartaman Ajiriyanto; Aslina Br Ginting; Junaedi

    2018-01-01

    Metallographic analysis of U 3 Si 2 /Al fuel element plate has been performed in hot cell. The purpose of metallographic analysis is to study changes in PEB U 3 Si 2 /Al microstructure and AlMg 2 cladding thickness after irradiation in reactor until burn up of 56 %. The fuel element plate of irradiated U 3 Si 2 /Al was cut in top, middle and bottom positions with each size around 5 x 5 x 1.37 mm. Metallographic preparation starts from sample cutting using cutting machine with low speed and sample mounting, grinding and polishing in hot cell 104–105. Sample mounting was done by using resin for more than 10 hours followed by grinding with sand papers up to grit size of 2400 and polishing with diamond paste of size 3 to 1 micron at a rotational speed of 150 rpm for 5 minutes. Microstructure observation was performed with optical microscope in hot cell 107 at 200 times magnification. Microstructure examination reveals U 3 Si 2 particles with inverse forms and sizes, Al matrix and AlMg 2 cladding were spread along the U 3 Si 2 /Al side. Microstructure observation of irradiated U 3 Si 2 /Al has not shown good result because only topography observation of U 3 Si 2 /Al meat, Al matrix and AlMg 2 cladding can be done due to limited capability of the optical microscope in hot cell, where maximum magnification can be attained only at 200 times so that the phenomenon of interaction layer and small gas bubble can not be observed. However, U 3 Si 2 /Al microstructure of 56 % burnup, if compared to the microstructure of U 3 Si 2 /Al fuel element plate of 60 % burnup from previous researcher, shows interaction between U 3 Si 2 meat with Al matrix and the existence of layers with a thickness about 5 up to 20 microns. Meanwhile, the observed thickness of AlMg 2 cladding is greater than 0.25 mm, which indicates that irradiation does not significantly change the thickness of AlMg 2 cladding so that the overall irradiated U 3 Si 2 -Al still has good integrity and stability. (author)

  18. CERCA's fuel elements instrumentation manufacturing

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  19. Nuclear fuel element

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  20. The health physics of installations for decladding irradiated fuels or for handling radio-elements at Marcoule; La radioprotection des installations de degainage des combustibles irradies et des radio-elements a Marcoule

    Chassany, J; Guillermin, P; Mallet, P [Commissariat a l' Energie Atomique, Centre de Production de Plutonium de Marcoule, 30 - Chusclan (France)

    1966-07-01

    Radiation protection practices for handling reactor fuel elements are described. Elements of considerable specific radioactivity are handled under water. A study was made of water filtration and of ventilation in the building. The installations are divided up into zones depending on the radioactive risks, and the radiation level atmospheric contamination are the object of a systematic control at various points. A description is given of all aspects of health physics which have been encountered during six years: storage, transfer of radioactive material; decladding, rolling, waste disposal, specialized operations, installations in operation and at rest, and transport. In spite of the gradual increase in the activity of these installations, the total doses received by the personnel have hardly altered and the number of cases of physical contamination has diminished. (authors) [French] Dans ces installations, se manipulent sous l'eau des elements a radioactivite specifique considerable. La filtration de l'eau, la ventilation ont ete particulierement etudiees. L'ensemble a ete divise en lieux classes en fonction des risques radioactifs et des appareils controlent en permanence l'irradiation et la contamination atmospherique en certains points. Tous les aspects de la radioprotection resultant de six annees d'experience relatifs: au stockage, au deconteneurage, au degainage, au laminage, a l'evacuation des residus, aux travaux particuliers, installations en marche et a l'arret, et aux transports sont successivement decrits. Malgre l'accroissement progressif de l'activite de cet ensemble, les doses integrees par le personnel n'ont pratiquement pas augmente et le nombre des cas de contamination corporelle a diminue. (auteurs)

  1. Experimental research of fuel element reliability

    Cech, B.; Novak, J.; Chamrad, B.

    1980-01-01

    The rate and extent of the damage of the can integrity for fission products is the basic criterion of reliability. The extent of damage is measurable by the fission product leakage into the reactor coolant circuit. An analysis is made of the causes of the fuel element can damage and a model is proposed for testing fuel element reliability. Special experiments should be carried out to assess partial processes, such as heat transfer and fuel element surface temperature, fission gas liberation and pressure changes inside the element, corrosion weakening of the can wall, can deformation as a result of mechanical interactions. The irradiation probe for reliability testing of fuel elements is described. (M.S.)

  2. Inert matrix fuel in dispersion type fuel elements

    Savchenko, A.M. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)]. E-mail: sav@bochvar.ru; Vatulin, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Morozov, A.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Sirotin, V.L. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Dobrikova, I.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kulakov, G.V. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Ershov, S.A. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Kostomarov, V.P. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation); Stelyuk, Y.I. [A.A. Bochvar All-Russia Research Institute of Inorganic Materials (VNIINM) 123060, P.O. Box 369, Rogova Street, 5A, Moscow (Russian Federation)

    2006-06-30

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg{sup -1} (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  3. Inert matrix fuel in dispersion type fuel elements

    Savchenko, A. M.; Vatulin, A. V.; Morozov, A. V.; Sirotin, V. L.; Dobrikova, I. V.; Kulakov, G. V.; Ershov, S. A.; Kostomarov, V. P.; Stelyuk, Y. I.

    2006-06-01

    The advantages of using inert matrix fuel (IMF) as a dispersion fuel in an aluminium alloy matrix are considered, in particular, low temperatures in the fuel centre, achievable high burn-ups, serviceability in transients and an environmentally friendly process of fuel rod fabrication. Two main versions of IMF are under development at A.A. Bochvar Institute, i.e. heterogeneous or isolated distribution of plutonium. The out-of-pile results on IMF loaded with uranium dioxide as plutonium simulator are presented. Fuel elements with uranium dioxide composition fabricated at A.A. Bochvar Institute are currently under MIR tests (RIAR, Dimitrovgrad). The fuel elements reached a burn-up of 88 MW d kg-1 (equivalent to the burn up of the standard uranium dioxide pelletized fuel) without loss of leak-tightness of the cladding. The feasibility of fabricating IMF of these particular types with plutonium dioxide is considered with a view to in-pile irradiation.

  4. Nuclear fuel element

    Armijo, J S; Coffing, L F

    1979-04-05

    The fuel element with circular cross-section for BWR and PWR consists of a core surrounded by a compound jacket container where there is a gap between the core and jacket during operation in the reactor. The core consists of U, Pu, Th compounds and mixtures of these. The compound jacket consists of zircaloy 2 or 4. In order to for example prevent the corrosion of the compound jacket, its inner surface has a metal barrier with smaller neutron absorbers than the jacket material in the form of a zirconium sponge. The zirconium of this metal barrier has impurities of various elements in the order of magnitude of 1000 to 5000 ppm. The oxygen content is in the range of 200 to 1200 ppm and the thickness of the metal barrier is 1-30% of the thickness of the jacket.

  5. Fission gas retention in irradiated metallic fuel

    Fenske, G.R.; Gruber, E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5 wt. % Fs) are presented. (The symbol 'Fs' designates fissium, a 'pseudo-element' which, in reality, is an alloy whose composition is representative of fission products that remain in reprocessed fuel). The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations with the measurements shows quantitative agreement in both the magnitude and the axial variation of the retained gas content. (orig.)

  6. Improved nuclear fuel element

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  7. Instrumentation of fuel elements and fuel plates

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  8. Instrumentation of fuel elements and fuel plates

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  9. PIE Report on the KOMO-3 Irradiation Test Fuels

    Park, Jong Man; Ryu, H. J.; Yang, J. H.

    2009-04-01

    In the KOMO-3, in-reactor irradiation test had been performed for 12 kinds of dispersed U-Mo fuel rods, a multi wire fuel rod and a tube fuel rod. In this report we described the PIE results on the KOMO-3 irradiation test fuels. The interaction layer thickness between fuel particle and matrix could be reduced by using a large size U-Mo fuel particle or introducing Al-Si matrix or adding the third element in the U-Mo particle. Monolithic fuel rod of multi-wire or tube fuel was also effective in reducing the interaction layer thickness

  10. Nuclear Fuel elements

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  11. Irradiated fuel performance evaluation technology development

    Koo, Yang Hyun; Bang, J. G.; Kim, D. H.

    2012-01-01

    Alpha version performance code for dual-cooled annular fuel under steady state operation, so called 'DUOS', has been developed applying performance models and proposed methodology. Furthermore, nonlinear finite element module which could be integrated into transient/accident fuel performance code was also developed and evaluated using commercial FE code. The first/second irradiation and PIE test of annular pellet for dual-cooled annular fuel in the world have been completed. In-pile irradiation test DB of annular pellet up to burnup of 10,000 MWd/MTU through the 1st test was established and cracking behavior of annular pellet and swelling rate at low temperature were studied. To do irradiation test of dual-cooled annular fuel under PWR's simulating steady-state conditions, irradiation test rig/rod design/manufacture of mock-up/performance test have been completed through international collaboration program with Halden reactor project. The irradiation test of large grain pellets has been continued from 2002 to 2011 and completed successfully. Burnup of 70,000 MWd/MTU which is the highest burnup among irradiation test pellets in domestic was achieved

  12. Nuclear reactor fuel element splitter

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  13. Nuclear fuel element

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  14. Tests on CANDU fuel elements sheath samples

    Ionescu, S.; Uta, O.; Mincu, M.; Prisecaru, I.

    2016-01-01

    This work is a study of the behavior of CANDU fuel elements after irradiation. The tests are made on ring samples taken from fuel cladding in INR Pitesti. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory. By metallographic and ceramographic examination we determinate that the hydride precipitates are orientated parallel to the cladding surface. A content of hydrogen of about 120 ppm was estimated. After the preliminary tests, ring samples were cut from the fuel rod, and were subject of tensile test on an INSTRON 5569 model machine in order to evaluate the changes of their mechanical properties as consequence of irradiation. Scanning electron microscopy was performed on a microscope model TESCAN MIRA II LMU CS with Schottky FE emitter and variable pressure. The analysis shows that the central zone has deeper dimples, whereas on the outer zone, the dimples are tilted and smaller. (authors)

  15. Rack for nuclear fuel elements

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  16. Nondestructive examination techniques on Candu fuel elements

    Gheorghe, G.; Man, I.

    2013-01-01

    During irradiation in nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of surface conditions sheath as well, which can lead to damages and even loss of integrity. Visual examination and photography of Candu fuel elements are among the non-destructive examination techniques, next to dimensional measurements that include profiling (diameter, bending, camber) and length, sheath integrity control with eddy currents, measurement of the oxide layer thickness by eddy current techniques. Unirradiated Zircaloy-4 tubes were used for calibration purposes, whereas irradiated Zircaloy-4 tubes were actually subjected to visual inspection and dimensional measurements. We present results of measurements done by eddy current techniques on Zircaloy- 4 tubes, unirradiated, but oxidized in an autoclave prior to examinations. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. (authors)

  17. Thermal insulation of fuel elements

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  18. Increased burnup of fuel elements

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  19. Fuel element services

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  20. Irradiation performance of metallic fuels

    Pahl, R.G.; Lahm, C.E.; Porter, D.L.; Batte, G.L.; Hofman, G.L.

    1989-01-01

    Argonne National Laboratory has been working for the past five years to develop and demonstrate the Integral Fast Reactor (IFR) concept. The concept involves a closed system for fast-reactor power generation and on-site fuel reprocessing, both designed specifically around the use of metallic fuel. The Experimental Breeder Reactor-II (EBR-II) has used metallic fuel for all of its 25-year life. In 1985, tests were begun to examine the irradiation performance of advanced-design metallic fuel systems based on U-Zr or U-Pu-Zr fuels. These tests have demonstrated the viable performance of these fuel systems to high burnup. The initial testing program will be described in this paper. 2 figs

  1. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  2. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  3. Post-irradiation examinations on the KNK II/1 fuel element NY-203 with 400 equivalent full-power days residence time and 10 % burnup

    Patzer, G.; Geier, F.

    1984-09-01

    The fuel assembly NY-203 has been irradiated in the first core of KNK II up to a burnup of about 10 % and a residence time of 400 equivalent full-power days. The assembly contained 211 fuel pins with 6.0 mm outer diameter and fuel pellets with the composition (U 0 .7Pu 0 .3)O 2 .00. The cladding material was the austenitic steel 1.4988 lg. Some selected pins were examined in the hot cells of the KfK Karlsruhe. The post-irradiation examinations did not reveal any critical design aspects [de

  4. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  5. Nuclear fuel element end fitting

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  6. Characterisation of the corrosion products of non-irradiated material test reactors fuel elements (MTR-FE)

    Mazeina, L.; Curtius, H.; Fachinger, J. [Inst. for Safety Research and Reactor Technology, Research Centre Juelich (Germany)

    2003-07-01

    In a high concentrated Mg-rich brine a non-irradiated MTR-FE corroded. The formed corrosion products consists of an amorphous part and of hydrotalcites, which were identified as Mg-Al-hydrotalcites with chloride anions in the interlayer. (orig.)

  7. Nuclear fuel element

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  8. Nuclear fuel element

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  9. Study on the irradiation swelling of U3Si2-Al dispersion fuel

    Xing Zhonghu; Ying Shihao

    2001-01-01

    The dominant modeling mechanisms on irradiation swelling of U 3 Si 2 -Al dispersion fuel are introduced. The core of dispersion fuel is looked to as micro-fuel elements of continuous matrix. The formation processes of gas bubbles in the fuel phase are described through the behavior mechanisms of fission gases. The swelling in the fuel phase causes the interaction between fuel particles and metal matrix, and the metal matrix can restrain the irradiation swelling of fuel particles. The developed code can predict irradiation-swelling values according to the parameters of fuel elements and irradiation conditions, and the predicted values are in agreement with the measured results

  10. Post irradiation test report of irradiated DUPIC simulated fuel

    Yang, Myung Seung; Jung, I. H.; Moon, J. S. and others

    2001-12-01

    The post-irradiation examination of irradiated DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) simulated fuel in HANARO was performed at IMEF (Irradiated Material Examination Facility) in KAERI during 6 months from October 1999 to March 2000. The objectives of this post-irradiation test are i) the integrity of the capsule to be used for DUPIC fuel, ii) ensuring the irradiation requirements of DUPIC fuel at HANARO, iii) performance verification in-core behavior at HANARO of DUPIC simulated fuel, iv) establishing and improvement the data base for DUPIC fuel performance verification codes, and v) establishing the irradiation procedure in HANARO for DUPIC fuel. The post-irradiation examination performed are γ-scanning, profilometry, density, hardness, observation the microstructure and fission product distribution by optical microscope and electron probe microanalyser (EPMA)

  11. Optimization of FBR fuel element for high burnup

    Marbach, G.; Millet, P.

    1985-03-01

    After a brief historical background showing evolution of the French fast reactor fuel element from RAPSODIE to PHENIX and SUPER PHENIX we have examined the main points which have permitted to increase irradiation performance of the subassembly

  12. Storage device for a long nuclear reactor fuel element and/or a long nuclear reactor fuel element part

    Vogt, M.; Schoenwitz, H.P.; Dassbach, W.

    1986-01-01

    The storage device can be erected in a dry storage room for new fuel elements and also in a storage pond for irradiated fuel elements. It consists of shells, which are arranged vertically and which have a lid. A suspension for the fuel element is provided on the underside of the lid, which acts as a support against squashing or bending in case of vertical forces acting (earthquake). (DG) [de

  13. System of leak inspection of irradiated fuel

    Delfin L, A.; Castaneda J, G.; Mazon R, R.; Aguilar H, F.

    2007-01-01

    The International Atomic Energy Agency (IAEA) through the project RLA/04/18 Irradiated Fuel Management in Research reactors, recommended among other that the participant countries (Brazil, Argentina, Chile, Peru and Mexico), develop the sipping tool to generate registrations of the state that keep the irradiated fuels in the facilities of each country. The TRIGA Mark lll Reactor (RTMIII) Department, generated a project that it is based on the dimensions of the used fuel by the RTMIII, for design and to build an inspection system of irradiated fuel well known as SIPPING. This technique, provides a high grade of accuracy in the detection of gassy fission products or liquids that escape from the enveloping of fuels that have flaws or flights. The operation process of the SIPPING is carried out generating the migration of fission products through the creation of a pressure differential gas or vacuum to identify fuel assemblies failed by means of the detection of the xenon and/or krypton presence. The SIPPING system, is a device in revolver form with 4 tangential nozzles, which will discharge the fluid between the external surface of the enveloping of the fuel and the interior surface of the encircling one; the device was designed with independent pieces, with threaded joining and with stamps to impede flights of the fluid toward the exterior of the system. The System homogenizes and it distributes the fluid pressure so that the 4 nozzles work to equality of conditions, for what the device was designed in 3 pieces, an internal that is denominated revolver, one external that calls cover, and a joining called mamelon that will unite with the main encircling of the system. The detection of fission products in failed fuels, its require that inside the encircling one where the irradiated fuel element is introduced, be generated a pressure differential of gas or vacuum, and that it allows the samples extraction of water. For what generated a top for the encircling with the

  14. Nuclear reactor fuel element assemblies

    Krawiec, D.M.; Bevilacqua, F.

    1974-01-01

    The fuel elements of each fuel element group are separated from each other by means of a multitude of thin, intersecting plates in the from of grid strips. Flow deflectors near the surface of the fuel elements are used in order to make the coolant flow more turbulent. They are designed as vanes and arranged at a distance on the grid strips. Each deflector vane has two arms stretching in opposite directions, each one into a neighbouring channel. In outward direction, the deflector vanes are converging. The strips with the vanes can be put on the supporting grid of the fuel elements. The vane structure can be reinforced by providing distortions in the strip material near the vanes. (DG) [de

  15. Fuel element structure - design, production and operational behaviour

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  16. Nuclear fuels and development of nuclear fuel elements

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  17. Fuel element box inspection device

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  18. Nuclear fuel elements and assemblies

    Saito, Shozo; Maki, Hideo.

    1982-01-01

    Purpose: To facilitate the attainment of the uranium enrichment or gadolinia enrichment of a pellet filled in a fuel element. Constitution: The axial length of a pellet filled in a fuel element is set to predetermined sizes according to the uranium enrichment factor, gadolinia enrichment or their combination. Thus, the uranium enrichment factor or gadolinia enrichment can be identified by attaining the axial length of the pellet by using such a pellt. (Kamimura, M.)

  19. Nuclear fuel element

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  20. Design of fuel element for RA10

    Estevez, Esteban A.; Markiewicz, Mario; Gerding, Roberto

    2012-01-01

    The RA-10 reactor is an open pool multipurpose reactor. It is intended for radioisotopes production, fuel irradiation and use of neutron beam experiments. The nominal configuration core consists of 19 fuel elements (FE) and 6 in-core irradiation positions. With regard to the FE, although both conceptual design and manufacturing technology are similar to the already developed and qualified by CNEA (MTR fuel flat plate), the conditions imposed by the new reactor on FE's are more demanding that previous supplies. Here it should be mentioned the magnitude of the hydrodynamic forces acting on the FE caused by coolant flow through the core (upward) and mainly by the high coolant velocity between fuel plates (greater than 5 times than those currently in operation). Moreover, the high power density results in higher heat flux in fuel plates and greater temperature gradient. As a result of these increased demands present during irradiation, and in order to maintain a high level of reliability, it is necessary carry out some modifications in the mechanical design of the FE (with respect to the so-called ECBE design or s tandard ) . Design verification is performed through analytical and code calculations, and hydrodynamic tests on a full-scale prototype. This article describes the design of the FE for RA 10 reactor, with special emphasis on those aspects that represent innovations in the traditional design (ECBE). It also presents the functional requirements, design criteria and design limits established according to the reactor operational states (author)

  1. Deformations of fuel elements under irradiation (Examination of the 2000 C set, investigation of the Cottrell effect)

    Thome, P.; Allain, C.

    1959-04-01

    The authors report visual and radiographic examinations of cartridges of the 2000 C solution C in order to study the influence of the combustion rate on deformations of these cartridges which spent about a year in an atomic pile. The deformation measurements are interpreted in terms of creep phenomena (Cottrell effect), of surface condition, and buckling. The authors discuss the validity of mechanical tests, the distinction between creep and flow, the deformation of fuel assemblies, the validity of thermal cycle tests, the effects of alloy compositions

  2. Quality assurance of fuel elements

    Hoerber, J.

    1980-01-01

    The quality assurance activities for reactor fuel elements are based on a quality assurance system which implies the requirements resulting from the specifications, regulations of the authorities, national standards and international rules and regulations. The quality assurance related to production of reactor fuel will be shown for PWR fuel elements in all typical fabrication steps as conversion into UO 2 -powder, pelletizing, rodmanufacture and assembling. A wide range of destructive and nondestructive techniques is applied. Quality assurance is not only verified by testing techniques but also by process monitoring by means of parameter control in production and testing procedures. (RW)

  3. Management of irradiated CANDU fuel

    Lupien, Mario

    1985-01-01

    The nuclear industry, like any other industrial activity, generates waste and, since these radioactive products are known to be hazardous both to man and his natural environment, they are subject to stringent controls. The irradiated fuel is also highly radioactive and remains so for thousands of years. It is estimated that by the year 2000, nuclear reactors in Canada alone will have produced some 50 Gg of radioactive fuel which is stored at the nuclear plant site itself. The nuclear industry plays a leading role in the research and development effort to find suitable waste-management methods. Its R and D programs cover many scientific fields, including chemistry, and therefore demand a considerable amount of coordination. The knowledge acquired in this multidisciplinary context should form a basis for solving many of today's industrial-waste problems. This paper describes the various stages in the long management process. In the medium term, the irradiated fuel will be stored in surface installations but the long-term solution proposed is to emplace the used fuel or the fuel recycle waste deep underground in a stable geologic formation

  4. Fuel element tomography by gammametry

    Simonet, G.; Pineira, T.

    1982-03-01

    As from transversal gamma determinations of a cylindrical fuel element, the TOMOGAM program reconstitutes the distribution of fission products in a section. This direct, fast and non destructive method, makes it possible to have access to the behaviour of the fuel at any time: - the soluble fission products in the matrix represent the fuel itself and the distribution of the fissions, - the migrating elements inform on the temperature reached in accordance with the permitted powers, - the volatile nuclides build up in particular points where physical-chemical phenomena of fuel-cladding interaction are liable to corrode the latter. Hence, gamma spectrometry extends its possibilities of analysis relative to the performance of reactor elements [fr

  5. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  6. Gamma scanning of the irradiated HANARO fuels

    Hong, Kwon Pyo; Lee, K. S.; Park, D. G.; Baik, S. Y.; Song, W. S.; Kim, T. Y.; Seo, C. K.

    1997-02-01

    To conform the burnup state of the fuels, we have transported the irradiated HANARO fuels from the reactor to IMEF (Irradiated Material Examination Facility), and executed gamma scanning for the fuels. By measuring the gamma-rays from the irradiated fuels we could see the features of the relative burnup distributions in the fuel bundles. All of 17 fuel bundles were taken in and out between HANARO and IMEF from March till August in 1996, and we carried out the related regulations. Longitudinal gamma scanning and angular gamma scanning are done for each fuel bundle without dismantlement of the bundles. (author). 5 tabs., 25 figs

  7. Reactor fuel element and fuel assembly

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  8. Irradiation behavior of uranium oxide - Aluminum dispersion fuel

    Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products and as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show that, with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 g U/cm 3 ) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼63% 235 U burnup). (author)

  9. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-01-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO 2 -Al dispersion fuel. The aluminum-fuel interaction models were developed based on U 3 O 8 -Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U 3 O 8 are valid for UO 2 , the LEU UO 2 -Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10 27 fissions m -3 (∼ 63% 235 U burnup)

  10. Gamma spectrometrical examination of irradiated fuel

    Kristof, Edvard; Pregl, Gvido

    1988-01-01

    Gamma scanning is the only non-destructive technique for quantitative measuring of fission or activation products in spent fuel. The negligence of local variation of the linear attenuation coefficient of gamma rays in the irradiated fuel remains the main source of systematic error. To eliminate it we combine the (single) emission gamma ray scanning technique with a transmission measurement. Mathematical procedure joined with the experiment is particularly convenient for fuel elements of circular cross-section. In such a manner good results are obtainable even for relatively small number of measuring data. Accomplished routines enable to esteem the finite width of the collimation slit. The experiment has been partially automated. Trial measurements were carried out, and the measured data were successfully processed

  11. Apparatus for examination of irradiated fuel elements of industrial reactors at Marcoule; Appareillage d'examen des elements combustibles des piles industrielles de Marcoule

    Pesenti, P; Wallet, Ph [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The authors describe a viewing and measurement cell for the slugs of Marcoule industrial reactors. This cell allows visual inspection, and photography of slugs. Length measurements are also made possible by horizontal motion of the slug both in translation and rotation. (author) [French] Les auteurs decrivent une cellule d'observation et de mesure des elements combustibles des piles industrielles de Marcoule. La cellule permet l'examen a vue, la photographie, la radioscopie et la radiographie des elements combustibles. Elle permet en outre la mesure de longueurs sur ces elements, ces derniers pouvant etre deplaces horizontalement en translation, et en rotation. (auteur)

  12. Apparatus for locating defective nuclear fuel elements

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  13. HANARO fuel irradiation test (II): revision

    Sohn, D. S.; Kim, H.; Chae, H. T.; Lee, C. S.; Kim, B. G.; Lee, C. B

    2001-04-01

    In order to fulfill the requirement to prove HANARO fuel integrity when irradiated at a power greater than 112.8 kW/m, which was imposed during HANARO licensing, and to verify the irradiation performance of HANARO fuel, the in-pile irradiation test of HANARO fuel has been performed. Two types of test fuel, the un-instrumented Type A fuel for higher burnup irradiation in shorter period than the driver fuel and the instrumented Type B fuel for higher linear heat rate and precise measurement of irradiation conditions, have been designed and fabricated. The test fuel assemblies were irradiated in HANARO. The two Type A fuel assemblies were intended to be irradiated to medium and high burnup and have been discharged after 69.9 at% and 85.5 at% peak burnup, respectively. Type B fuel assembly was intended to be irradiated at high power with different instrumentations and achieved a maximum power higher than 120 kW/m without losing its integrity and without showing any irregular behavior. The Type A fuel assemblies were cooled for about 6 months and transported to the IMEF(Irradiated Material Examination Facility) for consequent evaluation. Detailed non-destructive and destructive PIE (Post-Irradiation Examination), such as the measurement of burnup distribution, fuel swelling, clad corrosion, dimensional changes, fuel rod bending strength, micro-structure, etc., has been performed. The measured results have been analysed/compared with the predicted performance values and the design criteria. It has been verified that HANARO fuel maintains proper in-pile performance and integrity even at the high power of 120 kw/m up to the high burnup of 85 at%. This report is the revision of KAERI/TR-1816/2001 on the irradiation test for HANARO fuel.

  14. Spacer grid for fuel elements

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  15. Spacer grid for fuel elements

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  16. Fuel element performance computer modelling

    Locke, D.H.

    1978-01-01

    The meeting was attended by 88 participants from 17 countries. Altogether 47 papers were presented. The majority of the presentations contained a description of the equations and solutions used to describe and evaluate some of the physical processes taking place in water reactor fuel pins under irradiation. At the same time, particular attention was paid to the ''bench marking'' of the codes wherein solutions arrived at for particular experiments are compared with the results at the experiments

  17. Nuclear fuel element

    Watarumi, Kazutoshi.

    1992-01-01

    Hollow fuel pellets are piled at multi-stages in a cladding tube to form a pellet stack. A bundle of metal fine wires made of zirconium or an alloy thereof is inserted passing through the hollow portion of each of the hollow pellets over a length of the pellet stack. The metal fine wires are bundled by securing ring at a joining portions of the pellets. Then, the portion between both of adjacent rings is expanded radially and has a spring function biasing in the radial direction. With such a constitution, even if the pellet is expanded radially due to pallet gas swelling, the hollow portion is not closed, and the gas flow channel is ensured. In addition, even if the pellet is cracked due to thermal shocks, the pellet piece is prevented from dropping to the hollow portion. In this case, the thermal conduction between the pellets and the cladding tube is kept satisfactorily by the spring function of the metal wire bundle. (I.N.)

  18. Nondestructive assay methods for irradiated nuclear fuels

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed

  19. Unified fuel elements development for research reactors

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  20. Monitoring arrangement for vented nuclear fuel elements

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  1. Nuclear fuel element recovery using PEDSCO RMI Unit

    Martin, D.G.; Pedersen, B.V.

    1984-01-01

    In September 1982, a PEDSCO Remote Mobile Investigation Unit was used to recover damaged irradiated fuel elements from a fueling machine and trolley deck at Bruce Nuclear Generating Station 'A'. This Canadian-made remote controlled vehicle was originally designed for explosive ordinance disposal by law enforcement agencies. This paper describes its adaptation to nuclear service and its first mission, within a nuclear facility

  2. Hot fuel examination facility element spacer wire-wrap machine

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  3. Fuel element database: developer handbook

    Dragicevic, M.

    2004-09-01

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  4. Automatic welding of fuel elements

    Briola, J.

    1958-01-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [fr

  5. Apparatus for inspecting a irradiated nuclear fuel rod

    Saura, Hideaki; Yonemura, Eizo.

    1975-01-01

    Object: To increase safety and inspection efficiency by operating irradiated fuel rods, which are accommodated in a water-filled pool after being taken out from the reactor. Structure: When making inspection of irradiated fuel rods, particularly the cladding tube thereof, a fuel box which stores irradiated fuel rods in a water pool is secured to a securement mechanism with slime removal apparatus and inspection apparatus on either side capable of being vertically moved, and it is then stopped at a water depth of about 2 meters. When the lid of the box is opened, irradiated fuel rods are taken out with gripping means and then secured together with the gripping means to an operation base provided on the outside of the pool. Thereafter, the box is lowered by operating pedals on the operation base to completely pull out the irradiated fuel rods from the box, and the irradiated fuel rods are then horizontally moved and then held in a suspended state. Next a slime removal apparatus in raised by operating pedals and an inspection element assembly are progressively raised for inspection of the state of the cladding tube of each fuel rod after removal of slime therefrom. (Nakamura, S.)

  6. HANARO fuel irradiation test(II)

    Sohn, D. S.; Kim, H. R.; Chae, H. T.; Lee, B. C.; Lee, C. S.; Kim, B. G.; Lee, C. B.; Hwang, W

    2001-04-01

    In order to fulfill the requirement to prove HANARO fuel integrity when irradiated at a power greater than 112.8 kW/m, which was imposed during HANARO licensing, and to verify the irradiation performance of HANARO fuel, the in-pile irradiation test of HANARO fuel has been performed. Two types of test fuel, the un-instrumented Type A fuel for higher burnup irradiation in shorter period than the driver fuel and the instrumented Type B fuel for higher linear heat rate and precise measurement of irradiation conditions, have been designed and fabricated. The test fuel assemblies were irradiated in HANARO. The two Type A fuel assemblies were intended to be irradiated to medium and high burnup and have been discharged after 69.9 at% and 85.5 at% peak burnup, respectively. Type B fuel assembly was intended to be irradiatied at high power with different instrumentations and achieved a maximum power higher than 120 kW/m without losing its integrity and without showing any irregular behavior. The Type A fuel assemblies were cooled for about 6 months and transported to the IMEF(Irradiated Material Examination Facility) for consequent evaluation. Detailed non-destructive and destructive PIE (Post-Irradiation Examination), such as the measurement of burnup distribution, fuel swelling, clad corrosion, dimensional changes, fuel rod bending strength, micro-structure, etc., has been performed. The measured results have been analysed/compared with the predicted performance values and the design criteria. It has been verified that HANARO fuel maintains proper in-pile performance and integrity even at the high power of 120 kw/m up to the high burnup of 85 at%.

  7. Hot cells for testing the UO{sub 2} fuel elements after irradiation. Radiation protection conditions for hot cells design; Vruce celije za ispitivanje gorivnih elemenata UO{sub 2} posle ozracivanja, Uslovi zastite pri projektovanju vrucih celija

    Pavlovic, A; Devic, J; Mihailovic, K [Institut za nuklearne nauke Vinca, Belgrade (Yugoslavia)

    1969-07-01

    This paper includes protection conditions which hot cells should satisfy for the investigation of fuel elements after reactor irradiation. The basic elements of hot cells are given, and the conditions for a special ventilation, dosimetric control and a special treatment of contaminated water are established (author) U radu su obuhvaceni uslovi zastite koje treba da zadovolje vruce celije za ispitivanje gorivnih elemenata posle ozracivanja u reaktoru, dati su osnovni elementi vrucih celija i postavljeni su uslovi za specijalnu ventilaciju, dozimentrijsku kontrolu i specijalni tretman otpadnih voda (author)

  8. Fuel element for nuclear reactors

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  9. Temperature Analysis and Failure Probability of the Fuel Element in HTR-PM

    Yang Lin; Liu Bing; Tang Chunhe

    2014-01-01

    Spherical fuel element is applied in the 200-MW High Temperature Reactor-Pebble-bed Modular (HTR-PM). Each spherical fuel element contains approximately 12,000 coated fuel particles in the inner graphite matrix with a diameter of 50mm to form the fuel zone, while the outer shell with a thickness of 5mm is a fuel-free zone made up of the same graphite material. Under high burnup irradiation, the temperature of fuel element rises and the stress will result in the damage of fuel element. The purpose of this study is to analyze the temperature of fuel element and to discuss the stress and failure probability. (author)

  10. Grid for a fuel element

    1975-01-01

    An illustrative embodiment of the invention has one or more corrugations formed in the surface of a fuel element grid for a nuclear reactor. Not only does the corrugation enhance the strength of the grid plate in which it is formed, but it also provides a simple and convenient means for regulating the reactor coolant pressure drop through an appropriate choice of the corrugation depth

  11. News from the fuel elements industry

    Racine, R.; Delannay, M.; Dehon, C.; Jouan, J.; Beuneche, M.

    1981-01-01

    This article deals successively with: the re-structuring of the PWR fuel industry in France, with the setting up of Fragema and Cogema Framatome Combustible; Fragema products, from standard fuel assembly to the development of a new advanced fuel assembly; Framatome's experience with PWR fuel; fuel performances in the light of requirements imposed by network needs follow-up; devices developed by Fragema for on-site analysis of irradiated fuel [fr

  12. Characterization of released radionuclides in the gas phase during cutting and dissolution of irradiated fuel elements of CANDU type reactors at EUREX pilot plant

    Alonzo, G.; Castellani, F.; Curzio, G.; Gentili, A.; Pieve, L.

    1982-01-01

    This article deals with measurements on off-gas during reprocessing of Pickering spent fuel elements. On-line equipment, samplers and analysis systems are described. Airborne particulates collected on filters and iodine 129 collected on impregnated charcoal are analyzed by gamma spectrometry, krypton 85 is analyzed by on-line gamma counting and tritium by radiochromatography. Activity and concentration are given for each isotope during mechanical process and dissolution and for the gaseous effluent in the different sampling points. Results are compared with activity in the spent fuel calculated by the ORIGEN code

  13. Fuel elements of research reactors in China

    Zhou Yongmao; Chen Dianshan; Tan Jiaqiu

    1987-01-01

    This paper describes the current status of design, fabrication of fuel elements for research reactors in China, emphasis is placed on the technology of fuel elements for the High Flux Engineering Test Reactor (HFETR). (author)

  14. Neutron induced activity in fuel element components

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  15. New trends in nuclear fuel experimental irradiation. Modern control and acquisition of the irradiation data

    Preda, M.; Ciocanescu, M.; Ana, E.M.

    2010-01-01

    With the irradiation devices used in the irradiation tests, the following experiments have been performed in TRIGA-SCN reactor: a) In capsule-type irradiation devices: - fission gases composition determination; - dimensional measurements; - fission gases pressure measurement; - power pre-ramp and ramp; - power cycling; - structural materials testing. b) In loop-type irradiation device: - power ramp; - multiple power ramps; - overpower. Aiming to develop irradiation tests for advanced nuclear fuel elements, it is mandatory to increase the maximum neutron flux in the core with about 20%. This will lead to reactor power increase up to 21 MW. This objective can be reached through: - increasing the number of fuel clusters in the reactor core; - using the 6x6 fuel cluster to replace the present 5x5 clusters; - relocation of the control rods. In this context, the new control system and the data acquisition system operates online and allows real-time data evaluation. (author)

  16. Irradiation behaviors of coated fuel particles, (3)

    Fukuda, Kousaku; Kashimura, Satoru; Iwamoto, Kazumi; Ikawa, Katsuichi

    1980-07-01

    This report is concerning to the irradiation experiments of the coated fuel particles, which were performed by 72F-6A and 72F-7A capsules in JMTR. The coated particles referred to the preliminary design of VHTR were prepared for the experiments in 1972 and 1973. 72F-6A capsule was irradiated at G-10 hole of JMTR fuel zone for 2 reactor cycles, and 72F-7A capsule had been planned to be irradiated at the same irradiation hole before 72F-6A. However, due to slight leak of the gaseous fission products into the vacuum system controlling irradiation temperature, irradiation of 72F-7A capsule was ceased after 85 hrs since the beginning. In the post irradiation examination, inspection to surface appearance, ceramography, X-ray microradiography and acid leaching for the irradiated particle samples were made, and crushing strength of the two particle samples was measured. (author)

  17. Method of measuring distance between fuel element

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  18. Nonintrusive irradiated fuel inventory confirmation technique

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-01-01

    Successful tests showing correlation between the intensity of the Cerenkov glow surrounding irradiated fuel assemblies in water-filled spent fuel storage ponds and the exposure and cooling times of assemblies have been concluded. Fieldable instruments used in subsequent tests confirmed that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds

  19. Inspection of fuel elements in the cooling pond of a research reactor

    Pavlov, S.V.; Mestnikov, A.V.

    1992-01-01

    Nondestructive testing methods for fuel bundles and fuel elements in the cooling ponds of atomic power plants, using special inspection stands, have come into widespread use during the past decade. This paper describes a methodological stand that was built for the laboratory development of methods and individual units of inspection stands for fuel bundles of RBMK and VVER-1000 reactors. A complex of equipment was developed for the study of irradiated fuel elements, thus creating a methodological base for developing techniques for nondestructive testing of irradiated fuel elements and equipment to obtain information about the state of the fuel elements in a reactor expeditiously. The time required to inspect a fuel element can be shortened using some techniques simultaneously. The length of a fuel element can be measured simultaneously with visual inspection, eddy-current flaw detection can be preformed at the same time as the tranverse size of the fuel element is being determined. 6 refs., 5 figs

  20. Statistical estimation of fast-reactor fuel-element lifetime

    Proshkin, A.A.; Likhachev, Yu.I.; Tuzov, A.N.; Zabud'ko, L.M.

    1980-01-01

    On the basis of a statistical analysis, the main parameters having a significant influence on the theoretical determination of fuel-element lifetimes in the operation of power fast reactors in steady power conditions are isolated. These include the creep and swelling of the fuel and shell materials, prolonged-plasticity lag, shell-material corrosion, gap contact conductivity, and the strain diagrams of the shell and fuel materials obtained for irradiated materials at the corresponding strain rates. By means of deeper investigation of these properties of the materials, it is possible to increase significantly the reliability of fuel-element lifetime predictions in designing fast reactors and to optimize the structure of fuel elements more correctly. The results of such calculations must obviously be taken into account in the cost-benefit analysis of projected new reactors and in choosing the optimal fuel burnup. 9 refs

  1. Nuclear fuel element and container

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  2. Detector for failed fuel elements

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  3. Nuclear reactor fuel element assemblies

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  4. Nuclear fuel element leak detection system

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  5. Finite element simulation of thermal, elastic and plastic phenomena in fuel elements

    Soba, Alejandro; Denis, Alicia C.

    1999-01-01

    Taking as starting point an irradiation experiment of the first Argentine MOX fuel prototype, performed at the HFR reactor of Petten, Holland, the deformation suffered by the fuel element materials during burning has been numerically studied. Analysis of the pellet-cladding interaction is made by the finite element method. The code determines the temperature distribution and analyzes elastic and creep deformations, taking into account the dependency of the physical parameters of the problem on temperature. (author)

  6. The modeling experience of fuel element units operation under MSC.MARC and MENTAT 2008R1

    Kulakov, G.; Kashirin, B.; Kosaurov, A.; Konovalov, Y.; Kuznetsov, A.; Medvedev, A.; Novikov, V.; Vatulin, A.

    2009-01-01

    MSC Software is leading developer of CAE-software in the world, so behaviour of fuel elements modeling with MSC.MARC use is of great practical importance. Behaviour of fuel elements usually is modeled in the elastic-viscous-plastic statement with account on fuel swelling during irradiation. For container type fuel elements contact interaction between fuel pellets and cladding or other parts of fuel element in top and bottom plugs must be in account. Results of simulated behaviour of various type fuel elements - container type fuel elements for PWR and RBMK reactors, dispersion type fuel elements for research reactors are presented. (authors)

  7. Isotope correlation and mass spectrometry techniques for irradiated fuel assay

    Deron, S.

    1985-01-01

    This paper outlines the methods used to account for fissionable materials in irradiated nuclear fuel elements entering reprocessing plants. Verification is accomplished at three mass balance stations in the plant. Techniques employed fall into two categories: isotopic and isotope dilution analyses by mass spectometry and isotope correlation techniques. These methods are discussed in some detail

  8. The Calculation Of Total Radioactivity Of Kartini Reactor Fuel Element

    Budisantoso, Edi Trijono; Sardjono, Y.

    1996-01-01

    The total radioactivity of Kartini reactor fuel element has been calculated by using ORIGEN2. In this case, the total radioactivity is the sum of alpha, beta, and gamma radioactivity from activation products nuclides, actinide nuclides and fission products nuclides in the fuel element. The calculation was based on irradiation history of fuel in the reactor core. The fuel element no 3203 has location history at D, E, and F core zone. The result is expressed in graphics form of total radioactivity and photon radiations as function of irradiation time and decay time. It can be concluded that the Kartini reactor fuel element in zone D, E, and F has total radioactivity range from 10 Curie to 3000 Curie. This range is for radioactivity after decaying for 84 days and that after reactor shut down. This radioactivity is happened in the fuel element for every reactor operation and decayed until the fuel burn up reach 39.31 MWh. The total radioactivity emitted photon at the power of 0.02 Watt until 10 Watt

  9. Advanced disassembling technique of irradiated driver fuel assembly for continuous irradiation of fuel pins

    Ichikawa, Shoichi; Haga, Hiroyuki; Katsuyama, Kozo; Maeda, Koji; Nishinoiri, Kenji

    2012-01-01

    It was necessary to carry out continuous irradiation tests in order to obtain the irradiation data of high burn-up fuel and high neutron dose material for FaCT (Fast Reactor Cycle Technology Development) project. There, the disassembling technique of an irradiated fuel assembly was advanced in order to realize further continuous irradiation tests. Although the conventional disassembling technique had been cutting a lower end-plug of a fuel pin needed to fix fuel pins to an irradiation vehicle, the advanced disassembling technique did not need cutting a lower end-plug. As a result, it was possible to supply many irradiated fuel pins to various continuous irradiation tests for FaCT project. (author)

  10. Fission gas retention in irradiated metallic fuel

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content

  11. Characterization and heading of irradiated fuels and their chemical analogs

    Serrano, J. A.

    2000-01-01

    This work presents results of leaching experiments under deionized water and under synthetic granite at room temperature in air using spent fuel (UO 2 and MOX LWR fuels) and the chemical analogues, natural UO 2 and SIMFUEL. The experimental conditions and procedure for irradiated and non-irradiated materials were kept similar as much as possible. Also dissolution behaviour studies of preoxidised LWR UO 2 and MOX spent fuel up to different on the oxidation degree. For both fuel types, UO 2 and MOX, the fission products considered showed a fractional release normalised to uranium higher than 1, due to either the larger inventory at preferential leaching zones, such as, grain boundaries or to the inherent higher solubility of some of these elements. In contrast to fission products, the fractional release of PU from the UO 2 fuel was not affected by the oxidation level. Finally a thermodynamic study of the experimental leaching results obtained in this work was performed. (Author)

  12. Monitoring for fuel sheath defects in three shipments of irradiated CANDU nuclear fuel

    Johnson, H.M.

    1978-01-01

    Analyses of radioactive gases within the Pegase shipping flask were performed at the outset and at the completion of three shipments of irradiated nuclear fuel from the Douglas Point Generating Station to Whiteshell Nuclear Research Establishment. No increases in the concentration of active gases, volatiles or particulates were observed. The activity of the WR-1 bay water rose only marginally due to the storage of the fuel. Other tests indicated that minimal surface contamination was present. These data established that defects in fuel element sheaths did not arise during the transport or the handling of this irradiated fuel. The observation has significance for the prospect of irradiated nuclear fuel transfer and handling in preparation for storage or disposal. (author)

  13. System for assembling nuclear fuel elements

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  14. Chilean fuel elements fabrication progress report

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  15. Irradiation and performance evaluation of DUPIC fuel

    Bae, Ki Kwang; Yang, M. S.; Song, K. C.

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis

  16. Irradiation and performance evaluation of DUPIC fuel

    Bae, Ki Kwang; Yang, M S; Song, K C [and others

    2000-05-01

    The objectives of the project is to establish the performance evaluation system for the experimental verification of DUPIC fuel. The scope and content for successful accomplishment of the phase 1 objectives is established as follows : irradiation test of DUPIC fuel at HANARO using a noninstrument capsule, study on the characteristics of DUPIC pellets, development of the analysis technology on the thermal behaviour of DUPIC fuel, basic design of a instrument capsule. The R and D results of the phase 1 are summarized as follows : - Performance analysis technology development of DUPIC fuel by model development for DUPIC fuel, review on the extendability of code(FEMAXI-IV, FRAPCON-3, ELESTRESS). - Study on physical properties of DUPIC fuel by design and fabrication of the equipment for measuring the thermal property. - HANARO irradiation test of simulated DUPIC fuel by the noninstrument capsule development. - PIE and result analysis.

  17. Irradiation performance of HTGR recycle fissile fuel

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  18. In-pile tests of HTGR fuel particles and fuel elements

    Chernikov, A.S.; Kolesov, V.S.; Deryugin, A.I.

    1985-01-01

    Main types of in-pile tests for specimen tightness control at the initial step, research of fuel particle radiation stability and also study of fission product release from fuel elements during irradiation are described in this paper. Schemes and main characteristics of devices used for these tests are also given. Principal results of fission gas product release measurements satisfying HTGR demands are illustrated on the example of fuel elements, manufactured by powder metallurgy methods and having TRISO fuel particles on high temperature pyrocarbon and silicon carbide base. (author)

  19. Fission product phases in irradiated carbide fuels

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  20. The physics of irradiated nuclear fuel

    Robin, M.

    1980-01-01

    The knowledge of the neutron irradiation effect is essential in dealing with all subjects related to the fuel. Neutron irradiation provokes fission reactions within the fuel and produces new nuclides. The formation chains are described and the importance of each isotope in the fuel cycle is explained with regards to its own characteristics. To solve the system of equations giving the evolution of different nuclides concentrations, the corresponding effective cross-sections and flux received are given by standard codes used for reactor calculations. A good test for calculation methods is the experimental study of irradiated fuel. Many techniques have been developed for this purpose. The last chapter compares fuel evolution in different reactors, in connection with some specific characteristics. (author)

  1. Irradiated fuel examination using the Cerenkov technique

    Nicholson, N.; Dowdy, E.J.

    1981-03-01

    A technique for monitoring irradiated nuclear fuel inventories located in water filled storage ponds has been developed and demonstrated. This technique provides sufficient qualitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors. Measurements have been made on the Cerenkov glow light intensity from irradiated fuel that show the intensity of this light to be proportional to the cooling time. Fieldable instruments used in several tests confirm that such measurements can be made easily and rapidly, without fuel assembly movement or the introduction of apparatus into the storage ponds. The Cerenkov technique and instrumentation have been shown to be of potential use to operators of reactor spent fuel facilities and away from reactor storage facilities, and to the International Atomic Energy Agency inspectors who provide surveillance of the irradiated fuel stored in these facilities

  2. The manufacture of LEU fuel elements at Dounreay

    Gibson, J.

    1997-08-01

    Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.

  3. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  4. Getter for nuclear fuel elements

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  5. Getter for nuclear fuel elements

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  6. Automated Fuel Element Closure Welding System

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  7. Spacer for supporting fuel element boxes

    Wild, E.

    1979-01-01

    A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials

  8. Fuel fabrication and post-irradiation examination

    Venter, P J; Aspeling, J C [Atomic Energy Corporation of South Africa Ltd., Pretoria (South Africa)

    1990-06-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  9. Fuel fabrication and post-irradiation examination

    Venter, P.J.; Aspeling, J.C.

    1990-01-01

    This paper provides an overview of the A/c's Bevan and Eldopar facilities for the fabrication of nuclear fuel. It also describes the sophisticated Hot Cell Complex, which is capable of accommodating pressurised water reactor fuel and various other irradiated samples. Some interesting problems and their solutions are discussed. (author)

  10. Irradiation experience with HTGR fuels in the Peach Bottom Reactor

    Scheffel, W.J.; Scott, C.B.

    1974-01-01

    Fuel performance in the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) is reviewed, including (1) the driver elements in the second core and (2) the test elements designed to test fuel for larger HTGR plants. Core 2 of this reactor, which is operated by the Philadelphia Electric Company, performed reliably with an average nuclear steam supply availability of 85 percent since its startup in July 1970. Core 2 had accumulated a total of 897.5 equivalent full power days (EFPD), almost exactly its design life-time of 900 EFPD, when the plant was shut down permanently on October 31, 1974. Gaseous fission product release and the activity of the main circulating loop remained significantly below the limits allowed by the technical specifications and the levels observed during operation of Core 1. The low circulating activity and postirradiation examination of driver fuel elements have demonstrated the improved irradiation stability of the coated fuel particles in Core 2. Irradiation data obtained from these tests substantiate the performance predictions based on accelerated tests and complement the fuel design effort by providing irradiation data in the low neutron fluence region

  11. Irradiation testing of miniature fuel plates for the RERTR program

    Senn, R L; Martin, M M [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    1983-08-01

    for dimensional changes, blisters, or any other visible defect. After inspection the experiment is reassembled and reinserted into the reactor for further irradiation. At completion of the specified in reactor exposure of the miniplates, the experiment will be disassembled, and the irradiated samples will be returned to the respective fuel plate fabricators for detailed postirradiation examination. Ultimately, fuel plate types with suitable characteristics will be manufactured into full-sized plate-type fuel elemental suitable for testing in the ORR. (author)

  12. Study of Irradiation Effect onto Uranium silicide Fuel

    Suparjo

    1998-01-01

    The irradiation effect onto the U 3 Si-Al and U 3 Si 2 -Al dispersion type of fuel element has been studied. The fuel material performs swelling during irradiation due to boehmite (Al 2 O 3 (H 2 O)) formation in which might occurs inside the meat and on the cladding surface, the interaction between the fuel and aluminium matrix that produce U(Al,Si) 3 phase, and the formation of fission gas bubble inside the fuel. At a constant fission density, the U 3 Si-Al fuel swelling is higher than that of U 3 Si 2 -Al fuel. The swellings of both fuels increase with the increasing of fission density. The difference of swelling behavior was caused by formation of large bubble gases generated from fission product of U 3 Si fuel and distributed non-uniformly over all of fuel zone. On the other hand, the U 3 Si 2 fission produced small bubble gases, and those were uniformly distributed. The growth rate of fission gas bubble in the U 3 Si fuel has shown high diffusivity, transformation into amorph material and thus decrease its mechanical strength

  13. Unification of fuel elements for research reactors

    Vatulyn, A.V.; Stetskyi, Y.A.; Dobrikova, I.V.

    1997-01-01

    To the purpose of fuel elements unification the possibility of rod fuel assembly (FA) using in the cores of research reactors have been considered in this paper. The calculation results of geometric, hydraulic and thermotechnical parameters of rod assembly are submitted. Several designs of finned square fuel element and fuel assembly are proposed on base of analysis of rod FA characteristics in compare of tube ones. The fuel elements specimens and the model assembly are manufactured. The developed designs are the basis for further optimization after neutron-physical calculations of cores. (author)

  14. Design and operational behaviour of the SNR-reactor fuel element structure

    Dietz, W.; Toebbe, H.

    1985-01-01

    The fuel element and core concept of a fast breeder reactor is described by the example of the SNR 300 (1st core), and the requirements made on the fuel elements with respect to burnup and neutron dose are listed for existing and projected plants. Irradiation experiments carried out and operational experience gained with fuel elements show that the residence time of the fuel elements is influenced mainly by the stability of shape of the fuel element components. The requirements made with reference to neutron loading for future advanced high-performance fuel elements can not be anticipated from the present state of experience. Besides optimization of fuel element design and checking-out of the limits of operation by PFADFINDERELEMENTE elements, R and D work for the improvement of fuel element materials is also necessary. (orig.) [de

  15. WWER fuel: Results of post irradiation examination

    Markov, D.V.; Smirnov, V.P.; Smirnov, A.V.; Polenok, V.S.; Perepelkin, S.O.; Ivashchenko, A.A.

    2006-01-01

    Experience in the field of fabrication, operation, testing and post-irradiation examinations (PIE) made it possible to settle the following requirements for a new generation of WWER nuclear fuel: - For WWER-1000 FA, the service life is no less than 5 years, 3 alternative fuel cycles (FC): 12 months x 4 FCs, 12 months x 5 FCs and 18 months x 3 FCs; - For WWER-440 FA, fuel cycle is 12 months x 5 FCs and a part of operating assembly is left for the 6. year; - High fuel burnup - up to 70 MWd/kgU; - Dimensional stability of FA and its components; - FA repairability; - Adaptability of fuel cycles; - Maintenance of maneuvering operating conditions at the NPP; - Reliability of control rod operation; - High serviceability level - FE leakage is no worse than 10-5 l/year. In order to provide the fulfillment of the above-given requirements, designers and production engineers have worked out cumulative measures and engineering solutions, which are introduced in development of a new generation fuel. Currently old design FA-M assemblies provided with steel skeleton are being operated in WWER-1000 reactors at Ukrainian and Bulgarian NPPs. As for Russian NPPs, new-type FAs are operated. These are advanced FAs (AFA), FA-A and FA-2 provided with zirconium alloy skeletons. A design of the second generation of WWER-440 operating assemblies was developed with respect to changes in some geometrical parameters, fastening of FEs in the lower grid (splinting was substituted for collet), usage of reinforcing rib under the lower grid, anti-debris filter and hafnium elements of junction unit as well as hafnium content decrease from 0.05 % mass down to 0.01% mass in zirconium materials. They are basic designs of FAs in order to be introduced in a five-year fuel cycle of WWER-440 NPPs in Czech Republic and Slovakia since 2005 and have got prospects for development. The operating experience of dismountable operating assemblies at the Loviisa NPP, vibration-proof operating assemblies at the

  16. Horizontal modular dry irradiated fuel storage system

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  17. Irradiation behavior of metallic fast reactor fuels

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  18. Consolidation equipment for irradiated nuclear fuel channels

    Taguchi, M.; Komatsu, Y.; Ose, T.

    1989-01-01

    The authors have developed and put into use a new type of mechanical consolidation equipment for irradiated nuclear fuel channels. This includes round-slice cutting of the top 100mm of the fuel channel with a guillotine cutter, and press cutting of the two corners of the remaining length of the fuel channel. Four guillotine blades work in combination with receiving blades arranged inside the fuel channel to cut the top 100mm, including the clips and spacers, of the fuel channel into a round slice. A press assembled in the consolidation equipment then presses the slice to achieve volume reduction. The press cutting operation uses two press cutting blades arranged inside the fuel channel and the receiving blades outside the fuel channel. The remaining length of fuel channel is cut off into L-shaped pieces by press cutting. This consolidation equipment is highly efficient because the round-slice cutting, pressing, and press cutting are all achieved by one unit

  19. Mechanisms of microstructural changes of fuel under irradiation

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.

    2015-01-01

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  20. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    Chun, Yong Bum; Min, Duck Kee; Kim, Eun Ka and others

    2000-12-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  1. Post-irradiation examination and R and D programs using irradiated fuels at KAERI

    Chun, Yong Bum; So, Dong Sup; Lee, Byung Doo; Lee, Song Ho; Min, Duck Kee

    2001-09-01

    This report describes the Post-Irradiation Examination(PIE) and R and D programs using irradiated fuels at KAERI. The objectives of post-irradiation examination (PIE) for the PWR irradiated fuels, CANDU fuels, HANARO fuels and test fuel materials are to verify the irradiation performance and their integrity as well as to construct a fuel performance data base. The comprehensive utilization program of the KAERI's post-irradiation examination related nuclear facilities such as Post-Irradiation Examination Facility (PIEF), Irradiated Materials Examination Facility (IMEF) and HANARO is described

  2. Conceptual design of experimental LFR fuel element for testing in TRIGA reactor, ACPR zone

    Nastase, D.; Olteanu, G.; Ioan, M.; Pauna, E.

    2013-01-01

    In the pulsed area of the TRIGA reactor (ACPR zone), the irradiation tests called ''rapid insertions of reactivity on different types of nuclear fuel elements'' are usually realized. During these tests, in the fuel element high powers for a relatively short period of time (about few milliseconds) are generated. The generated heat in fuel pellets raise their central temperature to values over 100 deg C. The conceptual design of an experimental fuel element proposed to be developed and presented in this paper must fulfill a couple of requirements, as follows: to ensure full compatibility with irradiation device sample holder (compatibility is achieved through reduced length of the fuel stack pellets - this way assures a flow flattening on the entire length of the fuel element); to be compatible with the project of irradiated fuel bundle in Lead cooled Fast Reactors (LFR). (authors)

  3. Direct electrical heating of irradiated metal fuel

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1985-01-01

    The Integral Fast Reactor (IFR) concept proposed by Argonne National Laboratory utilizes a metal fuel core. Reactor safety analysis requires information on the potential for fuel axial expansion during severe thermal transients. In addition to a comparatively large thermal expansion coefficient, metallic fuel has a unique potential for enhanced pre-failure expansion driven by retained fission gas and ingested bond sodium. In this paper, the authors present preliminary results from three direct electrical heating (DEH) experiments performed on irradiated metal fuel to investigate axial expansion behavior. The test samples were from Experimental Breeder Reactor II (EBR-II) driver fuel ML-11 irradiated to 8 at.% burnup. Preliminary analysis of the results suggest that enhanced expansion driven by trapped fission gas can occur

  4. Bilateral cooperation between Germany and Brazil on fuel irradiation

    Dias, J.W.

    1977-01-01

    Within the framework of the Government Agreement on Scientific and Technical Cooperation between the Federal Republic of Germany and Brazil, the Brazilian National Atomic Commission and the Juelich Nuclear Research Center (KFA) signed on 23rd April, 1971 an Agreement on Cooperation in the field of Nuclear Research and Reactor Technology. Projects have been elaborated in fields of mutual interest to share activities between the partner institutes in both countries. A typical project is the fuel irradiation programme jointly prepared by NUCLEBRAS and KFA-Juelich. Brazil is planning to use elements of its own production in nuclear power plants to be erected within the German-Brazilian Industrial Agreement. As no material test reactor is available in Brazil it is expedient to irradiate samples of Brazilian production in Germany. Brazilian collaborators will participate in the preparation, execution and post-irradiation examination. In this way an optimum transfer of all information and results is assured. In the first phase, sample rods manufactured in Brazil are irradiated in the FRJ-2 test reactor in Juelich. These rods are assembled under clean conditions in the NUCLEBRAS research centres. The first Brazilian test rods showed excellent in-pile behaviour even under very high fuel rod capacity. In the second phase, fuel rods of original length manufactured and assembled in Brazil will be irradiated in German power plants, and, at the same time, additional irradiations of small samples will be carried out in test reactors. In the third phase, rod clusters and complete fuel elements will be manufactured in Brazil and irradiated in German power plants until target burn-up. All the necessary prerequisites have been fulfilled to meet the above requirements, i.e. mutual interest, good infrastructure maintained by both partners, qualified personnel and last but not least unbureaucratic and effective help by the coordinating offices of NUCLEBRAS and KFA

  5. Pellet-clad interaction observations in boiling water reactor fuel elements

    Sahoo, K.C.; Bahl, J.K.; Sivaramakrishnan, K.S.; Roy, P.R.

    1981-01-01

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  6. BR2 Reactor: Irradiation of fuels

    Verwimp, A.

    2005-01-01

    Safe, reliable and economical operation of reactor fuels, both UO 2 and MOX types, requires in-pile testing and qualification up to high target burn-up levels. In-pile testing of advanced fuels for improved performance is also mandatory. The objectives of research performed at SCK-CEN are to perform Neutron irradiation of LWR (Light Water Reactor) fuels in the BR2 reactor under relevant operating and monitoring conditions, as specified by the experimenter's requirements and to improve the on-line measurements on the fuel rods themselves

  7. Loads on pebble bed fuel elements

    Teuchert, E.; Maly, V.

    1974-03-15

    A comparison is made of key parameters for multi-recycle pebbles and single-pass once-through (OTTO) pebbles. The parameters analyzed include heat transfer characteristics with burn-up, temperature profiles, power per element as a function of axial position in the core, and burn-up. For the OTTO-scheme, the comparisons addressed the use of the conventional fuel element and the advanced "shell ball" designed to reduce the peak fuel temperature in the center of the fuel element. All studies addressed the uranium-thorium fuel cycle.

  8. Some properties for modeling of fuel elements

    Nichols, F.A.

    1979-01-01

    Two areas key to the materials modeling of fuel element behavior are discussed. The relative importance of atomic diffusion vs. bubble migration is first surveyed and the interplay of bubble mobility and re-solution parameter is highlighted. It is concluded that biased bubble migration at higher temperatures is required to explain available gas-release data, especially during transients. At intermediate temperatures, random bubble migration is required to explain both gas-release rates and the observation of large (approx. 700A) intragranular bubbles following in-pile and post-irradiation transients. Different fuel models employ different values of re-solution parameter, both below and above an experimentally determined value. Bubble mobilities are deduced to approach theoretical, surface diffusion-controlled values during transients, but they may be somewhat less mobile during steady-state operation. Next, the present understanding of radiation-induced hardening and creep is discussed, highlighting the interplay of these two phenomena. An overall constitutive scheme is presented and predictions of failure limits are deduced therefrom employing instability analysis

  9. Design and fabrication procedures of Super-Phenix fuel elements

    Leclere, J.; Vialard, J.-L.; Delpeyroux, P.

    1975-01-01

    For Super-Phenix fuel assemblies, Phenix technological arrangements will be used again, but they will be simplified as far as possible. The maximum fuel can temperature has been lowered in order to obtain a good behavior of hexagonal tubes and cans at high irradiation levels. An important experimental programme and the experience gained from Phenix operation will confirm the merits of the options retained. The fuel element fabrication is envisaged to take place in the plutonium workshop at Cadarache. Usual procedures will be employed and both reliability and automation will be increased [fr

  10. Irradiation behaviors of coated fuel particles, (4)

    Fukuda, Kousaku; Kashimura, Satoru; Ogawa, Toru; Ikawa, Katsuichi; Iwamoto, Kazumi; Ishimoto, Kiyoshi

    1981-09-01

    Loose coated fuel particles prepared in confirmity to a preliminary design for the multi-purpose VHTR in fiscal 1972 - 1974 were irradiated by 73F - 12A capsule in JMTR. Main purpose for this irradiation experiment was to examine irradiation stability of the candidate TRISO coated fuel particles for the VHTR. Also the coated particles possessing low-density kernel (90%TD), highly anisotropic OLTI-PyC and ZrC coating layer were loaded with the candidate particles in this capsule. The coated particles were irradiated up to 1.5 x 10 21 n/cm 2 of fast neutron fluence (E > 0.18 MeV) and 3.2% FIMA of burnup. In the post irradiation examination it was observed that among three kinds of TRISO particles exposed to irradiation corresponding to the normal operating condition of the VHTR ones possessing poor characteristics of the coating layers did not show a good stability. The particles irradiated under abnormally high temperature condition (> 1800 0 C) revealed 6.7% of max. EOL failure fraction (95% confidence limit). Most of these particles were failed by the ameoba effect. Furthermore, among four kinds of the TRISO particles exposed to irradiation corresponding to the transient condition of the VHTR (--1500 0 C) the two showed a good stability, while the particles possessing highly anisotropic OLTI-PyC or poorly characteristic coating layers were not so good. (author)

  11. International experience in conditioning spent fuel elements

    Ashton, P.

    1991-04-01

    The purpose of this report is to compile and present in a clear form international experience (USA, Canada, Sweden, FRG, UK, Japan, Switzerland) gained to date in conditioning spent fuel elements. The term conditioning is here taken to mean the handling and packaging of spent fuel elements for short- or long-term storage or final disposal. Plants of a varying nature fall within this scope, both in terms of the type of fuel element treated and the plant purpose eg. experimental or production plant. Emphasis is given to plants which bear some similarity to the concept developed in Germany for direct disposal of spent fuel elements. Worldwide, however, relatively few conditioning plants are in existence or have been conceived. Hence additional plants have been included where aspects of the experience gained are also of relevance eg. plants developed for the consolidation of spent fuel elements. (orig./HP) [de

  12. Final safety analysis report for the irradiated fuels storage facility

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  13. Cerenkov methodology for monitoring irradiated reactor fuel

    Nicholson, N.; Dowdy, E.J.

    1984-01-01

    Attribute measurement methods for confirming declared irradiated fuel inventories at nuclear installations under safeguards surveillance are of significant interest to inspectors. High-gain measurements of the intensity of the Cerenkov glow from exposed assemblies in water-filled storage ponds are promising for this purpose because the measured intensities depend on cooling times and burnup. We have developed a Cerenkov Measuring Device, a hand-held instrument that examines irradiated fuel assemblies in water-filled storage ponds and measures the intensity of the associated Cerenkov glow. In addition, we have developed a method for making such high-gain measurements in the presence of intense ambient light

  14. Irradiation effects on fuels for space reactors

    Ranken, W.A.; Cronenberg, A.W.

    1984-01-01

    A review of irradiation-induced swelling and gas release experience is presented here for the three principal fuels UO 2 , UC, and UN. The primary advantage of UC and UN over UO 2 is higher thermal conductivity and attendant lower fuel temperature at equivalent pellet diameter and power density, while UO 2 offers the distinct benefit of well-known irradiation performance. Irradiation test results indicate that at equivalent burnup, temperature, and porosity conditions, UC experiences higher swelling than UO 2 or UN. Fission gas swelling becomes important at fuel temperatures above 1320 K for UC, and at somewhat higher temperatures for UO 2 and UN. Evidence exists that at equivalent fuel temperatures and burnups, high density UO 2 and UN experience comparable swelling behavior; however, differences in thermal conductivity influence overall irradiation performance. The low conductivity of UO 2 results in higher thermal gradients which contribute to fuel microcracking and gas release. As a result UO 2 exhibits higher fractional gas release than UN, at least or burnups up to about 3%

  15. Examination in hot laboratories of irradiated fuels from fast reactors

    Clottes, G.; Peray, R.; Ratier, J.L.

    1980-05-01

    Low irradiation rate examinations were carried out soon after the Rapsodie, Rapsodie Fortissimo and Phenix reactors were started up for the first time in order to check the level of maximum temperatures reached and the radial migration of oxygen and plutonium and to assess the movements of fuels inside the cladding. The other examinations were effected at a high specific burnup in order to defines the limit specific burnup securing the integrity of the fuel pin claddings (distortion, ruptures and possible consequences). The examinations carried out so far on fuel elements coming from Phenix or Rapsodie have allowed good fuel surveillance to be undertaken and the acquisition of a large number of data, thanks to which the fuel characteristics of future reactors of the system have been developed [fr

  16. Fuel elements for LWR power plants

    Roepenack, H.

    1977-01-01

    About five times more expensive than the fabrication of a fuel element is the enriched uranium contained therein; soon the monthly interest charges for the uranium value of a fuel element reload will account for five percent of the fabrication costs, and much more expensive than all this together can it be if reactor operation has to be interrupted because of damaged elements. Thus, quality assurance comes first. (orig.) [de

  17. Metal fuel manufacturing and irradiation performance

    Pedersen, D.R.; Walters, L.C.

    1992-01-01

    The advances in metal fuel by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, and improved passive safety. The goals and the safety philosophy of the Integral Fast Reactor Program are stressed

  18. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  19. Weld Joint Design for SFR Metallic Fuel Element Closures

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Kim, Ki Hwan; Yoon, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The sodium-cooled fast reactor (SFR) system is among the six systems selected for Gen-IV promising systems and expected to become available for commercial introduction around 2030. In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the joint designs for endplug welding were investigated. For the irradiation test of SFR metallic fuel element, the TIG welding technique was adopted and the welding joint design was developed based on the welding conditions and parameters established. In order to make SFR metallic fuel elements, the weld joint design was developed based on the TIG welding technique.

  20. Nitride fuels irradiation performance data base

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  1. Fission product release from HTGR coated microparticles and fuel elements

    Gusev, A.A.; Deryugin, A.I.; Lyutikov, R.A.; Chernikov, A.S.

    1991-01-01

    The article presents the results of the investigation of fission products release from microparticles with UO 2 core and five-layer HII PyC- and SiC base protection layers of TRICO type as well as from spherical fuel elements based thereon. It is shown that relative release of short-lived xenon and crypton from microparticles does not exceed (2-3) 10 -7 . The release of gaseous fission products from fuel elements containing no damaged coated microparticles, is primarily determined by the contamination of matrix graphite with fuel. An analytical dependence is derived, the dependence described the relation between structural parameters of coated microparticles, irradiation conditions and fuel burnup at which depressurization of coated microparticles starts

  2. Status of development and irradiation performance of advanced proliferation resistant MTR fuel at NUKEM

    Hrovat, M.; Hassel, H.-W.; Wehner, E.

    1985-01-01

    This paper describes the current status of development and irradiation performance of fuel elements for Material Test and Research (MTR) Reactors with Medium Enriched Uranium (MEU, ≤ 45 % 235-U) and Low Enriched Uranium (LEU, ≤ 20 % 235-U). (author)

  3. High performance nuclear fuel element

    Mordarski, W.J.; Zegler, S.T.

    1980-01-01

    A fuel-pellet composition is disclosed for use in fast breeder reactors. Uranium carbide particles are mixed with a powder of uraniumplutonium carbides having a stable microstructure. The resulting mixture is formed into fuel pellets. The pellets thus produced exhibit a relatively low propensity to swell while maintaining a high density

  4. IFPE/EFE-RO, Experimental Fuel Elements RO89 and RO51 in TRIGA 14 MW Reactor (INR-Pitesti)

    Paraschiv, Marius; Turnbull, J.A.

    2002-01-01

    Description of program or function: Romanian irradiation tests concerned with Candu type fuel elements behavior and with the limits of the design parameters. A particular feature of the Candu fuel project is the small plenum (void volume) added for relaxation of the fission gases, which are inherently released during the fuel irradiation. Two irradiation tests in the C2 device from the TRIGA 14 MW reactor were performed between the years 1985-1987. The tests were done to evaluate the effect of the fuel density on the time-evolution of the fission gas pressure. Experimental fuel elements were adequately instrumented with pressure transducers to follow the fission gas pressure changes during fuel irradiation. The first irradiation test was conducted on the fuel element coded No.89 whose main characteristics were the nominal values of the main fuel design parameters. The second one was conducted on the fuel element coded No.51. Because of the axial flux asymmetry inside the TRIGA reactor core, the experimental elements are shorter in length than the Candu fuel design. The irradiation tests consisted in evaluation of the time-evolution of the internal pressure from two experimental fuel elements having the main design characteristics as the Romanian Candu type fuel element design and to follow the dependence of the internal pressure of the fission gas on the fuel density

  5. Irradiation test plan of the simulated DUPIC fuel

    Bae, Ki Kwang; Yang, M. S.; Kim, B. K. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    Simulated DUPIC fuel had been irradiated from Aug. 4, 1999 to Oct. 4 1999, in order to produce the data of its in-core behavior, to verify the design of DUPIC non-instrumented capsule developed, and to ensure the irradiation requirements of DUPIC fuel at HANARO. The welding process was certified for manufacturing the mini-element, and simulated DUPIC fuel rods were manufactured with simulated DUPIC pellets through examination and test. The non-instrumented capsule for a irradiation test of DUPIC fuel has been designed and manufactured referring to the design specification of the HANARO fuel. This is to be the design basis of the instrumented capsule under consideration. The verification experiment, whether the capsule loaded in the OR4 hole meet the HANARO requirements under the normal operation condition, as well as the structural analysis was carried out. The items for this experiment were the pressure drop test, vibration test, integrity test, et. al. It was noted that each experimental result meet the HANARO operational requirements. For the safety analysis of the DUPIC non-instrumented capsule loaded in the HANARO core, the nuclear/mechanical compatibility, thermodynamic compatibility, integrity analysis of the irradiation samples according to the reactor condition as well as the safety analysis of the HANARO were performed. Besides, the core reactivity effects were discussed during the irradiation test of the DUPIC capsule. The average power of each fuel rod in the DUPIC capsule was calculated, and maximal linear power reflecting the axial peaking power factor from the MCNP results was evaluated. From these calculation results, the HANARO core safety was evaluated. At the end of this report, similar overseas cases were introduced. 9 refs., 16 figs., 10 tabs. (Author)

  6. Spent fuel element storage facility

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  7. The post-irradiated examination of CANDU type fuel irradiated in the Institute for Nuclear Research TRIGA reactor

    Tuturici, I.L.; Parvan, M.; Dobrin, R.; Popov, M.; Radulescu, R.; Toma, V.

    1995-01-01

    This post-irradiation examination work has been done under the Research Contract No. 7756/RB, concluded between the International Atomic Energy Agency and the Institute for Nuclear Research. The paper contains a general description of the INR post-irradiation facility and methods and the relevant post-irradiation examination results obtained from an irradiated experimental CANDU type fuel element designed, manufactured and tested by INR in a power ramp test in the 100 kW Pressurised Water Irradiation Loop of the TRIGA 14 MW(th) Reactor. The irradiation experiment consisted in testing an assembly of six fuel elements, designed to reach a bumup of ∼ 200 MWh/kgU, with typical CANDU linear power and ramp rate. (author)

  8. MRT fuel element inspection at Dounreay

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  9. Safe transport of irradiated fuel by sea

    Miller, M.L.

    1997-01-01

    The development is described of a transport system dedicated to the sea transport of irradiated nuclear fuel. The background is reviewed of why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilised is provided, together with details of key procedures implemented to ensure safety and customer satisfaction. (Author)

  10. The sea transport of irradiated nuclear fuel

    Miller, M.L.

    1995-01-01

    The paper describes the development of a transport system dedicated to the sea transport of irradiated nuclear fuel. It reviews the background to why shipments were required and the establishment of a specialist shipping company, Pacific Nuclear Transport Limited. A description of the ships, flasks and other equipment utilized is provided, together with details of key procedures implemented to ensure safety and customer satisfaction

  11. Method for inspecting nuclear reactor fuel elements

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  12. Behaviour of irradiated uranium silicide fuel revisited

    Finlay, M. Ross; Hofman, Gerard L.; Rest, Jeffrey; Snelgrove, James L.

    2002-01-01

    Irradiated U 3 Si 2 dispersion fuels demonstrate very low levels of swelling, even at extremely high burn-up. This behaviour is attributed to the stability of fission gas bubbles that develop during irradiation. The bubbles remain uniformly distributed throughout the fuel and show no obvious signs of coalescence. Close examination of high burn-up samples during the U 3 Si 2 qualification program revealed a bimodal distribution of fission gas bubbles. Those observations suggested that an underlying microstructure was responsible for the behaviour. An irradiation induced recrystallisation model was developed that relied on the presence of sufficient grain boundary surface to trap and pin fission gas bubbles and prevent coalescence. However, more recent work has revealed that the U 3 Si 2 becomes amorphous almost instantaneously upon irradiation. Consequently, the recrystallisation model does not adequately explain the nucleation and growth of fission gas bubbles in U 3 Si 2 . Whilst it appears to work well within the range of measured data, it cannot be relied on to extrapolate beyond that range since it is not mechanistically valid. A review of the mini-plates irradiated in the Oak Ridge Research Reactor from the U 3 Si 2 qualification program has been performed. This has yielded a new understanding of U 3 Si 2 behaviour under irradiation. (author)

  13. Calculation of burnup and power dependence on fission gas released from PWR type reactor fuel element

    Edy-Sulistyono

    1996-01-01

    Burn up dependence of fission gas released and variation power analysis have been conducted using FEMXI-IV computer code program for Pressure Water Reactor Fuel During steady-state condition. The analysis result shows that the fission gas release is sensitive to the fuel temperature, the increasing of burn up and power in the fuel element under irradiation experiment

  14. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  15. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  16. Fundamental aspects of nuclear reactor fuel elements

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  17. Fundamental aspects of nuclear reactor fuel elements

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  18. Post irradiation examination on test fuel pins for PWR

    Fogaca Filho, N.; Ambrozio Filho, F.

    1981-01-01

    Certain aspects of irradiation technology on test fuel pins for PWR, are studied. The results of post irradiation tests, performed on test fuel pins in hot cells, are presented. The results of the tests permit an evaluation of the effects of irradiation on the fuel and cladding of the pin. (Author) [pt

  19. Burnup measurements of leader fuel elements

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  20. POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

    H.J. RYU

    2013-12-01

    Full Text Available Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4–5 g-U/cm3 were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr, additional protective coatings (silicide or nitride, and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

  1. Fuel elements handling device and method

    Jabsen, F.S.

    1976-01-01

    This invention relates to nuclear equipment and more particularly to methods and apparatus for the non-destructive inspection, manipulation, disassembly and assembly of reactor fuel elements and the like. (author)

  2. Apparatus and method for assembling fuel elements

    Arya, S.P.

    1978-01-01

    A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures

  3. Fuel element for a nuclear reactor

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  4. Irradiation performance of full-length metallic IFR fuels

    Tsai, H.; Neimark, L.A.

    1992-07-01

    An assembly irradiation of 169 full-length U-Pu-Zr metallic fuel pins was successfully completed in FFTF to a goal burnup of 10 at.%. All test fuel pins maintained their cladding integrity during the irradiation. Postirradiation examination showed minimal fuel/cladding mechanical interaction and excellent stability of the fuel column. Fission-gas release was normal and consistent with the existing data base from irradiation testing of shorter metallic fuel pins in EBR-II

  5. A CAREM type fuel element dynamic analysis

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  6. Transfer flask for hot active fuel elements

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  7. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  8. HTGR fuel element size reduction system

    Strand, J.B.; Cramer, G.T.

    1978-06-01

    Reprocessing of high-temperature gas-cooled reactor fuel requires development of a fuel element size reduction system. This report describes pilot plant testing of crushing equipment designed for this purpose. The test program, the test results, the compatibility of the components, and the requirements for hot reprocessing are discussed

  9. Safety assessment for Dragon fuel element production

    Price, M.S.T.

    1963-11-01

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  10. Fuel element for a nuclear reactor

    Tanihiro, Yasunori; Sumita, Isao.

    1970-01-01

    An improved fuel element of the heat pipe type is disclosed in which the fuel element itself is given a heat pipe structure and filled with a coated particle fuel at the section thereof having a capillary tube construction, whereby the particular advantages of heat pipes and coated fuels are combined and utilized to enhance thermal control and reactor efficiency. In an embodiment, the fuel element of the present invention is filled at its lower capillary tube section with coated fuel and at its upper section with a granurated neutron absorber. Both sections are partitioned from the central shaft by a cylindrically shaped wire mesh defining a channel through which the working liquid is vaporized from below and condensed by the coolant external to the fuel element. If the wire mesh is chosen to have a melting point lower than that of the fuel but higher than that of the operating temperature of the heat pipe, the mesh will melt and release the neutron absorbing particles should hot spots develop, thus terminating fission. (Owens, K. J.)

  11. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Baek, J. S [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  12. Fabrication of Fast Reactor Fuel Pins for Test Irradiations

    Karsten, G. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Dippel, T. [Institute for Radiochemistry, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany); Laue, H. J. [Institute for Applied Reactor Physics, Kernforschungszentrum Karlsruhe, Karlsruhe, Federal Republic of Germany (Germany)

    1967-09-15

    An extended irradiation programme is being carried out for the fuel element development of the Karlsruhe fast breeder project. A very important task within the programme is the testing of plutonium-containing fuel pins in a fast-reactor environment. This paper deals with fabrication of such pins by our laboratories at Karlsruhe. For the fast reactor test positions at present envisaged a fuel with 15% plutonium and the uranium fully enriched is appropriate. Hie mixed oxide is both pelletized and vibro-compacted with smeared densities between 80 and 88% theoretical. The pin design is, for example, such that there are two gas plena at the top and bottom, and one blanket above the fuel with the fuel zone fitting to the test reactor core length. The specifications both for fuel and cladding have been adapted to the special purpose of a fast-breeder reactor - the outer dimensions, the choice of cladding and fuel types, the data used and the kind of tests outline the targets of the development. The fuel fabrication is described in detail, and also the powder line used for vibro-compaction. The source materials for the fuel are oxalate PuO{sub 2} and UO{sub 2} from the UF{sub 6} process. The special problems of mechanical mixing and of plutonium homogeneity have been studied. The development of the sintering technique and grain characteristics for vibratory compactive fuel had to overcome serious problems in order to reach 82-83% theoretical. The performance of the pin fabrication needed a major effort in welding, manufacturing of fits and decontamination of the pin surfaces. This was a stimulation for the development of some very subtle control techniques, for example taking clear X-ray photographs and the tube testing. In general the selection of tests was a special task of the production routine. In conclusion the fabrication of the pins resulted in valuable experiences for the further development of fast reactor fuel elements. (author)

  13. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  14. Grids for nuclear fuel elements

    Nicholson, G.

    1980-01-01

    This invention relates to grids for nuclear fuel assemblies with the object of providing an improved grid, tending to have greater strength and tending to offer better location of the fuel pins. It comprises sets of generally parallel strips arranged to intersect to define a structure of cellular form, at least some of the intersections including a strip which is keyed to another strip at more than one point. One type of strip may be dimpled along its length and another type of strip may have slots for keying with the dimples. (Auth.)

  15. Nondestructive examination of 54 fuel and reflector elements from Fort St. Vrain core segment 2

    Saurwein, J.J.

    1982-10-01

    Fifty-four fuel and reflector elements irradiated in core segment 2 of the Fort St. Vrain high-temperature gas-cooled reactor (HTGR) were nondestructively examined. The time- and volume-averaged graphite irradiation temperatures for the elements ranged from approx. 350 0 to 750 0 C. The element-averaged fast neutron fluences ranged from approx. 0.2 to 1.6 x 10 25 n/m 2 (E > 29 fJ)/sub HTGR/. The elements, except for two fuel elements in which single localizeed cracks developed during irradiation, were in excellent condition. No evidence was observed of significant graphite oxidation or mechanical interaction beween elements. The cracks in the two elements did not affect their performance or handling. These elements were, otherwise, in excellent condition. Nearly all elements shrank in both the axial and radial directions, but the dimensional changes were relatively small

  16. Development of cutting device for irradiated fuel rod

    Lee, E. P.; Jun, Y. B.; Hong, K. P.; Min, D. K.; Lee, H. K.; Su, H. S.; Kim, K. S.; Kwon, H. M.; Joo, Y. S.; Yoo, K. S.; Joo, J. S.; Kim, E. K.

    2004-01-01

    Post Irradiation Examination(PIE) on irradiated fuel rods is essential for the evaluation of integrity and irradiation performance of fuel rods of commercial reactor fuel. For PIE, fuel rods should be cut very precisely. The cutting positions selected from NDT data are very important for further destructive examination and analysis. A fuel rod cutting device was developed witch can cut fuel rods longitudinal very precisely and can also cut the fuels into the same length rod cuts repeatedly. It is also easy to remove the fuel cutting powder after cutting works and it can extend the life time of cutting device and lower the contamination level of hot cell

  17. Hydraulic modelling of the CARA Fuel element

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  18. Cost of transporting irradiated fuels and maintenance costs of a chemical treatment plant for irradiated fuels

    Sousselier, Y.

    1964-01-01

    Numerous studies have been made of the cost of a fuel cycle, but many of them are based on a priori studies and are therefore to be treated with reserve. Thus, in the part dealing with the treatment of irradiated fuels, some important factors in the cost have only rarely been given on the basis of practical experience: the cost of transporting the fuels themselves and the plant maintenance costs. Investigations relating to transport costs are generally based on calculations made from somewhat arbitrary data. The studies carried out in France on the transport of irradiated uranium between the EDF reactors at Chinon and the retreatment plant at La Hague of the irradiated uranium from research reactors to foreign retreatment plants, are reported; they show that by a suitable choice of transport containers and details of expedition it has been possible to reduce the costs very considerably. This has been achieved either by combining rail and road transport or by increasing the writ capacities of the transport containers: an example is given of a container for swimming-pool pile elements which can transport a complete pile core at one time, thus substantially reducing the cost. Studies concerning the maintenance costs of retreatment plants are rarer still, although in direct maintenance plants these figures represent an appreciable fraction of the total treatment cost. An attempt has been made, on the basis of operational experience of a plant, to obtain some idea of these costs. Only maintenance proper has been considered, excluding subsidiary operations such as the final decontamination of apparatus, the burial of contaminated material and radioprotection operations Maintenance has been divided into three sections: mechanical maintenance, maintenance of electrical equipment and maintenance of control and adjustment apparatus. In each of these sections the distinction has been made between manpower and the material side. In order to allow comparisons to be made with

  19. The behaviour of spherical HTR fuel elements under accident conditions

    Schenk, W; Naoumidis, A [Institute for Reactor Material, KFA Juelich (Germany)

    1985-07-01

    Hypothetical accidents may lead to significantly higher temperatures in HTR fuel than during normal operation. In order to obtain meaningful statements on fission product behaviour and release, irradiated spherical fuel elements containing a large number of coated particles (20,000-40,000) with burnups between 6 and 16% FIMA were heated at temperatures between 1400 and 2500 deg. C. HTI-pyrocarbon coating retains the gaseous fission products (e.g. Kr) very well up to about 2400 deg. C if the burnup does not exceed the specified value for THTR (11.5%). Cs diffuses through the pyrocarbon significantly faster than Kr and the diffusion is enhanced at higher fuel burnups because of irradiation induced kernel microstructure changes. Below about 1800 deg. C the Cs release rate is controlled by diffusion in the fuel kernel; above this temperature the diffusion in the pyrocarbon coating is the controlling parameter. An additional SiC coating interlayer (TRISO) ensures Cs retention up to 1600 deg. C. However, the release obtained in the examined fuel elements was only by a factor of three lower than through the HTI pyrocarbon. Solid fission products added to UO{sub 2}-TRISO particles to simulate high burnup behave in various ways and migrate to attack the SiC coating. Pd migrates fastest and changes the SiC microstructure making it permeable.

  20. Computer simulation of fuel element performance

    Sukhanov, G I

    1979-01-01

    The review presents reports made at the Conference on the Bahaviour and Production of Fuel for Water Reactors on March 13-17, 1979. Discussed at the Conference are the most developed and tested calculation models specially evolved to predict the behaviour of fuel elements of water reactors. The following five main aspects of the problem are discussed: general conceptions and programs; mechanical mock-ups and their applications; gas release, gap conductivity and fuel thermal conductivity; analysis of nonstationary processes; models of specific phenomena. The review briefly describes the physical principles of the following models and programs: the RESTR, providing calculation of the radii of zones of columnar and equiaxial grains as well as the radius of the internal cavity of the fuel core; programs for calculation of fuel-can interaction, based on the finite elements method; a model predicting the behaviour of the CANDU-PHW fuel elements in transient conditions. General results are presented of investigations of heat transfer through a can-fuel gap and thermal conductivity of UO/sub 2/ with regard for cracking and gas release of the fuel. Many programs already suit the accepted standards and are intensively tested at present.

  1. Fuel element for a nuclear reactor

    Rau, P.

    1981-01-01

    Fuel elements which consist of parallel longitudinal fuel rods of circular crossection, can be provided with spiral distance pieces, by which the fuel rods support one another, if they are collected together by an outer enclosure. According to the invention, the enclosure includes several strips extending over a small fraction of the rod length, which are connected together by a skeleton rod instead of a fuel rod. The strips can be composed of flat parts which are connected together by the skeleton rod acting as a hinge. The invention is particularly suitable for breeder or converter reactors. (orig.) [de

  2. Development, irradiation testing and PIE of UMo fuel at AECL

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  3. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  4. Nuclear fuel element end fitting

    Jabsen, F.S.

    1980-01-01

    An invention is described whereby end fittings are formed from lattices of mutually perpendicular plates. At the plate intersections, sockets are secured to the end fittings in a manner that permits the longitudinal axes of each of the sockets to align with the respective lines of intersection of the plates. The sockets all protrude above one of the surfaces of the end fitting. Further, a detent is formed in the proturding sides of each of the sockets. Annular grooves are formed in each of the ends of the fuel rods that are to be mounted between the end fittings. The socket detents protrude into the respective annular grooves, thus engaging the grooves and retaining the fuel rods and end fittings in one integral structure. (auth)

  5. Small-scale irradiated fuel electrorefining

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-01-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program

  6. Inserts for nuclear fuel elements

    Cragg, P.J.

    1982-01-01

    An insert for a nuclear fuel pin which comprises a strip. The strip carries notches, which enable a coding arrangement to be carried on the strip. The notches may be of differing sizes and the coding on the strip includes identification and identification checking data. Each notch on the strip may give rise to a signal pulse which is counted by a detector to avoid errors. (author)

  7. Composite fuel behaviour under and after irradiation

    Dehaudt, P.; Mocellin, A.; Eminet, G.; Caillot, L.; Delette, G.; Bauer, M.; Viallard, I.

    1997-01-01

    Two kinds of composite fuels have been irradiated in the SILOE reactor. They are made of UO 2 particles dispersed in a molybdenum metallic (CERMET) or a MgAl 2 O 4 ceramic (CERCER) matrix. The irradiation conditions have allowed to reach a 50000 MWd/t U burn-up in these composite fuels after a hundred equivalent full power days long irradiation. The irradiation is controlled by a continuous measure of the pellet centre line temperature. It allows to have information about the TANOX rods thermal behaviour and the fuels thermal conductivities in comparing the centre line temperature versus linear power curves among themselves. Our results show that the CERMET centre line temperature is much lower than the CERCER and UO 2 ones: 520 deg. C against 980 deg. C at a 300W/cm linear power. After pin puncturing tests the rods are dismantled to recover each fuel pellet. In the CERCER case, the cladding peeling off has revealed that the fuel came into contact with the cladding and that some of the pellets were linked together. Optical microscopy observations show a changing of the MgAl 2 O 4 matrix state around the UO 2 particles at the pellets periphery. This transformation may have caused a swelling and would be at the origin of the pellet-cladding and the pellet-pellet interactions. No specific damage is seen after irradiation. The CERMET pellets are not cracked and remain as they were before irradiation. The CERCER crack network is slightly different from that observed in UO 2 . Kr retention was evaluated by annealing tests under vacuum at 1580 deg. C or 1700 deg. C for 30 minutes. The CERMET fission gas release is lower than the CERCER one. Inter- and intragranular fission gas bubbles are observed in the UO 2 particles after heat treatments. The CERCER pellet periphery has also cracked and the matrix has transformed again around UO 2 particles to present a granular and porous aspect. (author). 4 refs, 6 figs, 2 tabs

  8. Evaluation model for PWR irradiated fuel

    Gomes, I.C.

    1983-01-01

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author) [pt

  9. Neutronic, thermal-hydraulics and safety calculations of a Miniplate Irradiation Device (MID) of dispersion type fuel elements; Calculos neutronicos, termo-hidraulicos e de seguranca de um dispositivo para Irradiacao de miniplacas (DIM) de elementos combustiveis tipo dispersao

    Domingos, Douglas Borges

    2010-07-01

    Neutronic, thermal-hydraulics and accident analysis calculations were developed to estimate the safety of a Miniplate Irradiation Device (MID) to be placed in the IEA-R1 reactor core. The irradiation device is used to receive miniplates of U{sub 3}O{sub 8}-Al and U{sub 3}Si{sub 2}- Al dispersion fuels, LEU type (19.75 % {sup 235}U) with uranium densities of, respectively, 3.2 gU/cm{sup 3} and 4.8 gU/cm{sup 3}. The fuel miniplates will be irradiated to nominal {sup 235}U burnup levels of 50% and 80%, in order to qualify the above high-density dispersion fuels to be used in the Brazilian Multipurpose Reactor (RMB), now in the conception phase. For the neutronic calculation, the computer codes CITATION and 2DB were utilized. The computer code FLOW was used to calculate the coolant flow rate in the irradiation device, allowing the determination of the fuel miniplate temperatures with the computer model MTRCR-IEA-R1. A postulated Loss of Coolant Accident (LOCA) was analyzed with the computer codes LOSS and TEMPLOCA, allowing the calculation of the fuel miniplate temperatures after the reactor pool draining. The calculations showed that the irradiation should occur without adverse consequences in the IEA-R1 reactor. (author)

  10. Leaching of irradiated CANDU UO2 fuel

    Vandergraaf, T.T.; Johnson, L.H.; Lau, D.W.P.

    1980-01-01

    Irradiated fuel, leached at room temperature with distilled water and with slightly chlorinated river water, releases approx. 4% of its cesium inventory over a comparatively sort period of a few days but releases its actinides and rare earths more slowly. The matrix itself dissolves at a rate conservatively calculated to be less than approx. 2 x 10 -6 g UO 2 /cm 2 day and, with time, the leach rates of the various nuclides approach this value

  11. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  12. Reactor transients tests for SNR fuel elements in HFR reactor

    Plitz, H.

    1989-01-01

    In HFR reactor, fuel pins of LMFBR reactors are putted in irradiation specimen capsules cooled with sodium for reactor transients tests. These irradiation capsules are instrumented and the experiences realized until this day give results on: - Fuel pins subjected at a continual variation of power - melting fuel - axial differential elongation of fuel pins

  13. Irradiation test and performance evaluation of DUPIC fuel

    Yang, Myung Seung; Song, K. C.; Moon, J. S.

    2002-05-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  14. Graphite behaviour in relation to the fuel element design

    Everett, M. R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Manzel, R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Blackstone, R. [Reactor Centrum, Petten (Netherlands); Delle, W. [Kernforschungsanlage, Juelich (Germany); Lungagnani, V. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands); Krefeld, R. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands)

    1969-09-01

    The first designs of H.T.R. power reactors will probably use a Gilsocarbon based graphite for both the moderator/carrier blocks and for the fuel tubes. The initial physical properties and changes of dimensions, thermal expansion coefficient, Young*s modulus, and thermal conductivity on irradiation of Gilsocarbon graphites to typical reactor dwell-time fast neutron doses of 4 * 1021 cm -2 Ni dose Dido equivalent are given and values for the irradiation creep constant are presented. The influence of these property changes and those of chemical corrosion are considered briefly in relation to the present fuel element designs. The selection of an eventual less costly replacement graphite for Gilsocarbon graphite is discussed in terms of materials properties.

  15. Post-irradiation examination of overheated fuel bundles

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1995-01-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding-was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2 MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  16. Post-irradiation examination of overheated fuel bundles

    Sears, D.F.; Primeau, M.F.; Leach, D.A.

    1997-08-01

    Post-irradiation examinations (PIE) were conducted on prototype 43-element CANDU fuel bundles that overheated during test irradiations in the NRU reactor. PIE revealed that the bundles remained physically intact, but on several elements the Zr-4 sheath collapsed into axial gaps between the pellet stack and end caps, between adjacent pellets within the stacks, and into missing pellet chips and cracks. Helium pressurization tests showed that none of the collapsed elements leaked. Hydride blisters were discovered on a few elements, but the source of the hydrogen was.not linked to a breach of the cladding or end caps. These defects were attributed to primary hydriding. Microstructural changes in the fuel and cladding indicate that the cladding was briefly exposed to temperatures in the range 600-800 o C and pressures above 11.2MPa. The results show that Zr-4 cladding behaves in a highly ductile manner during such transient, high-temperature and high-pressure excursions. (author)

  17. Structural analysis of reactor fuel elements

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  18. Reliability analysis of dispersion nuclear fuel elements

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  19. Reliability analysis of dispersion nuclear fuel elements

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  20. Design of JMTR high-performance fuel element

    Sakurai, Fumio; Shimakawa, Satoshi; Komori, Yoshihiro; Tsuchihashi, Keiichiro; Kaminaga, Fumito

    1999-01-01

    For test and research reactors, the core conversion to low-enriched uranium fuel is required from the viewpoint of non-proliferation of nuclear weapon material. Improvements of core performance are also required in order to respond to recent advanced utilization needs. In order to meet both requirements, a high-performance fuel element of high uranium density with Cd wires as burnable absorbers was adopted for JMTR core conversion to low-enriched uranium fuel. From the result of examination of an adaptability of a few group constants generated by a conventional transport-theory calculation with an isotropic scattering approximation to a few group diffusion-theory core calculation for design of the JMTR high-performance fuel element, it was clear that the depletion of Cd wires was not able to be predicted accurately using group constants generated by the conventional method. Therefore, a new generation method of a few group constants in consideration of an incident neutron spectrum at Cd wire was developed. As the result, the most suitable high-performance fuel element for JMTR was designed successfully, and that allowed extension of operation duration without refueling to almost twice as long and offer of irradiation field with constant neutron flux. (author)

  1. Development and testing of the EDF-2 reactor fuel element

    Delpeyroux, P.

    1964-01-01

    This technical report reviews the work which has been necessary for defining the EDF-2 fuel element. After giving briefly the EDF-2 reactor characteristics and the preliminary choice of parameters which made it possible to draw up a draft plan for the fuel element, the authors consider the research proper: - Uranium studies: tests on the passage into the β phase of an internal crown of a tube, bending of the tube under the effect of a localized force, welding of the end-pellets and testing for leaks. The resistance of the tube to crushing and of the pellets to yielding under the external pressure have been studied in detail in another CEA report. - Can studies: conditions of production and leak proof testing of the can, resistance of the fins to creep due to the effect of the gas flow. - Studies of the extremities of the element: creep under compression and welding of the plugs to the can. - Cartridge studies: determination of the characteristics of the can fuel fixing grooves and of the canning conditions, verification of the resistance of the fuel element to thermal cycling, determination of the temperature drop at the can-fuel interface dealt with in more detail in another CEA report. - Studies of the whole assembly: this work which concerns the graphite jacket, the support and the cartridge vibrations has been carried out by the Mechanical and Thermal Study Service (Mechanics Section). In this field the Fuel Element Study Section has investigated the behaviour of the centering devices in a gas current. The outcome of this research is the defining of the plan of the element the production process and the production specifications. The validity of ail these out-of-pile tests will be confirmed by the in-pile tests already under way and by irradiation of the elements in the EDF-2 reactor itself. In conclusion the programme is given for improving the fuel element and for defining the fuel element for the second charge. (authors) [fr

  2. HTGR fuel element structural design consideration

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  3. HTGR fuel element structural design considerations

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  4. Irradiation performance of AGR-1 high temperature reactor fuel

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization

  5. The 3rd irradiation test plan of DUPIC fuel

    Yang, Myung Seung; Song, K. C.; Park, J. H. and others

    2001-05-01

    The objective of the 3rd irradiation test of DUPIC fuel at the HANARO is to estimate the in-core behaviour of a DUPIC pellet that is irradiated up to more than average burnup of CANDU fuel. The irradiation of DUPIC fuel is planned to start at May 21, 2001, and will be continued at least for 8 months. The burnup of DUPIC fuel through this irradiation test is thought to be more than 7,000 MWd/tHE. The DUPIC irradiation rig instrumented with three SPN detectors will be used to accumulate the experience for the instrumented irradiation and to estimate the burnup of irradiated DUPIC fuel more accurately. Under normal operating condition, the maximum linear power of DUPIC fuel was estimated as 55.06 kW/m, and the centerline temperature of a pellet was calculated as 2510 deg C. In order to assess the integrity of DUPIC fuel under the accident condition postulated at the HANARO, safety analyses on the locked rotor and reactivity insertion accidents were carried out. The maximum centerline temperature of DUPIC fuel was estimated 2590 deg C and 2094 deg C for each accident, respectively. From the results of the safety analysis, the integrity of DUPIC fuel during the HANARO irradiation test will be secured. The irradiated DUPIC fuel will be transported to the IMEF. The post-irradiation examinations are planned to be performed at the PIEF and IMEF.

  6. Characteristics and behaviour of the PHENIX fuel element

    Delpeyroux, P.; Balloffet, Y.; Blanchard, P.; Courcon, P.; Jallade, M.; Millet, P.; Rousseau, J.; Carteret, Y.; Coulon, P.

    1977-01-01

    The Phenix reactor has been in regular industrial operation for two years and has functioned very satisfactorily thanks in particular to the very good behaviour of the fuel element. A brief description is given of the fuel element and the operating conditions which were set for the fuel at the time of start-up (50000 MWd/t). The surveillance scheme is then described with the examinations in the hot laboratory on the basis of which it was possible to achieve the nominal specific burn-up and then to clear the Phenix fuel for a specific burn-up of 60000 MWd/t or 7 at.%. The behaviour of the mixed oxide (U, Pu)O 2 is quite normal and conforms to predictions as regards the heat conditions, swelling and fission gas release. The corrosion reaction between the oxide and the clad is progressing slowly and affects only small thicknesses of cladding. The mechanical integrity of the clad under thermal stresses and the stresses produced by swelling and fission gas pressure do not pose any special problem. The present limitation of the irradiation level is essentially based on the permissible deformations due to swelling and irradiation creep in the fuel pin cladding and in the hexagonal tube. This corresponds to damage to the steel of the order of 80 dpa. The mechanical behaviour of the bundle of pins, its interaction with the hexagonal tube and the thermohydraulic consequences of the deformations are all satisfactory to date. The absence of fuel failures is also worth noting; the only burst can detected to date did not affect either the operation of the fuel assembly or the performance of the reactor [fr

  7. Upgraded HFIR Fuel Element Welding System

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  8. Design and performance of sodium-bonded uranium--plutonium carbide fuel elements

    Kerrisk, J.F.; DeMuth, N.S.; Petty, R.L.; Latimer, T.W.; Vitti, J.A.; Jones, L.J.

    1979-01-01

    Recent results from irradiation tests indicate that sodium-bonded elements provide a practical advanced fuel element design for use in LMFBRs. Shroud tubes have effectively controlled fuel-cladding mechanical interaction; thicker and stronger claddings have also been effective in this respect. Burnups to 11 at.% have been achieved under typical operating conditions. A hetrogeneous core with a breeding ratio of 1.55 and a compound system doubling time of less than 13 years has been designed using these element designs

  9. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    Billerey, A.; Bouffioux, P.

    2002-01-01

    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  10. Extract of the report of the working party on the handling of irradiated fuel

    Berest, P.

    1983-01-01

    The French government has requested a working party with Prof. Neel in the chair to submit a report on the handling of irradiated fuel. This part of the report concerns the retreated fuels. It gives important elements for the debate and formulates recommendations for radioactive waste management [fr

  11. Fuel elements and safety engineering goals

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  12. HRB-22 capsule irradiation test for HTGR fuel. JAERI/USDOE collaborative irradiation test

    Minato, Kazuo; Sawa, Kazuhiro; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    As a JAERI/USDOE collaborative irradiation test for high-temperature gas-cooled reactor fuel, JAERI fuel compacts were irradiated in the HRB-22 irradiation capsule in the High Flux Isotope Reactor at the Oak Ridge National Laboratory (ORNL). Postirradiation examinations also were performed at ORNL. This report describes 1) the preirradiation characterization of the irradiation samples of annular-shaped fuel compacts containing the Triso-coated fuel particles, 2) the irradiation conditions and fission gas releases during the irradiation to measure the performance of the coated particle fuel, 3) the postirradiation examinations of the disassembled capsule involving visual inspection, metrology, ceramography and gamma-ray spectrometry of the samples, and 4) the accident condition tests on the irradiated fuels at 1600 to 1800degC to obtain information about fuel performance and fission product release behavior under accident conditions. (author)

  13. Criticality calculation of the deposits for the fuel elements in RP-10 nuclear research reactor

    Aguirre, Alvaro; Bruna, Ruben

    2013-01-01

    This paper shows the results of the criticality calculation of the deposits for irradiated and non-irradiated fuel elements in the RP-10 research reactor with MCNP5 code. In all cases and for normal and incidental conditions, the effective multiplication factor (K eff ) results less than 0,90 according to the acceptance criterion. (authors).

  14. Irradiation Experiments on Plutonium Fuels for Fast Reactors

    Frost, B. R.T.; Wait, E. [Atomic Energy Research Establishment Harwell, Berks. (United Kingdom)

    1967-09-15

    experiment was conducted in a thermal neutron flux to a mean burn-up in excess of 10% burn-up but with a low fuel centre temperature (< 900 Degree-Sign C). Under these conditions gas release was low and fuel swelling was sufficiently low to avoid can failure, in contrast with other results at the same burn-up but at higher fuel centre temperatures ({approx} 1300 Degree-Sign C) where gas release and swelling were both considerably higher. Further experiments are in progress to determine more accurately the rate of swelling of (U, Pu)C in a fast neutron flux and to study possible methods of prolonging the life of carbide fuel elements. These studies are supported by basic investigations of swelling and fission gas release mechanisms. An assessment of the chemical state of the fuel fission products and cladding after irradiation to high burn-up is presented. The analysis is based on the thermodynamics of the system and experimental observations on irradiated fuel material. The systems considered are uranium/plutonium oxide and uranium/plutonium carbides. The principal conclusions of the analysis are that, in oxides, the oxygen potential of the system increases with increasing burn-up and, in carbides, the carbon activity of die irradiated system is maintained at some value between that of the monocarbide and sesquicarbide. (author)

  15. Design of the Fuel Element for the RRR Reactor (Australia)

    Estevez, E.A.; Markiewicz, M.E.; Gerding, R.

    2003-01-01

    The supply to the Replacement Research Reactor ( RRR ) to Australia represents a technological goal for our country, as much for the designers and manufacturers of this irradiation facility ( Invap SE ), as well for the responsibles of the fuel elements ( FE ) design and the suppliers of the first core ( CNEA ).In relation with the FE, although the conceptual design and fabrication technology of the FE are similar to the just developed and qualified by CNEA ( plane plates MTR fuel type ), the characteristics of this new reactor imposes most severe operation conditions on them than in previous supplies.In that sense, two distinguishing characteristics deserve to be shown: a) The magnitude of the hydrodynamics loads acting on the FE due to the coolant ascendent flow direction, and mainly, the very high flow velocities between the fuel plates ( aproximately five times higher than which presents in others Argentine FE actually in operation. b) The use of U3Si2 as fuel material.CNEA has started a programme to qualify this type of fuel.As result of these higher loads under irradiations and with the objective to maintain the high reliability level reached by our FE ( very low failure rates ), it was necessary to introduce FE mechanical-structural design modifications respect to the ECBE or standard design version, and to verify these changes through hydrodynamics tests on a 1:1 scale prototype.In this paper it is described the mechanical-structural FE design with special emphasis in the innovatives aspects incorporated.The design criteria established in function of the solicitations and limitating effects present under irradiation conditions.Also, a brief description of the proposed programme to verify and evaluate this design is presented, including analytical and numerical calculus of stresses acting on the fuel plates and others FE components, pressure loss hydrodynamics tests and endurance essays

  16. Thermomechanical analysis of nuclear fuel elements

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  17. Studies of irradiated zircaloy fuel sheathing using XPS

    Chan, P.K.; Irving, K.G.; Hocking, W.H.; Duclos, A.M.; Gerwing, A.F.

    1995-01-01

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO 2 ) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs

  18. Studies of irradiated zircaloy fuel sheathing using XPS

    Chan, P K; Irving, K G [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Hocking, W H; Duclos, A M; Gerwing, A F [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    The preliminary results reported here support the hypothesis that CANLUB graphite coating reduces the rate at which oxygen can react with fuel sheathing. X-ray photoelectron spectroscopic (XPS) characterization of Zircaloy sheathing obtained from extended-burnup Bruce-type elements (BDL-406-XY (555 MW.h/kgU) and BDL-406-AAH (731 MW.h/kgU)) irradiated in NRU indicates that CANLUB may reduce fuel sheath oxidation, and hence that fission-liberated oxygen may remain in the fuel. Chemical shifts in the Zr 3d spectra suggest that a stoichiometric (ZrO{sub 2}) oxide film was formed only on Zircaloy in direct contact with fuel. Particulate fuel adhering to the sheath was also determined to be systematically more oxidized on surfaces with CANLUB than on those without it. The unique association of tin on sheathing specimens with the non-CANLUB-coated specimens might also suggest that the tin had segregated from the sheathing. It must be emphasized that further experiments are required to better define the effect of CANLUB on fuel oxidation. (author). 14 refs., 1 tab., 3 figs.

  19. Methodology for the calculation of source terms related to irradiated fuel accumulated away from nuclear power plants

    Lima Filho, R.M.; Oliveira, L.F.S. de

    1984-01-01

    A general method for the calculation of the time evolution of source terms related to irradiated fuel is presented. Some applications are discussed which indicated that the method can provide important informations for the engineering design and safety analysis of a temporary storage facility of irradiated fuel elements. (Author) [pt

  20. Storage container for radioactive fuel elements

    1984-01-01

    The interim storage cask for spent fuel elements or the glass moulds for high-level radioactive waste are made up of heat-resistant, reinforced concrete with chambers and highgrade steel lining. Cooling systems with natural air circulation are connected with the chambers. (HP) [de

  1. Prevention of criticality accidents. Fuel elements storage

    Canavese, S.I.; Capadona, N.M.

    1990-01-01

    Before the need to store fuel elements of the plate type MTR (Materials Testing Reactors), produced with enriched uranium at 20% in U235 for research reactors, it requires the design of a deposit for this purpose, which will give intrinsic security at a great extent and no complaints regarding its construction, is required. (Author) [es

  2. The transportation of PuO2 and MOX fuel and management of irradiated MOX fuel

    Dyck, H.P.; Rawl, R.; Durpel, L. van den

    2000-01-01

    Information is given on the transportation of PuO 2 and mixed-oxide (MOX) fuel, the regulatory requirements for transportation, the packages used and the security provisions for transports. The experience with and management of irradiated MOX fuel and the reprocessing of MOX fuel are described. Information on the amount of MOX fuel irradiated is provided. (author)

  3. Dry storage of irradiated nuclear fuel

    Tolmie, R.D.

    1983-01-01

    In transferring radioactive material between the preparation and clean chambers of a dry storage complex, irradiated nuclear fuel is posted from the preparation chamber to a sealable canister supported in a closable bucket in the clean chamber, or a contaminated sealed canister is posted from a closed bucket in the clean chamber into the preparation chamber by using a facility comprising two coaxial tubes constituting a closable orifice between the two chambers, the tubes providing sealing means for the bucket, and masking means for the bucket and canister closures together with means for withdrawing the closures into the preparation chamber. (author)

  4. Pyroelectrochemical process for reprocessing irradiated nuclear fuels

    Brambilla, G.; Sartorelli, A.

    1982-01-01

    A pyroelectrochemical process for reprocessing irradiated fast reactor mixed oxide or carbide fuels is described. The fuel is dissolved in a bath of molten alkali metal sulfates. The Pu(SO 4 ) 2 formed in the bath is thermally decomposed, leaving crystalline PuO 2 on the bottom of the reaction vessel. Electrodes are then introduced into the bath, and UO 2 is deposited on the cathode. Alternatively, both UO 2 and PuO 2 may be electrodeposited. The molten salts, after decontamination by precipitating the fission products dissolved in the bath by introducing basic agents such as oxides, carbonates, or hydroxides, may be recycled. Since it is not possible to remove cesium from the molten salt bath, periodic disposal and partial renewal with fresh salts is necessary. The melted salts that contain the fission products are conditioned for disposal by embedding them in a metallic matrix

  5. Fission product release from defected nuclear reactor fuel elements

    Lewis, B.J.

    1983-01-01

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO 2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO 2 (1.56 x 10 -10 to 7.30 x 10 -9 s -1 ), as well as escape rate constants (7.85 x 10 -7 to 3.44 x 10 -5 s -1 ) and diffusion coefficients (3.39 x 10 -5 to 4.88 x 10 -2 cm 2 /s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  6. Positioning device for fuel rods of nuclear reactor fuel elements

    1987-01-01

    The positioning device consists of individual containers, similar to cases, for the fuel elements. These cases are arranged vertically next to one another and are held by means of vertical support posts and horizontal arms. The openings of the cases can be individually approached by the trolleys. (DG) [de

  7. Research and Test Reactor Fuel Elements (RTRFE)

    Pace, Brett W.; Marinak, Edward A.

    1999-01-01

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U 3 Si 2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  8. Catalogue of fuel elements - 1. addendum October 1958

    Even, A.

    1957-01-01

    This document contains sheets presenting various characteristics of nuclear fuel elements which are distinguished with respect to their shape: cylinder bar, plate, tube. Each sheet comprises an indication of the atomic pile in which the fuel element is used, dimensions, cartridge data, data related to cooling, to combustion rate, and to fuel handling. A drawing of the fuel element is also given

  9. Shielding considerations for advanced fuel irradiation experiments

    Kang, Young-Hwan; Kim, Hee-Moon; Kim, Bong-Goo; Kim, Hark-Rho; Lee, Dong-Soo

    2008-01-01

    An in-pile test program for the development of a high burn-up fuel is planned for the HANARO reactor. The source term originates from a leakage of fission products from the anticipated failed fuels into the gas flow tubes and around the instrumentation and control system. In order to quantify the fuel composition in the event of a fuel failure, the isotope generation and depletion code ORIGEN 2.0 was used. The computer program Microshield 6.2 was used to calculate the doses from specific locations, where a high radioactivity is expected during an irradiation. The results indicate that the equivalent dose in the investigated working areas is less than the permitted dose rate of 6.25 μSv/hr. However, access to the area of a decay vessel may need to be limited, and the installation of a Pb wall with a 20.5 cm thickness is recommended. From the analysis of a radioactive decay with time, most of the concerned gaseous nuclides with short half-lives after 3 months, were decayed, with one exception which was Kr-85, thus it should be released in accordance with applicable government laws after measuring its activity in individual holding vessels. (author)

  10. The possibility of prediction of the lifetime of metallic nuclear fuel elements in a radiation field of thermal nuclear reactors

    Livne, Z.; Ramon, P.

    1979-01-01

    An attempt is made to clarify the possible causes of failure of irradiated nuclear fuel cartridges, in order to determine the parameters which govern the lifetime of the fuel and a way to predict it. Measurements of mechanical properties of irradiated uranium metal and cladding, can serve as a basis for failure prediction. Testing irradiated fuel elements by bending till fracture enables to evaluate the integral character of the fuel element, along the cross-section, taking into account the difference in brittleness of several zones. It is likely that the bending test, which indicates the behaviour of a stress-strain function, is a faster and more reliable way to determine the mechanical properties of irradiated nuclear fuel. Since the stresses applied to the cladding during irradiation are locally hydrostatic, its postirradiation blow-up provide information on strength and elasticity variations of the irradiated cladding material. (B.G.)

  11. Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin

    Matos, J.E.

    1994-12-01

    This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy's Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006

  12. Irradiation of a 19 pin subassembly with mixed carbide fuel in KNK II

    Geithoff, D.; Mühling, G.; Richter, K.

    1992-06-01

    The presentation deals with the fabrication, irradiation and nondestructive postirradiation examinations of LMR fuel pins with mixed (U, Pu)-carbide fuels. The mixed carbide fuel was fabricated by the European Institute of Transuranium Elements using various fabrication procedures. Fuel composition varied therefore in a wide range of tolerances with respect to oxygen and phase content and microstructure. The 19 carbide pins were irradiated in the fast neutron flux of the KNK II reactor to a burn-up of about 7 at% without any failure in the centre of a KNK "carrier element" at a maximum linear rating of 800 W/cm. After dismantling in the Hot Cells of KfK nondestructive examinations were carried out comprising dimensional controls, radiography, γ-scanning and eddy-current testing. The results indicate differences in fuel behaviour with respect to composition of the fuel.

  13. Spacer device for nuclear reactor fuel elements

    Anthony, A.J.; Gaines, A.L.; Krawiec, D.M.

    1974-01-01

    The grid-type spacer device consists of two rows of main spacers arranged parallel to each other with some space in between, the first row extending perpendicular to the second row. Parallel to the respective rows of main spacers there are rows of secondary spacers interlocked with the main spacers. The individual spacers are welded together at their points of intersection. A large number of spring cages are installed within the spacer device to hold in place the main spacers which are oriented at right angles relative to each other. In addition, the spring cages serve for supporting the fuel elements. The spacers are made of zirconium which does not greatly influence the neutron capture cross section of the reactor. The material of the spring cages with the spring elements is a nickel alloy. It has the necessary stress relaxation properties to be able to force the fuel elements against the spacers under the action of the spring. (DG) [de

  14. SP-100 Fuel Pin Performance: Results from Irradiation Testing

    Makenas, Bruce J.; Paxton, Dean M.; Vaidyanathan, Swaminathan; Marietta, Martin; Hoth, Carl W.

    1994-07-01

    A total of 86 experimental fuel pins with various fuel, liner, and cladding candidate materials have been irradiated in the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF) reactor as part of the SP-100 fuel pin irradiation testing program. Postirradiation examination results from these fuel pins are key in establishing performance correlations and demonstrating the lifetime and safety of the reactor fuel system. This paper provides a brief description of the in-reactor fuel pin tests and presents the most recent irradiation data on the performance of wrought rhenium (Re) liner material and high density UN fuel at goal burnup of 6 atom percent (at. %). It also provides an overview of the significant variety of other fuel/liner/cladding combinations which were irradiated as part of this program and which may be of interest to more advanced efforts.

  15. Nuclear reactor core and fuel element therefor

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  16. The development of fuel pins and material specimens mixed loading irradiation test rig in the experimental fast reactor Joyo. The development of the fuel-material hybrid rig

    Oyamatsu, Yasuko; Someya, Hiroyuki

    2013-02-01

    In the experimental fast reactor Joyo, there were many tests using the irradiation rigs that it was possible to be set irradiation conditions for each compartment independently. In case of no alternative fuel element to irradiate after unloading the irradiated compartments, the irradiation test was restarted with the dummy compartment which the fuel elements was not mounted. If the material specimens are mounted in this space, it is possible to use the irradiation space effectively. For these reasons, the irradiation rig (hybrid rig) is developed that is consolidated with material specimens compartment and fuel elements compartment. Fuel elements and material specimens differ greatly with heat generation, so that the most important issue in developing of hybrid rig is being able to distribute appropriately the coolant flow which satisfies irradiation conditions. The following is described by this report. (1) It was confirmed that the flow distribution of loading the same irradiation rig with the compartment from which a flow demand differs could be satisfied. (2) It was confirmed that temperature setting range of hybrid rig could be equivalent to that of irradiation condition. (3) By standardizing the coolant entrance structure of the compartment lower part, the prospect which can perform easily recombination of the compartment from which a type differs between irradiation rigs was acquired. (author)

  17. Coordinated irradiation plan for the Fuel Refabrication and Development Program

    Barner, J.O.

    1979-04-01

    The Department of Energy's Fuel Refabrication and Development (FRAD) Program is developing a number of proliferation-resistant fuel systems and forms for alternative use in nuclear reactors. A major portion of the program is the development of irradiation behavioral information for the fuel system/forms with the ultimate objective of qualifying the design for licensing and commercial utilization. The nuclear fuel systems under development include denatured thoria--urania fuels and spiked urania--plutonia or thoria--plutonia fuels. The fuel forms being considered include pellet fuel produced from mechanically mixed or coprecipitated feed materials, pellet fuel fabricated from partially calcined gel-derived or freeze-dried spheres (hybrid fuel) and packed-particle fuel produced from sintered gel-derived spheres (sphere-pac). This document describes the coordinated development program that will be used to test and demonstrate the irradiation performance of alternative fuels

  18. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  19. Modeling of coated fuel particles irradiation behavior

    Liang Tongxiang; Phelip, M.

    2006-01-01

    In this report, PANAMA code was used to estimate the CP performance under normal and accident condition. Under the normal irradiation test (1000 degree C 625 efpd, 10% FIMA), for intact CP fuel, failure fraction is in the level of 10 -7 . As-fabricated SiC failed particles results in the through coatings failed particles much earlier than the intact particles does, OPyC layer does not fail immediately after irradiation starts. The significant failures start at beyond the burnup of about 7% FIMA. Under the accident condition, the calculated results showed that when the heating temperature is much higher than 1850 degree C, the failure fraction of coated particle can reach the level of 1 percent. The CP fuel fails significantly if it has a buffer layer thinner than 65 urn, SiC layer thinner than 30 μm. High burnup CP need to develop small size kernel, thick buffer layer and thick SiC layer. (authors)

  20. Laser assisted decontamination of nuclear fuel elements

    Padma Nilaya, J.; Biswas, Dhruba J.; Kumar, Aniruddha

    2010-04-01

    Laser assisted removal of loosely bound fuel particulates from the clad surface following the process of pellet loading has decided advantages over conventional methods. It is a dry and noncontact process that generates very little secondary waste and can occur inside a glove box without any manual interference minimizing the possibility of exposure to personnel. The rapid rise of the substrate/ particulate temperature owing to the absorption of energy from the incident laser pulse results in a variety of processes that may lead to the expulsion of the particulates. As a precursor to the cleaning of the fuel elements, initial experiments were carried out on contamination simulated on commonly used clad surfaces to gain a first hand experience on the various laser parameters for which as efficient cleaning can be obtained without altering the properties of the clad surface. The cleaning of a dummy fuel element was subsequently achieved in the laboratory by integrating the laser with a work station that imparted simultaneous rotational and linear motion to the fuel element. (author)

  1. Cumulative damage fraction design approach for LMFBR metallic fuel elements

    Johnson, D.L.; Einziger, R.E.; Huchman, G.D.

    1979-01-01

    The cumulative damage fraction (CDF) analytical technique is currently being used to analyze the performance of metallic fuel elements for proliferation-resistant LMFBRs. In this technique, the fraction of the total time to rupture of the cladding is calculated as a function of the thermal, stress, and neutronic history. Cladding breach or rupture is implied by CDF = 1. Cladding wastage, caused by interactions with both the fuel and sodium coolant, is assumed to uniformly thin the cladding wall. The irradiation experience of the EBR-II Mark-II driver fuel with solution-annealed Type 316 stainless steel cladding provides an excellent data base for testing the applicability of the CDF technique to metallic fuel. The advanced metal fuels being considered for use in LMFBRs are U-15-Pu-10Zr, Th-20Pu and Th-2OU (compositions are given in weight percent). The two cladding alloys being considered are Type 316 stainless steel and a titanium-stabilized Type 316 stainless steel. Both are in the cold-worked condition. The CDF technique was applied to these fuels and claddings under the assumed steady-state operating conditions

  2. The Analysis Of Spent Fuel Utilization For A Gamma Irradiator

    MS, Pudjijanto; Setiyanto

    2002-01-01

    The gamma irradiator using RSG-GAS spent fuels was analyzed. The cylindrical geometry of the irradiator was designed by locating the spent fuels the cylindrical periphery. The analysis was focused to evaluate the feasibilities of the irradiator as a fruits and vegetables irradiator. The spent fuels activities were calculated using Origen2 code, while the dose rate at the irradiation positions was determined by linear attenuation model with transport coefficient. The evaluated results showed that the cylindrical geometry of irradiators with diameter around 1-1.5 m gave the effective dose rate for fruits and vegetables preservation. It can be concluded that one can use the RSG-GAS spent fuels effectively as a gamma irradiator for certain applications

  3. Behavior of mixed-oxide fuel elements during an overpower transient

    Tsai, H.; Shikakura, S.

    1993-01-01

    A slow-ramp (0.1%/s), extended overpower (∼90%) transient test was conducted in EBR-II on 19 mixed-oxide fuel elements with conservative, moderate, and aggressive designs. Claddings for the elements were Type 316, D9, or PNC-316 stainless steel. Before the transient, the elements were preirradiated under steady-state or steady-state plus duty-cycle (periodic 15% overpower transient) conditions to burnups of 2.5-9.7 at%. Cladding integrity during the transient test was maintained by all fuel elements except one, which had experienced substantial overtemperature in the earlier stedy-state irradiation. Extensive centerline fuel melting occurred in all test elements. Significantly, this melting did not cause any elements to breach, although it did have a strong effect on the other aspects of fuel element behavior. (orig.)

  4. Automatic inspection for remotely manufactured fuel elements

    Reifman, J.; Vitela, J.E.; Gibbs, K.S.; Benedict, R.W.

    1995-01-01

    Two classification techniques, standard control charts and artificial neural networks, are studied as a means for automating the visual inspection of the welding of end plugs onto the top of remotely manufactured reprocessed nuclear fuel element jackets. Classificatory data are obtained through measurements performed on pre- and post-weld images captured with a remote camera and processed by an off-the-shelf vision system. The two classification methods are applied in the classification of 167 dummy stainless steel (HT9) fuel jackets yielding comparable results

  5. Failure analysis for WWER-fuel elements

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  6. Irradiation performance of AGR-1 high temperature reactor fuel

    Demkowicz, Paul A., E-mail: paul.demkowicz@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Hunn, John D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Ploger, Scott A. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Morris, Robert N.; Baldwin, Charles A. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Harp, Jason M.; Winston, Philip L. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Gerczak, Tyler J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States); Rooyen, Isabella J. van [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States); Montgomery, Fred C.; Silva, Chinthaka M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6093 (United States)

    2016-09-15

    the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  7. CEA fuel pencil qualification under irradiation: from component conception to fuel assembly irradiation in a power reactor

    Marin, J.-F.; Pillet, Claude; Francois, Bernard; Morize, Pierre; Petitgrand, Sylvie; Atabek, R.-M.; Houdaille, Brigitte.

    1981-06-01

    Fabrication of fuel pins made of uranium oxide pellets and of a zircaloy 4 cladding is described. Irradiation experiment results are given. Thermomechanical behavior of the fuel pin in a power reactor is examined [fr

  8. Report of Post Irradiation Examination for Dry Process Fuel

    Par, Jang Jin; Jung, I. H.; Kang, K. H.; Moon, J. S.; Lee, C. R.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Yoo, B. O.; Jung, Y. H.; Choo, Y. S.

    2006-08-01

    The spent PWR fuel typically contains 0.9 wt.% of fissile uranium and 0.6 wt.% of fissile plutonium, which exceeds the natural uranium fissile content of 0.711 wt.%. The neutron economy of a CANDU reactor is sufficient to utilize the DUPIC fuel, even though the neutron-absorbing fission products contained in the spent PWR fuel were remained in the DUPIC fuel. The DUPIC fuel cycle offers advantages to the countries operating both the PWR and CANDU reactors, such as saving the natural uranium, reducing the spent fuel in both PWR and CANDU, and acquiring the extra energy by reuse of the PWR spent fuel. This report contains the results of post-irradiation examination of the DUPIC fuel irradiated four times at HANARO from May 2000 to August 2006 present except the first irradiation test of simulated DUPIC fuel at HANARO on August 1999

  9. Device for manipulating a nuclear reactor fuel element in a fuel element pond containing water

    Jabsen, F.S.

    1977-01-01

    Using this device a fuel element can be manipulated inside a water filled storage pond for inspection purposes. A transport arrangement which is normally situated above such a pond is modified for this purpose. A crane bridge runs on rails on the upper edge of the pond. A type of trolley runs transversely to the direction of travel of the bridge between 2 wide flange supports forming the crane support. During movement this trolley moves a submerged combination of periscope and TV camera pendant from it at about half the pond height horizontally along the crane support. 2 vehicles move between these on 4 rollers each, on the under flanges of the crane support at spacings of about one fuel element length. A pendant arm of the same length as the periscope dips vertically into the pond from each vehicle. There is a bar of about fuel element length resting on the lower ends of both arms. The surface of a fuel element lying on this bar can be inspected through the periscope on longitudinal travel of the trolley. The bar with the fuel element can be rotated 90 0 downwards into a vertical position after removal of one or more rotating kingpins and release of a rope hanging on the end away from the kingpin. The rope is actuated by a winch on the crane support. The bar has vertical plates at both ends to hold the fuel element in its vertical position. (HP) [de

  10. Pickering irradiated fuel transfer conveyor isolation

    Koivisto, D J; Eijsermans, L J [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    Pickering A NGS has been in operation for 25 years and is one of the longest in service CANDU stations. Some underwater fuel handling equipment, notably the conveyor stops, have been without maintenance throughout that time. This paper describes the concept of a conveyor isolation system that permits draining of a single or multiple elevator columns and also the early stages of a development program for the elastomeric sealing element. The prototype seal element has been proven in lab tests to be capable of limiting leakage to 0.5 IGPM (imperial gallons per minute) at the design pressure of 6.5 psi. The design of a sealing element is particularly interesting because the conveyor tube is a square cross-section which contains an additional obstruction , a conveyor drive cable. A seal delivery, actuating and positioning system has been conceptually laid out and the design is proceeding, with projected implementation in 1998. (author). 8 figs.

  11. Pickering irradiated fuel transfer conveyor isolation

    Koivisto, D.J.; Eijsermans, L.J.

    1996-01-01

    Pickering A NGS has been in operation for 25 years and is one of the longest in service CANDU stations. Some underwater fuel handling equipment, notably the conveyor stops, have been without maintenance throughout that time. This paper describes the concept of a conveyor isolation system that permits draining of a single or multiple elevator columns and also the early stages of a development program for the elastomeric sealing element. The prototype seal element has been proven in lab tests to be capable of limiting leakage to 0.5 IGPM (imperial gallons per minute) at the design pressure of 6.5 psi. The design of a sealing element is particularly interesting because the conveyor tube is a square cross-section which contains an additional obstruction , a conveyor drive cable. A seal delivery, actuating and positioning system has been conceptually laid out and the design is proceeding, with projected implementation in 1998. (author). 8 figs

  12. Monitoring of releases from an irradiated fuel reprocessing plant

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  13. Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project

    Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

    1998-01-01

    This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle

  14. Nuclear criticality assessment of LEU and HEU fuel element storage

    Pond, R.B.; Matos, J.E.

    1984-01-01

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235 U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235 U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  15. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  16. Separation of transuranic elements and some fission products in irradiated spent fuels. Program 2005; Separacion de elementos transuranicos y algunos productos de fision presentes en los combustibles nucleares irradiados Programa 2005

    Caravaca, C.; Espartero, A. G.; Cordoba, G. de; Gascon, J. L.; Pina, G.; Martinez-Esparza, A.; Uriarte, A.

    2006-07-01

    This technical publication of ENRESA refers to Partitioning of some chemical elements containing longlived radionuclides (actinides and fission products), from spent nuclear fuels. The Partitioning includes the different processes developed or on R and D way, from the middle of the past century to the present. These processes are of two types, wet (hydro-metallurgical) and dry (pyro-metallurgical). Among the hydro-metallurgical processes the most important is the PUREX process, developed in the U.S.A. at the middle of the past century, used for the separation of uranium and plutonium from spent nuclear fuels, previous dissolution with nitric acid of the irradiated fuels. Later other hydrometallurgical processes have been developed for the separation of some TRUs and long-lived fission products from the high activity liquid (HLW) coming from PUREX reprocessing. Among the most important countries and institutions that are developing new hydrometallurgical processes are USA, Japan, China, Russia and the European Union, fundamentally France, the Czech Republic, United Kingdom, Italy, Belgium, Holland, Germany, Spain and the JRC-ITU. In the case of Spain it is possible to remark the works of synthesis of new extractants, developed by the group of the Prof. Javier de Mendoza of the Dept. of Organic Chemistry of the Universidad Autonoma de Madrid and by the group of Prof. Teixidor of the Instituto de Ciencias de Materiales de Barcelona (ICMAB) of the Consejo Superior de Investigaciones Cientificas (CSIC) and the activities carried out by the CIEMAT from 1999, based fundamentally on a collaboration agreement with ENRESA, that are related to the characterization and tests of the new extractants synthesized in Spain and also abroad, mainly by the CEA (France). All these activities are included in the Projects PARTNEW and EUROPART of the European Union. About Pyro-metallurgical Processes, they started in the ANL (Argonne National Laboratory, USA) by the 60' is of the

  17. Fuel element cluster for nuclear reactors

    Anthony, A.J.; Hutchinson, J.J.

    1976-01-01

    The claim refers to the constructional design of a fuel element cluster the elements of which are held by upper and lower end plates connected to each other in upright position, the bearing being formed by a screw connection between at least one guide tube for control rods and the two end plates. The claims are directed, especially, to the connection of the parts as well as to the materials selection which are determined to a high degree by the thermal expansion coefficients. (UA) [de

  18. Present status and further objectives of SNR fuel element development

    Karsten, G.

    Within the scope of the fuel element development program for the fast breeder reactor SNR 300, 500 fuel pins have been irradiated since 1964, 250 of them in fast flux. Results indicate that the maximum nominal target burnup of 90.000 MWd/t of the SNR 300 Mk Ia possibly can be reached. The main problems, which arise from clad swelling and internal corrosion, can be met by special pretreatments of the austenitic stainless steel 1.4970 and a fuel stoichiometry of 1.97. Beyond this target burnup either material property improvements have to be made or burnup reductions have to be accepted. The remaining questions can be answered by the use of the SNR 300 as a test reactor. A further target is the development of a carbide fuel element, which should be very effective in a high power breeder reactor because of its low fissile inventory and high breeding gain. This development program will also be finalized in the SNR 300. (U.S.)

  19. Method of detecting a fuel element failure

    Cohen, P.

    1975-01-01

    A method is described for detecting a fuel element failure in a liquid-sodium-cooled fast breeder reactor consisting of equilibrating a sample of the coolant with a molten salt consisting of a mixture of barium iodide and strontium iodide (or other iodides) whereby a large fraction of any radioactive iodine present in the liquid sodium coolant exchanges with the iodine present in the salt; separating the molten salt and sodium; if necessary, equilibrating the molten salt with nonradioactive sodium and separating the molten salt and sodium; and monitoring the molten salt for the presence of iodine, the presence of iodine indicating that the cladding of a fuel element has failed. (U.S.)

  20. Nuclear fuel element nut retainer cup

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  1. Fuel element radiometry system for quality control

    Bhattacharya, Sadhana; Gaur, Swati; Sridhar, Padmini; Mukhopadhyay, P.K.; Vaidya, P.R.; Das, Sanjoy; Sinha, A.K.; Bhatt, Sameer

    2010-01-01

    An indigenous and fully automatic PC based radiometry system has been designed and developed. The system required a vibration free scanning with various automated sequential movements to scan the fuel pin of size 5.8 mm (OD) x 1055 mm (L) along its full length. A mechanical system with these requirements and precision controls has been designed. The system consists of a tightly coupled and collimated radiation source-detector unit and data acquisition and control system. It supports PLC based control electronics to control and monitor the movement of fuel element, nuclear data acquisition and analysis system and feedback system to the mechanical scanner to physically accept or reject the fuel pin based on the decision derived by the software algorithms. (author)

  2. Evaluation of fuel rods behavior - under irradiation test

    Lameiras, F.S.; Terra, J.L.; Pinto, L.C.M.; Dias, M.S.; Pinheiro, R.B.

    1981-04-01

    By the accompanying of the irradiation of instrumented test fuel rods simulating the operational conditions in reactors, plus the results of post - irradiation exams, tests, evaluation and calibration of analitic modelling of such fuel rods is done. (E.G.) [pt

  3. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  4. An equipment for the dimensional characterization of irradiated fuel channels

    Cederquist, H.

    1985-01-01

    The reuse of irradiated fuel channels in BWRs is highly beneficial. However, one prerequisite for reuse of a fuel channel is the detailed knowledge of its dimensions, which are affected by irradiation and pressure drop during operation. Therefore an equipment for fast and accurate dimensional measurement of irradiated fuel channels has been developed. The measurements are carried out when the fuel assembly is supported in the same manner as in the reactor core. The equipment utilizes stationary ultrasonic transducers that measure the fuel channel at a number of predetermined axial levels. Measurement data are fed into a computer which calculates the requested dimensional characteristics such as transversal flatness, bow, twist, side perpendicularity etc. Data are automatically printed for subsequent evaluation. Measurements can be performed both when the fuel channel is placed on a fuel bundle and on an empty fuel channel

  5. Development of the Fuel Element Database of PUSPATI TRIGA Reactor

    Nurhayati Ramli; Naim Syauqi Hamzah; Nurfazila Husain; Yahya Ismail; Mat Zin Mat Husin; Mohd Fairus Abd Farid

    2015-01-01

    Since June 28th, 1982, the PUSPATI TRIGA Reactor (RTP) operates safely with an accumulated energy release of about 17,200 MWhr, which corresponds to about 882 g of uranium burn-up. The reactor core has been reconfigured 15th times. Presently, there are 111 TRIGA fuel elements in the core, which 66 of the fuel elements are from the initial criticality while the rest of the fuel elements have been added to compensate the uranium consumption. As 59 % of the fuel elements are older than 30 years old, it is necessary to put the history of every fuel element in a database for easy access of the fuel element movement, inspection results history and integrity status. This paper intends to describe how the fuel element database is developed and related formulae used in determining the RTP fuel element elongation. (author)

  6. Long-term testing of HTR fuel elements in the Federal Republic of Germany

    Nickel, H.

    1986-12-01

    The extensive results from irradiation experiments carried out on coated particles, on graphitic matrices of different composition and on integral fuel elements have shown that the spherical fuel elements with high-enriched uranium/thorium mixed-oxide particles and optimized graphitic matrix are available for use in the planned HTR facilities. A concentrated qualification programme is on the way in order to bring the fuel elements with particles from low-enriched uranium dioxide (LEU) and TRISO coating to a comparable level of experience and knowledge, i.e. to make them licensable for the planned HTR facilities. (orig.) [de

  7. Control and repair system for radioactive nuclear fuel elements

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1975-01-01

    Irradiated fuel, especially such containing Pu-239, are put in a shielding container for inspection or repair. This container consists of an inner and outer tube of, for example, stainless steel, between which there is a gap filled with water, mineral oil, or polyethylene. At the upper end of the shielding container a rotating sleeve is positioned, by means of a bearing. It contains, for instance, an access opening and an inspection opening which are shielded by means of plexiglass. The access hole is opened only for repair work. In oder to prevent radiation from escaping to the environment during withdrawal and inspection of the fuel elements a second shielding container or shielding tube may be put over the sleeve. (DG/PB) [de

  8. An improved assembly for the transport of fuel elements

    Myers, G.

    1979-01-01

    An improved assembly for the transport and storage of radioactive nuclear fuel elements is described. The fuel element transport canister is of the type in which the fuel elements are submerged in liquid with a self regulating ullage system, so that the fuel elements are always submerged in the liquid even when the assembly is used in one orientation during loading and another orientation during transportation. (UK)

  9. In-pile irradiation of rock-like oxide fuels

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H.

    2001-01-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO 2 single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  10. In-pile irradiation of rock-like oxide fuels

    Nitani, N.; Kuramoto, K.; Yamashita, T.; Nakano, Y.; Akie, H. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2001-07-01

    Five kinds of ROX fuels were prepared and irradiated using 20% enriched U instead of Pu. Non-destructive and destructive post-irradiation examinations were carried out. FP gas release rates of the particle-dispersed type fuels and homogeneously-blended type fuels were larger than that of the Yttria-stabilized zirconia containing UO{sub 2} single phase fuel. From results of SEM and EPMA, decomposition of the spinel was observed. The decomposition of the spinel is probably avoided by lowering the irradiation temperature, less than 1700 K. The regions suffering the irradiation damage of the particle dispersed type fuels were less than those of the homogeneously-blended type fuels. (author)

  11. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)

    2016-10-21

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.

  12. Irradiation testing of LEU fuels in the SILOE Reactor - Progress report

    Merchie, Francis; Baas, Claude; Martel, Patrick

    1985-01-01

    Irradiation of uranium-silicide fuels has continued in the SILOE reactor during the past year. Thickness vs. fission density data from four U 3 Si plates containing 5.5 and 6.0 g U/cm 3 have been analyzed, and the results are presented. The irradiation of a full 60 g U/cm 3 U 3 Si element has begun. In addition, four U 3 Si 2 plates containing 20 to 54 g U/cm 3 are now being irradiated. These irradiations and future plans are discussed in the paper. (author)

  13. Automatic welding of fuel elements; Soudure automatique des elements combustibles

    Briola, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The welding process depends on the type of fuel element, the can material and the number of cartridges to be welded: - inert-gas welding (used for G2 and the 1. set of EL3), - inert atmosphere arc welding (used for welding uranium and zirconium), - electronic welding (used for the 2. set of EL3 and the tank of Proserpine). (author) [French] Suivant le type d'element combustible, le materiau de gaine et l'importance de la serie a fabriquer, le soudeur dispose des differents procedes examines dans cette communication: - soudure classique a l'arc sous gaz inerte (utilisee pour G2 et le premier jeu EL3), - soudure en atmosphere complete d'argon (utilisee pour la soudure d'uranium et de zirconium), - soudure electronique (utilisee pourdeuxieme jeu EL3 et la cuve de Proserpine). (auteur)

  14. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-01-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses

  15. Natural draught centralized dry store for irradiated fuel and active waste

    Bradley, N.; Brown, G.A.

    1981-01-01

    A modular design is described for the long term dry storage of irradiated fuel and vitrified fission products. The specification set by the Central Electricity Generating Board for the AGR fuel store was that the store should be capable of accommodating the lifetime discharge from 10 AGR reactors (7200 tonnes of irradiated fuel) and be cooled by natural convection. The fuel assemblies should be enclosed in individual steel containers. The store has an area for drying the AGR fuel and containering. The single dry cell storage capacities are, 5 years output from 1300 MWe station stored as fuel elements, or 14 year output from 1300 MWe thermal reactors stored as vitrified fission products. (U.K.)

  16. Postirradiation examination of Peach Bottom HTGR Driver Fuel Element E06-01

    Dyer, F.F.; Wichner, R.P.; Martin, W.J.; Fairchild, L.L.; Kedl, R.J.; de Nordwall, H.J.

    1976-04-01

    The report presented describes the postirradiation examinations of driver fuel element E06-01, which had been irradiated an equivalent of 384 full-power days in Peach Bottom, Unit 1. The fuel element is described in detail and its temperature and irradiation service history briefly outlined. Results presented include: (1) visual observations; (2) critical dimensions of fuel compacts, sleeve, and spine; (3) axial distributions of gamma-emitting nuclides plus 3 H and 90 Sr; (4) radial distributions of these nuclides in the sleeve and spine at three axial locations in the fueled regions and three locations in the upper reflector; (5) metallographic examination of samples of fuel compact material; and (6) burnup determinations via radiochemical analyses at two compact locations

  17. Nuclear reactor fuel element sub-assemblies

    Hill, G.D.; Trevalion, P.A.

    1977-01-01

    A fuel element sub-assembly for a liquid metal cooled fast reactor is described. It comprises a bundle of fuel pins enclosed by a tubular wrapper having a lower end journal for plugging into an upper aperture in a core supporting structure and a spike bar with an articulated bush for engaging a lower aperture in the core supporting structure. The articulated bush is retained on a spherical end portion of the spike bar by a pair of parallel retaining pins arranged transversely and disposed one each side of the spike bar. The pins are tubular and collapsible at a predetermined loading to enable the spherical end portion to pass between them. The articulated bush has an internal groove for engagement by a lifting grab, this groove being formed in a bore for receiving the spherical end portion of the spike bar. The construction lessens liability to rattling of the fuel element sub-assemblies and aids removal for replacement. (U.K.)

  18. Searching for a possible fuel element leak

    Dodd, B.; Johnson, A.G.

    1986-01-01

    A gamma spectrum analysis of a filter paper from an Oregon State University TRIGA Reactor (OSTR) continuous air monitor (CAM) which routinely monitors the air directly over the reactor tank revealed just-detectable levels of several short-lived particulate fission products typically associated with a fuel cladding failure. This prompted an intensive.search to determine the origin of these radionuclides. A number of methods were used, including a fuel element rotation program designed to ultimately remove all of the fuel elements from the core in groups of three, and a scheme to selectively sample bubbles from different parts of the core during operation. Determination of the source was made very difficult by the fact that its presence was erratic in nature and because radioactivity levels found on filter papers were on the border of detectability even when the reactor was operated at the maximum allowable power level of 1MW. The origin and source of the fission product activity was not found, no other abnormality was identified and the reactor was therefore returned to normal operation. In addition to continuing the routine operation of the reactor-top CAM, further surveillance designed to detect a positive reappearance of the source was also implemented and currently involves a complete gamma spectrum analysis of a CAM filter paper each week after a standard (controlled) 3 hour reactor run at 1 MW. (author)

  19. Postirradiation examination and evaluation of Fort St. Vrain fuel element 1-0743

    Saurwein, J.J.; Miller, C.M.; Young, C.A.

    1981-05-01

    Fort St. Vrain (FSV) fuel element 1-0743 was irradiated in core location 17.04.F.06 from July 3, 1976 until February 1, 1979. The element experienced an average fast neutron exposure of about 0.95 x 10 25 n/m 2 (E > 29 fJ)/sub HTGR/, a time-and-volume-averaged fuel temperature in the vicinity of 680 0 C, fissile and fertile particle burnups of approximately 6.2% and 0.3%, respectively, and a total burnup of 12,210 MWd/tonne. The postirradiation examination revealed that the element was in excellent condition. No cracks were observed on any of the element surfaces. The structural integrity of the fuel rods was good. No evidence of mechanical interaction between the fuel rods and fuel body was observed. Calculated irradiation parameters obtained with HTGR design codes were compared with measured data. Radial and axial power distributions, irradiation temperatures, neutron fluences, and fuel burnups were in good agreement with measurements. Calculated fuel rod strains were about a factor of three greater than were observed

  20. Modeling of PHWR fuel elements using FUDA code

    Tripathi, Rahul Mani; Soni, Rakesh; Prasad, P.N.; Pandarinathan, P.R.

    2008-01-01

    The computer code FUDA (Fuel Design Analysis) is used for modeling PHWR fuel bundle operation history and carry out fuel element thermo-mechanical analysis. The radial temperature profile across fuel and sheath, fission gas release, internal gas pressure, sheath stress and strains during the life of fuel bundle are estimated

  1. Fuel pins irradiation: experimental devices and analytical behaviour

    Lemaignan, C.

    1996-01-01

    In this text we present the general characteristics of adapted irradiation loops in research reactors and the main results that we can expected with these loops in the behaviour field of PWR and LMFBR fuels( fuel densification, fuel cladding interactions, fission products release, reactor accidents)

  2. HFR irradiation testing of light water reactor (LWR) fuel

    Markgraf, J.F.W.

    1985-01-01

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  3. A general evaluation of the irradiation behaviour of dispersion fuels

    Hofman, G.L.

    1995-01-01

    The irradiation behaviour of aluminum-based dispersion fuels is evaluated with emphasis on metallurgical processes that control the dispersion behaviour. Phase transformations and microstructural changes resulting from fuel-matrix interactions and the effect of fissioning in fuel are discussed. (author)

  4. Irradiation performance of U-Mo monolithic fuel

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  5. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  6. Preliminary study or RSG-GAS reactor fuel element integrity

    Soejoedi, A.; Tarigan, A.; Sujalmo; Prayoga, S.; Suhadi

    1996-01-01

    After 8 years of operation, RSG-GAS was able to reach 15 cycles of reactor operation with 116 irradiated fuels, whereas 49 fuels were produced by NUKEM; and the other 67 were produced by PEBN-BATAN. At the 15 T h cycles, it have been used 40 standard fuels and 8 control fuels (Forty standard fuels and eight control fuels have been used in the 15 t h core cycles). Several activities have been performed in the reactor, to investigate the fuel integrity, among of them are: .fuel visual test with under water camera, which the results were recorder in the video cassette, primary water quality test during, reactor operation, fuel failure detector system examination and compared the PIE results in the Radiometallurgy Installation (RMI). The results showed that the fuel integrity, before and after irradiation, have still good performance and the fission products have not been released yet

  7. Test of high temperature fuel element, (1)

    Akino, Norio; Shiina, Yasuaki; Nekoya, Shin-ichi; Takizuka, Takakazu; Emori, Koichi

    1980-11-01

    Heat transfer experiment to measure the characteristics of a VHTR fuel in the same condition of the reactor core was carried out using HTGL (High Temperature Helium Gas Loop) and its test section. In this report, the details of the test section, related problems of construction and some typical results are described. The newly developed heater with graphite heat transfer surface was used as a simulated fuel element to determine the heat transfer characteristics. Following conclusions were obtained; (1) Reynolds number between turbulent and transitional region is about 2600. (2) Reynolds number between transitional and laminar region is about 4800. (3) The laminarization phenomena have not been observed and are hardly occurred in annular tubes comparing with round tube. (4) Measured Nusselt numbers agree to the established correlations in turbulent and laminar regions. (author)

  8. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    Bibilashvili, Yu K; Nekrasova, G A; Sukhanov, G I

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified.

  9. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    Bibilashvili, Yu.K.; Nekrasova, G.A.; Sukhanov, G.I.

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified

  10. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  11. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  12. EDF energy generation UK transport of irradiated fuel

    James, R. [EDF Energy, London, (United Kingdom)

    2015-07-01

    This paper give an overview of irradiated fuel transport in the UK. It describes the design of irradiated fuel flask used by EDF Energy; operational experience and good practices learnt from over 50 years of irradiated fuel transport. The AGRs can store approximately 9 months generation of spent fuel, hence the ability to transport irradiated fuel is vital. Movements are by road to the nearest railhead, typically less than 2 miles and then by rail to Sellafield, up to 400 miles, for reprocessing or long term storage. Road and rail vehicles are covered. To date in the UK: over 30,000 Magnox flask journeys and over 15,000 AGR A2 flask journeys have been carried out.

  13. Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2

    Karam, M.; Dimayuga, F.C.; Montin, J.

    2010-01-01

    AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O 2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt.% Th and 1.53 wt.% Pu in (Th, Pu)O 2 . The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O 2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O 2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O 2 fuel performance characteristics were superior to UO 2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)

  14. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  15. Behavior of LWR fuel elements under accident conditions

    Albrecht, H.; Bocek, M.; Erbacher, F.; Fiege, A.; Fischer, M.; Hagen, S.; Hofmann, P.; Holleck, H.; Karb, E.; Leistikow, S.; Melang, S.; Ondracek, G.; Thuemmler, F.; Wiehr, K.

    1977-01-01

    In the frame of the German reactor safety research program, the Kernforschungszentrum Karlsruhe is carrying out a comprehensive program on the behavior of LWR fuel elements under a variety of power cooling mismatch conditions in particular during loss-of-coolant accidents. The major objectives are to establish a detailed quantitative understanding of fuel rod failures mechanisms and their thresholds, to evaluate the safety margins of power reactor cores under accident conditions and to investigate the feedback of fuel rod failures on the efficiency of emergency core cooling systems. This detailed quantitative understanding is achieved through extensive basic and integral experiments and is incorporated in a fuel behavior code. On the basis of these results the design of power reactor fuel elements and of safety devices can be further improved. The results of investigations on the inelastic deformation (ballooning) behavior of Zircaloy 4 cladding at LOCA temperatures in oxidizing atmosphere are presented. Depending upon strain rate and temperature superplastic deformation behavior was observed. In the equation of state of Zry 4 the strain rate sensitivity index depends strongly upon strain and in the superplastic region upon sample anisotropy. Oxidation kinetics experiments with Zry-tubes at 900-1300 0 C showed that the Baker-Just correlation describes the reality quite conservative. Therefore a reduction of the amount of Zry oxidation can be assumed in the course of a LOCA. The external oxidation of Zry-cladding by steam as well as internal oxidation by the oxygen in oxide fuel and fission products (Cs, I, Te) have an influence on the strain and rupture behavior of Zry-cladding at LOCA temperatures. In out-of-pile and inpile experiments the mechanical and thermal behavior of fuel rods during the blowdown, the heatup and the reflood phases of a LOCA are investigated under representative and controlled thermohydraulic conditions. The task of the inpile experiments is

  16. KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL

    Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; Morris, Robert N.

    2016-11-01

    The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of

  17. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  18. Irradiation performance of U-Pu-Zr metal fuels for liquid-metal-cooled reactors

    Tsai, H.; Cohen, A.B.; Billone, M.C.; Neimark, L.A.

    1994-10-01

    This report discusses a fuel system utilizing metallic U-Pu-Zr alloys which has been developed for advanced liquid metal-cooled reactors (LMRs). Result's from extensive irradiation testing conducted in EBR-II show a design having the following key features can achieve both high reliability and high burnup capability: a cast nominally U-20wt %Pu-10wt %Zr slug with the diameter sized to yield a fuel smear density of ∼75% theoretical density, low-swelling tempered martensitic stainless steel cladding, sodium bond filling the initial fuel/cladding gap, and an as-built plenum/fuel volume ratio of ∼1.5. The robust performance capability of this design stems primarily from the negligible loading on the cladding from either fuel/cladding mechanical interaction or fission-gas pressure during the irradiation. The effects of these individual design parameters, e.g., fuel smear density, zirconium content in fuel, plenum volume, and cladding types, on fuel element performance were investigated in a systematic irradiation experiment in EBR-II. The results show that, at the discharge burnup of ∼11 at. %, variations on zirconium content or plenum volume in the ranges tested have no substantial effects on performance. Fuel smear density, on the other hand, has pronounced but countervailing effects: increased density results in greater cladding strain, but lesser cladding wastage from fuel/cladding chemical interaction

  19. Performance testing of refractory alloy-clad fuel elements for space reactors

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  20. A disposal centre for irradiated nuclear fuel: conceptual design study

    1980-09-01

    This report describes a conceptual design of a disposal centre for irradiated nuclear fuel. The surface facilities consist of plants for the preparation of steel cylinders containing irradiated nuclear fuel immobilized in lead, shaft headframe buildings, and all necessary support facilities. The undergound disposal vault is located on one level at a depth of 1000 metres. The cylinders containing the irradiated fuel are emplaced on a one-metre thick layer of backfill material and then completely covered with backfill. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  1. Gamma-ray spectroscopy on irradiated fuel rods

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  2. The achivements of Japanese fuel irradiation experiments in HBWR

    Ichikawa, Michio; Yanagisawa, Kazuaki; Domoto, Kazunari

    1984-02-01

    OECD Halden Reactor Project celebrated the 25th anniversary in 1983. The JAERI has been participating in the Project since 1967 on behalf of Japanese Government. Since the participation, thirty-six Japanese instrumented fuel assemblies have been irradiated in HBWR. The irradiation experiments were either sponsored by JAERI or by domestic organizations under the joint research agreements with JAERI, beeing steered by the Committee for the Joint Research Programme. The cooperative efforts have attained significant contributions to the development of water reactor fuel technology in Japan. This report review the irradiation experiments of Japanese fuel assemblies. (author)

  3. Dry storage of irradiated nuclear fuels and vitrified wastes

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  4. Features of spherical uranium-graphite HTGR fuel elements control

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  5. Features of spherical uranium-graphite HTGR fuel elements control

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  6. Irradiation behavior of modified high-performance nuclear fuels

    Jungwirth, Rainer

    2011-11-03

    To overcome the problem of UMo/Al fuel swelling, four different possibilities have been identified: (i) the modification of the Al matrix by adding diffusion limiting elements (ii) the insertion of a diffusion barrier at the interface UMo-Al (iii) further alloying the UMo with a third element to stabilize the γ-UMo phase (iv) a combination of means (i)-(iii). In consequence, 20 different UMoX/AlY (X=Si, Ti, Mg, Bi, with and without oxidation layer; Y=Nb, Ti, Pt) samples have been examined before and after irradiation with Iodine at 80MeV. First it has been shown, that a protective oxidation layer on the UMo grains does not prevent the formation of a interdiffusion layer. In contrast, additions to the Al matrix can be reduced to the self-acting formation of a protective layer at the UMo/Al interface. Additions to the UMo to stabilize the γ-UMo upon heating are of minor importance since irradiation reverses the phase decomposition of UMo.

  7. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  8. FUDA MOD-2: a computer program for simulation the performance of fuel element validation exercise

    Chouhan, S.K.; Tripathi, R.M.; Prasad, P.N.; Chauhan, Ashok

    2014-01-01

    The PHWR fuel element performance is evaluated using the fuel analysis computer code FUDA MOD2. It is specifically written for performance simulation of UO 2 fuel pellet, located in zirconium alloy sheath operating under coolant pressure. For specific element power histories, the code investigates the variables and their interactions that govern fuel element performance. The input data requires pellet dimensions, element dimensions, sheath properties, heat transfer data, thermal hydraulic parameters of coolant, the inner filler gas composition, flux gradient and linear heat ratings (LHR) at different burn up. The output data generated by the code are radial temperature profile of fuel and sheath, fuel sheath-gap heat transfer coefficient, fission gas generated and released, fission gas pressure, sheath stress and strain for different burn-up zones. The code has been verified against literature data and post irradiation examinations carried out. It is also bench marked against various international fuel element simulation programmes available with water cooled reactors operating countries. The present paper describes the FUDA MOD2 code verification studies carried out using the literature data and post irradiation examination data. (author)

  9. Atomic pile Directorate, Department of Metallurgy, Departments of Technology, Department of Fuel Elements and Structures, Division of Study of Fuel Elements - Semi annual report on the 1968-10-1

    Arnaud, M.; Tortel, J.; Viallet, H.; Marinot, R.; Rulleau, A.; Lestiboudois, G.; Rousseau, G.; Faussat, A.; Ollier, H.; Truffert, J.; Ferrier, C.; Courcon, P.; Rendu, M.; Dieumegard, M.; Bret, A.

    1968-01-01

    This document gathers a set of reports of studies performed on nuclear fuel elements. The addressed topics are: creep behaviour of UMo and UMoAl tubes and pellets under the action of an external pressure (creep strength of tubes under external pressure, creep strength of pellets under external pressure, uncertainties on irradiation parameters in Pegase), problems related to centring devices (measurements and tests), irradiations of ring elements in power reactors, uranium/sheath metallurgical relationship for Bugey and influence of irradiation (cartridge behaviour in Pegase, long duration irradiation in power reactors, extrapolation in Bugey of results obtained in G2), theoretical study of kinetic oxidation phenomena in metal fuels, tests of leaking cartridges in EdF2, evolution of pressure in EL4 type irradiated fuel rods with ZrCu liners with respect to the conductivity integral, a focus on irradiations of Z0 type fuel elements in Pegase, cluster safety tests with uranium carbide in pile and out of pile, a review of studies performed on fuel elements with blowhole, and application of neutrography to fuel elements

  10. Irradiation Testing of TRISO-Coated Particle Fuel in Korea

    Kim, Bong Goo; Yeo, Sunghwan; Jeong, Kyung-Chai; Eom, Sung-Ho; Kim, Yeon-Ku; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung; Kim, Yong Wan

    2014-01-01

    In Korea, coated particle fuel is being developed to support development of a VHTR. At the end of March 2014, the first irradiation test in HANARO at KAERI to demonstrate and qualify TRISO-coated particle fuel for use in a VHTR was terminated. This experiment was conducted in an inert gas atmosphere without on-line temperature monitoring and control, or on-line fission product monitoring of the sweep gas. The irradiation device contained two test rods, one has nine fuel compacts and the other five compacts and eight graphite specimens. Each compact contains about 260 TRISO-coated particles. The duration of irradiation testing at HANARO was about 135 full power days from last August 2013. The maximum average power per particle was about 165 mW/particle. The calculated peak burnup of the TRISO-coated fuel was a little less than 4 atom percent. Post-irradiation examination is being carried out at KAERI’s Irradiated Material Examination Facility beginning in September of 2014. This paper describes characteristics of coated particle fuel, the design of the test rod and irradiation device for this coated particle fuel, and discusses the technical results of irradiation testing at HANARO. (author)

  11. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  12. Summary report on the fuel performance modeling of the AFC-2A, 2B irradiation experiments

    Pavel G. Medvedev

    2013-09-01

    The primary objective of this work at the Idaho National Laboratory (INL) is to determine the fuel and cladding temperature history during irradiation of the AFC-2A, 2B transmutation metallic fuel alloy irradiation experiments containing transuranic and rare earth elements. Addition of the rare earth elements intends to simulate potential fission product carry-over from pyro-metallurgical reprocessing. Post irradiation examination of the AFC-2A, 2B rodlets revealed breaches in the rodlets and fuel melting which was attributed to the release of the fission gas into the helium gap between the rodlet cladding and the capsule which houses six individually encapsulated rodlets. This release is not anticipated during nominal operation of the AFC irradiation vehicle that features a double encapsulated design in which sodium bonded metallic fuel is separated from the ATR coolant by the cladding and the capsule walls. The modeling effort is focused on assessing effects of this unanticipated event on the fuel and cladding temperature with an objective to compare calculated results with the temperature limits of the fuel and the cladding.

  13. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.

  14. Method of manufacturing nuclear fuel elements

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  15. Calculated and experimental substantiation of the thermal method for non-destructive testing of fuel elements

    Maksimov, N.M.; Soldatenko, V.A.; Petrovichev, V.I.; Salimov, S.E.; Aleksandrov, K.A.; Kurov, D.A.

    1985-01-01

    The main systems and methods of thermal testing, their potentialities and advantages, thermal irradiation photodetectors are described. Possible fields of application of thermal testing in nuclear engineering are discussed. Calculations of the fuel element nonstationary temperature field in the three-dimensional geometry in the presence of such an effect as fuel exfaliation from cladding are presented. The developed method and equipment for fuel element thermal testing are described. Preliminary experimental data being in agreement with the calculated ones and opening the prospects for flaw detecting are presened

  16. Post-irradiation examination of prototype Al-64 wt% U3Si2 fuel rods from NRU

    Sears, D.F.; Primeau, M.F.; Buchanan, C.; Rose, D.

    1997-01-01

    Three prototype fuel rods containing Al-64 wt% U 3 Si 2 (3.15 gU/cm 3 ) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U 3 Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U 3 Si 2 powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37 degrees C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinations showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U 3 Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL's research reactors

  17. Fuel Element Experience at the Halden Boiling Water Reactor

    Aas, S. [OECD Halden Reactor Project, Halden (Norway); Videm, K.; Hanevik, A. [Institutt for Atomenergi, Kjeller (Norway)

    1968-04-15

    The penalty for neutron absorbing materials is higher for a reactor moderated with heavy water than one with light water. As Zircaloy and enriched uranium were not readily available in 1954 when the design of the first fuel charge for HBWR was frozen, fuel elements of natural uranium metal clad in a specially developed aluminium alloy (A 1 0.3% Fe, 0.03% Si) were used. The temperature was limited to 150 Degree-Sign C and with this limitation the general behaviour of the elements was good. In I960, in another effort to maintain a good neutron economy, a couple of elements with as thin cladding as 0.25 mm A1S1 316, stainless steel with an unsegmented length of 2 m supported by wire grid spacers were tested. These elements with 1.5% enriched UO{sub 2} behaved satisfactorily at 150'C. Elements of a rather similar construction failed due to stress corrosion during the later operation at 230 'C. The reason for the different behaviour is probably the higher stresses in the cladding, due to the increased pressure, possibly combined with a short period with a high chloride content in the heavy water. The second fuel core with 1.5% enriched UO{sub 2} clad in Zircaloy-2 was installed in order to permit an increase in temperature to 230 Degree-Sign C and in power from 5 to 20 MW(th). The maximum burnup obtained is 11000 MWd/t and the maximum heat rating 375 W/cm with no fracture failure and practically no change in appearance according to the post-irradiation examination. One element was deliberately taken to burn-out conditions by throttling the water flow. After a series of burn-outs, the element finally failed because of over-temperature. The successful use of aluminium cladding at 150 Degree-Sign C mitiated an effort for making aluminium alloys suitable for normal power reactor operation. Promising properties were found for an alloy (designated IFA 3 aluminium) with A1 10% Si, 1% Ni, 1% Mg, 0.3% Fe + Ti. Despite increase in corrosion rate under heat transfer conditions

  18. Design of a transportation cask for irradiated CANDU fuel

    Nash, K.E.; Gavin, M.E.

    1983-01-01

    A major step in the development of a large-scale transportation system for irradiated CANDU fuel is being made by Ontario Hydro in the design and construction of a demonstration cask by 1988/89. The system being designed is based on dry transportation with the eventual fully developed system providing for dry fuel loading and unloading. Research carried out to date has demonstrated that it is possible to transport irradiated CANDU fuel in a operationally efficient and simple manner without any damage which would prejudice subsequent automated fuel handling

  19. The calculation - experimental investigations of the HTGR fuel element construction

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  20. Tritium distribution between the fuel can and the oxide of fuel elements of light-water reactors

    Masson, M.

    1986-12-01

    The study on the measurement of tritium and other radionuclide contained in zircaloy fuel cans of the water cooled reactor fuel elements had two aims: the first was to estimate with accuracy the distribution of tritium in a fuel element (can + oxide). The measurement of tritium in the zircaloy fuel cans of the BORSSELE fuel elements associated with the measurement of tritium in the oxide allowed the establishment of a complete tritium balance on an industrial spent fuel element. This result has been compared to the values calculated by the code CEA/SEN and will allow to validate or adjust this calculation. The second aim delt with the characterization of the other radionuclides gaseous (Kr85) or not (Cs 134 and 137) contained in the solid zircaloy wastes (hulls) coming from the industrial reprocessing of ''water cooled'' fuel elements. These activity measurements in the hulls allowed to estimate the residual content of tritium, Kr 85 and other radionuclides which may be found in these solid wastes (high-level βγ radioactive wastes). Original experimental methods have been developed to reach these aims (dissolution in ammonium bifluoride medium and quantitative recovery of gases produced, radiochromatography, and liquid scintillation after double distillation). One tries to explain the presence of Kr 85 in the irradiated can [fr

  1. Defect trap model of gas behaviour in UO2 fuel during irradiation

    Szuta, A.

    2003-01-01

    Fission gas behaviour is one of the central concern in the fuel design, performance and hypothetical accident analysis. The report 'Defect trap model of gas behaviour in UO 2 fuel during irradiation' is the worldwide literature review of problems studied, experimental results and solutions proposed in related topics. Some of them were described in details in the report chapters. They are: anomalies in the experimental results; fission gas retention in the UO 2 fuel; microstructure of the UO 2 fuel after irradiation; fission gas release models; defect trap model of fission gas behaviour; fission gas release from UO 2 single crystal during low temperature irradiation in terms of a defect trap model; analysis of dynamic release of fission gases from single crystal UO 2 during low temperature irradiation in terms of defect trap model; behaviour of fission gas products in single crystal UO 2 during intermediate temperature irradiation in terms of a defect trap model; modification of re-crystallization temperature of UO 2 in function of burnup and its impact on fission gas release; apparent diffusion coefficient; formation of nanostructures in UO 2 fuel at high burnup; applications of the defect trap model to the gas leaking fuel elements number assessment in the nuclear power station (VVER-PWR)

  2. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  3. TRIGA fuel element burnup determination by measurement and calculation

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  4. Development program for fuel elements with low enriched uranium for high temperature reactors

    1987-12-01

    The results of HTR fuel development taking place at the THTR's can be summarized as follows for the main points of core manufacture coating matrix and fuel emenent manufacture: 1. The well known gel precipitation process was modified for the manufacture of UO 2 cores. 2. The TRISO coating (additional SiC layer between two very dense PyC layers) can be applied with the required quality on an economical 10 kg scale. 3. The particle fracture in the complete fuel element due to manufacture was lowered during the course of the project to below the target values of -6 U/U total. For testing fuel elements, the required irradiation samples were designed in agreement with the reactor constructors, were prepared and the first phase of the irradiation program was successfully completed in the context of the HBK project. (orig./HP) [de

  5. A comparison of integral block and tubular interacting fuel element concepts for low enrichment HTR

    Desoisa, J A

    1972-04-15

    The tubular interacting fuel element has to date been the favoured U.K. high temperature reactor design. Recent attempts to lower fuel costs and the progress of the Fort St. Vrain reactor has focussed attention on alternative designs, and in particular on the attractive design simplicity of the integral block concept. The aim of this investigation is to compare the merits of both concepts from fuel cycle cost and thermal performance viewpoints and to determine whether optimization of the integral block concept leads to changes in the current design values of (a) fuel density, (b) Nc/Nu, and/or (c) mean discharge irradiation within the framework of present design limits.

  6. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  7. Some elaborating methods of gamma scanning results on irradiated nuclear fuels

    Sternini, E.

    1979-01-01

    Gamma scanning, as a post-irradiation examination, is a technique which provides a large number of informations on irradiated nuclear fuels. Power profile, fission products distribution, average and local burn-up of single elements structural and nuclear behaviour of fuel materials are examples of the obtained informations. In the present work experimental methods and theoretical calculations used at the CNEN hot cell laboratory for the mentioned purposes are described. Errors arising from the application of the gamma scanning technique are also discussed

  8. Thermal conductivity of fresh and irradiated U-Mo fuels

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  9. Metallographic analysis of irradiated RERTR-3 fuel test specimens

    Meyer, M. K.; Hofman, G. L.; Strain, R. V.; Clark, C. R.; Stuart, J. R.

    2000-01-01

    The RERTR-3 irradiation test was designed to investigate the irradiation behavior of aluminum matrix U-MO alloy dispersion fuels under high-temperature, high-fission-rate conditions. Initial postirradiation examination of RERTR-3 fuel specimens has concentrated on binary U-MO atomized fuels. The rate of matrix aluminum depletion was found to be higher than predictions based on low temperature irradiation data. Wavelength Dispersive X-ray Spectroscopy (WDS) indicates that aluminum is present in the interior of the fuel particles. WDS data is supported by a mass and volume balance calculation performed on the basis of image analysis results. The depletion of matrix aluminum seems to have no detrimental effects on fuel performance under the conditions tested to date

  10. Irradiation behavior of miniature experimental uranium silicide fuel plates

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  11. Transport and reprocessing of irradiated nuclear fuel

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  12. Gas-cooled nuclear reactor with a filling of spherical fuel elements

    Hantke, H.J.

    1978-01-01

    In order to protect the reflector blanket of a pebble bed reactor against radiation damage a filling of graphite spheres is arranged between blanket and fuel elements, having got a smaller diameter than fuel spheres. Before reaching unduely high irradiation values caused by fast neutrons these graphite spheres are removed from the core, together with the usual discharge of spheres, and replaced by new spheres. (TK) [de

  13. Irradiation testing of high-density uranium alloy dispersion fuels

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  14. Fabrication of the Spent Fuel Elements Rack on the ISFSF

    Slamet Wiranto; Sigit Purwanto; Safrul, H.

    2004-01-01

    The Interim Storage For Spent Fuel elements (ISFSF) was designed to be able to store the 33 spent fuel element racks with capacity of 1386 of normal spent fuel elements and 2 racks for 36 of defected ones. Until now, only 9 out of 33 racks of normal spent fuel elements and lout of 2 racks of defected fuel elements are available. Five of them have suffered from corrosion so that they are not fulfilled the requirements of the spent fuel elements storage anymore. Meanwhile, the spent fuel storage racks in the reactor are almost full. It means, the transfer of the spent fuel from reactor spent fuel storage to the ISFSF pool are compulsory needed. Therefore, it is necessary to provide the new ISFSF spent fuel storage rack with better material and fabrication method than the old one. In this design all materials consist of SS 316 L that are welded with the Argon TIG-welding. Right now there has been one new spent fuel storage rack fabricated with capacity of 42 normal spent fuel elements. (author)

  15. Fuel element concept for long life high power nuclear reactors

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  16. Distribution of fission products in Peach Bottom HTGR fuel element E01-01

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Fairchild, L.L.

    1978-10-01

    The fifth in a projected series of six postirradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements is described. The element analyzed received an equivalent of 897 full-power days of irradiation prior to the scheduled termination of Core 2 operation. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a 137 Cs inventory of 20.3 Ci in the graphite sleeve and 8.1 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides 134 Cs, /sup 110 m/Ag, 60 Co, and 154 Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the beta-emitters 3 H, 14 C, and 90 Sr were obtained at four axial locations of the fueled region of the element sleeve and two axial locations of the element spine. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. In addition to fission product distributions, the appearance of the component parts of the element was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed

  17. Postirradiation examination and evaluation of Peach Bottom fuel test element FTE-6

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.

    1977-09-01

    Fuel test element FTE-6 was irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) for 645 equivalent full power days. Four fuel varieties, contained in H-327 graphite bodies, were tested. A primary result of this test has been to demonstrate acceptable performance even with calculated high stresses in the graphite bodies. Heterogeneous fuel loadings in the element caused local power peaking and azimuthal power variations, deforming the graphite fuel bodies and thereby causing bowing nearly five times as large as the diametral clearance within the sleeve. The axial stresses resulting from interference between the fuel bodies and sleeve were estimated to have reached 45% of the ultimate material strength at the end of the irradiation. Residual stresses from differential contraction within the fuel body resulted in probable in-plane stress levels of 130% of the material strength at the end-of-life shutdown and of up to 150% of the strength at shutdown during the irradiation cycle. The high in-plane stresses are local peaks at the corners of a sharp notch in the element, which may account for the stresses failing to cause damage. The lack of observable damage, however, indicates that the methods and data used for stress analysis give results that are either fairly accurate or conservative

  18. Thermal-hydraulic investigations of fuel elements

    Rehme, K.; Weinberg, D.

    1983-01-01

    Extensive fluid-dynamic examining of flow distribution and turbulent flow distribution was done to control and safeguard calculation methods allowing the determination of three-dimensional flow distribution in fuel elements. Results show that the flow distribution greatly depends on the frequency of pulse exchange between subchannels in narrow rod grids. The comparison of these measured values to VELASCO's results shows that the calculation methods need to be considerably improved. The subchannel analysis proved to be very suitable to calculate mean flow temperatures conforming with the subchannel analysis principle. However, this does not include statements on wall temperatures occurring in the structures. Mean wall temperatures can be determined by empirical interrelationships for Nusseltnumbers. On the other hand, the calculation of detailed wall temperature distributions is not possible with the subchannel analysis unless it can be further improved due to more detailed measurement results. (orig.) [de

  19. Natural uranium metallic fuel elements: fabrication and operating experience

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  20. Study of fuel element characteristic of SM and SMP (SM-PRIMA) fuel assemblies

    Klinov, A.V.; Kuprienko, V.A.; Lebedev, V.A.; Makhin, V.M.; Tuchnin, L.M.; Tsykanov, V.A.

    1999-01-01

    The paper discusses the techniques and results of reactor tests and post-reactor investigations of the SM reactor fuel elements and fuel elements developed in the process of designing the specialized PRIMA test reactor with the SM reactor fuel elements used as a prototype and which are referred to as the SMP fuel elements. The behavior of fuel elements under normal operating conditions and under deviation from normal operating conditions was studied to verify the calculation techniques, to check the calculation results during preparation of the SM reactor safety substantiation report and to estimate the possibility of using such fuel elements in other projects. During tests of fuel rods under deviation from normal operating conditions their advantages were shown over fuel elements, the components of which were produced using the Al-based alloys. (author)