WorldWideScience

Sample records for fuel criticality safety

  1. Spent fuel storage criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E M; Elmessiry, A M [National center of nuclear safety and radiation control atomic energy authority, (Egypt)

    1995-10-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs.

  2. Spent fuel storage criticality safety

    International Nuclear Information System (INIS)

    Amin, E.M.; Elmessiry, A.M.

    1995-01-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs

  3. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  4. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  5. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-01-01

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., 45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k eff . Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  6. Nuclear criticality safety program at the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Fujita, E.K.; Tracy, D.B.; Klann, R.T.; Imel, G.R.; Benedict, R.W.; Rigg, R.H.

    1994-01-01

    The Fuel Cycle Facility (FCF) is designed to demonstrate the feasibility of a novel commercial-scale remote pyrometallurgical process for metallic fuels from liquid metal-cooled reactors and to show closure of the Integral Fast Reactor (IFR) fuel cycle. Requirements for nuclear criticality safety impose the most restrictive of the various constraints on the operation of FCF. The upper limits on batch sizes and other important process parameters are determined principally by criticality safety considerations. To maintain an efficient operation within appropriate safety limits, it is necessary to formulate a nuclear criticality safety program that integrates equipment design, process development, process modeling, conduct of operations, a measurement program, adequate material control procedures, and nuclear criticality analysis. The nuclear criticality safety program for FCF reflects this integration, ensuring that the facility can be operated efficiently without compromising safety. The experience gained from the conduct of this program in the Fuel cycle Facility will be used to design and safely operate IFR facilities on a commercial scale. The key features of the nuclear criticality safety program are described. The relationship of these features to normal facility operation is also described

  7. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  8. Consequences of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Marshall, William J.; Wagner, John C.

    2012-09-01

    This report documents work performed for the Department of Energy's Office of Nuclear Energy (DOENE) Fuel Cycle Technologies Used Fuel Disposition Campaign to assess the impact of fuel reconfiguration due to fuel failure on the criticality safety of used nuclear fuel (UNF) in storage and transportation casks. This work was motivated by concerns related to the potential for fuel degradation during extended storage (ES) periods and transportation following ES, but has relevance to other potential causes of fuel reconfiguration. Commercial UNF in the United States is expected to remain in storage for longer periods than originally intended. Extended storage time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications for virtually all aspects of a UNF storage and transport system's performance. The potential impact of fuel reconfiguration on the safety of UNF in storage and transportation is dependent on the likelihood and extent of the fuel reconfiguration, which is not well understood and is currently an active area of research. The objective of this work is to assess and quantify the impact of postulated failed fuel configurations on the criticality safety of UNF in storage and transportation casks. Although this work is motivated by the potential for fuel degradation during ES periods and transportation following ES, it has relevance to fuel reconfiguration due to the effects of high burnup. Regardless of the ultimate disposition path, UNF will need to be transported at some point in the future. To investigate and quantify the impact of fuel reconfiguration on criticality safety limits, which are given in terms of the effective neutron multiplication factor, a set of failed fuel

  9. Criticality safety study of dry spent fuel cask loaded with increased enrichment fuel

    International Nuclear Information System (INIS)

    Bznuni, S.; Baghdasaryan, N.; Amirjanyan, A.

    2013-01-01

    Existing Dry Spent Fuel Casks (DSC) for transporting and storing of Armenian NPP fuel was licensed for WWER-440 fuel assemblies with 3.6% enrichment. Having in mind that ANPP introduced new fuel assemblies with increased enrichment (3.82 %) re-assessment of criticality safety analysis for DSC is required. Criticality safety analysis of DSC was performed by KENO-VI program using 238-GROUP ENDF/B-VII.0 LIBRARY (V7-238). Results of analysis showed that additional 8 borated racks for fuel assemblies should be included in the design of DSC. In addition feasibility study was performed to find out level of burnup-credit approach implementation to keep current design of DSC unchanged. Burnup-credit analysis was performed by STARBUCS program using axial burnup profiles from Armenian NPP neutronics analysis carried out by BIPR code. (authors)

  10. Criticality safety of spent fuel casks considering water inleakage

    International Nuclear Information System (INIS)

    Osgood, N.L.; Withee, C.J.; Easton, E.P.

    2004-01-01

    A fundamental safety design parameter for all fissile material packages is that a single package must be critically safe even if water leaks into the containment system. In addition, criticality safety must be assured for arrays of packages under normal conditions of transport (undamaged packages) and under hypothetical accident conditions (damaged packages). The U.S. Nuclear Regulatory Commission staff has revised the review protocol for demonstrating criticality safety for spent fuel casks. Previous review guidance specified that water inleakage be considered under accident conditions. This practice was based on the fact that the leak tightness of spent fuel casks is typically demonstrated by use of structural analysis and not by physical testing. In addition, since a single package was shown to be safe with water inleakage, it was concluded that this analysis was also applicable to an array of damaged packages, since the heavy shield walls in spent fuel casks neutronically isolate each cask in the array. Inherent in this conclusion is that the fuel assembly geometry does not change significantly, even under drop test conditions. Requests for shipping fuel with burnup exceeding 40 GWd/MTU, including very high burnups exceeding 60 GWD/MTU, caused a reassessment of this assumption. Fuel cladding structural strength and ductility were not clearly predictable for these higher burnups. Therefore the single package analysis for an undamaged package may not be applicable for the damaged package. NRC staff developed a new practice for review of spent fuel casks under accident conditions. The practice presents two methods for approval that would allow an assessment of potential reconfiguration of the fuel assembly under accident conditions, or, alternatively, a demonstration of the water-exclusion boundary through physical testing

  11. Impact of axial burnup profile on criticality safety of ANPP spent fuel cask

    International Nuclear Information System (INIS)

    Bznuni, S.

    2006-01-01

    Criticality safety assessment for WWER-440 NUHOMS cask with spent nuclear fuel from Armenian NPP has been performed. The cask was designed in such way that the neutron multiplication factor k eff must be below 0,95 for all operational modes and accident conditions. Usually for criticality analysis, fresh fuel approach with the highest enrichment is taken as conservative assumption as it was done for ANPP. NRSC ANRA in order to improve future fuel storage efficiency initiated research with taking into account burn up credit in the criticality safety assessment. Axial burn up profile (end effect) has essential impact on criticality safety justification analysis. However this phenomenon was not taken into account in the Safety Analysis Report of NUHOMS spent fuel storage constructed on the site of ANPP. Although ANRA does not yet accept burn up credit approach for ANPP spent fuel storage, assessment of impact of axial burnup profile on criticality of spent fuel assemblies has important value for future activities of ANRA. This paper presents results of criticality calculations of spent fuel assemblies with axial burn up profile. Horizontal burn up profile isn't taken account since influence of the horizontal variation of the burn up is much less than the axial variation. The actinides and actinides + fission products approach are discussed. The calculations were carried out with STARBUCS module of SCALE 5.0 code package developed at Oak Ridge National laboratory. SCALE5.0 sequence CSAS26 (KENO-VI) was used for evaluation the k eff for 3-D problems. Obtained results showed that criticality of ANPP spent fuel cask is very sensitive to the end effect

  12. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  13. Trial evaluation on criticality safety of the fuel assemblies at falling accident as spent fuel transport and storage cask

    International Nuclear Information System (INIS)

    Tadano, Tomoaki

    2016-01-01

    The authors conducted critical safety assessment on the supposed event at the time of a fall accident of cask, and examined the influence on criticality safety. If the spacer of fuel assembly is sound, it is assumed that the pitch of fuel rod interval changes, and if the spacer is broken, it is assumed that the fuel rod is unevenly distributed in the basket. For the critical calculation of fuel assembly basket system, they performed it using a calculation code. For both of the single cell and assembly, calculation results showed an increase in the effective multiplication factor of reactivity of 2-3%. When this reactivity is applied to the criticality analysis result of PWR fuel assembly, the value approaches to the limit 0.95 of the neutron effective multiplication factor keff. However, the keff when new fuel is loaded is sufficiently lower than 0.93. Therefore, it is unlikely that the criticality analysis result approaches to 0.95 at all burnups, and the possibility to become criticality is very low in actual spent fuel transport. When considering the reactivity of this research, it is possible that the design condition for the assumption of novel fuel loading becomes severer. Furthermore, criticality analysis under non-uniform pitch will become necessary, and criticality safety analysis for BWR fuel with heterogeneous enrichment degree and burnup degree will become also necessary. (A.O.)

  14. Criticality safety assessment of FBTR fuel sub-assemblies using WIMS cross section set

    International Nuclear Information System (INIS)

    Gupta, H.C.; Chakraborty, B.

    2002-01-01

    Full text: FBTR's irradiated fuel sub-assemblies (FSAs) are sent to RML at Indira Gandhi Centre for Atomic Research for post irradiation examination. The FSAs are cut open and the fuel pins are separated for examination in the hot cells. It was required to evaluate the criticality safety in handling the FSAs in the hot cells. Criticality safety studies for handling two as well as three irradiated FSAs in the hot cells under dry conditions were carried out by the Safety Group at IGCAR, Kalpakkam. Monte Carlo code KENO (Version Va) which uses 16-group Hansen-Roach cross-section set was used for the calculations. Subsequently, during the safety review of the proposition by the Safety Review Committee (SARCOP) of AERB, it was stipulated to carry out the criticality safety studies under flooded condition also. We carried out the criticality safety studies for these fuel sub assemblies in different configurations under dry (buried in concrete) as well as wet condition (flooded with light water) using Monte Carlo codes MONALI (developed at BARC) and KENO4 using WlMS-69 group cross section set. Results of our analyses under various conditions are presented in this paper

  15. Criticality safety issues in the disposition of BN-350 spent fuel

    International Nuclear Information System (INIS)

    Schaefer, R. W.; Klann, R. T.; Koltyshev, S. M.; Krechetov, S.

    2000-01-01

    A criticality safety analysis has been performed as part of the BN-350 spent fuel disposition project being conducted jointly by the DOE and Kazakhstan. The Kazakhstan regulations are reasonably consistent with those of the DOE. The high enrichment and severe undermoderation of this fast reactor fuel has significant criticality safety consequences. A detailed modeling approach was used that showed some configurations to be safe that otherwise would be rejected. Reasonable requirements for design and operations were needed, and with them, all operations were found to be safe

  16. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  17. Criticality safety evaluation of the fuel cycle facility electrorefiner

    International Nuclear Information System (INIS)

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-01-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis

  18. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  19. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A. [Westinghouse Electric Co., LLC, Columbia, SC (United States)]|[ENUSA Industrias Avanzadas SA, Madrid (Spain)

    2004-07-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse.

  20. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    International Nuclear Information System (INIS)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A.

    2004-01-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse

  1. Preparation of data for criticality safety evaluation of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Yoshiyama, Hiroshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2005-01-01

    Nuclear Criticality Safety Handbook/Data Collection, Version 2 was submitted to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan as a contract report. In this presentation paper, its outline and related recent works are presented. After an introduction in Chapter 1, useful information to obtain the atomic number densities was collected in Chapter 2. The nuclear characteristic parameters for 11 nuclear fuels were provided in Chapter 3, and subcriticality judgment graphs were given in Chapter 4. The estimated critical and estimated lower-limit critical values were supplied for the 11 nuclear fuels as results of calculations by using the Japanese Evaluated Nuclear Data Library, JENDL-3.2, and the continuous energy Monte Carlo neutron transport code MVP in Chapter 5. The results of benchmark calculations based on the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook were summarized into six fuel categories in Chapter 6. As for recent works, subcriticality judgment graphs for U-SiO 2 and Pu-SiO 2 were obtained. Benchmark calculations were made with the combination of the latest version of the library JENDL-3.3 and MVP code for a series of STACY experiments and the estimated critical and estimated lower-limit critical values of 10 wt%-enriched uranium nitrate solutions were calculated. (author)

  2. Analysis of the criticality safety of a nuclear fuel deposit

    International Nuclear Information System (INIS)

    Landeyro, P.A.; Mincarini, M.

    1987-01-01

    In the present work a safety analysis from criticality accidents of nuclear fuel deposits is performed. The analysis is performed utilizing two methods derived from different physical principes: 1) superficial density method, obtained from experimental research; 2) solid angle method, derived from transport theory

  3. Developing guidance in the nuclear criticality safety assessment for fuel cycle facilities

    International Nuclear Information System (INIS)

    Galet, C.; Evo, S.

    2012-01-01

    In this poster IRSN (Institute for radiation protection and nuclear safety) presents its safety guides whose purpose is to transmit the safety assessment know-how to any 'junior' staff or even to give a view of the safety approach on the overall risks to any staff member. IRSN has written a first version of such a safety guide for fuel cycle facilities and laboratories. It is organized into several chapters: some refer to types of assessments, others concern the types of risks. Currently, this guide contains 13 chapters and each chapter consists of three parts. In parallel to the development of criticality chapter of this guide, the IRSN criticality department has developed a nuclear criticality safety guide. It follows the structure of the three parts fore-mentioned, but it presents a more detailed first part and integrates, in the third part, the experience feedback collected on nuclear facilities. The nuclear criticality safety guide is online on the IRSN's web site

  4. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  5. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel

    International Nuclear Information System (INIS)

    Nomura, Y.

    1998-01-01

    Lately, due to massive accumulation of spent fuel discharged from light water reactors in Japan, it is gradually demanded to introduce the so-called burnup credit methodology into criticality safety design for nuclear fuel cycle facilities, such as spent fuel storage pools and transport casks. In order to save space in the spent fuel storage pool of the Rokkasho Reprocessing Plant, the burnup credit design has been firstly implemented for its criticality safety evaluation. Here, its design conditions and operational control procedures are briefly shown and research using burned fuel at JAERI is explained to support its licensing safety review, focusing on the relevant content of the Nuclear Criticality Safety Handbook of Japan, which has been prepared so far and planned in the near future. Finally, international co-operation for study on burnup credit issues practiced by JAERI is addressed. (author)

  6. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.; Turski, R.B.; Fujita, E.K.

    1993-01-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality

  7. Outline of criticality safety research project

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Suzaki, Takenori; Takeshita, Isao; Miyoshi, Yoshinori; Nakajima, Ken; Sakurai, Satoshi; Yanagisawa, Hiroshi

    1987-01-01

    As the power generation capacity of LWRs in Japan increased, the establishment and development of nuclear fuel cycle have become the important subject. Conforming to the safety research project of the nation, the Japan Atomic Energy Research Institute has advanced the project of constructing a new research facility, that is, Nuclear Fuel Cycle Engineering Research Facility (NUCEF). In this facility, it is planned to carry out the research on criticality safety, upgraded reprocessing techniques, and the treatment and disposal of transuranium element wastes. In this paper, the subjects of criticality safety research and the research carried out with a criticality safety experiment facility which is expected to be installed in the NUCEF are briefly reported. The experimental data obtained from the criticality safety handbooks and published literatures in foreign countries are short of the data on the mixture of low enriched uranium and plutonium which is treated in the reprocessing of spent fuel from LWRs. The acquisition of the criticality data for various forms of fuel, the elucidation of the scenario of criticality accidents, and the soundness of the confinement system for gaseous fission products and plutonium are the main subjects. The Static Criticality Safety Facility, Transient Criticality Safety Facility and pulse column system are the main facilities. (Kako, I.)

  8. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  9. Verification of criticality Safety for ETRR-2 Fuel Manufacturing pilot Plant (FMPP) at Inshas

    International Nuclear Information System (INIS)

    Aziz, M.; Gadalla, A.A.; Orabi, G.

    2006-01-01

    The criticality safety of the fuel manufacturing pilot plant (FMPP) at inshas is studied and analyzed during normal and abnormal operation conditions. the multiplication factor during all stages of the manufacturing processes is determined. several accident scenarios were simulated and the criticality of these accidents were investigated. two codes are used in the analysis : MCNP 4 B code, based on monte Carlo method, and CITATION code , based on diffusion theory. the results are compared with the designer calculations and satisfactory agreement were found. the results of the study indicated that the safety of the fuel manufacturing pilot plant is confirmed

  10. Nuclear criticality safety handbook. Version 2

    International Nuclear Information System (INIS)

    1999-03-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modelled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision is made based on previous studies for the chapter that treats modelling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, and burnup credit. This revision solves the inconsistencies found in the first version between the evaluation of errors found in JACS code system and criticality condition data that were calculated based on the evaluation. (author)

  11. Critical experiments facility and criticality safety programs at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Miyoshi, Yoshinori; Nomura, Yasushi

    1985-10-01

    The nuclear criticality safety is becoming a key point in Japan in the safety considerations for nuclear installations outside reactors such as spent fuel reprocessing facilities, plutonium fuel fabrication facilities, large scale hot alboratories, and so on. Especially a large scale spent fuel reprocessing facility is being designed and would be constructed in near future, therefore extensive experimental studies are needed for compilation of our own technical standards and also for verification of safety in a potential criticality accident to obtain public acceptance. Japan Atomic Energy Research Institute is proceeding a construction program of a new criticality safety experimental facility where criticality data can be obtained for such solution fuels as mainly handled in a reprocessing facility and also chemical process experiments can be performed to investigate abnormal phenomena, e.g. plutonium behavior in solvent extraction process by using pulsed colums. In FY 1985 detail design of the facility will be completed and licensing review by the government would start in FY 1986. Experiments would start in FY 1990. Research subjects and main specifications of the facility are described. (author)

  12. Validation of KENO V.a for criticality safety calculations involving WR-1 fast-neutron fuel arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I. C.

    1991-07-15

    The KENO V.a criticality safety code, used with the SCALE 27-energy-group ENDF/B-IV-based cross-section library, has been validated for low-enriched uranium carbide (UC) WR-1 fast-neutron (FN) fuel arrangements. Because of a lack of relevant experimental data for UC fuel in the published literature, the validation is based primarily on calculational comparisons with critical experiments for fuel types with a range of enrichments and densities that cover those of the FN UC fuel. The ability of KENO V.a to handle the unique annular pin arrangement of the WR-1 FN fuel bundle was established using a comparison with the MCNP3B code used with a continuous-energy ENDF/B-V-based cross-section library. This report is part of the AECL--10146 report series documenting the validation of the KENO V.a criticality safety code.

  13. Criticality accident of nuclear fuel facility. Think back on JCO criticality accident

    International Nuclear Information System (INIS)

    Naito, Keiji

    2003-09-01

    This book is written in order to understand the fundamental knowledge of criticality safety or criticality accident of nuclear fuel facility by the citizens. It consists of four chapters such as critical conditions and criticality accident of nuclear facility, risk of criticality accident, prevention of criticality accident and a measure at an occurrence of criticality accident. A definition of criticality, control of critical conditions, an aspect of accident, a rate of incident, damage, three sufferers, safety control method of criticality, engineering and administrative control, safety design of criticality, investigation of failure of safety control of JCO criticality accident, safety culture are explained. JCO criticality accident was caused with intention of disregarding regulation. It is important that we recognize the correct risk of criticality accident of nuclear fuel facility and prevent disasters. On the basis of them, we should establish safety culture. (S.Y.)

  14. Criticality safety of storage barrels for enriched uranium fresh fuel at the RB research reactor

    International Nuclear Information System (INIS)

    Pesic, M. P.

    1997-01-01

    Study on criticality safety of fresh low and high enriched uranium (LEU and HEU) fuel elements in the storage/transport barrels at the RB research reactor is carried out by using the well-known MCNP computer code. It is shown that studied arrays of tightly closed fuel barrels, each entirely loaded with 100 fresh (HEU or LEU) fuel slugs, are far away from criticality, even in cases of an unexpected flooding by light water.(author)

  15. Criticality safety analysis of spent fuel storage for NPP Mochovce using MCNP5

    International Nuclear Information System (INIS)

    Farkas, G.; Hascik, J.; Lueley, J.; Vrban, B.; Petriska, M.; Slugen, V.; Urban, P.

    2011-01-01

    The paper presents results of nuclear criticality safety analysis of spent fuel storage for the first and second unit of NPP Mochovce. The spent fuel storage pool (compact and reserve grid) was modeled using the Monte Carlo code MCNP5. Conservative approach was applied and calculation of k eff values was performed for normal and various postulated emergency conditions in order to evaluate the final maximal k eff values. The requirement of current safety regulations to ensure 5% subcriticality was met except one especially conservative case. (Authors)

  16. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1999-01-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models

  17. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  18. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    International Nuclear Information System (INIS)

    Montierth, Leland M.

    2016-01-01

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  19. Submersion criticality safety of tungsten-rhenium urania cermet fuel for space propulsion and power applications

    Energy Technology Data Exchange (ETDEWEB)

    Craft, A.E., E-mail: aaron.craft@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); O’Brien, R.C., E-mail: Robert.OBrien@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); Howe, S.D., E-mail: Steven.Howe@inl.gov [Center for Space Nuclear Research (CSNR), INL, Idaho Falls, ID (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, Golden, CO 80401 (United States)

    2014-07-01

    Highlights: • Criticality safety studies consider a generic space nuclear reactor in reentry scenarios. • Describes the submersion criticality behavior for a reactor fueled with a tungsten cermet fuel. • Study considers effects of varying fuel content, geometry, and other conditions. - Abstract: Nuclear thermal rockets are the preferred propulsion technology for a manned mission to Mars, and tungsten–uranium oxide cermet fuels could provide significant performance and cost advantages for nuclear thermal rockets. A nuclear reactor intended for use in space must remain subcritical before and during launch, and must remain subcritical in launch abort scenarios where the reactor falls back to Earth and becomes submerged in terrestrial materials (including seawater, wet sand, or dry sand). Submersion increases reflection of neutrons and also thermalizes the neutron spectrum, which typically increases the reactivity of the core. This effect is typically very significant for compact, fast-spectrum reactors. This paper provides a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor with a range of fuel compositions. Each submersion case considers both the rhenium content in the matrix alloy and the uranium oxide volume fraction in the cermet. The inclusion of rhenium significantly improves the submersion criticality safety of the reactor. While increased uranium oxide content increases the reactivity of the core, it does not significantly affect the submersion behavior of the reactor. There is no significant difference in submersion behavior between reactors with rhenium distributed within the cermet matrix and reactors with a rhenium clad in the coolant channels. The combination of the flooding of the coolant channels in submersion scenarios and the presence of a significant amount of spectral shift absorbers (i.e. high rhenium concentration) further decreases reactivity for short reactor cores compared to longer cores.

  20. Criticality safety and shielding analysis of WWER-440 fuel configurations

    International Nuclear Information System (INIS)

    Christoskov, I.

    2008-01-01

    An overview is made of some studies performed on the criticality safety and radiation shielding analysis of irradiated WWER-440 fuel storage and handling configurations. The analytical tools are based on the SCALE 4.4a code system, in combination with the TORT discrete ordinates transport code and the BUGLE-96 cross-sections library. The accuracy of some important results is assessed through comparison with independent evaluations and with measurement data. (author)

  1. Criticality safety considerations in the geologic disposal of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Gore, B.F.; McNair, G.W.; Heaberlin, S.W.

    1980-05-01

    Features of geologic disposal which hamper the demonstration that criticality cannot occur therein include possible changes of shape and form, intrusion of water as a neutron moderator, and selective leaching of spent fuel constituents. If the criticality safety of spent fuel disposal depends on burnup, independent measurements verifying the burnup should be performed prior to disposal. The status of nondestructive analysis method which might provide such verification is discussed. Calculations were performed to assess the potential for increasing the allowed size of a spent fuel disposal canister if potential water intrusion were limited by close-packing the enclosed rods. Several factors were identified which severely limited the potential of this application. The theoretical limit of hexagonal close-packing cannot be achieved due to fuel rod bowing. It is concluded that disposal canisters should be sized on the basis of assumed optimum moderation. Several topics for additional research were identified during this limited study

  2. Nuclear criticality safety assessment of ORR, NBS, and HFBR fuel element shipping package

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1979-01-01

    A fuel element shipping package employing a borated-phenolic foam as a thermal insulating material is designed to transport as many as seven fuel elements for use in the Oak Ridge Research Reactor, the Brookhaven Fast Beam Reactor, or the National Bureau of Standards Reactor. This report presents the criticality safety evaluation and demonstrates that the requirements for a Fissile Class I package are satisfied by the design

  3. Criticality safety evaluation for TWR-S fuel assembly transportation using TK-S16 containers

    International Nuclear Information System (INIS)

    Pesic, M.P.; Steljic, M.M.; Antic, D.P.

    2002-01-01

    Criticality safety issues, concerning transportation of fresh high-enriched uranium fuel elements (TWR-S fuel assembly type) with Russian containers TK-S16, are objects of study in this paper. Three-dimensional (3D) models of fuel element and container were made, based upon their well-known geometry and material structure. The way to pack fuel elements in a bundle inside of the container is proposed. Calculations were done by MCNP4B2 computer code. This Monte Carlo criticality code determined the effective multiplication factor from the cross-section data and specific geometry data. This evaluation demonstrated the subcriticality of a single package and an array of packages during normal conditions of transport and various hypothetical accident conditions. (author)

  4. French safety and criticality testing programmes

    International Nuclear Information System (INIS)

    Barbry, F.; Leclerc, J.; Manaranche, J.C.; Maubert, L.

    1982-01-01

    This article underlines the need to include experimental safety-criticality programmes in the French nuclear effort. The means and methods used at the Section of Experimental Nuclear Safety and Criticality Research, attached to the CEA Valduc Centre, are described. Three experimental programmes are presented: safety-criticality of the PWR fuel cycle, neutron poisoning of plutonium solutions by gadolinium and safety-criticality of slightly enriched and slightly moderated uranium oxide. Criticality accidents studies in solution are then described [fr

  5. 2011 Annual Criticality Safety Program Performance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Hoffman

    2011-12-01

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The

  6. Nuclear Criticality Safety Handbook, Version 2. English translation

    International Nuclear Information System (INIS)

    2001-08-01

    The Nuclear Criticality Safety Handbook, Version 2 essentially includes the description of the Supplement Report to the Nuclear Criticality Safety Handbook, released in 1995, into the first version of the Nuclear Criticality Safety Handbook, published in 1988. The following two points are new: (1) exemplifying safety margins related to modeled dissolution and extraction processes, (2) describing evaluation methods and alarm system for criticality accidents. Revision has been made based on previous studies for the chapter that treats modeling the fuel system: e.g., the fuel grain size that the system can be regarded as homogeneous, non-uniformity effect of fuel solution, an burnup credit. This revision has solved the inconsistencies found in the first version between the evaluation of errors found in JACS code system and the criticality condition data that were calculated based on the evaluation. This report is an English translation of the Nuclear Criticality Safety Handbook, Version 2, originally published in Japanese as JAERI 1340 in 1999. (author)

  7. Program of nuclear criticality safety experiment at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Ohnishi, Nobuaki

    1983-11-01

    JAERI is promoting the nuclear criticality safety research program, in which a new facility for criticality safety experiments (Criticality Safety Experimental Facility : CSEF) is to be built for the experiments with solution fuel. One of the experimental researches is to measure, collect and evaluate the experimental data needed for evaluation of criticality safety of the nuclear fuel cycle facilities. Another research area is a study of the phenomena themselves which are incidental to postulated critical accidents. Investigation of the scale and characteristics of the influences caused by the accident is also included in this research. The result of the conceptual design of CSEF is summarized in this report. (author)

  8. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    International Nuclear Information System (INIS)

    JENSEN, M.A.

    2005-01-01

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable

  9. Nuclear criticality safety parameter evaluation for uranium metallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Andrea; Abe, Alfredo, E-mail: andreasdpz@hotmail.com, E-mail: abye@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Energia Nuclear

    2013-07-01

    Nuclear criticality safety during fuel fabrication process, transport and storage of fissile and fissionable materials requires criticality safety analysis. Normally the analysis involves computer calculations and safety parameters determination. There are many different Criticality Safety Handbooks where such safety parameters for several different fissile mixtures are presented. The handbooks have been published to provide data and safety principles for the design, safety evaluation and licensing of operations, transport and storage of fissile and fissionable materials. The data often comprise not only critical values, but also subcritical limits and safe parameters obtained for specific conditions using criticality safety calculation codes such as SCALE system. Although many data are available for different fissile and fissionable materials, compounds, mixtures, different enrichment level, there are a lack of information regarding a uranium metal alloy, specifically UMo and UNbZr. Nowadays uranium metal alloy as fuel have been investigated under RERTR program as possible candidate to became a new fuel for research reactor due to high density. This work aim to evaluate a set of criticality safety parameters for uranium metal alloy using SCALE system and MCNP Monte Carlo code. (author)

  10. Preparation for the second edition of nuclear criticality safety handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Nomura, Yasushi

    1997-01-01

    The making of the second edition of Nuclear Criticality Safety Handbook entered the final stage of investigation by the working group. In the second edition, the newest results of the researches in Japan were taken. In this report, among the subjects which were examined continuously from the first edition published in 1988, the size of fuel particles which can be regarded as homogeneous even in a heterogeneous system, the reactivity effect when fuel concentration distribution became not uniform in a homogeneous fuel system, the method of evaluating criticality safety in which submersion is not assumed, and the criticality data when fuel burning is considered are explained. Further, about the matters related to the criticality in chemical processes and the matters related to criticality accident, the outlines are introduced. Finally, the state of preparation for aiming at the third edition is mentioned. Criticality safety control is important for overall nuclear fuel cycle including the transportation and storage of fuel. The course of the publication of this Handbook is outlined. The matters which have been successively examined from the first edition, the results of criticality safety analysis for the dissolving tanks of fuel reprocessing, and the analysis code and the simplified evaluation method for criticality accident are reported. (K.I.)

  11. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  12. Criticality control during conditioning of spent nuclear fuel in the Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lell, R.M.; Khalil, H.S.

    1994-01-01

    Spent nuclear fuel may be unacceptable for direct repository storage because of composition, enrichment, form, physical condition, or the presence of undesirable materials such as sodium. Fuel types which are not acceptable for direct storage must be processed or conditioned to produce physical forms which can safely be stored in a repository. One possible approach to conditioning is the pyroprocess implemented in the Fuel Cycle Facility (FCF) at Argonne National Laboratory-West. Conditioning of binary (U-Zr) and ternary (U-Pu-Zr) metallic fuels from the EBR-2 reactor is used to demonstrate the process. Criticality safety considerations limit batch sizes during the conditioning steps and provide one constraint on the final form of conditioned material. Criticality safety during conditioning is assured by the integration of criticality safety analysis, equipment design, process development, a measurement program, accountability procedures, and a computerized Mass Tracking System. Criticality issues related to storage and shipment of conditioned material have been examined

  13. Safety analysis of spent fuel packaging

    International Nuclear Information System (INIS)

    Akamatsu, Hiroshi; Taniuchi, Hiroaki; Tai, Hideto

    1987-01-01

    Many types of spent fuel packagings have been manufactured and been used for transport of spent fuels discharged from nuclear power plant. These spent fuel packagings need to be assesed thoroughly about safety transportation because spent fuels loaded into the packaging have high radioactivity and generation of heat. This paper explains the outline of safety analysis of a packaging, Safety analysis is performed for structural, thermal, containment, shielding and criticality factors, and MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, KENO, etc computer codes are used for such analysis. (author)

  14. DOE spent nuclear fuel -- Nuclear criticality safety challenges and safeguards initiatives

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1994-01-01

    The field of nuclear criticality safety is confronted with growing technical challenges and the need for forward-thinking initiatives to address and resolve issues surrounding economic, safe and secure packaging, transport, interim storage, and long-term disposal of spent nuclear fuel. These challenges are reflected in multiparameter problems involving optimization of packaging designs for maximizing the density of material per package while ensuring subcriticality and safety under variable normal and hypothetical transport and storage conditions and for minimizing costs. Historic and recently revealed uncertainties in basic data used for performing nuclear subcriticality evaluations and safety analyses highlight the need to be vigilant in assessing the validity and range of applicability of calculational evaluations that represent extrapolations from ''benchmark'' data. Examples of these uncertainties are provided. Additionally, uncertainties resulting from the safeguarding of various forms of fissionable materials in transit and storage are discussed

  15. Consensus standards utilized and implemented for nuclear criticality safety in Japan

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Okuno, Hiroshi; Naito, Yoshitaka

    1996-01-01

    The fundamental framework for the criticality safety of nuclear fuel facilities regulations is, in many advanced countries, generally formulated so that technical standards or handbook data are utilized to support the licensing safety review and to implement its guidelines. In Japan also, adequacy of the safety design of nuclear fuel facilities is checked and reviewed on the basis of licensing safety review guides. These guides are, first, open-quotes The Basic Guides for Licensing Safety Review of Nuclear Fuel Facilities,close quotes and as its subsidiaries, open-quotes The Uranium Fuel Fabrication Facility Licensing Safety Review Guidesclose quotes and open-quotes The Reprocessing Facility Licensing Safety Review Guides.close quotes The open-quotes Nuclear Criticality Safety Handbook close-quote of Japan and the Technical Data Collection are published and utilized to supply related data and information for the licensing safety review, such as for the Rokkasho reprocessing plant. The well-established technical standards and data abroad such as those by the American Nuclear Society and the American National Standards Institute are also utilized to complement the standards in Japan. The basic principles of criticality safety control for nuclear fuel facilities in Japan are duly stipulated in the aforementioned basic guides as follows: 1. Guide 10: Criticality control for a single unit; 2. Guide 11: Criticality control for multiple units; 3. Guide 12: Consideration for a criticality accident

  16. NARCISS critical stand experiments for studying the nuclear safety in accident water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoj, N.N.; Glushkov, E.S.; Bubelev, V.G.

    2005-01-01

    A brief description of the Topaz-2 SNPS designed under scientific supervision of RRC KI in Russia, and of the NARCISS critical facility, is given. At the NARCISS critical facility, neutronic peculiarities and nuclear safety issues of the Topaz-2 system reactor were studied experimentally. This work is devoted to a detailed description of experiments on investigation of criticality safety in accident water immersion og highly enriched uranium dioxide fuel elements, performed at the NARCISS facility. The experiments were carried out at water-moderated critical assemblies with varying height, number, and spacing of fuel elements. The results obtained in the critical experiments, computational models of the investigated critical configurations, and comparison of the computational and experimental results are given [ru

  17. Nuclear criticality safety analysis of a spent fuel waste package in a tuff repository

    International Nuclear Information System (INIS)

    Weren, B.H.; Capo, M.A.; O'Neal, W.C.

    1983-12-01

    An assessment has been performed of the criticality potential associated with the disposal of spent fuel in a tuff geology above the water table. Eleven potential configurations were defined which cover a vast range of geometries and conditions from the nominal configuration at emplacement to a hypothetical configuration thousands of years after emplacement in which the structure is gone, the fuel pellets disintegrated and the borehole flooded. Of these eleven configurations, four have been evaluated at this time. The results of this evaluation indicate that even with very conservative assumptions (4.5 w/o fresh fuel), criticality is not a problem for the nominal configuration either dry or fully flooded. In the cases where the condition of the waste package is assumed to have severely deteriorated, over long times, calculations were performed with less conservative assumptions (depleted fuel). An assessment of these calculations indicates that criticality safety could be demonstrated if the depletion of the fissile inventory during fuel irradiation is taken into account. A detailed discussion of the calculations performed is presented in this report. Also included are a description of the configurations which were considered, the analytical methods and models used, and a discussion of additional related work which should be performed. 15 references, 11 figures, 8 tables

  18. Criticality safety evaluation report for MKIA fuel pertaining to consolidating fuel storage

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1994-10-01

    Irradiated fuel criticality calculations are performed for MKIA fuel, 1.25 wt% 235 U, and 1.15 wt% 235 U fuel pieces and solutions. Comparisons are made between WIMS and MCNP. WIMS and MCNP calculations are documented

  19. Criticality safety evaluations - a open-quotes stalking horseclose quotes for integrated safety assessment

    International Nuclear Information System (INIS)

    Williams, R.A.

    1995-01-01

    The Columbia Fuel Fabrication Facility of the Westinghouse Commercial Nuclear Fuel Division manufactures low-enriched uranium fuel and associated components for use in commercial pressurized water power reactors. To support development of a comprehensive integrated safety assessment (ISA) for the facility, as well as to address increasing U.S. Nuclear Regulatory Commission (NRC) expectations regarding such a facility's criticality safety assessments, a project is under way to complete criticality safety evaluations (CSEs) of all plant systems used in processing nuclear materials. Each CSE is made up of seven sections, prepared by a multidisciplinary team of process engineers, systems engineers, safety engineers, maintenance representatives, and operators. This paper provides a cursory outline of the type of information presented in a CSE

  20. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Wagner, J.C.; Parks, C.V.

    2000-01-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k inf estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k inf estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration (approx. 2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion (le 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of the REFFE

  1. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    International Nuclear Information System (INIS)

    Richard, R.F.

    1995-01-01

    It has been postulated that a degradation phenomenon, referred to as ''hot cell rot'', may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ''Hot cell rot'' refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ''hot cell rot'' phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical

  2. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  3. Criticality safety

    International Nuclear Information System (INIS)

    Walker, G.

    1983-01-01

    When a sufficient quantity of fissile material is brought together a self-sustaining neutron chain reaction will be started in it and will continue until some change occurs in the fissile material to stop the chain reaction. The quantity of fissile material required is the 'Critical Mass'. This is not a fixed quantity even for a given type of fissile material but varies between quite wide limits depending on a number of factors. In a nuclear reactor the critical mass of fissile material is assembled under well-defined condition to produce a controllable chain reaction. The same materials have to be handled outside the reactor in all stages of fuel element manufacture, storage, transport and irradiated fuel reprocessing. At any stage it is possible (at least in principle) to assemble a critical mass and thus initiate an accidental and uncontrollable chain reaction. Avoiding this is what criticality safety is all about. A system is just critical when the rate of production of neutrons balances the rate of loss either by escape or by absorption. The factors affecting criticality are, therefore, those which effect neutron production and loss. The principal ones are:- type of nuclide and enrichment (or isotopic composition), moderation, reflection, concentration (density), shape and interaction. Each factor is considered in detail. (author)

  4. Criticality safety studies involved in actions to improve conditions for storing 'RA' research reactor spent fuel

    International Nuclear Information System (INIS)

    Matausek, M.; Marinkovic, N.

    1998-01-01

    A project has recently been initiated by the VINCA Institute of Nuclear Sciences to improve conditions in the spent fuel storage pool at the 6.5 MW research reactor RA, as well as to consider transferring this spent fuel into a new dry storage facility built for the purpose. Since quantity and contents of fissile material in the spent fuel storage at the RA reactor are such that possibility of criticality accident can not be a priori excluded, according to standards and regulations for handling fissile material outside a reactor, before any action is undertaken subcriticality should be proven under normal, as well as under credible abnormal conditions. To perform this task, comprehensive nuclear criticality safety studies had to be performed. (author)

  5. Critical enrichment and critical density of infinite systems for nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Koyama, Takashi; Komuro, Yuichi

    1986-03-01

    Critical enrichment and critical density of homogenous infinite systems, such as U-H 2 O, UO 2 -H 2 O, UO 2 F 2 aqueous solution, UO 2 (NO 3 ) 2 aqueous solution, Pu-H 2 O, PuO 2 -H 2 O, Pu(NO 3 ) 4 aqueous solution and PuO 2 ·UO 2 -H 2 O, were calculated with the criticality safety evaluation computer code system JACS for nuclear criticality safety evaluation on fuel facilities. The computed results were compared with the data described in European and American criticality handbooks and showed good agreement with each other. (author)

  6. Criticality safety assessment of a TRIGA reactor spent-fuel pool under accident conditions

    International Nuclear Information System (INIS)

    Glumac, B.; Ravnik, M.; Logar, M.

    1997-01-01

    Additional criticality safety analysis of a pool-type storage for TRIGA spent fuel at the Jozef Stefan Institute in Ljubljana, Slovenia, is presented. Previous results have shown that subcriticality is not guaranteed for some postulated accidents (earthquake with subsequent fuel rack disintegration resulting in contact fuel pitch) under the assumption that the fuel rack is loaded with fresh 12 wt% standard fuel. To mitigate this deficiency, a study was done on replacing a certain number of fuel elements in the rack with cadmium-loaded absorber rods. The Monte Carlo computer code MCNP4A with an ENDF/B-V library and detailed three-dimensional geometrical model of the spent-fuel rack was used for this purpose. First, a minimum critical number of fuel elements was determined for contact pitch, and two possible geometries of rack disintegration were considered. Next, it was shown that subcriticality can be ensured when pitch is decreased from a rack design pitch of 8 cm to contact, if a certain number of fuel elements (8 to 20 out of 70) are replaced by absorber rods, which are uniformly mixed into the lattice. To account for the possibility that random mixing of fuel elements and absorber rods can occur during rack disintegration and result in a supercritical configuration, a probabilistic study was made to sample the probability density functions for random absorber rod lattice loadings. Results of the calculations show that reasonably low probabilities for supercriticality can be achieved (down to 10 -6 per severe earthquake, which would result in rack disintegration and subsequent maximum possible pitch decrease) even in the case where fresh 12 wt% standard TRIGA fuel would be stored in the spent-fuel pool

  7. Status of criticality safety research at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Two critical facilities, named STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), at the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) started their hot operations in 1995. Since then, basic experimental data for criticality safety research have been accumulated using STACY, and supercritical experiments for the study of criticality accident in a reprocessing plant have been performed using TRACY. In this paper, the outline of those critical facilities and the main results of TRACY experiments are presented. (author)

  8. Framatome-ANP France UO2 fuel fabrication. Criticality safety analysis in the light of the JCO accident

    International Nuclear Information System (INIS)

    Doucet, M.; Zheng, S.; Mouton, J.; Porte, R.

    2003-01-01

    In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The FRAMATOME-ANP production of its French low enriched (5 w/o) UO2 fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO2 blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach FRAMATOME-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (author)

  9. Criticality safety evaluations - a {open_quotes}stalking horse{close_quotes} for integrated safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.A. [Westinghouse Electric Corp., Columbia, SC (United States)

    1995-12-31

    The Columbia Fuel Fabrication Facility of the Westinghouse Commercial Nuclear Fuel Division manufactures low-enriched uranium fuel and associated components for use in commercial pressurized water power reactors. To support development of a comprehensive integrated safety assessment (ISA) for the facility, as well as to address increasing U.S. Nuclear Regulatory Commission (NRC) expectations regarding such a facility`s criticality safety assessments, a project is under way to complete criticality safety evaluations (CSEs) of all plant systems used in processing nuclear materials. Each CSE is made up of seven sections, prepared by a multidisciplinary team of process engineers, systems engineers, safety engineers, maintenance representatives, and operators. This paper provides a cursory outline of the type of information presented in a CSE.

  10. Effect of fissile isotope burnup on criticality safety for stored disintegrated fuel rods

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Selby, G.P.

    1978-09-01

    If the fuel rods were to disintegrate and water added, a criticality could occur in a 13-in. PWR canister with fresh fuel enriched to 3.5 wt % 235 U. The question is, ''If credit could be taken for burnup, could this indicate a subcritical condition.'' In attempting to answer this question, a series of calculations were performed. A set of isotopic concentrations were generated for 5,000, 10,000, 15,000, and 20,000 MWD/MTU burnup levels. Four reflector materials, water, concrete and two types of soil, were considered. Results indicate that allowing credit for fissile isotope burnup does not completely remove the concern for criticality safety in the event of rod disintegration. Reactivities which are ''subcritical'' (k/sub eff/ = 0.95) would not occur for three of the four reflector materials at even the 20,000 MWD/MTU burnup level in the 13-in. canister. The water reflected canister would achieve the k/sub eff/ = 0.95 level near 18,000 MWD/MTU. A smaller canister could be postulated. If a quarter inch gap is allowed, a Westinghouse 17 x 17 PWR assembly requires a 12 1 / 4 inch diameter canister. For such a canister with water reflection the ''subcritical'' (k/sub eff/ = 0.95) level would be reached near 15,000 MWD/MTU. The soil reflected canisters would reach this level between 18,000 and 19,000 MWD/MTU. Considering the difficulties in taking credit for burnup, such modest gains in apparent safety are not encouraging. This situation might be improved, however, if credit were also taken for neutron absorption by fission product poisons produced during burnup. It is strongly recommended that other approaches to a solution of the criticality safety problem be considered

  11. Criticality accident in uranium fuel processing plant. Questionnaires from Research Committee of Nuclear Safety

    International Nuclear Information System (INIS)

    Kataoka, Isao; Sekimoto, Hiroshi

    2000-01-01

    The Research Committee of Nuclear Safety carried out a research on criticality accident at the JCO plant according to statement of president of the Japan Atomic Energy Society on October 8, 1999, of which results are planned to be summarized by the constitutions shown as follows, for a report on the 'Questionnaires of criticality accident in the Uranium Fuel Processing Plant of the JCO, Inc.': general criticality safety, fuel cycle and the JCO, Inc.; elucidation on progress and fact of accident; cause analysis and problem picking-up; proposals on improvement; and duty of the Society. Among them, on last two items, because of a conclusion to be required for members of the Society at discussions of the Committee, some questionnaires were send to more than 1800 of them on April 5, 2000 with name of chairman of the Committee. As results of the questionnaires contained proposals and opinions on a great numbers of fields, some key-words like words were found on a shape of repeating in most questionnaires. As they were thought to be very important nuclei in these two items, they were further largely classified to use for summarizing proposals and opinions on the questionnaires. This questionnaire had a big characteristic on the duty of the Society in comparison with those in the other organizations. (G.K.)

  12. Radiation shielding and criticality safety assessment for KN-12 spent nuclear fuel transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Kyung; Shin, Chang Ho; Kim, Gi Hwan [Hanyang Univ., Seoul (Korea, Republic of)

    2001-08-15

    Because SNFs involve TRU (Transuranium), fission products, and fissile materials, they are highly radioactive and also have a possibility to be critical. Therefore, radiation shielding and criticality safety for transport casks containing the SNFs should be guaranteed through reliable valuation procedure. IAEA safety standard series No ST-1 recommends regulation for safe transportation of the SNFs by transport casks, and United States is carrying out it according to the regulation guide, 10 CFR parts 71 and 72. Present research objective is to evaluate the KN-12 spent nuclear fuel transport cask that is designed for transportation of up to 12 assemblies and is standby status for being licensed in accordance with Korea Atomic Energy Act. Both radiation shielding and criticality analysis using the accurate Monte Carlo transport code, MCNP-4B are carried out for the KN-12 SNF cask as a benchmark calculation. Source terms for radiation shielding calculation are obtained using ORIGEN-S computer code. In this work, for normal transport conditions, the results from MCNP-4B shows the maximum dose rate of 0.557 mSv/hr at the side surface. And the maximum dose rate of 0.0871 mSv/hr was resulted at the 2 m distance from the cask. The level of calculated dose rate is 27.9% of the limit at the cask surface, 87.1% at 2 m from the cask surface for normal transport condition. For hypothetical accident conditions, the maximum rate of 2.5144 mSv/hr was resulted at the 1 m distance from the cask and this level is 25.1% of the limit for hypothetical accident conditions. In criticality calculations using MCNP-4B, the k{sub eff} values yielded for 5.0 w/o U-235 enriched fresh fuel are 0.92098 {+-} 0.00065. This result confirms subcritical condition of the KN-12 SNF cask and gives 96.95% of recommendations for criticality safety evaluation by US NRC these results will be useful as a basis for approval for the KN-12 SNF cask.

  13. Researches on nuclear criticality safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-10-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  14. Researches on nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Suyama, Kenya; Nomura, Yasushi

    2003-01-01

    For criticality safety evaluation of burnup fuel, the general-purpose burnup calculation code, SWAT, was revised, and its precision was confirmed through comparison with other results from OECD/NEA's burnup credit benchmarks. Effect by replacing the evaluated nuclear data from JENDL-3.2 to ENDF/B-VI and JEF-2.2 was also studied. Correction factors were derived for conservative evaluation of nuclide concentrations obtained with the simplified burnup code ORIGEN2.1. The critical masses of curium were calculated and evaluated for nuclear criticality safety management of minor actinides. (author)

  15. Safety demonstration analyses on criticality for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Okuno, Hiroshi; Yamada, Kenji; Watanabe, Kouji; Nomura, Yasushi; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analysis was performed for transport packages of uranium dioxide powder or of fresh PWR fuel involved in a severe accident during overland transportation, and as a result, sub-criticality was confirmed against impact accident conditions such as loaded by a drop from high position to a concrete or asphalt surface, and fire accident conditions such as caused by collisions with an oil tank trailer carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside an unventilated tunnel. (author)

  16. USNRC licensing process as related to nuclear criticality safety

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1987-01-01

    The U.S. Code of Federal Regulations establishes procedures and criteria for the issuance of licenses to receive title to, own, acquire, deliver, receive, possess, use, and initially transfer special nuclear material; and establishes and provides for the terms and conditions upon which the Nuclear Regulatory Commission (NRC) will issue such licenses. Section 70.22 of the regulations, ''Contents of Applications'', requires that applications for licenses contain proposed procedures to avoid accidental conditions of criticality. These procedures are elements of a nuclear criticality safety program for operations with fissionable materials at fuels and materials facilities (i.e., fuel cycle facilities other than nuclear reactors) in which there exists a potential for criticality accidents. To assist the applicant in providing specific information needed for a nuclear criticality safety program in a license application, the NRC has issued regulatory guides. The NRC requirements for nuclear criticality safety include organizational, administrative, and technical requirements. For purely technical matters on nuclear criticality safety these guides endorse national standards. Others provide guidance on the standard format and content of license applications, guidance on evaluating radiological consequences of criticality accidents, or guidance for dealing with other radiation safety issues. (author)

  17. Proceedings of KURRI symposium on criticality safety

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Kanda, Keiji

    1984-01-01

    On August 8, 1984, at the Reactor Application Center of the Research Reactor Institute, Kyoto University, the symposium on criticality safety was held, and 81 participants from various fields of reactor physics, nuclear fuel cycle engineering, reactor chemistry, nuclear chemistry, health physics and so on discussed the problem. The gists of the presentation are collected in this report. The contents are the techniques of evaluating criticality safety in respective fuel facilities, the system of control and its concept, the course and plan of the research on criticality safety in Japan and foreign countries, the techniques of determining multiplication factor and so on, and the review of present status, the pointing-out of problems and the report of new techniques were made. The measures coping with criticality safety have been mostly to meet urgent demand, but its fundamental examination and long term research should be carried out. This symposium was planned as the preparation for such research project, and favorable comment was given by the participants. In the next symposium, it is considered better to limit the themes and to allot more time to respective lectures. (Kako, I.)

  18. Verification of criticality safety in on-site spent fuel storage systems

    International Nuclear Information System (INIS)

    Rasmussen, R.W.

    1989-01-01

    On February 15, 1984, Duke Power Company received approval for a two-region, burnup credit, spent fuel storage rack design at both Units 1 and 2 of the McGuire Nuclear Station. Duke also hopes to obtain approval by January of 1990 for a dry spent fuel storage system at the Oconee Nuclear Station, which will incorporate the use of burnup credit in the criticality analysis governing the design of the individual storage units. While experiences in burnup verification for criticality safety for their dry storage system at Oconee are in the future, the methods proposed for burnup verification will be similar to those currently used at the McGuire Nuclear Station in the two-region storage racks installed in both pools. In conclusion, the primary benefit of the McGuire rerack effort has obviously been the amount of storage expansion it provided. A total increase of about 2,000 storage cells was realized, 1,000 of which were the result of pursuing the two-region rather than the conventional poison rack design. Less impacting, but equally as important, however, has been the experience gained during the planning, installation, and operation of these storage racks. This experience should prove useful for future rerack efforts likely to occur at Duke's Catawba Nuclear Station as well as for the current dry storage effort underway for the Oconee Nuclear Station

  19. Investigation of burnup credit allowance in the criticality safety evaluation of spent fuel casks

    International Nuclear Information System (INIS)

    Lake, W.H.; Sanders, T.L.; Parks, C.V.

    1990-01-01

    This presentation discusses work in progress on criticality analysis verification for designs which take account of the burnup and age of transported fuel. The work includes verification of cross section data, correlation with experiments, proper extension of the methods into regimes not covered by experiments, establishing adequate reactivity margins, and complete documentation of the project. Recommendations for safe operational procedures are included, as well as a discussion of the economic and safety benefits of such designs

  20. SCALE system cross-section validation for criticality safety analysis

    International Nuclear Information System (INIS)

    Hathout, A.M.; Westfall, R.M.; Dodds, H.L. Jr.

    1980-01-01

    The purpose of this study is to test selected data from three cross-section libraries for use in the criticality safety analysis of UO 2 fuel rod lattices. The libraries, which are distributed with the SCALE system, are used to analyze potential criticality problems which could arise in the industrial fuel cycle for PWR and BWR reactors. Fuel lattice criticality problems could occur in pool storage, dry storage with accidental moderation, shearing and dissolution of irradiated elements, and in fuel transport and storage due to inadequate packing and shipping cask design. The data were tested by using the SCALE system to analyze 25 recently performed critical experiments

  1. Criticality safety issues associated with the introduction of low void reactivity fuel in the Bruce reactors - a management and technical overview

    International Nuclear Information System (INIS)

    Thompson, J.W.; Austman, G.; Iglesias, F.; Schmeing, H.; Elliott, C.; Archinoff, G.

    2004-01-01

    The concept of criticality for operating reactor staff, particularly in a natural uranium-fuelled reactor, is relatively benign - the reactor is controlled at the critical condition by the regulating system. That is, issues related to criticality exist only within the reactor, in a set of carefully managed circumstances. With the introduction of enriched Low Void Reactivity Fuel (LVRF) into this operating environment comes a new 'concept of criticality', one which, although physically the same, cannot be treated in the same fashion. It may be the case that criticality can be achieved outside the reactor, albeit with a set of very pessimistic assumptions. Such 'inadvertent criticality' outside the reactor, should it occur, cannot be controlled. The consequences of such an inadvertent criticality could have far-reaching effects, not only in terms of severe health effects to those nearby, but also in terms of the negative impact on Bruce Power, and the Canadian nuclear industry in general. Thus the introduction of LVRF in the Bruce B reactors, and therefore the introduction of this new hazard, inadvertent criticality, warrants the development of a governance structure for its management. Such a program will consist of various elements, including the establishment of a framework to administer the criticality safety program, analytical assessment to support the process design, the development of operational procedures, the development of enhanced emergency procedures if necessary, and the implementation of a criticality safety training program. The entire package must be sufficient to demonstrate to station management, and the regulator, that the criticality safety risks associated with the implementation of enriched fuel have been properly evaluated, and that all necessary steps have been taken to effectively manage these risks. A well-founded Criticality Safety Program will offer such assurance. In this paper, we describe the establishment of a Criticality Safety

  2. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  3. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  4. Criticality safety considerations for MSRE fuel drain tank uranium aggregation

    International Nuclear Information System (INIS)

    Hollenbach, D.F.; Hopper, C.M.

    1997-01-01

    This paper presents the results of a preliminary criticality safety study of some potential effects of uranium reduction and aggregation in the Molten Salt Reactor Experiment (MSRE) fuel drain tanks (FDTs) during salt removal operations. Since the salt was transferred to the FDTs in 1969, radiological and chemical reactions have been converting the uranium and fluorine in the salt to UF 6 and free fluorine. Significant amounts of uranium (at least 3 kg) and fluorine have migrated out of the FDTs and into the off-gas system (OGS) and the auxiliary charcoal bed (ACB). The loss of uranium and fluorine from the salt changes the chemical properties of the salt sufficiently to possibly allow the reduction of the UF 4 in the salt to uranium metal as the salt is remelted prior to removal. It has been postulated that up to 9 kg of the maximum 19.4 kg of uranium in one FDT could be reduced to metal and concentrated. This study shows that criticality becomes a concern when more than 5 kg of uranium concentrates to over 8 wt% of the salt in a favorable geometry

  5. Insight from a Critical Review on the Safety Analysis of Nuclear Fuel Cycle Facility for Domestic Regulatory System

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Chung, Young Wook; Jeong, Seung Young

    2010-01-01

    Korea has 20 nuclear power plants in operation, and 10,761 ton of spent fuel deposited in plant sites. The capacity of reservoir for spent fuel in plant sites is to begin to be full in 2016. The light water reactors of 16 units generate around 320 ton/year and the heavy water reactors of 4 units around 380 ton/year in Korea. And the electricity generated by nuclear power plants is planned to increase up to 59% share by 2030. Spent fuel classified as high level radioactive waste in law is characterized by high level radiation, high heat generation, and high radiological toxicity. In the contrary, it is also a very useful domestic energy source. Thus, the safe management of spent fuel is very important confronting job in nuclear industry. Advanced fuel cycle (AFC) using pyro-process is an innovative technology, by which environmental load is drastically relieved because the extracted long-lived fission products are burn in fast breeder reactors. Domestic nuclear industry also has a perspective road map for the construction of AFC facilities. However, there is not a sufficiently detailed licensing regulatory system yet. Moreover, there is no systematic frame for the safety evaluation. This paper reviews the safety analysis system of foreign fuel cycle facilities. Critical review leads to the insight for setting-up safety analysis system of domestic AFC facilities

  6. Present status of Japanese Criticality Safety Handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi

    1999-01-01

    A draft of the second edition of Nuclear Criticality Safety Handbook has been finalized, and it is under examination by reviewing committee for JAERI Report. Working Group designated for revising the Japanese Criticality Safety Handbook, which is chaired by Prof. Yamane, is now preparing for 'Guide on Burnup Credit for Storage and Transport of Spent Nuclear Fuel' and second edition of 'Data Collection' part of Handbook. Activities related to revising the Handbook might give a hint for a future experiment at STACY. (author)

  7. Consideration on the partial moderation in criticality safety analysis of LWR fresh fuel storage

    International Nuclear Information System (INIS)

    Tanaka, S.; Tanimoto, R.; Suzuki, K.; Ishitobi, M.

    1987-01-01

    In criticality safety analyses of fuel fabrication facilities, neutron effective multiplication factor (k eff ) of a storage vault has been calculated assuming ''partial moderation'' in whole space (hereafter reffered to as unlimited partial moderation). Where the enrichment of fuels to be stored is about 3.5 % or less, calculated k eff is usually low enough to show subcriticality even in unlimited partial moderation. However, it is scheduled to elevate LWR fuels enrichment for economical higher burnup and the unlimited partial moderation would require to introduce neutron absorbers to maintain subcriticality. It is clear that this causes economical disadvantages, and hence we reconsidered this assumption to avoid such a condition. Reconsideration of the unlimited partial moderation was carried out in following steps. (1) Water quantity to be assumed in atmosphere to obtain criticality was revealed too much to realize. (2) Typical realistic water quantity in atmosphere was estimated to apply as an alternative assumption. (3) A fresh fuel assembly storage was chosen as a model array and calculations with lattice code WIMS-D 1 and Monte Calro code KENO-IV 2 were performed to compare new alternative assumption with the unlimited one. As results of the above calculations, maximum k eff of the array under the new assumption was remarkably reduced to the value less than 0.95 though the maximum k eff under the unlimited one was higher than 1.0. (author)

  8. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  9. OECD/NEA working party on nuclear criticality safety: Challenge of new realities

    International Nuclear Information System (INIS)

    Nomura, Y.; Brady, M.C.; Briggs, J.B.; Sartori, E.

    1998-01-01

    New issues in criticality safety continue to emerge as spent fuel storage facilities reach the saturation point, fuel enrichments and burn-ups increase and new types of plutonium-carrying fuels are being developed. The new challenges related to the manipulation, transportation and storage of fuel demand further work to improve models predicting behavior through new experiments, especially where there is a lack of data in the present databases. This article summarizes the activities of the OECD/NEA working groups that coordinate and carry out work in the domain of criticality safety. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burn-up credit. This is aimed toward improving safety and identifying economic solutions to issues concerning the back end of the fuel cycle

  10. DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the

  11. OECD/NEA working party on nuclear criticality safety: challenge of new realities

    International Nuclear Information System (INIS)

    Nomura, Y.; Brady, M.C.; Briggs, J.B.; Sartori, E.

    1998-01-01

    New issues in critically safety continue to emerge as spent fuel storage facilities reach the saturation point, fuel enrichments and burn-ups increase and new types of plutonium-carrying fuels are being developed. The new challenges related to the manipulation, transportation and storage of fuel demand further work to improve models predicting behaviour through new experiments, especially where there is a lack of data the present databases. This article summarizes the activities of the OECD/NEA working groups that co-ordinate and carry out work in the domain of criticality safety. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burn-up credit. This is aimed toward improving safety and identifying economic solutions to issues concerning the back end of the fuel cycle. (authors)

  12. Safety analysis of DUPIC fuel development facility

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Baek, S. Y.; Ahn, J. Y.

    2001-01-01

    Various experimental facilities are necessary in order to perform experimental verification for development of DUPIC fuel fabrication technology. In special, since highly radioactive material such as spent PWR fuel is used for this experiment, DUPIC fuel fabrication has to be performed in hot cell by remote handling. Therefore, it should be provided with proper engineering requirement and safety. M6 hot cell of IMEF which is to used for DUPIC fuel fabrication experiment was constructed as an α-γ hot cell for material examination of small amount of high-burnup fuel. The characteristics and amount of spent fuel for DUPIC fuel fabrication experiment will be different from the original design criteria. Therefore, the increased amount of spent fuel and different characteristics of experiment result in not only change of shielding and enviornmental evaluation results but new requirement of nuclear criticality evaluation. Therefore, this study includes evaluation of shielding, environmental effect and nuclear criticality in case that IMEF M6 hot cell is used for DUPIC fuel fabrication

  13. Long-term criticality safety concerns associated with surplus fissile material disposition

    International Nuclear Information System (INIS)

    Choi, J.S.

    1995-01-01

    A substantial inventory of surplus fissile material would result from ongoing and planned dismantlement of US and Russian nuclear weapons. This surplus fissile material could be dispositioned by irradiation in nuclear reactors, and the resulting spent MOx fuel would be similar in radiation characteristics to regular LWR spent UO2 fuel. The surplus fissile material could also be immobilized into high-level waste forms, such as borosilicate glass, synroc, or metal-alloy matrix. The MOx spent fuel, or the immobilized waste forms, could then be directly disposed of in a geologic repository. Long-term criticality safety concerns arise because the fissile contents (i.e., Pu-239 and its decay daughter U-235) in these waste forms are higher than in LWR spent UO2 fuel. MOx spent fuel could contain 3 to 4 wt% of reactor-grade plutonium, compared to only 0.9 wt% of plutonium in LWR spent UO2 fuel. At some future time (tens of thousand of years), when the waste forms had deteriorated due to intruding groundwater, the water could mix with the long-lived fissile materials to form into a critical system. If the critical system is self-sustaining, somewhat like the natural-occurring reactor in OKLO, fission products produced could readily be available for dissolution and release out to the accessible environment, adversely affecting public health and safety. This paper will address ongoing activities to evaluate long-term criticality safety concerns associated with disposition of fissile material in a geologic setting. Issues to be addressed include the identification of a worst-case water-intrusion scenario and waste-form geometries which present the most concern for long-term criticality safety; and suggests of technical solutions for such concerns

  14. Critical experiment needs and plans of the consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Primm, R.T.

    1984-01-01

    An integral part of the United States Department of Energy (DOE) plan for the development of breeder reactors is the development of the capability for fuel reprocessing. The Consolidated Fuel Reprocessing Program (CFRP) was established by the DOE to identify and conduct research and development activities in this area. The DOE is currently proposing that a capability to reprocess fast reactor fuel be established in the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. This capability would include conversion of plutonium nitrate to plutonium oxide. The reprocessing line is designated the Breeder Reprocessing Engineering Test (BRET). Criticality safety remains an important critetion in the design of the BRET. The different steps in the reprocessing are reviewed and areas where additional critical experiments are needed have been indentified as also areas where revision or clarification of existing criticality safety standards are desirable

  15. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  16. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    International Nuclear Information System (INIS)

    Purcell, P.C.; Dallongeville, M.

    2004-01-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme

  17. Nuclear criticality safety studies applicable to spent fuel shipping cask designs and spent fuel storage

    International Nuclear Information System (INIS)

    Tang, J.S.

    1980-11-01

    Criticality analyses of water-moderated and reflected arrays of LWR fresh and spent fuel assemblies were carried out in this study. The calculated results indicate that using the assumption of fresh fuel loading in spent fuel shipping cask design leads to assembly spacings which are about twice the spacings of spent fuel loadings. Some shipping cask walls of composite lead and water are more effective neutron reflectors than water of 30.48 cm

  18. Benchmarking criticality safety calculations with subcritical experiments

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments

  19. Criticality calculations of various spent fuel casks - possibilities for burn up credit implementation

    International Nuclear Information System (INIS)

    Apostolov, T; Manolova, M.; Prodanova, R.

    2001-01-01

    A methodology for criticality safety analysis of spent fuel casks with possibilities for burnup credit implementation is presented. This methodology includes the world well-known and applied program systems: NESSEL-NUKO for depletion and SCALE-4.4 for criticality calculations. The abilities of this methodology to analyze storage and transportation casks with different type of spent fuel are demonstrated on the base of various tests. The depletion calculations have been carried out for the power reactors (WWER-440 and WWER-1000) and the research reactor IRT-2000 (C-36) fuel assemblies. The criticality calculation models have been developed on the basis of real fuel casks, designed by the leading international companies (for WWER-440 and WWER-1000 spent fuel assemblies), as well as for real a WWER-440 storage cask, applied at the 'Kozloduy' NPP. The results obtained show that the criticality safety criterion K eff less than 0.95 is satisfied for both: fresh and spent fuel. Besides the implementation of burnup credit allows to account for the reduced reactivity of spent fuel and to evaluate the conservatism of the fresh fuel assumption. (author)

  20. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  1. Validation of the Continuous-Energy Monte Carlo Criticality-Safety Analysis System MVP and JENDL-3.2 Using the Internationally Evaluated Criticality Benchmarks

    International Nuclear Information System (INIS)

    Mitake, Susumu

    2003-01-01

    Validation of the continuous-energy Monte Carlo criticality-safety analysis system, comprising the MVP code and neutron cross sections based on JENDL-3.2, was examined using benchmarks evaluated in the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments'. Eight experiments (116 configurations) for the plutonium solution and plutonium-uranium mixture systems performed at Valduc, Battelle Pacific Northwest Laboratories, and other facilities were selected and used in the studies. The averaged multiplication factors calculated with MVP and MCNP-4B using the same neutron cross-section libraries based on JENDL-3.2 were in good agreement. Based on methods provided in the Japanese nuclear criticality-safety handbook, the estimated criticality lower-limit multiplication factors to be used as a subcriticality criterion for the criticality-safety evaluation of nuclear facilities were obtained. The analysis proved the applicability of the MVP code to the criticality-safety analysis of nuclear fuel facilities, particularly to the analysis of systems fueled with plutonium and in homogeneous and thermal-energy conditions

  2. Criticality and Its Uncertainty Analysis of Spent Fuel Storage Rack for Research Reactor

    International Nuclear Information System (INIS)

    Han, Tae Young; Park, Chang Je; Lee, Byung Chul

    2011-01-01

    For evaluating the criticality safety of spent fuel storage rack in an open pool type research reactor, a permissible upper limit of criticality should be determined. It can be estimated from the criticality upper limit presented by the regulatory guide and an uncertainty of criticality calculation. In this paper, criticalities for spent fuel storage rack are carried out at various conditions. The calculation uncertainty of MCNP system is evaluated from the calculation results for the benchmark experiments. Then, the upper limit of criticality is determined from the uncertainties and the calculated criticality of the spent fuel storage rack is evaluated

  3. Fuel safety research 1999

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-07-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a result of reorganization of the Nuclear Safety Research Center, JAERI. The laboratory was organized by combining three laboratories, the Reactivity Accident Laboratory, the Fuel Reliability Laboratory, and a part of the Sever Accident Research Laboratory. Consequently, the Fuel Safety Research Laboratory is now in charge of all the fuel safety research in JAERI. Various types of experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of five research groups corresponding to each research fields. They are; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). This report summarizes the outline of research activities and major outcomes of the research executed in 1999 in the Fuel Safety Research Laboratory. (author)

  4. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  5. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  6. Computational methods for nuclear criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.

    1992-01-01

    Nuclear criticality safety analyses require the utilization of methods which have been tested and verified against benchmarks results. In this work, criticality calculations based on the KENO-IV and MCNP codes are studied aiming the qualification of these methods at the IPEN-CNEN/SP and COPESP. The utilization of variance reduction techniques is important to reduce the computer execution time, and several of them are analysed. As practical example of the above methods, a criticality safety analysis for the storage tubes for irradiated fuel elements from the IEA-R1 research has been carried out. This analysis showed that the MCNP code is more adequate for problems with complex geometries, and the KENO-IV code shows conservative results when it is not used the generalized geometry option. (author)

  7. Fuel safety research 2000

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In April 1999, the Fuel Safety Research Laboratory was newly established as a part of reorganization of the Nuclear Safety Research Center, JAERI. The new laboratory was organized by combining three pre-existing laboratories, Reactivity Accident Laboratory, Fuel Reliability Laboratory, and a part of Severe Accident Research Laboratory. The Fuel Safety Research Laboratory becomes to be in charge of all fuel safety research in JAERI. Various experimental and analytical researches are conducted in the laboratory by using the unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and hot cells in JAERI. The laboratory consists of following five research groups corresponding to each research fields; (a) Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). (b) Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). (c) Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). (d) Research group of fuel behavior analysis (FEMAXI group). (e) Research group of FP release/transport behavior from irradiated fuel (VEGA group). The research activities in year 2000 produced many important data and information. They are, for example, failure of high burnup BWR fuel rod under RIA conditions, data on the behavior of hydrided Zircaloy cladding under LOCA conditions and FP release data from VEGA experiments at very high temperature/pressure condition. This report summarizes the outline of research activities and major outcomes of the research executed in 2000 in the Fuel Safety Research Laboratory. (author)

  8. Criticality safety calculations for the nuclear waste disposal canisters

    International Nuclear Information System (INIS)

    Anttila, M.

    1996-12-01

    The criticality safety of the copper/iron canisters developed for the final disposal of the Finnish spent fuel has been studied with the MCNP4A code based on the Monte Carlo technique and with the fuel assembly burnup programs CASMO-HEX and CASMO-4. Two rather similar types of spent fuel disposal canisters have been studied. One canister type has been designed for hexagonal VVER-440 fuel assemblies used at the Loviisa nuclear power plant (IVO canister) and the other one for square BWR fuel bundles used at the Olkiluoto nuclear power plant (TVO canister). (10 refs.)

  9. Criticality safety (prospect of study in NUCEF)

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1996-01-01

    Experimental studies of criticality safety are under way using STACY and TRACY in NUCEF. Collection of fundamental data on criticality in a solution system is undergoing with STACY to confirm that the likelihood of criticality safety in the system constructed on the assumption of apparatuses in a reprocessing plant is enough large. Whereas some experiments simulating criticality accidents in a reprocessing plant using TRACY were designed to investigate the behaviors of fuel solution and radioactive matters in order to clarify whether it is possible to safely shut them in the facility even if a critical accident occurs. Both STACY and TRACY reached the criticality in 1995. Up to now a series of criticality experiments have been done using STACY with a core tank φ60 cm and the first periodical examination is now under way. On the other hand, we have a plan using TRACY to investigate the behaviors of nuclear heat solution at a criticality accident, and the releasing, transfer and deposition of radioactive materials. After reaching the criticality for the first, the performance verification test has been conducted. The full-scale study using TRACY is planned to begin in the second half of 1996. (M.N.)

  10. Criticality safety analyses in SKODA JS a.s

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    1999-01-01

    This paper describes criticality safety analyses of spent fuel systems for storage and transport of spent fuel performed in SKODA JS s.r.o.. Analyses were performed for different systems both at NPP site including originally designed spent fuel pool with a large pitch between assemblies without any special absorbing material, high density spent fuel pool with an additional absorption by boron steel, depository rack for fresh fuel assemblies with a very large pitch between fuel assemblies, a container for transport of fresh fuel into the reactor pool and a cask for transport and storage of spent fuel and container for final storage depository. required subcriticality has been proven taking into account all possible unfavourable conditions, uncertainties etc. In two cases, burnup credit methodology is expected to be used. (Authors)

  11. Utilization of the MCNP-3A code for criticality safety analysis

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1996-01-01

    In the last decade, Brazil started to operate facilities for processing and storing uranium in different forms. The necessity of criticality safety analysis appeared in the design phase of the uranium pilot process plants and also in the licensing of transportation and storage of fissile materials. The 2-MW research reactor and the Angra I power plant also required criticality safety assessments because their spent-fuel storage was approaching full-capacity utilization. The criticality safety analysis in Brazil has been based on KENO IV code calculations, which present some difficulties for correct geometry representation. The MCNP-3A code is not reported to be used frequently for criticality safety analysis in Brazil, but its good geometry representation makes it a possible tool for treating problems of complex geometry. A set of benchmark tests was performed to verify its applicability for criticality safety analysis in Brazil. This paper presents several benchmark tests aimed at selecting a set of options available in the MCNP-3A code that would be adequate for criticality safety analysis. The MCNP-3A code is also compared with the KENO-IV code regarding its performance for criticality safety analysis

  12. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  13. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  14. Safety of fuel cycle facilities. Topical issues paper no. 3

    International Nuclear Information System (INIS)

    Ranguelova, V.; Niehaus, F.; Delattre, D.

    2001-01-01

    A wide range of nuclear fuel cycle facilities are in operation. These installations process, use, store and dispose of radioactive material and cover: mining and milling, conversion, enrichment, fuel fabrication (including mixed oxide fuel), reactor, interim spent fuel storage, reprocessing, waste treatment and waste disposal facilities. For the purposes of this paper, reactors and waste disposal facilities are not considered. The term 'fuel cycle facilities' covers only the remainder of the installations listed above. The IAEA Secretariat maintains a database of fuel cycle facilities in its Member States. Known as the Nuclear Fuel Cycle Information System (NFCIS), it is available as an on-line service through the Internet. More than 500 such facilities have been reported under this system. The facilities are listed by facility type and operating status. Approximately one third of all of the facilities are located in developing States. About half of all facilities are reported to be operating, of which approximately 40% are operating in developing States. In addition, some 60 facilities are either in the design stage or under construction. Although the radioactive source term for most fuel cycle facilities is lower than the source term for reactors, which results in less severe consequences to the public from potential accidents at these fuel cycle installations, recent events at some fuel cycle facilities have given rise to public concern which has to be addressed adequately by national regulatory bodies and at the international level. Worldwide, operational experience feedback warrants improvements in the safety of these facilities. Some of the hazards are similar for reactor and non-reactor facilities. However, the differences between these installations give rise to specific safety concerns at fuel cycle facilities. In particular, these concerns include: criticality, radiation protection of workers, chemical hazards, fire and explosion hazards. It is recognized

  15. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (5). Evaluation method and trial evaluation of criticality accident

    International Nuclear Information System (INIS)

    Yamane, Yuichi; Abe, Hitoshi; Nakajima, Ken; Hayashi, Yoshiaki; Arisawa, Jun; Hayami, Satoru

    2010-01-01

    A special committee of 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for the Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objectives of this research are to obtain information useful for establishing quantitative performance objectives and to demonstrate risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the consequence analysis method for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution and fire (including the rapid decomposition of TBP complexes), resulting in the release of radioactive materials to the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this report, the evaluation methods of criticality accident, such as simplified methods, one-point reactor kinetics codes and quasi-static method, were investigated and their features were summarized to provide information useful for the safety evaluation of NFFs. In addition, several trial evaluations were performed for a hypothetical scenario of criticality accident using the investigated methods, and their results were compared. The release fraction of volatile fission products in a criticality accident was also investigated. (author)

  16. Critical experiments simulating accidental water immersion of highly enriched uranium dioxide fuel elements

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Glushkov, L.S.

    2003-01-01

    The paper focuses on experimental analysis of nuclear criticality safety at accidental water immersion of fuel elements of the Russian TOPAZ-2 space nuclear power system reactor. The structure of water-moderated heterogeneous critical assemblies at the NARCISS facility is described in detail, including sizes, compositions, densities of materials of the main assembly components for various core configurations. Critical parameters of the assemblies measured for varying number of fuel elements, height of fuel material in fuel elements and their arrangement in the water moderator with a uniform or variable spacing are presented. It has been found from the experiments that at accidental water immersion of fuel elements involved, the minimum critical mass equal to approximately 20 kg of uranium dioxide is achieved at 31-37 fuel elements. The paper gives an example of a physical model of the water-moderated heterogeneous critical assembly with a detailed characterization of its main components that can be used for calculations using different neutronic codes, including Monte Carlo ones. (author)

  17. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities

  18. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    International Nuclear Information System (INIS)

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  19. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-01-01

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  20. Criticality safety analysis for mockup facility

    International Nuclear Information System (INIS)

    Shin, Young Joon; Shin, Hee Sung; Kim, Ik Soo; Oh, Seung Chul; Ro, Seung Gy; Bae, Kang Mok

    2000-03-01

    Benchmark calculations for SCALE4.4 CSAS6 module have been performed for 31 UO 2 fuel, 15MOX fuel and 10 metal material criticality experiments and then calculation biases of the SCALE 4.4 CSAS6 module have been revealed to be 0.00982, 0.00579 and 0.02347, respectively. When CSAS6 is applied to the criticality safety analysis for the mockup facility in which several kinds of nuclear material components are included, the calculation bias of CSAS6 is conservatively taken to be 0.02347. With the aid of this benchmarked code system, criticality safety analyses for the mockup facility at normal and hypothetical accidental conditions have been carried out. It appears that the maximum K eff is 0.28356 well below than the critical limit, K eff =0.95 at normal condition. In a hypothetical accidental condition, the maximum K eff is found to be 0.73527 much lower than the subcritical limit. For another hypothetical accidental condition the nuclear material leaks out of container and spread or lump in the floor, it was assumed that the nuclear material is shaped into a slab and water exists in the empty space of the nuclear material. K eff has been calculated as function of slab thickness and the volume ratio of water to nuclear material. The result shows that the K eff increases as the water volume ratio increases. It is also revealed that the K eff reaches to the maximum value when water if filled in the empty space of nuclear material. The maximum K eff value is 0.93960 lower than the subcritical limit

  1. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  2. New approach to managing nuclear criticality risk at Nuclear Fuel Services, Inc

    International Nuclear Information System (INIS)

    Green, R.; Droke, R.; Paine, D.

    1992-01-01

    The negative aspects of having a nuclear criticality accident at a fuel fabrication facility have substantially increased in recent years. Although ensuring that the facility is designed and operating in a critically safe manner is a high management priority, practices of managing the risk of a criticality accident have not significantly changed. The method of evaluating risk based on quantitative analysis can enable management to adapt to the increased consequences of a nuclear criticality accident. Additional controls may be placed on high-risk areas within a facility to ensure safe operation of the plant. Areas where controls are in place that impede the productivity of the facility and have negligible impact on criticality safety may be removed or replaced. Management can also streamline the safety analysis efforts applied to facility upgrades by demonstrating that proposed design changes do not compromise criticality safety. Future expansion of quantitative analysis techniques will also allow risk-based management decisions on industrial, radiological, and environmental safety

  3. Criticality safety engineering at the Savannah River Site - the 1990s

    International Nuclear Information System (INIS)

    Chandler, J.R.; Apperson, C.E. Jr.

    1996-01-01

    The privatization and downsizing effort that is ongoing within the U.S. Department of Energy (DOE) is requiring a change in the management of criticality safety engineering resources at the Savannah River Site (SRS). Downsizing affects the number of criticality engineers employed by the prime contractor, Westinghouse Savannah River Company (WSRC), and privatization affects the manner in which business is conducted. In the past, criticality engineers at the SRS have been part of the engineering organizations that support each facility handling fissile material. This practice led to different criticality safety engineering organizations dedicated to fuel fabrication activities, reactor loading and unloading activities, separation and waste management operations, and research and development

  4. Safety evaluation of a conceptual fuel recycle complex

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1980-01-01

    A conceptual design integration study for an integrated Fuel Recycle Complex (FRC) has been completed. A safety evaluation of the radiation shielding, fire precautions, handling of nonradioactive hazardous materials, criticality hazards, operating errors, and the influence of natural phenomena on the FRC shows that all federal regulations are met or exceeded

  5. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    ozon in the cryogenic system to remove krypton 85. Therefore, the off-gas processing and cleanup systems receive particular attention with respect to safety of nuclear fuel cycle facilities. The consequences of credible accidents in mixed oxide fuel fabrication plants, i.e. for instance criticality, explosions, leaks in glove boxes or Pu-nitrate tanks are considered. It is shown that credible accidents can be controlled and release of radioactive contaminants can be minimized by the combination of multiple physical barriers with graduated underpressure, corresponding off-gas systems and process safety systems

  6. Safety of nuclear fuel cycle facilities. Safety requirements

    International Nuclear Information System (INIS)

    2008-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific reference include aspects of nuclear fuel generation, storage, reprocessing and disposal. Contents: 1. Introduction; 2. The safety objective, concepts and safety principles; 3. Legal framework and regulatory supervision; 4. The management system and verification of safety; 5. Siting of the facility; 6. Design of the facility; 7. Construction of the facility; 8. Commissioning of the facility; 9. Operation of the facility; 10. Decommissioning of the facility; Appendix I: Requirements specific to uranium fuel fabrication facilities; Appendix II: Requirements specific to mixed oxide fuel fabrication facilities; Appendix III: Requirements specific to conversion facilities and enrichment facilities

  7. Criticality analysis of the CAREM-25 reactor irradiated fuel elements storage pool

    International Nuclear Information System (INIS)

    Albornoz, A.F.; Jatuff, F.E.; Gho, C.J.

    1993-01-01

    A criticality safety analysis of the irradiated fuel element pool storage of the CAREM-25 reactor was performed. The CAREM project is property of the Comision Nacional de Energia Atomica (CNEA) of Argentine, and it is being executed by INVAP S.E. difficult evaluation of the CAREM core (relatively high -3,4%- enriched U O 2 , Gd 2 O 3 burnable absorber in different densities, or criticality achievement with as few as 7 fuel elements is inherited by the pool storage. The lattice code CONDOR 1.1 was used for investigating the problem scene, and some results compared on the Monte Carlo codes MONK 5.0 and MONK 6.3. Circular and square tubes of 304-L stainless steel, borated steel and boral B 4 C in Al) were tested as suitable channels for fuel element containment, in square and hexagonal arrays; in addition, burnup, burnable absorber concentration, Sm and leakage credits were determined. It was found that the critical is strongly dependent on the separation of the fuel elements in the pool. Out-of-nominal conditions were investigated too, showing that the loss of coolant and the change in temperature and density conditions in the storage lead to an increase in reactivity, but the system's reactivity remains near the safety limits. (author)

  8. Safety issues of dry fuel storage at RSWF

    International Nuclear Information System (INIS)

    Clarksean, R.L.; Zahn, T.P.

    1995-01-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10 -6 per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed

  9. KUCA critical experiments using MEU fuel (II)

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    1983-09-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  10. KUCA critical experiments using MEU fuel (II)

    International Nuclear Information System (INIS)

    Kanda, Keiji; Hayashi, Masatoshi; Shiroya, Seiji; Kobayashi, Keiji; Fukui, Hiroshi; Mishima, Kaichiro; Shibata, Toshikazu

    1983-01-01

    Due to mutual concerns in the USA and Japan about the proliferation potential of highly-enriched uranium (HEU), a joint study program I was initiated between Argonne National Laboratory (ANL and Kyoto University Research Reactor Institute (KURRI) in 1978. In accordance with the reduced enrichment for research and test reactor (RERTR) program, the alternatives were studied for reducing the enrichment of the fuel to be used in the Kyoto University High Flux Reactor (KUHFR). The KUHFR has a distinct feature in its core configuration it is a coupled-core. Each annular shaped core is light-water-moderated and placed within a heavy water reflector with a certain distance between them. The phase A reports of the joint ANL-KURRI program independently prepared by two laboratories in February 1979, 3,4 concluded that the use of medium-enrichment uranium (MEU, 45%) in the KUHFR is feasible, pending results of the critical experiments in the Kyoto University Critical Assembly (KUCA) 5 and of the burnup test in the Oak Ridge Research Reactor 6 (ORR). An application of safety review (Reactor Installation License) for MEU fuel to be used in the KUCA was submitted to the Japanese Government in March 1980, and a license was issued in August 1980. Subsequently, the application for 'Authorization before Construction' was submitted and was authorized in September 1980. Fabrication of MEU fuel-elements for the KUCA experiments by CERCA in France was started in September 1980, and was completed in March 1981. The critical experiments in the KUCA with MEU fuel were started on a single-core in May 1981 as a first step. The first critical state of the core using MEU fuel was achieved at 312 p.m. in May 12, 1981. After that, the reactivity effects of the outer side-plates containing boron burnable poison were measured. At Munich Meeting in Sept., 1981, we presented a paper on critical mass and reactivity of burnable poison in the MEU core. Since then we carried out the following experiments

  11. Criticality safety philosophy for the Sellafield MOX plant

    International Nuclear Information System (INIS)

    Edge, Jane; Gulliford, Jim

    2003-01-01

    The Sellafield MOX Plant (SMP) has been operational since 2001, blending plutonium dioxide from THORP reprocessing operations, with uranium dioxide to produce Mixed Oxide (MOX) fuel elements. In handling the quantities of fuel associated with a commercial fuel fabrication plant, it is necessary to impose criticality controls. Plutonium dioxide (PuO 2 ), uranium dioxide (UO 2 ) and recycled MOX are mixed together in batches. An Engineered Protection System (EPS) prevents the production of MOX powder in excess of 20w/o Pu(fissile)/(Pu+U), achieved through the combination of a weight-based' system and a diverse 'neutron monitoring' radiometric system. The 'neutron monitoring' component of the EPS determines the fissile enrichment of the batch of MOX powder, based on pessimistic isotopic requirements of the PuO 2 feedstock powder. Guaranteeing the maximum MOX enrichment of 20w/o Pu(fissile)/(Pu + U) at an early stage of the fuel manufacturing process enables the criticality safety assessor to demonstrate that normal operations are deterministically safe. This paper describes in detail the EPS at the front end of plant and the engineered and operational protection in downstream areas. In addition plant operational experience in producing the first fuel assemblies is discussed. (author)

  12. The PBMR fuel plant: Proven technology in an advanced safety environment

    International Nuclear Information System (INIS)

    Braehler, G.; Froschauer, K.; Welbers, P.; Boyes, D.

    2008-01-01

    The PBMR Fuel Plant (PFP), to be constructed at the Pelindaba site near Johannesburg will fuel the first South African Pebble Bed Modular Reactor. The qualification of the PBMR fuel shall be based on past experience with fuel which was produced in the German NUKEM/HOBEG plant and irradiated in the German AVR reactor. Accordingly, the PFP must produce the same fuel as the German plant did, and consequently, the design of the PFP has in essence to be a copy of the NUKEM/HOBEG plant. As a reminder this plant had been operated in accordance with the German regulatory rules which were defined in the years 1970/80. Since then, the requirements with regard to radiological protection, criticality safety and emission control have been significantly tightened, and of course the PFP must be designed in accordance with the most advanced international norms and standards. The implications which follow from these two potentially conflicting requirements, as defined above, are highlighted, and technical solutions are presented. Hence, the change from administrative criticality safety control to technical control, i.e. the application of safe geometry as far as possible. and the introduction of technical solutions for the remaining safe mass regime will be described. A lot of equipment in the Kernel area and in the recycling areas needed to be redesigned in safe geometry. The sensitive processes for Kernel Calcining, for the Coating and the Over-coating remain under safe mass regime, but the safety against criticality is completely independent from staff activities and based on technical measures. A new concept for safe storage of large volumes of Uranium-containing liquids has been developed. Also, the change from relatively open handling of Uranium to the application of containment enclosures wherever release of radioactivity into the room atmosphere is possible, will be addressed. This change required redesign of all process steps requiring the handling of dry Uranium oxides

  13. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    International Nuclear Information System (INIS)

    Slessarev, I.

    2001-01-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  14. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    Directory of Open Access Journals (Sweden)

    Herrero J.J.

    2017-01-01

    Full Text Available In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  15. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  16. The need for integral critical experiments with low-moderated MOX fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The use of MOX fuel in commercial reactors is a means of burning plutonium originating from either surplus weapons or reprocessed irradiated uranium fuel. This requires the fabrication of MOX assemblies on an industrial scale. The OECD/NEA Expert Group on Experimental Needs for Criticality Safety has highlighted MOX fuel manufacturing, as an area in which there is a specific need for additional experimental data for validation purposes. Indeed, integral experiments with low-moderated MOX fuel are either scarce or not sufficiently accurate to provide an appropriate degree of validation of nuclear data and computer codes. New and accurate experimental data would enable a better optimisation of the fabrication process by decreasing the uncertainties in the determination of multiplication factors of configurations such as the homogenization of MOX powders. In this context, the OECD/NEA Nuclear Science Committee organised a workshop to address the following topics: expression and justification of the need for critical or near-critical experiments employing low-moderated MOX fuels; proposals for experimental programmes to address these needs; prospects for an international co-operative programme. The workshop was held at OECD headquarters in Paris on 14-15 April 2004. (author)

  17. Criticality Calculations for a Typical Nuclear Fuel Fabrication Plant with Low Enriched Uranium

    International Nuclear Information System (INIS)

    Elsayed, Hade; Nagy, Mohamed; Agamy, Said; Shaat, Mohmaed

    2013-01-01

    The operations with the fissile materials such as U 235 introduce the risk of a criticality accident that may be lethal to nearby personnel and can lead the facility to shutdown. Therefore, the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences. Sixty criticality accidents were occurred in the world. These are accidents divided into two categories, 22 accidents occurred in process facilities and 38 accidents occurred during critical experiments or operations with research reactor. About 21 criticality accidents including Japan Nuclear Fuel Conversion Co. (JCO) accident took place with fuel solution or slurry and only one accident occurred with metal fuel. In this study the nuclear criticality calculations have been performed for a typical nuclear fuel fabrication plant producing nuclear fuel elements for nuclear research reactors with low enriched uranium up to 20%. The calculations were performed for both normal and abnormal operation conditions. The effective multiplication factor (k eff ) during the nuclear fuel fabrication process (Uranium hexafluoride - Ammonium Diuranate conversion process) was determined. Several accident scenarios were postulated and the criticalities of these accidents were evaluated. The computer code MCNP-4B which based on Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations Monte Carlo method was used to calculate neutron multiplication factor. The criticality calculations were performed for the cases of, change of moderator to fuel ratio, solution density and concentration of the solute in order to prevent or mitigate criticality accidents during the nuclear fuel fabrication process. The calculation results are analyzed and discussed

  18. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang

    2002-01-01

    The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy

  19. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat this latter effect permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. The benchmark exercise has resolved a potentially dangerous inadequacy in dissolver calculations. (author)

  20. Spent fuel packaging and its safety analysis

    International Nuclear Information System (INIS)

    Takada, Kimitaka; Nakaoki, Kozo; Tamamura, Tadao; Matsuda, Fumio; Fukudome, Kazuyuki

    1983-01-01

    An all stainless steel B(U) type packaging is proposed to transport spent fuels discharged from research reactors and other radioactive materials. The package is used dry and provided with surface fins to absorb drop shock and to dissipate decay heat. Safety was analyzed for structural, thermal, containment shielding and criticality factors, and the integrity of the package was confirmed with the MARC-CDC, TRUMP, ORIGEN, QAD, ANISN, and KENO computer codes. (author)

  1. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Pruvost, N.L.; Paxton, H.C.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators

  2. Nuclear criticality safety guide

    Energy Technology Data Exchange (ETDEWEB)

    Pruvost, N.L.; Paxton, H.C. [eds.

    1996-09-01

    This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

  3. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    reprocessing plant (Thorp). Description, safety design criteria and cold commissioning of the storage facility for HLW and MLW in Belgium. Burn-up assessment of spent PWR fuel assemblies by analysis of the neutron emission; Comparison of measured and calculated data. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel. Handling and storage of decommissioning wastes at BNFL Sellafield - A criticality perspective. Uncertainties of radiation source terms for the shielding safety analysis of high burnup fuels

  4. RECENT ADDITIONS OF CRITICALITY SAFETY RELATED INTEGRAL BENCHMARK DATA TO THE ICSBEP AND IRPHEP HANDBOOKS

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Sartori

    2009-09-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  5. Recent additions of criticality safety related integral benchmark data to the ICSBEP and IRPHEP handbooks

    International Nuclear Information System (INIS)

    Briggs, J. B.; Scott, L.; Rugama, Y.; Sartori, E.

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions. (authors)

  6. REcent Additions Of Criticality Safety Related Integral Benchmark Data To The Icsbep And Irphep Handbooks

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Scott, Lori; Rugama, Yolanda; Sartori, Enrico

    2009-01-01

    High-quality integral benchmark experiments have always been a priority for criticality safety. However, interest in integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of future criticality safety needs to support next generation reactor and advanced fuel cycle concepts. The importance of drawing upon existing benchmark data is becoming more apparent because of dwindling availability of critical facilities worldwide and the high cost of performing new experiments. Integral benchmark data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the International Handbook of Reactor Physics Benchmark Experiments are widely used. Benchmark data have been added to these two handbooks since the last Nuclear Criticality Safety Division Topical Meeting in Knoxville, Tennessee (September 2005). This paper highlights these additions.

  7. Safety physics inter-comparison of advanced concepts of critical reactors and ADS

    Energy Technology Data Exchange (ETDEWEB)

    Slessarev, I. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs

    2001-07-01

    Enhanced safety based on the principle of the natural ''self-defence'' is one of the most desirable features of innovative nuclear systems (critical or sub-critical) regarding both TRU transmutation and ''clean'' energy producer concepts. For the evaluation of the ''self-defence'' domain, the method of the asymptotic reactivity balance has been generalised. The promising option of Hybrids systems (that use a symbiosis of fission and spallation in sub-critical cores) which could benefit the advantages of both Accelerated Driven Systems of the traditional type and regular critical systems, has been advocated. General features of Hybrid dynamics have been presented and analysed. It was demonstrated that an external neutron source of Hybrids can expand the inherent safety potential significantly. This analysis has been applied to assess the safety physics potential of innovative concepts for prospective nuclear power both for energy producers and for transmutation. It has been found, that safety enhancement goal defines a choice of sub-criticality of Hybrids. As for energy producers with Th-fuel cycle, a significant sub-criticality level is required due to a necessity of an improvement of neutronics together with safety enhancement task. (author)

  8. Spent fuel storage options: a critical appraisal

    International Nuclear Information System (INIS)

    Singh, K.P.; Bale, M.G.

    1990-01-01

    The delayed decisions on nuclear fuel reprocessing strategies in the USA and other countries have forced the development of new long-term irradiated fuel storage techniques, to allow a larger volume of fuel to be held on the nuclear station site after removal from the reactor. The nuclear power industry has responded to the challenge by developing several viable options for long-term onsite storage, which can be employed individually or in tandem. They are: densification of storage in the existing spent fuel pool; building another fuel pool facility at the plant site; onsite cask park, and on site vault clusters. Desirable attributes of a storage option are: Safety: minimise the number of fuel handling steps; Economy: minimise total installed, and O and M cost; Security: protection from anti-nuclear protesters; Site adaptability: available site space, earthquake characteristics of the region and so on; Non-intrusiveness: minimise required modifications to existing plant systems; Modularisation: afford the option to adapt a modular approach for staged capital outlays; and Maturity: extent of industry experience with the technology. A critical appraisal is made of each of the four aforementioned storage options in the light of these criteria. (2 figures, 1 table, 4 references) (Author)

  9. Analysis of Fresh Fuel Critical Experiments Appropriate for Burnup Credit Validation

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-01-01

    The ANS/ANS-8.1 standard requires that calculational methods used in determining criticality safety limits for applications outside reactors be validated by comparison with appropriate critical experiments. This report provides a detailed description of 34 fresh fuel critical experiments and their analyses using the SCALE-4.2 code system and the 27-group ENDF/B-IV cross-section library. The 34 critical experiments were selected based on geometry, material, and neutron interaction characteristics that are applicable to a transportation cask loaded with pressurized-water-reactor spent fuel. These 34 experiments are a representative subset of a much larger data base of low-enriched uranium and mixed-oxide critical experiments. A statistical approach is described and used to obtain an estimate of the bias and uncertainty in the calculational methods and to predict a confidence limit for a calculated neutron multiplication factor. The SCALE-4.2 results for a superset of approximately 100 criticals are included in uncertainty analyses, but descriptions of the individual criticals are not included

  10. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  11. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  12. Criticality analysis of the storage tubes for irradiated fuel elements from the IEA-R1 with the MCNP code

    International Nuclear Information System (INIS)

    Maragni, M.G.; Moreira, J.M.L.

    1992-01-01

    A criticality safety analysis has been carried out for the storage tubes for irradiated fuel elements from the IEA-R1 research reactor. The analysis utilized the MCNP computer code which allows exact simulations of complex geometries. Aiming reducing the amount of input data, the fuel element cross-sections have been spatially smeared out. The earth material interstice between fuel elements has been approximated conservatively as concrete because its composition was unknown. The storage tubes have been found subcritical for the most adverse conditions (water flooding and un-irradiated fuel elements). A similar analysis with the KENO-IV computer code overestimated the KEF result but still confirmed the criticality safety of the storage tubes. (author)

  13. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  14. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  15. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  16. Present status of Monte Carlo seminar for sub-criticality safety analysis in Japan

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    2003-01-01

    This paper provides overview of the methods and results of a series of sub-criticality safety analysis seminars for nuclear fuel cycle facility with the Monte Carlo method held in Japan from July 2000 to July 2003. In these seminars, MCNP-4C2 system (MS-DOS version) was installed in note-type personal computers for participants. Fundamental theory of reactor physics and Monte Carlo simulation as well as the contents of the MCNP manual were lectured. Effective neutron multiplication factors and neutron spectra were calculated for some examples such as JCO deposit tank, JNC uranium solution storage tank, JNC plutonium solution storage tank and JAERI TCA core. Management for safety of nuclear fuel cycle facilities was discussed in order to prevent criticality accidents in some of the seminars. (author)

  17. Development of advanced spent fuel management process / criticality safety analysis for integrated mockup and metallized spent fuel storage

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Shin, Hee Sung; Shin, Young Joon; Bae, Kang Mok

    1999-02-01

    Benchmark calculation for SCALE4.3 CSAS6 module and burnup credit criticality analysis performed by CSAS6 module are described in this report. Calculation biases by the SCALE4.3 CSAS6 module for PWR spent fuel, metallized spent fuel and aqueous nuclear materials have been determined on the basis of the benchmark to be 0.011, 0.023 and 0.010, respectively. The maximum allowable multiplication factor for an integrated mockup and metallized spent fuel storage is conservatively determined to be 0.927. With the aid of this code system, K eff values as a function of metallization ratio for the integrated mockup have been calculated. The maximum values of K eff for normal and hypothetical accident conditions are 0.346 and 0.598, respectively, much less than the maximum allowable multiplication factor of 0.927. Besides, burnup credit criticality analysis has been performed for infinite arrays of square and hexagonal canisters containing metallized spent fuel rods with different canister wall thickness, canister surface-to-surface distance and water content. It is revealed that the effective multiplication factor for canister arrays as mentioned above is well below the subcritical limit regardless of external conditions when its wall thickness is over 9 mm. (Author). 37 refs., 27 tabs., 64 figs

  18. Safety Aspects of Long Term Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Botsch, Wolfgang; Smalian, S.; Hinterding, P.; Drotleff, H.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    As a consequence of the lack of a final repository for spent nuclear fuel (SF) and high level waste (HLW), long term interim storage of SF and HLW will be necessary. As with the storage of all radioactive materials, the long term storage of SF and HLW must conform to safety requirements. Safety aspects such as safe enclosure of radioactive materials, safe removal of decay heat, sub-criticality and avoidance of unnecessary radiation exposure must be achieved throughout the complete storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. In Germany, dry storage of SF in casks fulfils both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground; one storage facility has also been built as a rock tunnel. In all these facilities the safe enclosure of radioactive materials in dry storage casks is achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat is ensured by the design of the storage containers and the storage facility, which also secures to reduce the radiation exposure to acceptable levels. TUV and BAM, who work as independent experts for the competent authorities, inform about spent fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All relevant safety issues such as safe enclosure, shielding, removal of decay heat and sub-criticality are checked and validated with state-of-the-art methods and computer codes before the license approval. In our presentation we discuss which of these aspects need to be examined closer for a long term interim storage. It is shown

  19. Safety issues on advanced fuel

    International Nuclear Information System (INIS)

    Gross, H.; Krebs, W.D.

    1998-01-01

    In the recent years a general discussion has started whether unsolved safety issues are related to advanced fuel. Advanced fuel is in this context a summary of features like high burnup, improved clad materials, low leakage loading pattern with high peaking factors etc. The design basis accidents RIA and Loca are of special interest for this discussion. From the Siemens point of view RIA is not a safety issue. There are sufficient margins between the enthalpy rise calculated by modern 3D methods and the fuel failures which occurred in RIA simulation tests when the effect of pulse width is taken into account. The evaluation of possible uncertainties for the established Loca criteria (17% equivalent corrosion, 1200 C clad temperature) for high burnup makes sense. But fuel with high burnup has significantly lower peaking factors than fuel with lower burnup. This gives sufficient margin counterbalancing possible uncertainties. In contrast to the above incomplete control rod insertion at higher burnup is potentially a real safety issue. Although Siemens fuel was not affected by the reported incidents they addressed the problem and checked that they have sufficient design margin for their fuel. (orig.) [de

  20. Criticality considerations for 233U fuels in an HTGR fuel refabrication facility

    International Nuclear Information System (INIS)

    McNeany, S.R.; Jenkins, J.D.

    1978-01-01

    Eleven 233 U solution critical assemblies spanning an H/ 233 U ratio range of 40 to 2000 and a bare metal 233 U assembly have been calculated with the ENDF/B-IV and Hansen-Roach cross sections. The results from these calculations are compared with the experimental results and with each other. An increasing disagreement between calculations with ENDF/B and Hansen-Roach data with decreasing H/ 233 U ratio was observed, indicative of large differences in their intermediate energy cross sections. The Hansen-Roach cross sections appeared to give reasonably good agreement with experiments over the whole range; whereas the ENDF/B calculations yielded high values for k/sub eff/ on assemblies of low moderation. It is concluded that serious problems exist in the ENDF/B-IV representation of the 233 U cross sections in the intermediate energy range and that further evaluation of this nuclide is warranted. In addition, it is recommended that an experimental program be undertaken to obtain 233 U criticality data at low H/ 233 U ratios for verification of generalized criticality safety guidelines. Part II of this report presents the results of criticality calculations on specific pieces of equipment required for HTGR fuel refabrication. In particular, fuel particle storage hoppers and resin carbonization furnaces are criticality safe up to 22.9 cm (9.0 in.) in diameter providing water or other hydrogenous moderators are excluded. In addition, no criticality problems arise due to accumulation of particles in the off-gas scrubber reservoirs provided reasonable administrative controls are exercised

  1. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  2. Realistic evaluation of new fuel storage criticality

    International Nuclear Information System (INIS)

    Hamasaki, M.; Itahara, K.; Shimada, S.; Etsu, M.; Kuroda, M.; Watanabe, H.; Kuragasaki, M.; Kawaguchi, K.

    1987-01-01

    In the criticality safety design of dry fuel storage facility, the optimum moderation condition which appears at rather low water density (0.05 ∼ 0.1 gH 2 O/cc) has been a barrier to incorporate economical design. In this study we have shown that this optimum moderation does not occur, even in fire-fighting with water supply system, by criticality analyses and experiments. Evaluated critical amount of water in the space has found itself far from the level estimated actually attainable through the experiment with fire-fighting system. In another experiment we have taken the holograms of 0.003 ∼ 0.35 g/cc water which was realized in the very narrow space by the nozzle manufactured for this special purpose. Those holograms demonstrate that the droplets in the low density water are more closely packed than we anticipate they are. (author)

  3. Criticality evaluations with moderators other than water for uranium metal fuels

    International Nuclear Information System (INIS)

    Toffer, H.; Tollefson, D.A.; Finfrock, S.H.

    1986-01-01

    Occasionally, nuclear criticality safety analyses of fissile material handling operations or transport situations require consideration of moderation other than water. Such moderators could be oils, plastics, wood, concrete, carbon, or even wet sand. All of these materials contain either hydrogen, carbon, or mixtures of the two elements as the principal moderators. Other elements as part of the compounds or mixtures contribute less to the neutron slowing down process and can possibly be significant parasitic neutron absorbers. Results of a series of calculations are presented illustrating the impact of various moderators on critical masses or critical parameters as a function of lattice pitch for different uranium metal fuel elements at low 235 U enrichments. Several nuclear criticality safety analyses performed at the Hanford N Reactor, operated by UNC Nuclear Industries for the US Department of Energy, have considered alternative moderators to assure that water moderation represented the most limiting case

  4. Criticality safety analysis of the NPP Krsko storage racks

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    2002-01-01

    NPP Krsko is going to increase the capacity of the spent fuel storage pool by replacement of the existing racks with high-density racks. This will be the second reracking campaign since 1983 when storage was increased from 180 to 828 storage locations. The pool capacity will increase from 828 to 1694 with partial reracking by the spring 2003. The installed capacity will be sufficient for the current design plant lifetime. Complete reracking of the spent fuel pool will additionally increase capacity to 2321 storage locations. The design, rack manufacturing and installation has been awarded to the Framatome ANP GmbH. Burnup credit methodology, which was approved by the Slovenian Nuclear Safety Administration in previous licensing of existing racks, will be again implemented in the licensing process with the recent methodology improvements. Specific steps of the criticality safety analysis and representative results are presented in the paper.(author)

  5. Review of studies on criticality safety evaluation and criticality experiment methods

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Misawa, Tsuyoshi; Yamane, Yuichi

    2013-01-01

    Since the early 1960s, many studies on criticality safety evaluation have been conducted in Japan. Computer code systems were developed initially by employing finite difference methods, and more recently by using Monte Carlo methods. Criticality experiments have also been carried out in many laboratories in Japan as well as overseas. By effectively using these study results, the Japanese Criticality Safety Handbook was published in 1988, almost the intermediate point of the last 50 years. An increased interest has been shown in criticality safety studies, and a Working Party on Nuclear Criticality Safety (WPNCS) was set up by the Nuclear Science Committee of Organisation Economic Co-operation and Development in 1997. WPNCS has several task forces in charge of each of the International Criticality Safety Benchmark Evaluation Program (ICSBEP), Subcritical Measurement, Experimental Needs, Burn-up Credit Studies and Minimum Critical Values. Criticality safety studies in Japan have been carried out in cooperation with WPNCS. This paper describes criticality safety study activities in Japan along with the contents of the Japanese Criticality Safety Handbook and the tasks of WPNCS. (author)

  6. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  7. Applicability of risk-informed criticality methodology to spent fuel repositories

    International Nuclear Information System (INIS)

    Mays, C.; Thomas, D.A.; Favet, D.

    2000-01-01

    An important objective of geologic disposal is keeping the fissionable material in a condition so that a self-sustaining nuclear chain reaction (criticality) is highly unlikely. This objective supports the overall performance objective of any repository, which is to protect the health and safety of the public by limiting radiological exposure. This paper describes a risk-informed, performance-based methodology, which combines deterministic and probabilistic approaches for evaluating the criticality potential of high-level waste and spent nuclear fuel after the repository is sealed and permanently closed (postclosure). (authors)

  8. Proceedings of fuel safety research specialists' meeting

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2002-08-01

    Fuel Safety Research Specialists' Meeting, which was organized by Japan Atomic Energy Research Institute, was held on March 4-5, 2002 at JAERI in Tokai Establishment. Purposes of the Meeting are to exchange information and views on LWR fuel safety topics among the specialist participants from domestic and foreign organizations, and to discuss the recent and future fuel research activities in JAERI. In the Meeting, presentations were given and discussions were made on general report of fuel safety research activities, fuel behaviors in normal operation and accident conditions, FP release behaviors in severe accident conditions, and JAERI's ''Advanced LWR Fuel Performance and Safety Research Program''. A poster exhibition was also carried out. The Meeting significantly contributed to planning future program and cooperation in fuel research. This proceeding integrates all the pictures and papers presented in the Meeting. The 10 of the presented papers are indexed individually. (J.P.N.)

  9. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  10. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  11. Assessment of criticality safety

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Heaberlin, S.W.; Clayton, E.D.; Carter, R.D.

    1979-01-01

    A study was made of 100 violations of criticality safety specifications reported over a 10-y period in the operations of fuel reprocessing plants. The seriousness of each rule violation was evaluated by assigning it a severity index value. The underlying causes or reasons, for the violations were identified. A criticality event tree was constructed using the parameters, causes, and reasons found in the analysis of the infractions. The event tree provides a means for visualizing the paths to an accidental criticality. Some 65% of the violations were caused by misinterpretation on the part of the operator, being attributed to a lack of clarity in the specification and insufficient training; 33% were attributed to lack of care, whereas only 2% were caused by mechanical failure. A fault tree was constructed by assembling the events that could contribute to an accident. With suitable data on the probabilities of contributing events, the probability of the accident's occurrence can be forecast. Estimated probabilities for criticality were made, based on the limited data available, that in this case indicate a minimum time span of 244 y of plant operation per accident ranging up to approx. 3000 y subject to the various underlying assumptions made. Some general suggestions for improvement are formulated based on the cases studied. Although conclusions for other plants may differ in detail, the general method of analysis and the fault tree logic should prove applicable. 4 figures, 8 tables

  12. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  13. Summary of fuel safety research meeting 2004

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Hidaka, Akihide; Nakamura, Jinichi; Suzuki, Motoe; Nagase, Fumihisa; Sasajima, Hideo; Fujita, Misao; Otomo, Takashi; Kudo, Tamotsu; Amaya, Masaki; Sugiyama, Tomoyuki; Ikehata, Hisashi; Iwasaki, Ryo; Ozawa, Masaaki; Kida, Mitsuko

    2004-10-01

    Fuel Safety Research Meeting 2004, which was organized by the Japan Atomic Energy Research Institute, was held on March 1-2, 2004 at Toranomon Pastoral, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meeting covered the status of fuel safety research activities, fuel behavior under RIA and LOCA conditions, high burnup fuel behavior, and radionuclides release under severe accident conditions. This summary contains all the abstracts and OHP sheets presented in the meeting. (author)

  14. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-05-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith SGHWR that the necessary bias towards safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications. By a detailed evaluation of SGHWR fuel defects it is shown that very few defects can be shown to be related to design, rating, or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that most be met to achieve the desirable reliability level. It is possible that large scale experience on SGHWR fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to SGHWR fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. the philosophy and supporting experimental work programme are outlines and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to the new 60-pin fuel element to be used in the commercial SGHWRs and to its comparison in design and performance aspects with the 36-pin element that has been used to date in the Winfrith SGHWR. (author)

  15. Health and safety of competing fuel options for fuel cells in the road transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.; Short, S.; Stutt, E.; Wickramatillake, H.; Harrison, P.

    2000-07-01

    This report presents a critical analysis of the health and safety issues surrounding competing transport fuel options, including those for possible future fuel-cell powered vehicles. The fuels considered in this report are gasoline (unleaded and reformulated), diesel, hydrogen (H{sub 2}), methanol, natural gas and liquefied petroleum gas (LPG). The analysis presented here is based on available information in peer-reviewed, published papers and other sources such as government department or research laboratory reports and websites. An overall evaluation of the fuels in terms of their toxicity and health effects, environmental fate, and fire and explosion safety aspects is presented. The report is based on current knowledge and makes no assumptions as to how fuels may change in the future if they are to be used in fuel-cell vehicles. The report identifies the hazards of the fuels but does not estimate the risks likely to be associated with their eventual use in fuel-cell vehicles. The focus is on the fuels themselves and not their exhaust or reaction products. sNo assessment has been made of the environmental effects data for the fuels. Broad environmental considerations such as ozone forming potential and also global warming are not considered. Basic information on environmental fate is included to provide an understanding of migratory pathways, environmental compartmentalisation and potential routes of human exposure. Other factors such as economics, government incentives or disincentives and public attitudes may have a bearing on which of the fuels are considered most appropriate for future fuel-cell vehicles; these factors are not considered in any detail in this report. (Author)

  16. ALARP considerations in criticality safety assessments

    International Nuclear Information System (INIS)

    Bowden, Russell L.; Barnes, Andrew; Thorne, Peter R.; Venner, Jack

    2003-01-01

    Demonstrating that the risk to the public and workers is As Low As Reasonably Practicable (ALARP) is a fundamental requirement of safety cases for nuclear facilities in the United Kingdom. This is embodied in the Safety Assessment Principles (SAPs) published by the Regulator, the essence of which is incorporated within the safety assessment processes of the various nuclear site licensees. The concept of ALARP within criticality safety assessments has taken some time to establish in the United Kingdom. In principle, the licensee is obliged to search for a deterministic criticality safety solution, such as safe geometry vessels and passive control features, rather than placing reliance on active measurement devices and plant administrative controls. This paper presents a consideration of some ALARP issues in relation to the development of criticality safety cases. The paper utilises some idealised examples covering a range of issues facing the criticality safety assessor, including new plant design, operational plant and decommissioning activities. These examples are used to outline the elements of the criticality safety cases and present a discussion of ALARP in the context of criticality safety assessments. (author)

  17. Safety considerations in the fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Baker, A.R.; Burton, W.R.; Taylor, H.A.

    1977-01-01

    The fuel cycle safety problems for fast reactors, as compared with thermal reactors, are enhanced by the higher fissile content and heat rating of the fuel. Additionally recycling leads to the build up of substantial isotopes which contribute to the alpha and neutron hazards. The plutonium arisings in a nuclear power reactor programme extending into the next century are discussed. A requirement is to be able to return the product plutonium to a reactor about 9 months after the end of irradiation and it is anticipated that progress will be made slowly towards this fuel cycle, having regard to the necessity for maintaining safe and reliable operations. Consideration of the steps in the fuel cycle has indicated that it will be best to store the irradiated fuel on the reactor sites while I131 decays and decay heat falls before transporting and a suitable transport flask is being developed. Reprocessing development work is aimed at the key area of fuel breakdown, the inter-relation of the fuel characteristics on the dissolution of the plutonium and a solvent extract cycle leading to a product suitable for a co-located fabrication plant. Because of the high activity of recycled fuel it is considered that fabrication must move to a fully remote operation as is already the case for reprocessing, and a gel precipitation process producing a vibro compacted fuel is under development for this purpose. The waste streams from the processing plants must be minimised, processed for recovery of plutonium where applicable and then conditioned so that the final products released from the processing cycle are acceptable for ultimate disposal. The safety aspects reviewed cover protection of operators, containment of radioactive materials, criticality and regulation of discharges to the environment

  18. A study on safety analysis methodology in spent fuel dry storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Che, M. S.; Ryu, J. H.; Kang, K. M.; Cho, N. C.; Kim, M. S. [Hanyang Univ., Seoul (Korea, Republic of)

    2004-02-15

    Collection and review of the domestic and foreign technology related to spent fuel dry storage facility. Analysis of a reference system. Establishment of a framework for criticality safety analysis. Review of accident analysis methodology. Establishment of accident scenarios. Establishment of scenario analysis methodology.

  19. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  20. International studies on burnup credit criticality safety by an OECD/NEA working group

    International Nuclear Information System (INIS)

    Brady, M.C.; Okuno, H.; DeHart, M.D.; Nouri, A.; Sartori, E.

    1998-01-01

    The results and conclusions from a six-year study by an international benchmarking group in the comparison of computational methods for evaluating burnup credit in criticality safety analyses is presented. Approximately 20 participants from 12 countries have provided results for most problems. Four detailed benchmark problems for pressurized-water-reactor fuel have been completed. Results from work being finalized, addressing burnup credit for boiling-water-reactor fuel, are discussed, as well as planned activities for additional benchmarks, including mixed-oxide fuels, and other activities

  1. Preliminary safety analysis of criticality for dual-purpose metal cask under dry storage conditions in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeman, E-mail: tmkim@korad.or.kr [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Dho, Hoseog; Baeg, Chang-Yeal [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Lee, Gang-uk [Korea Nuclear Engineering and Service Co. (KONES), Hyundai Plaza, 341-4 Jangdae-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • DPC is under development led by Korea Radioactive Waste Agency in South Korea. • The results of criticality analysis with respect to design requirements. • The k{sub eff} under normal and off-normal conditions were 0.36 and 0.46, respectively. • In addition, the k{sub eff} under a postulated accident condition was evaluated to be 0.94. - Abstract: A dual-purpose metal cask is under development led by Korea Radioactive Waste Agency (KORAD) in Korea, for the dry interim storage and long-distance transportation. This cask comprises a main body made of carbon steel and a stainless steel Dry Shielded Canister (DSC), with stainless steel baskets inside to contain spent fuel assemblies. In this study, nuclear criticality safety analysis was conducted as a part of safety assessment of the metal cask. Analysis to show criticality safety in accordance with regulatory requirements of PWR spent fuel storage was carried out. 10CFR72.124 “Criteria for nuclear criticality safety” and the Regulatory Guide of the American Nuclear Society, ANSI/ANS-57.9 “Design Criteria for an Independent Spent Fuel” and US NRC's “Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility” were employed as regulatory standard and criteria. This paper shows results of criticality analysis with respect to each designated criterion with modeling of a virtual nuclear fuel assembly and a cask body that induces the maximum reactivity among various design basis fuels of the metal cask. In addition, the sensitivity analysis of nuclear criticality taking into account the various modeling deviation such as manufacturing tolerance and modeling assumptions of conventional models was carried out to ensure the reliability of the analysis result. The criticality evaluation result of the metal cask and the maximum k{sub eff} under normal and off-normal conditions were 0.36884 and 0.46255, respectively. The maximum k{sub eff} under a postulated

  2. Fuel safety criteria technical review - Results of OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria

    International Nuclear Information System (INIS)

    Hollasky, N.; Valtonen, K.; Hache, G.; Gross, H.; Bakker, K.; Recio, M.; Bart, G.; Zimmermann, M.; Van Doesburg, W.; Killeen, J.; Meyer, R.O.; Speis, T.

    2000-01-01

    With the advent of advanced fuel and core designs, the adoption of more aggressive operational modes and the implementation of more accurate (best estimate or statistical) design and analysis methods, there is a concern if safety margins have remained adequate. Most - if not all - of the currently existing safety criteria were established during the 60's and early 70's, and verified against experiments with fuel that was available at that time, mostly with unirradiated specimens. Verification was of course performed as designs progressed in later years, however mostly with the aim to be able to prove that these designs adequately complied with existing criteria, and not to establish new limits. The OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria (TFFSC) was therefore given the mandate to technically review the existing fuel safety criteria, focusing on the 'new design' elements (new fuel and core design, cladding materials, manufacturing processes, high burnup, MOX, etc.) introduced by the industry. It should also identify if additional efforts may be required (experimental, analytical) to ensure that the basis for fuel safety criteria is adequate to address the relevant safety issues. In this report, fuel-related criteria are discussed without attempting to categorize them according to event type or risk significance. For each of these 20 criteria, we present a brief description of the criterion as it is used in several applications along with the rationale for having such a criterion. New design elements, such as different cladding materials, higher burnup, and the use of MOX fuels, can affect fuel-related margins and, in some cases, the criteria themselves. Some of the more important effects are mentioned in order to indicate whether the criteria need to be re-evaluated. The discussion may not cover all possible effects, but should be sufficient to identify those criteria that need to be addressed. A summary of these discussions is given in Section 7. As part

  3. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  4. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  5. Fuel Fracture (Crumbling) Safety Impact (OCRWM)

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    The safety impact of experimentally observed N Reactor fuel sample fracture and fragmentation is evaluated using an average reaction rate enhancement derived from data from thermo-gravimetric analysis (TGA) experiments on fuel samples. The enhanced reaction rates attributed to fragmentation were within the existing safety basis

  6. The Key-Role of shielding analysis in advanced Candu Fuel bundles nuclear safety improvement for some accidental criticality scenarios

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.; Olteanu, G.

    2008-01-01

    The paper aims to present the source term and photon dose rates estimation for advanced Candu fuel bundles in some accidental criticality scenarios. As reference, the Candu standard fuel bundle has been used. The scenarios take into account for a very short-time irradiated or spent fuel bundles for some configurations closed to criticality. In order to estimate irradiated fuel characteristic parameters and radiation doses, the ORNL's SCALE 5 codes Origin-S and Monte Carlo MORSE-SGC have been used. The paper includes the irradiated fuel characteristic parameters comparison for the considered Candu fuel bundles, providing also a comparison between the corresponding radiation doses

  7. Review of design criteria for Criticality Accident Alarm System (CAAS) used in Fuel Reprocessing Facility

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Basu, Pew; Sivasubramaniyan, K.; Venkatraman, B.

    2016-01-01

    Though fuel cycle facilities handling fissile materials are designed with careful criticality safety analysis, the criticality accident cannot be ruled out completely. Criticality Accident Alarm System (CAAS) is being installed as part of criticality safety management in fuel cycle facilities. CAAS system being used in India, is ECIL make, ionization chamber based gamma detector, which houses three identical detectors and works on 2/3 logic. As per ISO 7753 and ANSI/ANS-8.3, the CAAS must be designed to be capable of detecting any minimum accident occurs which could be of concern. Based on this, alarm limit used in CAAS is: 4 R/h (fast transient excursion) and 3 mR in 0.5 sec (slow excursion). In case of reprocessing facilities wherein process tanks located in heavy shielding, identification of CAAS installation locations require detailed radiation transport calculations. A study has been taken to estimate the gamma dose rate from thick concrete hot cells in order to determine the locations of CAAS to meet the present design criteria of alarm limit

  8. Safety-critical Java for embedded systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, René Rydhof

    2016-01-01

    This paper presents the motivation for and outcomes of an engineering research project on certifiable Javafor embedded systems. The project supports the upcoming standard for safety-critical Java, which defines asubset of Java and libraries aiming for development of high criticality systems....... The outcome of this projectinclude prototype safety-critical Java implementations, a time-predictable Java processor, analysis tools formemory safety, and example applications to explore the usability of safety-critical Java for this applicationarea. The text summarizes developments and key contributions...

  9. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II Safety Program

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutoy, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.

    1994-01-01

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated

  10. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  11. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for

  12. A critical overview of safety-related and technological criteria for nuclear fuel

    International Nuclear Information System (INIS)

    Lahodova, M.; Valach, M.

    2000-10-01

    A detailed overview of the safety criteria, methods of analysis and computer codes used in OECD countries is presented. A critical analysis of the validity of criteria in the high burnup domain was performed, and recommendations for testing their validity based on available experimental data are put forth. (author)

  13. SGHWR fuel performance, safety and reliability

    International Nuclear Information System (INIS)

    Pickman, D.O.; Inglis, G.H.

    1977-01-01

    The design principles involved in fuel pins and elements need to take account of the sometimes conflicting requirements of performance, safety and reliability. The principal factors involved in this optimisation are discussed and it is shown from fuel irradiation experience in the Winfrith S.G.H.W.R. that the necessary bias toward safety has not resulted in a reliability level lower than that shown by other successful water reactor designs. Reliability has important economic implications and has to be paid for. By a detailed evaluation of S.G.H.W.R. fuel defects it is shown that very few defects can be shown to be related to design, rating or burn-up. This demonstrates that economic aspects have not over-ridden necessary criteria that must be met to achieve the desirable reliability level. It is possible that large-scale experience with S.G.H.W.R. fuel may eventually demonstrate that the balance is too much in favour of reliability and consideration may be given to whether design changes favouring economy could be achieved without compromising safety. The safety criteria applied to S.G.H.W.R. fuel are designed to avoid any possibility of a temperature runaway in any credible accident situation. The philosophy and supporting experimental work programme are outlined and the fuel design features which particularly contribute to maximising safety margins are outlined. Reference is made to new 60 pin fuel element to be used in the commercial S.G.H.W.R.'s and how it compares in design and performance aspects with the 36 pin element that has been used to date in the Winfrith S.G.H.W.R

  14. Criticality safety assessment on the RSG-GAS spent fuel storage for anticipating the next core conversion program

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Kuntoro, Iman; Zuhair; Liem, Peng Hong

    2003-01-01

    Criticality assessment on the spent fuel storage racks of the RSG-GAS multipurpose reactor has been conducted to support the undergoing core conversion program, in which higher uranium fuel densities of silicide (up to 4.8 gU.cm -3 ) and molybdenum (up to 8.3 gU.cm -3 ) fuel elements are adopted to enhance the reactor performance, core cycle length and reactor utilization. In the assessment, the k eff of the rack as a function of fuel density is calculated for fresh fuel elements which is a very conservative approach recommended by IAEA. Besides fuel densities, effects of water densities due to pool water temperature variation, and the fuel elements' orientation on the k eff are analyzed as well. The criticality calculations are all carried out by using MNCP4B2 Monte Carlo code with ENDF/B-VI library. For the library sensitivity, JENDL-3.3 library is also used and compared. The calculation results show the most reactive condition is for the case when the spent fuel racks are filled with fresh U-6Mo fuel element with meat density of 8.30 gU.cm -3 . For all fuel types, density and operating condition, the calculated k eff with 3 times standard deviations are confirmed less than the allowable value of 0.95. It can be concluded that the existing spent fuel storage racks can be safely used for storing the planned high density uranium fuels. (author)

  15. Summary of fuel safety research meeting 2005

    International Nuclear Information System (INIS)

    Fuketa, Toyoshi; Nakamura, Takehiko; Nagase, Fumihisa; Nakamura, Jinichi; Suzuki, Motoe; Sasajima, Hideo; Sugiyama, Tomoyuki; Amaya, Masaki; Kudo, Tamotsu; Chuto, Toshinori; Tomiyasu, Kunihiko; Udagawa, Yutaka; Ikehata, Hisashi; Kida, Mitsuko; Ikatsu, Nobuhiko; Hosoyamada, Ryuji; Hamanishi, Eizou; Iwasaki, Ryo; Ozawa, Masaaki

    2006-03-01

    Fuel Safety Research Meeting 2005, which was organized by the Japan Atomic Energy Agency (Establishment of the new organization in Oct. 1, 2005 integrated of JAERI and JNC) was held on March 2-3, 2005 at Toshi Center Hotel, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meting covered the status of fuel safety research activities, fuel behavior under Reactivity Initiated Accident (RIA) and Loss of coolant accident (LOCA) conditions, high fuel behavior, and radionuclide release under severe accident conditions. This summary contains all the abstracts and sheets of viewgraph presented in the meeting. (author)

  16. Sensitivity and uncertainty analyses applied to criticality safety validation. Volume 2

    International Nuclear Information System (INIS)

    Broadhead, B.L.; Hopper, C.M.; Parks, C.V.

    1999-01-01

    This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies developed in Volume 1 to the code/data validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the existing S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which contains criticality analysis tools currently in use by criticality safety practitioners. After complete development, simplified tools are expected to be released for general use. The methods for application of S/U and generalized linear-least-square methodology (GLLSM) tools to the criticality safety validation procedures were described in Volume 1 of this report. Volume 2 of this report presents the application of these procedures to the validation of criticality safety analyses supporting uranium operations where enrichments are greater than 5 wt %. Specifically, the traditional k eff trending analyses are compared with newly developed k eff trending procedures, utilizing the D and c k coefficients described in Volume 1. These newly developed procedures are applied to a family of postulated systems involving U(11)O 2 fuel, with H/X values ranging from 0--1,000. These analyses produced a series of guidance and recommendations for the general usage of these various techniques. Recommendations for future work are also detailed

  17. Encapsulation of spent nuclear fuel-safety analysis

    International Nuclear Information System (INIS)

    Soederman, E.

    1983-04-01

    Two methods of encapsulation are studied, both including a copper canister. In one process the copper canister with the spent fuel is filled with copper powder and pressed to solid copper metal at high pressure. In the other process lead is cast around the fuel before the canister is sealed by electron beam welding. The activity decay of the fuel has been going on for 40 years before it arrives to the encapsulation station. This is the basic reason for expecting less activity release and less contamination of the plant than would be the case with fuel recently taken out from the reactors. In analysing the plant safety, experience from the nuclear power plants, from the planning of the Swedish central storage facility for spent fuel (CLAB) and from La Hague has been used. The analysis is also based on experience of todays technology, although it should be possible to improve the encapsulation process further before time has come to actually build the plant. The environment activity release will be very low, both at normal operation and following accidents in the plant. Using very conservative release rates also the most severe anticipated accident in the plant will induce a dose to critical group of only 3 μSv. The staff dose can also be kept low. Due to remote handling, fuel damage will not primarily give staff dose. Of the totally anticipated staff dose of 150 man mSv/year the greatest portion will come from external radiation during repair work in areas where fuel containing canisters by failure can not be taken away. The hot isostatic pressed (HIP) canister process contains more operations than does the lead casting and welding procedure. It is therefore expected to give the highest activity release and staff dose unless extra measures are taken to keep them low. Using remote operation and adequate equipment the encapsulation station with any of the two processes can be built and run with good radiological safety. (author)

  18. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to ± 12,000 pcm in the realistic fuel dissolver exercise n degrees 19 proposed by BNFL, and to ± 25,000 pcm in the benchmark n degrees 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs

  19. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  20. Review of fuel safety criteria in France

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Sandrine; Graff, Stephanie; Foucher-Taisne, Aude; Dubois, Olivier [Institut de Radioprotection et du Surete Nucleaire, Fontenay-aux-Roses (France)

    2018-01-15

    Fuel safety criteria for the first barrier, based on state-of-the-art at the time, were first defined in the 1970s and came from the United States, when the French nuclear program was initiated. Since then, there has been continuous progress in knowledge and in collecting experimental results thanks to the experiments carried out by utilities and research institutes, to the operating experience, as well as to the generic R and D programs, which aim notably at improving computation methodologies, especially in Reactivity-Initiated accident and Loss-of-Coolant Accident conditions. In this context, the French utility EDF proposed new fuel safety criteria, or reviewed and completed existing safety demonstration covering the normal operating, incidental and accidental conditions of Pressurised Water Reactors. IRSN assessed EDF's proposals and presented its conclusions to the Advisory Committee for Reactors Safety of the Nuclear Safety Authority in June 2017. This review focused on the relevance of historical limit values or parameters of fuel safety criteria and their adequacy with the state-of-the-art concerning fuel physical phenomena (e.g. Pellet-Cladding Mechanical Interaction in incidental conditions, clad embrittlement due to high temperature oxidation in accidental conditions, clad ballooning and burst during boiling crisis and fuel melting).

  1. Review of fuel safety criteria in France

    International Nuclear Information System (INIS)

    Boutin, Sandrine; Graff, Stephanie; Foucher-Taisne, Aude; Dubois, Olivier

    2018-01-01

    Fuel safety criteria for the first barrier, based on state-of-the-art at the time, were first defined in the 1970s and came from the United States, when the French nuclear program was initiated. Since then, there has been continuous progress in knowledge and in collecting experimental results thanks to the experiments carried out by utilities and research institutes, to the operating experience, as well as to the generic R and D programs, which aim notably at improving computation methodologies, especially in Reactivity-Initiated accident and Loss-of-Coolant Accident conditions. In this context, the French utility EDF proposed new fuel safety criteria, or reviewed and completed existing safety demonstration covering the normal operating, incidental and accidental conditions of Pressurised Water Reactors. IRSN assessed EDF's proposals and presented its conclusions to the Advisory Committee for Reactors Safety of the Nuclear Safety Authority in June 2017. This review focused on the relevance of historical limit values or parameters of fuel safety criteria and their adequacy with the state-of-the-art concerning fuel physical phenomena (e.g. Pellet-Cladding Mechanical Interaction in incidental conditions, clad embrittlement due to high temperature oxidation in accidental conditions, clad ballooning and burst during boiling crisis and fuel melting).

  2. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II safety program

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutov, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.; Chunyaev, E.I.; Marshall, A.C.; Sapir, J.L.; Pelowitz, D.B.

    1995-01-01

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated. copyright 1995 American Institute of Physics

  3. Criticality safety training at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1983-01-01

    In 1972 the Westinghouse Hanford Company (WHC) established a comprehensive program to certify personnel who handle fissionable materials. As the quantity of fissionable material handled at WHC has increased so has the scope of training to assure that all employes perform their work in a safe manner. This paper describes training for personnel engaged in fuel fabrication and handling activities. Most of this training is provided by the Fissionable Material Handlers Certification Program. This program meets or exceeds all DOE requirements for training and has been attended by more than 475 employes. Since the program was instituted, the rate of occurrence of criticality safety limit violations has decreased by 50%

  4. Basket criticality design of a dual purpose cask for VVER 1000 spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Mahdi [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Kamali, Jamshid [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of)

    2016-12-15

    Dual purpose cask technology is one of the most prominent options for interim storage of spent fuels following their removal from reactors. Criticality safety of the spent fuel assemblies are ensured by design of the basket within these casks. In this study, a set of criticality design calculations of a dual purpose cask for 12 VVER 1000 spent fuel assemblies of Bushehr nuclear power plant were carried out. The basket material of borated stainless steel with 0.5 to 2.5 wt% of boron and Boral (Al-B{sub 4}C) with 1.5 to 40 wt% of boron carbide, were investigated and the minimum required receptacle pitch of the basket was determined. Using the calculated receptacle pitch of the basket, the minimum required diameter of the cavity could be established.

  5. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  6. Traceability of Software Safety Requirements in Legacy Safety Critical Systems

    Science.gov (United States)

    Hill, Janice L.

    2007-01-01

    How can traceability of software safety requirements be created for legacy safety critical systems? Requirements in safety standards are imposed most times during contract negotiations. On the other hand, there are instances where safety standards are levied on legacy safety critical systems, some of which may be considered for reuse for new applications. Safety standards often specify that software development documentation include process-oriented and technical safety requirements, and also require that system and software safety analyses are performed supporting technical safety requirements implementation. So what can be done if the requisite documents for establishing and maintaining safety requirements traceability are not available?

  7. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  8. STACY and TRACY: nuclear criticality experimental facilities under construction

    International Nuclear Information System (INIS)

    Kobayashi, I.; Takeshita, I.; Yanagisawa, H.; Tsujino, T.

    1992-01-01

    Japan Atomic Energy Research Institute is constructing a Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF, where the following research themes essential for evaluating safety problems relating to back-end technology in nuclear fuel cycle facilities will be studied: nuclear criticality safety research; research on advanced reprocessing processes and partitioning; and research on transuranic waste treatment and disposal. To perform nuclear criticality safety research related to the reprocessing of light water reactor spent fuels, two criticality experimental facilities, STACY and TRACY, are under construction. STACY (Static Criticality Facility) will be used for the study of criticality conditions of solution fuels, uranium, plutonium and their mixtures. TRACY (Transient Criticality Facility) will be used to investigate criticality accident phenomena with uranium solutions. The construction progress and experimental programmes are described in this Paper. (author)

  9. Safety assessment of ammonia as a transport fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duijm, N.J.; Markert, F.; Lundtang paulsen, Jette

    2005-02-01

    This report describes the safety study performed as part of the EU supported project 'Ammonia Cracking for Clean Electric Power Technology' The study addresses the following activities: safety of operation of the ammonia-powered vehicle under normal and accident (collision) conditions, safety of transport of ammonia to the refuelling stations and safety of the activities at the refuelling station (unloading and refuelling). Comparisons are made between the safety of using ammonia and the safety of other existing or alternative fuels. The conclusion is that the hazards in relation to ammonia need to be controlled by a combination of technical and regulatory measures. The most important requirements are: - Advanced safety systems in the vehicle - Additional technical measures and regulations are required to avoid releases in maintenance workshops and unauthorised maintenance on the fuel system - Road transport of ammonia to refuelling stations in refrigerated form - Sufficient safety zones between refuelling stations and residential or otherwise public areas. When these measures are applied, the use of ammonia as a transport fuel wouldnt cause more risks than currently used fuels (using current practice). (au)

  10. Safety analysis of LWR irradiated fuel element pool storages before reprocessing

    International Nuclear Information System (INIS)

    Lefort, G.; Leclerc, J.; Hoffman, A.; Frejaville, C.; Domage, M.

    1984-01-01

    The protection of operators and environment requires imperatively that the safety must be taken into account as early as the design of the pools takes place and working conditions are defined. The analysis of criticality, irradiation, contamination, external or internal aggression hazards... allows to draw the main constraints which must be retained in the sizing of these pools: the criticality risk needs distances between fuel elements which results in a not very good utilization of the available area which leads to the utilization of neutron shieldings or requires a safe knowledge of the fuel elements burn up; the irradiation and contamination risks require a special quality of the pool water (temperature, activity, purity...) a good tightness of the basins to locate and to isolate the dubions fuel elements; the external or internal aggression risks such as earthquakes, missiles or loads drops, explosion, imply the civil engineering and involve the use of special technical devices. A brief presentation of the pool storages of the next UP2-800 and UP3 A reprocessing plants allows to show how the requirement drawn by safety analysis have been enforced, while carrying out civil engineering works without equivalent in the world, in this field. The foreseeable evolution of the uranium enrichment rate and burn-up of next PWR fuel elements have an effect upon the risk evaluations; a device apparatus, developed in CEA, for the measurement of burn up and cooling time is presented. At least, a short presentation of the mechanical structure durability studies of the reception and storage spent fuels installations are allowed to improve our knowledge in working conditions and in case of serious accidents

  11. First start-up of nuclear criticality safety experiment facility for uranyl nitrate solution

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Shen Leisheng; Hu Dingsheng; Zhao Shouzhi; He Tao; Sun Zheng; Lin Shenghuo; Yao Shigui

    2005-01-01

    The uranyl nitrate solution experiment facility for the research on nuclear criticality safety is described. The nuclear fuel loading steps in the first start-up for water-reflected core are presented. During the experiments, the critical volume of uranyl nitrate solution was determined as 20479.62 mL with count rate inverse extrapolation method, reactivity interpolation method, and steady power method. By calculation, critical mass of 235 U was derived as 1579.184 g from experimental data. The worth of control rods was also calibrated in the first start-up of the facility. (authors)

  12. Criticality safety evaluation in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Shirai, Nobutoshi; Nakajima, Masayoshi; Takaya, Akikazu; Ohnuma, Hideyuki; Shirouzu, Hidetomo; Hayashi, Shinichiro; Yoshikawa, Koji; Suto, Toshiyuki

    2000-04-01

    Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 'Criticality safety of single unit' in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units. (author)

  13. Engineering design guidelines for nuclear criticality safety

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1988-08-01

    This document provides general engineering design guidelines specific to nuclear criticality safety for a facility where the potential for a criticality accident exists. The guide is applicable to the design of new SRP/SRL facilities and to major modifications Of existing facilities. The document is intended an: A guide for persons actively engaged in the design process. A resource document for persons charged with design review for adequacy relative to criticality safety. A resource document for facility operating personnel. The guide defines six basic criticality safety design objectives and provides information to assist in accomplishing each objective. The guide in intended to supplement the design requirements relating to criticality safety contained in applicable Department of Energy (DOE) documents. The scope of the guide is limited to engineering design guidelines associated with criticality safety and does not include other areas of the design process, such as: criticality safety analytical methods and modeling, nor requirements for control of the design process

  14. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  15. International report to validate criticality safety calculations for fissile material transport

    International Nuclear Information System (INIS)

    Whitesides, G.E.

    1984-01-01

    During the past three years a Working Group established by the Organization for Economic Co-operation and Development's Nuclear Energy Agency (OECD-NEA) in Paris, France, has been studying the validity and applicability of a variety of criticality safety computer programs and their associated nuclear data for the computation of the neutron multiplication factor, k/sub eff/, for various transport packages used in the fuel cycle. The principal objective of this work has been to provide an internationally acceptable basis for the licensing authorities in a country to honor licensing approvals granted by other participating countries. Eleven countries participated in the initial study which consisted of examining criticality safety calculations for packages designed for spent light water reactor fuel transport. This paper presents a summary of this study which has been completed and reported in an OECD-NEA Report No. CSNI-71. The basic goal of this study was to outline a satisfactory validation procedure for this particular application. First, a set of actual critical experiments were chosen which contained the various material and geometric properties present in typical LWR transport containers. Secondly, calculations were made by each of the methods in order to determine how accurately each method reproduced the experimental values. This successful effort in developing a benchmark procedure for validating criticality calculations for spent LWR transport packages along with the successful intercomparison of a number of methods should provide increased confidence by licensing authorities in the use of these methods for this area of application. 4 references, 2 figures

  16. Criticality safety and shielding design issues in the development of a high-capacity cask for truck transport

    International Nuclear Information System (INIS)

    Boshoven, J.K.

    1992-01-01

    General Atomics (GA) will be submitting an application for certification to the US Nuclear Regulatory Commission (NRC) for the GA-4 and GA-9 Casks In 1992. The GA-4 and GA-9 Casks are high-capacity legal weight truck casks designed to transport light water reactor spent fuel assemblies. To maintain a capacity of four pressurized-water-reactor (PWR) spent fuel assemblies, the GA-4 Cask uses burnup credit as part of the criticality control for initial enrichments over 3.0 wt% U-235. Using the US Department of Energy (DOE) Burnup Credit Program as a basis, GA has performed burnup credit analysis which is included in the Safety Analysis Report for Packaging (SARP). The GA-9 Cask can meet the criticality safety requirements using the ''fresh fuel'' assumption. Our approach to shielding design is to optimize the GA-4 and GA-9 Cask shielding configurations for minimum weights and maximum payloads. This optimization involves the use of the most effective shielding material, square cross-section geometry with rounded corners and tapered neutron shielding sections in the non-fuel regions

  17. Safety for fuel assembly handling in the nuclear ship Mutsu

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1978-01-01

    The safety for fuel assembly handling in the nuclear ship Mutsu is deliberated by the committee of general inspection and repair technique examination for Mutsu. The result of deliberation for both cases of removing fuel assemblies and keeping them in the reactor is outlined. The specification of fuel assemblies, and the nuclides and designed radioactivity of fission products of fuel are described. The possibility of shielding repair work and general safety inspection keeping the fuel assemblies in the reactor, the safety consideration when the fuel assemblies are removed at a quay, in a dry dock and on the ocean, the safety of fuel transport in special casks and fuel storage are explained. It is concluded finally that the safety of shielding repair work and general inspection work is secured when the fuel assemblies are kept in the reactor and also when the fuel assemblies are removed from the reactor by cautious working. (Nakai, Y.)

  18. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed.

  19. Sensitivity Analysis of Criticality for Different Nuclear Fuel Shapes

    International Nuclear Information System (INIS)

    Kang, Hyun Sik; Jang, Misuk; Kim, Seoung Rae

    2016-01-01

    Rod-type nuclear fuel was mainly developed in the past, but recent study has been extended to plate-type nuclear fuel. Therefore, this paper reviews the sensitivity of criticality according to different shapes of nuclear fuel types. Criticality analysis was performed using MCNP5. MCNP5 is well-known Monte Carlo codes for criticality analysis and a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron or coupled neutron / photon / electron transport, including the capability to calculate eigenvalues for critical systems. We performed the sensitivity analysis of criticality for different fuel shapes. In sensitivity analysis for simple fuel shapes, the criticality is proportional to the surface area. But for fuel Assembly types, it is not proportional to the surface area. In sensitivity analysis for intervals between plates, the criticality is greater as the interval increases, but if the interval is greater than 8mm, it showed an opposite trend that the criticality decrease by a larger interval. As a result, it has failed to obtain the logical content to be described in common for all cases. The sensitivity analysis of Criticality would be always required whenever subject to be analyzed is changed

  20. Aspects of nuclear safety at power plants and fuel cycle plants in the USSR

    International Nuclear Information System (INIS)

    Kozlov, N.I.; Efimov, E.; Dubovskij, B.G.; Dikarev, V.; Lyubchenko, V.; Kruglov, A.K.

    1977-01-01

    The paper discusses the problems of organizing inspection monitoring of power plants including the development of some regulations and norms and the interaction between the USSR State Nuclear Safety Organization, scientific and designing organizations and power plants. The principles of computer use to work out advice for operational staff and warning signals and commands for the reactor control and protection system are discussed. Some attention is turned to the importance of using high-speed computers to calculate prompt reactivity values and to determine impurity concentrations in the coolant and margins to permissible operational limits. In particular, reactimeters are considered as signal generators in monitor and protection systems. Some problems of nuclear safety inspection, the issue and inculcation of some regulations and operational documents on nuclear safety, and instrumentation of plants reprocessing or processing fuel elements are presented. Methods of determining the critical parameters of technological units are described, together with the fundamental principles of fuel cycle plant nuclear safety, providing margin coefficients, accounting for deviations from the normal operational process and other problems, as well as methods of keeping the restrictions on nuclear safety requirements at fuel cycle plants. (author)

  1. Criticality safety basics, a study guide

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  2. Criticality safety basics, a study guide

    International Nuclear Information System (INIS)

    Putman, V.L.

    1999-01-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates

  3. Criticality issues with highly enriched fuels in a repository environment

    International Nuclear Information System (INIS)

    Taylor, L.L.; Sanchez, L.C.; Rath, J.S.

    1998-03-01

    This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks

  4. Disposal criticality analysis for aluminum-based DOE fuels

    International Nuclear Information System (INIS)

    Davis, J.W.; Gottlieb, P.

    1997-11-01

    This paper describes the disposal criticality analysis for canisters containing aluminum-based Department of Energy fuels from research reactors. Different canisters were designed for disposal of highly enriched uranium (HEU) and medium enriched uranium (MEU) fuel. In addition to the standard criticality concerns in storage and transportation, such as flooding, the disposal criticality analysis must consider the degradation of the fuel and components within the waste package. Massachusetts Institute of Technology (MIT) U-Al fuel with 93.5% enriched uranium and Oak Ridge Research Reactor (ORR) U-Si-Al fuel with 21% enriched uranium are representative of the HEU and MEU fuel inventories, respectively. Conceptual canister designs with 64 MIT assemblies (16/layer, 4 layers) or 40 ORR assemblies (10/layer, 4 layers) were developed for these fuel types. Borated stainless steel plates were incorporated into a stainless steel internal basket structure within a 439 mm OD, 15 mm thick XM-19 canister shell. The Codisposal waste package contains 5 HLW canisters (represented by 5 Defense Waste Processing Facility canisters from the Savannah River Site) with the fuel canister placed in the center. It is concluded that without the presence of a fairly insoluble neutron absorber, the long-term action of infiltrating water can lead to a small, but significant, probability of criticality for both the HEU and MEU fuels. The use of 1.5kg of Gd distributed throughout the MIT fuel and the use of carbon steels for the structural basket or 1.1 kg of Gd distributed in the ORR fuel will reduce the probability of criticality to virtually zero for both fuels

  5. Outline of a fuel treatment facility in NUCEF

    International Nuclear Information System (INIS)

    Sugikawa, Susumu; Umeda, Miki; Kokusen, Junya

    1997-03-01

    This report presents outline of the nuclear fuel treatment facility for the purpose of preparing solution fuel used in Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), including descriptions of process conditions and dimensions of major process equipments on dissolution system of oxide fuel, chemical adjustment system, purification system, acid recovery system, solution fuel storage system, and descriptions of safety design philosophy such as safety considerations of criticality, solvent fire, explosion of hydrogen and red-oil and so on. (author)

  6. Safety of spent fuel elements storage under water at La Hague facility

    International Nuclear Information System (INIS)

    Guezenec, J.Y.

    1990-12-01

    Awaiting for a decision about radioactive waste repository, the spent fuel elements are stored in the storage pools at the La Hague facility. The water in the pools is permanently cooled and purified to maintain the temperature, radioactivity and chemical pollution under preset limits. The first safety problem is concerned with the spent fuel transport casks. Opening of the casks is done under water in a number of facilities. The most recent approach is done by the company To, which established dry manipulation which enables to minimise the risk of possible cask failures as well as external contamination of cooling fins of the casks. Another general safety related problem is related to criticality risk caused by possible cooling failures or by external events like earthquakes. Special probability limit is set up for seismic events to be less than 10 -7 /year. Equally, risk of fuel assembly failures due to possible chocs and possibility of defects in pool isolation are taken into account [fr

  7. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  8. Nuclear Fuel Safety Criteria Technical Review - Second edition

    International Nuclear Information System (INIS)

    Beck, Winfried; Blanpain, Patrick; Fuketa, Toyoshi; Gorzel, Andreas; Hozer, Zoltan; Kamimura, Katsuichiro; Koo, Yang-Hyun; Maertens, Dietmar; Nechaeva, Olga; Petit, Marc; Rehacek, Radomir; Rey-Gayo, Jose Maria; Sairanen, Risto; Sonnenburg, Heinz-Guenther; Valach, Mojmir; Waeckel, Nicolas; Yueh, Ken; Zhang, Jinzhao; Voglewede, John

    2012-01-01

    Most of the current nuclear fuel safety criteria were established during the 1960's and early 1970's. Although these criteria were validated against experiments with fuel designs available at that time, a number of tests were based on unirradiated fuels. Additional verification was performed as these designs evolved, but mostly with the aim of showing that the new designs adequately complied with existing criteria, and not to establish new limits. In 1996, the OECD Nuclear Energy Agency (NEA) reviewed existing fuel safety criteria, focusing on new fuel and core designs, new cladding materials and industry manufacturing processes. The results were published in the Nuclear Fuel Safety Criteria Technical Review of 2001. The NEA has since re-examined the criteria. A brief description of each criterion and its rationale are presented in this second edition, which will be of interest to both regulators and industry (fuel vendors, utilities)

  9. TAPS safety evaluation criteria for reload fueling

    International Nuclear Information System (INIS)

    Mahendra Nath; Veeraraghavan, N.

    1976-01-01

    To improve operating performance of Tarapur reactors, several proposals are under consideration such as core expansion, change-over to an improved fuel design with lower heat rating, extension of fuel cycle lengths etc., which have a bearing on overall plant operating characteristics and reactor safety. For evaluating safety implications of the various proposals, it is necessary to formulate safety evaluation criteria for reload fuelling. Salient features of these criteria are discussed. (author)

  10. Critical experiments on minimal-content gadolinia for above-5wt% enrichment fuels in Toshiba NCA

    International Nuclear Information System (INIS)

    Kikuchi, Tsukasa; Watanabe, Shouichi; Yoshioka, Kenichi; Mitsuhashi, Ishi; Kumanomido, Hironori; Sugahara, Satoshi; Hiraiwa, Kouji

    2009-01-01

    A concept of 'minimal-content gadolinia' with a content of less than several hundred ppm mixed in the 'above-5wt% enrichment UO 2 fuel' for super high burnup is proposed for ensuring the criticality safety in the UO 2 fuel fabrication facility for light water reactors (LWRs) without increase in investment cost. Required gadolinia contents calculated were from 53 to 305 ppm for enrichments of UO 2 powders for boiling water reactor (BWR) fuel from 6 to 10 wt%. It is expected that the minimal-content gadolinia yields an acceptable reactivity suppression at the beginning of operating cycle and no reactivity penalty at the end of operating cycle due to no residual gadolinium. A series of critical experiments were carried out in the Toshiba Nuclear Critical Assembly (NCA). Reactivity effects of the gadolinia were measured to clarify the nuclear characteristics, and the measured values and the calculated values agreed within 5%. (author)

  11. Autoclave nuclear criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  12. Development and experimental qualification of the new safety-criticality CRISTAL package

    International Nuclear Information System (INIS)

    Mattera, Ch.

    1998-11-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA 93) and the newest accurate codes (APOLLO 2, MORET 4, TRIPOLI 4). The CRISTAL system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route. To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OECD working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  13. Development and experimental testing of the new safety-criticality Cristal package

    International Nuclear Information System (INIS)

    Mattera, Ch.

    1998-01-01

    This thesis is concerned with Criticality-Safety studies related to the French Nuclear Fuel Cycle. We first describe the steps in the nuclear fuel cycle and the specific characteristics of these studies compared with those performed in Reactor Physics. In order to respond to the future requirements of the French Nuclear Program, we have developed a new package CRISTAL based on a recent cross sections library (CEA93) and the newest accurate codes (APOLLO2, MORET4, TRIPOLI4). The cristal system includes two calculations routes: a design route which will be used by French Industry (COGEMA/SGN) and a reference route.) To transfer this package to the French industry, we have elaborated calculation schemes for fissile solutions, dissolver media, transport casks and storage pools. Afterwards, these schemes have been used for the CRISTAL experimental validation. We have also contributed to the CRISTAL experimental database by reevaluating a French storage pool experiment: the CRISTO II experiment. This revaluation has been submitted to the OCDE working group in order that this experiment can be used by international criticality safety engineers to validate calculations methods. This work represents a large contribution to the recommendation of accurate calculation schemes and to the experimental validation of the CRISTAL package. These studies came up to the French Industry expectations. (author)

  14. Control of criticality risk in the manufacture of fuel elements for research reactors

    International Nuclear Information System (INIS)

    Friedenthal, M.; Cardenas Yucra, H.R.; Marajofsky, A.; La Gamma de Batistoni, A.M.

    1987-01-01

    The control of criticality risk in a chemical plant adopts different forms according to the quantities of fissile material and the type of compounds used. This work presents the treatment of the critical excursion risk adopted in production plants of U 3 O 8 and manufacturing plants of fuel elements for research reactors, located in Constituyentes Atomic Center. The possible events and accidents related to the fissile material control are analyzed, and the systems of administrative control and intrinsic safety through engineering are described. (Author)

  15. Anatomy of safety-critical computing problems

    International Nuclear Information System (INIS)

    Swu Yih; Fan Chinfeng; Shirazi, Behrooz

    1995-01-01

    This paper analyzes the obstacles faced by current safety-critical computing applications. The major problem lies in the difficulty to provide complete and convincing safety evidence to prove that the software is safe. We explain this problem from a fundamental perspective by analyzing the essence of safety analysis against that of software developed by current practice. Our basic belief is that in order to perform a successful safety analysis, the state space structure of the analyzed system must have some properties as prerequisites. We propose the concept of safety analyzability, and derive its necessary and sufficient conditions; namely, definability, finiteness, commensurability, and tractability. We then examine software state space structures against these conditions, and affirm that the safety analyzability of safety-critical software developed by current practice is severely restricted by its state space structure and by the problem of exponential growth cost. Thus, except for small and simple systems, the safety evidence may not be complete and convincing. Our concepts and arguments successfully explain the current problematic situation faced by the safety-critical computing domain. The implications are also discussed

  16. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ashgar; Omidvari, Nima [Iran Radioactive Waste Management Company, Tehran (Iran, Islamic Republic of); Hassanzadeh, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-12-15

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k{sub eff}) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  17. Criticality safety analysis of TK-13 cask in Bushehr nuclear power plant

    International Nuclear Information System (INIS)

    Mohammadi, Ashgar; Omidvari, Nima; Hassanzadeh, Mostafa

    2017-01-01

    Spent fuel production is one of the main problems of nuclear power plants that should be managed properly considering the strategy of each country. Today, in most of nuclear power owner countries, the interim storage has been selected as the temporary solution of spent fuel management because of absence of deep geological repositories and no tendency for reprocessing. On the other side, considering the merits of storage in dual purpose casks based on dry storage, this method was chosen for interim storage. By taking into account that the only operating reactor of Iran is of Water-Water Energetic Reactor (WWER)-1000 type, proposed TK-13 cask by Russia which is the manufacturer of these types of reactors has been considered. In this study, the calculation of basket holding spent fuel assembly criticality of this cask has been analyzed for two modes of fresh and spent fuel by ORIGEN2.1 and MCNPX2.6 nuclear codes. The criterion of the nuclear criticality safety for effective multiplication factor (k eff ) should be 0.95 and 0.98 for many ordinary and accident conditions, respectively. Therefore, the results show that a cylindrical basket with 66 cm diameter and 28 cm pitch with internal holding basket made of borated steel with 0.1% borate and steel free from borate would meet the criticality of cask, respectively.

  18. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  19. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  20. Safety in manufacturing of nuclear fuel

    International Nuclear Information System (INIS)

    Daste, Bernard

    1980-01-01

    Production of low enriched uranium fuel raises specific safety problems resulting from the very nature of the manufacturing process as from the industrial size generally given to the new facilities for this kind of production. The author exposes the experience so far acquired by F.B.F.C. (Societe franco-belge de fabrication du combustible) which is making important investments in order to meet the fuel needs of the French nuclear programme. After a short description of the fuel and the principal stages of its production, he analyses the potential nuclear hazards of the F.B.F.C. facilities operation and the adequate safety measures taken [fr

  1. Summary of NRC LWR safety research programs on fuel behavior, metallurgy/materials and operational safety

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1979-09-01

    The NRC light-water reactor safety-research program is part of the NRC regulatory program for ensuring the safety of nuclear power plants. This paper summarizes the results of NRC-sponsored research into fuel behavior, metallurgy and materials, and operational safety. The fuel behavior research program provides a detailed understanding of the response of nuclear fuel assemblies to postulated off-normal or accident conditions. Fuel behavior research includes studies of basic fuel rod properties, in-reactor tests, computer code development, fission product release and fuel meltdown. The metallurgy and materials research program provides independent confirmation of the safe design of reactor vessels and piping. This program includes studies on fracture mechanics, irradiation embrittlement, stress corrosion, crack growth, and nondestructive examination. The operational safety research provides direct assistance to NRC officials concerned with the operational and operational-safety aspects of nuclear power plants. The topics currently being addressed include qualification testing evaluation, fire protection, human factors, and noise diagnostics

  2. Tank farms criticality safety manual

    International Nuclear Information System (INIS)

    FORT, L.A.

    2003-01-01

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR-), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR- 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type

  3. A simplified treatment of radial enrichment distributions of LWR fuel assemblies in criticality calculations

    International Nuclear Information System (INIS)

    Hennebach, M.; Schnorrenberg, N.

    2008-01-01

    Criticality safety assessments are usually performed for fuel assembly models that are as generic as possible to encompass small modifications in geometry that have no impact on criticality. Dealing with different radial enrichment distributions for a fuel assembly type, which is especially important for BWR fuel, poses more of a challenge, since this characteristic is rather obviously influencing the neutronic behaviour of the system. Nevertheless, the large variability of enrichment distributions makes it very desirable and even necessary to treat them in a generalized way, both to keep the criticality safety assessment from becoming too unwieldy and to avoid having to extend it every time a new variation comes up. To be viable, such a generic treatment has to be demonstrably covering, i.e. lead to a higher effective neutron multiplication factor k eff than any of the radial enrichment distributions it represents. Averaging the enrichment evenly over the fuel rods of the assembly is a general and simple approach, and under reactor conditions, it is also a covering assumption: the graded distribution is introduced to achieve a linear power distribution, therefore reducing the enrichment of the better moderated rods at the edge of the assembly. With an even distribution of the average enrichment over all rods, these wellmoderated rods will cause increased fission rates at the assembly edges and a rise in k eff . Since the moderator conditions in a spent nuclear fuel cask differ strongly from a reactor even when considering optimal moderation, the proof that a uniform enrichment distribution is a covering assumption compared with detailed enrichment distributions has to be cask-specific. In this report, a method for making that proof is presented along with results for fuel assemblies from BWR reactors. All results are from three-dimensional Monte Carlo calculations with the SCALE 5.1 code package [1], using a 44-group neutron crosssection library based on ENDF

  4. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  5. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  6. Instructional games and activities for criticality safety training

    International Nuclear Information System (INIS)

    Bullard, B.; McBride, J.

    1993-01-01

    During the past several years, the Training and Management Systems Division (TMSD) staff of Oak Ridge Institute for Science and Education (ORISE) has designed and developed nuclear criticality safety (NCS) training programs that focus on high trainee involvement through the use of instructional games and activities. This paper discusses the instructional game, initial considerations for developing games, advantages and limitations of games, and how games may be used in developing and implementing NCS training. It also provides examples of the various instructional games and activities used in separate courses designed for Martin Marietta Energy Systems (MMES's) supervisors and U.S. Nuclear Regulatory Commission (NRC) fuel facility inspectors

  7. Criticality experiments with low enriched UO2 fuel rods in water containing dissolved gadolinium

    International Nuclear Information System (INIS)

    Bierman, S.R.; Murphy, E.S.; Clayton, E.D.; Keay, R.T.

    1984-02-01

    The results obtained in a criticality experiments program performed for British Nuclear Fuels, Ltd. (BNFL) under contract with the United States Department of Energy (USDOE) are presented in this report along with a complete description of the experiments. The experiments involved low enriched UO 2 and PuO 2 -UO 2 fuel rods in water containing dissolved gadolinium, and are in direct support of BNFL plans to use soluble compounds of the neutron poison gadolinium as a primary criticality safeguard in the reprocessing of low enriched nuclear fuels. The experiments were designed primarily to provide data for validating a calculation method being developed for BNFL design and safety assessments, and to obtain data for the use of gadolinium as a neutron poison in nuclear chemical plant operations - particularly fuel dissolution. The experiments program covers a wide range of neutron moderation (near optimum to very under-moderated) and a wide range of gadolinium concentration (zero to about 2.5 g Gd/l). The measurements provide critical and subcritical k/sub eff/ data (1 greater than or equal to k/sub eff/ greater than or equal to 0.87) on fuel-water assemblies of UO 2 rods at two enrichments (2.35 wt % and 4.31 wt % 235 U) and on mixed fuel-water assemblies of UO 2 and PuO 2 -UO 2 rods containing 4.31 wt % 235 U and 2 wt % PuO 2 in natural UO 2 respectively. Critical size of the lattices was determined with water containing no gadolinium and with water containing dissolved gadolinium nitrate. Pulsed neutron source measurements were performed to determine subcritical k/sub eff/ values as additional amounts of gadolinium were successively dissolved in the water of each critical assembly. Fission rate measurements in 235 U using solid state track recorders were made in each of the three unpoisoned critical assemblies, and in the near-optimum moderated and the close-packed poisoned assemblies of this fuel

  8. Software reliability for safety-critical applications

    International Nuclear Information System (INIS)

    Everett, B.; Musa, J.

    1994-01-01

    In this talk, the authors address the question open-quotes Can Software Reliability Engineering measurement and modeling techniques be applied to safety-critical applications?close quotes Quantitative techniques have long been applied in engineering hardware components of safety-critical applications. The authors have seen a growing acceptance and use of quantitative techniques in engineering software systems but a continuing reluctance in using such techniques in safety-critical applications. The general case posed against using quantitative techniques for software components runs along the following lines: safety-critical applications should be engineered such that catastrophic failures occur less frequently than one in a billion hours of operation; current software measurement/modeling techniques rely on using failure history data collected during testing; one would have to accumulate over a billion operational hours to verify failure rate objectives of about one per billion hours

  9. Nuclear Criticality Safety Department Qualification Program

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSD technical and managerial qualification as required by the Y-1 2 Training Implementation Matrix (TIM). This Qualification Program is in compliance with DOE Order 5480.20A and applicable Lockheed Martin Energy Systems, Inc. (LMES) and Y-1 2 Plant procedures. It is implemented through a combination of WES plant-wide training courses and professional nuclear criticality safety training provided within the department. This document supersedes Y/DD-694, Revision 2, 2/27/96, Qualification Program, Nuclear Criticality Safety Department There are no backfit requirements associated with revisions to this document

  10. Reusable libraries for safety-critical Java

    DEFF Research Database (Denmark)

    Rios Rivas, Juan Ricardo; Schoeberl, Martin

    2014-01-01

    The large collection of Java class libraries is a main factor of the success of Java. However, these libraries assume that a garbage-collected heap is used. Safety-critical Java uses scope-based memory areas instead of a garbage-collected heap. Therefore, the Java class libraries are problematic...... to use in safety-critical Java. We have identified common programming patterns in the Java class libraries that make them unsuitable for safety-critical Java. We propose ways to improve the libraries to avoid the impact of the identified problematic patterns. We illustrate these changes by implementing...

  11. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business, and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of the criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several competent authorities are involved, the approval and validation process of package design can often become a time-consuming, expensive and unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies. (author)

  12. Harmonisation of criticality assessments of packages for the transport of fissile nuclear fuel cycle materials

    International Nuclear Information System (INIS)

    Farrington, L.

    2004-01-01

    The transport of fissile nuclear fuel cycle materials is an international business and for international shipments the regulations require a package to be certified by each country through or into which the consignment is to be transported. This raises a number of harmonisation issues, which have an important bearing on transport activities. National authorities carry out independent reviews of criticality safety of packages containing fissile materials but the underlying assumptions used in the calculations can differ, and the outcome is that implementation of the regulations is not uniform. A single design may require multiple criticality analyses to obtain base approval and foreign validations. When several Competent Authorities are involved, the approval and validation process of package design can often become time consuming, expensive and an unpredictably lengthy process that can have a significant detrimental effect upon the businesses involved. The characteristics of the fissile nuclear fuel cycle materials transported by the various countries have much in common and so have the designs of the packages to contain them. A greater degree of standardisation should allow criticality safety to be assessed consistently and efficiently with benefits for the nuclear transport industry and the regulatory bodies

  13. A desktop 3D printer in safety-critical Java

    DEFF Research Database (Denmark)

    Strøm, Tórur Biskopstø; Schoeberl, Martin

    2012-01-01

    there exist several safety-critical Java framework implementations, there is a lack of safety-critical use cases implemented according to the specification. In this paper we present a 3D printer and its safety-critical Java level 1 implementation as a use case. With basis in the implementation we evaluate......It is desirable to bring Java technology to safety-critical systems. To this end The Open Group has created the safety-critical Java specification, which will allow Java applications, written according to the specification, to be certifiable in accordance with safety-critical standards. Although...

  14. Safety evaluation of a hydrogen fueled transit bus

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  15. Criticality Safety Evaluation for the TACS at DAF

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-10

    Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification. This document is a criticality safety evaluation of the training activities and operations associated with HS-3201-P, Nuclear Criticality 4-Day Training Course (Practical). This course was designed to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program1. The hands-on, or laboratory, portion of the course will utilize the Training Assembly for Criticality Safety (TACS) and will be conducted in the Device Assembly Facility (DAF) at the Nevada Nuclear Security Site (NNSS). The training activities will be conducted by Lawrence Livermore National Laboratory following the requirements of an Integrated Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of an LLNL Certified Fissile Material Handler.

  16. The Department of Energy nuclear criticality safety program

    International Nuclear Information System (INIS)

    Felty, J.R.

    2004-01-01

    This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.

  17. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  18. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  19. Review of design criteria and safety analysis of safety class electric building for fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    Steady state fuel test loop will be equipped in HANARO to obtain the development and betterment of advanced fuel and materials through the irradiation tests. HANARO fuel test loop was designed for CANDU and PWR fuel testing. Safety related system of Fuel Test Loop such as emergency cooling water system, component cooling water system, safety ventilation system, high energy line break mitigation system and remote control room was required 1E class electric supply to meet the safety operation in accordance with related code. Therefore, FTL electric building was designed to construction and install the related equipment based on seismic category I. The objective of this study is to review the design criteria and analysis the safety function of safety class electric building for fuel test loop, and this results will become guidance for the irradiation testing in future. (author). 10 refs., 6 tabs., 30 figs.

  20. CSER-00-007 Addendum 1 Criticality Safety Evaluation of Shippingport PWR Core 2 Blanket Fuel Assemblies at Lower Exposures

    International Nuclear Information System (INIS)

    WITTEKIND, W.D.

    2001-01-01

    This analysis meets the requirements of HNF-7098, Criticality Safety Program, (FH 2001a). HNF-7098 states that before starting a new operation with fissile material or before an existing operation is changed, it shall be determined that the entire process will be subcritical under both normal and credible abnormal conditions. To demonstrate the Incredibility Principle is satisfied, this Criticality Safety Evaluation Report (CSER) shows that the form or distribution is such that criticality is impossible. This evaluation demonstrated, that on the basis of effective 235 U enrichment, criticality is not possible. The minimum blanket assembly exposure is 4,375 MW t d/MTU for fissile material that is shown to fulfill the Incredibility Principle safety criterion on the basis of enrichment

  1. Overview of DOE/ONS criticality safety projects

    International Nuclear Information System (INIS)

    Barber, R.W.; Brown, B.P.; Hopper, C.M.

    1985-01-01

    The evolution of Federal involvement with nuclear criticality safety has traversed through the 1940's and early 1950's with the Manhattan Engineering District, the 1950's and 1960's with the Atomic Energy Commission, the early 1970's with the Energy Research and Development Administration, and the late 1970's to date with the US Department of Energy. The importance of nuclear criticality safety has been maintained throughout these periods; however, criticality safety has received shifting emphases in research/applications, promulgations of regulations/standards, origins of fiscal support and organization. In June 1981 the Office of Nuclear Safety was established in response to a Department of Energy study of the impact of the March 1979 Three Mile Island accident. The organizational structure of the ONS, its program for establishing and maintaining a progressive nuclear criticality safety program, and associated projects, and current history of ONS's fiscal support of program projects is presented. With the establishment of the ONS came concomitant missions to develop and maintain nuclear safety policy and requirements, to provide independent assurance that nuclear operations are performed safely, to provide resources and management for DOE responses to nuclear accidents, and to provide technical support. In the past four years, ONS has developed and initiated a continuing Department Nuclear Criticality Safety Program in such areas as communications and information, physics of criticality, knowledge of factors affecting criticality, and computational capability

  2. A Profile for Safety Critical Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Søndergaard, Hans; Thomsen, Bent

    2007-01-01

    We propose a new, minimal specification for real-time Java for safety critical applications. The intention is to provide a profile that supports programming of applications that can be validated against safety critical standards such as DO-178B [15]. The proposed profile is in line with the Java...... specification request JSR-302: Safety Critical Java Technology, which is still under discussion. In contrast to the current direction of the expert group for the JSR-302 we do not subset the rather complex Real-Time Specification for Java (RTSJ). Nevertheless, our profile can be implemented on top of an RTSJ...

  3. Analysis of the impact of correlated benchmark experiments on the validation of codes for criticality safety analysis

    International Nuclear Information System (INIS)

    Bock, M.; Stuke, M.; Behler, M.

    2013-01-01

    The validation of a code for criticality safety analysis requires the recalculation of benchmark experiments. The selected benchmark experiments are chosen such that they have properties similar to the application case that has to be assessed. A common source of benchmark experiments is the 'International Handbook of Evaluated Criticality Safety Benchmark Experiments' (ICSBEP Handbook) compiled by the 'International Criticality Safety Benchmark Evaluation Project' (ICSBEP). In order to take full advantage of the information provided by the individual benchmark descriptions for the application case, the recommended procedure is to perform an uncertainty analysis. The latter is based on the uncertainties of experimental results included in most of the benchmark descriptions. They can be performed by means of the Monte Carlo sampling technique. The consideration of uncertainties is also being introduced in the supplementary sheet of DIN 25478 'Application of computer codes in the assessment of criticality safety'. However, for a correct treatment of uncertainties taking into account the individual uncertainties of the benchmark experiments is insufficient. In addition, correlations between benchmark experiments have to be handled correctly. For example, these correlations can arise due to different cases of a benchmark experiment sharing the same components like fuel pins or fissile solutions. Thus, manufacturing tolerances of these components (e.g. diameter of the fuel pellets) have to be considered in a consistent manner in all cases of the benchmark experiment. At the 2012 meeting of the Expert Group on 'Uncertainty Analysis for Criticality Safety Assessment' (UACSA) of the OECD/NEA a benchmark proposal was outlined that aimed for the determination of the impact on benchmark correlations on the estimation of the computational bias of the neutron multiplication factor (k eff ). The analysis presented here is based on this proposal. (orig.)

  4. Study on criticality safety evaluation of a system where flood will never occur

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Yamamoto, Toshihiro; Komuro, Yuichi; Itahara, Kuniyuki.

    1995-03-01

    Criticality safety evaluation for a single unit containing nuclear fuel has usually been performed on the assumption that there is a fully thick water reflector around the unit. For a system where flood will never occur, however, the thick reflector assumption is usually not applied recently. In such cases, a method is proposed, which models surrounding structural material and branch pipes as 2.5cm thick water reflector. This report shows that reactivity worth of structural material and branch pipes is, in many cases, less than that of 2.5cm thick water reflector. Further, another method is shown to evaluate criticality safety for a multiple unit system, using computed results with surrounding structural material and branch pipes neglected. And it is shown with many sample calculations that the method with 2.5cm thick water reflector in place of structural material and pipes gives safety side results to similar systems to real reprocessing plants. (author)

  5. Nuclear criticality safety in Canada

    International Nuclear Information System (INIS)

    Shultz, K.R.

    1980-04-01

    The approach taken to nuclear criticality safety in Canada has been influenced by the historical development of participants. The roles played by governmental agencies and private industry since the Atomic Energy Control Act was passed into Canadian Law in 1946 are outlined to set the scene for the current situation and directions that may be taken in the future. Nuclear criticality safety puts emphasis on the control of materials called special fissionable material in Canada. A brief account is given of the historical development and philosophy underlying the existing regulations governing special fissionable material. Subsequent events have led to a change in emphasis in the regulatory process that has not yet been fully integrated into Canadian legislation and regulations. Current efforts towards further development of regulations governing the practice of nuclear criticality safety are described. (auth)

  6. Premiering SAFE for Safety Added Fuel Element - 15020

    International Nuclear Information System (INIS)

    Bhowmik, P.K.; Shamim, J.A.; Suh, K.Y.; Suh, K.S.

    2015-01-01

    The impact of the Fukushima accident has been the willingness to implement passive safety measures in reactor design and to simplify reactor design itself. Within this framework, a new fuel element, named SAFE (Safety Added Fuel Element) based on the concept of accident tolerant fuel, is presented. SAFE is a new type of fuel element cooled internally and externally by light water and with stainless steel as the cladding material. The removal of boron may trigger a series of changes which may simplify the system greatly. A simplified thermal analysis of SAFE shows that the fuel centerline temperature is well below the maximal limit during the normal operation of the plant

  7. Validation of the criticality calculation for fuel elements using the Gamtec 2 - Keno 2 and 4

    International Nuclear Information System (INIS)

    Teixeira, M.C.C.; Andrade, M.C. de

    1990-01-01

    For criticality safety in the fabrication, storage and transportation of fuel assemblies, subcriticality analysis must be done. The calculations are performed at CDTN with the GAMTEC computer code, to homogenize the fuel assembly in order to create 16 group cross-section library, and with KENO code, for determining the multiplication factor. To validate the calculational method, suitable Benchmark experiments have been done. The results show that the calculational model overestimates kef when kef+ 2 σ was considered. (author) [pt

  8. Characterization strategy report for the criticality safety issue

    International Nuclear Information System (INIS)

    Doherty, A.L.; Doctor, P.G.; Felmy, A.R.; Prichard, A.W.; Serne, R.J.

    1997-06-01

    High-level radioactive waste from nuclear fuels processing is stored in underground waste storage tanks located in the tank farms on the Hanford Site. Waste in tank storage contains low concentrations of fissile isotopes, primarily U-235 and Pu-239. The composition and the distribution of the waste components within the storage environment is highly complex and not subject to easy investigation. An important safety concern is the preclusion of a self-sustaining neutron chain reaction, also known as a nuclear criticality. A thorough technical evaluation of processes, phenomena, and conditions is required to make sure that subcriticality will be ensured for both current and future tank operations. Subcriticality limits must be based on considerations of tank processes and take into account all chemical and geometrical phenomena that are occurring in the tanks. The important chemical and physical phenomena are those capable of influencing the mixing of fissile material and neutron absorbers such that the degree of subcriticality could be adversely impacted. This report describes a logical approach to resolving the criticality safety issues in the Hanford waste tanks. The approach uses a structured logic diagram (SLD) to identify the characterization needed to quantify risk. The scope of this section of the report is limited to those branches of logic needed to quantify the risk associated with a criticality event occurring. The process is linked to a conceptual model that depicts key modes of failure which are linked to the SLD. Data that are needed include adequate knowledge of the chemical and geometric form of the materials of interest. This information is used to determine how much energy the waste would release in the various domains of the tank, the toxicity of the region associated with a criticality event, and the probability of the initiating criticality event

  9. KEOPS and other VENUS experiments dedicated to the criticality safety of a MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Lance, Benoit; Van Den Hende, Paul; Marloye, Daniel; Basselier, Jacques; Libon, Henri; De Vleeschhauwer, Marc; Moerenhout, Jeremie; Baeten, Peter

    2005-01-01

    The qualification scheme of criticality computer codes for Pu bearing powders lies upon databases which suffer from a lack of recent experimental results. As a MOX manufacture, BELGONUCLEAIRE is especially concerned by criticality safety and would like to address such an issue by launching with SCK-CEN an International Programme called KEOPS. (author)

  10. Safety research program of NUCEF

    International Nuclear Information System (INIS)

    Naito, Y.

    1996-01-01

    To contribute the safety and establishment of advanced technologies in the area of nuclear fuel cycle, Japan Atomic Energy Research Institute (JAERI) has constructed a new research facility NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) as the center for the research and development, particularly on the reprocessing technology and transuranium (TRU) waste management. NUCEF consist of three buildings, administration building, experiment building A and B. Building A has two experiment facilities STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility). The experiment building B is referred to as BECKY (Back-end Fuel Cycle Key Elements Research Facility). Researches on the reprocessing and the waste management are carried out with spent fuels, high-level liquid waste, TRU etc. in the α γ cell and glove boxes. NUCEF was constructed with the following aims. Using STACY and TRACY, are aimed, (1) research on advanced technology for criticality safety control, (2) reconfirmation of criticality safety margin of the Rokkasho reprocessing plant. Using BECKY, are aimed, (1) research on advanced technology of reprocessing process, (2) contribution to develop the scenario for TRU waste disposal, (3) development of new technology for TRU partitioning and volume reduction of radioactive waste. To realize the above aims, following 5 research subjects are settled in NUCEF, (1) Criticality safety research, (2) Research on safety and advanced technology of fuel reprocessing, (3) Research on TRU waste management, (4) Fundamental research on TRU chemistry, (5) Key technology development for TRU processing. (author)

  11. Benchmarking criticality analysis of TRIGA fuel storage racks.

    Science.gov (United States)

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel. Copyright © 2016. Published by Elsevier Ltd.

  12. Calculational assessment of critical experiments with mixed-oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.; Funabashi, H.

    1987-01-01

    Critical experiments have been conducted with organically moderated mixed-oxide (MOX) fuel pin assemblies at the Pacific Northwest Lab. Critical Mass Lab. These experiments are part of a joint exchange program between the US Dept. of Energy and the Power Reactor and Nuclear Fuel Development Corp. of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organically moderated systems. Calculations presented in this paper indicated that the Scale code system and the 27-energy-group cross-section library accurately compute k/sub eff/ for organically moderated MOX fuel pin assemblies. Furthermore, the reactivity of an organic solution with a 32 vol % TBP/68 vol% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water

  13. Calculational assessment of critical experiments with mixed oxide fuel pin arrays moderated by organic solution

    International Nuclear Information System (INIS)

    Smolen, G.R.

    1987-01-01

    Critical experiments have been conducted with organic-moderated mixed oxide (MOX) fuel pin assemblies at the Pacific Northwest Laboratory (PNL) Critical Mass Laboratory (CML). These experiments are part of a joint exchange program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan in the area of criticality data development. The purpose of these experiments is to benchmark computer codes and cross-section libraries and to assess the reactivity difference between systems moderated by water and those moderated by an organic solution. Past studies have indicated that some organic mixtures may be better moderators than water. This topic is of particular importance to the criticality safety of fuel processing plants where fissile material is dissolved in organic solutions during the solvent extraction process. In the past, it has been assumed that the codes and libraries benchmarked with water-moderated experiments were adequate when performing design and licensing studies of organic-moderated systems. Calculations presented in this paper indicated that the SCALE code system and the 27-energy-group cross-section accurately compute k-effectives for organic moderated MOX fuel-pin assemblies. Furthermore, the reactivity of an organic solution with a 32-vol-% TBP/68-vol-% NPH mixture in a heterogeneous configuration is the same, for practical purposes, as water. 5 refs

  14. Nuclear criticality safety: 3-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1993-06-01

    The open-quotes 3-Day Training Courseclose quotes is an intensive course in criticality safety consisting of lectures and laboratory sessions, including active student participation in actual critical experiments, a visit to a plutonium processing facility, and in-depth discussions on safety philosophy. The program is directed toward personnel who currently have criticality safety responsibilities in the capacity of supervisory staff and/or line management. This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. It should be noted that when chapters were extracted, an attempt was made to maintain footnotes and references as originally written. Photographs and illustrations are numbered sequentially

  15. Construction of new critical experiment facilities in JAERI

    International Nuclear Information System (INIS)

    Takeshita, Isao; Itahashi, Takayuki; Ogawa, Kazuhiko; Tonoike, Kotaro; Matsumura, Tatsuro; Miyoshi, Yoshinori; Nakajima, Ken; Izawa, Naoki

    1995-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted the experiment research program on criticality safety since early in 1980s and two types of new critical facilities, Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) were completed on 1994 in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) of JAERI Tokai Research Establishment. STACY was designed so as to obtain critical mass data of low enriched uranium and plutonium solution which is extensively handled in LWR fuel reprocessing plant. TRACY is the critical facility where critical accident phenomenon is demonstrated with low enriched uranium nitrate solution. For criticality safety experiments with both facilities, the Fuel Treatment System is attached to them, where composition and concentration of uranium and plutonium nitrate solutions are widely varied so as to obtain experiments data covering fuel solution conditions in reprocessing plant. Design performances of both critical facilities were confirmed through mock-up tests of important components and cold function tests. Hot function test has started since January of 1995 and some of the results on STACY are to be reported. (author)

  16. Safety of Nuclear Fuel Cycle Facilities. Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2015-01-01

    This publication covers the broad scope of requirements for fuel cycle facilities that, in light of the experience and present state of technology, must be satisfied to ensure safety for the lifetime of the facility. Topics of specific relevance include aspects of nuclear fuel generation, storage, reprocessing and disposal

  17. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    1999-01-01

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined

  18. Key technical issues relating to safety of spent fuel dry storage in vaults: CASCAD system

    Energy Technology Data Exchange (ETDEWEB)

    Berge, F [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    1994-12-31

    The operating CASCAD Facility at the Cadarashe site (FR) was commissioned in May 1990. Fuel is received in tight canisters which are transferred to storage pits in the vault and scheduled to be stored for up to 50 years. Canistering operations are performed in a cell of the reactor building.The paper describes the main functions of the facility as: cask receipt and shipping; fuel unloading; fuel conditioning; canisters emplacements in storage location; fuel storage; fuel retrieving and shipping at the end of the storage period; operation system and operation organization. Safety characteristics of the facility discussed are: fuel decay heat removal; subcriticality control and radiological protection. The fuel decay heat removal has two main purposes: (1) maintaining rod cladding temperature below a set limit in order to keep the fuel in its as received condition; (2) maintaining structures and equipment performing a safety function below the design temperature. The features of the sub-criticality control in the storage vault are such that sub-criticality in normal and accidental conditions is provided by the arrangement of pits in the vault. Radiological protection is based on limiting collective and individual annual dose equivalent to ALARA levels ensuring that they remain in any case below the set limits. Radiological protection system described consists in: confinement of radioactive materials for protection against its dissemination; radiation shielding for protection against irradiation. It is pointed out that all technical solutions presented are based on or adapted from proven technologies used in operating facilities in France or in other countries. The solution not only benefits from the experience of SGN in the design, construction and start-up of facilities for fuel or high level waste handling and storage, but also from the experience of the CEA and COGEMA groups in operating such facilities. 2 figs., 1 ref.

  19. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235 U. At the end of the Rover processing campaign, significant quantities of 235 U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  20. Proceedings of the Nuclear Criticality Technology Safety Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  1. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  2. Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charak, I; Pedersen, D.R.; Forrester, R.J.; Phipps, R.D.

    1993-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL's Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed

  3. Application of an integrated PC-based neutronics code system to criticality safety

    International Nuclear Information System (INIS)

    Briggs, J.B.; Nigg, D.W.

    1991-01-01

    An integrated system of neutronics and radiation transport software suitable for operation in an IBM PC-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past four years. Four modules within the system are particularly useful for criticality safety applications. Using the neutronics portion of the integrated code system, effective neutron multiplication values (k eff values) have been calculated for a variety of benchmark critical experiments for metal systems (Plutonium and Uranium), Aqueous Systems (Plutonium and Uranium) and LWR fuel rod arrays. A description of the codes and methods used in the analysis and the results of the benchmark critical experiments are presented in this paper. In general, excellent agreement was found between calculated and experimental results. (Author)

  4. Safety in connection with the request for approval of the installation alteration in the fuel reprocessing facilities of Power Reactor and Nuclear Fuel Development Corporation (report)

    International Nuclear Information System (INIS)

    1982-01-01

    A report to the Prime Minister by the Nuclear Safety Commission was presented concerning the safety in the installation alteration of the fuel reprocessing facilities, as PNC had requested its approval to the Prime Minister. The safety was confirmed. The items of examination on the safety made by the committee on Examination of Nuclear Fuel Safety of NSC were the aseismic design of liquid waste storage, uranium denitration facility, intermediate gate and radioactive solid waste storage; the criticality safety design of the denitration facility; the radiation shielding design of the liquid waste storage, denitration facility and solid waste storage; the function of radioactive material containment of the liquid waste storage and denitration facility; the radiation control in the liquid waste storage, denitration facility and solid waste storage; the waste management in the liquid waste storage and denitration facility; fire and explosion prevention in the liquid waste storage; exposure dose from the liquid waste storage and denitration facility. (Mori, K.)

  5. Safety recycling of reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Weinlaender, W.

    Additionally to the measures, which descent from the conventional safety techniques, a series of supplementary protective measures have to be taken in connection with the Atomic Energy Law, the Radiation Protection Ordinance and the nuclear-technical practice, which in particular guarantee a safe enclosure and a safe residual heat rejection of the handled radioactive material and an avoidance of nuclear chain reactions. The most important plant malfunctions to be considered within the scope of the plant safety control according to the atomic law are, the radioactivity release due to mechanical damage of fuel elements, containment leakage, explosions in process equipment and/or vessels, burning of run out organic solvents, criticality malfunctions, and the already mentioned accidental failure of after-heat removal. If we let alone the extremely low probabilities for the occurrence of such accidents due to the selected methods, the layout of the equipment and by taking the required quality warranty measures into consideration, and infer such accidents in spite of this, the resulting radiation doses outside the plant are in all cases much lower than 5 rem, which is the design limit according to the regulations for radiation protection. (orig./HP) [de

  6. Safety issues on advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gross, H.; Krebs, W.D. [Siemens AG, Bereich Energieerzeugug (KWU), Erlangen (Germany). Geschaeftsgebiet Nukleare Energieerzeugung

    1998-05-01

    In the recent years a general discussion has started whether unsolved safety issues are related to advanced fuel. Advanced fuel is in this context a summary of features like high burnup, improved clad materials, low leakage loading pattern with high peaking factors etc. The design basis accidents RIA and Loca are of special interest for this discussion. From the Siemens point of view RIA is not a safety issue. There are sufficient margins between the enthalpy rise calculated by modern 3D methods and the fuel failures which occurred in RIA simulation tests when the effect of pulse width is taken into account. The evaluation of possible uncertainties for the established Loca criteria (17% equivalent corrosion, 1200 C clad temperature) for high burnup makes sense. But fuel with high burnup has significantly lower peaking factors than fuel with lower burnup. This gives sufficient margin counterbalancing possible uncertainties. In contrast to the above incomplete control rod insertion at higher burnup is potentially a real safety issue. Although Siemens fuel was not affected by the reported incidents they addressed the problem and checked that they have sufficient design margin for their fuel. (orig.) [Deutsch] In den letzten Jahren hat eine allgemeine Diskussion begonnen, ob mit fortgeschrittenen Brennelementen (BE) ungeklaerte Sicherheitsprobleme verbunden sind. Dabei ist `Fortgeschrittene Brennelemente` ein Sammelbegriff fuer hohe Abbraende, verbesserte Huellrohrmaterialien, Low-leakage-Einsatzplanungen mit hohen Heissstellenfaktoren usw. Die Auslegungsstoerfaelle RIA und Loca sind in dieser Diskussion von besonderer Bedeutung. Aus der Sicht von Siemens ist der RIA kein Sicherheitsproblem. Zwischen den mit modernen 3D-Methoden berechneten Enthalpieerhoehungen und den in RIA-Experimenten aufgetretenen Brennstabdefekten bestehen ausreichende Abstaende, wenn der Einfluss der Pulsbreite beruecksichtigt wird. Die Untersuchung eventueller Unsicherheiten bei hohen

  7. Critical safety parameters: The logical approach to refresher training

    International Nuclear Information System (INIS)

    Johnson, A.R.; Pilkington, W.; Turner, S.

    1991-01-01

    Nuclear power plant managers must ensure that control room staff are able to perform effectively. This is of particular importance through the longer term after initial authorization. Traditionally refresher training has been based on delivery of fragmented training packages typically derived from the initial authorization training programs. Various approaches have been taken to provide a more integrated refresher training program. However, methods such as job and task analysis and subject matter expert derived training have tended to develop without a focused clear overall training objective. The primary objective of all control room staff training is to ensure a proper and safe response to all plant transients. At the Point Lepreau Nuclear Plant, this has defined the Critical Safety Parameter based refresher training program. The overall objective of the Critical Safety Parameter training program is to ensure that control room staff can monitor and control a discrete set of plant parameters. Maintenance of the selected parameters within defined boundaries assures adequate cooling of the fuel and containment of radioactivity. Control room staff need to be able to reliably respond correctly to plant transients under potentially high stress conditions,. utilizing the essential knowledge and skills to deal with such transients. The inference is that the knowledge and skills must be limited to that which can be reliably recalled. This paper describes how the Point Lepreau Nuclear Plant has developed a refresher training program on the basis of a limited number of Critical Safety Parameters. Through this approach, it has been possible to define the essential set of knowledge and skills which ensures a correct response to plant transients

  8. The International Criticality Safety Benchmark Evaluation Project

    International Nuclear Information System (INIS)

    Briggs, B. J.; Dean, V. F.; Pesic, M. P.

    2001-01-01

    In order to properly manage the risk of a nuclear criticality accident, it is important to establish the conditions for which such an accident becomes possible for any activity involving fissile material. Only when this information is known is it possible to establish the likelihood of actually achieving such conditions. It is therefore important that criticality safety analysts have confidence in the accuracy of their calculations. Confidence in analytical results can only be gained through comparison of those results with experimental data. The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the US Department of Energy. The project was managed through the Idaho National Engineering and Environmental Laboratory (INEEL), but involved nationally known criticality safety experts from Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Savannah River Technology Center, Oak Ridge National Laboratory and the Y-12 Plant, Hanford, Argonne National Laboratory, and the Rocky Flats Plant. An International Criticality Safety Data Exchange component was added to the project during 1994 and the project became what is currently known as the International Criticality Safety Benchmark Evaluation Project (ICSBEP). Representatives from the United Kingdom, France, Japan, the Russian Federation, Hungary, Kazakhstan, Korea, Slovenia, Yugoslavia, Spain, and Israel are now participating on the project In December of 1994, the ICSBEP became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency's (OECD-NEA) Nuclear Science Committee. The United States currently remains the lead country, providing most of the administrative support. The purpose of the ICSBEP is to: (1) identify and evaluate a comprehensive set of critical benchmark data; (2) verify the data, to the extent possible, by reviewing original and subsequently revised documentation, and by talking with the

  9. Existing experimental criticality data applicable to nuclear-fuel-transportation systems

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1983-02-01

    Analytical techniques are generally relied upon in making criticality evaluations involving nuclear material outside reactors. For these evaluations to be accepted the calculations must be validated by comparison with experimental data for a known set of conditions having physical and neutronic characteristics similar to those conditions being evaluated analytically. The purpose of this report is to identify those existing experimental data that are suitable for use in verifying criticality calculations on nuclear fuel transportation systems. In addition, near term needs for additional data in this area are identified. Of the considerable amount of criticality data currently existing, that are applicable to non-reactor systems, those particularly suitable for use in support of nuclear material transportation systems have been identified and catalogued into the following groups: (1) critical assemblies of fuel rods in water; (2) critical assemblies of fuel rods in water containing soluble neutron absorbers; (3) critical assemblies containing solid neutron absorber; (4) critical assemblies of fuel rods in water with heavy metal reflectors; and (5) critical assemblies of fuel rods in water with irregular features. A listing of the current near term needs for additional data in each of the groups has been developed for future use in planning criticality research in support of nuclear fuel transportation systems. The criticality experiments needed to provide these data are briefly described and identified according to priority and relative cost of performing the experiments

  10. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  11. Plant safety review from mass criticality accident

    International Nuclear Information System (INIS)

    Susanto, B.G.

    2000-01-01

    The review has been done to understand the resent status of the plant in facing postulated mass criticality accident. From the design concept of the plant all the components in the system including functional groups have been designed based on favorable mass/geometry safety principle. The criticality safety for each component is guaranteed because all the dimensions relevant to criticality of the components are smaller than dimensions of 'favorable mass/geometry'. The procedures covering all aspects affecting quality including the safety related are developed and adhered to at all times. Staff are indoctrinated periodically in short training session to warn the important of the safety in process of production. The plant is fully equipped with 6 (six) criticality detectors in strategic places to alert employees whenever the postulated mass criticality accident occur. In the event of Nuclear Emergency Preparedness, PT BATAN TEKNOLOGI has also proposed the organization structure how promptly to report the crisis to Nuclear Energy Control Board (BAPETEN) Indonesia. (author)

  12. Safety aspects of the IFR pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs

  13. Realism in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T. P.

    2009-01-01

    Commercial nuclear power plant operation and regulation have made remarkable progress since the Three Mile Island Accident. This is attributed largely to a heavy dose of introspection and self-regulation by the industry and to a significant infusion of risk-informed and performance-based regulation by the Nuclear Regulatory Commission. This truly represents reality in action both by the plant operators and the regulators. On the other hand, the implementation of nuclear criticality safety in ex-reactor operations involving significant quantities of fissile material has not progressed, but, tragically, it has regressed. Not only is the practice of the discipline in excess of a factor of ten more expensive than decades ago; the trend continues. This unfortunate reality is attributed to a lack of coordination within the industry (as contrasted to what occurred in the reactor operations sector), and to a lack of implementation of risk-informed and performance-based regulation by the NRC While the criticality safety discipline is orders of magnitude smaller than the reactor safety discipline, both operators and regulators must learn from the progress made in reactor safety and apply it to the former to reduce the waste, inefficiency and potentially increased accident risks associated with current practices. Only when these changes are made will there be progress made toward putting realism back into nuclear criticality safety. (authors)

  14. Hydrogen and Gaseous Fuel Safety and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; J. Sephen Herring

    2007-06-01

    Non-traditional motor fuels are receiving increased attention and use. This paper examines the safety of three alternative gaseous fuels plus gasoline and the advantages and disadvantages of each. The gaseous fuels are hydrogen, methane (natural gas), and propane. Qualitatively, the overall risks of the four fuels should be close. Gasoline is the most toxic. For small leaks, hydrogen has the highest ignition probability and the gaseous fuels have the highest risk of a burning jet or cloud.

  15. Introduction to 'International Handbook of Criticality Safety Benchmark Experiments'

    International Nuclear Information System (INIS)

    Komuro, Yuichi

    1998-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization for Economic Cooperation and Development-Nuclear Energy Agency (OECD-NEA). 'International Handbook of Criticality Safety Benchmark Experiments' was prepared and is updated year by year by the working group of the project. This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used. The author briefly introduces the informative handbook and would like to encourage Japanese engineers who are in charge of nuclear criticality safety to use the handbook. (author)

  16. Fire and blast safety manual for fuel element manufacture

    International Nuclear Information System (INIS)

    Ensinger, U.; Koehler, B.; Mester, W.; Riotte, H.G.; Sehrbrock, H.W.

    1988-01-01

    The manual aims to enable people involved in the planning, operation, supervision, licensing or appraisal of fuel element factories to make a quick and accurate assessment of blast safety. In Part A, technical plant principles are shown, and a summary lists the flammable materials and ignition sources to be found in fuel element factories, together with theoretical details of what happens during a fire or a blast. Part B comprises a list of possible fires and explosions in fuel element factories and ways of preventing them. Typical fire and explosion scenarios are analysed more closely on the basis of experiments. Part B also contains a list and an assessment of actual fires and explosions which have occurred in fuel element factories. Part C contains safety measures to protect against fire and explosion, in-built fire safety, fire safety in plant design, explosion protection and measures to protect people from radiation and other hazards when fighting fires. A distinction is drawn between UO 2 , MOX and HTR fuel elements. (orig./DG) [de

  17. Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality

    International Nuclear Information System (INIS)

    Rezaeian, M.; Kamali, J.

    2017-01-01

    Dual-purpose casks can be utilized for dry interim storage and transportation of the highly radioactive spent fuel assemblies (SFAs) of Bushehr Nuclear Power Plant (NPP). Criticality safety analysis was carried out using the MCNP code for the cask containing 12, 18, or 19 SFAs. The basket materials of borated stainless steel and Boral (Al-B_4C) were investigated, and the minimum required receptacle pitch of the basket was determined. - Highlights: • Criticality safety analysis for a dual purpose cask was carried out. • The basket material of borated stainless steel and Boral were investigated. • Minimum receptacle pitch was determined for 12, 18, or 19 VVER 1000 spent fuel assemblies.

  18. Minimum qualifications for nuclear criticality safety professionals

    International Nuclear Information System (INIS)

    Ketzlach, N.

    1990-01-01

    A Nuclear Criticality Technology and Safety Training Committee has been established within the U.S. Department of Energy (DOE) Nuclear Criticality Safety and Technology Project to review and, if necessary, develop standards for the training of personnel involved in nuclear criticality safety (NCS). The committee is exploring the need for developing a standard or other mechanism for establishing minimum qualifications for NCS professionals. The development of standards and regulatory guides for nuclear power plant personnel may serve as a guide in developing the minimum qualifications for NCS professionals

  19. ICSBEP-2007, International Criticality Safety Benchmark Experiment Handbook

    International Nuclear Information System (INIS)

    Blair Briggs, J.

    2007-01-01

    1 - Description: The Critically Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United Sates Department of Energy. The project quickly became an international effort as scientist from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) is now an official activity of the Organization of Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA). This handbook contains criticality safety benchmark specifications that have been derived from experiments that were performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material. The example calculations presented do not constitute a validation of the codes or cross section data. The work of the ICSBEP is documented as an International Handbook of Evaluated Criticality Safety Benchmark Experiments. Currently, the handbook spans over 42,000 pages and contains 464 evaluations representing 4,092 critical, near-critical, or subcritical configurations and 21 criticality alarm placement/shielding configurations with multiple dose points for each and 46 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. The handbook is intended for use by criticality safety analysts to perform necessary validations of their calculational techniques and is expected to be a valuable tool for decades to come. The ICSBEP Handbook is available on DVD. You may request a DVD by completing the DVD Request Form on the internet. Access to the Handbook on the Internet requires a password. You may request a password by completing the Password Request Form. The Web address is: http://icsbep.inel.gov/handbook.shtml 2 - Method of solution: Experiments that are found

  20. SRTC criticality safety technical review: Nuclear Criticality Safety Evaluation 93-04 enriched uranium receipt

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Review of NMP-NCS-930087, open-quotes Nuclear Criticality Safety Evaluation 93-04 Enriched Uranium Receipt (U), July 30, 1993, close quotes was requested of SRTC (Savannah River Technology Center) Applied Physics Group. The NCSE is a criticality assessment to determine the mass limit for Engineered Low Level Trench (ELLT) waste uranium burial. The intent is to bury uranium in pits that would be separated by a specified amount of undisturbed soil. The scope of the technical review, documented in this report, consisted of (1) an independent check of the methods and models employed, (2) independent HRXN/KENO-V.a calculations of alternate configurations, (3) application of ANSI/ANS 8.1, and (4) verification of WSRC Nuclear Criticality Safety Manual procedures. The NCSE under review concludes that a 500 gram limit per burial position is acceptable to ensure the burial site remains in a critically safe configuration for all normal and single credible abnormal conditions. This reviewer agrees with that conclusion

  1. Recent metal fuel safety tests in TREAT

    International Nuclear Information System (INIS)

    Wright, A.E.; Bauer, T.H.; Lo, R.K.; Robinson, W.R.; Palm, R.G.

    1986-01-01

    In-reactor safety tests have been performed on metal-alloy reactor fuel to study its response to transient-overpower conditions, in particular, the margin to cladding breach and the axial self-extrusion of fuel within intact cladding. Uranium-fissium EBR-II driver fuel elements of several burnups were tested, some to cladding breach and others to incipient breach. Transient fuel motions were monitored, and time and location of breach were measured. The test results and computations of fuel extrusion and cladding failure in metal-alloy fuel are described

  2. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  3. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    2010-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span over 55,000 pages and contain 516 evaluations with benchmark specifications for 4,405 critical, near critical, or subcritical configurations, 24 criticality alarm placement / shielding configurations with multiple dose points for each, and 200 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 770 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be

  4. Nuclear Criticality Safety Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, D. F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2016-11-14

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  5. Nuclear Criticality Safety Data Book

    International Nuclear Information System (INIS)

    Hollenbach, D. F.

    2016-01-01

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  6. Inquiry relating to safety due to modification of usage of nuclear fuel material (establishment of waste safety testing facility) in Tokai Laboratory, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    Application was made to the director of the Science and Technology Agency (STA) for the license relating to the modification of usage of nuclear fuel material (the establishment of waste safety testing facility) from the director of the Japan Atomic Energy Research Institute on November 30, 1978. After passing through the safety evaluation in the Nuclear Safety Bureau of STA, inquiry was conducted to the head of the Atomic Energy Safety Commission (AESC) on June 6, 1979, from the director of the STA. The head of AESC directed to conduct the safety examination to the head of the Nuclear Fuel Safety Examination Specialist Committee on June 7, 1979. The content of the modification of usage of nuclear fuel material is the establishment of waste safety testing facility to study and test the safety relating to the treatment and disposal of high level radioactive liquid wastes due to the reprocessing of spent fuel. As for the results of the safety examination, the siting of the waste safety testing facility which is located in the Tokai Laboratory, Japan Atomic Energy Research Institute (JAERI), and the test plan of the glass solidification of high level radioactive liquid are presented as the outline of the study plan. The building, main equipments including six cells, the isolation room and the glove box, the storage, and the disposal facilities for gas, liquid and solid wastes are explained as the outline of the facilities. Concerning the items from the viewpoint of safety, aseismatic design, slightly vacuum operation, shielding, decay heat removal, fire protection, explosion protection, criticality management, radiation management and environmental effect were evaluated, and the safety was confirmed. (Nakai, Y.)

  7. Sensitivity analysis of parameters important to nuclear criticality safety of Castor X/28F spent nuclear fuel cask

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, Mosebetsi J. [Witwatersrand Univ., Johannesburg (South Africa). School of Physics; Koeberg Operating Unit, Johannesburg (South Africa). Regulations and Licensing; Malgas, Isaac [Koeberg Nuclear Power Station, Duinefontein (South Africa). Nuclear Engineering Analysis; Taviv, Eugene [ASARA consultants (PTY) LTD, Johannesburg (South Africa)

    2015-11-15

    In nuclear criticality safety analysis it is essential to ascertain how various components of the nuclear system will perform under certain conditions they may be subjected to, particularly if the components of the system are likely to be affected by environmental factors such as temperature, radiation or material composition. It is therefore prudent that a sensitivity analysis is performed to determine and quantify the response of the output to variation in any of the input parameters. In a fissile system, the output parameter of importance is the k{sub eff}. Therefore, in attempting to prevent reactivity-induced accidents, it is important for the criticality safety analyst to have a quantified degree of response for the neutron multiplication factor to perturbation in a given input parameter. This article will present the results of the perturbation of the parameters that are important to nuclear criticality safety analysis and their respective correlation equations for deriving the sensitivity coefficients.

  8. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  9. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  10. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  11. Regulatory activities in the area of fuel safety and performance

    International Nuclear Information System (INIS)

    Viktorov, A.; Couture, M.

    2005-01-01

    Generic Action Item 94G02 'Impact of Fuel Bundle Condition on Reactor Safety' in many ways determined the present priorities in regulatory activities related to fuel performance. As one of the closure criteria it required that all licensees establish 'an effective formal and systematic process for integrating fuel design, fuel and channel inspection, laboratory examination, research, operating limits and safety analysis'. To date, such a process has been, to a large extent, put in place by all licensees. To assure that such processes remain operational and effective after the GAI closure, CNSC required, through S-99, to report annually on fuel performance and major activities in the fuel safety area. The scope of reported information has been defined to allow CNSC staff evaluation of key events and trends in fuel performance. To compliment reporting by the industry, CNSC staff has conducted targeted inspections of fuel compliance programs at all sites. Combined together, these activities provide the regulator with the confidence that CANDU fuel is robust and operates with safety margins. The scrutiny, to which fuel performance has been subjected lately, has allowed identification of certain programmatic weaknesses and gaps in the knowledge concerning the fuel behaviour under various conditions. It has become apparent that top-level strategies for assessment of fuel performance may have been inadequate and far from systematic; fuel inspection practices and capabilities have varied significantly from site to site; certain issues were identified but remained unaddressed for significant time; priorities in experimental or design support activities were not assigned consistently. The presentation gives examples of areas where, in the opinion of the CNSC staff, further work is required to support fuel design and safety envelopes. The implementation of new CANFLEX fuel designs is currently being considered by the industry and CNSC staff has been engaged in the review

  12. Influence of safety limitations on the fuel cycle management

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, G

    1972-05-03

    The choice of an optimum fuel cycle has been up to now governed from the safety point of view, by the setting of very general limitations on few parameters, as for instance on the fuel temperature and on the surface temperature. As a better understanding of the design and materials limitations become available, the philosophy of the fuel cycle optimisation can be improved. The aim of this contribution is to shortly revise the safety aspects involved in the choice of a fuel cycle management and thereafter try to draw some general conclusions.

  13. Criticality Safety Evaluation of Hanford Tank Farms Facility

    Energy Technology Data Exchange (ETDEWEB)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  14. Criticality Safety Evaluation of Hanford Tank Farms Facility

    International Nuclear Information System (INIS)

    WEISS, E.V.

    2000-01-01

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste

  15. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    OpenAIRE

    H. P. Rahardjo; V. I. Sri Wardhani

    2017-01-01

    The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic) with plate fuel (produced by BATAN). The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF) limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety an...

  16. Fuel safety criteria and review by OECD / CSNI task force

    International Nuclear Information System (INIS)

    Van Doesburg, W.

    1999-01-01

    Full text of publication follows: with the advent of advanced fuel and core designs, and the implementation of more accurate (best estimate or statistical) design and analysis methods, there is a general feeling that safety margins have been or are being reduced. Historically, fuel safety margins were defined by adding conservatism to the safety limits, which in turn were also fixed in a conservative manner, here, the expression 'conservatism' expresses the fact that bounding or limiting numbers were chosen for model parameters, plant and fuel design data, and fuel operating history values. Unfortunately, as these conservatisms were not quantified (or quantifiable), the amount of safety available or the reduction thereof is difficult to substantiate. For the regulator, it is important to know the margin available with the utilities' request for approval of new fuel or methods; likewise, for the utility and vendor it is important to know what margins exist and what they are based on, to identify in which direction they can make further progress and optimize fuel and fuel cycle cost. Naturally, each party involved will have to decide on how much margin should be in place, to establish operational criteria and ensure that these can actually be met during operation. To assess the margins issue, safety criteria themselves need to be reviewed first. Most - if not all - of the currently existing safety criteria were established during the 60's and early 70's, and verified against experiments with fuel available at that time - mostly at zero exposure. Of course, verification was performed as designs progressed in later years, primarily with the aim to be able to prove that safety criteria were adequate as long as the said conservatisms would be retained, and not with the aim to reestablish limits. The mandate to the OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria (TFFSC) is to assess the adequacy of existing fuel safety criteria, in view of the 'new design' elements (new

  17. A Web-Based Nuclear Criticality Safety Bibliographic Database

    International Nuclear Information System (INIS)

    Koponen, B L; Huang, S

    2007-01-01

    A bibliographic criticality safety database of over 13,000 records is available on the Internet as part of the U.S. Department of Energy's (DOE) Nuclear Criticality Safety Program (NCSP) website. This database is easy to access via the Internet and gets substantial daily usage. This database and other criticality safety resources are available at ncsp.llnl.gov. The web database has evolved from more than thirty years of effort at Lawrence Livermore National Laboratory (LLNL), beginning with compilations of critical experiment reports and American Nuclear Society Transactions

  18. Summary of Preliminary Criticality Analysis for Peach Bottom Fuel in the DOE Standardized Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1999-01-01

    The Department of Energy's (DOE's) National Spent Nuclear Fuel Program is developing a standardized set of canisters for DOE spent nuclear fuel (SNF). These canisters will be used for DOE SNF handling, interim storage, transportation, and disposal in the national repository. Several fuels are being examined in conjunction with the DOE SNF canisters. This report summarizes the preliminary criticality safety analysis that addresses general fissile loading limits for Peach Bottom graphite fuel in the DOE SNF canister. The canister is considered both alone and inside the 5-HLW/DOE Long Spent Fuel Co-disposal Waste Package, and in intact and degraded conditions. Results are appropriate for a single DOE SNF canister. Specific facilities, equipment, canister internal structures, and scenarios for handling, storage, and transportation have not yet been defined and are not evaluated in this analysis. The analysis assumes that the DOE SNF canister is designed so that it maintains reasonable geometric integrity. Parameters important to the results are the canister outer diameter, inner diameter, and wall thickness. These parameters are assumed to have nominal dimensions of 45.7-cm (18.0-in.), 43.815-cm (17.25-in), and 0.953-cm (0.375-in.), respectively. Based on the analysis results, the recommended fissile loading for the DOE SNF canister is 13 Peach Bottom fuel elements if no internal steel is present, and 15 Peach Bottom fuel elements if credit is taken for internal steel

  19. K-effective as a measure of criticality safety

    International Nuclear Information System (INIS)

    Venner, J.; Haley, R.M.; Bowden, R.L.

    2003-01-01

    This paper considers the relation between the neutron multiplication of a system, k-effective, and critical parameters. It aims to investigate whether k-effective is always the most appropriate measure of safety. For simple systems handbook data can be effectively utilized, applying a safety factor to critical masses. In such situations, the criticality safety margin is readily apparent. However, more complex systems may use the calculated value of neutron multiplication to assess the criticality safety of the system under investigation. A problem arises because there is no exact consistency between k-effective and the physical margin of subcriticality, in terms of parameters such as mass. In the UK, commonly accepted safety criteria are applied to limit the k-effective of the system being assessed. These margins of subcriticality have no definitive justification to support the values chosen and might be considered rather arbitrary in nature. This paper aims to answer this question of suitability by investigating the relation between k-effective and the physical critical parameters for a wide range of systems. It concludes that the safety criteria currently applied in the UK are valid, but some difference exists between safety factors applied to the mass of fissile material present and the corresponding value of k-effective. (author)

  20. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  1. Proceedings of the nuclear criticality technology safety project

    International Nuclear Information System (INIS)

    Sanchez, R.G.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings

  2. Effect of mixing state on criticality safety evaluation in MOX powder and additive

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analyses are discussed in which MOX powder and additive (e.g. zinc-stearate) are mixed in a powder treatment process of MOX fuel fabrication. The multiplication factor k eff is largely affected by how they are mixed, i.e., how the density and volume change with the mixing. In general, k eff increases when MOX powder is mixed with zinc-stearate. However, plutonium content and density of MOX powder make a difference in the k eff 's changes. Especially, MOX powder with a higher plutonium content and a higher density is not always unsafe in terms of criticality if it is mixed with zinc-stearate. (author)

  3. HSE's safety assessment principles for criticality safety

    International Nuclear Information System (INIS)

    Simister, D N; Finnerty, M D; Warburton, S J; Thomas, E A; Macphail, M R

    2008-01-01

    The Health and Safety Executive (HSE) published its revised Safety Assessment Principles for Nuclear Facilities (SAPs) in December 2006. The SAPs are primarily intended for use by HSE's inspectors when judging the adequacy of safety cases for nuclear facilities. The revised SAPs relate to all aspects of safety in nuclear facilities including the technical discipline of criticality safety. The purpose of this paper is to set out for the benefit of a wider audience some of the thinking behind the final published words and to provide an insight into the development of UK regulatory guidance. The paper notes that it is HSE's intention that the Safety Assessment Principles should be viewed as a reflection of good practice in the context of interpreting primary legislation such as the requirements under site licence conditions for arrangements for producing an adequate safety case and for producing a suitable and sufficient risk assessment under the Ionising Radiations Regulations 1999 (SI1999/3232 www.opsi.gov.uk/si/si1999/uksi_19993232_en.pdf). (memorandum)

  4. Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.

    1992-01-01

    The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method

  5. Software Safety Risk in Legacy Safety-Critical Computer Systems

    Science.gov (United States)

    Hill, Janice L.; Baggs, Rhoda

    2007-01-01

    Safety Standards contain technical and process-oriented safety requirements. Technical requirements are those such as "must work" and "must not work" functions in the system. Process-Oriented requirements are software engineering and safety management process requirements. Address the system perspective and some cover just software in the system > NASA-STD-8719.13B Software Safety Standard is the current standard of interest. NASA programs/projects will have their own set of safety requirements derived from the standard. Safety Cases: a) Documented demonstration that a system complies with the specified safety requirements. b) Evidence is gathered on the integrity of the system and put forward as an argued case. [Gardener (ed.)] c) Problems occur when trying to meet safety standards, and thus make retrospective safety cases, in legacy safety-critical computer systems.

  6. Recent and current activities of the OECD/NEA Working Group on Fuel Safety (NEA/CSNI). Recent and Current Activities of the Working Group on Fuel Safety (NEA/CSNI)

    International Nuclear Information System (INIS)

    Petit, Marc

    2013-01-01

    The Working Group on Fuel Safety (WGFS) is part of the Committee on the Safety of Nuclear Installations (CSNI) of the Nuclear Energy Agency and has the main mission of advancing the current understanding and addressing fuel safety issues. Recent and current activities of the working group have addressed mainly the loss of coolant accident (LOCA), the reactivity initiated accident (RIA), the fuel safety criteria and leaking fuel issues, as well as Fukushima-related fuel topics. In the area of LOCA, the group issued different documents, the most notable being a very comprehensive state of the art report [NEA/CSNI/R (2009)15]. Regarding RIA, some documents were finalised and issued in the recent years, as well as a state of the art report [NEA/CSNI/R (2010)1]. The question of leaking fuel and how it is handled in the reactors is an activity that is just starting. Of particular interest to people developing new fuel concepts is the Nuclear Fuel Safety Criteria Technical Review - Second Edition [NEA/CSNI/R (2012)3]. This document provides a broad overview of the numerous criteria used in the NEA member countries to demonstrate to safe use of fuel in light water reactors. The WGFS has started discussions about fuel related issues raised by the Fukushima accident, in particular, hydrogen production. New concepts have been proposed to solve these issues but it appears that these concepts will need to go through a long qualification process to assess their adequacy for the different situations considered in the evaluation of fuel safety, from normal operation to accident conditions

  7. Use of a Web Site to Enhance Criticality Safety Training

    International Nuclear Information System (INIS)

    Huang, S T; Morman, J

    2003-01-01

    Currently, a website dedicated to enhancing communication and dissemination of criticality safety information is sponsored by the U.S. Department of Energy (DOE) Nuclear Criticality Safety Program (NCSP). This website was developed as part of the DOE response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The website is the focal point for DOE nuclear criticality safety (NCS) activities, resources and references, including hyperlinks to other sites actively involved in the collection and dissemination of criticality safety information. The website is maintained by the Lawrence Livermore National Laboratory (LLNL) under auspices of the NCSP management. One area of the website contains a series of Nuclear Criticality Safety Engineer Training (NCSET) modules. During the past few years, many users worldwide have accessed the NCSET section of the NCSP website and have downloaded the training modules as an aid for their training programs. This trend was remarkable in that it points out a continuing need of the criticality safety community across the globe. It has long been recognized that training of criticality safety professionals is a continuing process involving both knowledge-based training and experience-based operations floor training. As more of the experienced criticality safety professionals reach retirement age, the opportunities for mentoring programs are reduced. It is essential that some method be provided to assist the training of young criticality safety professionals to replenish this limited human expert resource to support on-going and future nuclear operations. The main objective of this paper is to present the features of the NCSP website, including its mission, contents, and most importantly its use for the dissemination of training modules to the criticality safety community. We will discuss lessons learned and several ideas

  8. Safety Justification and Safety Case for Safety-critical Software in Digital Reactor Protection System

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Jang-Soo; Jee, Eunkyoung

    2016-01-01

    Nuclear safety-critical software is under strict regulatory requirements and these regulatory requirements are essential for ensuring the safety of nuclear power plants. The verification & validation (V and V) and hazard analysis of the safety-critical software are required to follow regulatory requirements through the entire software life cycle. In order to obtain a license from the regulatory body through the development and validation of safety-critical software, it is essential to meet the standards which are required by the regulatory body throughout the software development process. Generally, large amounts of documents, which demonstrate safety justification including standard compliance, V and V, hazard analysis, and vulnerability assessment activities, are submitted to the regulatory body during the licensing process. It is not easy to accurately read and evaluate the whole documentation for the development activities, implementation technology, and validation activities. The safety case methodology has been kwon a promising approach to evaluate the level and depth of the development and validation results. A safety case is a structured argument, supported by a body of evidence that provides a compelling, comprehensible, and valid case that a system is safe for a given application in a given operating environment. It is suggested to evaluate the level and depth of the results of development and validation by applying safety case methodology to achieve software safety demonstration. A lot of documents provided as evidence are connected to claim that corresponds to the topic for safety demonstration. We demonstrated a case study in which more systematic safety demonstration for the target system software is performed via safety case construction than simply listing the documents

  9. Safety Justification and Safety Case for Safety-critical Software in Digital Reactor Protection System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee-Choon; Lee, Jang-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jee, Eunkyoung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear safety-critical software is under strict regulatory requirements and these regulatory requirements are essential for ensuring the safety of nuclear power plants. The verification & validation (V and V) and hazard analysis of the safety-critical software are required to follow regulatory requirements through the entire software life cycle. In order to obtain a license from the regulatory body through the development and validation of safety-critical software, it is essential to meet the standards which are required by the regulatory body throughout the software development process. Generally, large amounts of documents, which demonstrate safety justification including standard compliance, V and V, hazard analysis, and vulnerability assessment activities, are submitted to the regulatory body during the licensing process. It is not easy to accurately read and evaluate the whole documentation for the development activities, implementation technology, and validation activities. The safety case methodology has been kwon a promising approach to evaluate the level and depth of the development and validation results. A safety case is a structured argument, supported by a body of evidence that provides a compelling, comprehensible, and valid case that a system is safe for a given application in a given operating environment. It is suggested to evaluate the level and depth of the results of development and validation by applying safety case methodology to achieve software safety demonstration. A lot of documents provided as evidence are connected to claim that corresponds to the topic for safety demonstration. We demonstrated a case study in which more systematic safety demonstration for the target system software is performed via safety case construction than simply listing the documents.

  10. Criticality Safety Basics for INL FMHs and CSOs

    Energy Technology Data Exchange (ETDEWEB)

    V. L. Putman

    2012-04-01

    Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications

  11. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1995-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  12. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1994-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  13. Safety features of subcritical fluid fueled systems

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C.R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  14. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    structure was found to be intact to maintain leak tightness even in the severe fire accidents. In addition, criticality safety was assessed by using the continuous energy Monte Carlo code MVP and the nuclear data library JENDL-3.2 for the cask in consideration of the mechanical damages and thermal failure resulted from the above analyses. As a conclusion, integrity of the packages of fresh nuclear fuel materials can be maintained even in the case of the severe accident, and criticality safety can also be secured to prevent radioactive material from releasing into environment. (author)

  15. Critical heat flux detection in rods simulating fuel elements by using dilation method

    International Nuclear Information System (INIS)

    Mesquita, A.Z.

    1993-01-01

    In out-reactor heat transfer experiments, fuel elements are often simulated by electrically heated rods. In order to prevent the heating rod from being damaged by burnout, when the critical heat flux occurs a safety system is provided which checks the axial thermal expansion of the rod. In case of sudden temperature increase, the corresponding elongation causes a fast interruption of the electrical power supply. The experiments presented here show that this method is more effective than one that uses thermocouples. (author)

  16. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 81 of the presented papers are indexed individually. (J.P.N.)

  17. ICNC2003: Proceedings of the seventh international conference on nuclear criticality safety. Challenges in the pursuit of global nuclear criticality safety

    International Nuclear Information System (INIS)

    2003-10-01

    This proceedings contain (technical, oral and poster papers) presented papers at the Seventh International Conference on Nuclear Criticality Safety ICNC2003 held on 20-24 October 2003, in Tokai, Ibaraki, Japan, following ICNC'99 in Versailles, France. The theme of this conference is 'Challenges in the Pursuit of Global Nuclear Criticality Safety'. This proceedings represent the current status of nuclear criticality safety research throughout the world. The 79 of the presented papers are indexed individually. (J.P.N.)

  18. Safety assessment for spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Practice has been prepared as part of the IAEA's programme on the safety assessment of interim spent fuel storage facilities which are not an integral part of an operating nuclear power plant. This report provides general guidance on the safety assessment process, discussing both deterministic and probabilistic assessment methods. It describes the safety assessment process for normal operation and anticipated operational occurrences and also related to accident conditions. 10 refs, 2 tabs

  19. CRITICALITY SAFETY LIMIT EVALUATION PROGRAM (CSLEP's) AND QUICK SCREENS: ANSWERS TO EXPEDITED PROCESSING LEGACY CRITICALITY SAFETY LIMITS AND EVALUATIONS

    International Nuclear Information System (INIS)

    TOFFER, H.

    2006-01-01

    Since the end of the cold war, the need for operating weapons production facilities has faded. Criticality Safety Limits and controls supporting production modes in these facilities became outdated and furthermore lacked the procedure based rigor dictated by present day requirements. In the past, in many instances, the formalism of present day criticality safety evaluations was not applied. Some of the safety evaluations amounted to a paragraph in a notebook with no safety basis and questionable arguments with respect to double contingency criteria. When material stabilization, clean out, and deactivation activities commenced, large numbers of these older criticality safety evaluations were uncovered with limits and controls backed up by tenuous arguments. A dilemma developed: on the one hand, cleanup activities were placed on very aggressive schedules; on the other hand, a highly structured approach to limits development was required and applied to the cleanup operations. Some creative approaches were needed to cope with the limits development process

  20. Criticality safety studies at VTT Energy

    International Nuclear Information System (INIS)

    Roine, T.; Anttila, M.

    1995-01-01

    At VTT Energy a compact reactor physics calculation system is applied in many kind of problems. Generation of group constants for static and dynamic core calculations, flux and dose rate calculations as well as criticality safety studies are performed basically with the same codes. In the presentation a short overview of the wide variety of criticality safety problems analyzed at VTT Energy is given. The calculation system with some illustrative examples is also described. (12 refs., 1 tab.)

  1. Criticality evaluation of long term for spent fuel, using Scale

    International Nuclear Information System (INIS)

    Esquivel E, J.; Vargas E, S.; Ramirez S, J. R.

    2013-10-01

    Once carried out the spent fuel discharge, of the reactor core, this continues generating decay heat and diverse fission products, reason why is important to store this fuel inside containers able to dissipate the heat generated by the isotopes decay of the fuel and to maintain the fuels arrangement in subcritical condition. This means that: is necessary to assure the sub-criticality of those fuel assemblies in the time. This work, presents a criticality evaluation of fuel assemblies type PWR in a storage generic container. For this purpose have been used two codes: GeeWiz, to carry out the geometric model of the container with the fuel assemblies, and Keno, with which, the criticality of the full container with fuel is determined until a 10 6 years period. These codes are part of the package Scale. The specifications for each one of the analyzed components are based on a Benchmark document of the Nea/OECD, of where, the results that reports are compared with the obtained results by the realized analysis. (Author)

  2. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    Energy Technology Data Exchange (ETDEWEB)

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  3. Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)

  4. Standard problem exercise to validate criticality codes for spent LWR fuel transport container calculations

    International Nuclear Information System (INIS)

    Whitesides, G.H.; Stephens, M.E.

    1984-01-01

    During the past two years, a Working Group established by the Organization for Economic Co-Operation and Development's Nuclear Energy Agency (OECD-NEA) has been developing a set of criticality benchmark problems which could be used to help establish the validity of criticality safety computer programs and their associated nuclear data for calculation of ksub(eff) for spent light water reactor (LWR) fuel transport containers. The basic goal of this effort was to identify a set of actual critical experiments which would contain the various material and geometric properties present in spent LWR transport contrainers. These data, when used by the various computational methods, are intended to demonstrate the ability of each method to accurately reproduce the experimentally measured ksub(eff) for the parameters under consideration

  5. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  6. Impact of modeling Choices on Inventory and In-Cask Criticality Calculations for Forsmark 3 BWR Spent Fuel

    International Nuclear Information System (INIS)

    Martinez-Gonzalez, Jesus S.; Ade, Brian J.; Bowman, Stephen M.; Gauld, Ian C.; Ilas, Germina; Marshall, William BJ J.

    2015-01-01

    Simulation of boiling water reactor (BWR) fuel depletion poses a challenge for nuclide inventory validation and nuclear criticality safety analyses. This challenge is due to the complex operating conditions and assembly design heterogeneities that characterize these nuclear systems. Fuel depletion simulations and in-cask criticality calculations are affected by (1) completeness of design information, (2) variability of operating conditions needed for modeling purposes, and (3) possible modeling choices. These effects must be identified, quantified, and ranked according to their significance. This paper presents an investigation of BWR fuel depletion using a complete set of actual design specifications and detailed operational data available for five operating cycles of the Swedish BWR Forsmark 3 reactor. The data includes detailed axial profiles of power, burnup, and void fraction in a very fine temporal mesh for a GE14 (10x10) fuel assembly. The specifications of this case can be used to assess the impacts of different modeling choices on inventory prediction and in-cask criticality, specifically regarding the key parameters that drive inventory and reactivity throughout fuel burnup. This study focused on the effects of the fidelity with which power history and void fraction distributions are modeled. The corresponding sensitivity of the reactivity in storage configurations is assessed, and the impacts of modeling choices on decay heat and inventory are addressed.

  7. Prerequisites of ideal safety-critical organizations

    International Nuclear Information System (INIS)

    Takeuchi, Michiru; Hikono, Masaru; Matsui, Yuko; Goto, Manabu; Sakuda, Hiroshi

    2013-01-01

    This study explores the prerequisites of ideal safety-critical organizations, marshalling arguments of 4 areas of organizational research on safety, each of which has overlap: a safety culture, high reliability organizations (HROs), organizational resilience, and leadership especially in safety-critical organizations. The approach taken in this study was to retrieve questionnaire items or items on checklists of the 4 research areas and use them as materials of abduction (as referred to in the KJ method). The results showed that the prerequisites of ideal safety-oriented organizations consist of 9 factors as follows: (1) The organization provides resources and infrastructure to ensure safety. (2) The organization has a sharable vision. (3) Management attaches importance to safety. (4) Employees openly communicate issues and share wide-ranging information with each other. (5) Adjustments and improvements are made as the organization's situation changes. (6) Learning activities from mistakes and failures are performed. (7) Management creates a positive work environment and promotes good relations in the workplace. (8) Workers have good relations in the workplace. (9) Employees have all the necessary requirements to undertake their own functions, and act conservatively. (author)

  8. Construction of STACY (Static Experiment Critical Facility)

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Onodera, Seiji; Hirose, Hideyuki

    1998-08-01

    Two critical assemblies, STACY (Static Experiment Critical Facility) and TRACY (Transient Experiment Critical Facility), were constructed in NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) to promote researches on the criticality safety at a reprocessing facility. STACY aims at providing critical data of uranium nitrate solution, plutonium nitrate solution and their mixture while varying concentration of solution fuel, core tank shape and size and neutron reflecting condition. STACY achieved first criticality in February 1995, and passed the licensing inspection by STA (Science and Technology Agency of Japan) in May. After that a series of critical experiments commenced with 10 w/o enriched uranium solution. This report describes the outline of STACY at the end of FY 1996. (author)

  9. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  10. Design aspects of safety critical instrumentation of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, P. [Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)]. E-mail: swamy@igcar.ernet.in

    2005-07-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  11. Design aspects of safety critical instrumentation of nuclear installations

    International Nuclear Information System (INIS)

    Swaminathan, P.

    2005-01-01

    Safety critical instrumentation systems ensure safe shutdown/configuration of the nuclear installation when process status exceeds the safety threshold limits. Design requirements for safety critical instrumentation such as functional and electrical independence, fail-safe design, and architecture to ensure the specified unsafe failure rate and safe failure rate, human machine interface (HMI), etc., are explained with examples. Different fault tolerant architectures like 1/2, 2/2, 2/3 hot stand-by are compared for safety critical instrumentation. For embedded systems, software quality assurance is detailed both during design phase and O and M phase. Different software development models such as waterfall model and spiral model are explained with examples. The error distribution in embedded system is detailed. The usage of formal method is outlined to reduce the specification error. The guidelines for coding of application software are outlined. The interface problems of safety critical instrumentation with sensors, actuators, other computer systems, etc., are detailed with examples. Testability and maintainability shall be taken into account during design phase. Online diagnostics for safety critical instrumentation is detailed with examples. Salient details of design guides from Atomic Energy Regulatory Board, International Atomic Energy Agency and standards from IEEE, BIS are given towards the design of safety critical instrumentation systems. (author)

  12. The Health and Safety Executive's regulatory framework for control of nuclear criticality safety

    International Nuclear Information System (INIS)

    Smith, K.; Simister, D.N.

    1991-01-01

    In the United Kingdom the Health and Safety at Work Act, 1974 is the main legal instrument under which risks to people from work activities are controlled. Certain sections of the Nuclear Installations Act, 1965 which deal with the licensing of nuclear sites and the regulatory control of risks arising from them, including the risk from accidental criticality, are relevant statutory provisions of the Health and Safety at Work Act. The responsibility for safety rests with the operator who has to make and implement arrangements to prevent accidental criticality. The adequacy of these arrangements must be demonstrated in a safety case to the regulatory authorities. Operators are encouraged to treat each plant on its own merits and develop the safety case accordingly. The Nuclear Installations Inspectorate (NII), for its part, assesses the adequacy of the operator's safety case against the industry's own standards and criteria, but more particularly against the NII's safety assessment principles and guides, and international standards. Risks should be made as low as reasonably practicable. Generally, the NII seeks improvements in safety using an enforcement policy which operates at a number of levels, ranging from persuasion through discussion to the ultimate deterrent of withdrawal of a site licence. This paper describes the role of the NII, which includes a specialist criticality expertise, within the Health and Safety Executive, in regulating the nuclear sites from the criticality safety viewpoint. (Author)

  13. Code on the safety of civilian nuclear fuel cycle installations

    International Nuclear Information System (INIS)

    1996-01-01

    The 'Code' was promulgated by the National Nuclear Safety Administration (NSSA) on June 17, 1993, which is applicable to civilian nuclear fuel fabrication, processing, storage and reprocessing installations, not including the safety requirements for the use of nuclear fuel in reactors. The contents of the 'Code' involve siting, design, construction, commissioning, operation and decommissioning of fuel cycle installation. The NNSA shall be responsible for the interpretation of this 'Code'

  14. Study on uncertainty evaluation system for the safety evaluation of interim spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyeon; Shin, Myeong Won; Rhy, Seok Jin; Cho, Dong Keon; Park, Dong Hwan [Kyunghee Univ., Seoul (Korea, Republic of); Cheong, Beom Jin [Minstry of Science and Technology, Gwacheon (Korea, Republic of)

    1998-03-15

    The main objective os to develop a technical standards for the facility operation of the interm, spent fuel storage facility and to develop a draft for the technical criteria to be legislated. The another objective os to define a uncertainty evaluation system for burn up credit application in criticality analysis and to investigate an applicability of this topic for future regulatory activity. Investigate a status of art for the operational criteria of spent fuel interm wet storage. Collect relevant laws, decree, notices and standards related to the operation of storage facility and study on the legislation system. Develop a draft of technical standards and criteria to be legislated. Define an evaluation system for the uncertainty analysis and study on the status of art in the field of criticality safety analysis. Develop an uncertainty evaluation system in criticality analysis with burnup credit and investigate an applicability as well as its benefits of this policy.

  15. Safety concerning the alteration in fuel material usage (new installation of the uranium enrichment pilot plant) at Ningyo Pass Mine of Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    A report of the Committee on Examination of Nuclear Fuel Safety was presented to the Atomic Energy Commission of Japan, which is concerned with the safety in the alteration of fuel material usage (new installation of the uranium enrichment pilot plant) at the Ningyo Pass Mine. Its safety was confirmed. The alteration, i.e. installation of the uranium enrichment pilot plant, is as follows. Intended for the overall test of centrifugal uranium enrichment technology, the pilot plant includes a two-storied main building of about 9,000 m 2 floor space, containing centrifuges, UF 6 equipment, etc., a uranium storage of about 1,000 m 2 floor space, and a waste water treatment facility, two-storied with about 300 m 2 floor space. The contents of the examination are safety of the facilities, criticality control, radiation control, waste treatment, and effects of accidents on the surrounding environment. (Mori, K

  16. Safety aspects of reprocessing and plutonium fuel facilities in power reactor and nuclear fuel development corporation

    International Nuclear Information System (INIS)

    Sato, S.; Akutsu, H.; Nakajima, K.; Kono, K.; Muto, T.

    1977-01-01

    PNC completed the construction of the first Japanese reprocessing plant in 1974, and the startup is now under way. The plant will have a capacity of 0.7 metric tons of spent fuel per day. Various safety measures for earthquake, radiation, criticality, fire, explosion and leakage of radioactive materials are provided in the plant. 8,000 Ci of Kr-85 and 50 Ci of H-3 per day will be released from the plant to enviroment. Skin dose is conservatively estimated to be about 30 mrem per year. Liquid waste containing 0.7 Ci per day will be discharged into the sea. Whole body dose is conservatively estimated to be 10 mrem per year. R and D for removal of Kr-85 and reducing radioactivity released into the sea are being carried out. Developmental works for solidification of radioactive liquid waste are also being conducted. Safety control in plutonium handling work for both R and D and fuel fabrication has been successfully conducted without significant abnormal occurrence in these ten years. By ''zero-contamination control policy'', surface contamination and airborne contamination in operation rooms are maintained at the background level in usual operation. The intake of plutonium was found at the maximum about one-hundredths of the MPB. External exposure has been generally controlled below three-tenths rem for three months, by shielding and mechanization of process. The radioactivity concentration of exhaust air and liquid effluent disposal is ensured far below the regulation level. Nuclear material control is maintained by a computer system, and no criticality problem has occurred. The safeguard system and installation has been improved, and is sufficient to satisfy the IAEA regulation

  17. Regulatory considerations for computational requirements for nuclear criticality safety

    International Nuclear Information System (INIS)

    Bidinger, G.H.

    1995-01-01

    As part of its safety mission, the U.S. Nuclear Regulatory Commission (NRC) approves the use of computational methods as part of the demonstration of nuclear criticality safety. While each NRC office has different criteria for accepting computational methods for nuclear criticality safety results, the Office of Nuclear Materials Safety and Safeguards (NMSS) approves the use of specific computational methods and methodologies for nuclear criticality safety analyses by specific companies (licensees or consultants). By contrast, the Office of Nuclear Reactor Regulation approves codes for general use. Historically, computational methods progressed from empirical methods to one-dimensional diffusion and discrete ordinates transport calculations and then to three-dimensional Monte Carlo transport calculations. With the advent of faster computational ability, three-dimensional diffusion and discrete ordinates transport calculations are gaining favor. With the proper user controls, NMSS has accepted any and all of these methods for demonstrations of nuclear criticality safety

  18. Safety assessment for Dragon fuel element production

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1963-11-01

    This report shall be the Safety Assessment covering the manufacture of the First Charge of Fuel and Fuel Elements for the Dragon Reactor Experiment. It is issued in two parts, of which Part I is descriptive and Part II gives the Hazards Analysis, the Operating Limitations, the Standing Orders and the Emergency Drill. (author)

  19. A Methodological Framework for Software Safety in Safety Critical Computer Systems

    OpenAIRE

    P. V. Srinivas Acharyulu; P. Seetharamaiah

    2012-01-01

    Software safety must deal with the principles of safety management, safety engineering and software engineering for developing safety-critical computer systems, with the target of making the system safe, risk-free and fail-safe in addition to provide a clarified differentaition for assessing and evaluating the risk, with the principles of software risk management. Problem statement: Prevailing software quality models, standards were not subsisting in adequately addressing the software safety ...

  20. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  1. Modeling the critical safety functions status tree of a NPP using FPGA

    International Nuclear Information System (INIS)

    Farias, Marcos Santana; Oliveira, Mauro Vitor de; Jaime, Guilherme Dutra Gonzaga; Almeida, Jose Carlos Soares de; Augusto, Silas Cordeiro

    2013-01-01

    Field Programmable Gate Arrays (FPGAs) based systems and equipment are beginning to appear in new plants I and C applications, as well as in retrofits for operating plants, in particular for safety applications due to their capability to face the systems obsolescence since they are circuit independent. The circuits implemented can be portable to different FPGAs architectures. Moreover, they reduce complexity for regulatory approval as compared to conventional microprocessor-based systems. Critical safety function (CSF) is the most significant design concept for prioritize operator actions for NPP based on the potential threat to the three barriers (fuel cladding, primary coolant system boundary, and containment) and allows the operator to respond to these threats prior to event diagnosis. CSF has a hierarchical information structure that organizes the system variables affecting the plant safety in terms of goal-means relations. This paper describes the application of FPGA in the implementation of the CSFs status tree logic for a Westinghouse 3-loops NPP simulator. (author)

  2. Abstract of results of safety study. Nuclear fuel cycle field in fiscal 2003

    International Nuclear Information System (INIS)

    2004-11-01

    This report descried the results of studies of nuclear fuel cycle field (nuclear fuel facilities, seismic design, all subjects of environmental radiation and waste disposal, and subjects on nuclear fuel cycle in probabilistic safety assessment) in fiscal 2003 on the basis of the principle project of safety study (from fiscal 2001 to 2005). It consists of four chapters; the first chapter is outline of the principle of project, the second is objects and subjects of safety study in the nuclear fuel cycle field, the third list of questionnaire of results of safety study and the forth investigation of results of safety study in fiscal 2003. There are 49 lists, which include 22 reports on the nuclear fuel facility, one on the seismic design, 4 on the probabilistic safety assessment, 7 on the environmental radiation and 15 on the waste disposal. (S.Y.)

  3. SCALE 5: Powerful new criticality safety analysis tools

    International Nuclear Information System (INIS)

    Bowman, Stephen M.; Hollenbach, Daniel F.; Dehart, Mark D.; Rearden, Bradley T.; Gauld, Ian C.; Goluoglu, Sedat

    2003-01-01

    Version 5 of the SCALE computer software system developed at Oak Ridge National Laboratory, scheduled for release in December 2003, contains several significant new modules and sequences for criticality safety analysis and marks the most important update to SCALE in more than a decade. This paper highlights the capabilities of these new modules and sequences, including continuous energy flux spectra for processing multigroup problem-dependent cross sections; one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations; two-dimensional flexible mesh discrete ordinates code; automated burnup-credit analysis sequence; and one-dimensional material distribution optimization for criticality safety. (author)

  4. SCALE Graphical Developments for Improved Criticality Safety Analyses

    International Nuclear Information System (INIS)

    Barnett, D.L.; Bowman, S.M.; Horwedel, J.E.; Petrie, L.M.

    1999-01-01

    New computer graphic developments at Oak Ridge National Ridge National Laboratory (ORNL) are being used to provide visualization of criticality safety models and calculational results as well as tools for criticality safety analysis input preparation. The purpose of this paper is to present the status of current development efforts to continue to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system. Applications for criticality safety analysis in the areas of 3-D model visualization, input preparation and execution via a graphical user interface (GUI), and two-dimensional (2-D) plotting of results are discussed

  5. Research and design calculation of multipurpose critical assembly using moderated light water and low enriched fuel from 1.6 to 5.0% U-235

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Vo Doan Hai Dang; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Minh Tuan; Nguyen Manh Hung; Pham Quang Huy; Tran Quoc Duong; Tran Tri Vien

    2015-01-01

    Basing on the idea in ??using fuel of nuclear power plants such as PWR (AP-1000) and VVER-1000 with light water as moderation, design calculation of critical assembly was performed to confirm the possibility of using these fuels. Designed critical assembly has simple structure consisting of low enriched fuel from 1.6% to 5% U-235; water has functions as cooling, biological protection and control. Critical assembly is operated at nominal power 100 W with fuel pitch about 2.0 cm. Applications of the critical assembly are quite abundant in basic research, education and training with low investment cost compare with research reactor and easy in operation. So critical assembly can be used for university or training centre for nuclear engineering training. Main objectives of the project are: design calculation in neutronics, thermal hydraulics and safety analysis for critical configuration benchmarks using low enriched fuel; design in mechanical and auxiliary systems for critical assembly; determine technical specifications and estimate construction, installation cost of critical assembly. The process of design, fabrication, installation and construction of critical assembly will be considered with different implementation phases and localization capabilities in installation of critical assembly is highly feasibility. Cost estimation of construction and installation of critical assembly was implemented and showed that investment cost for critical assembly is much lower than research reactor and most of components, systems of critical assembly can be localized with current technique quality of the country. (author)

  6. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  7. Criticality Safety in the Handling of Fissile Material. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-05-15

    This Safety Guide provides guidance and recommendations on how to meet the relevant requirements for ensuring subcriticality when dealing with fissile material and for planning the response to criticality accidents. The guidance and recommendations are applicable to both regulatory bodies and operating organizations. The objectives of criticality safety are to prevent a self-sustained nuclear chain reaction and to minimize the consequences of this if it were to occur. The Safety Guide makes recommendations on how to ensure subcriticality in systems involving fissile materials during normal operation, anticipated operational occurrences, and, in the case of accident conditions, within design basis accidents, from initial design through commissioning, operation, and decommissioning and disposal.

  8. Safety analysis and code development for nuclear fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    We are estimating that the debris containing fuel are piled in the containment and the pressure vessel bottoms of Fukushima-Daiichi NPPs. A radioactive Xe concentration discharged in recriticality is being monitored by utilizing the gas management system set up in NPPs unit 1-3. For this reason, we can confirm the recriticality might not be broken out. However, the debris conditions distributed in the containment vessel and the pressure vessel bottoms are not clear. The internal and external surrounding changes will make recriticality become possible. According to TEPCO's roadmap, TEPCO will launch extracting task within 10 years. Even in the case that the fuel condition changes due to debris relocation and mixture, subcriticality must be secured. Criticality safety analysis with non-uniform effect should therefore be essential for the molten debris. For above reasons, we studies the optimum distributions with some parameters that have a large reactivity change were assessed with OPT-DANT code. Finally, the boron concentration was estimated in order to keep subcriticality. (author)

  9. Inherent and passive safety measures in accelerator driven systems: a safety strategy for ADS

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Morita, K.; Flad, M.

    2001-01-01

    The efficiency of Accelerator Driven Systems (ADSs) for the transmutation and incineration of nuclear waste is strongly related to the utilization of so-called dedicated fuels. In the ideal case these fuels should consist of pure TRUs without fertile materials as 238 U or 232 Th to achieve highest incineration/transmutation rates. Dedicated fuels still have to be developed and programs are under way for their fabrication, irradiation and testing. These fertile-free fuels may suffer from deteriorated thermal or thermo-mechanical properties, as a reduced melting point, reduced thermal conductivity or even thermal instability. First analyses have shown that the use of dedicated fuels may lead to a strong deterioration of the safety parameters of the reactor core as e.g. the void worth, the Doppler or the kinetics quantities as neutron generation time and β eff . In addition, a dedicated core may contain multiple ''critical'' fuel masses, resulting in a considerable recriticality potential. Current knowledge on these dedicated fuels suggests that ''critical'' reactors may not be feasible, because of safety reasons. However, for ADSs, the salient hope has been promoted that due to the subcriticality of the system the poor safety features of such fuels could be coped with. Analyses are presented which show potential safety problems for such dedicated cores. Respecting the results of these analyses a safety strategy is proposed along the lines of defense approach in analogy with ideas formerly developed for fast reactors. Inherent and passive safety measures are integrated into the various defense lines. (author)

  10. Safety analysis of JMTR LEU fuel core, (3)

    International Nuclear Information System (INIS)

    Tsuchida, Noboru; Shiraishi, Tadao; Takahashi, Yutaka; Inada, Seiji; Saito, Minoru; Futamura, Yoshiaki; Kitano, Kyoshiro.

    1992-10-01

    Dose analysis in the safety evaluation and the site evaluation were performed for the JMTR core conversion from MEU fuel to LEU fuel. In the safety evaluation, the effective dose equivalents for the public surrounding the site were estimated in fuel handling accident and flow blockage to coolant channel which were selected as the design basis accidents with release of radioactive fission products to the environment. In the site evaluation, the flow blockage to coolant channel was selected as siting basis events, since this accident had the possibility of spreading radioactive release. Maximum exposure doses for the public were estimated assuming large amounts of fission products to release. It was confirmed that risk of radiation exposure of the public is negligible and the siting is appropriate. (author)

  11. Transmutation of americium in critical reactors

    International Nuclear Information System (INIS)

    Wallenius, J.

    2005-01-01

    Already in 1974, a Los Alamos report suggested that the recycling of higher actinides would be detrimental for the safety of critical reactors. Later investigations confirmed this understanding, and stringent limits on the fraction of minor actinides allowed to be present in the fuel of fast neutron reactors were established. In recent years, and in particular in connection with the generation IV initiative, it has been advocated that recycling of americium in critical reactors is not only feasible, but also a recommendable approach. In the present contribution, it is shown, to the contrary, that introduction of americium into reactors with uranium based fuels deteriorates the safety margin of these reactors to a degree that will not allow consumption of the americium sources present in any economically competitive nuclear fuel cycle. Further, it is shown that uranium and thorium free cores with plutonium based fuels may be designed, that features excellent safety characteristics, as long as americium is not present in the feed. Hence, a closed fuel cycle is suggested, that consists of commercial power production in light water reactors, plutonium burning in uranium and thorium free fast neutron critical reactors, and higher actinide consumption in accelerator driven systems with inert matrix fuel. It is argued that such a fuel cycle (being a refinement of the Double Strata fuel cycle proposed by JAERI and further developed by M. Salvatores) provides a minimum cost penalty for implementing P and T under realistic boundary conditions. (author)

  12. Criticality Safety Information Resource Center Web portal: www.csirc.net

    International Nuclear Information System (INIS)

    Harmon, C.D. II; Jones, T.

    2000-01-01

    The Nuclear Criticality Safety Group (ESH-6) at Los Alamos National Laboratory (LANL) is in the process of collecting and archiving historical and technical information related to nuclear criticality safety from LANL and other facilities. In an ongoing effort, this information is being made available via the Criticality Safety Information Resource Center (CSIRC) web site, which is hosted and maintained by ESH-6 staff. Recently, the CSIRC Web site was recreated as a Web portal that provides the criticality safety community with much more than just archived data

  13. Proceedings of a topical meeting on safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1996-01-01

    The topical meeting on the safety of the nuclear fuel cycle is composed of 17 papers grouped into four sessions which titles are: operational safety in nuclear fuel facilities; safety criteria and regulatory philosophy; plant hazard analysis and mitigation; plant experience and emergency planning

  14. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Stewart, L.; Tonkay, D.

    2004-01-01

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste

  15. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  16. Critical Issues for Particle-Bed Reactor Fuels

    Science.gov (United States)

    Evans, Robert S.; Husser, Dewayne L.; Jensen, Russell R.; Kerr, John M.

    1994-07-01

    Particle-Bed Reactors (PBRs) potentially offer performance advantages for nuclear thermal propulsion, including very high power densities, thrust-to-weight ratios, and specific impulses. A key factor in achieving all of these is the development of a very-high-temperature fuel. The critical issues for all such PBR fuels are uranium loading, thermomechanical and thermochemical stability, compatibility with contacting materials, fission product retention, manufacturability, and operational tolerance for particle failures. Each issue is discussed with respect to its importance to PBR operation, its status among current fuels, and additional development needs. Mixed-carbide-based fuels are recommended for further development to support high-performance PBRs.

  17. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos has been based on a thorough review and understanding of proposed operations of changes to operations, involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgement, that certain accident sequences were credible and had to be reduced in likelihood either by administrative controls or by equipment design and others were not credible, and thus did not warrant expenditures to further reduce their likelihood. The extent of analysis and documentation was generally in proportion to the complexity of the operation but did not include quantified risk assessments. During the last three years nuclear criticality safety related Probabilistic Risk Assessments (PRAs) have been preformed on operations in two Los Alamos facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRA's as they apply to largely ''hands-on'' operations with fissile material for which human errors or equipment failures significant to criticality safety are both rare and unique. Based on these two applications and an appreciation of the historical criticality accident record (frequency and consequences) it is apparent that quantified risk assessments should be performed very selectively

  18. A study of software safety analysis system for safety-critical software

    International Nuclear Information System (INIS)

    Chang, H. S.; Shin, H. K.; Chang, Y. W.; Jung, J. C.; Kim, J. H.; Han, H. H.; Son, H. S.

    2004-01-01

    The core factors and requirements for the safety-critical software traced and the methodology adopted in each stage of software life cycle are presented. In concept phase, Failure Modes and Effects Analysis (FMEA) for the system has been performed. The feasibility evaluation of selected safety parameter was performed and Preliminary Hazards Analysis list was prepared using HAZOP(Hazard and Operability) technique. And the check list for management control has been produced via walk-through technique. Based on the evaluation of the check list, activities to be performed in requirement phase have been determined. In the design phase, hazard analysis has been performed to check the safety capability of the system with regard to safety software algorithm using Fault Tree Analysis (FTA). In the test phase, the test items based on FMEA have been checked for fitness guided by an accident scenario. The pressurizer low pressure trip algorithm has been selected to apply FTA method to software safety analysis as a sample. By applying CASE tool, the requirements traceability of safety critical system has been enhanced during all of software life cycle phases

  19. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  20. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  1. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  2. Lecture notes for criticality safety

    International Nuclear Information System (INIS)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented

  3. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  4. Factors affecting criticality for spent-fuel materials in a geologic setting

    International Nuclear Information System (INIS)

    Gore, B.F.; Jenquin, U.P.; Serne, R.J.

    1981-04-01

    Following closure of a geologic repository for spent fuel, geologic process may change geometries and spacings, and water may enter the repository. In this study the conditions required for the criticality of spent fuel constituents are determined. Many factors affect criticality, and the effects of various possible post-closure changes are investigated. Factors having the greatest effect on criticality are identified to provide guidance for research programs and for design and evaluation studies. Section II describes the calculational methods and computer codes used to determine critical conditions. Section III of this document addresses effects of the fissile content of spent fuel on criticality. Calculations have been performed to determine the minimum critical mass of spent fuel actinides as a function of the duration of in-reactor fuel exposure for a variety of possible conditions. Section IV addresses the conditions required for criticality under a scenario believed to be highly unlikely but having a unique possibility. Pu quantities and concentrations required for criticality without water were determined for various conditions of Pu separation, rock moderation and reflection, rock impurities and isotopic content of the Pu. Section V addresses the possibility of geochemical processes separating Pu from other spent fuel constituents. Solubilities of U and Pu are calculated for groundwaters characteristic of basalt, tuff, granite, bedded and dome salt. Maximum concentrations which could be adsorbed on geologic media in contact with these groundwaters are then calculated. Comparison of these maximum adsorbed concentrations with the results presented in Section IV yields the conclusion that criticality cannot occur in sorbed deposits of Pu in geologic media due to the low Pu concentrations achievable. The possibility of selective Pu precipitation, however, is not ruled out by these arguments

  5. Test process for the safety-critical embedded software

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju; Lee, Jangsoo

    2004-01-01

    Digitalization of nuclear Instrumentation and Control (I and C) system requires high reliability of not only hardware but also software. Verification and Validation (V and V) process is recommended for software reliability. But a more quantitative method is necessary such as software testing. Most of software in the nuclear I and C system is safety-critical embedded software. Safety-critical embedded software is specified, verified and developed according to V and V process. Hence two types of software testing techniques are necessary for the developed code. First, code-based software testing is required to examine the developed code. Second, after code-based software testing, software testing affected by hardware is required to reveal the interaction fault that may cause unexpected results. We call the testing of hardware's influence on software, an interaction testing. In case of safety-critical embedded software, it is also important to consider the interaction between hardware and software. Even if no faults are detected when testing either hardware or software alone, combining these components may lead to unexpected results due to the interaction. In this paper, we propose a software test process that embraces test levels, test techniques, required test tasks and documents for safety-critical embedded software. We apply the proposed test process to safety-critical embedded software as a case study, and show the effectiveness of it. (author)

  6. Evaluation of Saxton critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Noh, Jae Man; Jung, Hyung Guk; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    As a part of International Criticality Safety Benchmark Evaluation Project (ICSBEP), SAXTON critical experiments were reevaluated. The effects of k{sub eff} of the uncertainties in experiment parameters, fuel rod characterization, soluble boron, critical water level, core structure, {sup 241}Am and {sup 241}Pu isotope number densities, random pitch error, duplicated experiment, axial fuel position, model simplification, etc., were evaluated and added in benchmark-model k{sub eff}. In addition to detailed model, the simplified model for Saxton critical experiments was constructed by omitting the top, middle, and bottom grids and ignoring the fuel above water. 6 refs., 1 fig., 3 tabs. (Author)

  7. Evaluation of Saxton critical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Noh, Jae Man; Jung, Hyung Guk; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As a part of International Criticality Safety Benchmark Evaluation Project (ICSBEP), SAXTON critical experiments were reevaluated. The effects of k{sub eff} of the uncertainties in experiment parameters, fuel rod characterization, soluble boron, critical water level, core structure, {sup 241}Am and {sup 241}Pu isotope number densities, random pitch error, duplicated experiment, axial fuel position, model simplification, etc., were evaluated and added in benchmark-model k{sub eff}. In addition to detailed model, the simplified model for Saxton critical experiments was constructed by omitting the top, middle, and bottom grids and ignoring the fuel above water. 6 refs., 1 fig., 3 tabs. (Author)

  8. OECD/NEA expert group on assay data of spent nuclear fuel

    International Nuclear Information System (INIS)

    Rugama, Y.; Gauld, I.; Suyama, Kenya

    2009-01-01

    In the area of criticality safety, management of spent nuclear fuel is a key issue for many NEA member countries. The importance of measured isotopic assay data from Post-Irradiation Examination (PIE) experiments to validate computer code predictions of spent fuel composition used in safety-related studies has long been recognized by members of the OECD/NEA/NSC/WPNCS (Working Party on Nuclear Criticality Safety). These data are particularly important in criticality analyses related to any application of burnup credit as well as to evaluation of criticality and safety in geologic repositories and fuel cycle applications such as reprocessing. Under the auspices of the WPNCS, an Expert Group on assay data has been formed to share best-practice radiochemical analysis methods, computational analysis procedures and data needs, and isotopic validation data. Through member country collaboration, the database of publicly available spent fuel measurements is being revised and expanded to include more recent measurements, with findings to be documented in a state-of-the-art report. (author)

  9. Safety analysis report for the Hanford Critical Mass Laboratory: Supplement No. 2. Experiments with heterogeneous assemblies

    International Nuclear Information System (INIS)

    Gore, B.F.; Davenport, L.C.

    1981-04-01

    Factors affecting the safety of criticality experiments using heterogeneous assemblies are described and assessed. It is concluded that there is no substantial change in safety from experiments already being routinely performed at the Critical Mass Laboratory (CML), and that laboratory and personnel safety are adequately provided by the combination of engineered and administrative safety limits enforced at the CML. This conclusion is based on the analysis of operational controls, potential hazards, and the consequences of accidents. Contingencies considered that could affect nuclear criticality include manual changes in fuel loadings, water flooding, fire, explosion, loss of services, earthquake, windstorm, and flood. Other potential hazards considered include radiation exposure to personnel, and potential releases within the Assembly Room and outside to the environment. It is concluded that the Maximum Credible Nuclear Burst of 3 x 10 18 fissions (which served as the design basis for the CML) is valid for heterogeneous assemblies as well as homogeneous assemblies. This is based upon examination of the results of reactor destructive tests and the results of the SL-1 reactor destructive accident. The production of blast effects which might jeopardize the CML critical assembly room (of thick reinforced concrete) is not considered credible due to the extreme circumstances required to produce blast effects in reactor destructive tests. Consequently, it is concluded that, for experiments with heterogeneous assemblies, the consequences of the Maximum Credible Burst are unchanged from those previously estimated for experiments with homogeneous systems

  10. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy (DOE). The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculation techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirements and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross-section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span approximately 69000 pages and contain 567 evaluations with benchmark specifications for 4874 critical, near-critical or subcritical configurations, 31 criticality alarm placement/shielding configurations with multiple dose points for each, and 207 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the handbook are benchmark specifications for neutron activation foil and thermoluminescent dosimeter measurements performed at the SILENE critical assembly in Valduc, France as part of a joint venture in 2010 between the US DOE and the French Alternative Energies and Atomic Energy Commission (CEA). A photograph of this experiment is shown on the front cover. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these

  11. TVO-92 safety analysis of spent fuel disposal

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Koskinen, L.; Nordman, H.

    1993-08-01

    The spent fuel from the TVO I and TVO II reactors at the Olkiluoto nuclear power plant is planned to be disposed in a repository constructed at a depth of about 500 meters in crystalline bedrock. Teollisuuden Voima Oy (TVO) has carried out preliminary site investigations for spent fuel disposal between 1987 and 1992 at five areas in Finland (Olkiluoto, Kivetty, Romuvaara, Syyry and Veitsivaara). The Safety analysis of the disposal system is presented in the report. Spent fuel will be encapsulated in composite copper-steel canisters. The canister design (ACP canister) consists of an inner container of steel as a load-bearing element and an outer container of oxygen-free copper to provide a shield against corrosion. In the repository the canisters will be emplaced in vertical holes drilled in the floors of horizontal deposition tunnels. The annulus between the canister and the rock is filled with compacted bentonite. The results of the safety analysis attest that the planned disposal system fulfils the safety requirements. Suitable places for the repository can be found at each of the five investigation sites

  12. Investigation regarding the safety of handling the fuel assemblies for the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It was concluded previously that the general inspection of safety and the repair of shielding can be carried out as the fuel assemblies are charged, and the safety can be secured sufficiently. According to the decision by the meeting of cabinet ministers concerned with the nuclear ship ''Mutsu'', the Mutsu General Inspection and Repair Technology Investigation Committee investigated on the basic concept regarding the method and the safety of taking out, transporting and preserving the fuel assemblies. 112 fuel rods and 9 burnable poison rods are arranged into the square grid of 11 x 11 in a fuel assembly, and 32 fuel assemblies are employed. The contents of the investigation are the outline of the fuel assemblies, the present states of nuclear fission products, surface dose rate and soundness of the fuel assemblies, the safety of taking out, transporting and preserving the fuel assemblies, the measures required for securing the safety, and the place for taking out the fuel assemblies. In case of taking out, transporting and preserving the fuel assemblies, it is considered in view of the present state of the fuel assemblies that the safety can be secured sufficiently if the works are carried out carefully by taking the methods and conditions investigated into consideration. Also the committee reached already the conclusion described at the outset. (Kako, I.)

  13. SCALE criticality safety verification and validation package

    International Nuclear Information System (INIS)

    Bowman, S.M.; Emmett, M.B.; Jordan, W.C.

    1998-01-01

    Verification and validation (V and V) are essential elements of software quality assurance (QA) for computer codes that are used for performing scientific calculations. V and V provides a means to ensure the reliability and accuracy of such software. As part of the SCALE QA and V and V plans, a general V and V package for the SCALE criticality safety codes has been assembled, tested and documented. The SCALE criticality safety V and V package is being made available to SCALE users through the Radiation Safety Information Computational Center (RSICC) to assist them in performing adequate V and V for their SCALE applications

  14. Martin Marietta Energy Systems Nuclear Criticality Safety Improvement Program

    International Nuclear Information System (INIS)

    Speas, I.G.

    1987-01-01

    This report addresses questions raised by criticality safety violation at several DOE plants. Two charts are included that define the severity and reporting requirements for the six levels of accidents. A summary is given of all reported criticality incident at the DOE plants involved. The report concludes with Martin Marietta's Nuclear Criticality Safety Policy Statement

  15. A comparative study of the safety and economics of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1988-01-01

    The safety and economic characteristics of the deuterium-tritium (DT), deuterium-deuterium (DD) and deuterium-helium-3 (DHe) fusion fuel cycles have been compared. Representative tokamak designs for each fuel cycle were established based on consistent design criteria, using modest extrapolations of present day technologies. The economic analysis of these designs took into account the possible variation in capital and operating costs, and plant availability. Safety analyses examined tritium inventories, routine tritium releases, inventories of activation products and the level of hazard associated with plant wastes. The annual dose incurred by plant workers was estimated for all fuel cycles. The impact of using a reduced activation steel as a blanket material on the economics and safety during normal conditions for the DD fuel cycle was examined. A loss of coolant accident (LOCA) was investigated to determine the relative safety and economic impact of this event for the various fuel cycles. Finally, a cost/benefit analysis was performed to determine if the increased costs associated with these designs are justified by the improved safety which they provide. (orig.)

  16. Examination on the safety of handling the fuel elements in the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    1977-01-01

    This is the report of the Examination Committee on Total Inspection and Repair Technologies for Mutsu to the Director of Science and Technology Agency and the Minister of Transport dated July 29, 1977. The committee concluded before that the total inspection on safety and the repair of shielding can be carried out as the fuel elements are loaded, and the safety can be secured sufficiently. It was decided at the meeting of ministers concerned with Mutsu on May 17 that the safety concerning handling the fuel elements of Mutsu should be examined by the committee. Under the premise that the fuel elements are loaded again and used after the total inspection on safety and the repair of shielding, the committee examined the methods and the basic concept of safety about the taking-out, transport and preservation of the fuel elements, and the conclusions obtained are reported. The contents of the examination are the outline of the fuel elements, the present condition of the fuel elements, the safety concerning taking-out, transport and preservation of the fuel elements, and the other measures required for securing safety. The committee thinks that the safety can be secured sufficiently if the works are carried out carefully. (Kako, I.)

  17. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  18. Explicit Precedence Constraints in Safety-Critical Java

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Noulard, Eric; Pagetti, Claire

    2013-01-01

    Safety-critical Java (SCJ) aims at making the amenities of Java available for the development of safety-critical applications. The multi-rate synchronous language Prelude facilitates the specification of the communication and timing requirements of complex real-time systems. This paper combines...... to provide explicit support for precedence constraints. We present the considerations behind the design of this extension and discuss our experiences with a first prototype implementation based on the SCJ implementation of the Java Optimized Processor....

  19. Criticality analysis of a spent fuel shipping cask

    International Nuclear Information System (INIS)

    Pena, J.

    1984-01-01

    Criticality analysis for a system yields to the determination of the multiplication factor. Should such analysis be performed for a spent fuel shipping cask some standards must be accomplished. In this study a sample design is analyzed and criticality results are presented. (author)

  20. Criticality safety benchmarking of PASC-3 and ECNJEF1.1

    International Nuclear Information System (INIS)

    Li, J.

    1992-09-01

    To validate the code system PASC-3 and the multigroup cross section library ECNJEF1.1 on various applications many benchmarks are required. This report presents the results of critically safety benchmarking for five calculational and four experimental benchmarks. These benchmarks are related to the transport package of fissile materials such as spent fuel. The fissile nuclides in these benchmarks are 235 U and 239 Pu. The modules of PASC-3 which have been used for the calculations are BONAMI, NITAWL and KENO.5A. The final results for the experimental benchmarks do agree well with experimental data. For the calculational benchmarks the results presented here are in reasonable agreement with the results from other investigations. (author). 8 refs.; 20 figs.; 5 tabs

  1. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  2. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  3. Safety and regulatory aspects of front end facilities of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Khan, Kirity Bhushan; Jha, S.K.; Bhasin, Vivek; Behere, P.G.

    2017-01-01

    Nuclear Fuels Group of BARC consists of various divisions with diverse activities but impeccable safety records. This has been made possible with strict safety culture among trained personnel across all divisions. The major activities of this group encompass the front end fuel fabrication facilities for thermal and fast reactors and post irradiation examination of fuel and structural materials. The group has been responsible for delivering departmental targets, as and when required, fulfilling all safety and security requirements. The present article covers the safety and regulatory aspects of this group with special emphasis on group safety management by the administrative/organizational control, the procedure followed for regulatory review and control which are carried out and the laid down procedures for identifying, classifying and reporting of safety related incidents. (author)

  4. Prediction calculation of HTR-10 fuel loading for the first criticality

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Gu Yuxiang; Shan Wenzhi

    2001-01-01

    The 10 MW high temperature gas cooled reactor (HTR-10) was built at Institute of Nuclear Energy Technology, Tsinghua University, and the first criticality was attained in Dec. 2000. The high temperature gas cooled reactor physics simulation code VSOP was used for the prediction of the fuel loading for HTR-10 first criticality. The number of fuel element and graphite element was predicted to provide reference for the first criticality experiment. The prediction calculations toke into account the factors including the double heterogeneity of the fuel element, buckling feedback for the spectrum calculation, the effect of the mixture of the graphite and the fuel element, and the correction of the diffusion coefficients near the upper cavity based on the transport theory. The effects of impurities in the fuel and the graphite element in the core and those in the reflector graphite on the reactivity of the reactor were considered in detail. The first criticality experiment showed that the predicted values and the experiment results were in good agreement with little relative error less than 1%, which means the prediction was successful

  5. The nuclear fuel cycle including essential aspects of safety

    International Nuclear Information System (INIS)

    Warnemuende, R.; May, H.

    1978-11-01

    When judging nuclear energy not only the reactor but also the whole fuel cycle is of importance. The fuel cycle consists of the supply, i.e. the process from uranium ore to the insertion of fuel elements into the reactor and the waste management, the removal of fuel elements from the reactor and the final storage of radioactive waste. The different stages of the nuclear fuel cycle are well known with regard to their technical difficulties, their problems of industrial safety and pollution. Although it is possible to compare them qualitatively, they still differ partly to a considerable extent, from a quantitative point of view. However, the fact that technical solutions are available for all kinds of tasks can be stated. It is significant for the Federal Republic of Germany that all essential preparatory work for closing the nuclear fuel cycle has been carried out and that safety problems will no longer be in the way of the large-scale realization of uranium enrichment, reprocessing of nuclear fuels and final storage of radioactive waste. Further research and development activities will serve its technical and economic optimization. (orig.) [de

  6. Outline of results of safety research (in nuclear fuel cycle field in fiscal year 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The safety research in Power Reactor and Nuclear Fuel Development Corporation in fiscal year 1996 has been carried out based on the basic plan of safety research (from fiscal year 1996 to 2000) which was decided in March, 1996. In this report, on nuclear fuel cycle field, namely all the subjects in the fields of nuclear fuel facilities, environmental radioactivity and waste disposal, and the subjects related to nuclear fuel facilities among the fields of aseismatic and probabilistic safety assessments, the results of research in fiscal year 1996, the first year of the 5-year project, are summarized together with the outline of the basic plan of safety research. The basic policy, objective and system for promotion of the safety research are described. The objectives of the safety research are the advancement of safety technology, the safety of facilities, stable operation techniques, the safety design and the evaluation techniques of next generation facilities, and the support of transferring nuclear fuel cycle to private businesses. The objects of the research are uranium enrichment, fuel fabrication and reprocessing, and waste treatment and storage. 52 investigation papers of the results of the safety research in nuclear fuel cycle field in fiscal year 1996 are collected in this report. (K.I.)

  7. Criticality experiments with fast flux test facility fuel pins

    International Nuclear Information System (INIS)

    Bierman, S.R.

    1990-11-01

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO 2 -UO 2 fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs

  8. Use of a web site to enhance criticality safety training

    International Nuclear Information System (INIS)

    Huang, Song T.; Morman, James A.

    2003-01-01

    Establishment of the NCSP (Nuclear Criticality Safety Program) website represents one attempt by the NCS (Nuclear Criticality Safety) community to meet the need to enhance communication and disseminate NCS information to a wider audience. With the aging work force in this important technical field, there is a common recognition of the need to capture the corporate knowledge of these people and provide an easily accessible, web-based training opportunity to those people just entering the field of criticality safety. A multimedia-based site can provide a wide range of possibilities for criticality safety training. Training modules could range from simple text-based material, similar to the NCSET (Nuclear Criticality Safety Engineer Training) modules, to interactive web-based training classes, to video lecture series. For example, the Los Alamos National Laboratory video series of interviews with pioneers of criticality safety could easily be incorporated into training modules. Obviously, the development of such a program depends largely upon the need and participation of experts who share the same vision and enthusiasm of training the next generation of criticality safety engineers. The NCSP website is just one example of the potential benefits that web-based training can offer. You are encouraged to browse the NCSP website at http://ncsp.llnl.gov. We solicit your ideas in the training of future NCS engineers and welcome your participation with us in developing future multimedia training modules. (author)

  9. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    International Nuclear Information System (INIS)

    Hopper, Calvin Mitchell

    2011-01-01

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT and SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT and SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National

  10. Safety analysis of the critical facility for AHWR and 500 MWe PHWR

    International Nuclear Information System (INIS)

    Pushpam, Neelima Prasad; Arvind Kumar; Srivenkatesan, R.

    2002-01-01

    Full text: The initiating event for the design basis reactivity accident is the uncontrolled moderator pump up at criticality. This uncontrolled pump up transient is considered to be the enveloping scenario and has been analysed for the reference core with AHWR fuel using point kinetics model. It is the most reactive core among the three with a small b value (core average b= 5.96 mk). The maximum pump rate in critical facility is limited to 300 litres/min which corresponds to the maximum rate of reactivity addition about 0.1 mk/sec. On any reactor trip 6 shut-off rods are inserted into the core along with partial moderator dumps. The reactor is provided with independent safety and regulating channels (SC and RC) to monitor reactor neutronic power and initiate trip at different power levels. After the reactor trips five of the six fast acting shut-off rods (maximum worth rod is unavailable) fall under gravity and at the same time moderator dump is initiated. We have considered shut off rods and moderator dump as two independent shutdown systems. The analysis shows that even if the reactor trips at the high power at 550 watt ignoring the earlier trips, the fuel temperature does not rise beyond 50 degC and the total energy released is less than 20 kW. We also analysed the transients due to uncontrolled withdrawal of absorber rod. In this case also we found that the fuel temperature became ∼54 degC and the total energy release was about 25 kW. The fuel can withstand this temperature. This shows that reactor is safe

  11. Supplement report to the Nuclear Criticality Safety Handbook of Japan

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Komuro, Yuichi; Nakajima, Ken

    1995-10-01

    Supplementing works to 'The Nuclear Criticality Safety Handbook' of Japan have been continued since 1988, the year the handbook edited by the Science and Technology Agency first appeared. This report publishes the fruits obtained in the supplementing works. Substantial improvements are made in the chapters of 'Modelling the evaluation object' and 'Methodology for analytical safety assessment', and newly added are chapters of 'Criticality safety of chemical processes', 'Criticality accidents and their evaluation methods' and 'Basic principles on design and installation of criticality alarm system'. (author)

  12. The International Criticality Safety Benchmark Evaluation Project (ICSBEP)

    International Nuclear Information System (INIS)

    Briggs, J.B.

    2003-01-01

    The International Criticality Safety Benchmark Evaluation Project (ICSBEP) was initiated in 1992 by the United States Department of Energy. The ICSBEP became an official activity of the Organisation for Economic Cooperation and Development (OECD) - Nuclear Energy Agency (NEA) in 1995. Representatives from the United States, United Kingdom, France, Japan, the Russian Federation, Hungary, Republic of Korea, Slovenia, Yugoslavia, Kazakhstan, Israel, Spain, and Brazil are now participating. The purpose of the ICSBEP is to identify, evaluate, verify, and formally document a comprehensive and internationally peer-reviewed set of criticality safety benchmark data. The work of the ICSBEP is published as an OECD handbook entitled 'International Handbook of Evaluated Criticality Safety Benchmark Experiments.' The 2003 Edition of the Handbook contains benchmark model specifications for 3070 critical or subcritical configurations that are intended for validating computer codes that calculate effective neutron multiplication and for testing basic nuclear data. (author)

  13. Criticality safety and facility design considerations

    International Nuclear Information System (INIS)

    Waltz, W.R.

    1991-06-01

    Operations with fissile material introduce the risk of a criticality accident that may be lethal to nearby personnel. In addition, concerns over criticality safety can result in substantial delays and shutdown of facility operations. For these reasons, it is clear that the prevention of a nuclear criticality accident should play a major role in the design of a nuclear facility. The emphasis of this report will be placed on engineering design considerations in the prevention of criticality. The discussion will not include other important aspects, such as the physics of calculating limits nor criticality alarm systems

  14. OECD/NEA WGFCS Workshop: Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear fuel is produced, processed, and stored mainly in industrial-scale facilities. Uranium ores are processed and refined to produce a pure uranium salt stream, Uranium is converted and enriched, nuclear fuel is fabricated (U fuel and U/Pu fuel for the closed cycle option); and spent fuel is stored and reprocessed in some countries (close cycle option). Facilities dedicated to the research and development of new fuel or new processes are also considered as Fuel Cycle Facilities. The safety assessment of nuclear facilities has often been led by the methodology and techniques initially developed for Nuclear Power Plants. As FCFs cover a wide diversity of installations the various approaches of national regulators, and their technical support organizations, for the Safety Assessment of Fuel Cycle Facilities are also diverse, as are the approaches by their industries in providing safety justifications for their facilities. The objective of the Working Group on Fuel Cycle Safety is to advance the understanding for both regulators and operators of relevant aspects of nuclear fuel cycle safety in member countries. A large amount of experience is available in safety assessment of FCFs, which should be shared to develop ideas in this field. To contribute to this task, the Workshop on 'Safety Assessment of Fuel Cycle Facilities - Regulatory Approaches and Industry Perspectives' was held in Toronto, on 27 - 29 September 2011. The workshop was hosted by Canadian Nuclear Safety Commission. The current proceedings provide summary of the results of the workshop with the text of the papers given and presentations made

  15. Fuel and canister process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Werme, Lars

    2006-10-01

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel

  16. Fuel and canister process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Werme, Lars (ed.)

    2006-10-15

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel.

  17. Fission, critical mass and safety-a historical review

    International Nuclear Information System (INIS)

    Meggitt, Geoff

    2006-01-01

    Since the discovery of fission, the notion of a chain reaction in a critical mass releasing massive amounts of energy has haunted physicists. The possibility of a bomb or a reactor prompted much of the early work on determining a critical mass, but the need to avoid an accidental critical excursion during processing or transport of fissile material drove much that took place subsequently. Because of the variety of possible situations that might arise, it took some time to develop adequate theoretical tools for criticality safety and the early assessments were based on direct experiment. Some extension of these experiments to closely similar situations proved possible, but it was not until the 1960s that theoretical methods (and computers to run them) developed enough for them to become reliable assessment tools. Validating such theoretical methods remained a concern, but by the end of the century they formed the backbone of criticality safety assessment. This paper traces the evolution of these methods, principally in the UK and USA, and summarises some related work concerned with the nature of criticality accidents and their radiological consequences. It also indicates how the results have been communicated and used in ensuring nuclear safety. (review)

  18. USAEC Controls for Nuclear Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    McCluggage, W. C. [Division of Operational Safety, United States Atomic Energy Commission Washington, DC (United States)

    1966-05-15

    This is a paper written to provide a broad general view of the United States Atomic Energy Commission's controls for nuclear criticality safety within its own facilities. Included also is a brief' discussion of the USAEC's methods of obtaining assurance that the controls are being applied. The body of the document contains three sections. The first two describe the functions of the USAEC; the third deals with the contractors. The provisions of the Atomic Energy Act applicable to health and safety are discussed in relation to nuclear criticality safety. The use of United States Atomic Energy Commission manual chapters and Federal regulations is described. The functions of the USAEC Headquarters' offices and the operations offices are briefly outlined. Comments regarding the USAEC's inspection, auditing and appraisal programmes are included. Also briefly mentioned are the basic qualifications which must be met to become a contractor to possess and process or use fissionable materials. On the plant, factory or facility level the duties and responsibilities of industrial management are briefly outlined. The fundamental standards and their origin, together with the principal documents and guides are mentioned. The chief methods of control used by contractors operating large USAEC facilities and plants are described and compared. These include diagrams of how a typical nuclear criticality safety problem is handled from inception, design, construction and finally plant operation. Also included is a brief discussion of the contractors' methods of assuring strict employee compliance with the operating rules and limits. (author)

  19. Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Monahan, S.P.; McLaughlin, T.P.

    1997-01-01

    Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory's Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, was also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ''Conduct of Business in the Nuclear Criticality Safety Group.'' There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets

  20. Proceedings of the first annual Nuclear Criticality Safety Technology Project

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1994-09-01

    This document represents the published proceedings of the first annual Nuclear Criticality Safety Technology Project (NCSTP) Workshop, which took place May 12--14, 1992, in Gaithersburg, Md. The conference consisted of four sessions, each dealing with a specific aspect of nuclear criticality safety issues. The session titles were ''Criticality Code Development, Usage, and Validation,'' ''Experimental Needs, Facilities, and Measurements,'' ''Regulation, Compliance, and Their Effects on Nuclear Criticality Technology and Safety,'' and ''The Nuclear Criticality Community Response to the USDOE Regulations and Compliance Directives.'' The conference also sponsored a Working Group session, a report of the NCSTP Working Group is also presented. Individual papers have been cataloged separately

  1. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    International Nuclear Information System (INIS)

    Bess, John D.; Briggs, J. Blair; Nigg, David W.

    2009-01-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  2. Radiological and environmental safety aspects of uranium fuel fabrication plants at Nuclear Fuel Complex, Hyderabad

    International Nuclear Information System (INIS)

    Viswanathan, S.; Surya Rao, B.; Lakshmanan, A.R.; Krishna Rao, T.

    1991-01-01

    Nuclear Fuel Complex, Hyderabad manufactures uranium dioxide fuel assemblies for PHWRs and BWRs operating in India. Starting materials are magnesium diuranate received from UCIL, Jaduguda and imported UF. Both of these are converted to UO 2 pellets by identical chemical processes and mechanical compacting. Since the uranium handled here is free of daughter product activities, external radiation is not a problem. Inhalation of airborne U compounds is one of the main source of exposure. Engineered protective measures like enclosures around U bearing powder handling equipment and local exhausts reduce worker's exposure. Installation of pre-filters, wet rotoclones and electrostatic precipitators in the ventillation system reduces the release of U into the environment. The criticality hazard in handling slightly enriched uranium is very low due to the built-in control based on geometry and inventory. Where airborne uranium is significant, workers are provided with protective respirators. The workers are regularly monitored for external exposure and also for internal exposure. The environmental releases from the NFC facility is well controlled. Soil, water and air from the NFC environment are routinely collected and analysed for all the possible pollutants. The paper describes the Health Physics experience during the last five years on occupational exposures and on environmental surveillance which reveals the high quality of safety observed in our nuclear fuel fabricating installations. (author). 4 refs., 6 tabs

  3. Calculational study for criticality safety data of fissionable actinides

    International Nuclear Information System (INIS)

    Nojiri, Ichiro; Fukasaku, Yasuhiro.

    1997-01-01

    This study has been carried out to obtain basic criticality safety characteristics of minor actinides nuclides. Criticality safety data of minor actinides nuclides have been surveyed through public literatures. Critical mass of seven nuclides, Np-237, Am-241, Am-242m, Am-243, Cm-243, Cm-244 and Cm-245, have been calculated by using two code systems of criticality safety analysis, SCALE-4 and MCNP4A, under some material and reflector conditions. Some applicable cross-section libraries have been used for each code systems. Calculated data have been compared with each other and with published data. The results of this comparison shows that there is no discrepancy within the computational codes and the calculated data is strongly depend on the cross-section library. (author)

  4. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  5. The evaluation of set of criticality parameters using scale system

    International Nuclear Information System (INIS)

    Abe, Alfredo; Sanchez, Andrea; Yamaguchi, Mistuo

    2009-01-01

    In evaluating the criticality safety of the nuclear fuel facility, it is important to apply a consistent methodology, which consider every aspects concerning various types of criticality parameters. Usually, the critical parameters are compiled and arranged into handbooks, and these handbooks are based on experience with nuclear facilities, experimental data from criticality safety research facilities, and theoretical studies performed using numerical simulations. Most of criticality safety evaluation can be addressed using the criticality parameters data directly from handbook, but some critical parameters for a specific chemical mixtures and/or enrichment are not be available. Consequently, not available parameters has to be evaluated. This work present the methodology to evaluate a set of critical parameters using SCALE system for various types of mixtures present at nuclear fuel cycle facilities for two different level of enrichment, the results are verified in the independent calculation using MCNP Monte Carlo Code. (author)

  6. Nuclear Criticality Safety Organization qualification program. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of highly qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document defines the Qualification Program to address the NCSO technical and managerial qualification as required by the Y-12 Training Implementation Matrix (TIM). It is implemented through a combination of LMES plant-wide training courses and professional nuclear criticality safety training provided within the organization. This Qualification Program is applicable to technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who perform the NCS tasks or serve NCS-related positions as defined in sections 5 and 6 of this program

  7. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  8. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  9. Safety assessment of OPG's used fuel for dry storage

    International Nuclear Information System (INIS)

    Roman, H.; Khan, A.

    2005-01-01

    'Full text:' Ontario Power Generation (OPG) operates the Pickering Waste Management Facility (PWMF) and Western Waste Management Facility (WWMF) where OPG has been storing 10-year or older used fuel in the Dry Storage Containers (DSCs) since 1996 and 2003 respectively. The construction licence for the Darlington Used Fuel Dry Storage Facility (DUFDSF) was obtained in August 2004. Safety assessment of the used fuel for dry storage is required to support each request for regulatory approval to construct and operate a dry storage facility. The objective of the safety assessment is to assess the used fuel performance under normal operation and postulated credible accident scenarios. A reference used fuel bundle is defined based on the operating history and data on fuel discharged from the reactors of the specific nuclear generating station. The characteristics of the reference used fuel bundle are used to calculate the nuclide inventory, source term and decay heat used for the assessment. When assessing malfunctions and accidents, postulated external and internal events are considered. Consideration is also given to the design basis accidents of the specific nuclear generating station that could affect the used fuel under dry storage. For those events deemed credible (i.e. probability > 10 -7 ), a bounding fuel failure consequence is predicted. Given the chemical characteristics of the radionuclides in used fuel, the design of the CANDU fuel and the conditions inside the DSC, in the event that a used fuel bundle should become damaged during used fuel dry storage operations, the only significant radionuclides species that are volatile are krypton-85 and tritium. Release of these radionuclides is considered in calculating public and worker doses. (author)

  10. Administrative practices for nuclear criticality safety, ANSI/ANS-8.19-1996

    International Nuclear Information System (INIS)

    Smith, D.R.

    1996-01-01

    American National Standard, open-quotes Administrative Practices for Nuclear Criticality Safety,close quotes American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.19-1996, addresses the responsibilities of management, supervision, and the criticality safety staff in the administration of an effective criticality safety program. Characteristics of operating procedures, process evaluations, material control procedures, and emergency plans are discussed

  11. The study of the installation of spent fuel interim storage facility from safety aspect point of view

    International Nuclear Information System (INIS)

    Djunaidi, Prayogo S.

    1999-01-01

    The installation of the ISFSF of the RSG-GAS has been come a cureneed, since the RSG-GAS has been operating for more than 10 years. The spent fuel stored in the reactor storage pool in creasing from time to time and therefore a long time storage is needed until the decommissioning of the reactor. The safety aspect related to the installation of the ISFSF has been studied, but the most important aspect are prevention of criticality of the spen fuel in the storage. The radiation dose must be less than that has been recommended by ICRP and the release of the radioactive material must be avoided . In this paper one of the safety aspects i.e. the radiological aspect is described, while the other aspects are referenced to safety analysis report of the facility. From the calculation it can be seen that in accident condition the total radiation dose received by the handling operator is 1.06 mSv and 1.6 mSv resulted from Kr-85 and 1-131. This is lower than the limitation recommended by the ICRP No. 60.1990. Verification for other safety aspect of the facility in still needed

  12. Nuclear criticality safety. Chapter 0530 of AEC manual

    International Nuclear Information System (INIS)

    2006-01-01

    The programme objectives of this chapter of the U.S. Atomic Energy Commission manual on nuclear criticality safety are to protect the health and safety of the public and of the government and contractor personnel working in plants that handle fissionable material and to protect public and private property from the consequences of a criticality accident occurring in AEC-owned plants and other AEC-contracted activities involving fissionable materials

  13. Nuclear critical safety analysis for UX-30 transport of freight package

    International Nuclear Information System (INIS)

    Quan Yanhui; Zhou Qi; Yin Shenggui

    2014-01-01

    The nuclear critical safety analysis and evaluation for UX-30 transport freight package in the natural condition and accident condition were carried out with MONK-9A code and MCNP code. Firstly, the critical benchmark experiment data of public in international were selected, and the deflection and subcritical limiting value with MONK-9A code and MCNP code in calculating same material form were validated and confirmed. Secondly, the neutron efficiency multiplication factors in the natural condition and accident condition were calculated and analyzed, and the safety in transport process was evaluated by taking conservative suppose of nuclear critical safety. The calculation results show that the max value of k eff for UX-30 transport freight package is less than the subcritical limiting value, and the UX-30 transport freight package is in the state of subcritical safety. Moreover, the critical safety index (CSI) for UX-30 package can define zero based on the definition of critical safety index. (authors)

  14. Criticality safety engineer training at WSRC

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1993-01-01

    Two programs designed to prepare engineers for certification as criticality safety engineers are offered at Westinghouse Savannah River Company (WSRC). One program, Student On Loan Criticality Engineer Training (SOLCET), is an intensive 2-yr course involving lectures, rigorous problem assignments, and mentoring. The other program, In-Field Criticality Engineer Training (IN-FIELD), is a less intensive series of lectures and problem assignments. Both courses are conducted by members of the Applied Physics Group (APG) of the Savannah River Technical Center, the organization at WSRC responsible for the operation and maintenance of criticality codes and for training of code users

  15. DIPS space exploration initiative safety

    International Nuclear Information System (INIS)

    Dix, T.E.

    1991-01-01

    The Dynamic Isotope Power Subsystem has been identified for potential applications for the Space Exploration Initiative. A qualitative safety assessment has been performed to demonstrate the overall safety adequacy of the Dynamic Isotope Power Subsystem for these applications. Mission profiles were defined for reference lunar and martian flights. Accident scenarios were qualitatively defined for all mission phases. Safety issues were then identified. The safety issues included radiation exposure, fuel containment, criticality, diversion, toxic materials, heat flux to the extravehicular mobility unit, and disposal. The design was reviewed for areas where safety might be further improved. Safety would be improved by launching the fuel separate from the rest of the subsystem on expendable launch vehicles, using a fuel handling tool during unloading of the hot fuel canister, and constructing a cage-like structure around the reversible heat removal system lithium heat pipes. The results of the safety assessment indicate that the DIPS design with minor modifications will produce a low risk concept

  16. IAEA safety requirements for safety assessment of fuel cycle facilities and activities

    International Nuclear Information System (INIS)

    Jones, G.

    2013-01-01

    The IAEA's Statute authorises the Agency to establish standards of safety for protection of health and minimisation of danger to life and property. In that respect, the IAEA has established a Safety Fundamentals publication which contains ten safety principles for ensuring the protection of workers, the public and the environment from the harmful effects of ionising radiation. A number of these principles require safety assessments to be carried out as a means of evaluating compliance with safety requirements for all nuclear facilities and activities and to determine the measures that need to be taken to ensure safety. The safety assessments are required to be carried out and documented by the organisation responsible for operating the facility or conducting the activity, are to be independently verified and are to be submitted to the regulatory body as part of the licensing or authorisation process. In addition to the principles of the Safety Fundamentals, the IAEA establishes requirements that must be met to ensure the protection of people and the environment and which are governed by the principles in the Safety Fundamentals. The IAEA's Safety Requirements publication 'Safety Assessment for Facilities and Activities', establishes the safety requirements that need to be fulfilled in conducting and maintaining safety assessments for the lifetime of facilities and activities, with specific attention to defence in depth and the requirement for a graded approach to the application of these safety requirements across the wide range of fuel cycle facilities and activities. Requirements for independent verification of the safety assessment that needs to be carried out by the operating organisation, including the requirement for the safety assessment to be periodically reviewed and updated are also covered. For many fuel cycle facilities and activities, environmental impact assessments and non-radiological risk assessments will be required. The

  17. Criticality Safety Basics for INL Emergency Responders

    Energy Technology Data Exchange (ETDEWEB)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  18. Safety of operations in the manufacture of driver fuel for the first charge of the Dragon Reactor and modifications to the safety document for the Dragon Fuel Element Production Building

    International Nuclear Information System (INIS)

    Beutler, H.; Cross, J.; Flamm, J.

    1965-01-01

    The manufacture of the zirconium containing 'driver' fuel and fuel elements for the First Charge of the Dragon Reactor Experiment has been completed without incident. This is a report on the safety of operations in the Dragon Fuel Element Production Building during an approximately six month period when the 'driver' fuel was manufactured and 25 elements containing this fuel were assembled and exported to the Reactor Building. The opportunity is taken to bring the Safety Document up-to-date and to report on any significant operational failures of equipment. (author)

  19. Precautions for preventing criticality at plutonium fuel treatment facilities

    International Nuclear Information System (INIS)

    Deworm, J.P.; Fieuw, G.; Cank, H. de

    1976-01-01

    Four criticality accidents took place between 1958 and 1964 at fuel processing plants using wet methods. So far accident of this type has taken place at production units where fissionable material is used. The prevention of criticality is one of the major concerns of the officials in charge of the plutonium fuel research laboratories operated at the Mol Nuclear Energy Study Centre by the SCK/CEN-Belgonucleaire Association. The means of preventing such an accident are of three types: introducing different types of treatment in well-defined work units; thorough analysis of planned experiments or fabrication programmes to determine the sub-criticality factors; application of technical and administrative procedures which ensure that the facilities are always sub-critical during the treatment and storage of fissionable materials. The installation includes a detection and warning system and provision is made for the immediate evacuation of staff should a crticality incident occur. The effects of a critical excursion on the building have been assessed. (author)

  20. Criticality safety analysis for plutonium dissolver using silver mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Umeda, Miki; Sugikawa, Susumu; Nakamura, Kazuhito; Egashira, Tetsurou

    1998-08-01

    Design and construction of a plutonium dissolver using silver mediated electrolytic oxidation method are promoted in NUCEF. Criticality safety analysis for the plutonium dissolver is described in this report. The electrolytic plutonium dissolver consists of connection pipes and three pots for MOX powder supply, circulation and electrolysis. The criticality control for the dissolver is made by geometrically safe shape with mass limitation. Monte Carlo code KENO-IV using MGCL-137 library based on ENDF/B-IV was used for the criticality safety analysis for the plutonium dissolver. Considering the required size for construction and criticality safety, diameter of pot and distance between two pots were determined. On this condition, the criticality safety analysis for the plutonium dissolver with connection pipes was carried out. As the result of the criticality safety analysis, an effective neutron multiplication factor keff of 0.91 was obtained and the criticality safety of the plutonium dissolver was confirmed on the basis of criteria of ≤0.95. (author)

  1. Handbook on criticality. Vol. 1. Criticality and nuclear safety; Handbuch zur Kritikalitaet. Bd. 1. Kritikalitaet und nukleare Sicherheit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-04-15

    This handbook was prepared primarily with the aim to provide information to experts in industry, authorities or research facilities engaged in criticality-safety-related problems that will allow an adequate and rapid assessment of criticality safety issues already in the planning and preparation of nuclear facilities. However, it is not the intention of the authors of the handbook to offer ready solutions to complex problems of nuclear safety. Such questions have to remain subject to an in-depth analysis and assessment to be carried out by dedicated criticality safety experts. Compared with the previous edition dated December 1998, this handbook has been further revised and supplemented. The proven basic structure of the handbook remains unchanged. The handbook follows in some ways similar criticality handbooks or instructions published in the USA, UK, France, Japan and the former Soviet Union. The expedient use of the information given in this handbook requires a fundamental understanding of criticality and the terminology of nuclear safety. In Vol. 1, ''Criticality and Nuclear Safety'', therefore, first the most important terms and fundamentals are introduced and explained. Subsequently, experimental techniques and calculation methods for evaluating criticality problems are presented. The following chapters of Vol. 1 deal i. a. with the effect of neutron reflectors and absorbers, neutron interaction, measuring methods for criticality, and organisational safety measures and provide an overview of criticality-relevant operational experience and of criticality accidents and their potential hazardous impact. Vol. 2 parts 1 and 2 finally compile criticality parameters in graphical and tabular form. The individual graph sheets are provided with an initially explained set of identifiers, to allow the quick finding of the information of current interest. Part 1 includes criticality parameters for systems with {sup 235}U as fissile material, while part

  2. Nuclear Criticality Technology and Safety Project parameter study database

    International Nuclear Information System (INIS)

    Toffer, H.; Erickson, D.G.; Samuel, T.J.; Pearson, J.S.

    1993-03-01

    A computerized, knowledge-screened, comprehensive database of the nuclear criticality safety documentation has been assembled as part of the Nuclear Criticality Technology and Safety (NCTS) Project. The database is focused on nuclear criticality parameter studies. The database has been computerized using dBASE III Plus and can be used on a personal computer or a workstation. More than 1300 documents have been reviewed by nuclear criticality specialists over the last 5 years to produce over 800 database entries. Nuclear criticality specialists will be able to access the database and retrieve information about topical parameter studies, authors, and chronology. The database places the accumulated knowledge in the nuclear criticality area over the last 50 years at the fingertips of a criticality analyst

  3. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  4. Fuel safety criteria in NEA member countries - Compilation of responses received from member countries

    International Nuclear Information System (INIS)

    2003-03-01

    In 2001 the Committee on the Safety of Nuclear Installations (CSNI) issued a report on Fuel Safety Criteria Technical Review. The objective was to review the present fuel safety criteria and judge to which extent they are affected by the 'new' design elements, such as different cladding materials, higher burnup, the use of MOX fuels, etc. The report stated that the current framework of fuel safety criteria remains generally applicable, being largely unaffected by the 'new' or modern design elements. The levels (numbers) in the individual safety criteria may, however, change in accordance with the particular fuel and core design features. Some of these levels have already been - or are continuously being - adjusted. The level adjustments of several other criteria (RIA, LOCA) also appears to be needed, on the basis of experimental data and the analysis thereof. As a follow-up, among its first tasks, the CSNI Special Expert Group on Fuel Safety Margins (SEG FSM) initiated the collection of information on the present fuel safety criteria used in NEA member states with the objective to solicit national practices in the use of fuel safety criteria, in particular to get information on their specific national levels/values, including their recent adjustments, and to identify the differences and commonalties between the different countries. Two sources of information were used to produce this report: a compilation of responses to a questionnaire prepared for the June 2000 CNRA meeting, and individual responses from the SEGFSM members to the new revised questionnaire issued by the task Force preparing this report. In accordance with the latter, the fuel safety criteria discussed in this report were divided into three categories: (A) safety criteria - criteria imposed by the regulator; (B) operational criteria - specific to the fuel design and provided by the fuel vendor as part of the licensing basis; (C) design criteria - limits employed by vendors and/or utilities for fuel

  5. TVSA-T fuel assembly for 'Temelin' NPP. Main results of design and safety analyses. Trends of development

    International Nuclear Information System (INIS)

    Samojlov, O.B.; Kajdalov, V.B.; Falkov, A.A.; Bolnov, V.A.; Morozkin, O.N.; Molchanov, V.L.; Ugryumov, A.V.

    2010-01-01

    TVSA is a fuel assembly with rigid skeleton formed by 6 angle pieces and SG is successfully operated at 17 VVER-1000 power units of Kalinin NPP, as well as at Ukrainian and Bulgarian NPPs. Based on a contract for fuel supply to the Temelin NPP, the TVSA-T fuel assembly was developed, building on proven solutions confirmed by operation of TVSA modifications during 4-6 years and by the results of post-irradiation examination. The TVSA-T design includes combined spacer grids (SG+MG) and by fuel column elongation by 150 mm. A set of analyses and experiments was performed to validate the design, including thermal hydraulic tests, validation of critical heat flux correlation for TVSA-T, integrated mechanical, vibration and lifetime tests. A licence to use the fuel has been granted by the Czech State Office for Nuclear Safety. The TVSA-T core is currently in operation at the Temelin-1 reactor unit. The presentation is concluded as follows: TVSA-T fuel assembly for Temelin has been validated. The TVSA-T design is based on approved technical decisions and meets the current requirements for lifetime, operational maneuverability and safety. The results of post-irradiation examination of TVSA-T operated at the Kalinin-1 unit for 4 years confirm the assembly operability, skeleton stiffness, geometric stability and normal fuel rod cladding condition. The properties of the TVSA fuel with MG allow the core power to be increased up to 3300 MW to match the envisaged future VVER (MIR-1200) design, providing allowable fuel rod power FΔh =1.63 (to implement effective fuel cycles). (P.A.)

  6. How to interpret safety critical failures in risk and reliability assessments

    International Nuclear Information System (INIS)

    Selvik, Jon Tømmerås; Signoret, Jean-Pierre

    2017-01-01

    Management of safety systems often receives high attention due to the potential for industrial accidents. In risk and reliability literature concerning such systems, and particularly concerning safety-instrumented systems, one frequently comes across the term ‘safety critical failure’. It is a term associated with the term ‘critical failure’, and it is often deduced that a safety critical failure refers to a failure occurring in a safety critical system. Although this is correct in some situations, it is not matching with for example the mathematical definition given in ISO/TR 12489:2013 on reliability modeling, where a clear distinction is made between ‘safe failures’ and ‘dangerous failures’. In this article, we show that different interpretations of the term ‘safety critical failure’ exist, and there is room for misinterpretations and misunderstandings regarding risk and reliability assessments where failure information linked to safety systems are used, and which could influence decision-making. The article gives some examples from the oil and gas industry, showing different possible interpretations of the term. In particular we discuss the link between criticality and failure. The article points in general to the importance of adequate risk communication when using the term, and gives some clarification on interpretation in risk and reliability assessments.

  7. National report of the Slovak Republic compiled in terms of the Join on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  8. Experiments for IFR fuel criticality in ZPPR-21

    International Nuclear Information System (INIS)

    Olsen, D.N.; Collins, P.J.; Carpenter, S.G.

    1991-01-01

    A series of benchmark measurements was made in ZPPR-21 to validate criticality calculations for fuel processing operations for Argonne's Integral Fast Reactor program. Six different mixtures of Pu/U/Zr fuel with a graphite reflector were built and criticality was determined by period measurements. The assemblies were isolated from room return neutrons by a lithium hydride shield. Analysis was done using a fully-detailed model with the VIM Monte Carlo code and ENDF/B-V.2 data. Sensitivity analysis was used to validate the measurements against other benchmark data. A simple RZ model was defined and used with the KENO code. Corrections to the RZ model were provided by the VIM calculations with low statistical uncertainty. (Author)

  9. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    Doering, T.W.; Thomas, D.A.

    2001-01-01

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  10. Nuclear criticality assessment of Oak Ridge research fuel element storage

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-06-01

    Spent and partially spent Oak Ridge Research Reactor (ORR) fuel elements are retained in the storage section of the ORR pool facility. Determination of a maximum expected neutron multiplication factor for the storage area is accomplished by a validated calculational method. The KENO Monte Carlo code and the Hansen-Roach 16-group neutron cross section sets were validated by calculations of critical experiments performed with early ORR fuel elements and with SPERT-D fuel elements. Calculations of various fuel element arrangements are presented which confirm the subcriticality previously inferred from critical experiments and indicate the k/sub eff/ would not exceed 0.85, were the storage area to be filled to capacity with storage racks containing elements with the fissionable material loading increased to 350 g of 235 U

  11. Safety culture and subcontractor network governance in a complex safety critical project

    International Nuclear Information System (INIS)

    Oedewald, Pia; Gotcheva, Nadezhda

    2015-01-01

    In safety critical industries many activities are currently carried out by subcontractor networks. Nevertheless, there are few studies where the core dimensions of resilience would have been studied in safety critical network activities. This paper claims that engineering resilience into a system is largely about steering the development of culture of the system towards better ability to anticipate, monitor, respond and learn. Thus, safety culture literature has relevance in resilience engineering field. This paper analyzes practical and theoretical challenges in applying the concept of safety culture in a complex, dynamic network of subcontractors involved in the construction of a new nuclear power plant in Finland, Olkiluoto 3. The concept of safety culture is in focus since it is widely used in nuclear industry and bridges the scientific and practical interests. This paper approaches subcontractor networks as complex systems. However, the management model of the Olkiluoto 3 project is to a large degree a traditional top-down hierarchy, which creates a mismatch between the management approach and the characteristics of the system to be managed. New insights were drawn from network governance studies. - Highlights: • We studied a relevant topical subject safety culture in nuclear new build project. • We integrated safety science challenges and network governance studies. • We produced practicable insights in managing safety of subcontractor networks

  12. Criticality detector exclusion zone in a spent-fuel hot cell

    International Nuclear Information System (INIS)

    Kim, S.S.; Sterbentz, J.W.

    1999-01-01

    The main purpose of a criticality alarm system (CAS) is to protect personnel by detecting a criticality event (neutron radiation) and actuating an alarm system to initiate emergency response. Inadvertent criticality alarms from noncritical events, such as spurious voltage spikes or intense gamma radiation fields, can produce work cessation and time-consuming and costly event assessments and may result in harm to personnel during an evacuation. It therefore becomes a major concern to ensure that inadvertent or false criticality alarms do not occur or at least are minimized. Minimization of inadvertent criticality alarms due to intense gamma radiation emitted from spent-nuclear-fuel (SNF) elements as opposed to neutron radiation from an actual criticality event is the primary focus of this calculational and experimental study. The Irradiated Fuel Storage Facility (IFSF) located at the Idaho National Engineering and Environmental Laboratory is a government-owned, contractor-operated facility whose mission is to provide safe handling and dry storage for various types of SNFs. Although other fuel types (lower burnup) are stored in the IFSF, it is the high-burnup elements with the associated intense gamma radiation fields that have the potential to inadvertently set off the criticality alarms in the fuel-handling area adjacent to the storage vault. Typically, in the fuel-handling cave or hot cell of the IFSF, the cask lid is removed, and individual fuel elements are extracted from the cask and placed in special storage canisters. It is during the time period when fuel elements are extracted from their casks or when fully loaded canisters are moved in the hot cell that the CAS detectors are exposed to the intense gamma radiation fields from the spent fuel. The neutron detectors positioned in one of the manipulator ports are designed such that fast neutrons from a criticality event are thermalized by a polyethylene moderator, strike the scintillator detector material, and

  13. 48 CFR 209.270 - Aviation and ship critical safety items.

    Science.gov (United States)

    2010-10-01

    ... Requirements 209.270 Aviation and ship critical safety items. ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Aviation and ship critical safety items. 209.270 Section 209.270 Federal Acquisition Regulations System DEFENSE ACQUISITION...

  14. Comparison of MCNP and WIMS-AECL/RFSP calculations against critical heavy water experiments in ZED-2 with CANFLEX-LVRF and CANFLEX-LEU fuels

    International Nuclear Information System (INIS)

    Bromley, B. P.; Watts, D. G.; Pencer, J.; Zeller, M.; Dweiri, Y.

    2009-01-01

    This paper summarizes calculations of MCNP5 and WIMS-AECL/RFSP compared against measurements in coolant void substitution experiments in the ZED-2 critical facility with CANFLEX R-LEU/RU (Low Enriched Uranium, Recovered Uranium) reference fuels and CANFLEX-LVRF (Low Void Reactivity Fuel) test fuel, and H 2 O/air coolants. Both codes are tested for the prediction of the change in reactivity with complete voiding of all fuel channels, and that for a checkerboard voiding pattern. Understanding these phenomena is important for the ACR-1000 R reactor. Comparisons are also made for the prediction of the axial and radial neutron flux distributions, as measured by copper foil activation. The experimental data for these comparisons were obtained from critical mixed lattice / substitution experiments in AECL's ZED-2 critical facility using CANFLEX-LEU/RU and CANFLEX-LVRF fuel in a 24-cm square lattice pitch at 25 degrees C. Substitution analyses were performed to isolate the properties (buckling, bare critical lattice dimensions) of the CANFLEX-LVRF fuel. This data was then used to further test the lattice physics codes. These comparisons establish biases/uncertainties and errors in the calculation of k eff , coolant void reactivity, checkerboard coolant void reactivity, and flux distributions. Results show small to modest biases in void reactivity and very good agreement for flux distributions. The importance of boundary conditions and the modeling of un-moderated fuel in the critical experiments are demonstrated. This comparison study provides data that supports code validation and gives good confidence in the reactor physics tools used in the design and safety analysis of the ACR-1000 reactor. (authors)

  15. Criticality safety benchmark evaluation project: Recovering the past

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, E.F.

    1997-06-01

    A very brief summary of the Criticality Safety Benchmark Evaluation Project of the Westinghouse Savannah River Company is provided in this paper. The purpose of the project is to provide a source of evaluated criticality safety experiments in an easily usable format. Another project goal is to search for any experiments that may have been lost or contain discrepancies, and to determine if they can be used. Results of evaluated experiments are being published as US DOE handbooks.

  16. Product Engineering Class in the Software Safety Risk Taxonomy for Building Safety-Critical Systems

    Science.gov (United States)

    Hill, Janice; Victor, Daniel

    2008-01-01

    When software safety requirements are imposed on legacy safety-critical systems, retrospective safety cases need to be formulated as part of recertifying the systems for further use and risks must be documented and managed to give confidence for reusing the systems. The SEJ Software Development Risk Taxonomy [4] focuses on general software development issues. It does not, however, cover all the safety risks. The Software Safety Risk Taxonomy [8] was developed which provides a construct for eliciting and categorizing software safety risks in a straightforward manner. In this paper, we present extended work on the taxonomy for safety that incorporates the additional issues inherent in the development and maintenance of safety-critical systems with software. An instrument called a Software Safety Risk Taxonomy Based Questionnaire (TBQ) is generated containing questions addressing each safety attribute in the Software Safety Risk Taxonomy. Software safety risks are surfaced using the new TBQ and then analyzed. In this paper we give the definitions for the specialized Product Engineering Class within the Software Safety Risk Taxonomy. At the end of the paper, we present the tool known as the 'Legacy Systems Risk Database Tool' that is used to collect and analyze the data required to show traceability to a particular safety standard

  17. The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Henderson, B.D.; Meade, R.A.; Pruvost, N.L.

    1999-01-01

    The Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is a program jointly funded by the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) in conjunction with the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 97-2. The goal of CSIRC is to preserve primary criticality safety documentation from U.S. critical experimental sites and to make this information available for the benefit of the technical community. Progress in archiving criticality safety primary documents at the LANL archives as well as efforts to make this information available to researchers are discussed. The CSIRC project has a natural linkage to the International Criticality Safety Benchmark Evaluation Project (ICSBEP). This paper raises the possibility that the CSIRC project will evolve in a fashion similar to the ICSBEP. Exploring the implications of linking the CSIRC to the international criticality safety community is the motivation for this paper

  18. Recommendations relating to safety-critical real-time software in nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    The Advisory Committee on Nuclear Safety (ACNS) has reviewed safety issues associated with the software for the digital computers in the safety shutdown systems for the Darlington NGS. From this review the ACNS has developed four recommendations for safety-critical real-time software in nuclear power plants. These recommendations cover: the completion of the present efforts to develop an overall standard and sub-tier standards for safety-critical real-time software; the preparation of schedules and lists of responsibilities for this development; the concentration of AECB efforts on ensuring the scrutability of safety-critical real-time software; and, the collection of data on reliability and causes of failure (error) of safety-critical real-time software systems and on the probability and causes of common-mode failures (errors). (9 refs.)

  19. Benchmark criticality experiments for fast fission configuration with high enriched nuclear fuel

    International Nuclear Information System (INIS)

    Sikorin, S.N.; Mandzik, S.G.; Polazau, S.A.; Hryharovich, T.K.; Damarad, Y.V.; Palahina, Y.A.

    2014-01-01

    Benchmark criticality experiments of fast heterogeneous configuration with high enriched uranium (HEU) nuclear fuel were performed using the 'Giacint' critical assembly of the Joint Institute for Power and Nuclear Research - Sosny (JIPNR-Sosny) of the National Academy of Sciences of Belarus. The critical assembly core comprised fuel assemblies without a casing for the 34.8 mm wrench. Fuel assemblies contain 19 fuel rods of two types. The first type is metal uranium fuel rods with 90% enrichment by U-235; the second one is dioxide uranium fuel rods with 36% enrichment by U-235. The total fuel rods length is 620 mm, and the active fuel length is 500 mm. The outer fuel rods diameter is 7 mm, the wall is 0.2 mm thick, and the fuel material diameter is 6.4 mm. The clad material is stainless steel. The side radial reflector: the inner layer of beryllium, and the outer layer of stainless steel. The top and bottom axial reflectors are of stainless steel. The analysis of the experimental results obtained from these benchmark experiments by developing detailed calculation models and performing simulations for the different experiments is presented. The sensitivity of the obtained results for the material specifications and the modeling details were examined. The analyses used the MCNP and MCU computer programs. This paper presents the experimental and analytical results. (authors)

  20. Fuel elements and safety engineering goals

    International Nuclear Information System (INIS)

    Schulten, R.; Bonnenberg, H.

    1990-01-01

    There are good prospects for silicon carbide anti-corrosion coatings on fuel elements to be realised, which opens up the chance to reduce the safety engineering requirements to the suitable design and safe performance of the ceramic fuel element. Another possibility offered is combined-cycle operation with high efficiencies, and thus good economic prospects, as with this design concept combining gas and steam turbines, air ingress due to turbine malfunction is an incident that can be managed by the system. This development will allow economically efficient operation also of nuclear power reactors with relatively small output, and hence contribute to reducing CO 2 emissions. (orig./DG) [de

  1. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  2. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  3. Safety Issues with Hydrogen as a Vehicle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; J. S. Herring

    1999-09-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  4. Safety Issues with Hydrogen as a Vehicle Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee Charles; Herring, James Stephen

    1999-10-01

    This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This report serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.

  5. Agility in Development of Safety-Critical Software: A Conceptual Model

    DEFF Research Database (Denmark)

    Tordrup Heeager, Lise; Nielsen, Peter Axel

    2018-01-01

    Safety-critical information systems are being used increasingly as we see applications in new areas such as personal medical devices, traffic control and detection of pathogens. A current research debate is whether safety-critical systems must be developed with traditional waterfall processes...

  6. Criticality analysis for mixed thorium-uranium fuel in the Angra-2 PWR reactor using KENO-VI

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowski, Caio C.; Gonçalves, Isadora C.; Oliveira, Claudio L.; Vellozo, Sergio O.; Baptista, Camila O., E-mail: wichrowski@ime.eb.br, E-mail: isadora.goncalves@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Seção de Engenharia Nuclear

    2017-07-01

    The increasing energy demand associated to the current sustainability challenges have given the thorium nuclear fuel cycle renewed interest in the scientific community. Studies have focused on energy production in different reactor designs through the fission of uranium 233, the product of thorium fertilization by neutrons. In order to make it possible for near future applications a strategy based on the adaptation of current nuclear reactors for the use of thorium fuels is being considered. In this work, bearing in mind these limitations, a code was used to evaluate the effect on criticality (k{sub inf}) of the mixing of thorium and uranium in different proportions in the fuel of a PWR, the German designed Angra-2 Brazilian reactor in order to scrutinise its behaviour and determine the feasibility of an adapted ThO{sub 2}-UO{sub 2} mixed fuel cycle using current PWR technology. The analysis is performed using the KENO-VI module in the SCALE 6.1 nuclear safety analysis simulation code and the information is taken from the Angra-2 FSAR (Final Security Analysis Report). (author)

  7. Effect of nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    In order to ensure the subcriticality of nuclear fuel, the method of controlling the mass, form or dimensions below the limit values and the method of confirming subcriticality by calculation are taken, but at this time, it is often assumed that the concentration of fuel is constant in a fuel region, or fuel rods are arranged at constant intervals. However, in the extraction process in fuel reprocessing or in fuel storage vessels, the concentration distribution may arise in fuel regions even though temporarily. Even if subcriticality is expected in a uniform system, when concentration distribution arises, and an uneven system results in, criticality may occur. Therefore, it is important to grasp the effect of uneven fuel distribution for ensuring the safety against criticality. In this paper, the effect of uneven fuel distribution is discussed, centering around the critical mass. The examples in literatures and the examples of calculation of uneven fuel distribution are shown. As the result of calculation in Japan Atomic Energy Research Institute, in a high enrichment U-235-water system, the critical mass decreased by about 7 % due to uneven distribution, which nearly agreed with the result of Clark of about 6 %. As for a low enrichment system, the conspicuous decrease of the critical mass was not observed. (Kako, I.)

  8. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  9. Experiments for IFR fuel criticality in ZPPR-21

    International Nuclear Information System (INIS)

    Olsen, D.N.; Collins, P.J.; Carpenter, S.G.

    1991-01-01

    A series of benchmark measurements was made in ZPPR-21 to validate criticality calculations for fuel operations in Argonne's Integral Fast Reactor. Six different mixtures of Pu/U/Zr fuel with a graphite reflector were built and criticality was determined by period measurements. The assemblies were isolated from room return problems by a lithium hydride shield. Analysis was done using a fully-detailed model with the VIM Monte Carlo code and ENDF/B-V.2 data. Sensitivity analysis was used to validate the measurements against other benchmark data. A simple RZ model was defined the used with the KENO code. Corrections to the RZ model were provided by the VIM calculations with low statistical uncertainty. 7 refs., 5 figs., 5 tabs

  10. National report of the Slovak Republic compiled in terms of the join convention on the safety of spent fuel management and on the safety of radwaste management

    International Nuclear Information System (INIS)

    Jurina, V.; Viktory, D.; Petrik, T.; Sovcik, J.; Suess, J.; Tomek, J.; Lukacovic, J.; Ivan, J.; Ziakova, M.; Metke, E.; Pospisil, M.; Turner, M.; Homola, J.; Vaclav, J.; Bystricka, S.; Barbaric, M.; Horvath, J.; Betak, J.; Mihaly, B.; Adamovsky, V.; Baloghova, A.; Orihel, M.; Vasina, D.; Balaz, J.; Misovicova, D.; Vrtoch, M.; Mlcuch, J.; Granak, P.; Meleg, J.; Bardy, M.; Gogoliak, J.

    2011-08-01

    The National safety report of the Slovak Republic on the safety of spent fuel management and on the safety of radwaste management in 2011 is presented. These activities in the safety of spent fuel management and radioactive waste management in the Slovak Republic are reported under the headings: (A) Introduction; B) Concept for spent nuclear fuel management (SNF) and radwaste management (RAW); (C) Scope of application of the convention; (D) Spent fuel management and radioactive waste (RAW) management facilities; (E) Legislation and regulation; (F) General safety provisions; (G) Safety of spent fuel management; (H) Safety of radioactive waste (RAW) management; (I) Transboundary movement of spent nuclear fuel and radioactive waste; (J) Disused sealed sources; (K) Planned measures to improve safety; (L) Communication with the public; (M) Annexes. Annexes consists of following parts: I. List of nuclear facilities for spent fuel and RAW management. II. Limits of radioactive material discharges into atmosphere and hydrosphere. III. List of nuclear installations in decommissioning. IV. Inventory of stored spent nuclear fuel. V. Inventory of stored RAW. VI. List of national laws, decrees and guidelines. VII. List of international expert reports (including safety reports). VIII. List of authors.

  11. Safety aspects of advanced fuels irradiations in EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.

    1975-09-01

    Basic safety questions such as MFCI, loss-of-Na bond, pin behavior during design basis transients, and failure propagation were evaluated as they pertain to advanced fuels in EBR-II. With the exception of pin response to the unlikely loss-of-flow transient, the study indicates that irradiation of significant numbers of advanced fueled subassemblies in EBR-II should pose no safety problems. The analysis predicts, however, that Na boiling may occur during the postulated design basis unlikely loss-of-flow transient in subassemblies containing He-bonded fuel pins with the larger fuel-clad gaps. The calculations indicate that coolant temperatures at top of core in the limiting S/A's, containing the He bonded pins, would reach approximately 1480 0 F during the transient without application of uncertainty factors. Inclusion of uncertainties could result in temperature predictions which approach coolant boiling temperatures (1640 0 F). Further analysis of He-bonded pins is being done in this potential problem area, e.g., to apply best estimates of uncertainty factors and to determine the sensitivity of the preliminary results to gap conductance

  12. The implementation of a burnup credit based criticality safety assessment in the THORP head end plant

    International Nuclear Information System (INIS)

    Gulliford, J.; Edge, J.A.; Gracey, J.; Harris, N.

    2003-01-01

    A new criticality safety assessment based on Actinide-Only Burnup Credit has been developed to cover operations in BNFL's Thermal Oxide Reprocessing Plant (THORP). Reduction of the gadolinium concentration leads to significant reduction in active waste volumes. Detailed description of the methodology was presented at ICNC 1999 and the basic components of the approved safety case have remained unchanged from those proposed then. This paper presents a brief summary of the new methodology, and describes further analyses carried out to quantify additional safety margins. These additional margins are not credited in the derivation of the operating limits, but provide further evidence of the fault tolerance inherent in the new regime. As part of the arrangements to monitor the overall performance of the plant and instrumentation under the new regime, various analyses of plant data are made, including 'on-line' cross checks of measured versus expected fuel parameters (i.e. in addition to the checks on Residual Enrichment). Statistical analyses of data are made and compared with similar data from earlier batches. A summary of analyses made on some of the early fuel batches is presented here. A summary of the likely further development in the Burnup Credit methodology is given in this paper. (author)

  13. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  14. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro, E-mail: duvan.castellanos@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: pedro.rossi@ufabc.edu.br, E-mail: pedro.carajilescov10@gmail.com [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil). Centro de Engenharias, Modelagem e Ciências Sociais Aplicadas

    2017-07-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  15. Thermal-hydraulic code for estimating safety limits of nuclear reactors with plate type fuels

    International Nuclear Information System (INIS)

    Castellanos, Duvan A.; Moreira, João L.; Maiorino, Jose R.; Rossi, Pedro R.; Carajilescov, Pedro

    2017-01-01

    To ensure the normal and safe operation of PWR type nuclear reactors is necessary the knowledge of nuclear and heat transfer properties of the fuel, coolant and structural materials. The thermal-hydraulic analysis of nuclear reactors yields parameters such as the distribution of fuel and coolant temperatures, and the departure from nucleated boiling ratio. Usually computational codes are used to analyze the safety performance of the core. This research work presents a computer code for performing thermal-hydraulic analyses of nuclear reactors with plate-type fuel elements operating at low pressure and temperature (research reactors) or high temperature and pressure (naval propulsion or small power reactors). The code uses the sub-channel method based on geometric and thermal-hydraulic conditions. In order to solve the conservation equations for mass, momentum and energy, each sub-channel is divided into control volumes in the axial direction. The mass flow distribution for each fuel element of core is obtained. Analysis of critical heat flux is performed in the hottest channel. The code considers the radial symmetry and the chain or cascade method for two steps in order to facilitate the whole analysis. In the first step, we divide the core into channels with size equivalent to a fuel assembly. >From this analysis, the channel with the largest enthalpy is identified as the hot assembly. In the second step, we divide the hottest fuel assembly into sub-channels with size equivalent to one actual coolant channel. As in the previous step, the sub-channel with largest final enthalpy is identified as the hottest sub-channel. For the code validation, we considered results from the chinese CARR research reactor. The code reproduced well the CARR reactor results, yielding detailed information such as static pressure in the channel, mass flow rate distribution among the fuel channels, coolant, clad and centerline fuel temperatures, quality and local heat and critical heat

  16. Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (4). Investigation of safety evaluation method for fire and explosion incidents

    International Nuclear Information System (INIS)

    Abe, Hitoshi; Tashiro, Shinsuke; Ueda, Yoshinori

    2010-01-01

    A special committee on 'Research on the analysis methods for accident consequence of nuclear fuel facilities (NFFs)' was organized by the Atomic Energy Society of Japan (AESJ) under the entrustment of Japan Atomic Energy Agency (JAEA). The committee aims to research on the state-of-the-art consequence analysis method for Probabilistic Safety Assessment (PSA) of NFFs, such as fuel reprocessing and fuel fabrication facilities. The objective of this research is to obtain the useful information related to the establishment of quantitative performance objectives and to risk-informed regulation through qualifying issues needed to be resolved for applying PSA to NFFs. The research activities of the committee were mainly focused on the analysis method of consequences for postulated accidents with potentially large consequences in NFFs, e.g., events of criticality, spill of molten glass, hydrogen explosion, boiling of radioactive solution, and fire (including rapid decomposition of TBP complexes), resulting in the release of radio active materials into the environment. The results of the research were summarized in a series of six reports, which consist of a review report and five technical ones. In this technical report, the research results about basic experimental data and the method for safety evaluation of fire and explosion incidents were summarized. (author)

  17. Unreviewed safety question evaluation of 100 K West fuel canister gas and liquid sampling

    International Nuclear Information System (INIS)

    Alwardt, L.D.

    1995-01-01

    The purpose of this report is to provide the basis for answers to an Unreviewed Safety Question (USQ) safety evaluation for the gas and liquid sampling activities associated with the fuel characterization program at the 100 K West (KW) fuel storage basin. The scope of this safety evaluation is limited to the movement of canisters between the main storage basin, weasel pit, and south loadout pit transfer channel (also known as the decapping station); gas and liquid sampling of fuel canisters in the weasel pit; mobile laboratory preliminary sample analysis in or near the 105 KW basin building; and the placement of sample containers in an approved shipping container. It was concluded that the activities and potential accident consequences associated with the gas and liquid sampling of 100 KW fuel canisters are bounded by the current safety basis documents and do not constitute an Unreviewed Safety Question

  18. Nuclear data for criticality safety

    International Nuclear Information System (INIS)

    Westfall, R.M.

    1994-01-01

    A brief overview is presented on emerging requirements for new criticality safety analyses arising from applications involving nuclear waste management, facility remediation, and the storage of nuclear weapons components. A derivation of criticality analyses from the specifications of national consensus standards is given. These analyses, both static and dynamic, define the needs for nuclear data. Integral data, used primarily for analytical validation, and differential data, used in performing the analyses, are listed, along with desirable margins of uncertainty. Examples are given of needs for additional data to address systems having intermediate neutron energy spectra and/or containing nuclides of intermediate mass number

  19. Influence of safeguards and fire protection on criticality safety

    International Nuclear Information System (INIS)

    Six, D.E.

    1980-01-01

    There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described

  20. International Handbook of Evaluated Criticality Safety Benchmark Experiments - ICSBEP (DVD), Version 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical experiment facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span nearly 66,000 pages and contain 558 evaluations with benchmark specifications for 4,798 critical, near critical or subcritical configurations, 24 criticality alarm placement/shielding configurations with multiple dose points for each and 200 configurations that have been categorised as fundamental physics measurements that are relevant to criticality safety applications. New to the Handbook are benchmark specifications for Critical, Bare, HEU(93.2)- Metal Sphere experiments referred to as ORSphere that were performed by a team of experimenters at Oak Ridge National Laboratory in the early 1970's. A photograph of this assembly is shown on the front cover

  1. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  2. The fourth country report on agreement of safety supervision on radiation waste and management of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-10-15

    This report covered the agreement of safety supervision on radiation waste and management of spent fuel. It listed the stipulation, the common law, the coverage and the amount of stock on spent fuel. Also, it indicated law and regulations and restriction on the related the agency, general safety regulations, policy on guarantee of quality, emergency method, dismantling, management of safety control on spent fuel including a process of establishment and safety requirements, regulations of conveyance between countries and improvement of safety of spent fuel.

  3. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  4. Method of preventing criticality of fresh fuel assembly in storage facility

    International Nuclear Information System (INIS)

    Kawamura, Makoto.

    1990-01-01

    With an aim of improving the operation efficiency of a reactor, extention of the operation cycle by increasing U 235 enrichment degree of fuel uranium is planned. However, along with the increase of the enrichment degree of the fuel uranium, there occurs a problem of criticality upon fuel handling. Then, in the present invention, boric acid incorporating B-10 of great neutron absorption effect are packed with water soluble polymeric materials which are further packed with a fuel packing sheet, or the water soluble polymeric materials incorporating boric acids are packed with fuel packing sheets which are disposed to a fresh fuel assembly and stored in a store house as they are. The fuel packing sheet is a perforated sheet having a plurality of water intruding pores. Then, if water should intrude to the store house accidentally, the water soluble polymeric materials are dissolved, so that the intruded water is converted into aqueous boric acid easily and absorbs neutrons effectively to thereby attain the prevention of criticality. (T.M.)

  5. Identification of potential safety-related incidents applicable to a breeder fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.

    1980-01-01

    The current emphasis on safety in all phases of the nuclear fuel cycle requires that safety features be identified and included in designs of nuclear facilities at the earliest possible stage. A popular method for the early identification of these safety features is the Preliminary Hazards Analysis. An extension of this analysis is to illustrate the nature of a hazard by its effects in accident situations, that is, to identify what are called safety-related incidents. Some useful tools are described which have been used at the Savannah River Laboratory, SRL, to make Preliminary Hazards Analyses as well as safety analyses of facilities for processing spent nuclear fuels from both power and production reactors. These tools have also been used in safety studies of waste handling operations at the Savannah River Plant. The tools are the SRL Incidents Data Bank and the What If meeting. The application of this methodology to a proposed facility which has breeder fuel reprocessing capability, the Hot Experimental Facility (HEF) is illustrated

  6. Safety culture in a major nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Pushparaja; Abani, M.C.

    2002-01-01

    Human factor plays an important role in development of safety culture in any nuclear fuel cycle facility. This is more relevant in major nuclear facility such as a reactor or a reprocessing plant. In Indian reprocessing plants, an effective worker's training, education and certification program is in place to sensitize the worker's response to safety and safe work procedures. The methodology followed to self evaluation of safety culture and the benefits in a reprocessing plant is briefly discussed. Various indicators of safety performance and visible signs of a good safety management are also qualitatively analyzed. (author)

  7. Applications of PRA in nuclear criticality safety

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1992-01-01

    Traditionally, criticality accident prevention at Los Alamos National Laboratory (LANL) has been based on a thorough review and understanding of proposed operations or changes to operations involving both process supervision and criticality safety staff. The outcome of this communication was usually an agreement, based on professional judgment, that certain accident sequences were credible and had to be precluded by design; others were incredible and thus did not warrant expenditures to further reduce their likelihood. The extent of documentation was generally in proportion to the complexity of the operation but never as detailed as that associated with quantified risk assessments. During the last 3 yr, nuclear criticality safety-related probabilistic risk assessments (PRAs) have been performed on operations in two LANL facilities. Both of these were conducted in order to better understand the cost/benefit aspects of PRAs as they apply to largely hands-on operations with fissile material

  8. Safety analysis of disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Vieno, T.

    1994-04-01

    The spent fuel from the Olkiluoto NPP (TVO I and II) is planned to be disposed of in a repository to be constructed at a depth of about 500 meters in the crystalline bedrock. The thesis is dealing with the safety analysis of the disposal. The main topics presented in the thesis are: (1) The amount of radioactive properties of the spent fuel, (2) The canister design and the planned disposal concept, (3) The results of the preliminary site investigations, (4) Discussion of the multi-barrier principle, (5) The general principles and methodology of the TVO-92 safety analysis, (6) Groundwater flow analysis, (7) Durability and behaviour of the canister, (8) Biosphere analysis and reference scenario, and (9) The sensitivity and uncertainty analyses. (246 refs., 75 figs., 44 tabs.)

  9. Safety aspects of front-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Srinivasan, G.R.

    2003-01-01

    Safety of fuel cycle facilities (FCFs) other than Nuclear Power Plants is gaining importance all over the nuclear world as one would not like to leave behind any area of nuclear field in the journey toward excellence in the safe conduct of business in the whole of the nuclear industry. Safety should be part of every day activities, procedures, business practices, system and in fact of the people themselves

  10. A Study on Criticality Safety Parameters of New Fuel Storage Rack Design

    International Nuclear Information System (INIS)

    Ahn, Joon Gi; Kim, Hyeong Heon

    2012-01-01

    The dry new fuel storage rack shall maintain the subcritical condition (i.e., k-eff < 0.95) when fully flooded with water and the k-eff will not exceed 0.98 even assuming that the optimum moderation causes the highest reactivity. Thus, the design parameters of the new fuel rack are determined optimally by considering both the full density water flooding condition and the optimum moderation condition. The behavior of the keff as the variation of design parameter of the new fuel rack was investigated as the function of the moderating water density

  11. A Study on Criticality Safety Parameters of New Fuel Storage Rack Design

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon Gi; Kim, Hyeong Heon [KEPCO E and C, Daejeon (Korea, Republic of)

    2012-05-15

    The dry new fuel storage rack shall maintain the subcritical condition (i.e., k-eff < 0.95) when fully flooded with water and the k-eff will not exceed 0.98 even assuming that the optimum moderation causes the highest reactivity. Thus, the design parameters of the new fuel rack are determined optimally by considering both the full density water flooding condition and the optimum moderation condition. The behavior of the keff as the variation of design parameter of the new fuel rack was investigated as the function of the moderating water density

  12. Safety standards, legislation and codes of practice for fuel cell manufacture and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.P.

    1999-07-01

    This report examines safety standards, legislation and codes of practice for fuel cell manufacture and operation in the UK, Europe and internationally. Management of health and safety in the UK is discussed, and the characteristics of phosphoric acid (PAFC), proton exchange membrane (PEM), molten carbonate (MCFC), solid oxide (SOFC) fuel cells are described. Fuel cell power plant standards and manufacture in the UK, design and operational considerations, end of life disposal, automotive fuel cell system, and fuelling and vehicular concerns are explored, and standards, legislation and codes of practice are explained in the appendix.

  13. Probabilistic safety criteria on high burnup HWR fuels

    International Nuclear Information System (INIS)

    Marino, A.C.

    2002-01-01

    BACO is a code for the simulation of the thermo-mechanical and fission gas behaviour of a cylindrical fuel rod under operation conditions. Their input parameters and, therefore, output ones may include statistical dispersion. In this paper, experimental CANDU fuel rods irradiated at the NRX reactor together with experimental MOX fuel rods and the IAEA-CRP FUMEX cases are used in order to determine the sensitivity of BACO code predictions. The techniques for sensitivity analysis defined in BACO are: the 'extreme case analysis', the 'parametric analysis' and the 'probabilistic (or statistics) analysis'. We analyse the CARA and CAREM fuel rods relation between predicted performance and statistical dispersion in order of enhanced their original designs taking account probabilistic safety criteria and using the BACO's sensitivity analysis. (author)

  14. Validation testing of safety-critical software

    International Nuclear Information System (INIS)

    Kim, Hang Bae; Han, Jae Bok

    1995-01-01

    A software engineering process has been developed for the design of safety critical software for Wolsung 2/3/4 project to satisfy the requirements of the regulatory body. Among the process, this paper described the detail process of validation testing performed to ensure that the software with its hardware, developed by the design group, satisfies the requirements of the functional specification prepared by the independent functional group. To perform the tests, test facility and test software were developed and actual safety system computer was connected. Three kinds of test cases, i.e., functional test, performance test and self-check test, were programmed and run to verify each functional specifications. Test failures were feedback to the design group to revise the software and test results were analyzed and documented in the report to submit to the regulatory body. The test methodology and procedure were very efficient and satisfactory to perform the systematic and automatic test. The test results were also acceptable and successful to verify the software acts as specified in the program functional specification. This methodology can be applied to the validation of other safety-critical software. 2 figs., 2 tabs., 14 refs. (Author)

  15. Spent fuel storage

    International Nuclear Information System (INIS)

    Huppert

    1976-01-01

    To begin with, the author explains the reasons for intermediate storage of fuel elements in nuclear power stations and in a reprocessing plant and gives the temperature and radioactivity curves of LWR fuel elements after removal from the reactor. This is followed by a description of the facilities for fuel element storage in a reprocessing plant and of their functions. Futher topics are criticality and activity control, the problem of cooling time and safety systems. (HR) [de

  16. Overview of Risk Mitigation for Safety-Critical Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report presents a high-level overview of a general strategy to mitigate the risks from threats to safety-critical computer-based systems. In this context, a safety threat is a process or phenomenon that can cause operational safety hazards in the form of computational system failures. This report is intended to provide insight into the safety-risk mitigation problem and the characteristics of potential solutions. The limitations of the general risk mitigation strategy are discussed and some options to overcome these limitations are provided. This work is part of an ongoing effort to enable well-founded assurance of safety-related properties of complex safety-critical computer-based aircraft systems by developing an effective capability to model and reason about the safety implications of system requirements and design.

  17. For the criticality of water reflected homogeneous arrays and heterogeneous reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Hj; Rabitsch, H; Schuerrer, F [Technische Univ., Graz (Austria). Inst. fuer Theoretische Physik und Reaktorphysik

    1980-01-01

    The smallest critical masses for fuel elements of research reactors having a medium and high enrichment are calculated. The results fit close on the known critical masses of power reactors with low enrichment. The comparison of the critical masses of reactor fuel elements and homogenized uranium dioxide water systems yields the influence of the homogeneity and of the cladding on the criticality. A coefficient for heterogeneity is suggested which takes into consideration these influences.

  18. Computational methods for criticality safety analysis within the scale system

    International Nuclear Information System (INIS)

    Parks, C.V.; Petrie, L.M.; Landers, N.F.; Bucholz, J.A.

    1986-01-01

    The criticality safety analysis capabilities within the SCALE system are centered around the Monte Carlo codes KENO IV and KENO V.a, which are both included in SCALE as functional modules. The XSDRNPM-S module is also an important tool within SCALE for obtaining multiplication factors for one-dimensional system models. This paper reviews the features and modeling capabilities of these codes along with their implementation within the Criticality Safety Analysis Sequences (CSAS) of SCALE. The CSAS modules provide automated cross-section processing and user-friendly input that allow criticality safety analyses to be done in an efficient and accurate manner. 14 refs., 2 figs., 3 tabs

  19. Increasing the Fuel Economy and Safety of New Light-DutyVehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom; Ross, Marc

    2006-09-18

    One impediment to increasing the fuel economy standards forlight-duty vehicles is the long-standing argument that reducing vehiclemass to improve fuel economy will inherently make vehicles less safe.This technical paper summarizes and examines the research that is citedin support of this argument, and presents more recent research thatchallenges it. We conclude that the research claiming that lightervehicles are inherently less safe than heavier vehicles is flawed, andthat other aspects of vehicle design are more important to the on-roadsafety record of vehicles. This paper was prepared for a workshop onexperts in vehicle safety and fuel economy, organized by the William andFlora Hewlett Foundation, to discuss technologies and designs that can betaken to simultaneously improve vehicle safety and fuel economy; theworkshop was held in Washington DC on October 3, 2006.

  20. Method of V ampersand V for safety-critical software in NPPs

    International Nuclear Information System (INIS)

    Kim, Jang-Yeol; Lee, Jang-Soo; Kwon, Kee-Choon

    1997-01-01

    Safety-critical software is software used in systems in which a failure could affect personal or equipment safety or result in large financial or social loss. Examples of systems using safety-critical software are systems such as plant protection systems in nuclear power plants (NPPs), process control systems in chemical plants, and medical instruments such as the Therac-25 medical accelerator. This paper presents verification and validation (V ampersand V) methodology for safety-critical software in NPP safety systems. In addition, it addresses issues related to NPP safety systems, such as independence parameters, software safety analysis (SSA) concepts, commercial off-the-shelf (COTS) software evaluation criteria, and interrelationships among software and system assurance organizations. It includes the concepts of existing industrial standards on software V ampersand V, Institute of Electrical and Electronics Engineers (IEEE) Standards 1012 and 1059. This safety-critical software V ampersand V methodology covers V ampersand V scope, a regulatory framework as part of its acceptance criteria, V ampersand V activities and task entrance and exit criteria, reviews and audits, testing and quality assurance records of V ampersand V material, configuration management activities related to V ampersand V, and software V ampersand V (SVV) plan (SVVP) production