WorldWideScience

Sample records for fuel depletion analyses

  1. San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    1999-09-01

    The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium isotope) discharged from reactors is of interest to the Fissile Material Disposition Program. The validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre PWR, Unit I, during cycles 2 and 3. The data usually required as input to depletion codes, either one-dimensional or lattice codes, were taken from various sources and compiled into this report. Where data were either lacking or determined inadequate, the appropriate data were supplied from other references. The scope of the reactor operations and design data, in addition to the isotopic analyses, were considered to be of sufficient quality for depletion code validation.

  2. Benchmark of SCALE (SAS2H) isotopic predictions of depletion analyses for San Onofre PWR MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.

    2000-02-01

    The isotopic composition of mixed-oxide (MOX) fuel, fabricated with both uranium and plutonium, after discharge from reactors is of significant interest to the Fissile Materials Disposition Program. The validation of the SCALE (SAS2H) depletion code for use in the prediction of isotopic compositions of MOX fuel, similar to previous validation studies on uranium-only fueled reactors, has corresponding significance. The EEI-Westinghouse Plutonium Recycle Demonstration Program examined the use of MOX fuel in the San Onofre PWR, Unit 1, during cycles 2 and 3. Isotopic analyses of the MOX spent fuel were conducted on 13 actinides and {sup 148}Nd by either mass or alpha spectrometry. Six fuel pellet samples were taken from four different fuel pins of an irradiated MOX assembly. The measured actinide inventories from those samples has been used to benchmark SAS2H for MOX fuel applications. The average percentage differences in the code results compared with the measurement were {minus}0.9% for {sup 235}U and 5.2% for {sup 239}Pu. The differences for most of the isotopes were significantly larger than in the cases for uranium-only fueled reactors. In general, comparisons of code results with alpha spectrometer data had extreme differences, although the differences in the calculations compared with mass spectrometer analyses were not extremely larger than that of uranium-only fueled reactors. This benchmark study should be useful in estimating uncertainties of inventory, criticality and dose calculations of MOX spent fuel.

  3. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Un Chul [Seoul National University, Seoul (Korea, Republic of)

    2011-12-15

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  4. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  5. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  6. Fuel depletion calculation in MTR-LEU NUR reactor

    Directory of Open Access Journals (Sweden)

    Zeggar Foudil

    2008-01-01

    Full Text Available In this article, we present the results of a few energy groups calculations for the NUR reactor fuel depletion analysis up to 45 000 MWd/tU taken as the maximum fuel burn up. The WIMSD-4 cell code has been employed as a calculation tool. In this study, we are interested in actinides such as the uranium and plutonium isotopes, as well as fission products Xe-135, Sm-149, Sm-151, Eu-155, and Gd-157. Calculation results regarding the five energy groups are in a good agreement with those obtained with only two energy groups which can, therefore, be used in all subsequent calculations. Calculation results presented in this article can be used as a microscopic data base for estimating the amount of radioactive sources randomly dispersed in the environment. They can also be used to monitor the fuel assemblies inventory at the core level.

  7. 5.0. Depletion, activation, and spent fuel source terms

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    SCALE’s general depletion, activation, and spent fuel source terms analysis capabilities are enabled through a family of modules related to the main ORIGEN depletion/irradiation/decay solver. The nuclide tracking in ORIGEN is based on the principle of explicitly modeling all available nuclides and transitions in the current fundamental nuclear data for decay and neutron-induced transmutation and relies on fundamental cross section and decay data in ENDF/B VII. Cross section data for materials and reaction processes not available in ENDF/B-VII are obtained from the JEFF-3.0/A special purpose European activation library containing 774 materials and 23 reaction channels with 12,617 neutron-induced reactions below 20 MeV. Resonance cross section corrections in the resolved and unresolved range are performed using a continuous-energy treatment by data modules in SCALE. All nuclear decay data, fission product yields, and gamma-ray emission data are developed from ENDF/B-VII.1 evaluations. Decay data include all ground and metastable state nuclides with half-lives greater than 1 millisecond. Using these data sources, ORIGEN currently tracks 174 actinides, 1149 fission products, and 974 activation products. The purpose of this chapter is to describe the stand-alone capabilities and underlying methodology of ORIGEN—as opposed to the integrated depletion capability it provides in all coupled neutron transport/depletion sequences in SCALE, as described in other chapters.

  8. Waste Stream Analyses for Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  9. Constraints of fossil fuels depletion on global warming projections

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, Luca, E-mail: chiari@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy); Zecca, Antonio, E-mail: zecca@science.unitn.it [Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Italy)

    2011-09-15

    A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO{sub 2} concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO{sub 2} emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO{sub 2} concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 deg. C (0.9-1.6 deg. C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels. - Highlights: > CO{sub 2} and global temperature are projected under fossil fuels exhaustion scenarios. > Temperature is projected to reach a minimum of 2 deg. C above pre-industrial. > Temperature projections are possibly lower than the IPCC ones. > Fossil fuels exhaustion will not avoid dangerous global warming.

  10. Global Depletion of Groundwater Resources: Past and Future Analyses

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I. E. M.; Van Beek, L. P.; Wada, Y.

    2014-12-01

    Globally, about 17% of the crops are irrigated, yet irrigation accounts for 40% of the global food production. As more than 40% of irrigation water comes from groundwater, groundwater abstraction rates are large and exceed natural recharge rates in many regions of the world, thus leading to groundwater depletion. In this paper we provide an overview of recent research on global groundwater depletion. We start with presenting various estimates of global groundwater depletion, both from flux based as well as volume based methods. We also present estimates of the contribution of non-renewable groundwater to irrigation water consumption and how this contribution developed during the last 50 years. Next, using a flux based method, we provide projections of groundwater depletion for the coming century under various socio-economic and climate scenarios. As groundwater depletion contributes to sea-level rise, we also provide estimates of this contribution from the past as well as for future scenarios. Finally, we show recent results of groundwater level changes and change in river flow as a result of global groundwater abstractions as obtained from a global groundwater flow model.

  11. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  12. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  13. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1999-08-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models.

  14. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  15. Calculation Analysis of San Onofre Depletion MOX Fuel Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovichev, AM

    2001-08-31

    The report provides calculation results of isotopic composition of spent MOX fuel irradiated in Sun Onofre PWR reactor. The calculation was performed by means of the MCU/BURNUP Monte Carlo code. The code is developed in Kurchatov Institute, Russia. The predicted isotope contents are compared with the measured ones. A purpose of this work is a verification both the code and the model of experiment description. Predicted plutonium content exceeds the measured one approximately by 3%. It is arise mainly from error of {sup 239}Pu isotope. Isotopic contents of the main plutonium and uranium isotopes are predicted with satisfactory precision.

  16. Radiochemical analyses of several spent fuel Approved Testing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO{sub 2} and UO{sub 2} plus 3 wt% Gd{sub 2}O{sub 3} commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, {sup 14}C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program.

  17. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  18. Utilizing the burnup capability in MCNPX to perform depletion analysis of an MNSR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boafo, Emmanuel [Ghana atomic Energy Commission, Accra (Ghana)

    2013-07-01

    The burnup capability in the MCNPX code was utilized to perform fuel depletion analysis of the MNSR LEU core by estimating the amount of fissile material (U-235) consumed as well as the amount of plutonium formed after the reactor core expected life. The decay heat removal rate for the MNSR after reactor shutdown was also investigated due to its significance to reactor safety. The results show that 0.568 % of U-235 was burnt up after 200 days of reactor operation while the amount of plutonium formed was not significant. The study also found that the decay heat decreased exponentially after reactor shutdown confirming that the decay heat will be removed from the system by natural circulation after shut down and hence safety of the reactor is assured.

  19. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Science.gov (United States)

    Matsuoka, Kunie; Shitara, Hiroshi; Taya, Choji; Kohno, Kenji; Kikkawa, Yoshiaki; Yonekawa, Hiromichi

    2013-01-01

    Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI), a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  20. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Kunie Matsuoka

    Full Text Available Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI, a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  1. A MATLAB-Linked Solver to Find Fuel Depletion in a PWR, a Suggested VVER-1000 Type

    Directory of Open Access Journals (Sweden)

    F. Faghihi

    2009-01-01

    Full Text Available Coupled first-order IVPs are frequently used in many parts of engineering and sciences. We present a “solver” including three computer programs which were joint with the MATLAB software to solve and plot solutions of the first-order coupled stiff or nonstiff IVPs. Some applications related to IVPs are given here using our MATLAB-linked solver. Muon catalyzed fusion in a D-T mixture is considered as a first dynamical example of the coupled IVPs. Then, we have focused on the fuel depletion in a suggested PWR including poisons burnups (xenon-135 and samarium-149, plutonium isotopes production, and uranium depletion.

  2. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Ott, Johan Raunkjær; Rottwitt, Karsten

    2011-01-01

    This paper solves the four coupled equations describing non-degenerate four-wave mixing, with the focus on amplifying a signal in a fiber optical parametric amplifier (FOPA). Based on the full analytic solution, a simple approximate solution describing the gain is developed. The advantage of this...... gain spectrum with a bandwidth in the 100-nm range, centered on the zero-dispersion wavelength. When running the FOPA in depletion, this range can be slightly increased. © 2011 Optical Society of America....

  3. Bio fuels. A comparative analysis; Biokraftstoffe. Eine vergleichende Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Norbert; Henke, Jan; Klepper, Gernot

    2009-07-01

    The market for bio fuels is subject to very high dynamics worldwide. Due to the extreme rise of the prices of raw materials as well as due to the retrogressive tax reductions for bio fuels in Germany one hardly invests in bio fuels. Substantial changes are experienced in the markets for fossil raw materials. The prices for agrarian raw material used in this contribution originate from the years 2006 and 2007. The effects of clearly higher oil prices on the bio fuel market are described. The investigation under consideration also deals with criteria of sustainability. The contribution of the individual bio fuels to the reduction of greenhouse gases is analyzed. The costs resulting from this are numerated. This enables a well-established comparison in which less representative bio fuels such as bio methane, BtL fuels and cellulose ethanol also are included.

  4. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    OpenAIRE

    Santilli, R. M.

    2000-01-01

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hyd...

  5. NMR Express-analyser for quality monitoring of motor fuel

    Science.gov (United States)

    Protasov, E. A.; Protasov, D. E.

    2016-09-01

    A method for the rapid analysis of motor fuel quality was developed by artificial increase of the octane number through dissolving ferrocene in a low-octane gasoline (C10H10Fe). Measurements of the spin-lattice relaxation time of nuclear magnetic resonance is used for determination of ferrocene presence in standardized and real fuel from gas stations. The results of measurements of the relaxation characteristics among certain grades of motor fuel with dissolving ferrocene therein are presented.

  6. Safety analyses for a SCWR in-pile fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Raque, M., E-mail: raque@iket.fzk.de [EnBW Kernkraft GmbH (Germany); Vasari, I., E-mail: ivan.vasari@tuev-sued.de [TUV Sud Energietechnik GmbH (Germany); Schulenberg, T., E-mail: schulenberg@kit.edu [Karlsruhe Inst. of Tech. (Germany)

    2011-07-01

    A Supercritical-Water Cooled Reactor (SCWR) test fuel element is intended to be inserted into a research reactor. The test section will be operated at temperatures and pressures above the thermodynamic critical point of water. It contains four fuel rods with a total heating power of 53 kW and it is connected with a 300 °C closed coolant loop, which is equipped with two active safety systems and a depressurization system to cool the fuel rods in case of an accident. The paper explains the physical models for numerical simulations of the safety system. Some accident sequences are analyzed exemplarily to illustrate the system performance. (author)

  7. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    Science.gov (United States)

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  8. Depletion analysis and sensitivity study of PHENIX fuel-irradiation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, D.; Kallfelz, J.M.; White, J.R.

    1981-01-01

    The experimental results are in the form of various U and Pu atom density ratios (R/sub E/) and burnup (BU) values. The results were for samples irradiated during the first three cycles in the central zone of PHENIX. The time-dependent sensitivity study was performed with the depletion generalized perturbation code DEPTH-CHARGE, to investigate the sensitivity of R/sub E/ to cross sections and to absolute flux level changes. The depletion analysis was performed using ENDS/B-IV data, an (R-Z) model, and the VENTURE Code system. 2 tables.

  9. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    Science.gov (United States)

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  10. Some parametric flow analyses of a particle bed fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, D.

    1993-05-01

    Parametric calculations are performed, using the SAFSIM computer program, to investigate the fluid mechanics and heat transfer performance of a particle bed fuel element. Both steady-state and transient calculations are included, addressing such issues as flow stability, reduced thrust operation, transpiration drag, coolant conductivity enhancement, flow maldistributions, decay heat removal, flow perturbations, and pulse cooling. The calculations demonstrate the dependence of the predicted results on the modeling assumptions and thus provide guidance as to where further experimental and computational investigations are needed. The calculations also demonstrate that both flow instability and flow maldistribution in the fuel element are important phenomena. Furthermore, results are encouraging that geometric design changes to the element can significantly reduce problems related to these phenomena, allowing improved performance over a wide range of element power densities and flow rates. Such design changes will help to maximize the operational efficiency of space propulsion reactors employing particle bed fuel element technology. Finally, the results demonstrate that SAFSIM is a valuable engineering tool for performing quick and inexpensive parametric simulations addressing complex flow problems.

  11. Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

    1977-01-01

    While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

  12. Validation of the scale system for PWR spent fuel isotopic composition analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; Bowman, S.M.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Laboratories, Las Vegas, NV (United States)

    1995-03-01

    The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic composition by the SCALE system depletion analysis was assessed using data presented in the report. Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2, and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of predicted and measured concentrations for 14 actinides and 37 fission and activation products. The basic method by which the SAS2H control module applies the neutron transport treatment and point-depletion methods of SCALE functional modules (XSDRNPM-S, NITAWL-II, BONAMI, and ORIGEN-S) is described in the report. Also, the reactor fuel design data, the operating histories, and the isotopic measurements for all cases are included in detail. The underlying radiochemical assays were conducted by the Materials Characterization. Center at Pacific Northwest Laboratory as part of the Approved Testing Material program and by four different laboratories in Europe on samples processed at the Karlsruhe Reprocessing Plant.

  13. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  14. Evaluation of computer programs used for structural analyses of impact response of spent fuel shipping casks

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B A; Gwinn, K W

    1984-05-01

    This report presents the results of a study of impact analyses of a generic spent-fuel cask. The study compares the use and results of three different finite element computer codes. Seven different cask-like model analyses are considered. The models encompass both linear and nonlinear geometric and material behavior. On the basis of the analyses results, this report recommends what parameters are useful in the comparison of different structural finite element computer programs. 5 references, 36 figures, 11 tables.

  15. Safety Analyses on Loss of Class IV power for the HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Lee, J. M.; Sim, B. S.; Chi, D. Y.; Ahn, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A fuel test loop (FTL) for irradiation tests is under development at the HANARO. The construction of the FTL had been completed at the beginning of last year and pre-service tests have been carried out. The safety of the FTL including the PWR test fuels which will be installed at the end of this year should be verified for design basis accidents and anticipated operational occurrences (AOOs). This paper deals with the thermal-hydraulic transient analyses and the prediction for a departure from a nucleate boiling ratio (DNBR) during a loss of class IV power for the HANARO fuel test loop, which is one of the AOOs.

  16. Safety Analyses on a Safety Valve Stuck-Open for the HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Sim, B. S.; Chi, D. Y.; Lee, J. M.; Lee, C. Y.; Ahn, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A fuel test loop (FTL) for irradiation tests is under development at the HANARO. The construction of the FTL was completed at the beginning of 2007 and integral performance tests have been carried out. The safety of the FTL including the PWR test fuels which will be installed should be verified for design basis accidents and anticipated operational occurrences (AOOs). This paper deals with the thermal-hydraulic transient analyses and the prediction for a departure from a nucleate boiling ratio (DNBR) during a safety valve stuck-open for the HANARO fuel test loop, which is one of the AOOs.

  17. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  18. Accounting for water formation from hydrocarbon fuel combustion in life cycle analyses

    Science.gov (United States)

    Belmont, E. L.; Davidson, F. T.; Glazer, Y. R.; Beagle, E. A.; Webber, M. E.

    2017-09-01

    Hydrocarbon fuel production and utilization are considered water intensive processes due to the high volumes of water used in source development and fuel processing. At the same time, there is significant water formed during combustion. However, this water is not currently widely harvested at the site of production. Instead, it is added to the hydrologic cycle, often in a different location from the fuel production site. This study quantifies the water formed from combustion of these fuels and analyzes the magnitudes of formation in the context of other hydrologic sources and sinks in order to facilitate future assessments of water harvesting technology and/or atmospheric impacts of combustion. Annual water formation from stoichiometric combustion of hydrocarbon fuels, including natural gas, oil- and natural gas liquid-derived products, and coal, in the United States and worldwide are presented and compared with quantities of water sequestered, evaporated, and stored in the atmosphere. Water production factors in terms of mass and energy of fuel consumed, WPFm and WPFe, respectively, are defined for the comparison of fuels and incorporation into future life cycle analyses (LCAs). Results show that water formation from combustion has increased worldwide from 2005 to 2015, with the largest increase coming from growth in combustion of natural gas. Water formation from combustion of hydrocarbon fuels equals or exceeds water sequestered from the hydrologic cycle through deep well injection in the US annually. Overall, water formation is deemed significant enough to warrant consideration by LCAs of water intensity in fuel production and use, and should be included in future analyses.

  19. Neutronic Analyses for HEU to LEU fuel conversion of the Massachusetts Institute of Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E. H.; Newton, T. H.; Bergeron, A.; Horelik, N.; Stevens, J. G (Nuclear Engineering Division); ( NS)

    2011-03-02

    The Massachusetts Institute of Technology (MIT) reactor (MITR-II), based in Cambridge, Massachusetts, is a research reactor designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the MITR-II. This report presents the results of steady state neutronic safety analyses for conversion of MITR-II from the use of HEU fuel to the use of U-Mo LEU fuel. The objective of this work was to demonstrate that the safety analyses meet current requirements for an LEU core replacement of MITR-II.

  20. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Leppaemaeki, E.; Koponen, P.; Levander, J.; Tapola, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The main purpose of the study was to test the applicability of standard fuel oil methods developed for petroleum-based fuels to pyrolysis liquids. In addition, research on sampling, homogeneity, stability, miscibility and corrosivity was carried out. The standard methods have been tested for several different pyrolysis liquids. Recommendations on sampling, sample size and small modifications of standard methods are presented. In general, most of the methods can be used as such but the accuracy of the analysis can be improved by minor modifications. Fuel oil analyses not suitable for pyrolysis liquids have been identified. Homogeneity of the liquids is the most critical factor in accurate analysis. The presence of air bubbles may disturb in several analyses. Sample preheating and prefiltration should be avoided when possible. The former may cause changes in the composition and structure of the pyrolysis liquid. The latter may remove part of organic material with particles. The size of the sample should be determined on the basis of the homogeneity and the water content of the liquid. The basic analyses of the Technical Research Centre of Finland (VTT) include water, pH, solids, ash, Conradson carbon residue, heating value, CHN, density, viscosity, pourpoint, flash point, and stability. Additional analyses are carried out when needed. (orig.) 53 refs.

  1. Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites

    Directory of Open Access Journals (Sweden)

    Josip Lorincz

    2014-11-01

    Full Text Available Base station sites (BSSs powered with renewable energy sources have gained the attention of cellular operators during the last few years. This is because such “green” BSSs impose significant reductions in the operational expenditures (OPEX of telecom operators due to the possibility of on-site renewable energy harvesting. In this paper, the green BSSs power supply system parameters detected through remote and centralized real time sensing are presented. An implemented sensing system based on a wireless sensor network enables reliable collection and post-processing analyses of many parameters, such as: total charging/discharging current of power supply system, battery voltage and temperature, wind speed, etc. As an example, yearly sensing results for three different BSS configurations powered by solar and/or wind energy are discussed in terms of renewable energy supply (RES system performance. In the case of powering those BSS with standalone systems based on a fuel generator, the fuel consumption models expressing interdependence among the generator load and fuel consumption are proposed. This has allowed energy-efficiency comparison of the fuel powered and RES systems, which is presented in terms of the OPEX and carbon dioxide (CO2 reductions. Additionally, approaches based on different BSS air-conditioning systems and the on/off regulation of a daily fuel generator activity are proposed and validated in terms of energy and capital expenditure (CAPEX savings.

  2. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    Science.gov (United States)

    Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain

    2017-09-01

    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.

  3. Dynamic analyses of regenerative fuel cell power for potential use in renewable residential applications

    OpenAIRE

    Maclay, JD; J. Brouwer; Samuelsen, GS

    2006-01-01

    A model of a solar-hydrogen powered residence, in both stand-alone and grid parallel configurations, was developed using Matlab / Simulink®. The model assesses the viability of employing a regenerative fuel cell (RFC) as an energy storage device to be used with photovoltaic (PV) electrical generation. Other modes of energy storage such as batteries and hybrid storage were also evaluated. Analyses of various operating conditions, system configurations, and control strategies were performed. De...

  4. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  5. Two new monoclonal antibodies for biochemical and flow cytometric analyses of human interferon regulatory factor-3 activation, turnover, and depletion.

    Science.gov (United States)

    Rustagi, Arjun; Doehle, Brian P; McElrath, M Juliana; Gale, Michael

    2013-02-01

    Interferon regulatory factor-3 (IRF-3) is a master transcription factor that drives the host intracellular innate immune response to virus infection. The importance of IRF-3 in innate immune responses is highlighted by the fact that pathogenic viruses have developed strategies for antagonism of IRF-3. Several tools exist for evaluation of viral regulation of IRF-3 activation and function, but high-quality monoclonal antibodies that mark the differential activation states of human IRF-3 are lacking. To study IRF-3 activation, turnover, and depletion in a high-throughput manner in the context of virus infection, we have developed two new monoclonal antibodies to human IRF-3. These antibodies detect IRF-3 in virus-infected cells in a wide variety of assays and provide a new tool to study virus-host interactions and innate immune signaling.

  6. SIMMER-III Analyses of Local Fuel-Coolant Interactions in a Simulated Molten Fuel Pool: Effect of Coolant Quantity

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2015-01-01

    Full Text Available Studies on local fuel-coolant interactions (FCI in a molten pool are important for the analyses of severe accidents that could occur for sodium-cooled fast reactors (SFRs. To clarify the mechanisms underlying this interaction, in recent years, several experimental tests, with comparatively larger difference in coolant volumes, were conducted at the Japan Atomic Energy Agency by delivering a given quantity of water into a molten pool formed with a low-melting-point alloy. In this study, to further understand this interaction, interaction characteristics including the pressure buildup as well as mechanical energy release and its conversion efficiency are investigated using the SIMMER-III, an advanced fast reactor safety analysis code. It is found that the SIMMER-III code not only reasonably simulates the transient pressure and temperature variations during local FCIs, but also supports the limited tendency of pressurization and resultant mechanical energy release as observed from experiments when the volume of water delivered into the pool increases. The performed analyses also suggest that the most probable reason leading to such limited tendency should be primarily due to an isolation effect of vapor bubbles generated at the water-melt interface.

  7. Supplemental Thermal-Hydraulic Transient Analyses of BR2 in Support of Conversion to LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Sikik, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The RELAP5/Mod 3.3 code has been used to perform transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. A RELAP5 model of BR2 has been validated against select transient BR2 reactor experiments performed in 1963 by showing agreement with measured cladding temperatures. Following the validation, the RELAP5 model was then updated to represent the current use of the reactor; taking into account core configuration, neutronic parameters, trip settings, component changes, etc. Simulations of the 1963 experiments were repeated with this updated model to re-evaluate the boiling risks associated with the currently allowed maximum heat flux limit of 470 W/cm2 and temporary heat flux limit of 600 W/cm2. This document provides analysis of additional transient simulations that are required as part of a modern BR2 safety analysis report (SAR). The additional simulations included in this report are effect of pool temperature, reduced steady-state flow rate, in-pool loss of coolant accidents, and loss of external cooling. The simulations described in this document have been performed for both an HEU- and LEU-fueled core.

  8. Numerical analyses of high Reynolds number flow of high pressure fuel gas through rough pipes

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Margherita; Morini, Mirko; Pinelli, Michele [ENDIF - Engineering Department in Ferrara, University of Ferrara, Via Saragat, 1 - 44122 Ferrara (Italy)

    2010-07-15

    In this paper, a CFD commercial code is used to evaluate the pressure drop through pipes in a stream of high pressure gas. Both hexahedral and tetrahedral grids are considered. Preliminarily, a grid sensitivity analysis is carried out by comparing CFD results with analytical results. Each grid is characterized by a different number and thickness of layers in order to investigate the behavior of the grid with respect to the boundary layer. Then, the model is validated by using a literature test case, in which high pressure gas flow through a rough pipe is experimentally studied. Moreover, various equations of state (i.e., constant properties, Ideal Gas and Redlich-Kwong equations) and boundary conditions (e.g., pressure, mass flow, etc.) are taken into consideration and compared. Finally, the model is used to extrapolate the behavior of gaseous fuels (i.e., natural gas, biogas and hydrogen-methane mixture) flowing at high pressure through pipes of different roughness. The analyses show that the radial depth of the prism layers on pipe wall has to be controlled to allow the correct resolution of the boundary layer. Moreover, the results highlight that the first element height of the prism layer should be high enough to avoid inconsistencies in the rough model application. At the same time, the grid used for calculations does not strongly influence the numerical results and hence tune of the first element height to perfectly fit the roughness is not always justified. The final analysis on the different gaseous fuels put into evidence the capability of the CFD analysis to determine the energy performance of fuel transportation in gas pipeline. (author)

  9. Comparative analyses of forest fuels in a life cycle perspective with a focus on transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa Naeslund [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2008-08-15

    Local, national and international transportation of forest fuels with regard to costs, primary energy use and CO{sub 2} emission was analysed. The main issue was the extent to which both mode and distance of transport affect the monetary cost, CO{sub 2} emission and primary energy use arising from the use of various types of forest residues for energy purpose. Local applications proved the most efficient options of those studied. Chipping of bundles at a terminal, for transport by rail and sea to national or international end-users, has low costs and produces only modest CO{sub 2} emissions. For the pellet options, the cost is about the same as for chipping, but require more primary energy and emit more CO{sub 2}. The traditional chipping system is more expensive than the other options. The costs of the international options over a transport distance of 1100 km vary between 21 and 28 EUR{sub 2007}/MWh, whereas pellet options cost between 22 and 25 EUR{sub 2007}/MWh. The primary energy required for transport of logging residues vis-a-vis pellets falls in the range 4-7% and 2-4%, respectively, of the bio-energy delivered. The primary energy needed to produce pellets gives them a lower fossil fuel substitution rate per hectare, compared with bundle systems. Similarly, for chip systems vis-a-vis bundle systems, the biomass delivered to the conversion plant is reduced by the greater physical dry-matter losses entailed by chipping systems in the forest-fuel chain. (author)

  10. Core burnup calculation and accidents analyses of a pressurized water reactor partially loaded with rock-like oxide fuel

    Science.gov (United States)

    Akie, H.; Sugo, Y.; Okawa, R.

    2003-06-01

    A rock-like oxide (ROX) fuel - light water reactor (LWR) burning system has been studied for efficient plutonium transmutation. For the improvement of small negative reactivity coefficients and severe transient behaviors of ROX fueled LWRs, a partial loading core of ROX fuel assemblies with conventional UO 2 assemblies was considered. As a result, although the reactivity coefficients could be improved, the power peaking tends to be large in this heterogeneous core configuration. The reactivity initiated accident (RIA) and loss of coolant accident (LOCA) behaviors were not sufficiently improved. In order to reduce the power peaking, the fuel composition and the assembly design of the ROX fuel were modified. Firstly, erbium burnable poison was added as Er 2O 3 in the ROX fuel to reduce the burnup reactivity swing. Then pin-by-pin Pu enrichment and Er content distributions within the ROX fuel assembly were considered. In addition, the Er content distribution was also considered in the axial direction of the ROX fuel pin. With these modifications, a power peaking factor even lower than the one in a conventional UO 2 fueled core can be obtained. The RIA and LOCA analyses of the modified core have also shown the comparable transient behaviors of ROX partial loading core to those of the UO 2 core.

  11. Technical and Economic Analyses to Assess the Feasibility of Using Propellant - No. 2 Fuel Oil Slurries as Supplemental Fuels

    Science.gov (United States)

    1991-09-01

    rotating drum containing iron prongs and a screen. The nitrocellulose is traubferred to a water-cooled dough mixer and, while in this operation, ether...as the per kilogram. The net heat of combustion at constar Unoticeably standard. pressure of a liquid or a solid fuel containing only th as " sour

  12. Tests and analyses on the laboratory equipment in fuel-fabrication mockup test facility (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, T.; Gunji, Y.; Kikumo, H.; Okamoto, N.; Murakami, T.; Sato, S. [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works

    1998-11-01

    A rotary press has been manufactured for trial use of fabricating nuclear-fuel pellets, which is compact and superior in processing capacity compared to conventional reciprocating presses, and its performance tests were done. Tests include (1) finding out of problems in the equipment maintenance, (2) a comparative test of rotary and reciprocating presses in pellet fabrication, (3) an injection test of dry-recovered fuel powders, and (4) a confirmation test for process holdup of the fuel powders in the equipment. To evaluate the applicability to MOX (uranium and plutonium mixed oxide) fuel fabrication, 0 - 40 weight % of dry-recovered powders obtained from sintered uranium pellets was added to the raw materials of uranium powders to make the pellets. Some recommendations based on the present testing results in designing large scale MOX fuel fabricating machines are given. (S. Ohno)

  13. Preliminary Thermal Hydraulic Analyses of the Conceptual Core Models with Tubular Type Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Taek; Park, Jong Hark; Park, Cheol

    2006-11-15

    A new research reactor (AHR, Advanced HANARO Reactor) based on the HANARO has being conceptually developed for the future needs of research reactors. A tubular type fuel was considered as one of the fuel options of the AHR. A tubular type fuel assembly has several curved fuel plates arranged with a constant small gap to build up cooling channels, which is very similar to an annulus pipe with many layers. This report presents the preliminary analysis of thermal hydraulic characteristics and safety margins for three conceptual core models using tubular fuel assemblies. Four design criteria, which are the fuel temperature, ONB (Onset of Nucleate Boiling) margin, minimum DNBR (Departure from Nucleate Boiling Ratio) and OFIR (Onset of Flow Instability Ratio), were investigated along with various core flow velocities in the normal operating conditions. And the primary coolant flow rate based a conceptual core model was suggested as a design information for the process design of the primary cooling system. The computational fluid dynamics analysis was also carried out to evaluate the coolant velocity distributions between tubular channels and the pressure drop characteristics of the tubular fuel assembly.

  14. ANALYSING THE POSIBILITY OF FUEL FILTER ELEMENTS OPERATING EFFECTIVINESS EVALUATION WITH X-RAY FLUORESCENSE METHOD

    National Research Council Canada - National Science Library

    Mikhail Lvovich Nemchikov; Alexander Nicolaevich Kozlov; Konstantin Igorevich Gryadunov; Anton Mihailovich Meleshnikov

    2017-01-01

    ... of NGOs "Unit", which has been removed from the supply line TC-1 aviation fuel tank farm from the State Reserve in the refueling tank farm "Vnukovo" and the filter control of Velcon company brand...

  15. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W. [OECD Halden Reactor Project (Norway)

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  16. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  17. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    2005-01-01

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based stor

  18. Criticality safety and sensitivity analyses of PWR spent nuclear fuel repository facilities

    NARCIS (Netherlands)

    Maucec, M; Glumac, B

    2005-01-01

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based stor

  19. Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.; Ruiz, Oscar N.; Stams, Alfons J. M.

    2017-03-17

    Pseudomonas aeruginosacan utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome.P. aeruginosaATCC 33988 is highly adapted to hydrocarbons, whileP. aeruginosastrain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression ofalkgenes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilizen-C8andn-C10. The expression of green fluorescent protein (GFP) under the control ofalkBpromoters confirmed thatalkgene promoter polymorphism affects the expression ofalkgenes. Promoter fusion assays further confirmed that the regulation ofalkgenes was different in the two strains. Protein sequence analysis

  20. Transcriptomic Analyses Elucidate Adaptive Differences of Closely-Related Strains of P. aeruginosa in Fuel.

    Science.gov (United States)

    Gunasekera, Thusitha S; Bowen, Loryn L; Zhou, Carol E; Howard-Byerly, Susan C; Foley, William S; Striebich, Richard C; Dugan, Larry C; Ruiz, Oscar N

    2017-03-17

    Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have varying degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons while strain PAO1, a human pathogen, is less-adapted and degrades jet fuel at a slower rate than does ATCC 33988. We investigated fuel specific transcriptomic differences between these strains in order to ascertain the underling mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat-shock response, membrane proteins, efflux pumps and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved 'Yx(FWY)xxD' motif, which is shared among bacterial adhesins. Overexpression of the putative RND-efflux pump PA3521-PA3523 increased the growth of ATCC 33988 strain suggesting a possible role in fuel tolerance. Interestingly the PAO1 strain cannot utilize nC8 and nC10. Expression of GFP under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation.IMPORTANCE These results support that specific signal transduction, gene regulation and coordination of multiple biological responses are required to improve survival, growth and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic

  1. Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.; Tentner. A.; Bergeron, A.; Nuclear Engineering Division

    2010-08-19

    The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective of this work was to show that is feasible, under a set of manufacturing assumptions, to design a new RHF fuel element that could safely replace the HEU element currently used. The new proposed design has been developed to maximize performance, minimize changes and preserve strong safety margins. Neutronics and thermal-hydraulics models of the RHF have been developed and qualified by benchmark against experiments and/or against other codes and models. The models developed were then used to evaluate the RHF performance if LEU UMo were to replace the current HEU fuel 'meat' without any geometric change to the fuel plates. Results of these direct replacement analyses have shown a significant degradation of the RHF performance, in terms of both neutron flux and cycle

  2. Analyses of Field Test Data at the Atucha-1 Spent Fuel Pools

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-13

    A field test was conducted at the Atucha-1 spent nuclear fuel pools to validate a software package for gross defect detection that is used in conjunction with the inspection tool, Spent Fuel Neutron Counter (SFNC). A set of measurements was taken with the SFNC and the software predictions were compared with these data and analyzed. The data spanned a wide range of cooling times and a set of burnup levels leading to count rates from the several hundreds to around twenty per second. The current calibration in the software using linear fitting required the use of multiple calibration factors to cover the entire range of count rates recorded. The solution to this was to use power regression data fitting to normalize the predicted response and derive one calibration factor that can be applied to the entire set of data. The resulting comparisons between the predicted and measured responses were generally good and provided a quantitative method of detecting missing fuel in virtually all situations. Since the current version of the software uses the linear calibration method, it would need to be updated with the new power regression method to make it more user-friendly for real time verification and fieldable for the range of responses that will be encountered.

  3. IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

    Directory of Open Access Journals (Sweden)

    SANGHOON LEE

    2014-02-01

    Full Text Available A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

  4. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Science.gov (United States)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  5. Validation study for crediting chlorine in criticality analyses for spent nuclear fuel disposition

    Energy Technology Data Exchange (ETDEWEB)

    Sobes, Vladimir [ORNL; Scaglione, John M [ORNL; Wagner, John C [ORNL; Dunn, Michael E [ORNL

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allow the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10-5 keff). This study investigated the design of a series of

  6. Validation Study for Crediting Chlorine in Criticality Analyses for US Spent Nuclear Fuel Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Sobes, Vladimir [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, Michael E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Spent nuclear fuel (SNF) management practices in the United States rely on dry storage systems that include both canister- and cask-based systems. The United States Department of Energy Used Fuel Disposition Campaign is examining the feasibility of direct disposal of dual-purpose (storage and transportation) canisters (DPCs) in a geological repository. One of the major technical challenges for direct disposal is the ability to demonstrate the subcriticality of the DPCs loaded with SNF for the repository performance period (e.g., 10,000 years or more) as the DPCs may undergo degradation over time. Specifically, groundwater ingress into the DPC (i.e., flooding) could allow the system to achieve criticality in scenarios where the neutron absorber plates in the DPC basket have degraded. However, as was shown by Banerjee et al., some aqueous species in the groundwater provide noticeable reactivity reduction for these systems. For certain amounts of particular aqueous species (e.g., chlorine, lithium) in the groundwater, subcriticality can be demonstrated even for DPCs with complete degradation of the neutron absorber plates or a degraded fuel basket configuration. It has been demonstrated that chlorine is the leading impurity, as indicated by significant neutron absorption in the water that is available in reasonable quantities for the deep geological repository media under consideration. This paper presents the results of an investigation of the available integral experiments worldwide that could be used to validate DPC disposal criticality evaluations, including credit for chlorine. Due to the small number of applicable critical configurations, validation through traditional trending analysis was not possible. The bias in the eigenvalue of the application systems due only to the chlorine was calculated using TSURFER analysis and found to be on the order of 100 percent mille (1 pcm = 10-5 keff). This study investigated the design of a series of

  7. Engineering-economic analyses of automotive fuel economy potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  8. Implantable nuclear-fueled circulatory support system. V. Acute physiologic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, F.N.; Migliore, J.J.; Hagen, K.G.; Daly, B.D.T.; Robinson, W.J.; Ruggles, A.E.; Norman, J.C.

    1973-01-01

    Nuclear-Fueled circulatory assist systems have reached the stage of in vivo evaluation. Physiologic studies of the effects of intracorporeal heat and radiation as well as blood pumps indicate that these factors should not preclude clinical application of nuclear artificial hearts. In the circulatory system under consideration, a fraction of the heat from a 50 watt Plutonium-238 fuel capsule is converted into hydraulic power for driving a left ventricular assist pump via a miniature, electronically controlled steam (tidal regenerator) engine. The engine is pressurized (8-140 PSIA) by the displacement of a single drop of water between the condenser (150/sup 0/F) and the boiler (360/sup 0/F). The electrical power for sensing, logic and displacement is provided by a thermoelectric module interposed between the superheater (900/sup 0/F) and boiler. The pusher plate pump also functions as a blood-cooled heat exchanger and sensor for the control logic. The assist pump is connected between the apex of the left ventricle and the descending thoracic aorta. The power source module is suspended in the left retroperitoneal cavity from the psoas tendon. The blood interface of the pump is flocked with polyester fibers. A stable biologic lining develops in the pump using Dextran as the only anticoagulant. The longest in vivo testing period has been 4/sup 1///sub 2/ days. Plasma hemoglobinshave remained below 10 mg/sup 0///sub 0/. Although rectal temperatures have not increased, elevated respiratory rates have been noted. Reduction of left ventricular pressure and dp/dt have been demonstrated with maintenance of arterial pressure.

  9. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Husen Zhang

    Full Text Available Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate.

  10. ANALYSING THE POSIBILITY OF FUEL FILTER ELEMENTS OPERATING EFFECTIVINESS EVALUATION WITH X-RAY FLUORESCENSE METHOD

    Directory of Open Access Journals (Sweden)

    Mikhail Lvovich Nemchikov

    2017-01-01

    Full Text Available The author dwells upon the problems of the technical condition of refueling complexes equipment continuous monitoring, which is an important factor in ensuring the safety and regularity of flights. The article deals with the results of the research into the composition and concentration of mechanical impurities from different layers of the regular filter EFB-15/120-104 0615 production number of NGOs "Unit", which has been removed from the supply line TC-1 aviation fuel tank farm from the State Reserve in the refueling tank farm "Vnukovo" and the filter control of Velcon company brand the CDF 230F, which is removed from the tanker, in order to assess their performance and service life prediction using X-ray fluorescence method.Illustrative and graphic research results are given, which allow to assess the effectiveness of the used filters. The assessment measuring of the found elements concentrations in different areas of the test sample: 4sm2 area, 1 cm2 and 0.25 cm2, cut from a cardboard filter area is made. The author determined that the average total Fe concentration on the filter was 8.3 g / m providing the fact that due to the operator information the filter pumped 2,020 m3 or 1,582 tons of fuel. There is also made the estimation of the total amount of Fe, detained in filter, which is 1313 g. It should be noted, according to the appearance and the detected concentration of Fe, its capacity has not been fully exhausted. This allows to receive additional information on the real filter resource, and to use it for solving the problems of filter mod- ernization.The studies have shown the possibility to estimate the amount and composition of impurities, which allows to be sure that this work is promising and possible to be integrated into the practical events to ensure the safe operation of civil aircraft. The publication aims to draw the attention of operators and regulatory authorities to the possibility of using the proposed method to provide a

  11. SIMS Analyses of Aerodynamic Fallout from a Uranium-Fueled Test

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Berkeley, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzel, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prussin, S. G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kinman, W. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zimmer, M. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x ray spectroscopy. Several samples display distinctive compositional heterogeneity suggestive of incomplete mixing, and exhibit heterogeneity in U isotopes with 0.02 < 235U/ 238U < 11.8 among all five samples and 0.02 < 235U/ 238U < 7.81 within a single sample. In two samples, the 235U/ 238U ratio is correlated with major element composition, consistent with the agglomeration of chemically and isotopically distinct molten precursors. Two samples are quasi-homogeneous with respect to composition and uranium isotopic composition, suggesting extensive mixing possibly due longer residence time in the fireball. Correlated variations between 234U, 235U, 236U and 238U abundances point to mixing of end-members corresponding to uranium derived from the device and natural U ( 238U/ 235U = 0.00725) found in soil.

  12. Thermodynamic Analyses of Biomass Gasification Integrated Externally Fired, Post-Firing and Dual-Fuel Combined Cycles

    Directory of Open Access Journals (Sweden)

    Saeed Soltani

    2015-01-01

    Full Text Available In the present work, the results are reported of the energy and exergy analyses of three biomass-related processes for electricity generation: the biomass gasification integrated externally fired combined cycle, the biomass gasification integrated dual-fuel combined cycle, and the biomass gasification integrated post-firing combined cycle. The energy efficiency for the biomass gasification integrated post-firing combined cycle is 3% to 6% points higher than for the other cycles. Although the efficiency of the externally fired biomass combined cycle is the lowest, it has an advantage in that it only uses biomass. The energy and exergy efficiencies are maximized for the three configurations at particular values of compressor pressure ratios, and increase with gas turbine inlet temperature. As pressure ratio increases, the mass of air per mass of steam decreases for the biomass gasification integrated post-firing combined cycle, but the pressure ratio has little influence on the ratio of mass of air per mass of steam for the other cycles. The gas turbine exergy efficiency is the highest for the three configurations. The combustion chamber for the dual-fuel cycle exhibits the highest exergy efficiency and that for the post-firing cycle the lowest. Another benefit of the biomass gasification integrated externally fired combined cycle is that it exhibits the highest air preheater and heat recovery steam generator exergy efficiencies.

  13. Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools

    Directory of Open Access Journals (Sweden)

    Amanda Sosa

    2015-10-01

    Full Text Available In Ireland, truck transport by road dominates and will remain the main transportation mode of biomass. Cost efficiency and flexibility of forest transport can be typically improved by optimising routes. It is important to know every process and attributes within the workflow of roundwood transport. This study aimed to analyse characteristics of timber trucking in Ireland, and to estimate the least-cost route for the distribution of biomass with the use of geographic information systems (GIS. Firstly, a tracking system that recorded the truck’s movements and fuel consumption was installed. A total of 152 trips were recorded, routes were chosen by the truck driver. The recorded information was used to analyse the distances and times travelled loaded and unloaded per road class, breaks, loading and unloading times as well as fuel consumption. Secondly, the routes taken by the truck where compared with routes created using Network Analyst (NA, an extension of ArcGIS. Four scenarios based on route selection criteria were selected: shortest distance (S1, shorted time (S2, and prioritising high-class roads with shortest distance (S3 and time (S4. Results from the analysis of the tracking system data showed that driving both loaded and unloaded occupied on average 69% of the driver’s working shift; with an average time driving loaded of 49%. The travel distance per trip varied from 112 km and 197 km, with the truck driver using mostly national and regional roads. An average 2% of the total distance and 11% of the total time was spent driving on forest roads. In general, the truck’s speed recorded on the different road classes was on average 30% lower than the legal maximum speed. The average fuel consumption was 0.64 L/km. In terms of the route comparison, the driving directions from the truck routes coincided with 77% of the directions of the routes based on shortest driving time (S2 and S4. All the routes chosen by the driver had 22% longer

  14. Thermodynamic analysis of a fuel-cell-system for automotive transportation; Thermodynamische Analyse eines Brennstoffzellensystems zum Antrieb von Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Oliver

    2009-09-28

    The focus of the investigations was on the cooling of the fuel cell stack module. The many interfaces between the cooling system and other systems (hydrogen and air supply) made it necessary to take a more comprehensive approach. A commercial fuel cell vehicle was used for the investigations. In the first step, experiments were made on system test stands and in the climate wind tunnel. The measured data presented a picture of the status and helped to define the limits of heat transfer to the environment via the fuel cell cooling system. They were also used for validating a dynamic cooling system validation model. With this model, sensitivity analyses were carried out to define the key influencing parameters for increasing the heat transfer to the environment. Optimizations were made in terms of connection of the system component and their design and placement in the front part of the vehicle. On the basis of these and other findings, the optimized aggregate was again investigated on a system test stand in order to obtain more general energetic and exergetic information in the form of Sankey diagrams for visualization of the energy and exergy flows. The stack module under investigation had an efficiency of 61 percent in the test conditions while the aggregate efficiency in consideration of all auxiliary loads was 54 percent. Exergy losses were mostly caused by the fuel cell stack module, the humidifier and the air compressor. Further optimization potential was identified in the utilization of the exhaust exergy which amounts to about 7.3 percent of the fuel exergy. After integration of the fuel cell aggregate in a new vehicel, the new vehicle was again tested in the wind tunnel in order to validate the optimization measures on the cooling system side. For this, the two fuel cell vehicles were compared using the so-called Grossglockner driving cycle which is a test procedure for cooling systems of serially produced vehicles. According to the specifications, the real

  15. Approaches to analyze the bowing of German PWR fuel assemblies; Ansaetze zur Analyse des Biegeverhaltens deutscher DWR-Brennelemente

    Energy Technology Data Exchange (ETDEWEB)

    Boeke, H.; Bauer, R.; Bloemeling, F.; Lawall, R. [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2012-11-01

    The analysis of the bowing behavior of PWR fuel elements is required in case of increased fuel element deformations that have been observed during the last years. In the contribution the following issues are discussed: fuel element properties (stiffness, constructive features), influence factors (guiding tubes, spacer), load transfer and its impact. Under consideration of external boundary conditions an evaluation scheme was developed, using analysis data (control rod drop time), friction force measurements, fuel element characteristics (fuel element deformation, bowing) and their ranking, and simulation models (fluid-structure interactions). The evaluation scheme allows the definition of appropriate measures. The suitability of the methodology was demonstrated.

  16. Development of TUF-ELOCA - a software tool for integrated single-channel thermal-hydraulic and fuel element analyses

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, A.I.; Wu, E.; Yousef, W.W.; Pascoe, J. [Nuclear Safety Solutions Ltd., Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, Toronto, Ontario (Canada); Kwee, M. [Bruce Power, Tiverton, Ontario (Canada)

    2006-07-01

    The TUF-ELOCA tool couples the TUF and ELOCA codes to enable an integrated thermal-hydraulic and fuel element analysis for a single channel during transient conditions. The coupled architecture is based on TUF as the parent process controlling multiple ELOCA executions that simulate the fuel elements behaviour and is scalable to different fuel channel designs. The coupling ensures a proper feedback between the coolant conditions and fuel elements response, eliminates model duplications, and constitutes an improvement from the prediction accuracy point of view. The communication interfaces are based on PVM and allow parallelization of the fuel element simulations. Developmental testing results are presented showing realistic predictions for the fuel channel behaviour during a transient. (author)

  17. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2; Experiments of FCA assembly XVI-1 and their analyses

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Bando, Masaru

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author).

  18. Evaluating the effectiveness of dilution of the recovered uranium with depleted uranium and low-enriched uranium to obtain fuel for VVER reactors

    Science.gov (United States)

    Smirnov, A. Yu; Sulaberidze, G. A.; Dudnikov, A. A.; Nevinitsa, V. A.

    2016-09-01

    The possibility of the recovered uranium enrichment in a cascade of gas centrifuges with three feed flows (depleted uranium, low-enriched uranium, recovered uranium) with simultaneous dilution of U-232,234,236 isotopes was shown. A series of numerical experiments were performed for different content of U-235 in low-enriched uranium. It has been demonstrated that the selected combination of diluents can simultaneously reduce the cost of separative work and the consumption of natural uranium, not only with respect to the previously used multi-flow cascade schemes, but also in comparison to the standard cascade for uranium enrichment.

  19. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  20. 77 FR 26050 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Science.gov (United States)

    2012-05-02

    ... acceptance criteria contained in NUREG-1536, Revision 1, ``Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility,'' NUREG-1567, ``Standard Review Plan for Spent Fuel Dry Storage Facilities,'' and NUREG-1617, ``Standard Review Plan for Transportation Packages for Spent Nuclear...

  1. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kontogeorgakos, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Derstine, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bauer, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO2 particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.

  2. If ego depletion cannot be studied using identical tasks, it is not ego depletion.

    Science.gov (United States)

    Lange, Florian

    2015-01-01

    The hypothesis that human self-control capacities are fueled by glucose has been challenged on multiple grounds. A recent study by Lange and Eggert adds to this criticism by presenting two powerful but unsuccessful attempts to replicate the effect of sugar drinks on ego depletion. The dual-task paradigms employed in these experiments have been criticized for involving identical self-control tasks, a methodology that has been argued to reduce participants' willingness to exert self-control. The present article addresses this criticism by demonstrating that there is no indication to believe that the study of glucose effects on ego depletion should be restricted to paradigms using dissimilar acts of self-control. Failures to observe such effects in paradigms involving identical tasks pose a serious problem to the proposal that self-control exhaustion might be reversed by rinsing or ingesting glucose. In combination with analyses of statistical credibility, the experiments by Lange and Eggert suggest that the influence of sugar on ego depletion has been systematically overestimated.

  3. Development of a plate-type fuel model for the neutronics and thermal-hydraulics coupled code - SIMMER-III - and its application to the analyses of SPERT

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ping, E-mail: ping.liu@areva.co [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany); Gabrielli, Fabrizio; Rineiski, Andrei; Maschek, Werner [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany); Bruna, Giovanni B. [Reactor Safety Division, French Institute for Radioprotection and Nuclear Safety (IRSN), B.P. 17, 92262 Fontenay aux Roses Cedex (France)

    2010-10-15

    SIMMER-III, a neutronics and thermal-hydraulics coupled code, was originally developed for core disruptive accident analyses of liquid metal cooled fast reactors. Due to its versatility in investigating scenarios of core disruption, the code has also been extended to the simulation of transients in thermal neutron systems such as the criticality accident at the JCO fuel fabrication plant, and, in recent years, applied to water-moderated thermal research reactor transient studies, too. Originally, SIMMER considered only cylindrical fuel pin geometry. Therefore, implementation of a plate-type fuel model to the SIMMER-III code is of importance for the analysis of research reactors adopting this kind of fuel. Furthermore, validation of the SIMMER-III modeling of light water-cooled thermal reactor reactivity initiated transients is of necessity. This paper presents the work carried out on the SIMMER-III code in the framework of a KIT and IRSN joint activity aimed at providing the code with experimental reactor transient study capabilities. The first step of the job was the implementation of a new fuel model in SIMMER-III. Verification on this new model indicates that it can well simulate the steady-state temperature profile in the fuel. Secondly, three cases with the shortest reactor periods of 5.0 ms, 4.6 ms and 3.2 ms among the Special Power Excursion Reactor Tests (SPERT) performed in the SPERT I D-12/25 facility have been simulated. Comparison of the results between the SIMMER-III simulation and the reported SPERT results indicates that although there is space for further improvement on the modeling of negative feedback mechanisms, with this plate-type fuel model SIMMER-III can well represent the transient phenomena of reactivity driven power excursion.

  4. Analyses of deformation and thermal-hydraulics within a wire-wrapped fuel subassembly in a liquid metal fast reactor by the coupled code system

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp; Ohshima, Hiroyuki; Ito, Masahiro

    2017-06-15

    Highlights: • The coupled computational code system allowed for mechanical and thermal-hydraulic analyses in a fast reactor fuel subassembly. • In this system interactive calculations between flow area deformations and coolant temperature changes are repeated to their convergence state. • Effects on bundle-duct interaction on coolant temperature distributions were investigated by using the code system. - Abstract: The coupled numerical analysis of mechanical and thermal-hydraulic behaviors was performed for a wire-wrapped fuel pin bundle subassembly irradiated in a fast reactor. For the analysis, the fuel pin bundle deformation analysis code BAMBOO and the thermal-hydraulic analysis code ASFRE exchanged the deformation and temperature analysis results through the iterative calculations to attain convergence corresponding to the static balance between deformation and temperature. The analysis by the coupled code system showed that the radial distribution of coolant temperature in the subassembly tended to flatten as a result of the fuel pin bundle deformation governed by cladding void swelling and irradiation creep. Such flattening of temperature distribution was slightly observed as a result of fuel pin bowings due to the cladding-wire interaction even when no bundle-duct interaction occurred. The effect of the spacer wire-pitch on deformation and thermal-hydraulics was also investigated in this study.

  5. Life-Cycle Analyses of Energy Consumption and GHG Emissions of Natural Gas-Based Alternative Vehicle Fuels in China

    Directory of Open Access Journals (Sweden)

    Xunmin Ou

    2013-01-01

    Full Text Available Tsinghua life-cycle analysis model (TLCAM has been used to examine the primary fossil energy consumption and greenhouse gas (GHG emissions for natural gas- (NG- based alternative vehicle fuels in China. The results show that (1 compress NG- and liquid NG-powered vehicles have similar well-to-wheels (WTW fossil energy uses to conventional gasoline- and diesel-fueled vehicles, but differences emerge with the distance of NG transportation. Additionally, thanks to NG having a lower carbon content than petroleum, CNG- and LNG-powered vehicles emit 10–20% and 5–10% less GHGs than gasoline- and diesel-fueled vehicles, respectively; (2 gas-to-liquid- (GTL- powered vehicles involve approximately 50% more WTW fossil energy uses than conventional gasoline- and diesel-fueled vehicles, primarily because of the low efficiency of GTL production. Nevertheless, since NG has a lower carbon content than petroleum, GTL-powered vehicles emit approximately 30% more GHGs than conventional-fuel vehicles; (3 The carbon emission intensity of the LNG energy chain is highly sensitive to the efficiency of NG liquefaction and the form of energy used in that process.

  6. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  7. Numerical analyses and experiment investigations of an annular micro gas turbine power system using fuels with low heating values

    Institute of Scientific and Technical Information of China (English)

    YANG; ChunHsiang; LEE; ChengChia; HSIAO; JenHao; CHEN; ChiunHsun

    2009-01-01

    This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine(MGT)experimentally and numerically.The MGT used in this study is MW-54, whose original fuel is liquid(Jet A1).Its fuel supply system is re-designed to use biogas fuel with low heating value(LHV).The purpose is to reduce the size of a biogas distributed power supply system and to enhance its popularization.This study assesses the practicability of using fuels with LHVs by using various mixing ratios of methane(CH4)and carbon dioxide(CO2).Prior to experiments,the corresponding simulations,aided by the commercial code CFD-ACE+,were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when LHV gas was used.The main purposes are to confirm that there are no hot spots occurring in the liners and the exhaust temperatures of combustor are lower than 700°C when MGT is operated under different conditions.In experiments,fuel pressure and mass flow rate,turbine rotational speed,generator power output,and temperature distribution were measured to analyze MGT performance.Experimental results indicate that the presented MGT system operates successfully under each tested condition when the minimum heating value of the simulated fuel is approximately 50%of pure methane.The power output is around 170 W at 85000 r/min as 90%CH4 with 10%CO2 is used and 70 W at 60000 r/min as 70%CH4 with 30%CO2 is used.When a critical limit of 60%CH4 is used,the power output is extremely low. Furthermore,the best theoretical Brayton cycle efficiency for such MGT is calculated as 23%according to the experimental data while LHV fuel is used.Finally,the numerical results and experiment results reveal that MGT performance can be improved further and the possible solutions for performance im- provement are suggested for the future studies.

  8. Numerical analyses and experiment investigations of an annular micro gas turbine power system using fuels with low heating values

    Institute of Scientific and Technical Information of China (English)

    YANG ChunHsiang; LEE ChengChia; HSIAO JenHao; CHEN ChiunHsun

    2009-01-01

    This study investigates the effects of using fuels with low heating values on the performance of an annular micro gas turbine(MGT)experimentally and numerically.The MGT used in this study is MW-54,whose original fuel is liquid(Jet al).Its fuel supply system is re-designed to use biogas fuel with low heating value(LHV).The purpose is to reduce the size of a biogas distributed power supply system and to enhance its popularization.This study assesses the practicability of using fuels with LHVs by using various mixing ratios of methane(CH_4)and carbon dioxide(CO_2).Prior to experiments,the corresponding simulations,aided by the commercial code CFD-ACE+,were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when LHV gas was used.The main purposes are to confirm that there are no hot spots occurring in the liners and the exhaust temperatures of combustor are lower than 700℃ when MGT is operated under different conditions,in experiments,fuel pressure and mass flow rate,turbine rotational speed,generator power output,and temperature distribution were measured to analyze MGT performance.Experimental results indicate that the presented MGT system operates successfully under each tested condition when the minimum heating value of the simulated fuel is approximately 50%of pure methane.The power output is around 170 W at 85000 r/min as 90%CH_4 with 10%CO_2 is used and 70 W at 60000 r/min as 70%CH_4 with 30%CO_2 is used.When a critical limit of 60%CH_4 is used,the power output is extremely low.Furthermore,the best theoretical Brayton cycle efficiency for such MGT is calculated as 23%according to the experimental data while LHV fuel is used.Finally,the numerical results and experiment results reveal that MGT performance can be improved further and the possible solutions for performance improvement are suggested for the future studies.

  9. Modelling and simulation of a dual-clutch transmission vehicle to analyse the effect of pump selection on fuel economy

    Science.gov (United States)

    Ahlawat, R.; Fathy, H. K.; Lee, B.; Stein, J. L.; Jung, D.

    2010-07-01

    Positive displacement pumps are used in automotive transmissions to provide pressurised fluid to various hydraulic components in the transmission and also lubricate the mechanical components. The output flow of these pumps increases with pump/transmission speed, almost linearly, but the transmission flow requirements often saturate at higher speeds, resulting in excess flow capacity that must be wasted by allowing it to drain back to the sump. This represents a parasitic loss in the transmission leading to a loss in fuel economy. To overcome this issue, variable displacement pumps have been used in the transmission, where the output flow can be reduced by controlling the displacement of the pump. The use of these pumps in automatic transmissions has resulted in better fuel economy as compared with some types of fixed displacement pumps. However, the literature does not fully explore the benefits of variable displacement pumps to a specific type of transmission namely, dual-clutch transmission (DCT), which has different pressure and flow requirements from an epicyclic gear train. This paper presents an analysis of the effect of pump selection on fuel economy in a five-speed DCT of a commercial vehicle. Models of the engine, transmission, and vehicle are developed along with the models of two different types of pumps: a fixed displacement gerotor pump and a variable displacement vane pump. The models are then parameterised using experimental data, and the fuel economy of the vehicle is simulated on a standard driving cycle. The results suggest that the fuel economy benefit obtained by the use of the variable displacement pump in DCTs is comparable to the benefit previously shown for these pumps in automatic transmissions.

  10. Potential utilization of biomass in production of electricity, heat and transportation fuels including energy combines - Regional analyses and examples; Potentiell avsaettning av biomassa foer produktion av el, vaerme och drivmedel inklusive energikombinat - Regionala analyser och raekneexempel

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Karin; Boerjesson, Paal

    2008-01-15

    The objective of this study is to analyse how the use of biomass may increase in the next 10-20 years in production of heat, electricity and transportation fuels in Sweden. In these analyses, the biomass is assumed to be used in a resource and cost efficient way. This means for example that the demand for heat determines the potential use of biomass in co-generation of heat and electricity and in energy combines, and that the markets for by-products determine the use of biomass in production of certain transportation fuels. The economic conditions are not analysed in this study. In the heat and electricity production sector, we make regional analyses of the potential use of biomass in production of small-scale heat, district heat, process heat in the forest industry and electricity produced in co-generation with heat in the district heating systems and forest industry. These analyses show that the use of biomass in heat and electricity production could increase from 87 TWh (the use in 2004/2005, excluding small-scale heat production with firewood) to between 113 TWh and 134 TWh, depending on the future expansion of the district heating systems. Geographically, the Stockholm province accounts for a large part of the potential increase owing to the great opportunities for increasing the use of biomass in production of district heat and CHP in this region. In the sector of transportation fuels we applied a partly different approach since we consider the market for biomass-based transportation fuels to be 'unconstrained' within the next 10-20 years. Factors that constrain the production of these fuels are instead the availability of biomass feedstock and the local conditions required for achieving effective production systems. Among the first generation biofuels this report focuses on RME and ethanol from cereals. We estimate that the domestic production of RME and ethanol could amount to up to 1.4 TWh/y and 0.7-3.8 TWh/y, respectively, where the higher

  11. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    Municipal solid waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by their use it is possible to reduce the waste...... process is usually based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide Fuel Cell...... (SOFC).In the present study, a MSW gasification plant integrated with SOFC is combined with a Stirling engine to recover the energy of the off-gases from the topping SOFC cycle. Detailed plant design is proposed and thermodynamic analysis is performed. Relevant parameters have been studied to optimize...

  12. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2015-01-01

    is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called "Syngas" which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor. The gasification...... process is usually based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide Fuel Cell...... with incineration technologies. Moreover waste incinerators require the installation of sophisticated exhaust gas cleaning equipment that can be large and expensive and are not necessary in the studied plant....

  13. SARAPAN—A Simulated-Annealing-Based Tool to Generate Random Patterned-Channel-Age in CANDU Fuel Management Analyses

    Directory of Open Access Journals (Sweden)

    Doddy Kastanya

    2017-02-01

    Full Text Available In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the *SIMULATE module of the Reactor Fueling Simulation Program (RFSP code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the *INSTANTAN module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the *INSTANTAN module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

  14. The new revision of NPP Krsko decommissioning, radioactive waste and spent fuel management program: analyses and results

    Energy Technology Data Exchange (ETDEWEB)

    Zeleznik, Nadja; Kralj, Metka [ARAO, Parmova 53, 1000 Ljubljana (Slovenia); Lokner, Vladimir; Levanat, Ivica; Rapic, Andrea [APO, Savska 41, Zagreb (Croatia); Mele, Irena [IAEA, Vienna (Austria)

    2010-07-01

    The preparation of the new revision of the Decommissioning and Spent Fuel (SF) and Low and Intermediate level Waste (LILW) Disposal Program for the NPP Krsko (Program) started in September 2008 after the acceptance of the Term of Reference for the work by Intergovernmental Committee responsible for implementation of the Agreement between the governments of Slovenia and Croatia on the status and other legal issues related to investment, exploitation, and decommissioning of the Nuclear power plant Krsko. The responsible organizations, APO and ARAO together with NEK prepared all new technical and financial data and relevant inputs for the new revision in which several scenarios based on the accepted boundary conditions were investigated. The strategy of immediate dismantling was analyzed for planned and extended NPP life time together with linked radioactive waste and spent fuel management to calculate yearly annuity to be paid by the owners into the decommissioning funds in Slovenia and Croatia. The new Program incorporated among others new data on the LILW repository including the costs for siting, construction and operation of silos at the location Vrbina in Krsko municipality, the site specific Preliminary Decommissioning Plan for NPP Krsko which included besides dismantling and decontamination approaches also site specific activated and contaminated radioactive waste, and results from the referenced scenario for spent fuel disposal but at very early stage. Important inputs for calculations presented also new amounts of compensations to the local communities for different nuclear facilities which were taken from the supplemented Slovenian regulation and updated fiscal parameters (inflation, interest, discount factors) used in the financial model based on the current development in economical environment. From the obtained data the nominal and discounted costs for the whole nuclear program related to NPP Krsko which is jointly owned by Slovenia and Croatia have

  15. Can the lifetime of the superheater tubes be predicted according to the fuel analyses? Assessment from field and laboratory data

    Energy Technology Data Exchange (ETDEWEB)

    Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1998-12-31

    Lifetime of the superheaters in different power boilers is more or less still a mystery. This is especially true in firing biomass based fuels (biofuels), such as bark, forest residues, and straw. Due to the unhomogeneous nature of the biofuels, the lifetime of the superheaters may vary from case to case. Sometimes the lifetime is significantly shorter than originally expected, sometimes no corrosion even in the hottest tubes is observed. This is one of the main reasons why the boiler operators often demand for a better predictability on the corrosion resistance of the materials to avoid unscheduled shutdowns. (orig.) 9 refs.

  16. Comparison of the radiological hazard of thorium and uranium spent fuels from VVER-1000 reactor

    Science.gov (United States)

    Frybort, Jan

    2014-11-01

    Thorium fuel is considered as a viable alternative to the uranium fuel used in the current generation of nuclear power plants. Switch from uranium to thorium means a complete change of composition of the spent nuclear fuel produced as a result of the fuel depletion during operation of a reactor. If the Th-U fuel cycle is implemented, production of minor actinides in the spent fuel is negligible. This is favourable for the spent fuel disposal. On the other hand, thorium fuel utilisation is connected with production of 232U, which decays via several alpha decays into a strong gamma emitter 208Tl. Presence of this nuclide might complicate manipulations with the irradiated thorium fuel. Monte-Carlo computation code MCNPX can be used to simulate thorium fuel depletion in a VVER-1000 reactor. The calculated actinide composition will be analysed and dose rate from produced gamma radiation will be calculated. The results will be compared to the reference uranium fuel. Dependence of the dose rate on time of decay after the end of irradiation in the reactor will be analysed. This study will compare the radiological hazard of the spent thorium and uranium fuel handling.

  17. Focus on blends. An analysis of the bunker fuel chain; Blends in beeld. Een analyse van de bunkerolieketen

    Energy Technology Data Exchange (ETDEWEB)

    De Buck, A.; Smit, M.E.; Faber, J.; Van Grinsven, A.

    2011-05-15

    Bunker oil is an important activity in the Dutch economy: annual more than 20,000 ships 'bunker' fuel oil in the port of Rotterdam. Because of a number of incidents there are questions about possible blending of hazardous waste into fuel oil. This report aims to provide insight into bunker oil, blend materials, parties involved in the chain and risks of blending hazardous waste. It was commissioned by the VROM Inspectorate, for its role as supervisor of waste flows in the Netherlands. [Dutch] Bunkerolie staat voor een belangrijke activiteit in de Nederlandse economie: jaarlijks 'bunkeren' meer dan 20.000 zeeschepen in de Rotterdamse haven stookolie. Vanwege een aantal incidenten zijn er vragen over mogelijke bijmenging van gevaarlijk afval in stookolie. Dit rapport beoogt inzicht te geven in bunkerolie, blendmaterialen, partijen in de keten en risico's op bijmenging van gevaarlijk afval. Het is opgesteld in opdracht van de VROM-Inspectie, ten behoeve van haar rol als toezichthouder op ketens van afvalstromen.

  18. Analysis and modelling of the fuels european market; Analyse et modelisation des prix des produits petroliers combustibles en europe

    Energy Technology Data Exchange (ETDEWEB)

    Simon, V

    1999-04-01

    The research focus on the European fuel market prices referring to the Rotterdam and Genoa spot markets as well the German, Italian and French domestic markets. The thesis try to explain the impact of the London IPE future market on spot prices too. The mainstream research has demonstrated that co-integration seems to be the best theoretical approach to investigate the long run equilibrium relations. A particular attention will be devoted to the structural change in the econometric modelling on these equilibriums. A deep analysis of the main European petroleum products markets permit a better model specification concerning each of these markets. Further, we will test if any evidence of relations between spot and domestic prices could be confirmed. Finally, alternative scenarios will be depicted to forecast prices in the petroleum products markets. The objective is to observe the model reaction to changes crude oil prices. (author)

  19. An analysis of the thermochemical conversion process for the synthesis of BtL fuels; Analyse von thermochemischen Konversionsverfahren zur Herstellung von BtL-Kraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Beiermann, Dagmar

    2011-07-01

    Synthetic biofuels via BtL-processes are compatible to current cars and can contribute to a sustainable mobility. Based on process analysis, this thesis investigates several procedural, economical and ecological parameters like efficiency, costs and the potential of CO{sub 2}-reduction of different BtL-pathways by a transparent procedure. Especially effects of different process options are analysed. Three gasification concepts (Choren, FZK and Guessing) are combined with two synthesis concepts (Fischer-Tropsch and MtSynfuels). Variations of plant capacity (100 MW{sub th}, 500 MW{sub th}, 2 GW{sub th}), operational modes (once through, recycle, self-sufficient), feedstocks (straw, waste wood, wood from short rotation trees) and utilities (conventional vs. green electricity) were made, resulting in 15 scenarios for production of BtL-fuels. Flowsheeting models of these scenarios were made using the process simulation tool Chemcad. Mass and energy balances were done to analyse yields and efficiencies. Calculations of investment costs showed, that a 500 MW{sub th} BtL-greenfield plant would currently cost more than one billion Euros. Fuel production costs of all 500 MW{sub th} scenarios vary from 1,19 Euro per liter to 3,60 Euro per liter, VAT and petroleum tax excluded. Depending on the set frame conditions, production costs can vary extremely, e.g. from 1,12 Euro per liter to 3,57 Euro per liter just for one scenario. According to the WTW-report potentials of CO{sub 2}-reduction of the scenarios were determined. Up to 96,7 % are possible when using waste wood and green electricity for the process and selling by-products as fuels. CO{sub 2} abatement costs vary from 263 to 1.095 Euro/t CO{sub 2}, depending on the specific scenario. A key role for efficiencies, costs and the potential of CO{sub 2}-reduction plays the suited frame conditions, e.G. the assumption that by-products like naphtha and raw-gasoline are also sold as fuels. Dependencies and interactions of

  20. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Ayaka Yamamuro

    Full Text Available Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2 (based on the projected area of the anode. In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  1. Metagenomic analyses reveal the involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.

    Science.gov (United States)

    Yamamuro, Ayaka; Kouzuma, Atsushi; Abe, Takashi; Watanabe, Kazuya

    2014-01-01

    Methanol is widely used in industrial processes, and as such, is discharged in large quantities in wastewater. Microbial fuel cells (MFCs) have the potential to recover electric energy from organic pollutants in wastewater; however, the use of MFCs to generate electricity from methanol has not been reported. In the present study, we developed single-chamber MFCs that generated electricity from methanol at the maximum power density of 220 mW m(-2) (based on the projected area of the anode). In order to reveal how microbes generate electricity from methanol, pyrosequencing of 16S rRNA-gene amplicons and Illumina shotgun sequencing of metagenome were conducted. The pyrosequencing detected in abundance Dysgonomonas, Sporomusa, and Desulfovibrio in the electrolyte and anode and cathode biofilms, while Geobacter was detected only in the anode biofilm. Based on known physiological properties of these bacteria, it is considered that Sporomusa converts methanol into acetate, which is then utilized by Geobacter to generate electricity. This speculation is supported by results of shotgun metagenomics of the anode-biofilm microbes, which reconstructed relevant catabolic pathways in these bacteria. These results suggest that methanol is anaerobically catabolized by syntrophic bacterial consortia with electrodes as electron acceptors.

  2. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

    2011-05-23

    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  3. Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Sean R. Morrell

    2012-09-01

    Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace

  4. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  5. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  6. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Science.gov (United States)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  7. Armor: An {alpha}{beta}{gamma} assembly for irradiated fuel analysis; Armor: Chaine {alpha}{beta}{gamma} pour l'analyse des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Beraud, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-04-15

    The assembly ARMOR which was built with a view to carrying out research on irradiated fuels consists of an {alpha}{beta}{gamma} enclosure made up of 11 cells in line. After a general description of the assembly in its present form, the various functions are reviewed: introduction of the samples, chemical de-canning, dissolution of the irradiated uranium pellets, preparation of solutions for mass spectrometric analyses, disposal of the effluents and of the solid waste. The assembly-has been working since 1961. During the 5 to 6 years operation, various improvements have been made and a certain number of observations have been collected concerning the work. (author) [French] Construite en vue de repondre a un programme d'etudes de combustibles Irradies, la chaine Armor est une enceinte {alpha}{beta}{gamma} composee de 11 cellules en ligne. Apres une description generale de la chaine dans son etat actuel, les differentes fonctions sont passees en revue: entree des echantillons, degainage chimique, dissolution des pastilles d'uranium irradie, preparation des solutions pour les analyses par spectrometrie de masse, rejet des effluents et des dechets solides. La chaine est en service depuis 1961. Au cours des cinq a six annees d'exploitation, differentes ameliorations ont ete apportees et un ensemble d'observations sur le travail a ete recueilli. (auteur)

  8. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

      The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...... giving rise to depletion layers, and the mechanisms and border conditions that control their presence and extension require still clarification. Recently, careful systematic reflectivity experiments were re-done on the same system. No depletion layers were found, and it was conjectured that the whole...

  9. Depleted uranium disposal options evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  10. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  11. Bioethanol: fuel or feedstock?

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Falsig, Hanne; Jørgensen, Betina

    2007-01-01

    Increasing amounts of bioethanol are being produced from fermentation of biomass, mainly to counteract the continuing depletion of fossil resources and the consequential escalation of oil prices. Today, bioethanol is mainly utilized as a fuel or fuel additive in motor vehicles, but it could also...

  12. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  13. Development and optimization of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Davila, D.; Vigues, N.; Sanchez, O.; Garrido, L.; Tomas, N.; Mas, J. [Univ. Autonoma de Barcelona, Barcelona (Spain). Dept. de Genetica y Microbiologia; Esquivel, J.P.; Sabate, N.; Del Campo, F.J.; Munoz, F.J. [Inst. de Microelectronica de Barcelona-CNM (CSIC), Barcelona (Spain)

    2008-04-15

    While global energy demand increases daily, fossil fuel sources are being depleted at an unsustainable pace. Fuel cells represent a solution as they are more efficient than other energy sources. A microbial fuel cell is an electrochemical device capable of continuously converting chemical energy into electrical energy for as long as adequate fuel and oxidant are available. A microbial fuel cell (MFC) adds the benefit of converting chemical energy from organic compounds, such as simple carbohydrates or organic waste matter, into electricity by using bacteria as biocatalysts. This article described the effect of several parameters that affect the operation of a microbial fuel cell (MFC). The study is based on a methodology utilized in previous studies which employed escherichia coli as biocatalyst and neutral red as the electron mediator in a mediated electron transfer (MET) microbial fuel cell. The study analysed the influence of the bacterial concentration, the effective area of electrode and the volume of the cell. It was concluded that there is a proportional energy production to the bacterial concentration present in the anode compartment. It was demonstrated that an increase in the volume of the cell negatively affects the power produced by the cells. 8 refs., 1 tab., 5 figs.

  14. Intrinsic Depletion or Not

    DEFF Research Database (Denmark)

    Klösgen, Beate; Bruun, Sara; Hansen, Søren;

    with an AFM (2).    The intuitive explanation for the depletion based on "hydrophobic mismatch" between the obviously hydrophilic bulk phase of water next to the hydrophobic polymer. It would thus be an intrinsic property of all interfaces between non-matching materials. The detailed physical interaction path......  The presence of a depletion layer of water along extended hydrophobic interfaces, and a possibly related formation of nanobubbles, is an ongoing discussion. The phenomenon was initially reported when we, years ago, chose thick films (~300-400Å) of polystyrene as cushions between a crystalline...

  15. OrigenArp Primer: How to Perform Isotopic Depletion and Decay Calculations with SCALE/ORIGEN

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL

    2010-08-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for nuclear analyses. ORIGEN-ARP is a SCALE isotopic depletion and decay analysis sequence used to perform point-depletion calculations with the well-known ORIGEN-S code using problem-dependent cross sections. Problem-dependent cross-section libraries are generated using the ARP (Automatic Rapid Processing) module using an interpolation algorithm that operates on pre-generated libraries created for a range of fuel properties and operating conditions. Methods are provided in SCALE to generate these libraries using one-, two-, and three-dimensional transport codes. The interpolation of cross sections for uranium-based fuels may be performed for the variables burnup, enrichment, and water density. An option is also available to interpolate cross sections for mixed-oxide (MOX) fuels using the variables burnup, plutonium content, plutonium isotopic vector, and water moderator density. This primer is designed to help a new user understand and use ORIGEN-ARP with the OrigenArp Windows graphical user interface in SCALE. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with nuclear depletion codes in general or with SCALE/ORIGEN-ARP in particular. The primer is based on SCALE 6 but should be applicable to earlier or later versions of SCALE. Information is included to help new users, along with several sample problems that walk the user through the different input forms and menus and illustrate the basic features. References to related documentation are provided. The primer provides a starting point for the nuclear analyst who uses SCALE/ORIGEN-ARP. Complete descriptions are provided in the SCALE documentation. Although the primer is self-contained, it is intended as a companion volume to the SCALE documentation. The SCALE Manual is

  16. Shear-affected depletion interaction

    NARCIS (Netherlands)

    July, C.; Kleshchanok, D.; Lang, P.R.

    2012-01-01

    We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force i

  17. Analyse - technologies; Analyse - technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Chevalier, M.; Cormont, Ph.; Viala, F.; Kopp, Ch.; Peillet, O.; Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Bruel, L.; Berhouet, F.; Chartier, F.; Aubert, M.; Blanchet, P.; Steiner, F.; Puech, M.H.; Bienvenu, Ph.; Noire, M.H.; Bouzon, C.; Schrive, L

    1999-07-01

    In this chapter of the DCC 1999 scientific report, the following theoretical studies are detailed: emulsions characterization by ultrasonics, high resolution wavelength meter, optimization methodology for diffractive and hybrid optic system, reliability for fast switches in power electronics, study of cesium isolation in irradiated fuels, chemical optodes based on evanescent wave absorption, radionuclides (Zirconium 93 and molybdenum 93) determination in irradiated fuels processing effluents, study of viscous liquid ultrafiltration using supercritical CO{sub 2} fluid. (A.L.B.)

  18. The comparison of two heavy fuel oils in composition and weathering pattern, based on IR, GC-FID and GC-MS analyses: application to the Prestige wreackage.

    Science.gov (United States)

    Fernández-Varela, R; Andrade, J M; Muniategui, S; Prada, D; Ramírez-Villalobos, F

    2009-03-01

    This paper compares the weathering patterns of two similar fuel oils: a fuel oil spilled after a ship accident (Prestige-Nassau, off the Galician coast -NW Spain-) and a fuel designed to cope with the numerous quests for samples to carry out scientific studies (IFO). Comparative studies were made to evaluate the capability of common fingerprinting analytical techniques to differentiate the fuels, as well as their capabilities to monitor their weathering. The two products were spilled under controlled conditions during ca. four months to assess how they evolved on time. Mid-IR spectrometry and gas chromatography (flame ionization and mass spectrometry detectors) were used. IR indexes related to total aromaticity, type of substituents (branched or linear chains) and degree of aromatic substitution reflected well the differences between the fuels during weathering. Regarding the chromatographic measurements, the n-alkanes became highly reduced for both fuel oils and it was found that the PAHs of the synthetic fuel (IFO) were more resistant to weathering. Regarding biomarkers, the different profiles of the steranes, diasteranes and triaromatic steroids allowed for a simple differentiation amongst the two products. The %D2/P2 ratio differentiated both products whereas the %N3/P2 one ordered the samples according to the extent of their weathering.

  19. Effect of Shim Arm Depletion in the NBSR

    Energy Technology Data Exchange (ETDEWEB)

    Hanson A. H.; Brown N.; Diamond, D.J.

    2013-02-22

    The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

  20. Swelling of U(Mo)-Al(Si) dispersion fuel under irradiation - Non-destructive analyses of the LEONIDAS E-FUTURE plates

    Science.gov (United States)

    Van den Berghe, S.; Parthoens, Y.; Charollais, F.; Kim, Y. S.; Leenaers, A.; Koonen, E.; Kuzminov, V.; Lemoine, P.; Jarousse, C.; Guyon, H.; Wachs, D.; Keiser, D., Jr.; Robinson, A.; Stevens, J.; Hofman, G.

    2012-11-01

    In the framework of the elimination of High-Enriched Uranium (HEU) from the civil circuit, the search for an appropriate fuel to replace the high-enriched research reactor fuel in those reactors that currently still require it for their operation has led to the development of a U-7 wt.%Mo alloy based dispersion fuel with an Al-Si matrix. The European LEONIDAS program, joining SCK•CEN, ILL, CEA and AREVA-CERCA, is aimed at the qualification of such a fuel for the use in high power conditions. The first experiment of the program, designated E-FUTURE, was performed to select the appropriate matrix Si concentration and fuel plate post-production heat treatment parameters for further qualification. It consisted of the irradiation of four distinct (4% and 6% Si, 3 different heat treatments) full size, flat fuel plates in the BR2 reactor. The irradiation conditions were relatively severe: 470 W/cm2 peak BOL power, with a ˜70% 235U peak burnup.

  1. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  2. Depletion of intense fields

    CERN Document Server

    Seipt, D; Marklund, M; Bulanov, S S

    2016-01-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multi-photon Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multi-photon nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude $a_0 \\sim 10^3$ and electron bunches with charges of the order of nC.

  3. Learning about ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, J. P. [Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany; Oppenheimer M. [Woodrow Wilson School of Public and International Affairs, Department of Geosciences, Princeton University, Princeton, NJ (United States)

    2008-07-15

    Stratospheric ozone depletion has been much studied as a case history in the interaction between environmental science and environmental policy. The positive influence of science on policy is often underscored, but here we review the photochemistry of ozone in order to illustrate how scientific learning has the potential to mislead policy makers. The latter may occur particularly in circumstances where limited observations are combined with simplified models of a complex system, such as may generally occur in the global change arena. Even for the well-studied case of ozone depletion, further research is needed on the dynamics of scientific learning, particularly the scientific assessment process, and how assessments influence the development of public policy.

  4. Depletion of Intense Fields

    Science.gov (United States)

    Seipt, D.; Heinzl, T.; Marklund, M.; Bulanov, S. S.

    2017-04-01

    The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a0˜1 03 and electron bunches with charges of the order of 10 nC.

  5. Studies on the safety and transmutation behaviour of innovative fuels for light water reactors; Untersuchungen zum Sicherheits- und Transmutationsverhalten innovativer Brennstoffe fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Schitthelm, Oliver

    2012-07-01

    Nuclear power plants contribute a substantial part to the energy demand in industry. Today the most common fuel cycle uses enriched uranium which produces plutonium due to its {sup 238}U content. With respect to the long-term waste disposal Plutonium is an issue due to its heat production and radiotoxicity. This thesis consists of three main parts. In the first part the development and validation of a new code package MCBURN for spatial high resolution burnup simulations is presented. In the second part several innovative uranium-free and plutonium-burning fuels are evaluated on assembly level. Candidates for these fuels are a thorium/plutonium fuel and an inert matrix fuel consisting of plutonium dispersed in an enriched molybdenum matrix. The performance of these fuels is evaluated against existing MOX and enriched uranium fuels considering the safety and transmutation behaviour. The evaluation contains the boron efficiency, the void coefficient, the doppler coefficient and the net balances of every radionuclide. In the third part these innovative fuels are introduced into a German KONVOI reactor core. Considering todays approved usage of MOX fuels a partial loading of one third of innovative fuels and two third of classical uranium fuels was analysed. The efficiency of the plutonium depletion is determined by the ratio of the production of higher isotopes compared to the plutonium depletion. Todays MOX-fuels transmutate about 25% to 30% into higher actinides as Americium or Curium. In uranium-free fuels this ratio is about 10% due to the lack of additional plutonium production. The analyses of the reactor core have shown that one third of MOX fuel is not capable of a net reduction of plutonium. On the other hand a partial loading with thorium/plutonium fuel incinerates about half the amount of plutonium produced by an uranium only core. If IMF is used the ratio increases to about 75%. Considering the safety behavior all fuels have shown comparable results.

  6. Regarding fuel prices and automobility. A brief analysis of price and cost elasticities; Over brandstofprijzen en automobiliteit. Een beknopte analyse van prijs- en kostenelasticiteit

    Energy Technology Data Exchange (ETDEWEB)

    Groot, W.

    2012-01-15

    Car drivers do not drive significantly less when fuel prices at the pump rise. If fuel prices increase by approximately 12.5 percent, the long-term decrease in car kilometres travelled is just 2.5 percent. Higher fuel prices have also not resulted in a more fuel-efficient 'car fleet' (i.e. the range of available car model types). The fuel consumption rate per kilometre remained relatively constant from the late 1980s to 2009, although recent years have seen a marked improvement in the per kilometre fuel consumption rate, as measured in CO2 emissions of new passenger cars. These were the findings of the title study, conducted by the KiM Netherlands Institute for Transport Policy Analysis. This study was based on data covering the period 1980 to 2009. The majority of the definitive effects of higher fuel prices revealed in this study were less pronounced than the effects previously cited in available literature, especially with regard to the long-term effects [Dutch] Uit de titel studie blijkt dat automobilisten in beperkte mate minder gaan rijden als de brandstofprijzen aan de pomp stijgen. Een stijging van de benzineprijs met ongeveer 12,5 procent leidt op langere termijn tot een vermindering van de hoeveelheid afgelegde kilometers met 2,5 procent. De hoge brandstofprijzen hebben ook niet geleid tot een zuiniger wagenpark. Het benzineverbruik per kilometer is tussen het eind van de jaren tachtig en 2009 vrijwel gelijk gebleven. Met als kanttekening dat in de meest recente jaren sprake is van een zichtbare verbetering van het verbruik per kilometer, afgemeten aan de CO2-uitstoot van nieuwe personenauto's. Het KiM heeft zich in de studie gebaseerd op cijfers over de periode 1980-2009. De meeste in het onderzoek vastgestelde effecten van hogere benzineprijzen zijn kleiner dan de effecten die in de beschikbare literatuur zijn aangetroffen. Dit geldt vooral voor de effecten op de lange termijn.

  7. Segregated exhaust SOFC generator with high fuel utilization capability

    Science.gov (United States)

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  8. An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions for PWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1993-01-01

    Isotopic characterization of spent fuel via depletion and decay calculations is necessary for determination of source terms for subsequent system analyses involving heat transfer, radiation shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in subsequent criticality calculations to assess the reduced worth of spent fuel. To validate the codes and data used in depletion approaches, experimental measurements are compared with numerical predictions for relevant spent fuel samples. Such comparisons have been performed in earlier work at the Oak Ridge National Laboratory (ORNL). This report describes additional independent measurements and corresponding calculations, which supplement the results of the earlier work. The current work includes measured isotopic data from 19 spent fuel samples obtained from the Italian Trino Vercelles pressurized-water reactor (PWR) and the U.S. Turkey Point Unit 3 PWR. In addition, an approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations. Results are presented based on the combination of measured-to-calculated ratios for earlier work and the current analyses. The results described herein represent an extension to a new reactor design not included in the earlier work, and spent fuel samples with enrichment as high as 3.9 wt % {sup 235}U. Results for the current work are found to be, for the most part, consistent with the findings of the earlier work. This consistency was observed for results obtained from each of two different cross-section libraries and suggests that the estimated biases determined for

  9. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer

  10. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  11. Nonuniform transformation field analysis of multiphase elasto viscoplastic materials: application to MOX fuels; Analyse par champs de transformation de materiaux elastoviscoplastiques multiphases: application aux combustibles MOX

    Energy Technology Data Exchange (ETDEWEB)

    Roussette, S

    2005-05-15

    The description of the overall behavior of nonlinear materials with nonlinear dissipative phases requires an infinity of internal variables. An approximate model involving only a finite number of internal variables, Nonuniform Transformation Field Analysis, is obtained by considering a decomposition of these variables on a finite set of nonuniform transformation fields, called plastic modes. The method is initially developed for incompressible elasto viscoplastic materials. Karhunen-Loeve expansion is proposed to optimize the plastic modes. Then the method is extended to porous elasto viscoplastic materials. Finally the transformation field analysis, developed by Dvorak, is applied to nuclear fuels MOX. This method enables to make sensitivity studies to determine the role of some microstructural parameters on the fuel behaviour. Moreover the adequacy of the nonuniform method for fuels MOX is shown, the final objective being to be able to apply the model to the MOX in 3D. (author)

  12. Validation of SCALE and the TRITON Depletion Sequence for Gas-Cooled Reactor Analysis

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark D [ORNL; Pritchard, Megan L [ORNL

    2008-01-01

    The very-high-temperature reactor (VHTR) is an advanced reactor concept that uses graphite-moderated fuel and helium gas as a coolant. At present there are two primary VHTR reactor designs under consideration for development: in the pebble-bed reactor, a core is loaded with 'pebbles' consisting of 6 cm diameter spheres, while in a high-temperature gas-cooled reactor, fuel rods are placed within prismatic graphite blocks. In both systems, fuel elements (spheres or rods) are comprised of tristructural-isotropic (TRISO) fuel particles. The TRISO particles are either dispersed in the matrix of a graphite pebble for the pebble-bed design or molded into compacts/rods that are then inserted into the hexagonal graphite blocks for the prismatic concept. Two levels of heterogeneity exist in such fuel designs: (1) microspheres of TRISO particles dispersed in a graphite matrix of a cylindrical or spherical shape, and (2) neutron interactions at the rod-to-rod or sphere-to-sphere level. Such double heterogeneity (DH) provides a challenge to multigroup cross-section processing methods, which must treat each level of heterogeneity separately. A new capability to model doubly heterogeneous systems was added to the SCALE system in the release of Version 5.1. It was included in the control sequences CSAS and CSAS6, which use the Monte Carlo codes KENO V.a and KENO-VI, respectively, for three-dimensional neutron transport analyses and in the TRITON sequence, which uses the two-dimensional lattice physics code NEWT along with both versions of KENO for transport and depletion analyses. However, the SCALE 5.1 version of TRITON did not support the use of the DH approach for depletion. This deficiency has been addressed, and DH depletion will be available as an option in the upcoming release of SCALE 6. At present Oak Ridge National Laboratory (ORNL) staff are developing a set of calculations that may be used to validate SCALE for DH calculations. This paper discusses the

  13. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  14. Interpretation of physico-chemical and biokinetic data for dose calculation: example of an industrial depleted UO{sub 2} used in the MOX fuel manufacture; Interpretation des donnees physico-chimiques et biocinetiques pour le calcul de dose: exemple d`un compose industriel UO{sub 2} appauvri fabrique pour le combustible MOX

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Chazel, V.; Houpert, P.; Henge-Napoli, M.H.; Paquet, F. [CEA VALRHO, 26 - Pierrelatte (France). Institut de Protection et de Surete Nucleaire

    1997-12-01

    Interpretation of physico-chemical and biokinetic data for dose calculation: Example of an industrial depleted UO{sub 2}, used in the MOX fuel manufacture. The implementation of the new recommendations of the International Commission on Radiological Protection (ICRP) allows to use experimental parameters in order to calculate a specific effective Dose Per Unit of Intake (DPUI) for each compound. The aim of this study is to define a methodology including analysis techniques, in vitro dissolution tests and in vivo experiment in rats) leading to the determination of these parameters, and to present different calculation methods such as GIGAFIT software for the interpretation of blood translocation data, and LUDEP software for the assessment of effective dose. This study has led, for an industrial uranium oxide compound UO{sub 2} (depleted uranium), which is used in the MOX fuel manufacture, to the assessment of the main physico-chemical and biological parameters entering into dose calculation: the average Activity Median Aerodynamic Diameter AMAD 6.5 {mu}m; the specific surface SS = 2.68 m{sup 2} g{sup -1}; and the fraction and rate of transfer to blood which are ranging from 2.5 % to 44.4 % for {integral}{sub r}, 0.09 to 1.7 d{sup -1} for S{sub r} and 6.4 x 10{sup -4} to 1.5 x 10{sup -3} d{sup -1} for S{sub s}. All these results were inserted in LUDEP to determine the specific inhalation DPUI value given for this industrial UO{sub 2} as equal to 2.84 x 10{sup -6} Sv Bq{sup -1}. (author)

  15. Toxicity of Depleted Uranium

    Science.gov (United States)

    1997-02-01

    Medical Research and Materiel Command Fort Detrick, Frederick, Maryland 21702-5012 11. SUPPLEMENTARY NOTES 1997 i0i4 090 12a. DISTRIBUTION/ AVAILABILTY ...cancers was low in the face of an increasing usage of such protheses.3 The assessment also included failed attempts to isolate "precancerous" cells from...Springer Verlag, 1973. 26. Fisher DR, Swint MJ, Kathren RL (eds.): Evaluation of Health Effects in Sequoyah Fuels Corporation Workers from Accidental

  16. Depletion calculations for the McClellan Nuclear Radiation Center.

    Energy Technology Data Exchange (ETDEWEB)

    Klann, R. T.; Newell, D. L.

    1997-12-08

    Depletion calculations have been performed for the McClellan reactor history from January 1990 through August 1996. A database has been generated for continuing use by operations personnel which contains the isotopic inventory for all fuel elements and fuel-followed control rods maintained at McClellan. The calculations are based on the three-dimensional diffusion theory code REBUS-3 which is available through the Radiation Safety Information Computational Center (RSICC). Burnup-dependent cross-sections were developed at zero power temperatures and full power temperatures using the WIMS code (also available through RSICC). WIMS is based on discretized transport theory to calculate the neutron flux as a function of energy and position in a one-dimensional cell. Based on the initial depletion calculations, a method was developed to allow operations personnel to perform depletion calculations and update the database with a minimal amount of effort. Depletion estimates and calculations can be performed by simply entering the core loading configuration, the position of the control rods at the start and end of cycle, the reactor power level, the duration of the reactor cycle, and the time since the last reactor cycle. The depletion and buildup of isotopes of interest (heavy metal isotopes, erbium isotopes, and fission product poisons) are calculated for all fuel elements and fuel-followed control rods in the MNRC inventory. The reactivity loss from burnup and buildup of fission product poisons and the peak xenon buildup after shutdown are also calculated. The reactivity loss from going from cold zero power to hot full power can also be calculated by using the temperature-dependent, burnup-dependent cross-sections. By calculating all of these reactivity effects, operations personnel are able to estimate the total excess reactivity necessary to run the reactor for the given cycle. This method has also been used to estimate the worth of individual control rods. Using this

  17. Assessment of microalgae biodiesel fuels using a fuel property estimation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, Jonas Colen Ladeia; Vargas, Jose Viriato Coelho; Mariano, Andre Bellin [Center for Research and Development of Sustainable Energy. Universidade Federal do Parana, Curitiba, PR (Brazil)

    2010-07-01

    Recently, depleting supplies of petroleum and the concerns about global warming are drawing attention to alternative sources of energy. In this context, advanced biofuels, derived from non edible superior plants and microorganisms, are presented as promising options for the transportation sector. Biodiesel, which is the most prominent alternative fuel for compression ignition engines, have a large number as potential feedstock, such as plants (e.g., soybean, canola, palm) and microorganism (i.e., microalgae, yeast, fungi and bacterium). In order to determine their potential, most studies focus on the economic viability, but few discuss the technical viability of producing high quality fuels from such feedstock. Since the fuel properties depend on the composition of the parent oil, and considering the variability of the fatty acid profile found in these organisms, it is clear that the fuels derived may present undesirable properties, e.g., high viscosity, low cetane number, low oxidative stability and poor cold flow properties. Therefore, it is very important to develop ways of analysing the fuel quality prior to production, specially considering the high cost of producing and testing several varieties of plants and microorganisms. In this aim, this work presents the use of fuel properties estimation methods on the assessment of the density, viscosity, cetane number and cold filter plugging point of several microalgae derived biofuels, comparing then to more conventional biodiesel fuels. The information gathered with these methods helps on the selection of species and cultivation parameters, which have a high impact on the derived fuel quality, and have been successfully employed on the Center for Research and Development of Sustainable Energy. The results demonstrate that some species of microalgae have the potential to produce high quality biodiesel if cultivated with optimised conditions, associated with the possibility of obtaining valuable long chain

  18. Ozone Depletion by Hydrofluorocarbons

    Science.gov (United States)

    Hurwitz, M.; Fleming, E. L.; Newman, P. A.; Li, F.; Mlawer, E. J.; Cady-Pereira, K. E.; Bailey, R.

    2015-12-01

    Hydrofluorocarbons (HFCs) are second-generation replacements for the chlorofluorocarbons (CFCs), halons and other substances that caused the 'ozone hole'. Atmospheric concentrations of HFCs are projected to increase dramatically in the coming decades. Coupled chemistry-climate simulations forced by these projections show that HFCs will impact the global atmosphere in 2050. As strong radiative forcers, HFCs modulate atmospheric temperature, thereby changing ozone-destroying catalytic cycles and enhancing the stratospheric circulation. These changes lead to a weak depletion of stratospheric ozone. Sensitivity simulations with the NASA Goddard Space Flight Center (GSFC) 2D model show that HFC-125 is the most important contributor to atmospheric change in 2050, as compared with HFC-23, HFC-32, HFC-134a and HFC-143a. Incorporating the interactions between chemistry, radiation and dynamics, for a likely 2050 climate, ozone depletion potentials (ODPs) for HFCs range from 4.3x10-4 to 3.5x10-2; previously HFCs were assumed to have negligible ODPs since these species lack chlorine or bromine atoms. The ozone impacts of HFCs are further investigated with the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). The GEOSCCM is a three-dimensional, fully coupled ocean-atmosphere model with interactive stratospheric chemistry. Sensitivity simulations in which CO2, CFC-11 and HCFC-22 are enhanced individually are used as proxies for the atmospheric response to the HFC concentrations expected by the mid-21st century. Sensitivity simulations provide quantitative estimates of the impacts of these greenhouse gases on global total ozone, and can be used to assess their effects on the recovery of Antarctic ozone.

  19. SCALE Continuous-Energy Monte Carlo Depletion with Parallel KENO in TRITON

    Energy Technology Data Exchange (ETDEWEB)

    Goluoglu, Sedat [ORNL; Bekar, Kursat B [ORNL; Wiarda, Dorothea [ORNL

    2012-01-01

    The TRITON sequence of the SCALE code system is a powerful and robust tool for performing multigroup (MG) reactor physics analysis using either the 2-D deterministic solver NEWT or the 3-D Monte Carlo transport code KENO. However, as with all MG codes, the accuracy of the results depends on the accuracy of the MG cross sections that are generated and/or used. While SCALE resonance self-shielding modules provide rigorous resonance self-shielding, they are based on 1-D models and therefore 2-D or 3-D effects such as heterogeneity of the lattice structures may render final MG cross sections inaccurate. Another potential drawback to MG Monte Carlo depletion is the need to perform resonance self-shielding calculations at each depletion step for each fuel segment that is being depleted. The CPU time and memory required for self-shielding calculations can often eclipse the resources needed for the Monte Carlo transport. This summary presents the results of the new continuous-energy (CE) calculation mode in TRITON. With the new capability, accurate reactor physics analyses can be performed for all types of systems using the SCALE Monte Carlo code KENO as the CE transport solver. In addition, transport calculations can be performed in parallel mode on multiple processors.

  20. Spent Fuel Characteristics Analyses for Thorium-Uranium Breeding Recycle in PWRs%压水堆内钍-铀增殖循环研究——乏燃料特性分析

    Institute of Scientific and Technical Information of China (English)

    毕光文; 司胜义; 张海俊

    2012-01-01

    利用ORIGEN-S程序对压水堆钍基乏燃料的特性进行分析,揭示了钍基乏燃料在放射性毒性、衰变热、γ射线等方面的特性,相关结果可为钍基乏燃料的贮存、后处理和地质处置提供必要的参考.研究的乏燃料是压水堆内钍-铀增殖循环堆芯设计方案中的4种,包括UOX(铀氧化物)、MOX(钚铀混合氧化物)、PuThOX(钚钍混合氧化物)和U3ThOX(工业级233 U-钍混合氧化物).研究结果表明:1)由于超铀核素的含量极低,在卸料后1000年内,U3ThOX的放射性毒性显著低于超铀核素含量高的乏燃料;2)由于232U衰变链中208T1的贡献,钍基乏燃料中2.6 MeV能量附近的γ射线强度明显高于铀基乏燃料,而这一能量附近的γ射线强度在卸料后约10年达到局部峰值,所以,钍基乏燃料的后处理最好避开此时间.%Spent fuel characteristics analyses of thorium-based fuel were investigated using ORIGEN-S code compared with uranium-based fuel. Such parameters as radioactivity, radiotoxicity, decay heat, and gamma ray were considered. Relative results in this work could provide some reference informations for storage, reprocessing and disposal of thorium-based spent fuel. Four type fuels, thorium-based fuel U3ThOX (mixed reactor grade 233U-thorium oxide), PuThOX (mixed reactor grade plutonium-thorium oxide) , uranium-based fuel UOX (uranium oxide) and MOX (mixed reactor grade plu-tonium-uranium oxide) , on the basis of core designs for thorium-uranium breeding recycle in PWRs were investigated. The calculated results show that: 1) Due to extremely low content of transuranic nuclides, the radiotoxicity of U3ThOX is dramatically lower than that of three other types of spent fuel in 1 000 years after discharge; 2) In thorium-based spent fuel the intensity of gamma ray near 2. 6 MeV mainly generated by 208Tl in 232 U decay chain is much stronger than that in uranium-based fuel. The intensity of y ray near 2. 6 MeV reaches a local peak in

  1. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Ross, Kyle W. (Los Alamos National Laboratory, Los Alamos, NM); Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  2. Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.

    Energy Technology Data Exchange (ETDEWEB)

    Garner, P. L.; Hanan, N. A. (Nuclear Engineering Division)

    2011-06-07

    The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

  3. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: analyses of emitted PM, particulate carbon, and PAHs.

    Science.gov (United States)

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Lin, Chih-Chung; Hsieh, Lien-Te; Chiu, Juei-Yu; Kuo, Wen-Chien

    2014-01-01

    Biodiesel is one of alternative energies that have been extensively discussed and studied. This research investigates the characteristics of particulate matter (PM), particulate carbon, and polycyclic aromatic hydrocarbons (PAHs) emitted from a generator fueled by waste-edible-oil-biodiesel with acetone and isopropyl alcohol (IPA) addition. The tested biodieselhols consisted of pure diesel oil (D100) with 1-3 vol.% pure acetone (denoted as A), 1-70 vol.% waste-edible-oil-biodiesel (denoted as W), and 1 vol.% pure isopropyl alcohol (the stabilizer, denoted as P). The results show that in comparison to W1D99, W3D97, W5D95, W10D90, and W20D80, the use of biodieselhols achieved additional reduction of PM and particulate organic carbon (OC) emission, and such reduction increased as the addition percentage of pure acetone increased. Regardless of the percentages of added waste-edible-oil-biodiesel, acetone, and isopropyl alcohol, the use of biodieselhol in place of D100 could reduce the emissions of Total-PAHs (by 6.13-42.5% (average = 24.1%)) and Total-BaPeq (by 16.6-74.8% (average = 53.2%)) from the diesel engine generator. Accordingly, the W/D blended fuels (W<20 vol.%) containing acetone (1-3 vol.%) and isopropyl alcohol (1 vol.%) are a potential alternative fuel for diesel engine generators because they substantially reduce emissions of PM, particulate OC, Total-PAHs, and Total-BaPeq. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  5. DC-DC converters for fuel cell systems. Analysis, comparision and evaluation of different concepts; Gleichspannungswandler fuer Brennstoffzellensysteme. Analyse, Vergleich und Bewertung unterschiedlicher Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Averberg, Andreas

    2009-07-01

    Fuel cells in the kW range have relatively high output currents and low output voltages, which strongly depend on the load. Furthermore, ripple currents have a negative impact on efficiency and lifetime of the cells. These characteristics have to be taken into consideration in the design process of a dc-dc converter for fuel cell applications. This work focuses on the investigation of voltage-fed, current-fed and two-stage converters, comparing them with respect to their suitability for the use in fuel cell systems. For this purpose, analytical calculations are given, completely describing the operating behaviour of each individual topology. As a consequence, it is possible to present the trend of characteristic values as e.g. rms currents in all devices and the magnetic stress in the inductive components, depending on topology and operating parameters. The impact of switching frequency, the transformer's leakage inductance and its winding ratio and the value of an optional input or output inductor is clearly and completely stated out. Furthermore, depending on the aforementioned papameters, the location of optimum efficiency can be specified for all operating conditions. The power losses can be divided into their single parts. In this way, an optimised converter design is provided. Due to the leakage inductance in combination with a high switching frequency, the transferable power is limited in the investigated one-stage converters. This can especially be noticed in low input voltage applications, as is the case in fuel cell systems. An analytical equation for the maximum power of each dc-dc converter is deduced. Base on the analytical investigations, a comparison of the different dc-dc converters is done. Assuming equal chip areas of the semiconductor devices, equal ripple currents at the input of each topology and with consideration of the overall installed size, the converter efficiencies are calculated for full load as well as for partial load. This

  6. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  7. Depletable resources and the economy.

    NARCIS (Netherlands)

    Heijman, W.J.M.

    1991-01-01

    The subject of this thesis is the depletion of scarce resources. The main question to be answered is how to avoid future resource crises. After dealing with the complex relation between nature and economics, three important concepts in relation with resource depletion are discussed: steady state, ti

  8. Industrial Fuel Gas Demonstration Plant Program. Conceptual design and evaluation of commercial plant. Volume III. Economic analyses (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This report presents the results of Task I of Phase I in the form of a Conceptual Design and Evaluation of Commercial Plant report. The report is presented in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume III presents the economic analyses for the commercial plant and the supporting data. General cost and financing factors used in the analyses are tabulated. Three financing modes are considered. The product gas cost calculation procedure is identified and appendices present computer inputs and sample computer outputs for the MLGW, Utility, and Industry Base Cases. The results of the base case cost analyses for plant fenceline gas costs are as follows: Municipal Utility, (e.g. MLGW), $3.76/MM Btu; Investor Owned Utility, (25% equity), $4.48/MM Btu; and Investor Case, (100% equity), $5.21/MM Btu. The results of 47 IFG product cost sensitivity cases involving a dozen sensitivity variables are presented. Plant half size, coal cost, plant investment, and return on equity (industrial) are the most important sensitivity variables. Volume III also presents a summary discussion of the socioeconomic impact of the plant and a discussion of possible commercial incentives for development of IFG plants.

  9. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  10. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  11. Kr ion irradiation study of the depleted-uranium alloys

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.

    2010-12-01

    Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  12. High homocysteine induces betaine depletion.

    Science.gov (United States)

    Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J

    2015-04-28

    Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte.

  13. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, Jesus S. [Univ. Politecnica de Madrid (Spain); Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William BJ J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10×10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  14. Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Andrew [ORNL; Todosow, Michael [Brookhaven National Laboratory (BNL)

    2016-01-01

    Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include: increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance

  15. Mitochondrial DNA depletion analysis by pseudogene ratioing.

    Science.gov (United States)

    Swerdlow, Russell H; Redpath, Gerard T; Binder, Daniel R; Davis, John N; VandenBerg, Scott R

    2006-01-30

    The mitochondrial DNA (mtDNA) depletion status of rho(0) cell lines is typically assessed by hybridization or polymerase chain reaction (PCR) experiments, in which the failure to hybridize mtDNA or amplify mtDNA using mtDNA-directed primers suggests thorough mitochondrial genome removal. Here, we report the use of an mtDNA pseudogene ratioing technique for the additional confirmation of rho0 status. Total genomic DNA from a U251 human glioma cell line treated with ethidium bromide was amplified using primers designed to anneal either mtDNA or a previously described nuclear DNA-embedded mtDNA pseudogene (mtDNApsi). The resultant PCR product was used to generate plasmid clones. Sixty-two plasmid clones were genotyped, and all arose from mtDNApsi template. These data allowed us to determine with 95% confidence that the resultant mtDNA-depleted cell line contains less than one copy of mtDNA per 10 cells. Unlike previous hybridization or PCR-based analyses of mtDNA depletion, this mtDNApsi ratioing technique does not rely on interpretation of a negative result, and may prove useful as an adjunct for the determination of rho0 status or mtDNA copy number.

  16. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  17. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    OpenAIRE

    Yoonhee Lee; Bumhee Cho; Nam Zin Cho

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatu...

  18. Depleting depletion: Polymer swelling in poor solvent mixtures

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos; Stuehn, Torsten; Kremer, Kurt

    A polymer collapses in a solvent when the solvent particles dislike monomers more than the repulsion between monomers. This leads to an effective attraction between monomers, also referred to as depletion induced attraction. This attraction is the key factor behind standard polymer collapse in poor solvents. Strikingly, even if a polymer exhibits poor solvent condition in two different solvents, it can also swell in mixtures of these two poor solvents. This collapse-swelling-collapse scenario is displayed by poly(methyl methacrylate) (PMMA) in aqueous alcohol. Using molecular dynamics simulations of a thermodynamically consistent generic model and theoretical arguments, we unveil the microscopic origin of this phenomenon. Our analysis suggests that a subtle interplay of the bulk solution properties and the local depletion forces reduces depletion effects, thus dictating polymer swelling in poor solvent mixtures.

  19. Extension of hybrid micro-depletion model for decay heat calculation in the DYN3D code

    Energy Technology Data Exchange (ETDEWEB)

    Bilodid, Yurii; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety; Kotlyar, D. [Georgia Institute of Technology, Atlanta, GA (United States); Shwageraus, E. [Cambridge Univ. (United Kingdom)

    2017-06-01

    This work extends the hybrid micro-depletion methodology, recently implemented in DYN3D, to the decay heat calculation by accounting explicitly for the heat contribution from the decay of each nuclide in the fuel.

  20. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  1. Rotational Mixing and Lithium Depletion

    CERN Document Server

    Pinsonneault, M H

    2010-01-01

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  2. Charge depletion in organic heterojunction

    Science.gov (United States)

    Ng, T. W.; Lo, M. F.; Lee, S. T.; Lee, C. S.

    2012-03-01

    Until now two types of organic-organic heterojunction (OHJ) have been observed in P-N junctions formed between undoped-organic semiconductors. Charge-transfers across OHJs are either negligible or showing electron transfer from P-type to N-type materials, leading to charges accumulation near the interface. Here, we observed that junction of 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA)/bathocuproine (BCP) show the third-behavior. Electrons in BCP (N-type) transfer to m-MTDATA (P-type), leading to depletion of mobile majority carriers near the junction. While "depletion junctions" are typical in inorganic semiconductors, there are no reports in undoped-OHJ. Formation mechanism of depletion OHJs and fundamental differences between inorganic and organic HJs are discussed.

  3. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  4. Impact of mineral resource depletion

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available In a letter to the editor, the authors comment on BA Steen's article on "Abiotic Resource Depletion: different perceptions of the problem with mineral deposits" published in the special issue of the International Journal of Life Cycle Assessment...

  5. Global depletion of groundwater resources

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P.

    2010-01-01

    In regions with frequent water stress and large aquifer systems groundwater is often used as an additional water source. If groundwater abstraction exceeds the natural groundwater recharge for extensive areas and long times, overexploitation or persistent groundwater depletion occurs. Here we provid

  6. VIRTUAL FUEL-PUMP DESIGN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some concepts of virtual product are discussed. The key technologies of virtual fuel-pump development are in detail analysed, which include virtual fuel-pump product modeling, intelligent simulation, distributed design environment, and virtual assembly. The virtual fuel-pump development prototype system considers requirement analysis, concept design, injection preferment analysis, detailed design, and assembly analysis.

  7. Fuel assembly reconstitution

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos, E-mail: mongeor@eletronuclear.gov.b [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil)

    2009-07-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  8. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    Energy Technology Data Exchange (ETDEWEB)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its

  9. AFC-1 Transmutation Fuels Post-Irradiation Hot Cell Examination 4-8 at.% - Final Report (Irradiation Experiments AFC-1B, -1F and -1Æ)

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hilton; Douglas Porter; Steven Hayes

    2006-09-01

    The AFC-1B, AFC-1F and AFC-1Æ irradiation tests are part of a series of test irradiations designed to evaluate the feasibility of the use of actinide bearing fuel forms in advanced fuel cycles for the transmutation of transuranic elements from nuclear waste. The tests were irradiated in the Idaho National Laboratory’s (INL) Advanced Test Reactor (ATR) to an intermediate burnup of 4 to 8 at% (2.7 - 6.8 x 1020 fiss/cm3). The tests contain metallic and nitride fuel forms with non-fertile (i.e., no uranium) and low-fertile (i.e., uranium bearing) compositions. Results of postirradiation hot cell examinations of AFC-1 irradiation tests are reported for eleven metallic alloy transmutation fuel rodlets and five nitride transmutation fuel rodlets. Non-destructive examinations included visual examination, dimensional inspection, gamma scan analysis, and neutron radiography. Detailed examinations, including fission gas puncture and analysis, metallography / ceramography and isotopics and burnup analyses, were performed on five metallic alloy and three nitride transmutation fuels. Fuel performance of both metallic alloy and nitride fuel forms was best correlated with fission density as a burnup metric rather than at.% depletion. The actinide bearing transmutation metallic alloy compositions exhibit irradiation performance very similar to U-xPu-10Zr fuel at equivalent fission densities. The irradiation performance of nitride transmutation fuels was comparable to limited data published on mixed nitride systems.

  10. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Science.gov (United States)

    Brémier, S.; Inagaki, K.; Capriotti, L.; Poeml, P.; Ogata, T.; Ohta, H.; Rondinella, V. V.

    2016-11-01

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15-20 μm and migration of cladding elements to the fuel.

  11. Impact of uranium concentration reduction in side plates of the fuel elements of IEA-R1 reactor on neutronic and thermal hydraulic analyses; Impacto da reducao na concentracao de uranio nas placas laterais dos elementos combustiveis do reator IEA-R1 nas analises neutronica e termo-hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Ilka Antonia

    2013-09-01

    This master thesis presents a study to verify the impact of the uranium concentration reduction in the side plates of the reactor IEA-R1 fuel elements on the neutronic and thermal-hydraulic analyses. To develop such study, a previous IPEN-CNEN/SP research was reproduced by simulating the fuel elements burn-up, with side plate uranium density reduced to 50, 60 and 70% of the standard fuel element plates. This research begins with the neutronic analysis using the computer code HAMMER and the first step consists in the calculation of the cross section of all materials presented at the reactor core, with their initial concentration; the second step consists in the calculation of the fast and thermal neutron group fluxes and power densities for fuel elements using the computer code CITATION. HAMMER output data is used as input data. Once the neutronic analysis is finished and the most critical fuel elements with highest power density have been defined, the thermal-hydraulics analysis begins. This analysis uses MCTR-IEA-R1 thermal-hydraulics model, which equations are solved by commercial code EES. Thermalhydraulics analysis input is the power density data calculated by CITATION: it is considered the highest power density on each fuel element, where there is a higher energy release and, consequently, higher temperatures. This data is used on energy balance equations to calculate temperatures on critical fuel element regions. Reactor operation comparison for three different uranium densities on fuel side plates is presented. Uranium density reduction contributes to the cladding surface temperature to remain below the established limit, as reactor operation safety requirement and it does not affect significantly fuel element final burn-up nor reactor reactivity. The reduction of uranium in the side plates of the fuel elements of the IEA-R1 showed to be a viable option to avoid corrosion problems due to high temperatures. (author)

  12. Utilisation de produits organiques oxygénés comme carburants et combustibles dans les moteurs. Deuxième partie : Les différentes filières d'obtention des carburols. Analyse technico-économique Using Oxygenated Organic Products As Fuels in Engines. Part Two: Different Systems for Producing Alcohol Fuels. Technico-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Chauvel A.

    2006-11-01

    Full Text Available Parmi les produits à même d'être substitués aux hydrocarbures pour la constitution des carburants, les composés organiques oxygénés occupent une place prépondérante à cause de leurs caractéristiques favorables à la combustion dans les moteurs, qu'ils soient employés purs ou mélangés (seuls ou à plusieurs aux hydrocarbures, constituants des carburants classiques. Dans cet article, ces composés oxygénés sont désignés sous le nom de carburols. Alors que l'objet de la première partie de l'étude a été d'examiner les conséquences techniques de l'emploi de ces produits sur les circuits de distribution et le fonctionnement des véhicules, il s'agit dans la présente partie d'analyser les caractéristiques technico-économiques de leur fabrication. En particulier, on y aborde successivement les points suivants : - disponibilités en matières premières : ressources fossiles et végétales ; - analyse technique des divers modes d'obtention - analyse économique ; - programmes nationaux. Among products that can be substituted for hydrocarbons for producing fuels, oxygenated organic compounds occupy a preponderant position because of their favorable characteristics for combustion in engines whether they are used in a pure form or in mixtures (alone or severally with hydrocarbons which are used to make up conventional fuels. In this article these oxygenated compounds are given the name carburols (alcohol fuels. Whereas the aim of Part 1 was to examine the technical consequences of using such products in distribution circuits and for vehicle operating, Part 2 is an analysis of the technico-economic aspects of manufacturing them. In particular, the following points are taken up successively: (a availabilities of raw materials. fossil and vegetebal resources; (b technical analysis of various production methods; (c economic analysis; (d national programs. Depending on the amounts involved, a distinction is made among alternative

  13. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  14. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  15. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  16. Product analyses and kinetic studies on gas phase oxidation of the fuel additive ethyl tert-butyl ether and its products; Produktanalysen und Kinetikuntersuchungen der Gasphasenoxidation des Kraftstoffadditivs Ethyl-tert-butylether und seiner Produkte

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Thuener, L.

    1997-04-01

    The widespread use of the additive ETBE in gasoline leads to an increased release of this compound into the atmosphere via evaporation or exhaust fumes. In order to determine the influence of this additive on trace gas cycles it is first necessary to carry out studies on the degradation mechanisms and pertinent kinetic properties of this substance. The aim of the present study was to examine the degradation mechanisms of the fuel additive t-butyl ethyl ether under atmospheric conditions. The reactions of the main degradation products (t-butyl formiate and t-butyl acetate, together ca. 80%) were also studied in order to obtain as complete a picture of the degradation paths as possible. This was to permit an assessment of the influence of ETBE and its products on tropospheric trace gas cycles and ozone formation. [Deutsch] Bei haeufigem Zusatz von ETBE in Benzin wird diese Verbindung durch Verdampfung oder als Abgas verstaerkt in die Atmosphaere abgegeben. Um den Einfluss des Additivs auf die Spurengas-Kreislaeufe zu bestimmen, sind daher Untersuchungen noetig, um die Abbau-Mechanismen und die zugehoerigen kinetischen Daten zu ermitteln. Das Ziel dieser Arbeit ist die Untersuchung der Abbaumechanismen des Kraftstoffadditivs t-Butylethylether unter atmosphaerischen Bedingungen. Fuer eine moeglichst vollstaendige Analyse des Abbauweges werden auch die Reaktionen der Hauptabbauprodukte (t-Butylformiat und t-Butylacetat, zusammen etwa 80%) untersucht. Dadurch soll der Einfluss auf troposphaerische Spurengas-Kreislaeufe und auf die Ozonbildung von ETBE und seinen Produkten abgeschaetzt werden. (orig./SR)

  17. Ozone Depletion from Nearby Supernovae

    CERN Document Server

    Gehrels, N; Jackman, C H; Cannizzo, J K; Mattson, B J; Chen, W; Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan

    2003-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time, improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion roughly to double the ``biologically active'' UV flux received at the surface of the Earth, the supernova mu...

  18. Ozone Depletion from Nearby Supernovae

    Science.gov (United States)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  19. Ozone depletion, paradigms, and politics

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  20. DURABILITY OF DEPLETED URANIUM AGGREGATES (DUAGG) IN DUCRETE SHIELDING APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, Catherine H.; Dole, Leslie R.

    2003-02-27

    The depleted uranium (DU) inventory in the United States exceeds 500,000 metric tonnes. To evaluate the possibilities for reuse of this stockpile of DU, the U.S. Department of Energy (DOE) has created a research and development program to address the disposition of its DU(1). One potential use for this stockpile material is in the fabrication of nuclear shielding casks for the storage, transport, and disposal of spent nuclear fuels. The use of the DU-based shielding would reduce the size and weight of the casks while allowing a level of protection from neutrons and gamma rays comparable to that afforded by steel and concrete. DUAGG (depleted uranium aggregate) is formed of depleted uranium dioxide (DUO2) sintered with a synthetic-basalt-based binder. This study was designed to investigate possible deleterious reactions that could occur between the cement paste and the DUAGG. After 13 months of exposure to a cement pore solution, no deleterious expansive mineral phases were observed to form either with the DUO2 or with the simulated-basalt sintering phases. In the early stages of these exposure tests, Oak Ridge National Laboratory preliminary results confirm that the surface reactions of this aggregate proceed more slowly than expected. This finding may indicate that DUAGG/DUCRETE (depleted uranium concrete) casks could have service lives sufficient to meet the projected needs of DOE and the commercial nuclear power industry.

  1. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    Science.gov (United States)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  2. A sensitivity study on DUPIC fuel composition

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong

    1997-01-01

    In DUPIC fuel cycle, the spent pressurized water reactor (PWR) fuel is refabricated as a DUPIC fuel by a dry process. Because the spent PWR fuel composition depends on the initial enrichment and burnup condition of PWR fuel, the composition of a DUPIC fuel is not uniquely defined. Therefore, for the purpose of reducing the effects of such a composition heterogeneity on core performance, a composition adjustment of DUPIC fuel was studies. The composition adjustment was made in two steps: mixing two spent PWR fuel assemblies of higher and lower {sup 239}Pu contents and blending in fresh uranium with the mixed spent PWR fuels. Because the fuel and core performances depend on both the absolute amount of fissile isotopes and the ratio of major fissile isotope contents, a parametric study was performed to determine the reference compositions of {sup 235}U and {sup 239}Pu. The reference enrichments of {sup 235}U and {sup 239}Pu were determined such that the DUPIC core performance is comparable to that of a natural uranium core with high spent PWR fuel utilization and low fuel cycle cost. Under this condition, it is possible to utilize 90% of spent PWR fuels as the DUPIC fuel formula. On average, the amounts of slightly enriched and depleted uranium used for blending correspond to 8.6% and 10.6%, respectively, of the mass of candidate spent PWR fuels. (author). 16 refs., 30 tabs., 9 figs.

  3. Bio-fuels for the gas turbine: A review

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K. [Mechanical Engineering Department, Medi-Caps Institute of Technology and Management, Pigdamber, Rau, Indore (M.P.) (India); Rehman, A.; Sarviya, R.M. [Department of Mechanical Engineering, MANIT, Bhopal (M.P.) (India)

    2010-12-15

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  4. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  5. Environmentally safe aviation fuels

    Science.gov (United States)

    Liberio, Patricia D.

    1995-01-01

    In response to the Air Force directive to remove Ozone Depleting Chemicals (ODC's) from military specifications and Defense Logistics Agency's Hazardous Waste Minimization Program, we are faced with how to ensure a quality aviation fuel without using such chemicals. Many of these chemicals are found throughout the fuel and fuel related military specifications and are part of test methods that help qualify the properties and quality of the fuels before they are procured. Many years ago there was a directive for military specifications to use commercially standard test methods in order to provide standard testing in private industry and government. As a result the test methods used in military specifications are governed by the American Society of Testing and Materials (ASTM). The Air Force has been very proactive in the removal or replacement of the ODC's and hazardous materials in these test methods. For example, ASTM D3703 (Standard Test Method for Peroxide Number of Aviation Turbine Fuels), requires the use of Freon 113, a known ODC. A new rapid, portable hydroperoxide test for jet fuels similar to ASTM D3703 that does not require the use of ODC's has been developed. This test has proved, in limited testing, to be a viable substitute method for ASTM D3703. The Air Force is currently conducting a round robin to allow the method to be accepted by ASTM and therefore replace the current method. This paper will describe the Air Force's initiatives to remove ODC's and hazardous materials from the fuel and fuel related military specifications that the Air Force Wright Laboratory.

  6. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... of the fuel heating value. In addition, the devolatilization time of alternative fuels cannot be neglected in kiln system process analyses, as these fuels are typically in the cm-size with devolatilization times in the order of minutes. The devolatilization characteristics of large particles of tyre rubber...... time, where increased particle size increased the devolatilization time. Model analyses demonstrated that the overall devolatilization kinetics of large particles of tyre rubber is mainly controlled by heat transfer and intrinsic pyrolysis kinetics, whereas mass transfer has negligible influence...

  7. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wilson

    2001-02-08

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  8. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  9. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  10. The Case of Ozone Depletion

    Science.gov (United States)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  11. Kvalitative analyser ..

    DEFF Research Database (Denmark)

    Boolsen, Merete Watt

    bogen forklarer de fundamentale trin i forskningsprocessen og applikerer dem på udvalgte kvalitative analyser: indholdsanalyse, Grounded Theory, argumentationsanalyse og diskursanalyse......bogen forklarer de fundamentale trin i forskningsprocessen og applikerer dem på udvalgte kvalitative analyser: indholdsanalyse, Grounded Theory, argumentationsanalyse og diskursanalyse...

  12. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee

    2016-06-01

    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  13. Action orientation overcomes the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Shi, Yucai; Mao, Lihua

    2015-04-01

    It has been consistently demonstrated that initial exertion of self-control had negative influence on people's performance on subsequent self-control tasks. This phenomenon is referred to as the ego depletion effect. Based on action control theory, the current research investigated whether the ego depletion effect could be moderated by individuals' action versus state orientation. Our results showed that only state-oriented individuals exhibited ego depletion. For individuals with action orientation, however, their performance was not influenced by initial exertion of self-control. The beneficial effect of action orientation against ego depletion in our experiment results from its facilitation for adapting to the depleting task.

  14. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  15. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  16. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  17. Physics of Fully Depleted CCDs

    CERN Document Server

    Holland, S E; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

  18. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    Science.gov (United States)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  19. Aviation fuel and future oil production scenarios

    OpenAIRE

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after re...

  20. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  1. Use of burnup credit in criticality evaluation for spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Je Keun; Kim, Jae Chun; Koh, Duck Joon; Kim Byung Tae [Nuclear Environment Technology Institute, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum k{sub e}ff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)

  2. Safety evaluation for packaging (onsite) depleted uranium waste boxes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, W.A.

    1997-08-27

    This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

  3. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  4. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  5. Depletion methodology in the 3-D whole core transport code DeCART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Zee, Sung Quun

    2005-02-01

    Three dimensional whole-core transport code DeCART has been developed to include a characteristics of the numerical reactor to replace partly the experiment. This code adopts the deterministic method in simulating the neutron behavior with the least assumption and approximation. This neutronic code is also coupled with the thermal hydraulic code CFD and the thermo mechanical code to simulate the combined effects. Depletion module has been implemented in DeCART code to predict the depleted composition in the fuel. The exponential matrix method of ORIGEN-2 has been used for the depletion calculation. The library of including decay constants, yield matrix and others has been used and greatly simplified for the calculation efficiency. This report summarizes the theoretical backgrounds and includes the verification of the depletion module in DeCART by performing the benchmark calculations.

  6. Inhomogeneous depletion of oxygen ions in metal oxide nanoparticles

    Science.gov (United States)

    Vykhodets, Vladimir B.; Jarvis, Emily A. A.; Kurennykh, Tatiana E.; Beketov, Igor V.; Obukhov, Sviatoslav I.; Samatov, Oleg M.; Medvedev, Anatoly I.; Davletshin, Andrey E.; Whyte, Travis H.

    2016-02-01

    Zirconia and yttria stabilized zirconia (YSZ) have multiple uses, including catalysis, fuel cells, dental applications, and thermal coatings. We employ nuclear reaction analysis to determine elemental composition of YSZ nanoparticles synthesized by laser evaporation including 18O studies to distinguish between oxide and adsorbed oxygen content as a function of surface area. We see dramatic deviation from stoichiometry that can be traced to loss of oxygen from the oxide near the surface of these nanopowders. Density functional calculations are coupled with these experimental studies to explore the electronic structure of nonstoichiometric surfaces achieved through depletion of oxygen. Our results show oxygen-depleted surfaces present under oxygen potentials where stoichiometric, oxygen-terminated surfaces would be favored thermodynamically for crystalline systems. Oxygen depletion at nanopowder surfaces can create effective two-dimensional surface metallic states while maintaining stoichiometry in the underlying nanoparticle core. This insight into nanopowder surfaces applies to dissimilar oxides of aluminum and zirconium indicating synthesis conditions may be more influential than the inherent oxide properties and displaying need for distinct models for nanopowders of these important engineering materials where surface chemistry dominates performance.

  7. Ego depletion increases risk-taking.

    Science.gov (United States)

    Fischer, Peter; Kastenmüller, Andreas; Asal, Kathrin

    2012-01-01

    We investigated how the availability of self-control resources affects risk-taking inclinations and behaviors. We proposed that risk-taking often occurs from suboptimal decision processes and heuristic information processing (e.g., when a smoker suppresses or neglects information about the health risks of smoking). Research revealed that depleted self-regulation resources are associated with reduced intellectual performance and reduced abilities to regulate spontaneous and automatic responses (e.g., control aggressive responses in the face of frustration). The present studies transferred these ideas to the area of risk-taking. We propose that risk-taking is increased when individuals find themselves in a state of reduced cognitive self-control resources (ego-depletion). Four studies supported these ideas. In Study 1, ego-depleted participants reported higher levels of sensation seeking than non-depleted participants. In Study 2, ego-depleted participants showed higher levels of risk-tolerance in critical road traffic situations than non-depleted participants. In Study 3, we ruled out two alternative explanations for these results: neither cognitive load nor feelings of anger mediated the effect of ego-depletion on risk-taking. Finally, Study 4 clarified the underlying psychological process: ego-depleted participants feel more cognitively exhausted than non-depleted participants and thus are more willing to take risks. Discussion focuses on the theoretical and practical implications of these findings.

  8. Monolithic cells for solar fuels

    OpenAIRE

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; TAULELLE, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan

    2014-01-01

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutio...

  9. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  10. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  11. Investigation of intranodal depletion effects

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. E-mail: petri.forslund@se.abb.com; Mueller, E.; Lindahl, S

    2001-02-01

    The modeling of depletion induced intranodal effects on important neutron physical parameters in nodal diffusion theory is addressed. Consideration is given to two situations where these aspects are of particular interest, namely, in mixed oxide cores where strong interaction between uranium and plutonium mixed oxide assemblies occur, and in boiling water reactor cores where significant control rod history effects are encountered. A model based on a low order polynomial representation of intranodal cross-section spatial behaviour is considered. Two approaches for determining the constraints for the polynomial fitting procedure are applied. The first one is a conventional method employing intranodal exposure values, whereas the second model combines intranodal exposure and isotopic inventory information. Numerical studies are performed in order to evaluate the relative merits of the different models. It is demonstrated that pin power predictions are significantly influenced by intranodal effects. It is also found that the combined use of intranodal isotopic inventory and exposure distributions for estimating intranodal cross-section behaviour significantly improves the accuracy in pin powers over the more traditional approach of utilizing exposure distributions only.

  12. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  13. Analysis of early ageing of PEM fuel cell stacks in a SAM light electric vehicle; Analyse der vorzeitigen Alterung des PEM-Stacks im LEV SAM - Jahresbericht/Schlussbericht 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hoeckel, M.; Ruge, M.

    2006-12-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of investigations concerning a PEM fuel cell stack made at the University of Applied Sciences in Bienne, Switzerland. The six-kilowatt stack showed considerable loss of power over a two-year period. The reasons behind these losses are discussed, including those caused by insufficient sealing and long periods of standstill. The measurements made on the fuel cell stack are presented and discussed. The causes of the loss of power are discussed and resulting modifications made to the stack are described. Recommendations concerning the regular use of the fuel cell stack are made in order to ensure correct operation in the future.

  14. Tylosin depletion in edible tissues of turkeys.

    Science.gov (United States)

    Montesissa, C; De Liguoro, M; Santi, A; Capolongo, F; Biancotto, G

    1999-10-01

    The depletion of tylosin residues in edible turkey tissues was followed after 3 days of administration of tylosin tartrate at 500 mg l-1 in drinking water, to 30 turkeys. Immediately after the end of the treatment (day 0) and at day 1, 3, 5 and 10 of withdrawal, six turkeys (three males and three females) per time were sacrificed and samples of edible tissues were collected. Tissue homogenates were extracted, purified and analysed by HPLC according to a method previously published for the analysis of tylosin residues in pig tissues. In all tissues, tylosin residues were already below the detection limits of 50 micrograms kg-1 at time zero. However, in several samples of tissues (skin + fat, liver, kidney, muscle), from the six turkeys sacrificed at that time, one peak corresponding to an unknown tylosin equivalent was detected at measurable concentrations. The identification of this unknown compound was performed by LC-MS/MS analysis of the extracts from incurred samples. The mass fragmentation of the compound was consistent with the structure of tylosin D (the alcoholic derivative of tylosin A), the major metabolite of tylosin previously recovered and identified in tissues and/or excreta from treated chickens, cattle and pigs.

  15. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  16. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  17. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  18. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; Vet, De Emely; Ridder, De Denise T.D.

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  19. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.|info:eu-repo/dai/nl/304823023; Fennis, Bob M.; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  20. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  1. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  2. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  3. Untapped Fossil Fuel and the Green Paradox: A classroom calibration of the optimal carbon tax

    OpenAIRE

    Rick van der Ploeg

    2013-01-01

    A classroom model of global warming, fossil fuel depletion and the optimal carbon tax is formulated and calibrated. It features iso-elastic fossil fuel demand, stock-dependent fossil fuel extraction costs, an exogenous interest rate and no decay of the atmospheric stock of carbon. The optimal carbon tax reduces emissions from burning fossil fuel, both in the short and medium run. Furthermore, it brings forward the date that renewables take over from fossil fuel and encourages the market to ke...

  4. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  5. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  6. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  7. Influence of bio-additives on combustion of liquid fuels

    Science.gov (United States)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  8. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  9. Sensitivity analysis on fuel scenario associated magnitudes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martinez, M.; Alvarez-Velarde, F.

    2014-07-01

    Nuclear fuel cycle scenario analyses are needed as a support for policy makers in terms of sustainability, fuel diversity, security of supply, and social and environmental effects. These analyses are usually aimed to the study of the impact of certain hypotheses on some fuel cycle indicators, without considering the uncertainties on those hypotheses. The expert group of the NEA/OECD on Advanced Fuel Cycle Scenarios, where this work is framed, is devoted to fill this gap, laying the foundations for deep analysis of the sensibilities on fuel cycle indicators. (Author)

  10. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  11. Specifying the differentiated contribution of farmers to groundwater depletion in two irrigated areas in North Africa

    Science.gov (United States)

    Ameur, Fatah; Amichi, Hichem; Kuper, Marcel; Hammani, Ali

    2017-09-01

    Much attention has been paid to the issue of groundwater depletion linked to intensive groundwater-based agriculture in (semi-)arid areas. Often referred to as the "overexploitation" of aquifers, groundwater depletion is generally attributed to the entire agricultural sector without distinguishing between different uses and users. Although it expresses a general concern for future users, the ambiguous term of "overexploitation" does not acknowledge the contested nature of groundwater use and emerging inequalities. Also, the impact of inequality on groundwater depletion is rarely questioned. The aim of this article is to investigate how and by whom groundwater is depleted, and in turn, how unequal access to groundwater fuels the socioeconomic differentiation of farms and groundwater depletion. Based on a detailed analysis of groundwater use from a user perspective in two irrigated areas in North Africa (Morocco and Algeria), this study shows how the context of groundwater depletion exacerbates—and is exacerbated by—existing inequalities. The paper concludes that knowing how much is withdrawn, where, and by whom provides helpful information for more informed groundwater management by a better understanding of the response of users to declining groundwater conditions and the interests and incentives of different social categories of famers to contribute to groundwater management.

  12. Energy Return on Investment from Recycling Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  13. Biodiesel Fuel Production from Algae as Renewable Energy

    OpenAIRE

    Sharif Hossain, A.B.M.; Aishah Salleh; Amru Nasrulhaq Boyce; Partha chowdhury; Mohd Naqiuddin

    2008-01-01

    Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO...

  14. Possible ozone depletions following nuclear explosions

    Science.gov (United States)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  15. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  16. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region.

  17. Development of new ORIGEN2 data library sets for research reactors with light water cooled oxide and silicide LEU (20 w/o) fuels based on JENDL-3.3 nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong, E-mail: liemph@nais.ne.jp [Nippon Advanced Information Service (NAIS Co., Inc.), 416 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112 (Japan); Sembiring, Tagor Malem [Center for Reactor Technology and Nuclear Safety Indonesian National Nuclear Energy Agency (BATAN), Puspiptek Complex, Building No. 80, Serpong, Tangerang 15310 (Indonesia)

    2013-09-15

    Highlights: • We developed new ORIGEN2 data library sets for research reactors based on JENDL-3.3. • The sets cover oxide and silicide LEU fuels with meat density up to 4.74 g U/cm{sup 3}. • Two kinds of data library sets are available: fuel region and non-fuel regions. • We verified the new data library sets with other codes. • We validated the new data library against a non-destructive test. -- Abstract: New sets of ORIGEN2 data library dedicated to research/testing reactors with light water cooled oxide and silicide LEU fuel plates based on JENDL-3.3 nuclear data were developed, verified and validated. The new sets are considered to be an extension of the most recent release of ORIGEN2.2UPJ code, i.e. the ORLIBJ33 library sets. The newly generated ORIGEN2 data library sets cover both oxide and silicide LEU fuels with fuel meat density range from 2.96 to 4.74 g U/cm{sup 3} used in the present and future operation of the Indonesian 30 MWth RSG GAS research reactor. The new sets are expected applicable also for other research/testing reactors which utilize similar fuels or have similar neutron spectral indices. In addition to the traditional ORIGEN2 library sets for fuel depletion analyses in fuel regions, in the new data library sets, new ORIGEN2 library sets for irradiation/activation analyses were also prepared which cover all representative non-fuel regions of RSG GAS such as reflector elements, irradiation facilities, etc. whose neutron spectra are significantly softer than fuel regions. Verification with other codes as well as validation with a non-destructive test result showed promising results where a good agreement was confirmed.

  18. Polar stratospheric clouds and ozone depletion

    Science.gov (United States)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  19. [Hepatomioneuropathy secondary to mitochondrial DNA depletion].

    Science.gov (United States)

    Blanco-Barca, M O; Gómez-Lado, C; Campos-González, Y; Castro-Gago, M

    2007-04-01

    Mitochondrial DNA depletion (mtDNA) is an highly heterogeneous condition characterized by a decreased number of mtDNA copies. The patient is a 22-month-old girl with generalized hypotonia, marked weakness, respiratory failure, arterial hypertension, hyperlactacidemia, hepatosplenomegaly and mild hypertransaminasemia without hepatic failure neither hypoketotic hypoglycemia. Electromyographic findings were consistent with neuromyopathy and muscle biopsy suggested a neurogenic atrophy. Electron microscopy revealed lipid droplets, subsarcolemmal accumulation of mitochondrias and glycogen granules. Respiratory chain enzime activities were normal. Genetic study in muscle showed mtDNA depletion, and the diagnosis of spinal muscular atrophy caused by survival motoneuron gene deletion was excluded. This case might be a novel phenotype of mtDNA depletion which could be named hepatomioneuropatyc form. A normal result of respiratory chain enzimes in muscle doesn't excluded mtDNA depletion.

  20. Depleted bulk heterojunction colloidal quantum dot photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, D.A.R. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); IBM Thomas J. Watson Research Center, Kitchawan Road, Yorktown Heights, NY, 10598 (United States); Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Levina, Larissa; Sargent, Edward H. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Pattantyus-Abraham, Andras G. [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Quantum Solar Power Corporation, 1055 W. Hastings, Ste. 300, Vancouver, BC, V6E 2E9 (Canada); Etgar, Lioz; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2011-07-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of Riverbed Conductance on Stream Depletion

    Science.gov (United States)

    Lackey, G.; Neupauer, R. M.; Pitlick, J.

    2012-12-01

    In the western United States and other regions of the world where growing population and changing climates are threatening water supplies, accurate modeling of potential human impacts on water resources is becoming more important. Stream depletion, the reduction of surface water flow due to the extraction of groundwater from a hydraulically connected aquifer, is one of the more direct ways that development can alter water availability, degrade water quality and endanger aquatic habitats. These factors have made the accurate modeling of stream depletion an important step in the process of installing groundwater wells in regions that are susceptible to this phenomenon. Proper estimation of stream depletion requires appropriate parameterization of aquifer and streambed hydraulic properties. Although many studies have conducted numerical investigations to determine stream depletion at specific sites, they typically do not measure streambed hydraulic conductivity (Kr), but rather assume a representative value. In this work, we establish a hypothetical model aquifer that is 2000 m by 1600 m and has a meandering stream running through its center. The Kr of the model stream is varied from 1.0x10-9 m s-1 to 1.0x10-2 m s-1 in order to determine the sensitivity of the stream depletion calculations to this parameter. It was found that when Kr is in the lower part of this range, slight changes in K¬r lead to significant impacts on the calculated stream depletion values. We vary Kr along the stream channel according to naturally occurring patterns and demonstrate that alterations of the parameter over a few orders of magnitude can affect the estimated stream depletion caused by a well at a specified location. The numerical simulations show that the mean value of Kr and its spatial variability along the channel should be realistic to develop an accurate model of stream depletion.

  3. A theoretical model of atmospheric ozone depletion

    Science.gov (United States)

    Midya, S. K.; Jana, P. K.; Lahiri, T.

    1994-01-01

    A critical study on different ozone depletion and formation processes has been made and following important results are obtained: (i) From analysis it is shown that O3 concentration will decrease very minutely with time for normal atmosphere when [O], [O2] and UV-radiation remain constant. (ii) An empirical equation is established theoretically between the variation of ozone concentration and time. (iii) Special ozone depletion processes are responsible for the dramatic decrease of O3-concentration at Antarctica.

  4. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  5. Tropical circulation and precipitation response to ozone depletion and recovery

    Science.gov (United States)

    Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke

    2017-06-01

    Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.

  6. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  7. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    Energy Technology Data Exchange (ETDEWEB)

    Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  8. Rapid Response Research and Development (R&D) for the Aerospace Systems Directorate. Delivery Order 0021: Engineering Research and Technical Analyses of Advanced Airbreathing Propulsion Fuels, Subtask: T700 Biofuel Low Lubricity Endurance

    Science.gov (United States)

    2014-09-01

    running g ood . transferred d ata . 75 Aoc Cycles 2014/06/19 07:1 5 TMM 16H:1 5M Took fuel sample #5. 84 Aoc Cydes 2014/06/19 13:1 5 TMM 22H:1 5m...1. Test Articlai/N: b 9?o• ol•f I Test Article SIN: 1 ’i ŗ(,t--󈧗 t Qty Test Hardware Model Serial Calibration Equip Used for. Number...Desc: COM - CCP ACCEPTANCE TEST PROCEDURE Date: 22-JUL-2014 IMTPC - TEST SPECIFI CATION RESULTS PRINT REPORT Run No : 3 Work Order : 1799810 Serial

  9. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    Science.gov (United States)

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  10. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  11. New Approach For Prediction Groundwater Depletion

    Science.gov (United States)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  12. Metallographic analysis of irradiated RERTR-3 fuel test specimens.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Hofman, G. L.; Strain, R. V.; Clark, C. R.; Stuart, J. R.

    2000-11-08

    The RERTR-3 irradiation test was designed to investigate the irradiation behavior of aluminum matrix U-MO alloy dispersion fuels under high-temperature, high-fission-rate conditions. Initial postirradiation examination of RERTR-3 fuel specimens has concentrated on binary U-MO atomized fuels. The rate of matrix aluminum depletion was found to be higher than predictions based on low temperature irradiation data. Wavelength Dispersive X-ray Spectroscopy (WDS) indicates that aluminum is present in the interior of the fuel particles. WDS data is supported by a mass and volume balance calculation performed on the basis of image analysis results. The depletion of matrix aluminum seems to have no detrimental effects on fuel performance under the conditions tested to date.

  13. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  14. The New MCNP6 Depletion Capability

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

    2012-06-19

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  15. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  16. Monitoring of bunker fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M.

    2013-03-15

    Monitoring of fuel consumption and greenhouse gas emissions from international shipping is currently under discussion at the EU level as well as at the IMO (International Maritime Organization). There are several approaches to monitoring, each with different characteristics. Based on a survey of the literature and information from equipment suppliers, this report analyses the four main methods for monitoring emissions: (1) Bunker delivery notes (i.e. a note provided by the bunker fuel supplier specifying, inter alia, the amount of fuel bunkered); (2) Tank sounding (i.e. systems for measuring the amount of fuel in the fuel tanks); (3) Fuel flow meters (i.e. systems for measuring the amount of fuel supplied to the engines, generators or boilers); and (4) Direct emissions monitoring (i.e. measuring the exhaust emissions in the stack). The report finds that bunker delivery notes and tank soundings have the lowest investment cost. However, unless tank sounding is automated, these systems have higher operational costs than fuel flow meters or direct emissions monitoring because manual readings have to be entered in monitoring systems. Fuel flow meters have the highest potential accuracy. Depending on the technology selected, their accuracy can be an order of magnitude better than the other systems, which typically have errors of a few percent. By providing real-time feed-back on fuel use or emissions, fuel flow meters and direct emissions monitoring provide ship operators with the means to train their crew to adopt fuel-efficient sailing methods and to optimise their maintenance and hull cleaning schedules. Except for bunker delivery notes, all systems allow for both time-based and route-based (or otherwise geographically delineated) systems.

  17. Physics Features of TRU-Fueled VHTRs

    Directory of Open Access Journals (Sweden)

    Tom G. Lewis

    2009-01-01

    Full Text Available The current waste management strategy for spent nuclear fuel (SNF mandated by the US Congress is the disposal of high-level waste (HLW in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (via fertile additives on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs and their Generation IV (GEN IV extensions, very-high-temperature reactors (VHTRs, have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.

  18. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    Science.gov (United States)

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  19. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  20. TMI Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Taylor

    2003-09-01

    This report documents the reported contents of the Three Mile Island Unit 2 (TMI-2) canisters. proposed packaging, and degradation scenarios expected in the repository. Most fuels within the U.S. Department of Energy spent nuclear fuel inventory deal with highly enriched uranium, that in most cases require some form of neutronic poisoning inside the fuel canister. The TMI-2 fuel represents a departure from these fuel forms due to its lower enrichment (2.96% max.) values and the disrupted nature of the fuel itself. Criticality analysis of these fuel canisters has been performed over the years to reflect conditions expected during transit from the reactor to the Idaho National Engineering and Environmental Laboratory, water pool storage,1 and transport/dry-pack storage at Idaho Nuclear Technology and Engineering Center.2,3 None of these prior analyses reflect the potential disposal conditions for this fuel inside a postclosure repository.

  1. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  2. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    Science.gov (United States)

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-02-22

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  3. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion.

  4. Ozone depletion and chlorine loading potentials

    Science.gov (United States)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  5. Plasmonic nanoprobes for stimulated emission depletion microscopy

    CERN Document Server

    Cortes, Emiliano; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M; Maier, Stefan A

    2016-01-01

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved microscopy. We demonstrate stimulated emission depletion (STED) microscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm that provide an enhancement of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. These novel nanoparticle-assisted STED probes represent a ~2x10^3 reduction in probe volume compared to previously used nanoparticles and we demonstrate their application to the first plasmon-assisted STED cellular imaging. We also discuss their current limitations.

  6. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  7. Depletion of the nuclear Fermi sea

    CERN Document Server

    Rios, A; Dickhoff, W H

    2009-01-01

    The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizeable depletion of low momenta in the ground state of a nuclear many-body system. The self-consistent Green's function method within the ladder approximation provides an \\textit{ab-initio} description of correlated nuclear systems that accounts properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry (isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the momentum distribution and the time-ordered components of the self-energy, which allows for an improved interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative estimates of the importance of short-range and tensor correlations in nuclear systems.

  8. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, T.L. (Sandia National Labs., Albuquerque, NM (United States)); Jordan, H. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Pasupathi, V. (Battelle, Columbus, OH (United States)); Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  9. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  10. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    , component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  11. Study of an ADS Loaded with Thorium and Reprocessed Fuel

    Directory of Open Access Journals (Sweden)

    Graiciany de Paula Barros

    2012-01-01

    Full Text Available Accelerator-driven systems (ADSs are investigated for long-lived fission product transmutation and fuel regeneration. The aim of this paper is to investigate the nuclear fuel evolution and the neutronic parameters of a lead-cooled accelerator-driven system used for fuel breeding. The fuel used in some fuel rods was T232hO2 for U233 production. In the other fuel rods was used a mixture based upon Pu-MA, removed from PWR-spent fuel, reprocessed by GANEX, and finally spiked with thorium or depleted uranium. The use of reprocessed fuel ensured the use of T232hO2 without the initial requirement of U233 enrichment. In this paper was used the Monte Carlo code MCNPX 2.6.0 that presents the depletion/burnup capability, combining an ADS source and kcode-mode (for criticality calculations. The multiplication factor (keff evolution, the neutron energy spectra in the core at BOL, and the nuclear fuel evolution during the burnup were evaluated. The results indicated that the combined use of T232hO2 and reprocessed fuel allowed U233 production without the initial requirement of U233 enrichment.

  12. Sensitivity study of control rod depletion coefficients

    OpenAIRE

    Blomberg, Joel

    2015-01-01

    This report investigates the sensitivity of the control rod depletion coefficients, Sg, to different input parameters and how this affects the accumulated 10B depletion, β. Currently the coefficients are generated with PHOENIX4, but the geometries can be more accurately simulated in McScram. McScram is used to calculate Control Rod Worth, which in turn is used to calculate Nuclear End Of Life, and Sg cannot be generated in the current version of McScram. Therefore, it is also analyzed whether...

  13. Qualification of pebble fuel for HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    The German HTGR fuel development program for the HTR-Modul concept has resulted in a reference design based on LEU UO2 TRISO coated particle fuel in a spherical fuel element. The coated particles consist of minute uranium particle kernels coated with layers of carbon and silicon carbide. Analyses on quality of as-manufactured fuel, its behavior under HTR-Modul relevant operating and accident conditions have demonstrated excellent performance. Coated particles can withstand high internal gas pressure without releasing their fission products to the environment. International efforts are on-going for further improvement of coated particle fuel to meet the needs of future generation-IV HTR concepts.

  14. Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2010-05-01

    Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

  15. Analyse de la sensibilité aux paramètres gazoles d'un moteur diesel d'automobile à injection directe Small Direct Injection Diesel Engine Sensitivity to the Diesel Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Montagne X.

    2006-12-01

    particules totales sont plutôt dépendantes de la viscosité et des fractions légères des carburants. Les émissions sonores sont étroitement liées à l'indice de cétane. Par ailleurs, l'ensemble des résultats acquis semble indiquer que les paramètres pilotant le délai d'auto-inflammation sont importants sur ce type de convertisseur. Il serait cependant nécessaire de disposer de mesures directes des caractéristiques des jets d'injection (taille des gouttelettes, pénétration du spray en fonction des différents carburants pour pouvoir quantifier l'effet des paramètres tels que la viscosité et la densité sur la partie physique du délai d'auto-inflammation. Among the technical solutions that can lead to energy converters with low pollutant emissions and low fuel consumption, diesel engines rank, by nature, in a good position. On this base, direct injection diesel engine has been developed and are now spreading in private passanger cars because of their performances, especially in terms of fuel consumption. However, this equipment requires an efficient injection system, electronically driven, needs EGR and an oxidation catalyst to improve the pollutant emissions and the noise level. Thus, it is a major concern to be able to assess precisely the sensitivity to fuel characteristics of direct injection engines as to take the best advantage of this technology. With a set of fuels formulated to cover a large range of chemical nature, viscosity, cetane number and density, an Audi direct injection engine (1Z model was run at the test bench. The impact of the fuel characteristics on pollutant emissions, regulated or unregulated (PAH, aldehydes, and on noise levels was assessed either under standard tuning conditions, either by changing the EGR rate and the injection timing. The results obtained at the end of this program point out the main criteria that have an influence on emissions. They also allow a comparison between direct injection engines and their homologues

  16. The Fuel Handbook 2012; Braenslehandboken 2012

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta; Herstad Svaerd, Solvie

    2012-04-15

    This fuel handbook provides, from a plant owner's perspective, a method of evaluating different fuels on the market. The fuel handbook concerns renewable fuels (but not including household waste) that are available on the Swedish market today or which are judged to have the potential to be available within the next ten years. The handbook covers 31 different fuels. Analysis data, special properties, operating experience, recommendations, risks when using the fuels and literature references are outlined for each fuel. The handbook also contains 1. A proposed route to follow when one plans to introduce a new fuel. Those analyses and tests one should perform to reduce the risk of encountering problems. 2. A summary of relevant laws and taxes for energy production, with directions as to where relevant documentation can be found. 3. Theory and background to judge the fuel's combustion, ash and corrosion properties and different methods that can be used for such judgement. 4. Summary of standards, databases and handbooks for biomass fuels and other solid fuels, and details on where further information on the fuels can be found, with the help of links to different web sites. Included in the annexes are 1. A proposal for a standard procedure for test burning of fuel. 2. Calculations procedures for, amongst others, heating value, flue gas composition and key numbers. In addition, calculations routines for different units for a number of different applications are provided

  17. Development of the MCNPX depletion capability: A Monte Carlo linked depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations

    Science.gov (United States)

    Fensin, Michael Lorne

    Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established

  18. Analysis of nuclear characteristics and fuel economics for PWR core with homogeneous thorium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Song, J. S.; Kim, J. C.; Noh, T. W

    2000-12-01

    The nuclear core characteristics and economics of an once-through homogenized thorium cycle for PWR were analyzed. The lattice code, HELIOS has been qualified against BNL and B and W critical experiments and the IAEA numerical benchmark problem in advance of the core analysis. The infinite multiplication factor and the evolution of main isotopes with fuel burnup were investigated for the assessment of depletion charateristics of thorium fuel. The reactivity of thorium fuel at the beginning of irradiation is smaller than that of uranium fuel having the same inventory of {sup 235}U, but it decrease with burnup more slowly than in UO{sub 2} fuel. The gadolinia worth in thorium fuel assembly is also slightly smaller than in UO{sub 2} fuel. The inventory of {sup 233}U which is converted from {sup 232}Th is proportional to the initial mass of {sup 232}Th and is about 13kg per one tones of initial heavy metal mass. The followings are observed for thorium fuel cycle compared with UO{sub 2} cycle ; shorter cycle length, more positive MTC at EOC, more negative FTC, similar boron worth and control rod. Fuel economics of thorium cycle was analyzed by investigating the natural uranium requirements, the separative work requirements, and the cost for burnable poison rods. Even though less number of burnable poison rods are required in thorium fuel cycle, the costs for the natural uranium requirements and the separative work requirements are increased in thorium fuel cycle. So within the scope of this study, once through cycle concept, homogenized fuel concept, the same fuel management scheme as uranium cycle, the thorium fuel cycle for PWR does not have any economic incentives in preference to uranium.

  19. Contrasts between Antarctic and Arctic ozone depletion.

    Science.gov (United States)

    Solomon, Susan; Portmann, Robert W; Thompson, David W J

    2007-01-09

    This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local depletion in the heart of the ozone "hole" region near 18 km, frequently exceeding 90%. Although some ozone losses are apparent in the Arctic during particular years, the depth of the ozone losses in the Arctic are considerably smaller, and their occurrence is far less frequent. Many Antarctic total integrated column ozone observations in spring since approximately the 1980s show values considerably below those ever observed in earlier decades. For the Arctic, there is evidence of some spring season depletion of total ozone at particular stations, but the changes are much less pronounced compared with the range of past data. Thus, the observations demonstrate that the widespread and deep ozone depletion that characterizes the Antarctic ozone hole is a unique feature on the planet.

  20. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  1. Global Warming: Lessons from Ozone Depletion

    Science.gov (United States)

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  2. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    Science.gov (United States)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  3. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, S.J.; Adriaanse, M.A.; Vet, de E.W.M.L.; Fennis, B.M.; Ridder, de D.T.D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In thre

  4. How Depleted is the MORB mantle?

    Science.gov (United States)

    Hofmann, A. W.; Hart, S. R.

    2015-12-01

    Knowledge of the degree of mantle depletion of highly incompatible elements is critically important for assessing Earth's internal heat production and Urey number. Current views of the degree of MORB source depletion are dominated by Salters and Stracke (2004), and Workman and Hart (2005). The first is based on an assessment of average MORB compositions, whereas the second considers trace element data of oceanic peridotites. Both require an independent determination of one absolute concentration, Lu (Salters & Stracke), or Nd (Workman & Hart). Both use parent-daughter ratios Lu/Hf, Sm/Nd, and Rb/Sr calculated from MORB isotopes combined with continental-crust extraction models, as well as "canonical" trace element ratios, to boot-strap the full range of trace element abundances. We show that the single most important factor in determining the ultimate degree of incompatible element depletion in the MORB source lies in the assumptions about the timing of continent extraction, exemplified by continuous extraction versus simple two-stage models. Continued crust extraction generates additional, recent mantle depletion, without affecting the isotopic composition of the residual mantle significantly. Previous emphasis on chemical compositions of MORB and/or peridotites has tended to obscure this. We will explore the effect of different continent extraction models on the degree of U, Th, and K depletion in the MORB source. Given the uncertainties of the two most popular models, the uncertainties of U and Th in DMM are at least ±50%, and this impacts the constraints on the terrestrial Urey ratio. Salters, F.J.M. and Stracke, A., 2004, Geochem. Geophys. Geosyst. 5, Q05004. Workman, R.K. and Hart, S.R., 2005, EPSL 231, 53-72.

  5. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    Science.gov (United States)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  6. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  7. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  8. Some improvements in the microscopic depletion of assemblies with gadolinium rods

    Energy Technology Data Exchange (ETDEWEB)

    Hoareau, F.; Couyras, D.; Girardi, E. [EDF R and D, Paris (France)

    2012-03-15

    EDF/R and D is developing a new calculation scheme based on the transport-Simplified Pn (SPn) approach. The lattice code used is the deterministic code APOLLO2, developed at CEA with the support of EDF and AREVA-NP. The core code is the code COCAGNE, developed at EDF R and D. The latter can take advantage of a microscopic depletion solver which improves the treatment of spectral history effects. However, comparisons with reference calculations show that the microscopic mode used in COCAGNE gives slightly less accurate results when used to simulate the depletion of assemblies with gadolinium rods. This study aims at determining whether specific models can be used to improve the results of the depletion of assemblies containing burnable poisons. Three possible models are considered in this paper. The first model consists in describing explicitly the gadolinium isotopic chain into the microscopic model implemented within COCAGNE. In the second model, one also uses an explicit description of the gadolinium chain. In addition, the LOCA concentration of gadolinium isotopes is used as interpolation parameter instead of the LOCA burnup, when evaluation microscopic cross sections. The last model consists in using the concentration of Pu239 as a spectral indicator: microscopic cross sections are then corrected according to the LOCA concentration of this nuclide. Comparisons with APOLLO2 depletion calculations were performed to validate these models in COCAGNE. These APOLLO2 calculations consisted in depleting the fuel from 0 GWd/t to 60 GWd/t while keeping perturbed thermal-hydracrylic conditions. CPCAGNE used as input the neutronic libraries generated via a depletion performed in nominal conditions and then a branch case corresponding to the perturbed thermal-hydracrylic conditions of the reference APOLLO2 calculations. These tests show that the microscopic model using Pu239 as a spectral indicator improves the treatment of spectral effects in COCAGNE.

  9. Safe handling of renewable fuels and fuel mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Rautalin, A. [VTT Energy, Espoo (Finland)

    1997-12-01

    VTT Energy has for several years carried out co-operation with many European research institutes on contractional basis on safety issues of fuels handling. A two-year co-operational project between VTT Energy and these research institutes was started in EU`s JOULE 3 programme in 1996, the total budget of which is 6.9 million FIM. Dust explosion testing method for `difficult` fuels, and for tests at elevated pressures and temperatures, will be developed in the task `Safe handling of renewable fuels and fuel mixtures`. Self- ignition and dust-explosion characteristics will be generated for wood and agro-biomass based biomasses and for the mixtures of them and coal. Inertization requirements will be studied, and the quenching method, combined with partial inertization, will be tested in 1.0 m{sup 3} test equipment. The ignition properties of the fuels under normal and elevated pressures will be characterised with thermobalances. The self-ignition tests with wood and forest residue dusts at 25 bar pressure have been carried out as scheduled. In addition to this, several fuels have undergone thermobalance tests, sieve analyses and microscopic studies for the characterisation of the fuels

  10. Ozone Depletion Potentials of HCFC-123 and HCFC-124

    Science.gov (United States)

    Riepe, E. L.; Patten, K. O.; Wuebbles, D. J.

    2005-05-01

    The Montreal Protocol has phased out most chlorinated and brominated compounds because of their great efficiency in depleting ozone in the stratosphere. Compounds such as CHCl2CF3 (HCFC-123) and CHClFCF3 (HCFC-124) are being used in commercial refrigeration units and have much shorter atmospheric lifetimes than the chlorofluorocarbons they replace. Despite their small resulting Ozone Depletion Potentials (ODPs), these compounds are still currently expected to be eliminated under the existing Protocol, but there remain questions about finding suitable replacements that would not have other environmental effects. The HCFC-123 and HCFC-124 model-calculated atmospheric lifetimes of 1.3 years and 5.8 years are much shorter compared to the 45 years of CCl3F (CFC-11). In this study, we have reevaluated these compounds with an updated version of the UIUC two-dimensional chemical transport model and with the MOZART (version 3) three-dimensional chemical-transport model. The new version of the two-dimensional model gives ODPs of 0.012 and 0.0125 for HCFC-123 and HCFC-124, respectively. The ODP for HCFC-123 agrees well with previously reported values while the ODP for HCFC-124 is much smaller than earlier estimates. These analyses along with those from the three-dimensional modeling studies will be discussed in the presentation.

  11. Neutron-activation revisited: the depletion and depletion-activation models.

    Science.gov (United States)

    Abdel-Rahman, Wamied; Podgorsak, Ervin B

    2005-02-01

    The growth of a radioactive daughter in neutron activation is commonly described with the saturation model that ignores the consumption of parent nuclei during the radio-activation process. This approach is not valid when radioactive sources with high specific activities are produced or when the particle fluence rates used are very high. Assuming a constant neutron fluence rate throughout the activation target, a neutron-activation model that accounts for the depletion in parent nuclei is introduced. This depletion model is governed by relationships similar to those describing the parent-daughter-granddaughter decay series, and, in contrast to the saturation model, correctly predicts the practical limit of the daughter specific activity, irrespective of the particle fluence rate. Also introduced is a neutron-activation model that in addition to parent depletion accounts for the neutron activation of daughter nuclei in situations where the cross section for this effect is high. The model is referred to as the depletion-activation model and it provides the most realistic description for the daughter specific activity in neutron activation. Three specific neutron activation examples of interest to medical physics are presented: activation of molybdenum-98 into molybdenum-99 described by the saturation model; activation of cobalt-59 into cobalt-60 described by the depletion model; and activation of iridium-191 into iridium-192 described by the depletion-activation model.

  12. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    Science.gov (United States)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  13. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  14. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  15. Composition heterogeneity analysis for DUPIC fuel(I) - Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    The fuel composition heterogeneity effect on reactor performance parameters was assessed by refueling simulations for three DUPIC fuel options of fuel composition heterogeneity control: the fissile content adjustment, the reactivity control by slightly enriched and depleted uranium, and the reactivity control by natural uranium. For each DUPIC fuel option, the simulations were performed using 30 heterogeneous fuel types which were determined by the agglomerative hierarchical clustering method. The heterogeneity effect was considered during the refueling simulation by randomly selecting fuel types for the refueling operation. The refueling simulations of the heterogeneous core have shown that the key performance parameters such as the maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF) are close to those of the core that has single fuel type. For the three DUPIC fuel options, the uncertainties of MCP, MBP, and CPPF due to the fuel composition heterogeneity are less than 0.6, 1.5 and 0.8%, respectively, including the uncertainty of the group-average fuel property. This study has shown that the three DUPIC fuel options reduces the composition heterogeneity effectively and the zone power control system has a sufficient margin to adjust the perturbations cased by the fuel composition heterogeneity. 15 refs., 28 figs.,10 tabs. (Author)

  16. Replacements For Ozone-Depleting Foaming Agents

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  17. Assessment of Preferred Depleted Uranium Disposal Forms

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

    2000-06-01

    The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

  18. Future Fossil Fuel Alternative; DME (A review)

    OpenAIRE

    Erdener, Hülya; Arinan, Ayca; Orman, Sultan

    2016-01-01

    The world energy consumption is steadily growing with the industrial improvements of the developing countries and the readily available fossil fuel reserves lack in fulfilling this energy requirement. The depletion of the easily achievable reserves; gives rise to the concept of oil production from oil shale and tar sands. However, the high cost and the operational difficulties stand as the major drawbacks in front of these technologies. Along with these circumstances, and the environmental co...

  19. Ecological and corrosion behavior of depleted uranium

    Directory of Open Access Journals (Sweden)

    Stojanović Mirjana D.

    2015-01-01

    Full Text Available Environmental pollution with radionuclides, particularly uranium and its decay products is a serious global problem. The current scientific studies estimated that the contamination originating from TENORM, caused by nuclear and non-nuclear technologies, has significantly increased natural level of radioactivity in the last thirty years. During the last decades all the more were talking about the "new pollutant" - depleted uranium (DU, which has been used in anti-tank penetrators because of its high density, penetration and pyrophoric properties. It is estimated that during the Gulf War, the war in Bosnia and Yugoslavia and during the invasion of Iraq, 1.4 million missiles with depleted uranium was fired. During the NATO aggression against the ex Yugoslavia in 1999., 112 locations in Kosovo and Metohija, 12 locations in southern Serbia and two locations in Montenegro were bombed. On this occasion, approximately 10 tons of depleted uranium were entered into the environment, mainly on land, where the degree of contamination ranged from 200 Bq / kg to 235 000 Bq/kg, which is up to 1000 times higher than the natural level. Fourteen years ago there was very little information about the behavior of ecological systems damaged by DU penetrators fired. Today, unfortunately, we are increasingly faced with the ―invisible threat" of depleted uranium, which has a strong radioactive and hemotoxic impact on human health. Present paper provides a detailed overview of the current understanding of corrosion and corrosion behavior of DU and environmental factors that control corrosion, together with indicators of environmental impact in order to highlight areas that need further attention in developing remediation programs.

  20. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  1. Effective Depletion Potential of Colloidal Spheres

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Hua; MA Hong-Ru

    2004-01-01

    @@ A new semianalytical method, which is a combination of the density functional theory with Rosenfeld density functional and the Ornstein-Zernike equation, is proposed for the calculation of the effective depletion potentials between a pair of big spheres immersed in a small hard sphere fluid. The calculated results are almost identical to the integral equation method with the Percus-Yevick approximation, and are also in agreement well with the Monte Carlo simulation results.

  2. Stochastic methods for the quantification of sensitivities and uncertainties in criticality analyses; Stochastische Methoden zur Quantifizierung von Sensitivitaeten und Unsicherheiten in Kritikalitaetsanalysen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Bock, Matthias; Stuke, Maik; Wagner, Markus

    2014-06-15

    This work describes statistical analyses based on Monte Carlo sampling methods for criticality safety analyses. The methods analyse a large number of calculations of a given problem with statistically varied model parameters to determine uncertainties and sensitivities of the computed results. The GRS development SUnCISTT (Sensitivities and Uncertainties in Criticality Inventory and Source Term Tool) is a modular, easily extensible abstract interface program, designed to perform such Monte Carlo sampling based uncertainty and sensitivity analyses in the field of criticality safety. It couples different criticality and depletion codes commonly used in nuclear criticality safety assessments to the well-established GRS tool SUSA for sensitivity and uncertainty analyses. For uncertainty analyses of criticality calculations, SunCISTT couples various SCALE sequences developed at Oak Ridge National Laboratory and the general Monte Carlo N-particle transport code MCNP from Los Alamos National Laboratory to SUSA. The impact of manufacturing tolerances of a fuel assembly configuration on the neutron multiplication factor for the various sequences is shown. Uncertainties in nuclear inventories, dose rates, or decay heat can be investigated via the coupling of the GRS depletion system OREST to SUSA. Some results for a simplified irradiated Pressurized Water Reactor (PWR) UO{sub 2} fuel assembly are shown. SUnCISTT also combines the two aforementioned modules for burnup credit criticality analysis of spent nuclear fuel to ensures an uncertainty and sensitivity analysis using the variations of manufacturing tolerances in the burn-up code and criticality code simultaneously. Calculations and results for a storage cask loaded with typical irradiated PWR UO{sub 2} fuel are shown, including Monte Carlo sampled axial burn-up profiles. The application of SUnCISTT in the field of code validation, specifically, how it is applied to compare a simulation model to available benchmark

  3. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  4. Winters fuels report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  5. Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2011-01-01

    Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.

  6. ORIGEN2: a revised and updated version of the Oak Ridge isotope generation and depletion code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.

    1980-07-01

    ORIGEN2 is a versatile point depletion and decay computer code for use in simulating nuclear fuel cycles and calculating the nuclide compositions of materials contained therein. This code represents a revision and update of the original ORIGEN computer code which has been distributed world-wide beginning in the early 1970s. The purpose of this report is to give a summary description of a revised and updated version of the original ORIGEN computer code, which has been designated ORIGEN2. A detailed description of the computer code ORIGEN2 is presented. The methods used by ORIGEN2 to solve the nuclear depletion and decay equations are included. Input information necessary to use ORIGEN2 that has not been documented in supporting reports is documented.

  7. GALILEE: A nuclear data processing system for transport, depletion and shielding codes

    Energy Technology Data Exchange (ETDEWEB)

    COSTE-DELCLAUX, Mireille [Commissariat a l' Energie Atomique, CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, 91191 Gif sur Yvette CEDEX (France)

    2008-07-01

    The Nuclear Data Processing System for Transport, Depletion and Shielding Codes GALILEE is part of a CEA global development program dedicated to fine modelling of nuclear systems. The other projects contributing to this aim are APOLLO3 inherited from DESCARTES (Calvin and Fedon-Magnaud, 2007) which treats deterministic transport, TRIPOLI-4 (Diop et al., 2006) which treats Monte Carlo transport and DARWIN3 (Tsilanizara et al., 1999) which solves all fuel cycle problems. GALILEE aims are: - To provide to application codes (deterministic or Monte Carlo transport codes, shielding codes or depletion codes), a tool-box allowing a consistent processing for nuclear data coming from any evaluation given in ENDF-6 format, - To carry out an automatic chain for creating application libraries, - To provide consistent application libraries for modelling a nuclear system. GALILEE project is carried out in synergy with application codes in order to be able to share 'objects' but also 'tools'. (author)

  8. Lithium Depletion in Fully Convective Pre-Main Sequence Stars

    CERN Document Server

    Bildsten, L; Matzner, C D; Ushomirsky, G; Bildsten, Lars; Brown, Edward F.; Matzner, Christopher D.; Ushomirsky, Greg

    1996-01-01

    We present an analytic calculation of the thermonuclear depletion of lithium in contracting, fully convective, pre-main sequence stars of mass M 0.08 M_sun) and for constraining the masses of lithium depleted stars.

  9. (JASR) Vol. 12, No. 2, 2012 DEPLETING FOREST RESOURCES OF ...

    African Journals Online (AJOL)

    HP

    undisturbed lands leading to depletion of the forest cover and increase on the sand dunes .... depletion of the ozone layer leading to a rise in global temperature. ... Nigeria has good correlation with greenhouse gas emission which can cause ...

  10. Depletions at Browns Park National Wildlife Refuge [Draft

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Estimated depletion associated with the operation of Spitzie Marsh in Browns Park National Wildlife Refuge. Attached are the methods used to estimate depletion....

  11. Self-regulatory depletion increases emotional reactivity in the amygdala

    National Research Council Canada - National Science Library

    Wagner, Dylan D; Heatherton, Todd F

    2013-01-01

    ... attention control task that required effortful inhibition (depletion group) or not (control group). Compared to the control group, depleted participants showed increased activity in the left amygdala to negative but not to positive or neutral scenes...

  12. Substantial Improvements of Fuel Economy

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars H.

    1996-01-01

    The paper evaluates the scope for improving the energy and environmental impacts of road transport by means of electrical and hybrid propulsion. These technologies promise considerable improvements of the fuel economy compared to equivalent vehicles mas well as beneficial effects for the energy...... and traffic systems. A case study concerning passenger cars is analysed by means of computer simulation....

  13. Natural orbitals representation and Fermi sea depletion in finite nuclei and nuclear matter

    CERN Document Server

    Psonis, V P; Massen, S E

    2013-01-01

    The natural orbitals and natural occupation numbers of various N = Z, sp and sd shell nuclei are calculated by applying a correlated one-body density matrix. The correlated density matrix has been evaluated by considering central correlations of Jastrow type and an approximation named factor cluster expansion. The correlation effects on the natural orbitals, natural occupation numbers and the Fermi sea depletion are discussed and analysed. In addition, an approximate expression for the correlated one-body density matrix of the nuclear matter has been used for the evaluation of the relative momentum distribution and the Fermi sea depletion. We found that the value of the Fermi sea depletion is higher in closed shell nuclei compared to open shell ones and it is lower compared to the case of nuclear matter. This statement could be confirmed by relevant experimental studies.

  14. Continuous Ozone Depletion over Antarctica After 2000 and Its Relationship with the Polar Vortex

    Institute of Scientific and Technical Information of China (English)

    ZHOU Libo; ZHANG Yu; MA Shupo

    2014-01-01

    Observations have shown highly variable ozone depletion over the Antarctic in the 2000s, which could aff ect the long-term ozone trend in this region as well as the global ozone recovery. By using the total column ozone data (1979-2011), interannual variation of the springtime Antarctic ozone low is investigated, together with its relationship with the polar vortex evolution in the lower stratosphere. The results show that springtime Antarctic ozone depletion has continued in the 2000s, seemingly contradicting the consensus view of a global ozone recovery expected at the beginning of the 21st century. The spring Antarctic polar vortex in the lower stratosphere is much stronger in the 2000s than before, with a larger area, delayed breakup time, and greater longevity during 2000-2011. Further analyses show that the recent continuation of springtime Antarctic ozone depletion could be largely attributed to the abnormal variation of the Antarctic polar vortex.

  15. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  16. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  17. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  18. Modeling Strategic Interactions to Car and Fuel Taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    2006-01-01

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel produ

  19. Modelling strategic responses to car and fuel taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    2006-01-01

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel produ

  20. Modelling strategic responses to car and fuel taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel

  1. Modeling Strategic Interactions to Car and Fuel Taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    2006-01-01

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel

  2. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  3. Children's Models of the Ozone Layer and Ozone Depletion.

    Science.gov (United States)

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  4. 26 CFR 1.642(e)-1 - Depreciation and depletion.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Depreciation and depletion. 1.642(e)-1 Section 1... (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(e)-1 Depreciation and depletion. An estate or trust is allowed the deductions for depreciation and depletion, but only to the extent...

  5. An approach to determine a defensible spent fuel ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Lindgren, Eric Richard

    2014-03-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical DUO2 surrogate. Previous attempts to define the SFR have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Different researchers have suggested using SFR values of 3 to 5.6. Sound technical arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and dry storage of spent nuclear fuel. Currently, Oak Ridge National Laboratory (ORNL) is in possession of several samples of spent nuclear fuel (SNF) that were used in the original SFR studies in the 1980s and were intended for use in a modern effort at Sandia National Laboratories (SNL) in the 2000s. A portion of these samples are being used for a variety of research efforts. However, the entirety of SNF samples at ORNL is scheduled for disposition at the Waste Isolation Pilot Plant (WIPP) by approximately the end of 2015. If a defensible SFR is to be determined for use in storage and transportation security analyses, the need to begin this effort

  6. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  7. Depletion of ribosomal protein L8 impairs Drosophila development and is associated with apoptosis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ribosomal protein L8 is a component of the 60S subunit of the ribosome and is involved in protein synthesis but its role in Drosophila development is not well understood.We depleted L8 through RNA interference (RNAi) to examine its effects on fly development both in vivo and in vitro.The results demonstrated that L8 RNAi caused embryonic or first-larval lethality,delay of larval development,defects in eye and wing morphology,and dramatically reduced the number of S2 cells.This indicated that L8 plays a crucial role in Drosophila development.Acridine orange staining of the wing discs showed that apoptosis occurred when L8 was depleted,indicating that depletion of L8 is tightly connected to apoptosis.RT-PCR analyses of the transcription level of genes that are known to be key factors in apoptosis (p53,hid,reaper,dark,Dcp-1) and cell cycle regulation (cdc45,MCM3,cyclin B,incenp) in L8-deficient S2 cells,were consistent with their role in apoptosis induction and cell cycle arrest.These results indicate that depletion of L8 strongly impairs Drosophila development,and that this depletion is associated with cell proliferation arrest and apoptosis,in which p53 may play a central role.

  8. A modern depleted uranium manufacturing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

  9. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  10. A semi-empirical model for the formation and depletion of the high burnup structure in UO2

    Science.gov (United States)

    Pizzocri, D.; Cappia, F.; Luzzi, L.; Pastore, G.; Rondinella, V. V.; Van Uffelen, P.

    2017-04-01

    In the rim zone of UO2 nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes.

  11. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  12. Heatstroke Pathophysiology: The Energy Depletion Model

    Science.gov (United States)

    1989-06-12

    Pathophysiology: The Energy Depletion Model Roger W. Hubbard, Ph.D., Director Heat Research Division U. S. Army Research Institute of Environmental...Medicine Natick, MA 01760-5007 USA Send correspondence to: Roger W. Hubbard, Ph.D. Director Heat Research Division USARIEM Kansas St Natick, MA 01760...The NaK-Pump. Part B: Celular Asoects J.C. Skou, J.G. Normy, A.B. Maunsback, and M. Esmann (Eds) New York: Alan R. Uss, 1988, pp. 171-194. 54: Lewis

  13. Scientific assessment of ozone depletion: 1991

    Science.gov (United States)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  14. Correlation between cosmic rays and ozone depletion.

    Science.gov (United States)

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle.

  15. Optical assessment of phytoplankton nutrient depletion

    DEFF Research Database (Denmark)

    Heath, M.R.; Richardson, Katherine; Kiørboe, Thomas

    1990-01-01

    status (carbon/nitrogen ratio) and the absorption ratio that was independent of light and temperature climate. The absorption ratio for nutrient-replete cells was shown to vary between taxonomic groups. However, the inter-specific variation was less than the differences observed between nutrient......-replete and nutrient-depleted cells. The field data suggest that the absorption ratio may be a useful indicator of nutritional status of natural phytoplankton populations, and can be used to augment the interpretation of other data....

  16. The Time of Shipbuilding Order Depletion

    Institute of Scientific and Technical Information of China (English)

    Reporter Xing Dan

    2012-01-01

    In 2012, shipbuilding market is facing even colder weather. Depletion of orders, deals that can only ensure cost recovery ndustry which has already bankruptcy of ship yards one after another are also torturing this had many uncertainties. Some shipbuilding enterprises are trying to survive by cutting off parts of their business, some enterprises are leaving like the horses migrating on the African grassland, only those horses that have fights with crocodiles will reach the fertile land and enjoy the next warm spring. the business. It is survived the fierce

  17. RESERVOIR CAPACITY DEPLETION ON ACCOUNT OF SEDIMENTATION

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE

    2001-01-01

    Capacity depletion is an important information required for planning of multipurpose reservoirs. It is a complex phenomenon involving diverse fields like surface hydrology, sediment transport, varied flow hydraulics and soil consolidation. Proper assessment of capacity reduction is helpful in ascertaining the life of the reservoir and the project benefits for cost/benefit analysis. In this study dimensionally consistent equations for deposition volume and the trap efficiency have been obtained. Methods of obtaining the parameters involved these equations have also been indicated. It was found that there is good agreement with the field data. It is hoped that the equations are useful to design engineer.

  18. LMFBR operation in the nuclear cycle without fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, S.I. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

    1997-12-01

    Substantiation is given to expediency of investigation of nuclear power (NP) development with fast reactors cooled by lead-bismuth alloy operating during extended time in the open nuclear fuel cycle with slightly enriched or depleted uranium make-up. 9 refs., 1 fig., 6 tabs.

  19. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    Science.gov (United States)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  20. Cost reductions of fuel cells for transport applications: fuel processing options

    Science.gov (United States)

    Teagan, W. P.; Bentley, J.; Barnett, B.

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R&D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice, operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under 150/kW in stationary applications and 30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories.

  1. Fuel burnup calculation of Ghana MNSR using ORIGEN2 and REBUS3 codes.

    Science.gov (United States)

    Abrefah, R G; Nyarko, B J B; Fletcher, J J; Akaho, E H K

    2013-10-01

    Ghana Research Reactor-1 core is to be converted from HEU fuel to LEU fuel in the near future and managing the spent nuclear fuel is very important. A fuel depletion analysis of the GHARR-1 core was performed using ORIGEN2 and REBUS3 codes to estimate the isotopic inventory at end-of-cycle in order to help in the design of an appropriate spent fuel cask. The results obtained for both codes were consistent for U-235 burnup weight percent and Pu-239 build up as a result of burnup.

  2. CESAR5.3: An Industrial Tool for Nuclear Fuel and Waste Characterization with Associated Qualification - 12067

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Jean-Marc; Eschbach, Romain [CEA, DEN, DER, SPRC, LECy, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Launay, Agnes; Binet, Christophe [AREVA-NC La Hague, F-50444 Beaumont-Hague (France); THRO, Jean-Francois [AREVA-NC BU Recyclage, Tour AREVA, F-92084 Paris-La-Defense (France)

    2012-07-01

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of cooling time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR

  3. Charcoal-Oil Mixture as an Alternative Fuel: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Roila Awang

    2009-01-01

    Full Text Available The fast depletion of fuel oil and continuous increase in the demand for power is a global issue. The world energy consumption is projected to grow at an average of 2.7-3.7% from 1996 to 2010. Therefore search for alternative fuel is highly prioritized. Thus this study presents the results on the characteristic of charcoal-oil mixture as an alternative fuel. The calorific value, ash content and stability of the mixture are determined.

  4. Two dimensional simulation of direct methanol fuel cell : a new (embedded) type of current collectors

    OpenAIRE

    Kulikovsky, A. A.; Divisek, J.; Kornyshev, Yu. M.

    2000-01-01

    A two-dimensional numerical model of the direct methanol fuel cell with gas fuel is developed. Simulation of the cell with current collectors of conventional geometry reveal the formation of fuel-depleted, "shaded" regions in the cathode and anode catalyst layers. These regions are positioned in front of current collectors, farther from the gas channel windows. Another disadvantage of the conventional geometry is the concentration of electron current at the edges of current collectors. Based ...

  5. Syngas production from heavy liquid fuel reforming in inert porous media

    OpenAIRE

    Pastore, Andrea

    2010-01-01

    The electronic file misses the Nomenclature (p.xx-xii) In the effort to introduce fuel cell technology in the field of decentralized and mobile power generators, a hydrocarbon reformer to syngas seems to be the way for the market uptake. In this thesis, a potential technology is developed and investigated, in order to convert commercial liquid fuel (diesel, kerosene and biodiesel) to syngas. The fundamental concept is to oxidise the fuel in a oxygen depleted environment, obtaining hydrogen...

  6. Fossil fuel prospects for the twenty-first century

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, R.C. [Institute on Energy and Man, Seattle, WA (United States)

    1998-06-01

    The consumption of fossil fuels for power generation to sustain global economic development is bound to fail, it is argued. By examining data on global natural gas, coal and petroleum reserves, in relation to historic data and various forecasts for economic and industrial growth measures (as fossil fuel consumption total use and per capita use) the author points out two inevitable consequences of fossil fuel consumption, subsoil depletion and environmental damage, and reveals the urgent necessity to find a new primary energy source. (UK)

  7. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recirculation is needed or not and if so then what would be the effect of anode recycling on plant efficiency. A single study with similar conditions and prerequisites will thus reveal the importance of fuel recirculation on plant performance with alternative fuels. It is also shown that increasing anode...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained...

  8. Stress spillover in early marriage: the role of self-regulatory depletion.

    Science.gov (United States)

    Buck, April A; Neff, Lisa A

    2012-10-01

    Stressful experiences external to a marriage (e.g., work stress, finances) are often associated with poor relationship functioning and lowered marital satisfaction, a phenomenon called stress spillover. To date, however, little attention has been devoted to understanding the specific mechanisms through which stress may lead to maladaptive relationship patterns. Drawing from theories of self-regulatory depletion, it was predicted that coping with external stress is an effortful process that consumes spouses' regulatory resources, leaving spouses with less energy to effectively respond to their relationship issues. The current study relied on a sample of newly married couples to examine whether self-regulatory depletion may account for the link between external stress and relationship well-being. Couples were asked to complete a 14-day daily diary that assessed their daily stress, their state of self-regulatory depletion, their marital behaviors, and their daily marital appraisals. Within-person analyses revealed that, on average, couples experienced stress spillover, such that on days when their stress was higher than usual they reported enacting more negative behaviors toward their partner and endorsed less positive appraisals of the relationship. Further analyses confirmed that self-regulatory depletion accounted for a majority of these spillover effects. These findings suggest that even happy couples may find it difficult to engage in adaptive relationship processes under conditions of stress.

  9. Glutathione Depletion Induces Spermatogonial Cell Autophagy.

    Science.gov (United States)

    Mancilla, Héctor; Maldonado, Rodrigo; Cereceda, Karina; Villarroel-Espíndola, Franz; Montes de Oca, Marco; Angulo, Constanza; Castro, Maite A; Slebe, Juan C; Vera, Juan C; Lavandero, Sergio; Concha, Ilona I

    2015-10-01

    The development and survival of male germ cells depend on the antioxidant capacity of the seminiferous tubule. Glutathione (GSH) plays an important role in the antioxidant defenses of the spermatogenic epithelium. Autophagy can act as a pro-survival response during oxidative stress or nutrient deficiency. In this work, we evaluated whether autophagy is involved in spermatogonia-type germ cell survival during severe GSH deficiency. We showed that the disruption of GSH metabolism with l-buthionine-(S,R)-sulfoximine (BSO) decreased reduced (GSH), oxidized (GSSG) glutathione content, and GSH/GSSG ratio in germ cells, without altering reactive oxygen species production and cell viability, evaluated by 2',7'-dichlorodihydrofluorescein (DCF) fluorescence and exclusion of propidium iodide assays, respectively. Autophagy was assessed by processing the endogenous protein LC3I and observing its sub-cellular distribution. Immunoblot and immunofluorescence analysis showed a consistent increase in LC3II and accumulation of autophagic vesicles under GSH-depletion conditions. This condition did not show changes in the level of phosphorylation of AMP-activated protein kinase (AMPK) or the ATP content. A loss in S-glutathionylated protein pattern was also observed. However, inhibition of autophagy resulted in decreased ATP content and increased caspase-3/7 activity in GSH-depleted germ cells. These findings suggest that GSH deficiency triggers an AMPK-independent induction of autophagy in germ cells as an adaptive stress response. © 2015 Wiley Periodicals, Inc.

  10. Halocarbon ozone depletion and global warming potentials

    Science.gov (United States)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  11. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether, J.W.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations on the 630.0 nm nightglow brightness at the equatorial station at Arequipa, Peru (16.2 S, 71.4 W geographic, 3.2 S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridional wind reached a velocity of 100 m/s near 22h LT lasting for 1 to 2 hours. The temperature increases of 100K or more existed only in the poleware (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge. (Author)

  12. Equatorial airglow depletions induced by thermospheric winds

    Energy Technology Data Exchange (ETDEWEB)

    Meriwether J.W. Jr.; Biondi, M.A.; Anderson, D.N.

    1985-08-01

    Interferometric observations of the 630.0 nm nightglow brightness at the equatorial station of Arequipa. Peru (16.2/sup 0/S, 71.4/sup 0/W geographic, 3.2/sup 0/S dip latitude) have revealed widespread areas of airglow depletion, with reductions in intensity as large as factors of 3 or 4. These depletions correlated closely with large increases of the equatorward (northward) wind and the 630.0 nm kinetic temperature. On occasion, the usually small meridonal wind reached a velocity of 100 m/s near 22/sup h/ LT lasting for 1 or 2 hours. The temperature increases of 10 K or more existed only in the poleward (southward) direction. Comparisons with modeling calculations suggest that this effect results from an upward movement of the ionosphere along the inclined magnetic field lines, driven by the equatorward neutral wind. The airglow column integrated emission rate is consequently decreased by the slower rate of formation and subsequent dissociative recombination of molecular oxygen ions within the higher F-layer. We conclude that the transient period of equatorward wind is a result of the passage of the midnight pressure bulge.

  13. Abundances and Depletions of Interstellar Oxygen

    Science.gov (United States)

    Jensen, A. G.; Rachford, B. L.; Snow, T. P.

    2003-12-01

    We extend previous work on interstellar oxygen abundances with the addition of data from the Far Ultraviolet Spectroscopic Explorer (FUSE). We report on the abundance of interstellar neutral oxygen (OI) for several sightlines, using data from FUSE, the International Spectroscopic Explorer (IUE), and the Hubble Space Telescope (HST). OI column densities are derived by measuring the equivalent widths of several ultraviolet absorption lines, and subsequently fitting those to a curve of growth. The column densities of our best-constrained sightlines show a ratio of O/H that agrees with the current best solar value if dust is considered. We do not see evidence of enhanced depletion of gas-phase oxygen that is systematically variable with respect to the physical parameters of different environments (e.g., reddening or molecular fraction). The column densities of our less well-constrained sightlines show some scatter in O/H, but many agree with the solar value to within errors. We discuss these results in the context of deriving the best methods for determining interstellar abundances, the unresolved question of the best value for O/H in the interstellar medium (ISM), the O/H ratio observed in Galactic stars, and the depletion of gas-phase oxygen onto dust grains. Financial support for this research has been provided by the National Science Foundation GK-12 Program and NASA contract NAS 5-32985.

  14. Rapid Response Research and Development (R&D) for the Aerospace Systems Directorate. Delivery Order 0021: Engineering Research and Technical Analyses of Advanced Airbreathing Propulsion Fuels, Subtask: Engine and Pump Studies Utilizing JP-8 and Alcohol-to-Jet (ATJ) Blends

    Science.gov (United States)

    2014-08-01

    fuel. The pump tests were performed in duplicate in order to obtain average wear results. Two fifty -five gallon drums of the appropriate test fuel...C The Pre- and Post-Test performance curves for fuel injection pump SN: 16393231 are included as Table B-13. Items in shaded boxes in Table B-13...are values that fall outside of the specification for the fuel injection pump model. Red shading is for values above the specification maximums, blue

  15. Comparison of fuel production costs for future transportation

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    The purpose of this poster is to provide an overview of fuel production costs for two types of synthetic fuels – methanol and methane, along with comparable costs for first and second generation biodiesel, two types of second generation bioethanol, and biogas. The model analysed is a 100% renewab...... scenario of Denmark for 2050, where the data for the transport sector has been changed to estimate the fuel production costs for eight different fuel pathways....

  16. No Evidence of the Ego-Depletion Effect across Task Characteristics and Individual Differences: A Pre-Registered Study.

    Science.gov (United States)

    Lurquin, John H; Michaelson, Laura E; Barker, Jane E; Gustavson, Daniel E; von Bastian, Claudia C; Carruth, Nicholas P; Miyake, Akira

    2016-01-01

    Ego-depletion, a psychological phenomenon in which participants are less able to engage in self-control after prior exertion of self-control, has become widely popular in the scientific community as well as in the media. However, considerable debate exists among researchers as to the nature of the ego-depletion effect, and growing evidence suggests the effect may not be as strong or robust as the extant literature suggests. We examined the robustness of the ego-depletion effect and aimed to maximize the likelihood of detecting the effect by using one of the most widely used depletion tasks (video-viewing attention control task) and by considering task characteristics and individual differences that potentially moderate the effect. We also sought to make our research plan transparent by pre-registering our hypotheses, procedure, and planned analyses prior to data collection. Contrary to the ego-depletion hypothesis, participants in the depletion condition did not perform worse than control participants on the subsequent self-control task, even after considering moderator variables. These findings add to a growing body of evidence suggesting ego-depletion is not a reliable phenomenon, though more research is needed that uses large sample sizes, considers moderator variables, and pre-registers prior to data collection.

  17. Aviation fuels outlook

    Science.gov (United States)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  18. Safe and Cheap and Abundant and Clean Fission Energy Resource:Perfect and Feasible Gen-Ⅴ Molten-salt Depleted-uranium Reactor

    Institute of Scientific and Technical Information of China (English)

    DONG; Bao-guo; DONG; Pei; GU; Ji-yuan

    2015-01-01

    The supercritical,reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades,and greatly limit their extensive applications.Now these troubles are still open.Here we first show a possible perfect reactor,Molten-salt Depleted-uranium Reactor

  19. Durability of geomembrane exposed to jet fuel A-1

    Energy Technology Data Exchange (ETDEWEB)

    Rimal, S.; Rowe, R.K.; Hansen, S. [Queen' s Univ., Kingston, ON (Canada). GeoEngineering Centre]|[Royal Military Coll. of Canada, Kingston, ON (Canada)

    2004-07-01

    A geosynthetic clay liner (GCL) has been installed at a former Canadian Distant Early Warning Line (DEW Line) site off the southeast coast of Baffin Island, in the Canadian Arctic. The liner was installed in an area of hydrocarbon contaminated soil to limit the migration of hydrocarbons to nearby water prior to future site remediation. This study examined the antioxidant depletion and the compatibility of both untreated and fluorinated high density polyethylene (HDPE) geomembranes with jet fuel A-1. The objective was to determine the durability and long term performance of the HDPE geomembrane. Geomembrane swatches were immersed in jet fuel and placed inside a fumehood at -23 degrees C. They were examined for changes in oxidative induction time, crystallinity, tensile properties and dimensions. Immersion in jet fuel appears to accelerate the antioxidant depletion rate compared to that observed in municipal solid waste leachate. The untreated geomembrane had a higher rate of antioxidant depletion than the fluorinated geomembrane, suggesting that fluorination is beneficial. Tensile tests show that immersion in jet fuel decreases the yield stress while increasing the strain at yield. The results indicate that there is no significant permeation by jet fuel or diffusion at lower temperatures for the short term, but additional studies are needed to confirm long term behaviour. 27 refs., 1 tab., 6 figs.

  20. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  1. Cord blood glutathione depletion in preterm infants: correlation with maternal cysteine depletion.

    Directory of Open Access Journals (Sweden)

    Alice Küster

    Full Text Available BACKGROUND: Depletion of blood glutathione (GSH, a key antioxidant, is known to occur in preterm infants. OBJECTIVE: Our aim was to determine: 1 whether GSH depletion is present at the time of birth; and 2 whether it is associated with insufficient availability of cysteine (cys, the limiting GSH precursor, or a decreased capacity to synthesize GSH. METHODOLOGY: Sixteen mothers delivering very low birth weight infants (VLBW, and 16 mothers delivering healthy, full term neonates were enrolled. Immediately after birth, erythrocytes from umbilical vein, umbilical artery, and maternal blood were obtained to assess GSH [GSH] and cysteine [cys] concentrations, and the GSH synthesis rate was determined from the incorporation of labeled cysteine into GSH in isolated erythrocytes ex vivo, measured using gas chromatography mass spectrometry. PRINCIPAL FINDINGS: Compared with mothers delivering at full term, mothers delivering prematurely had markedly lower erythrocyte [GSH] and [cys] and these were significantly depressed in VLBW infants, compared with term neonates. A strong correlation was found between maternal and fetal GSH and cysteine levels. The capacity to synthesize GSH was as high in VLBW as in term infants. CONCLUSION: The current data demonstrate that: 1 GSH depletion is present at the time of birth in VLBW infants; 2 As VLBW neonates possess a fully active capacity to synthesize glutathione, the depletion may arise from inadequate cysteine availability, potentially due to maternal depletion. Further studies would be needed to determine whether maternal-fetal cysteine transfer is decreased in preterm infants, and, if so, whether cysteine supplementation of mothers at risk of delivering prematurely would strengthen antioxidant defense in preterm neonates.

  2. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  3. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  4. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  5. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  6. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  7. Depleted Uranium Penetrators : Hazards and Safety

    Directory of Open Access Journals (Sweden)

    S. S. Rao

    1997-01-01

    Full Text Available The depleted uranium (DU alloy is a state-of-the-art material for kinetic energy penetrators due to its superior ballistic performance. Several countries use DU penetrators in their main battle tanks. There is no gamma radiation hazard to the crew members from stowage of DO rounds. Open air firing can result in environmental contamination and associated hazards due to airborne particles containing essentially U/sub 3/0/sub 8/ and UO/sub 2/. Inhalation of polluted air only through respirators or nose masks and refraining form ingestion of water or food materials from contaminated environment are safety measures for avoiding exposure to uranium and its toxicity. Infusion of sodium bicarbonate helps in urinary excretion of uranium that may have entered the body.

  8. Arctic Ozone Depletion from UARS MLS Measurements

    Science.gov (United States)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  9. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  10. Kinetic depletion model for pellet ablation

    Energy Technology Data Exchange (ETDEWEB)

    Kuteev, Boris V. [State Technical Univ., St. Petersburg (Russian Federation)

    2001-11-01

    A kinetic model for depletion effect, which determines pellet ablation when the pellet passes a rational magnetic surface, is formulated. The model predicts a moderate decrease of the ablation rate compared with the earlier considered monoenergy versions [1, 2]. For typical T-10 conditions the ablation rate reduces by a reactor of 2.5 when the 1-mm pellet penetrates through the plasma center. A substantial deceleration of pellets -about 15% per centimeter of low shire rational q region; is predicted. Penetration for Low Field Side and High Field Side injections is considered taking into account modification of the electron distribution function by toroidal magnetic field. It is shown that Shafranov shift and toroidal effects yield the penetration length for HFS injection higher by a factor of 1.5. This fact should be taken into account when plasma-shielding effects on penetration are considered. (author)

  11. Anxiety, ego depletion, and sports performance.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2012-10-01

    In the present article, we analyzed the role of self-control strength and state anxiety in sports performance. We tested the hypothesis that self-control strength and state anxiety interact in predicting sports performance on the basis of two studies, each using a different sports task (Study 1: performance in a basketball free throw task, N = 64; Study 2: performance in a dart task, N = 79). The patterns of results were as expected in both studies: Participants with depleted self-control strength performed worse in the specific tasks as their anxiety increased, whereas there was no significant relation for participants with fully available self-control strength. Furthermore, different degrees of available self-control strength did not predict performance in participants who were low in state anxiety, but did in participants who were high in state anxiety. Thus increasing self-control strength could reduce the negative anxiety effects in sports and improve athletes' performance under pressure.

  12. Seasonal iron depletion in temperate shelf seas

    Science.gov (United States)

    Birchill, Antony J.; Milne, Angela; Woodward, E. Malcolm S.; Harris, Carolyn; Annett, Amber; Rusiecka, Dagmara; Achterberg, Eric P.; Gledhill, Martha; Ussher, Simon J.; Worsfold, Paul J.; Geibert, Walter; Lohan, Maeve C.

    2017-09-01

    Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe), and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (<0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, and 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralized sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf and therefore is likely low enough to affect phytoplankton growth and species composition.

  13. Modelling chemical depletion profiles in regolith

    Science.gov (United States)

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  14. Future aviation fuels overview

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  15. A new perspective on the interplay between self-control and cognitive performance: Modeling progressive depletion patterns.

    Science.gov (United States)

    Lindner, Christoph; Nagy, Gabriel; Ramos Arhuis, Wolfgang Andreas; Retelsdorf, Jan

    2017-01-01

    Exerting self-control in a first task weakens self-control performance in a subsequent unrelated task (ego depletion). In self-control research new strategies are required to investigate the ego-depletion effect, which has recently been shown to be more fragile than previously assumed. Moreover, the relation between ego depletion and trait self-control is still unclear, as various studies have reported heterogeneous findings concerning the interplay of both variables. We addressed these lacunas by drawing on a sample of N = 120 students, who participated in two test sessions. In the first test session, we assessed trait self-control and several control variables. The second test session followed an experimental design and tested the effects of ego depletion on invested effort and cognitive performance trajectories in an ecologically valid computer-based assessment setting (i.e., a 30-minute mathematical problem-solving and reasoning test). Trait self-control was then used as a moderator of the ego-depletion effect. Combining an established ego-depletion paradigm (i.e., the sequential-task paradigm) with multilevel modeling of time-on-task and performance changes, our results indicate (1) that trait self-control predicted the motivation to solve cognitive tasks, (2) that ego depletion led to a progressive performance decrease, and (3) that the negative effect of ego depletion on performance was stronger for students with high trait self-control. Additional analyses revealed that our results could not be alternatively explained by fatigue effects. All effects were robust even after controlling for the students' cognitive abilities, which are known to be closely related to mathematical performance. Our results provide evidence that the self-control invested in order to keep performance at a consistently high level wanes over time. By modeling progressive ego-depletion effects while considering trait self-control, we provide an alternative approach that may help future

  16. Chronic inhibition, self-control and eating behavior: test of a 'resource depletion' model.

    Science.gov (United States)

    Hagger, Martin S; Panetta, Giulia; Leung, Chung-Ming; Wong, Ging Ging; Wang, John C K; Chan, Derwin K C; Keatley, David A; Chatzisarantis, Nikos L D

    2013-01-01

    The current research tested the hypothesis that individuals engaged in long-term efforts to limit food intake (e.g., individuals with high eating restraint) would have reduced capacity to regulate eating when self-control resources are limited. In the current research, body mass index (BMI) was used as a proxy for eating restraint based on the assumption that individuals with high BMI would have elevated levels of chronic eating restraint. A preliminary study (Study 1) aimed to provide evidence for the assumed relationship between eating restraint and BMI. Participants (N = 72) categorized into high or normal-range BMI groups completed the eating restraint scale. Consistent with the hypothesis, results revealed significantly higher scores on the weight fluctuation and concern for dieting subscales of the restraint scale among participants in the high BMI group compared to the normal-range BMI group. The main study (Study 2) aimed to test the hypothesized interactive effect of BMI and diminished self-control resources on eating behavior. Participants (N = 83) classified as having high or normal-range BMI were randomly allocated to receive a challenging counting task that depleted self-control resources (ego-depletion condition) or a non-depleting control task (no depletion condition). Participants then engaged in a second task in which required tasting and rating tempting cookies and candies. Amount of food consumed during the taste-and-rate task constituted the behavioral dependent measure. Regression analyses revealed a significant interaction effect of these variables on amount of food eaten in the taste-and-rate task. Individuals with high BMI had reduced capacity to regulate eating under conditions of self-control resource depletion as predicted. The interactive effects of BMI and self-control resource depletion on eating behavior were independent of trait self-control. Results extend knowledge of the role of self-control in regulating eating behavior and

  17. Development and application of neutron transport methods and uncertainty analyses for reactor core calculations. Technical report; Entwicklung und Einsatz von Neutronentransportmethoden und Unsicherheitsanalysen fuer Reaktorkernberechnungen. Technischer Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Zwermann, W.; Aures, A.; Bernnat, W.; and others

    2013-06-15

    This report documents the status of the research and development goals reached within the reactor safety research project RS1503 ''Development and Application of Neutron Transport Methods and Uncertainty Analyses for Reactor Core Calculations'' as of the 1{sup st} quarter of 2013. The superordinate goal of the project is the development, validation, and application of neutron transport methods and uncertainty analyses for reactor core calculations. These calculation methods will mainly be applied to problems related to the core behaviour of light water reactors and innovative reactor concepts. The contributions of this project towards achieving this goal are the further development, validation, and application of deterministic and stochastic calculation programmes and of methods for uncertainty and sensitivity analyses, as well as the assessment of artificial neutral networks, for providing a complete nuclear calculation chain. This comprises processing nuclear basis data, creating multi-group data for diffusion and transport codes, obtaining reference solutions for stationary states with Monte Carlo codes, performing coupled 3D full core analyses in diffusion approximation and with other deterministic and also Monte Carlo transport codes, and implementing uncertainty and sensitivity analyses with the aim of propagating uncertainties through the whole calculation chain from fuel assembly, spectral and depletion calculations to coupled transient analyses. This calculation chain shall be applicable to light water reactors and also to innovative reactor concepts, and therefore has to be extensively validated with the help of benchmarks and critical experiments.

  18. Preliminary Multiphysics Analyses of HFIR LEU Fuel Conversion using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Freels, James D [ORNL; Bodey, Isaac T [ORNL; Arimilli, Rao V [ORNL; Curtis, Franklin G [ORNL; Ekici, Kivanc [ORNL; Jain, Prashant K [ORNL

    2011-06-01

    The research documented herein was performed by several individuals across multiple organizations. We have previously acknowledged our funding for the project, but another common thread among the authors of this document, and hence the research performed, is the analysis tool COMSOL. The research has been divided into categories to allow the COMSOL analysis to be performed independently to the extent possible. As will be seen herein, the research has progressed to the point where it is expected that next year (2011) a large fraction of the research will require collaboration of our efforts as we progress almost exclusively into three-dimensional (3D) analysis. To the extent possible, we have tried to segregate the development effort into two-dimensional (2D) analysis in order to arrive at techniques and methodology that can be extended to 3D models in a timely manner. The Research Reactors Division (RRD) of ORNL has contracted with the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE) to perform a significant fraction of this research. This group has been chosen due to their expertise and long-term commitment in using COMSOL and also because the participating students are able to work onsite on a part-time basis due to the close proximity of UTK with the ORNL campus. The UTK research has been governed by a statement of work (SOW) which clearly defines the specific tasks reported herein on the perspective areas of research. Ph.D. student Isaac T. Bodey has focused on heat transfer, fluid flow, modeling, and meshing issues and has been aided by his major professor Dr. Rao V. Arimilli and is the primary contributor to Section 2 of this report. Ph.D student Franklin G. Curtis has been focusing exclusively on fluid-structure interaction (FSI) due to the mechanical forces acting on the plate caused by the flow and has also been aided by his major professor Dr. Kivanc Ekici and is the primary contributor to Section 4 of this report. The HFIR LEU conversion project has also obtained the services of Dr. Prashant K. Jain of the Reactor & Nuclear Systems Division (RNSD) of ORNL. Prashant has quickly adapted to the COMSOL tools and has been focusing on thermal-structure interaction (TSI) issues and development of alternative 3D model approaches that could yield faster-running solutions. Prashant is the primary contributor to Section 5 of the report. And finally, while incorporating findings from all members of the COMSOL team (i.e., the team) and contributing as the senior COMSOL leader and advocate, Dr. James D. Freels has focused on the 3D model development, cluster deployment, and has contributed primarily to Section 3 and overall integration of this report. The team has migrated to the current release of COMSOL at version 4.1 for all the work described in this report, except where stated otherwise. Just as in the performance of the research, each of the respective sections has been originally authored by the respective authors. Therefore, the reader will observe a contrast in writing style throughout this document.

  19. The quality analyses of olive cake fuel pellets - mathematical approach

    Directory of Open Access Journals (Sweden)

    Brlek Tea I.

    2016-01-01

    Full Text Available This article investigates the effect of processing parameters (conditioning temperature and binder content, on final quality of produced agro-pellets for heat energy generation, obtained from four different olive cultivars using different technological parameters. Technological, physical and chemical properties of pellets (carbon, hydrogen, nitrogen and sulphur content, particle density, abrasion length, moisture, ash content, higher and lower heating values, fixed carbon and volatile matter content have been determined to assess their quality. The performance of Artificial Neural Network (ANN was compared with the performance of second order polynomial (SOP model, as well as with the obtained experimental data in order to develop rapid and accurate mathematical model for prediction of final quality parameters of agro-pellets. SOP model showed high coefficients of determination (r2, between 0.692 and 0.955, while ANN model showed high prediction accuracy with r2 between 0.544 and 0.994. [Projekat Ministarstva nauke Republike Srbije, br. III 46005 i br. TR-31055

  20. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  1. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  2. The Acasta Gneisses revisited: Evidence for an early depleted mantle

    Science.gov (United States)

    Scherer, E. E.; Sprung, P.; Bleeker, W.; Mezger, K.

    2010-12-01

    The oldest known mineral samples crystallized on the Earth are the up to 4.4 Ga zircon grains from the Jack Hills, Australia [e.g., 1,2]. Zircon, which is datable by U-Pb, contains ca. 1 wt% Hf, and has very low Lu/Hf, is well suited to recording the initial 176Hf/177Hf of its parent magma. It has therefore been widely used to track Earth’s crust-mantle differentiation over time and to estimate the relative amounts of juvenile and recycled components that contributed to Archean and Hadean crust. [e.g., 3,4,5,6]. Zircon studies may be subject to sampling bias, however: Juvenile mafic magmas are likely to stem from depleted sources, but are less likely to crystallize zircon. Processes such as host-rock metamorphism, remelting, weathering of the host rock, and sedimentary transport of grains may have further biased the zircon population. Metamict grains or those with high aspect ratios are likely to be destroyed by these processes, potentially biasing the zircon Hf record toward enriched compositions such that the degree of mantle depletion remains poorly defined before 4 Ga. In addition, incorrect age assignments to Hf analyses result in spurious initial ɛHf values. Here, we attempt to overcome these issues by investigating the bulk rock Lu-Hf and Sm-Nd systematics of some of the oldest rocks on Earth, the Acasta Gneisses (Northwest Territories, Canada). Earlier studies showed that zircon grains in these gneisses tend to come from enriched sources [e.g, 3,7,8] and are thus of little use for directly tracking the degree of mantle depletion. Furthermore, the gneisses themselves have been multiply metamorphosed and are often affected by mixing: The banded gneisses in particular comprise several magmatic precursor rocks of different age that have been repeatedly folded into each other. This promted questions of whether zircon ages should be used in the calculation of bulk rock initial epsilon Nd, and whether linear trends on Sm-Nd isochron represented meaningful

  3. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  4. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at

  5. Directional depletion interactions in shaped particles

    National Research Council Canada - National Science Library

    A. Scala; P.G. De Sanctis Lucentini

    2014-01-01

    ... that such particles can be utilized as "artificial atoms" to build new materials. To elucidate the effects of the shape of particles upon the magnitude of entropic interaction, we analyse the entropic interactions of two cut-spheres...

  6. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  7. Effect of greenhouse gas emissions on stratospheric ozone depletion

    OpenAIRE

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric interaction. We studied the interactions in the atmosphere between the greenhouse effect and stratospheric ozone depletion from the point of view of past and future emissions of the anthropogenic com...

  8. A Novel Depletion-Mode MOS Gated Emitter Shorted Thyristor

    Institute of Scientific and Technical Information of China (English)

    张鹤鸣; 戴显英; 张义门; 马晓华; 林大松

    2000-01-01

    A Novel MOS-gated thyristor, depletion-mode MOS gated emitter shorted thyristor (DMST),and its two structures are proposed. In DMST,the channel of depletion-mode MOS makes the thyristor emitter-based junction inherently short. The operation of the device is controlled by the interruption and recovery of the depletion-mode MOS P channel. The perfect properties have been demonstrated by 2-D numerical simulations and the tests on the fabricated chips.

  9. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  10. Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites

    DEFF Research Database (Denmark)

    Scott, James; Liu, Jingao; Pearson, D. Graham;

    2016-01-01

    Although trace element concentrations in clinopyroxene serve as a useful tool for assessing the depletion and enrichment history of mantle peridotites, this is not applicable for peridotites in which the clinopyroxene component has been consumed (~ 25% partial melting). Orthopyroxene persists.......6), high spinel Cr# (commonly > 45) and low orthopyroxene Al2O3 (generally compositions shows that all samples, even the most refractory, have undergone metasomatism by small volume light rare earth element-bearing agents. Measured...

  11. The depletion potential in one, two and three dimensions

    Indian Academy of Sciences (India)

    R Roth; P-M König

    2005-06-01

    We study the behavior of the depletion potential in binary mixtures of hard particles in one, two, and three dimensions within the framework of a general theory for depletion potential using density functional theory. By doing so we extend earlier studies of the depletion potential in three dimensions to the cases of = 1 and 2 about which little is known, despite their importance for experiments. We also verify scaling relations between depletion potentials in sphere–sphere and wall–sphere geometries in = 3 and in disk–disk and wall–disk geometries in = 2, which originate from geometrical considerations.

  12. An extension of the validation of SCALE (SAS2H) isotopic predictions for PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.; Hermann, O.W.

    1996-09-01

    Isotopic characterization of spent fuel via depletion and decay calculations is necessary for determination of source terms. Unlike fresh fuel assumptions typically used in criticality safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and decay calculations to predict spent fuel composition; these isotopics are used in subsequent criticality calculations to assess the reduced worth of spent fuel. To validate the depletion codes and data, experiment is compared with predictions; such comparisons have been done in earlier ORNL work. This report describes additional independent measurements and corresponding calculations as a supplement. The current work includes measured isotopic data from 19 spent fuel samples from the Italian Trino Vercelles PWR and the US Turkey Point-3 PWR. In addition, an approach to determine biases and uncertainties between calculated and measured isotopic concentrations is discussed, together with a method to statistically combine these terms to obtain a conservative estimate of spent fuel isotopic concentrations. Results on combination of measured-to-calculated ratios are presented. The results described herein represent an extension to a new reactor design and spent fuel samples with enrichment as high as 3.9 wt% {sup 235}U. Consistency with the earlier work for each of two different cross-section libraries suggests that the estimated biases for each of the isotopes in the earlier work are reasonably good estimates.

  13. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    Science.gov (United States)

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  14. Influence of folic acid-fortified foods on folate status in a folate depletion-repletion rat model.

    Science.gov (United States)

    O'Leary, K; Sheehy, P J

    2001-04-01

    An increasing number of foods fortified with varying levels of folic acid are appearing in the market place, targeted either at the general population or at specific consumer groups. Although it is assumed that the folate in these products should be highly bioavailable, there is a need to carry out studies to ascertain that this is, in fact, the case. The present study investigated the ability of selected folic acid-fortified foods (targeted at different types of consumer) to increase the folate status of folate-deficient rats. Forty-two weanling male rats (Wistar strain) were fed a folate-deficient diet containing 1 % succinyl sulfathiazole (w/w) for 28 d. Following depletion, seven rats were randomly assigned to each of five repletion diets containing folic acid, Complan, Slim Fast, Opti-Fuel2 or Cola Coa calculated to provide 200 microg folate/kg of each diet. Calculations were based on folate information from the product labels. After a further 28 d, plasma, liver and kidney folate concentrations were determined by microbiological assay. Plasma homocysteine was measured by HPLC as a functional indicator of folate status. The folate content of the foods was measured by tri-enzyme extraction followed by microbiological assay. Our analyses suggest that there may be considerable inaccuracies on the part of the manufacturers in relation to the folate declarations on the product labels. Despite this, the four foods evaluated were highly effective in elevating plasma, liver and kidney folate and lowering plasma homocysteine concentrations in rats. These results lend support to the policy of food fortification with folic acid as a means of raising the folate status of the population, and in particular to the fortification of specific foods which may target areas of the population where increased folate status is most needed.

  15. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  16. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  17. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  18. Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress.

    Science.gov (United States)

    Xiao, Weihua; Liu, Yu; Chen, Peijie

    2016-12-01

    Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.

  19. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene

    National Research Council Canada - National Science Library

    Wharram, Bryan L; Goyal, Meera; Wiggins, Jocelyn E; Sanden, Silja K; Hussain, Sabiha; Filipiak, Wanda E; Saunders, Thomas L; Dysko, Robert C; Kohno, Kenji; Holzman, Lawrence B; Wiggins, Roger C

    2005-01-01

    .... For determining the causal relationship between podocyte depletion and glomerulosclerosis, a transgenic rat strain in which the human diphtheria toxin receptor is specifically expressed in podocytes was developed...

  20. Depleted-Uranium Weapons the Whys and Wherefores

    CERN Document Server

    Gsponer, A

    2003-01-01

    The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

  1. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Science.gov (United States)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  2. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  3. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 2, Part 3: Functional modules F16--F17; Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  4. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  5. Thermal Degradation of Lignocellulosic Fuels: Biopolymers Contribution

    OpenAIRE

    Leroy, Valérie; Leoni, Eric; Cancellieri, Dominique

    2010-01-01

    In wildland fire modelling and forest fuel hazard studies, the thermal degradation of the solid is a fundamental stage. Two ways are suitable: the first one considers the thermal degradation of the whole fuel giving a complex mixture of gas, tars and chars; the second one considers the thermal degradation as the sum of the contributions from the principal components of the fuel. Our aim was to verify the validity of the second approach. DSC analyses were performed in order to get the enthalpy...

  6. Fuel Conditioning Facility Electrorefiner Process Model

    Energy Technology Data Exchange (ETDEWEB)

    DeeEarl Vaden

    2005-10-01

    The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

  7. Effects of Plectin Depletion on Keratin Network Dynamics and Organization.

    Directory of Open Access Journals (Sweden)

    Marcin Moch

    Full Text Available The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells.

  8. Modeling and control of fuel cell systems and fuel processors

    Science.gov (United States)

    Pukrushpan, Jay Tawee

    Fuel cell systems offer clean and efficient energy production and are currently under intensive development by several manufacturers for both stationary and mobile applications. The viability, efficiency, and robustness of this technology depend on understanding, predicting, and controlling the unique transient behavior of the fuel cell system. In this thesis, we employ phenomenological modeling and multivariable control techniques to provide fast and consistent system dynamic behavior. Moreover, a framework for analyzing and evaluating different control architectures and sensor sets is provided. Two fuel cell related control problems are investigated in this study, namely, the control of the cathode oxygen supply for a high-pressure direct hydrogen Fuel Cell System (FCS) and control of the anode hydrogen supply from a natural gas Fuel Processor System (FPS). System dynamic analysis and control design is carried out using model-based linear control approaches. A system level dynamic model suitable for each control problem is developed from physics-based component models. The transient behavior captured in the model includes flow characteristics, inertia dynamics, lumped-volume manifold filling dynamics, time evolving spatially-homogeneous reactant pressure or mole fraction, membrane humidity, and the Catalytic Partial Oxidation (CPOX) reactor temperature. The goal of the FCS control problem is to effectively regulate the oxygen concentration in the cathode by quickly and accurately replenishing oxygen depleted during power generation. The features and limitations of different control configurations and the effect of various measurement on the control performance are examined. For example, an observability analysis suggests using the stack voltage measurement as feedback to the observer-based controller to improve the closed loop performance. The objective of the FPS control system is to regulate both the CPOX temperature and anode hydrogen concentration. Linear

  9. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric i

  10. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  11. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  12. A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis

    Science.gov (United States)

    Warren, Paul H.

    2008-04-01

    It has long been customary to assume that in the bulk composition of the Earth, all refractory-lithophile elements (including major oxides Al 2O 3 and CaO, all of the REE, and the heat-producing elements Th and U) occur in chondritic, bulk solar system, proportion to one another. Recently, however, Nd-isotopic studies (most notably Boyet M. and Carlson R. W. (2006) A new geochemical model for the Earth's mantle inferred from 146Sm- 142Nd systematics. Earth Planet. Sci. Lett.250, 254-268) have suggested that at least the outer portion of the planet features a Nd/Sm ratio depleted to ˜0.93 times the chondritic ratio. The primary reaction to this type of evidence has been to invoke a "hidden" reservoir of enriched matter, sequestered into the deepest mantle as a consequence of primordial differentiation. I propose a hypothesis that potentially explains the evidence for Nd/Sm depletion in a very different way. Among the handful of major types of differentiated asteroidal meteorites, two (ureilites and aubrites) are ultramafic restites so consistently devoid of plagioclase that meteoriticists were once mystified as to how all the complementary plagioclase-rich matter (basalt) was lost. The explanation appears to be basalt loss by graphite-fueled explosive volcanism on roughly 100-km sized planetesimals; with the dispersiveness of the process dramatically enhanced, relative to terrestrial experience, because the pyroclastic gases expand into vacuous space (Wilson L. and Keil K. (1991) Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body. Earth Planet. Sci. Lett.104, 505-512). By analogy with lunar pyroclastic products, the typical size of pyroclastic melt/glass droplets under these circumstances will be roughly 0.1 mm. Once separated from an asteroidal or planetesimal gravitational field, droplets of this size will generally spiral toward the Sun, rather than reaccrete, because drag forces such the

  13. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients.

    Science.gov (United States)

    Sotomayor, Camilo G; Eisenga, Michele F; Gomes Neto, Antonio W; Ozyilmaz, Akin; Gans, Rijk O B; Jong, Wilhelmina H A de; Zelle, Dorien M; Berger, Stefan P; Gaillard, Carlo A J M; Navis, Gerjan J; Bakker, Stephan J L

    2017-06-02

    Vitamin C may reduce inflammation and is inversely associated with mortality in the general population. We investigated the association of plasma vitamin C with all-cause mortality in renal transplant recipients (RTR); and whether this association would be mediated by inflammatory biomarkers. Vitamin C, high sensitive C-reactive protein (hs-CRP), soluble intercellular cell adhesion molecule 1 (sICAM-1), and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured in a cohort of 598 RTR. Cox regression analyses were used to analyze the association between vitamin C depletion (≤28 µmol/L; 22% of RTR) and mortality. Mediation analyses were performed according to Preacher and Hayes's procedure. At a median follow-up of 7.0 (6.2-7.5) years, 131 (21%) patients died. Vitamin C depletion was univariately associated with almost two-fold higher risk of mortality (Hazard ratio (HR) 1.95; 95% confidence interval (95%CI) 1.35-2.81, p C depletion is frequent and independently associated with almost two-fold higher risk of mortality in RTR. It may be hypothesized that the beneficial effect of vitamin C at least partly occurs through decreasing inflammation.

  14. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    Science.gov (United States)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  15. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  16. Ozone Depletion Potential of CH3Br

    Science.gov (United States)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  17. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  18. Ozone depletion during solar proton events in solar cycle 21

    Science.gov (United States)

    Mcpeters, R. D.; Jackman, C. H.

    1985-01-01

    Ozone profile data from the Solar Backscattered Ultraviolet Instrument on Nimbus 7 from 1979 to the present and clear cases of ozone destruction associated with five sudden proton events (SPEs) on June 7, 1979, August 21, 1979, October 13-14, 1981, July 13, 1982, and December 8, 1982 are found. During the SPE on July 13, 1982, the largest of this solar cycle, no depletion at all at 45 km is observed, but there is a 15 percent ozone depletion at 50 km increasing to 27 percent at 55 km, all at a solar zenith angle of 85 deg. A strong variation of the observed depletion with solar zenith angle is found, with maximum depletion occurring at the largest zenith angles (near 85 deg) decreasing to near zero for angles below about 70 deg. The observed depletion is short lived, disappearing within hours of the end of the SPE.

  19. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  20. Barium depletion study on impregnated cathodes and lifetime prediction

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A

    2003-06-15

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  1. The effect of ego depletion on sprint start reaction time.

    Science.gov (United States)

    Englert, Chris; Bertrams, Alex

    2014-10-01

    In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.

  2. Behaviour analysis of the fuel injected in the intake manifold of port-injected spark ignition engines: modeling and experimental validation; Analyse du comportement du carburant injecte dans les conduits d`admission des moteurs a allumage commande a injection multipoint: modelisation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Sches, C.

    1999-01-27

    In order to limit pollutant emissions resulting from transient engine operation, the mastering of mixture formation is essential. In this context, an interactive work was undertaken between a modeling job and an experimental study, to get better understanding of the mechanisms of fuel dynamic behavior in the intake manifold of port-injected spark-ignition engines. The experimental study, elaborated thanks to experimental designs, showed out two essential factors: injection timing and coolant liquid temperature, which act on the fuel dynamic behavior through a second order filter. Then, a phenomenological modeling was established and validated, to analyze the various phenomena influencing mixture formation and to calculate the air/fuel ratio evolutions during transient operation. This program uses the results of a 3D model describing the fuel spray transportation, evaporation and impact on the port walls. The calculation does not need any boundary conditions and the running times are vary satisfactory. We showed that a correct description of the liquid fuel film was necessary to get good prediction of the mixture fuel/air ratio. The spray modeling, which is necessary, can however be kept simple. Future work may develop either in the engine control filed (injection strategies development, optimization of the injection system configuration, ...), or in the theoretical field (better modeling of fuel film displacement or of secondary atomization of the fuel on the intake valve). (author) 79 refs.

  3. HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Cahng

    2005-09-01

    Advanced High Temperature gas-cooled Reactors (HTR) currently being developed (GFR, VHTR - Very High Temperature gas-cooled Reactor, PBMR, and GT-MHR) are able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel pebble / block is addressed through the use of the Dancoff correction factor in the resonance treatment. In addition, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. Although HTR fuel is rather homogeneously dispersed in the fuel graphite matrix, the heterogeneity effects in between fuel kernels and pebbles cannot be ignored. The double-heterogeneous lattice model recently developed at the Idaho National Engineering and Environmental Laboratory (INEEL) contains tens of thousands of cubic fuel kernel cells, which makes it very difficult to deplete the fuel, kernel by kernel (KbK), for the EqFC analysis. In addition, it is not possible to preserve the cubic size and packing factor in a spherical fuel pebble. To avoid these difficulties, a newly developed and validated HTR pebble-bed Kernel-by-Kernel spherical (KbK-sph) model, has been developed and verified in this study. The objective of this research is to introduce the KbK-sph model and super whole Pebble lattice model (PLM). The verified double-heterogeneous KbK-sph and pebble homogeneous lattice model (HLM) are used for the fuel burnup chracteristics analysis and important safety parameters validation. This study summarizes and compares the KbK-sph and HLM burnup analyzed results. Finally, we discus the Monte-Carlo coupling with a fuel depletion and buildup code - Origen-2 as a fuel burnup

  4. Characterization of spent fuel approved testing material---ATM-105

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  5. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  6. Critical assessment of power trains with fuel-cell systems and different fuels

    Science.gov (United States)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  7. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    OpenAIRE

    2010-01-01

    The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for whic...

  8. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  9. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science

    2014-12-15

    This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  10. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  11. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  12. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  13. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    Science.gov (United States)

    Perton, M.; Lévesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  14. Thermogravimetric analysis in the study of solid fuels

    Directory of Open Access Journals (Sweden)

    Wróblewski Robert

    2016-01-01

    Full Text Available Depletion of fossil energy is the reason for the exploration of the possibility of the use of renewable energy resources. In the article describes a method of thermo-gravimetric analysis and concept, design and execution of the instrument to thermogravimetric measurements placed in the Laboratory of Fuel and Energy Conversion of Institute of Electrical Power Engineering of Poznan University of Technology. The further part of the paper contains the results of the tests carried out on two types of solid fuels (pellets from sawdust and energy willow wood chips in the form of a thermogravimetric curves. This analysis is to determine the level of the pyrolysis process temperature and degree of conversion of solid fuels into fuel gas. These studies are conducted by looking at opportunities to improve the energy efficiency of the gasification process of biomass.

  15. Conversion of Solar Energy to Fuels by Inorganic Heterogeneous Systems

    Institute of Scientific and Technical Information of China (English)

    Kimfung LI; David MARTIN; Junwang TANG

    2011-01-01

    Over the last several years, the need to find clean and renewable energy sources has increased rapidly because current fossil fuels will not only eventually be depleted, but their continuous combustion leads to a dramatic increase in the carbon dioxide amount in atmosphere. Utilisation of the Sun's radiation can provide a solution to both problems. Hydrogen fuel can be generated by using solar energy to split water, and liquid fuels can be produced via direct CO2 photoreduction. This would create an essentially free carbon or at least carbon neutral energy cycle. In this tutorial review, the current progress in fuels' generation directly driven by solar energy is summarised. Fundamental mechanisms are discussed with suggestions for future research.

  16. Feasibility study on AFR-100 fuel conversion from uranium-based fuel to thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T.; Grandy, C. (Nuclear Engineering Division)

    2012-07-30

    Although thorium has long been considered as an alternative to uranium-based fuels, most of the reactors built to-date have been fueled with uranium-based fuel with the exception of a few reactors. The decision to use uranium-based fuels was initially made based on the technology maturity compared to thorium-based fuels. As a result of this experience, lot of knowledge and data have been accumulated for uranium-based fuels that made it the predominant nuclear fuel type for extant nuclear power. However, following the recent concerns about the extent and availability of uranium resources, thorium-based fuels have regained significant interest worldwide. Thorium is more abundant than uranium and can be readily exploited in many countries and thus is now seen as a possible alternative. As thorium-based fuel technologies mature, fuel conversion from uranium to thorium is expected to become a major interest in both thermal and fast reactors. In this study the feasibility of fuel conversion in a fast reactor is assessed and several possible approaches are proposed. The analyses are performed using the Advanced Fast Reactor (AFR-100) design, a fast reactor core concept recently developed by ANL. The AFR-100 is a small 100 MW{sub e} reactor developed under the US-DOE program relying on innovative fast reactor technologies and advanced structural and cladding materials. It was designed to be inherently safe and offers sufficient margins with respect to the fuel melting temperature and the fuel-cladding eutectic temperature when using U-10Zr binary metal fuel. Thorium-based metal fuel was preferred to other thorium fuel forms because of its higher heavy metal density and it does not need to be alloyed with zirconium to reduce its radiation swelling. The various approaches explored cover the use of pure thorium fuel as well as the use of thorium mixed with transuranics (TRU). Sensitivity studies were performed for the different scenarios envisioned in order to determine the

  17. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-01-05

    ... January 5, 2012 Part V Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard... Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under...

  18. Repository criticality control for {sup 233}U using depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Elam, K.R.; Hopper, C.M.

    1999-07-01

    The US is evaluating methods for the disposition of excess weapons-usable {sup 233}U, including disposal in a repository. Isotopic dilution studies were undertaken to determine how much depleted uranium (DU) would need to be added to the {sup 233}U to minimize the potential for nuclear criticality in a repository. Numerical evaluations were conducted to determine the nuclear equivalence of different {sup 235}U enrichments to {sup 233}U isotopically diluted with DU containing 0.2 wt% {sup 235}U. A homogeneous system of silicon dioxide, water, {sup 233}U, and DU, in which the ratio of each component was varied, was used to determine the conditions of maximum nuclear reactivity. In terms of preventing nuclear criticality in a repository, there are three important limits from these calculations. 1. Criticality safe in any nonnuclear system: The required isotopic dilution to ensure criticality under all conditions, except in the presence of man-made nuclear materials (beryllium, etc.), is {approximately}1.0% {sup 235}U in {sup 238}U. The equivalent {sup 233}U enrichment level is 0.53 wt% {sup 233}U in DU. 2. Critically safe in natural systems: The lowest {sup 235}U enrichment found in a natural reactor at shutdown was {approximately}1.3%. French studies, based on the characteristics of natural uranium ore bodies, indicate that a minimum enrichment of {approximately}1.28% {sup 235}U is required for criticality. These data suggest that nuclear criticality from migrating uranium is not realistic unless the {sup 235}U enrichments exceed {approximately}1.3%, which is a result that is equivalent to 0.72% {sup 233}U in DU. 3. Criticality safety equivalent to light water reactor (LWR) spent nuclear fuel (SNF): The {sup 233}U can be diluted with DU so that the uranium criticality characteristics match SNF uranium. Whatever repository criticality controls are used for SNF can then be used for {sup 233}U. The average LWR SNF assay (after decay of plutonium isotopes to uranium

  19. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  20. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  1. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  2. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  3. A computer code for calculation of radioactive nuclide generation and depletion, decay heat and {gamma} ray spectrum. FPGS90

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Hitoshi; Katakura, Jun-ichi; Nakagawa, Tsuneo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    In a nuclear reactor radioactive nuclides are generated and depleted with burning up of nuclear fuel. The radioactive nuclides, emitting {gamma} ray and {beta} ray, play role of radioactive source of decay heat in a reactor and radiation exposure. In safety evaluation of nuclear reactor and nuclear fuel cycle, it is needed to estimate the number of nuclides generated in nuclear fuel under various burn-up condition of many kinds of nuclear fuel used in a nuclear reactor. FPGS90 is a code calculating the number of nuclides, decay heat and spectrum of emitted {gamma} ray from fission products produced in a nuclear fuel under the various kinds of burn-up condition. The nuclear data library used in FPGS90 code is the library `JNDC Nuclear Data Library of Fission Products - second version -`, which is compiled by working group of Japanese Nuclear Data Committee for evaluating decay heat in a reactor. The code has a function of processing a so-called evaluated nuclear data file such as ENDF/B, JENDL, ENSDF and so on. It also has a function of making figures of calculated results. Using FPGS90 code it is possible to do all works from making library, calculating nuclide generation and decay heat through making figures of the calculated results. (author).

  4. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  5. Sproglig Metode og Analyse

    DEFF Research Database (Denmark)

    le Fevre Jakobsen, Bjarne

    Publikationen indeholder øvematerialer, tekster, powerpointpræsentationer og handouts til undervisningsfaget Sproglig Metode og Analyse på BA og tilvalg i Dansk/Nordisk 2010-2011......Publikationen indeholder øvematerialer, tekster, powerpointpræsentationer og handouts til undervisningsfaget Sproglig Metode og Analyse på BA og tilvalg i Dansk/Nordisk 2010-2011...

  6. Combustion and fuel characterization of coal-water fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

  7. The travesty of discarding used CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ottensmeyer, P. [Univ. of Toronto, Toronto, Ontario (Canada)

    2016-09-15

    The current plan worldwide for virtually all used nuclear fuels is costly deep burial to attempt to isolate their long-term radiotoxicity permanently. Alternatively Canada's 50,000 tons spent CANDU fuel, of which only 0.74% of the heavy atoms have been fissioned to extract their energy, could supply 130 times more non-carbon energy using proven economical recycling and fast-neutron technologies. The result in this country alone would currently be the creation of $74 trillion of reliable electricity on demand without greenhouse gas emissions. It would avoid adding 475 billion tons CO{sub 2} to the atmosphere compared to the use of coal, to mitigate climate change. Worldwide recycling of stored spent nuclear fuel and replenishing with depleted uranium in fast-neutron reactors could avoid emitting over 20 trillion tons CO{sub 2}, or over six times the current total atmospheric CO{sub 2} content. As added bonus the long-term radiotoxicity of the used CANDU fuel is effectively eliminated, making a long-term deep geological repository unnecessary. Even the shorter-lived radioisotope fission products become valuable stable atoms and minerals that would fetch $3 million per ton. Such an alternative is certainly worth pursuing. (author)

  8. Fueling-Controlled the Growth of Massive Black Holes

    Science.gov (United States)

    Escala, A.

    2009-05-01

    We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported into the nuclear (central kpc) regions of galaxies. We study gas fueling onto the inner accretion disk (sub-pc scale) and star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulations of gas fueling, which is mainly depleted by star formation, naturally satisfy the `M_BH-M_{virial}' relation, with a scatter considerably less than that observed. We find that a generalized version of the Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate (dot M_gas=dot M_BH + M_SF scales as M_gas/t_orbital. See Escala (2007) for more details about this work.

  9. FUELING-CONTROLLED THE GROWTH OF MASSIVE BLACK HOLES

    Directory of Open Access Journals (Sweden)

    A. Escala

    2009-01-01

    Full Text Available We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported into the nuclear (central kpc regions of galaxies. We study gas fueling onto the inner accretion disk (sub-pc scale and star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies. These sub-pc resolution simulations of gas fueling, which is mainly depleted by star formation, naturally satisfy the `MBH -Mvirial' relation, with a scatter considerably less than that observed. We nd that a generalized version of the Kennicutt-Schmidt Law for starbursts is satis ed, in which the total gas depletion rate ( _Mgas = _MBH + _MSF scales as Mgas=torbital. See Escala (2007 for more details about this work.

  10. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  11. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Gauld, Ian C [ORNL

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. Navy Fuel Specification Standardization

    Science.gov (United States)

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  14. Investigation of Performance Analysis and Emission Characteristics of Waste Plastic Fuel

    Science.gov (United States)

    Ruban, M.; Ramasubramanian, S.; Pugazhenthi, R.; Sivaganesan

    2017-03-01

    Today the world is confronted with the twin crisis of fossil fuel depletion and stringent emission norms, because of the environmental awareness. The disposal and degradation of waste plastic is a major issue and scarcities of fuel were major focus area of the researchers. In this virtue the waste plastic fuel extraction makes more attention to the researchers. In this research work focused to find the performance of the waste plastic fuel and compared to diesel. The waste plastic fuel extract from thermal cracking method this process the polymer chains were breakdown into useful lower molecular weight compounds and it becomes plastic pyrolysis it can be utilized as a fuel. The properties of the waste plastic fuel is obtained by various testing process and which is analyze and compare with the fossil fuel diesel. It is found that almost it has similar properties to the diesel and almost all properties of the pyrolysis is closer to that of diesel. The characteristics of the pyrolysis were tested in the engine test bed. The pyrolysis / waste plastic fuel can be directly used in diesel engines over the entire load spectrum smoothly without any major modification. The performance of the waste plastic fuel / pyrolysis is evidenced that it is one of the best alternative fuel as well as the waste plastic can be converted into a useful fuel

  15. Characterization of spent fuel approved testing material--ATM-104

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to date are described for Approved Testing Material 104 (ATM-104), which is spent fuel from Assembly DO47 of the Calvert Cliffs Nuclear Power Plant (Unit 1), a pressurized-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-104 consists of 128 full-length irradiated fuel rods with rod-average burnups of about 42 MWd/kgM and expected fission gas release of about 1%. A variety of analyses were performed to investigate cladding characteristics, radionuclide inventory, and redistribution of fission products. Characterization data include (1) fabricated fuel design, irradiation history, and subsequent storage and handling history; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM) and electron probe microanalyses (EPMA); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding.

  16. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  17. Alternate Fuels Combustion Research

    Science.gov (United States)

    1983-10-01

    properties of the other fuels are varied systematically beyond the specification limits imposed on the reference fuels, principally in the direction of...lower hydrogen content- Comparison of fuel nozzles, Figurae ,6.32. shows stronger dependence bet- ween oeiseslona and hydrogen content for airblast and

  18. Vented nuclear fuel element

    Science.gov (United States)

    Grossman, Leonard N.; Kaznoff, Alexis I.

    1979-01-01

    A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

  19. Alternative Fuels Data Center

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  20. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  1. AFSC/REFM: Pacific cod Localized Depletion Study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Localized Depletion study for Pacific cod 2001-2005. Study was conducted using cod pot gear to measure localized abundance of Pacific cod inside and...

  2. Groundwater depletion in the United States (1900-2008)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the...

  3. Prediction Method of Safety Mud Density in Depleted Oilfields

    Directory of Open Access Journals (Sweden)

    Yuan Jun-Liang

    2013-04-01

    Full Text Available At present, many oilfields were placed in the middle and late development period and the reservoir pressure depleted usually, resulting in more serious differential pressure sticking and drilling mud leakage both in the reservoir and cap rock. In view of this situation, a systematic prediction method of safety mud density in depleted oilfields was established. The influence of reservoir depletion on stress and strength in reservoir and cap formation were both studied and taken into the prediction of safety mud density. The research showed that the risk of differential pressure sticking and drilling mud leakage in reservoir and cap formation were both increased and they were the main prevention object in depleted oilfields drilling. The research results were used to guide the practice drilling work, the whole progress gone smoothly.

  4. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    Science.gov (United States)

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  5. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    Science.gov (United States)

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  6. Depletion of microglia exacerbates postischemic inflammation and brain injury

    National Research Council Canada - National Science Library

    Jin, Wei-Na; Shi, Samuel Xiang-Yu; Li, Zhiguo; Li, Minshu; Wood, Kristofer; Gonzales, Rayna J; Liu, Qiang

    2017-01-01

    ...). Although depletion of microglia has been linked to worse stroke outcomes, it remains unclear to what extent and by what mechanisms activated microglia influence ischemia-induced inflammation and injury in the brain...

  7. Background suppression in fluorescence nanoscopy with stimulated emission double depletion

    Science.gov (United States)

    Gao, Peng; Prunsche, Benedikt; Zhou, Lu; Nienhaus, Karin; Nienhaus, G. Ulrich

    2017-01-01

    Stimulated emission depletion (STED) fluorescence nanoscopy is a powerful super-resolution imaging technique based on the confinement of fluorescence emission to the central subregion of an observation volume through de-excitation of fluorophores in the periphery via stimulated emission. Here, we introduce stimulated emission double depletion (STEDD) as a method to selectively remove artificial background intensity. In this approach, a first, conventional STED pulse is followed by a second, delayed Gaussian STED pulse that specifically depletes the central region, thus leaving only background. Thanks to time-resolved detection we can remove this background intensity voxel by voxel by taking the weighted difference of photons collected before and after the second STED pulse. STEDD thus yields background-suppressed super-resolved images as well as STED-based fluorescence correlation spectroscopy data. Furthermore, the proposed method is also beneficial when considering lower-power, less redshifted depletion pulses.

  8. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  9. Individual differences in dopamine level modulate the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Xiao, Shanshan; Liu, Ying; Jiang, Yumeng; Mao, Lihua

    2016-01-01

    Initial exertion of self-control impairs subsequent self-regulatory performance, which is referred to as the ego depletion effect. The current study examined how individual differences in dopamine level, as indexed by eye blink rate (EBR), would moderate ego depletion. An inverted-U-shaped relationship between EBR and subsequent self-regulatory performance was found when participants initially engaged in self-control but such relationship was absent in the control condition where there was no initial exertion, suggesting individuals with a medium dopamine level may be protected from the typical ego depletion effect. These findings are consistent with a cognitive explanation which considers ego depletion as a phenomenon similar to "switch costs" that would be neutralized by factors promoting flexible switching.

  10. Net depletion determination for Hankin Wetland Development Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum contains the analysis and the data used to produce the net depletion that would occur as a result of the Hankin Wetland Development Project.

  11. Adding trend data to Depletion-Based Stock Reduction Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Bayesian model of Depletion-Based Stock Reduction Analysis (DB-SRA), informed by a time series of abundance indexes, was developed, using the Sampling Importance...

  12. Hydroxide depletion in dilute supernates stored in waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1985-10-10

    Free hydroxide ion in dilute supernates are depleted by reaction with atmospheric carbon dioxide to form bicarbonate and carbonate species and by reaction with acidic compounds formed by the radiolytic decomposition of tetraphenylborate salts. A model of the kinetics and thermodynamics of absorption of carbon dioxide in the waste tanks has been developed. Forecasts of the rate of hydroxide depletion and the requirements for sodium hydroxide to maintain technical standards have been made for the washed sludge and washed precipitate storage tanks. Hydroxide depletion is predicted to have a minimal impact on sludge processing operations. However, in-tank precipitation and downstream DWPF operations are predicted to be significantly affected by hydroxide depletion in Tank 49H. The installation of a carbon dioxide scrubber on Tank 49H may be justified in view of the decrease in alkali content and variation in the melter feed.

  13. Technology Roadmap: Fuel Economy of Road Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This roadmap explores the potential improvement of existing technologies to enhance the average fuel economy of motorised vehicles; the roadmap’s vision is to achieve a 30% to 50% reduction in fuel use per kilometre from new road vehicles including 2-wheelers, LDV s and HDV s) around the world in 2030, and from the stock of all vehicles on the road by 2050. This achievement would contribute to significant reductions in GHG emissions and oil use, compared to a baseline projection. Different motorised modes are treated separately, with a focus on LDV s, HDV s and powered two-wheelers. A section on in-use fuel economy also addresses technical and nontechnical parameters that could allow fuel economy to drastically improve over the next decades. Technology cost analysis and payback time show that significant progress can be made with low or negative cost for fuel-efficient vehicles over their lifetime use. Even though the latest data analysed by the IEA for fuel economy between 2005 and 2008 showed that a gap exists in achieving the roadmap’s vision, cutting the average fuel economy of road motorised vehicles by 30% to 50% by 2030 is achievable, and the policies and technologies that could help meet this challenge are already deployed in many places around the world.

  14. The activation of cultured keratinocytes by cholesterol depletion during reconstruction of a human epidermis is reminiscent of monolayer cultures.

    Science.gov (United States)

    De Vuyst, Évelyne; Giltaire, Séverine; Lambert de Rouvroit, Catherine; Chrétien, Aline; Salmon, Michel; Poumay, Yves

    2015-05-01

    Transient cholesterol depletion from plasma membranes of human keratinocytes has been shown to reversibly activate signalling pathways in monolayer cultures. Consecutive changes in gene expression have been characterized in such conditions and were interestingly found to be similar to transcriptional changes observed in keratinocytes of atopic dermatitis (AD) patients. As an inflammatory skin disease, AD notably results in altered histology of the epidermis associated with a defective epidermal barrier. To further investigate whether the activation of keratinocytes obtained by cholesterol depletion could be responsible for some epidermal alterations reported in AD, this study was undertaken to analyse cholesterol depletion in stratified cultures of keratinocytes, i.e. a reconstructed human epidermis (RHE). RHE contains heterogeneous populations of keratinocytes, either proliferating or progressively differentiating and stratifying towards the creation of a cornified barrier. Cholesterol depletion induced in this model was found reversible and resulted in activation of signalling pathways similar to those previously identified in monolayers. In addition, selected changes in the expression of several genes suggested that keratinocytes in RHE respond to cholesterol depletion as monolayers. However, preserved histology and barrier function indicate that some additional activation, likely from the immune system, is required to obtain epidermal alterations such as the ones found in AD.

  15. Protamine sulfate precipitation method depletes abundant plant seed-storage proteins: A case study on legume plants.

    Science.gov (United States)

    Kim, Yu Ji; Wang, Yiming; Gupta, Ravi; Kim, So Wun; Min, Chul Woo; Kim, Yong Chul; Park, Ki Hun; Agrawal, Ganesh Kumar; Rakwal, Randeep; Choung, Myoung-Gun; Kang, Kyu Young; Kim, Sun Tae

    2015-05-01

    Depletion of abundant proteins is one of the effective ways to improve detection and identification of low-abundance proteins. Our previous study showed that protamine sulfate precipitation (PSP) method can deplete abundant ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from leaf proteins and is suitable for their in-depth proteome investigation. In this study, we provide evidence that the PSP method can also be effectively used for depletion of abundant seed-storage proteins (SSPs) from the total seed proteins of diverse legume plants including soybean, broad bean, pea, wild soybean, and peanut. The 0.05% protamine sulfate (PS) was sufficient to deplete major SSPs from all legumes tested except for peanut where 0.1% PS was required. SDS-PAGE, Western blotting and 2DE analyses of PS-treated soybean and peanut seed proteins showed enriched spots in PS-supernatant than total proteins. Coefficient of variation percentage (%CV) and principal component analysis of 2DE spots support the reproducibility, suitability, and efficacy of the PSP method for quantitative and comparative seed proteome analysis. MALDI-TOF-TOF successfully identified some protein spots from soybean and peanut. Hence, this simple, reproducible, economical PSP method has a broader application in depleting plant abundant proteins including SSPs in addition to RuBisCO, allowing discussion for comprehensive proteome establishment and parallel comparative studies in plants.

  16. Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation.

    Science.gov (United States)

    Girard, Cyrille; Neel, Henry; Bertrand, Edouard; Bordonné, Rémy

    2006-01-01

    Neuronal degeneration in spinal muscular atrophy (SMA) is caused by reduced expression of the survival of motor neuron (SMN) protein. The SMN protein is ubiquitously expressed and is present both in the cytoplasm and in the nucleus where it localizes in Cajal bodies. The SMN complex plays an essential role for the biogenesis of spliceosomal U-snRNPs. In this article, we have used an RNA interference approach in order to analyse the effects of SMN depletion on snRNP assembly in HeLa cells. Although snRNP profiles are not perturbed in SMN-depleted cells, we found that SMN depletion gives rise to cytoplasmic accumulation of a GFP-SmB reporter protein. We also demonstrate that the SMN protein depletion induces defects in Cajal body formation with coilin being localized in multiple nuclear foci and in nucleolus instead of canonical Cajal bodies. Interestingly, the coilin containing foci do not contain snRNPs but appear to co-localize with U85 scaRNA. Because Cajal bodies represent the location in which snRNPs undergo 2'-O-methylation and pseudouridylation, our results raise the possibility that SMN depletion might give rise to a defect in the snRNA modification process.

  17. Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride

    Science.gov (United States)

    Laverov, N. P.; Velichkin, V. I.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Tagirov, B. R.

    2010-08-01

    The production of enriched uranium used in nuclear weapons and fuel for atomic power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually increases by 35-40 kt. To date, more than 1.6 Mt DU has accumulated in the world. The main DU mass is stored as environ-mentally hazardous uranium hexafluoride (UF6), which is highly volatile and soluble in water with the formation of hydrofluoric acid. To ensure safe UF6 storage, it is necessary to convert this compound in chemically stable phases. The industrial reprocessing of UF6 into U3O8 and HF implemented in France is highly expensive. We substantiate the expediency of long-term storage of depleted uranium hexafluoride in underground repositories localized in limestone. On the basis of geochemical data and thermodynamic calculations, we show that interaction in the steel container-UF6-limestone-groundwater system gives rise to the development of a slightly alkaline reductive medium favorable for chemical reaction with formation of uraninite (UO2) and fluorite (CaF2). The proposed engineering solution not only ensures safe DU storage but also makes it possible to produce uraninite, which can be utilized, if necessary, in fast-neutron reactors. In the course of further investigations aimed at safe maintenance of DU, it is necessary to study the kinetics of conversion of UF6 into stable phases, involving laboratory and field experiments.

  18. V. S. O. P. ('94) Computer Code System for Reactor Physics and Fuel Cycle Simulation

    OpenAIRE

    Teuchert, E.; Haas, K. A.; Rütten, H. J.; Brockmann, Hans; Gerwin, Helmut; Ohlig, U.; Scherer, Winfried

    1994-01-01

    V. S. O. P. ('Very Superior Old Programs) is a system of codes lurked together for the simulationof reactor life histories and temporary in-depth research. In comprises neutron cross sectionlibraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculationwith depletion and shut-down features, in-core and out-of--pile fuel management, fuel cyclecost analysis, and thermal hydraulics (at present restricted to 's). Various techniques havebeen employed to accelerat...

  19. V. S. O. P. - Computer Code System for Reactor Physics and Fuel Cycle Simulation

    OpenAIRE

    Teuchert, E.; Hansen, U.; Haas, K. A.

    1980-01-01

    V .S .O .P . (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprisesneutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based onneutron flux synthesis with depletion and shut-down features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employe...

  20. Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    2013-06-19

    methyl phenol ECD Electrochemical detector GC-MS Gas chromatography with mass selective detection HT Hydrotreated HPLC High Performance...Antioxidants are often used to meet military storage stability requirements and are required in hydrotreated and alternative fuels. It is often necessary to...constituents to be quantifiable by this method. The single column method was successfully employed to measure TTBP depletion in hydrotreated Jet A fuels

  1. Conditional depletion of nuclear proteins by the Anchor Away system.

    Science.gov (United States)

    Fan, Xiaochun; Geisberg, Joseph V; Wong, Koon Ho; Jin, Yi

    2011-01-01

    Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. This unit describes a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from the nucleus.

  2. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  3. Portable proton exchange membrane fuel-cell systems for outdoor applications

    Science.gov (United States)

    Oszcipok, M.; Zedda, M.; Hesselmann, J.; Huppmann, M.; Wodrich, M.; Junghardt, M.; Hebling, C.

    A hydrogen fuelled, 30 W proton exchange membrane fuel-cell (PEMFC) system is presented that is able to operate at an ambient temperature between -20 and 40 °C. The system, which comprises the fuel-cell stack, pumps, humidifier, valves and blowers is fully characterized in a climatic chamber under various ambient temperatures. Successful cold start-up and stable operation at -20 °C are reported as well as the system behaviour during long-term at 40 °C. A simple thermal model of the stack is developed and validated, and accounts for heat losses by radiation and convection. Condensation of steam is addressed as well as reaction gas depletion. The stack is regarded as a uniform heat source. The electrochemical reaction is not resolved. General design rules for the cold start-up of a portable fuel-cell stack are deduced by the thermal model and are taken into consideration for the design. The model is used for a comparison between active-assisted cold start-up procedures with a passive cold start-up from temperatures below 0 °C. It is found that a passive cold start-up may not be the most efficient strategy. Additionally, the influence of different stack concepts on the start-up behaviour is analysed by the thermal model. Three power classes of PEMFC stacks are compared: a Ballard Mk902 module for automotive applications with 85 kW, the forerunner stack Ballard Mk5 (5 kW) for medium power applications, and the developed OutdoorFC stack (30 W), for portable applications.

  4. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    Science.gov (United States)

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  5. The Optimal Depletion of Exhaustible Resource under Different Commitment

    Institute of Scientific and Technical Information of China (English)

    Zhou Wei; Wu Kangping

    2012-01-01

    There are few papers in the literature focusing on the issue of the optimal depletion of exhaustible resources in the framework of variable time preference. This paper attempts to analyze the pure consumption of exhaustible resource under hy- perbolic time preference, and to discuss the optimal depletion rate and the effect of the protection of the exhaustible resource under different commitment abilities. The results of model show that the case of the hyperbolic discount with the full commitment of the govemment is equivalent to the case of constant discount of the social planner problem. In that case, the optimal depletion rate and the initial consumption of exhaustible resource are the slowest. On the contrary, they are the highest and the myopic behaviors lead to excessive consumption of exhaustible resources inevitably without commitment. Otherwise, in the case of partial commit- ment, the results are between the cases of full commitment and of no commitment. Therefore, with the hyperbolic time preference, the optimal depletion rate of resource depends on the commitment ability. Higher commitment ability leads to lower effective rate of time preference, and consequently, lower depletion rate and lower initial depletion value. The improvement of commitment ability can decrease the impatience and myopia behaviors, and contribute to the protection of the exhaustible resources.

  6. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    Science.gov (United States)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  7. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T. [Science Applications International Corp., Idaho Falls, ID (United States)

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository.

  8. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  9. Chronic inhibition, self-control and eating behavior: test of a 'resource depletion' model.

    Directory of Open Access Journals (Sweden)

    Martin S Hagger

    Full Text Available The current research tested the hypothesis that individuals engaged in long-term efforts to limit food intake (e.g., individuals with high eating restraint would have reduced capacity to regulate eating when self-control resources are limited. In the current research, body mass index (BMI was used as a proxy for eating restraint based on the assumption that individuals with high BMI would have elevated levels of chronic eating restraint. A preliminary study (Study 1 aimed to provide evidence for the assumed relationship between eating restraint and BMI. Participants (N = 72 categorized into high or normal-range BMI groups completed the eating restraint scale. Consistent with the hypothesis, results revealed significantly higher scores on the weight fluctuation and concern for dieting subscales of the restraint scale among participants in the high BMI group compared to the normal-range BMI group. The main study (Study 2 aimed to test the hypothesized interactive effect of BMI and diminished self-control resources on eating behavior. Participants (N = 83 classified as having high or normal-range BMI were randomly allocated to receive a challenging counting task that depleted self-control resources (ego-depletion condition or a non-depleting control task (no depletion condition. Participants then engaged in a second task in which required tasting and rating tempting cookies and candies. Amount of food consumed during the taste-and-rate task constituted the behavioral dependent measure. Regression analyses revealed a significant interaction effect of these variables on amount of food eaten in the taste-and-rate task. Individuals with high BMI had reduced capacity to regulate eating under conditions of self-control resource depletion as predicted. The interactive effects of BMI and self-control resource depletion on eating behavior were independent of trait self-control. Results extend knowledge of the role of self-control in regulating eating

  10. Radiative capture on $^{242}$Pu for MOX fuel reactors

    CERN Multimedia

    The use of MOX fuel (mixed-oxide fuel made of UO$_{2}$ and PuO$_{2}$) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. Indeed around 66% of the plutonium from spent fuel is made of $^{239}$Pu and $^{241}$Pu, which are fissile in thermal reactors. A typical reactor of this type uses a fuel with 7% reprocessed Pu and 93% depleted U, thus profiting from both the spent fuel and the remaining $^{238}$U following the $^{235}$U enrichment. With the use of such new fuel compositions rich in Pu the better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. This is clearly stated in the recent OECD NEA’s “High Priority Request List” and in the WPEC-26 “Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations” report. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United ...

  11. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  12. Cycle Average Peak Fuel Temperature Prediction Using CAPP/GAMMA+

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam-il; Lee, Hyun Chul; Lim, Hong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a cycle average maximum fuel temperature without rigorous efforts, a neutronics/thermo-fluid coupled calculation is needed with depletion capability. Recently, a CAPP/GAMMA+ coupled code system has been developed and the initial core of PMR200 was analyzed using the CAPP/GAMMA+ code system. The GAMMA+ code is a system thermo-fluid analysis code and the CAPP code is a neutronics code. The General Atomics proposed that the design limit of the fuel temperature under normal operating conditions should be a cycle-averaged maximum value. Nonetheless, the existing works of Korea Atomic Energy Research Institute (KAERI) only calculated the maximum fuel temperature at a fixed time point, e.g., the beginning of cycle (BOC) just because the calculation capability was not ready for a cycle average value. In this work, a cycle average maximum fuel temperature has been calculated using CAPP/GAMMA+ code system for the equilibrium core of PMR200. The CAPP/GAMMA+ coupled calculation was carried out for the equilibrium core of PMR 200 from BOC to EOC to obtain a cycle average peak fuel temperature. The peak fuel temperature was predicted to be 1372 .deg. C near MOC. However, the cycle average peak fuel temperature was calculated as 1181 .deg. C, which is below the design target of 1250 .deg. C.

  13. The ORR Whole-Core LEU Fuel Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L.

    1990-01-01

    The ORR Whole-Core LEU Fuel Demonstration, conducted as part of the US Reduced Enrichment Research and Test Reactor Program, has been successfully completed. Using commercially-fabricated U{sub 3}Si{sub 2}-Al 20%-enriched fuel elements (4.8 g U/cc) and fuel followers (3.5 g U/cc), the 30-MW Oak Ridge Research Reactor was safely converted from an all-HEU core, through a series of HEU/LEU mixed transition cores, to an all-LEU core. There were no fuel element failures and average discharge burnups were measured to be as high as 50% for the standard elements and 75% for the fuel followers. Experimental results for burnup-dependent critical configurations, cycle-averaged fuel element powers, and fuel-element-averaged {sup 235}U burnups validated predictions based on three-dimensional depletion calculations. Calculated values for plutonium production and isotopic mass ratios as functions of {sup 235}U burnup support the corresponding measured quantities. In general, calculations for reaction rate distributions, control rod worths, prompt neutron decay constants, and isothermal temperature coefficients were found to agree with corresponding measured values. Experimentally determined critical configurations for fresh HEU and LEU cores radially reflected with water and with beryllium are well-predicted by both Monte Carlo and diffusion calculations. 17 refs.

  14. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Brown, N. R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Baek, J. S [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.; Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nuclear Science and Technology Dept.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  15. 77 FR 53236 - Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion...

    Science.gov (United States)

    2012-08-31

    ... COMMISSION Proposed International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion... International Isotopes Fluorine Extraction Process and Depleted Uranium Deconversion Plant (INIS) in Lea County... construction, operation, and decommissioning of a fluorine extraction and depleted uranium...

  16. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  17. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    Science.gov (United States)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  18. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats

    Directory of Open Access Journals (Sweden)

    Vink Carolien

    2009-04-01

    Full Text Available Abstract Background Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation. Rats were fed a control diet or the same diet supplemented with buthionine sulfoximine (BSO; glutathione depletion or cystine (glutathione maintenance. Inert chromium ethylenediamine-tetraacetic acid (CrEDTA was added to the diets to quantify intestinal permeability. At day 4 after oral gavage with Salmonella enteritidis (or saline for non-infected controls, Salmonella translocation was determined by culturing extra-intestinal organs. Liver and ileal mucosa were collected for analyses of glutathione, inflammation markers and oxidative damage. Faeces was collected to quantify diarrhoea. Results Glutathione depletion aggravated ileal inflammation after infection as indicated by increased levels of mucosal myeloperoxidase and interleukin-1β. Remarkably, intestinal permeability and Salmonella translocation were not increased. Cystine supplementation maintained glutathione in the intestinal mucosa but inflammation and oxidative damage were not diminished. Nevertheless, cystine reduced intestinal permeability and Salmonella translocation. Conclusion Despite increased infection-induced mucosal inflammation upon glutathione depletion, this tripeptide does not play a role in intestinal permeability, bacterial translocation and diarrhoea. On the other hand, cystine enhances gut barrier function by a mechanism unlikely to be related to glutathione.

  19. Mathematical modeling of biomass fuels formation process.

    Science.gov (United States)

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  20. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    Science.gov (United States)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems