WorldWideScience

Sample records for fuction brain atrophy

  1. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.)

  2. Brain atrophy during aging

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Takeda, Shumpei; Hatazawa, Jun

    1985-01-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT and following results were obtained. Brain atrophy was minimal in 34 -- 35 years old in both sexes, increased exponentially to the increasing age after 34 -- 35 years, and probably resulted in dementia, such as vascular or multiinfarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34 -- 35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extents of brain atrophy (20 -- 30 %) existed among aged subjects. Some aged subjects had little or no atrophy of their brains, as seen in young subjects, and others had markedly shrunken brains associated with senility. From these results there must be pathological factors promoting brain atrophy with a great individual difference. We have studied the relation of intelligence to brain volume, and have ascertained that progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was decrease in the cerebral blood flow. MNR-CT can easily detected small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy, while X-CT can not. Therefore NMR-CT is very useful for detection of subtle changes in the brain. (J.P.N.)

  3. Age-related infra-tentorial brain atrophy on CT scan

    International Nuclear Information System (INIS)

    Kitani, Mitsuhiro; Kobayashi, Shotai; Yamaguchi, Shuhei; Okada, Kazunori; Murata, Akihiro; Tsunematsu, Tokugoro

    1985-01-01

    We had reported that the brain atrophy progressed significantly with advancing age using the two dimensional CT measurement by digitizer which was connected with personal computer. Using this method, we studied the age-related infra-tentrial brain atrophy in 67 normal subjects (14-90 years), and compared that with age-related supra-tentrial brain atrophy. There was a significant correlation between age and all indices [cranio-ventricular index (CVI), ventricular area index (VAI) and brain atrophy index (BAI)] in supratentrial brain. These indices did not correlated to the age in infra-tentrial brain (brainstem and cerebellum). Significant change of the brain atrophy occured above 60 years old was observed by BAI and VAI in supra-tentrial brain. There was a significant correlation between supra-tentrial brain atrophy index (BAI) and that of infratentrial brain. These results indicate that age-related brain atrophy might progress more slowly in brainstem and cerebellum than in cerebrum. (author)

  4. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  5. Brain atrophy during aging. Quantitative studies with X-CT and NMR-CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-12-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.).

  6. Predictive modeling of neuroanatomic structures for brain atrophy detection

    Science.gov (United States)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  7. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  8. Brain atrophy and dementia from the aspect of CT

    International Nuclear Information System (INIS)

    Ohkuni, Michiko

    1979-01-01

    Two major causes of dementia in the elderly are reported to be the degeneration of brain and cerebrovascular diseases. Recently, CT findings of cerebrovascular diseases and brain atrophy have been noticed, because they rather clearly show these changes. The authors examined the view of atrophy frequently observed on the dementia in the elderly. The results obtained are as follows: 1) In accordance with the increase of age the appearance of the view of atrophy increased in frequency and that of extreme brain atrophy also increased. 2) As the age increased, the average value of the width of the 3rd ventricle tended to increase. 3) In the cases accompanied with the view of cerebrovascular diseases remarkable ventricular dilatation was frequently observed, and in the very old dilatations of cerebral sulci, central fissure and Sylvian fissure were observed of all cases. 4) Of the group of severe dementia the view of extreme brain atrophy was observed in the major. However, there was no significant difference on the lesion of atrophy between the cases. The results mentioned above include some exceptional points respectively, so further investigation will be necessary from the qualitative and quantitative points of view. (author)

  9. Preliminary study on computer automatic quantification of brain atrophy

    International Nuclear Information System (INIS)

    Li Chuanfu; Zhou Kangyuan

    2006-01-01

    Objective: To study the variability of normal brain volume with the sex and age, and put forward an objective standard for computer automatic quantification of brain atrophy. Methods: The cranial volume, brain volume and brain parenchymal fraction (BPF) of 487 cases of brain atrophy (310 males, 177 females) and 1901 cases of normal subjects (993 males, 908 females) were calculated with the newly developed algorithm of automatic quantification for brain atrophy. With the technique of polynomial curve fitting, the mathematical relationship of BPF with age in normal subjects was analyzed. Results: The cranial volume, brain volume and BPF of normal subjects were (1 271 322 ± 128 699) mm 3 , (1 211 725 ± 122 077) mm 3 and (95.3471 ± 2.3453)%, respectively, and those of atrophy subjects were (1 276 900 ± 125 180) mm 3 , (1 203 400 ± 117 760) mm 3 and BPF(91.8115 ± 2.3035)% respectively. The difference of BPF between the two groups was extremely significant (P 0.05). The expression P(x)=-0.0008x 2 + 0.0193x + 96.9999 could accurately describe the mathematical relationship between BPF and age in normal subject (lower limit of 95% CI y=-0.0008x 2 +0.0184x+95.1090). Conclusion: The lower limit of 95% confidence interval mathematical relationship between BPF and age could be used as an objective criteria for automatic quantification of brain atrophy with computer. (authors)

  10. A novel method of quantifying brain atrophy associated with age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Z. Jason Qian

    2017-01-01

    Audiometric evaluations and mini-mental state exams were obtained in 34 subjects over the age of 80 who have had brain MRIs in the past 6 years. CSF and parenchymal brain volumes (whole brain and by lobe were obtained through a novel, fully automated algorithm. Atrophy was calculated by taking the ratio of CSF to parenchyma. High frequency hearing loss was associated with disproportional temporal lobe atrophy relative to whole brain atrophy independent of age (r = 0.471, p = 0.005. Mental state was associated with frontoparietal atrophy but not to temporal lobe atrophy, which is consistent with known results. Our method demonstrates that hearing loss is associated with temporal lobe atrophy and generalized whole brain atrophy. Our algorithm is efficient, fully automated, and able to detect significant associations in a small cohort.

  11. CT findings of brain atrophy after chemotherapy in acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun; Park, Seog Hee; Kim, Choon Yul; Bahk, Yong Whee [Catholic University Medicine College, Seoul (Korea, Republic of)

    1988-10-15

    A study was performed to evaluate the atrophic changes of the central nerve system after chemotherapy in the patients with acute leukemia. The computed tomographic findings and medical records of 20 proven acute leukemia patients under 35 years-old who developed various CNS symptoms and signs during and/or after 2 courses of chemotherapy were reviewed. The results were as follows: 1. Age distribution was from 14 to 5 years (mean was 26 years). Male was 15. 2. Presenting clinical symptoms and signs were headache (16/20), nausea and vomiting (11/20) and loss of consciousness (5/20). 3. Brain atrophy was noted in 16 patients including cortical and subcortical atrophy 15 cases and subcortical atrophy 1 case. 4. Two cases of hemorrhage, one each of intracranial hematoma and chronic subdural hematoma were found in addition to brain atrophy. This showed that chemotherapeutic agents cause brain atrophy in a considerable number of the patients with symptomatic acute leukemia.

  12. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    International Nuclear Information System (INIS)

    Tamai, Isamu; Takei, Tadao; Oota, Hideomi; Maekawa, Kihei.

    1981-01-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in intants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therepy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by hight doses of ACTH and in cases where brain atrophy had already been obserbed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time. (author)

  13. Detection of brain atrophy due to ACTH or corticosteroid therapy with computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tamai, I.; Takei, T. (National Sagamihara Hospital, Kanagawa (Japan)); Oota, H.; Maekawa, K.

    1981-07-01

    Adrenocorticotropic hormone (ACTH) or corticosteroids seemed to cause brain atrophy in infants. We studied the atrophy which was caused by these drugs with computed tomography (CT). 1) Nine cases of infantile spasms examined before, during and after ACTH therapy with CT. Brain atrophy on CT was observed immediately after the completion of ACTH therapy. The brain atrophy receded slightly after several months. It was more marked in younger patients, in cases treated by high doses of ACTH and in cases where brain atrophy had already been observed before ACTH therapy. 2) Twenty cases of infantile spasms or Lennox Gastaut syndrome were examined after ACTH therapy with CT. Brain atrophy was observed in twelve cases. Main features of brain atrophy were the enlargement of sylvian fissure and the widening of subarachnoid space at the frontal or temporal region. Mental retardation was observed in eighteen cases. 3) Two cases of nephrotic syndrome were treated with pulse therapy of prednisolone. CT was carried out before and after treatment. Atrophy of cerebrum was observed in these cases. 4) A case of infantile spasms treated with anticonvulsants without ACTH was studied by electroencephalography (EEG) and CT. The abnormal pattern of EEG was markedly corrected, while brain atrophy on CT was not observed after the therapy. Because of these observations the use of ACTH has to be reconsidered. ACTH should be the drug of second choice for the therapy of infantile spasms and should be used in case other anticonvulsants have no effect. ACTH should be used at lower dosages and for shorter periods of time.

  14. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Imabayashi, Etsuko; Kuji, Ichiei; Seto, Akira; Ito, Kimiteru; Kikuta, Daisuke; Yamada, Minoru; Shimano, Yasumasa; Sato, Noriko

    2010-01-01

    Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT. After linear spatial normalization of brain perfusion SPECT using 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD) to a Talairach space, high-dimension-warping was done using an original 99m Tc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99m Tc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  15. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    Directory of Open Access Journals (Sweden)

    Matsuda Hiroshi

    2010-08-01

    Full Text Available Abstract Background Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM to SPECT. Methods After linear spatial normalization of brain perfusion SPECT using 99mTc-ethyl cysteinate dimer (99mTc-ECD to a Talairach space, high-dimension-warping was done using an original 99mTc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2 between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. Results SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99mTc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. Conclusions The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  16. Normalized regional brain atrophy measurements in multiple sclerosis

    International Nuclear Information System (INIS)

    Zivadinov, Robert; Locatelli, Laura; Stival, Barbara; Bratina, Alessio; Nasuelli, Davide; Zorzon, Marino; Grop, Attilio; Brnabic-Razmilic, Ozana

    2003-01-01

    There is still a controversy regarding the best regional brain atrophy measurements in multiple sclerosis (MS) studies. The aim of this study was to establish whether, in a cross-sectional study, the normalized measurements of regional brain atrophy correlate better with the MRI-defined regional brain lesions than the absolute measurements of regional brain atrophy. We assessed 45 patients with clinically definite relapsing-remitting (RR) MS (median disease duration 12 years), and measured T1-lesion load (LL) and T2-LL of frontal lobes and pons, using a reproducible semi-automated technique. The regional brain parenchymal volume (RBPV) of frontal lobes and pons was obtained by use of a computerized interactive program, which incorporates semi-automated and automated segmentation processes. A normalized measurement, the regional brain parenchymal fraction (RBPF), was calculated as the ratio of RBPV to the total volume of the parenchyma and the cerebrospinal fluid (CSF) in the frontal lobes and in the region of the pons. The total regional brain volume fraction (TRBVF) was obtained after we had corrected for the total volume of the parenchyma and the CSF in the frontal lobes and in the region of the pons for the total intracranial volume. The mean coefficient of variation (CV) for RBPF of the pons was 1% for intra-observer reproducibility and 1.4% for inter-observer reproducibility. Generally, the normalized measurements of regional brain atrophy correlated with regional brain volumes and disability better than did the absolute measurements. RBPF and TRBVF correlated with T2-LL of the pons (r=-0.37, P=0.011, and r= -0.40, P=0.0005 respectively) and with T1-LL of the pons (r=-0.27, P=0.046, and r=-0.31, P=0.04, respectively), whereas RBPV did not (r=-0.18, P = NS). T1-LL of the frontal lobes was related to RBPF (r=-0.32, P=0.033) and TRBVF (r=-0.29, P=0.05), but not to RBPV (R=-0.27, P= NS). There was only a trend of correlation between T2-LL of the frontal lobes and

  17. Brain atrophy at onset and physical disability in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2012-10-01

    Full Text Available The aim of this study was to investigate if brain atrophy in multiple sclerosis (MS patients during the disease onset predicts long term disability. METHODS: MS patients with follow-up time of at least 7 years from disease onset and with baseline and second magnetic resonance 12 months later were included to measure brain atrophy. Expanded Disability Status Scale (EDSS was categorized in three groups, EDSS=0, EDSS=1 and 2.5 and EDSS>2.5, and used as disability measure. RESULTS: Twenty-six patients were included. Mean atrophy during the first year in patients that reached an EDSS≥3 was -0.76±0.45 %, in patients with an EDSS between 1 and 2.5 was -0.59±0.56, while in patients with an EDSS of 0 it was -0.38±0.42 (p=0.003. DISCUSSION: Brain atrophy rates during the first year of disease were predictive of disease progression in our population.

  18. Measurement of brain atrophy of aging using x-ray computed tomography

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju

    1984-01-01

    We measured brain volume of 1,045 subjects with no brain damage using x-ray computed tomography and investigated brain atrophy of aging. Severity of brain atrophy was estimated by brain atrophy index (BAI): BAI (%)=100 (%)x(cerebrospinal fluid space volume/cranial cavity volume). Atrophy of the brain began with statistical significance in the forties in both sexes. In males 40-49 years of age the mean BAI was 1.0% greater (p<0.001) and the S.D. of BAI was 1.1% greater (p<0.001) than those in their thirties. In females of 40-49 years the mean BAI was 0.5% greater (p<0.001) than that in their thirties, but there was no statistical significance between the two S.D.'s of both decades. The BAI increased exponentially with the increasing age from thirties in both sexes. Correlation coefficients were 0.702 (p< 0.001, n=471) in males and 0.721 (p<0.001, n=480) in females. From the regression coefficients it was calculated that the BAI was doubled in 19.4 years in males and 17.4 years in females after thirties. (author)

  19. Atrophy of gray and white matters in the brain during aging

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Ito, Hisao.

    1984-01-01

    We studied atrophy of gray and white matter during aging in 57 males and 44 females with no neurological disturbances using x-ray computed tomography. The ages ranged from 12 to 80 years. Brain atrophy was expressed as brain volume index: 100% x [(brain volume/cranial cavity volume) in individual subjects]/[(brain volume/cranial cavity volume) in normal subjects of 20-39 years]. Atrophy of gray and white matter volume was expressed as gray and white matter volume indices: 100% x (apparent gray or white matter volume index in individual subjects)/(apparent gray or white matter volume index in normal subjects whose brain volume index was greater than 98%), where apparent gray and white matter volume indices were expressed as 100% x [(gray or white matter volume/cranial cavity volume) in individual subjects]/[(gray or white matter volume/cranial cavity volume) in normal subjects of 20-39 years]. Both the gray and white matter volume indices changed proportionally to the brain volume index (p<0.001). As the brain atrophy advanced, the gray matter volume index decreased more than the white matter volume index (P<0.001). Decrease in the gray and white matter volume indices was statistically significant only in seventies (P<0.002 for gray matter, P<0.05 for white matter). (author)

  20. Brain atrophy and lesion load predict long term disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Popescu, Veronica; Agosta, Federica; Hulst, Hanneke E

    2013-01-01

    To determine whether brain atrophy and lesion volumes predict subsequent 10 year clinical evolution in multiple sclerosis (MS).......To determine whether brain atrophy and lesion volumes predict subsequent 10 year clinical evolution in multiple sclerosis (MS)....

  1. Intellectual enrichment lessens the effect of brain atrophy on learning and memory in multiple sclerosis.

    Science.gov (United States)

    Sumowski, James F; Wylie, Glenn R; Chiaravalloti, Nancy; DeLuca, John

    2010-06-15

    Learning and memory impairments are prevalent among persons with multiple sclerosis (MS); however, such deficits are only weakly associated with MS disease severity (brain atrophy). The cognitive reserve hypothesis states that greater lifetime intellectual enrichment lessens the negative impact of brain disease on cognition, thereby helping to explain the incomplete relationship between brain disease and cognitive status in neurologic populations. The literature on cognitive reserve has focused mainly on Alzheimer disease. The current research examines whether greater intellectual enrichment lessens the negative effect of brain atrophy on learning and memory in patients with MS. Forty-four persons with MS completed neuropsychological measures of verbal learning and memory, and a vocabulary-based estimate of lifetime intellectual enrichment. Brain atrophy was estimated with third ventricle width measured from 3-T magnetization-prepared rapid gradient echo MRIs. Hierarchical regression was used to predict learning and memory with brain atrophy, intellectual enrichment, and the interaction between brain atrophy and intellectual enrichment. Brain atrophy predicted worse learning and memory, and intellectual enrichment predicted better learning; however, these effects were moderated by interactions between brain atrophy and intellectual enrichment. Specifically, higher intellectual enrichment lessened the negative impact of brain atrophy on both learning and memory. These findings help to explain the incomplete relationship between multiple sclerosis disease severity and cognition, as the effect of disease on cognition is attenuated among patients with higher intellectual enrichment. As such, intellectual enrichment is supported as a protective factor against disease-related cognitive impairment in persons with multiple sclerosis.

  2. Age-related brain atrophy and mental deterioration - a study with computed tomography

    International Nuclear Information System (INIS)

    Ito, M.; Hatazawa, J.; Yamaura, H.; Matsuzawa, T.

    1981-01-01

    The relation of brain atrophy measured with computed tomography (CT) to mental deterioration on living people was studied. A newly improved technique for quantitative measurement of brain atrophy was developed. The pixels inside the head slices were divided into three parts; brain skull, and cerebrospinal fluid according to their CT number. The volume of brain, CSF, and cranial cavity were calculated by counting the number of pixels of each tissue. Results from 130 normal brains showed that the CSF volume was constant at about 16 ml through 20-39 years old. After 40 years the mean CSF volume increased drastically and reached 71 ml in the seventies. The volume of the brain was standardized for comparison between different-sized heads (brain volume index: BVI). The mean BVI decreased with statistical significance after 40 years of age. Mental function of these persons were evaluated using Hasegawa's dementia rating scale for the elderly. Progression of brain atrophy accompanied loss of mental activities (p<0.01). (author)

  3. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    International Nuclear Information System (INIS)

    Kanoto, Masafumi; Hosoya, Takaaki; Toyoguchi, Yuuki; Oda, Atsuko

    2013-01-01

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis

  4. Study of brain atrophy using X-ray computed tomography

    International Nuclear Information System (INIS)

    Kawabata, Masayoshi

    1987-01-01

    Cerebrospinal fluid space-cranial cavity ratio (CCR) of 811 subjects with no brain damage were investigated using X-ray computed tomography. Brain volume of healthy adults aged 20 - 59 years was almost constant and decreased gradually after 60 years. CCR of men aged 20 - 49 years kept constant value and increased with aging after 50 years. CCR of women aged 20 - 59 years kept equal value and CCR increased with aging after 60 years. Brain atrophy with aging was investigated in this study also. In retrospective study, CCR of patients in any age diagnosed brain atrophy in daily CT reports were beyond the normal range of CCR of healthy subjects aged 20 - 49 years. In 48 patients with Parkinson's disease, almost of CCR of them were included within normal range of CCR in age-matched control. (author)

  5. Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve.

    Science.gov (United States)

    Mungas, Dan; Gavett, Brandon; Fletcher, Evan; Farias, Sarah Tomaszewski; DeCarli, Charles; Reed, Bruce

    2018-08-01

    Level of education is often regarded as a proxy for cognitive reserve in older adults. This implies that brain degeneration has a smaller effect on cognitive decline in those with more education, but this has not been directly tested in previous research. We examined how education, quantitative magnetic resonance imaging-based measurement of brain degeneration, and their interaction affect cognitive decline in diverse older adults spanning the spectrum from normal cognition to dementia. Gray matter atrophy was strongly related to cognitive decline. While education was not related to cognitive decline, brain atrophy had a stronger effect on cognitive decline in those with more education. Importantly, high education was associated with slower decline in individuals with lesser atrophy but with faster decline in those with greater atrophy. This moderation effect was observed in Hispanics (who had high heterogeneity of education) but not in African-Americans or Caucasians. These results suggest that education is an indicator of cognitive reserve in individuals with low levels of brain degeneration, but the protective effect of higher education is rapidly depleted as brain degeneration progresses. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Regional cerebral blood flow and brain atrophy in senile dementia of Alzheimer type (SDAT)

    International Nuclear Information System (INIS)

    Okada, Kazunori; Kobayashi, Shoutai; Yamaguchi, Shuhei; Kitani, Mituhiro; Tsunematsu, Tokugoro

    1987-01-01

    To investigate the relationship between the reduction of cerebal blood flow and brain atrophy in SDAT, these were measured in 13 cases of senile dementia of Alzheimer type, and compared to 15 cases of multi-infarct Dementia, 39 cases of lacunar infarction without dementia (non-demented CVD group) and 69 cases of aged normal control. Brain atrophy was evaluated by two-dimensional method on CT film by digitizer and regional cerebral blood flow (rCBF) was measured by 133 Xe inhalation method. The degree of brain atrophy in SDAT was almost similar of that of MID. But it was more severe than that of non-demented group. MID showed the lowest rCBF among these groups. SDAT showed significantly lower rCBF than that of aged control, but rCBF in SDAT was equal to that of lacunar stroke without dementia. Focal reduction of cerebral blood flow in bilateral fronto-parietal and left occipital regions were observed in SDAT. Verbal intelligence score (Hasegawa's score) correlated with rCBF and brain atrophy index in MID, and a tendency of correlation between rCBF and brain atrophy in MID was also observed. However, there was no correlation among those indices in SDAT. These findings suggest that the loss of brain substance dose not correspond to the reduction of rCBF in SDAT and simultaneous measurement of rCBF and brain atrophy was useful to differ SDAT from MID. (author)

  7. Age-related decline in cerebral blood flow and brain atrophy

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Yamada, Kenji

    1987-01-01

    Using computed tomography, the authors studied brain atrophy during aging in 536 men and 529 women with no neurologic disturbances. They measured cerebrospinal fluid (CSF) space volume and cranial cavity volume above the level of the tentorium cerebelli and calculated a brain atrophy index. CFS space volume strated to increase significantly in the group aged from 45 to 54 years, while the BAI started to increase significantly in the group aged from 35 to 44 years in both men and women. The BAI increased exponentially with the increasing age after 25 years, continuing to increase until 75 years or more in both men and women: log BAI = -0.260 + 0.0150 x age, r = 0.707, n = 493, p < 0.001 in men; log BAI = -0.434 + 0.0162 x age, r = 0.757, n = 504, p < 0.001 in women. Using the xenon-133 inhalation method, the authors studied age-related decline in regional cerebral blood flow (regional initial slope index; rISI) in 197 men and 238 women with no neurologic disturbances, ranging in age from 19 to 88 years. The rISI values in women declined almost linearly with the advancing age from the 50s to the 80s except the 70s. The rISI values in men declined with the advancing age from the 40s to the 60s, but remained unchanged thereafter until the 80s, suggesting the existence of a threshold of rISI values. We estimated the rISI values (probable threshold of brain atrophy), the frequency under which is equivalent to the volume of brain tissues atrophying in a decade, and obtained constant values as about 32 for men and about 37 for women in the 50s, 60s and 70s. If the frequency of rISI values in the brain is distributed according to a Gaussian function and mean of rISI values decreases linearly to the increasing age, then brain tissues having rISI values below the thresholds degenerate almost exponentially with the increasing age, leading to the exponential atrophy of the brain. (J.P.N.)

  8. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    DEFF Research Database (Denmark)

    De Vis, J B; Zwanenburg, J J; van der Kleij, L A

    2016-01-01

    OBJECTIVES: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. METHODS: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were......) and medial temporal lobe atrophy (MTA)] was evaluated. RESULTS: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2...... be a marker of neurodegenerative disease. KEY POINTS: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T 2 of the CSF is related...

  9. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  10. Computer tomography investigation of epilepsy the brain atrophy

    International Nuclear Information System (INIS)

    Taneva, N.

    1997-01-01

    The problem of brain atrophy in patients with epilepsy is often discussed in literature. The aim of the study is to present the results of computer tomography measurements of ventricular size and sulci of brain of 90 patients with various electro-clinical forms of epilepsy, including males and females at the age of 15 to 70 years. Computer tomography measurements were performed having in mind 6 parameters (frontal horn index, FHI; Huckman's number, HZ; cella media index,CMI; width of the third and the fourth ventricles; sulci). The results were compared to the CT measurements of a control group of 40 healthy males and females in the same age range.The obtained data indicate high percentage of subcortical atrophy among patients with epilepsy. Ventricular dilatation was found to be in light extent occurring most early in the frontal brain regions (frontal horns and lateral ventricles)., furthermore observed in the young age. (author)

  11. Cube propagation for focal brain atrophy estimation

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Sørensen, Lauge; Darkner, Sune

    2013-01-01

    Precise and robust whole brain, ventricle, and hippocampal atrophy measurements are important as they serve as biomarkers for Alzheimer’s disease. They are used as secondary outcomes in drug trials, and they correlate with the cognitive scores. When two successive scans are non-linearly aligned...

  12. A case of burn encephalopathy with reversible brain atrophy on brain computed tomography (CT)

    International Nuclear Information System (INIS)

    Hirose, Hisaaki; Suzuki, Koh-ichirou; Nakamura, Yoshihiro; Kido, Kun-ichi; Sato, Masaharu; Fujii, Chiho; Kohama, Akitsugu

    1985-01-01

    We present an interesting case of burn encephalopathy. The patient is a three-year-old girl with second to third degree and 30 % scald burn. She developed central nervous symptom on the second day with high fever and systemic convulsions and was transferred to our clinic on the third day from a local hospital. Her level of consciousness was 30 to 100 (3-3-9 formula) and she developed extra-pyramidal involuntary movement; these neurological signs persisted untill 66th day when she spoke for the first time since admission. Her EEG showed diffuse brain dysfunction and CT showed marked brain atrophy. She began to improve after around 50 days systematically as well as neurologically and was discharged after four months. EEG, CT findings and neurological signs were normal 1.5 years later. We could not find a case of reversible brain atrophy in the reports on burn encephalopathy or other neurological disorders except for the cases of long-term steroid administration on autoimmune diseases or ACTH therapy on infantile spasm. In our case, the reversible brain atrophy might be caused by the rise of endogenous steroid under burn stress, or transient malfunction of cerebro-spinal fluid absorption, or some other causes. (author)

  13. Incidence of Brain Atrophy and Decline in Mini-Mental State Examination Score After Whole-Brain Radiotherapy in Patients With Brain Metastases: A Prospective Study

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Baba, Fumiya; Oda, Kyota; Hayashi, Shinya; Kokubo, Masaki; Ishihara, Shun-Ichi; Itoh, Yoshiyuki; Ogino, Hiroyuki; Koizumi, Masahiko

    2008-01-01

    Purpose: To determine the incidence of brain atrophy and dementia after whole-brain radiotherapy (WBRT) in patients with brain metastases not undergoing surgery. Methods and Materials: Eligible patients underwent WBRT to 40 Gy in 20 fractions with or without a 10-Gy boost. Brain magnetic resonance imaging or computed tomography and Mini-Mental State Examination (MMSE) were performed before and soon after radiotherapy, every 3 months for 18 months, and every 6 months thereafter. Brain atrophy was evaluated by change in cerebrospinal fluid-cranial ratio (CCR), and the atrophy index was defined as postradiation CCR divided by preradiation CCR. Results: Of 101 patients (median age, 62 years) entering the study, 92 completed WBRT, and 45, 25, and 10 patients were assessable at 6, 12, and 18 months, respectively. Mean atrophy index was 1.24 ± 0.39 (SD) at 6 months and 1.32 ± 0.40 at 12 months, and 18% and 28% of the patients had an increase in the atrophy index by 30% or greater, respectively. No apparent decrease in mean MMSE score was observed after WBRT. Individually, MMSE scores decreased by four or more points in 11% at 6 months, 12% at 12 months, and 0% at 18 months. However, about half the decrease in MMSE scores was associated with a decrease in performance status caused by systemic disease progression. Conclusions: Brain atrophy developed in up to 30% of patients, but it was not necessarily accompanied by MMSE score decrease. Dementia after WBRT unaccompanied by tumor recurrence was infrequent

  14. Brain atrophy in multiple sclerosis: therapeutic, cognitive and clinical impact

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2016-03-01

    Full Text Available ABSTRACT Multiple sclerosis (MS was always considered as a white matter inflammatory disease. Today, there is an important body of evidence that supports the hypothesis that gray matter involvement and the neurodegenerative mechanism are at least partially independent from inflammation. Gray matter atrophy develops faster than white matter atrophy, and predominates in the initial stages of the disease. The neurodegenerative mechanism creates permanent damage and correlates with physical and cognitive disability. In this review we describe the current available evidence regarding brain atrophy and its consequence in MS patients.

  15. Homocysteine and brain atrophy on MRI of non-demented elderly

    NARCIS (Netherlands)

    den Heijer, T; Vermeer, SE; Clarke, R; Oudkerk, M; Koudstaal, PJ; Hofman, A; Breteler, MMB

    Patients with Alzheimer's disease have higher plasma homocysteine levels than controls, but it is uncertain whether higher plasma homocysteine levels are involved in the early pathogenesis of the disease. Hippocampal, amygdalar and global brain atrophy on brain MRI have been proposed as early

  16. Brain stem and cerebellar atrophy in chronic progressive neuro-Behçet's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kanoto, Masafumi, E-mail: mkanoto@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Hosoya, Takaaki, E-mail: thosoya@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Toyoguchi, Yuuki, E-mail: c-elegans_0201g@mail.goo.ne.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan); Oda, Atsuko, E-mail: a.oda@med.id.yamagata-u.ac.jp [Department of Diagnostic Radiology, Faculty of Medicine, Yamagata University, Iida-Nishi 2-2-2, 990-9585 Yamagata (Japan)

    2013-01-15

    Purpose: Chronic progressive neuro-Behçet's disease (CPNBD) resembles multiple sclerosis (MS) on patient background and image findings, and therefore is difficult to diagnose. The purpose is to identify the characteristic magnetic resonance imaging (MRI) findings of CPNBD and to clarify the differences between the MRI findings of CPNBD and those of MS. Materials and methods: The subjects consist of a CPNBD group (n = 4; 1 male and 3 females; mean age, 51 y.o.), a MS group (n = 19; 3 males and 16 females; mean age, 45 y.o.) and a normal control group (n = 23; 10 males and 13 females; mean age, 45 y.o.). Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were retrospectively evaluated in each subjects. In middle sagittal brain MR images, the prepontine distance was measured as an indirect index of brain stem and cerebellar atrophy and the pontine and mesencephalic distance was measured as a direct index of brain stem atrophy. These indexes were statistically analyzed. Results: Brain stem atrophy, cerebellar atrophy, and leukoencephalopathy were seen in all CPNBD cases. Prepontine distance was significantly different between the CPNBD group and the MS group (p < 0.05), and between the CPNBD group and the normal control group (p < 0.001). Pontine and mesencephalic distance were significantly different between the CPNBD group and the MS group (p < 0.001, p < 0.01 respectively), and between the CPNBD group and the normal control group (p < 0.001). Conclusions: Chronic progressive neuro-Behçet's disease should be considered in patients with brain stem and cerebellar atrophy in addition to leukoencephalopathy similar to that seen in multiple sclerosis.

  17. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    International Nuclear Information System (INIS)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei

    2008-01-01

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6±5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  18. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei [Shimane Univ., Faculty of Medicine, Izumo, Shimane (Japan)

    2008-03-15

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6{+-}5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  19. Atrophy-specific MRI brain template for Alzheimer's disease and mild cognitive impairment

    DEFF Research Database (Denmark)

    Fonov, Vladimir; Coupe, Pierrick; Eskildsen, Simon Fristed

    Background Rapid brain loss is characteristic for the patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) [1]. Increase of the lateral ventricular volume is strongly correlated with the progression of the disease. High variability in the degree of atrophy for subjects with AD....... Alzheimer's and Dementia, 2010. 6(4, Supplement 1). [3] Fonov, V, et al. NeuroImage, 2011. 54(1).......Background Rapid brain loss is characteristic for the patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) [1]. Increase of the lateral ventricular volume is strongly correlated with the progression of the disease. High variability in the degree of atrophy for subjects with AD...... of the brain and the contrast between different tissue types for the given level of atrophy. Figure 1 shows images through 6 example values of increasing RLVV. Conclusions The proposed method and resulting template will be useful tools for the development of robust automatic image processing methods targeted...

  20. Correlation of volumetric and fractal measurements of brain atrophy with neuropsychological tests in patients with dementive disorders

    International Nuclear Information System (INIS)

    Czarnecka, A.; Sasiadek, M.; Filarski, J.

    2008-01-01

    Brain atrophy is one of the features of the dementive diseases, but also of other neurodegenerative disorders as well as physiological brain aging. The aim of the study was to define the relationship between the brain atrophy measurements and the degree of the severity of dementive process based on the neuropsychological tests (MMSE and Clock Drawing Test). In 68 patients with diagnosed impairment of cognitive functions due to dementia, neuropsychological tests (MMSE and Clock Drawing Test) and CT studies were performed. On the basis of CT images we evaluated cortical and subcortical atrophy with 3 methods; visual, semiautomatic (volumetric) and automatic method based on fractal geometry calculations; the latter was characterized by very short time of measurements. The correlation between neuropsychological tests and brain atrophy measurements has been assessed using Pearson's correlation test. No statistical correlation was found between the results of neuropsychological tests and measurements of the brain atrophy (both cortical and subcortical) using all three methods mentioned above. Single measurement of the generalized cortical and subcortical atrophy is not correlated with the results of neuropsychological tests. In our opinion, these measurements might be valuable in follow-up of the dementive process to compare progression of the atrophic changes with the changes of the neuropsychological tests results, especially using very quick automatic method, supplemented by local atrophy measurements. (authors)

  1. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    International Nuclear Information System (INIS)

    Magraner, M.; Coret, F.; Casanova, B.

    2012-01-01

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta ® and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm 3 , to 960 mm 3 (p = 0.006) and NBV decreased from 1.55 × 10 5 mm 3 to 1.42 × 10 5 mm 3 (p = 0.025). Global PBVC from baseline to 18 months was −2.5%, predominantly during the first six months (0–6 months PBVC −1.7%; 6–12 months PBVC −0.74%; 12–18 months PBVC −0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient −0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (−2.3% to −1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  2. The relationship between inflammatory activity and brain atrophy in natalizumab treated patients

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, M., E-mail: majomagbe@ono.com [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain); Coret, F., E-mail: coret_fra@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Valencia, Avda Blasco Ibanez 17, 46010 Valencia (Spain); Casanova, B., E-mail: Casanova_bon@gva.es [Multiple Sclerosis Unit, Neurology Service, Hospital Universitari i Politecnic La Fe, Bulevar Sur s/n, 46026 Valencia (Spain)

    2012-11-15

    Objective: To assess the evolution of brain atrophy and its relationship with inflammatory activity in RRMS patients treated with natalizumab. Methods: Eighteen RRMS patients were prospectively followed up for 18 months after starting natalizumab therapy. Patients were monitored monthly and assessed for signs of relapses, adverse events or disability increase. MRI scans were performed before starting natalizumab and every six months. Cross-sectional T2 lesion volume (T2LV) and the normalized brain volume (NBV) at baseline and 18 months MRI scans were calculated using the Steronauta{sup Registered-Sign} and SIENAx softwares, respectively. Longitudinal Percentage of Brain Volume Change (PBVC) was estimated with SIENA. Linkage between inflammatory activity and brain atrophy was studied. Results: Natalizumab reduced ARR by 67% and cumulative CEL by 87.5%. T2 lesion volume decreased from 1000 mm{sup 3}, to 960 mm{sup 3} (p = 0.006) and NBV decreased from 1.55 Multiplication-Sign 10{sup 5} mm{sup 3} to 1.42 Multiplication-Sign 10{sup 5} mm{sup 3} (p = 0.025). Global PBVC from baseline to 18 months was -2.5%, predominantly during the first six months (0-6 months PBVC -1.7%; 6-12 months PBVC -0.74%; 12-18 months PBVC -0.50%). The number of relapses before treatment was correlated to the PBVC during the first semester (Pearson's coefficient -0.520, p = 0.003), while the number of basal CEL or baseline T2LV did not correlate with brain atrophy rate. During follow-up, nine patients had clinical or radiological inflammatory activity. Their PBVC was significantly higher in the first semester (-2.3% to -1.1%, p = 0.002). Conclusions: Natalizumab reduced relapse rate and CEL in MRI. Brain atrophy predominated in the first semester and was related to previous inflammatory activity.

  3. Features of brain atrophy in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, I; Melamed, E; Gomori, J M

    1985-03-01

    Multiple parameters for brain volume and mass were studied in 85 parkinsonian patients and in 149 normal controls aged 24 to 89 using CT scanning. In controls there was reduction in brain substance with advancing age. Increased brain atrophy in patients with Parkinson's disease (PD) was mainly observed in the younger age group of 24 to 49. This included parameters evaluating the size of the lateral and third ventricles and the size of the subarachnoid space in the frontal interhemispheric and Sylvian fissures. With computed canonical correlation analysis a formula was obtained which expressed the tendency of the atrophic process in PD to involve the areas surrounding the third ventricle and the mesial aspect of the frontal lobes more than during normal aging.

  4. Contribution of brain atrophy on CT and aging to intelligence level

    International Nuclear Information System (INIS)

    Kawai, Makoto

    1984-01-01

    Decrased intellectual functions due to senility have been much discussed in connection with aging or brain atophy alternatively. But this change should be analysed under multifactorial basis. Furthermore, variations between individuals should be taken into account in dealing with an advanced age group. In these regards, the author performed multivariate analysis on intellectual changes, aging and brain arophy demonstrated on brain CT. Clonological study was also performed to reveal the individual variations. The objects were consisted of 72 people, including the patients of more than 65 years of age who were hospitalized to a geriatrics hospital because of senile dementia, and, as a control group residents in a home for the aged nearby the hospital. Average age was 75.4 years old. Intellectual level was measured through Hasegawa's dementia rating scale. Ventricular enlargement was measured on brain CT to determine the severity of brain atrophy. These two factors and age were processed with multivariate analysis. And clonological study was made to the deviation of intellectual level vs. the change of ventricular enlargement. As the result, firstly, this simple analysing model was able to reveal some aspcts of the deteriolating phenomena of intellectual leve through double factorial basis, i.e. brain atrophy on CT and age. Secondly, the group showing greater changes in the brain atrophy on CT, which included one case with rapid deteriolation in dementia scale of more than 10 points, was distributed mainly around full marks or zero point in dementia scale. This result postulates that the range of the dementia scale should be expanded upwrds as well as downwards for the better explanation of the relation between intellectual deteriolation and above mentioned two factors. (author)

  5. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  6. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen

    2012-09-01

    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest. Copyright © 2011 Elsevier Srl. All rights reserved.

  7. Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry

    International Nuclear Information System (INIS)

    Boto, Jose; Loevblad, Karl-Olof; Vargas, Maria Isabel; Gkinis, Georgios; Ortiz, Nadia; Roche, Alexis; Kober, Tobias; Marechal, Benedicte; University Hospital; Ecole Polytechnique Federale de Lausanne; Lazeyras, Francois

    2017-01-01

    To evaluate brain atrophy in anorexic patients by automated cerebral segmentation with the magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) MRI sequence. Twenty patients (female; mean age, 27.9 years), presenting consecutively for brain MRI between August 2014-December 2016 with clinical suspicion of anorexia nervosa and BMI<18.5 kg/m 2 were included. Controls were ten healthy females (mean age, 26.5 years). Automated brain morphometry was performed based on MP2RAGE. Means of morphometric results in the two groups were compared and correlation with BMI was analysed. Significantly lower volumes of total brain, grey matter (GM), white matter (WM), cerebellum and insula were found in anorexic patients. Anorexics had higher volumes of CSF, ventricles, lateral ventricles and third ventricle. When adjusted means for weight and height were compared, the volume of WM and cerebellum were not significantly different. However, volume of WM was significantly affected by weight and positively correlated with BMI. Significant positive correlations were found between BMI and volumes of total brain, GM, cortical GM and WM. BMI was negatively correlated with volumes of CSF and third ventricle. Brain atrophy was demonstrated in anorexic patients with MP2RAGE-based automated segmentation, which seems to reliably estimate brain volume. (orig.)

  8. Evaluating anorexia-related brain atrophy using MP2RAGE-based morphometry

    Energy Technology Data Exchange (ETDEWEB)

    Boto, Jose; Loevblad, Karl-Olof; Vargas, Maria Isabel [Geneva University Hospital (Switzerland). Div. of Neuroradiology and Faculty of Medicine of Geneva; Gkinis, Georgios; Ortiz, Nadia [Geneva University Hospital (Switzerland). Dept. of Mental Health and Psychiatry; Roche, Alexis; Kober, Tobias; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Lausanne (Switzerland). Siemens ACIT, Advanced Clinical Imaging Technology; University Hospital (CHUV), Lausanne (Switzerland). Dept. of Radiology; Ecole Polytechnique Federale de Lausanne (Switzerland). LTS5; Lazeyras, Francois [Geneva University Hospital (Switzerland). Div. of Radiology and Faculty of Medicine of Geneva

    2017-12-15

    To evaluate brain atrophy in anorexic patients by automated cerebral segmentation with the magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) MRI sequence. Twenty patients (female; mean age, 27.9 years), presenting consecutively for brain MRI between August 2014-December 2016 with clinical suspicion of anorexia nervosa and BMI<18.5 kg/m{sup 2} were included. Controls were ten healthy females (mean age, 26.5 years). Automated brain morphometry was performed based on MP2RAGE. Means of morphometric results in the two groups were compared and correlation with BMI was analysed. Significantly lower volumes of total brain, grey matter (GM), white matter (WM), cerebellum and insula were found in anorexic patients. Anorexics had higher volumes of CSF, ventricles, lateral ventricles and third ventricle. When adjusted means for weight and height were compared, the volume of WM and cerebellum were not significantly different. However, volume of WM was significantly affected by weight and positively correlated with BMI. Significant positive correlations were found between BMI and volumes of total brain, GM, cortical GM and WM. BMI was negatively correlated with volumes of CSF and third ventricle. Brain atrophy was demonstrated in anorexic patients with MP2RAGE-based automated segmentation, which seems to reliably estimate brain volume. (orig.)

  9. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  10. Reversible brain atrophy and cognitive impairment in an adolescent Japanese patient with primary adrenal Cushing's syndrome.

    Science.gov (United States)

    Ohara, Nobumasa; Suzuki, Hiroshi; Suzuki, Akiko; Kaneko, Masanori; Ishizawa, Masahiro; Furukawa, Kazuo; Abe, Takahiro; Matsubayashi, Yasuhiro; Yamada, Takaho; Hanyu, Osamu; Shimohata, Takayoshi; Sone, Hirohito

    2014-01-01

    Endogenous Cushing's syndrome is an endocrine disease resulting from chronic exposure to excessive glucocorticoids produced in the adrenal cortex. Although the ultimate outcome remains uncertain, functional and morphological brain changes are not uncommon in patients with this syndrome, and generally persist even after resolution of hypercortisolemia. We present an adolescent patient with Cushing's syndrome who exhibited cognitive impairment with brain atrophy. A 19-year-old Japanese male visited a local hospital following 5 days of behavioral abnormalities, such as money wasting or nighttime wandering. He had hypertension and a 1-year history of a rounded face. Magnetic resonance imaging (MRI) revealed apparently diffuse brain atrophy. Because of high random plasma cortisol levels (28.7 μg/dL) at 10 AM, he was referred to our hospital in August 2011. Endocrinological testing showed adrenocorticotropic hormone-independent hypercortisolemia, and abdominal computed tomography demonstrated a 2.7 cm tumor in the left adrenal gland. The patient underwent left adrenalectomy in September 2011, and the diagnosis of cortisol-secreting adenoma was confirmed histologically. His hypertension and Cushingoid features regressed. Behavioral abnormalities were no longer observed, and he was classified as cured of his cognitive disturbance caused by Cushing's syndrome in February 2012. MRI performed 8 months after surgery revealed reversal of brain atrophy, and his subsequent course has been uneventful. In summary, the young age at onset and the short duration of Cushing's syndrome probably contributed to the rapid recovery of both cognitive dysfunction and brain atrophy in our patient. Cushing's syndrome should be considered as a possible etiological factor in patients with cognitive impairment and brain atrophy that is atypical for their age.

  11. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients

    NARCIS (Netherlands)

    Sluimer, J.D.; van der Flier, W.M.; Karas, G.B.; Fox, N.C.; Scheltens, P.; Barkhof, F.; Vrenken, H.

    2008-01-01

    Purpose: To prospectively determine whole-brain atrophy rate in mild cognitive impairment (MCI) and Alzheimer disease (AD) and its association with cognitive decline, and investigate the risk of progression to dementia in initially non-demented patients given baseline brain volume and whole-brain

  12. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    Science.gov (United States)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  13. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial diseased-Magnetic Resonance (SMART-MR) study

    NARCIS (Netherlands)

    Kooistra, M.; Geerlings, M.I.; van der Graaf, Y.; Mali, W.P.T.M.; Vincken, K.L.; Kappelle, L.J.; Muller, M.; Biessels, G.J.

    2014-01-01

    We examined the association between brain atrophy and vascular brain lesions (i.e., white matter lesions [WMLs] or brain infarcts), alone or in combination, with decline in memory and executive functioning over 4 years of follow-up in 448 patients (57 ± 9.5 years) with symptomatic atherosclerotic

  14. Measuring brain atrophy with a generalized formulation of the boundary shift integral☆

    Science.gov (United States)

    Prados, Ferran; Cardoso, Manuel Jorge; Leung, Kelvin K.; Cash, David M.; Modat, Marc; Fox, Nick C.; Wheeler-Kingshott, Claudia A.M.; Ourselin, Sebastien

    2015-01-01

    Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region. PMID:25264346

  15. Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model.

    Science.gov (United States)

    Yoshii, Takanobu; Oishi, Naoya; Ikoma, Kazuya; Nishimura, Isao; Sakai, Yuki; Matsuda, Kenichi; Yamada, Shunji; Tanaka, Masaki; Kawata, Mitsuhiro; Narumoto, Jin; Fukui, Kenji

    2017-10-06

    Psychological stress induces many diseases including post-traumatic stress disorder (PTSD); however, the causal relationship between stress and brain atrophy has not been clarified. Applying single-prolonged stress (SPS) to explore the global effect of severe stress, we performed brain magnetic resonance imaging (MRI) acquisition and Voxel-based morphometry (VBM). Significant atrophy was detected in the bilateral thalamus and right visual cortex. Fluorescent immunohistochemistry for Iba-1 as the marker of activated microglia indicates regional microglial activation as stress-reaction in these atrophic areas. These data certify the impact of severe psychological stress on the atrophy of the visual cortex and the thalamus. Unexpectedly, these results are similar to chronic neuropathic pain rather than PTSD clinical research. We believe that some sensitisation mechanism from severe stress-induced atrophy in the visual cortex and thalamus, and the functional defect of the visual system may be a potential therapeutic target for stress-related diseases.

  16. Measuring brain atrophy with a generalized formulation of the boundary shift integral.

    Science.gov (United States)

    Prados, Ferran; Cardoso, Manuel Jorge; Leung, Kelvin K; Cash, David M; Modat, Marc; Fox, Nick C; Wheeler-Kingshott, Claudia A M; Ourselin, Sebastien

    2015-01-01

    Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Reversible brain atrophy and cognitive impairment in an adolescent Japanese patient with primary adrenal Cushing’s syndrome

    Directory of Open Access Journals (Sweden)

    Ohara N

    2014-09-01

    Full Text Available Nobumasa Ohara,1 Hiroshi Suzuki,1 Akiko Suzuki,1 Masanori Kaneko,1 Masahiro Ishizawa,1 Kazuo Furukawa,1 Takahiro Abe,1 Yasuhiro Matsubayashi,1 Takaho Yamada,1 Osamu Hanyu,1 Takayoshi Shimohata,2 Hirohito Sone1 1Department of Hematology, Endocrinology and Metabolism, Faculty of Medicine, Niigata University, Niigata, Japan; 2Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan Abstract: Endogenous Cushing’s syndrome is an endocrine disease resulting from chronic exposure to excessive glucocorticoids produced in the adrenal cortex. Although the ultimate outcome remains uncertain, functional and morphological brain changes are not uncommon in patients with this syndrome, and generally persist even after resolution of hypercortisolemia. We present an adolescent patient with Cushing’s syndrome who exhibited cognitive impairment with brain atrophy. A 19-year-old Japanese male visited a local hospital following 5 days of behavioral abnormalities, such as money wasting or nighttime wandering. He had hypertension and a 1-year history of a rounded face. Magnetic resonance imaging (MRI revealed apparently diffuse brain atrophy. Because of high random plasma cortisol levels (28.7 µg/dL at 10 AM, he was referred to our hospital in August 2011. Endocrinological testing showed adrenocorticotropic hormone-independent hypercortisolemia, and abdominal computed tomography demonstrated a 2.7 cm tumor in the left adrenal gland. The patient underwent left adrenalectomy in September 2011, and the diagnosis of cortisol-secreting adenoma was confirmed histologically. His hypertension and Cushingoid features regressed. Behavioral abnormalities were no longer observed, and he was classified as cured of his cognitive disturbance caused by Cushing’s syndrome in February 2012. MRI performed 8 months after surgery revealed reversal of brain atrophy, and his subsequent course has been uneventful. In summary, the young age at onset and the

  18. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis

    DEFF Research Database (Denmark)

    Vrenken, H; Jenkinson, M; Horsfield, M A

    2013-01-01

    resonance image analysis methods for assessing brain lesion load and atrophy, this paper makes recommendations to improve these measures for longitudinal studies of MS. Briefly, they are (1) images should be acquired using 3D pulse sequences, with near-isotropic spatial resolution and multiple image......Focal lesions and brain atrophy are the most extensively studied aspects of multiple sclerosis (MS), but the image acquisition and analysis techniques used can be further improved, especially those for studying within-patient changes of lesion load and atrophy longitudinally. Improved accuracy...

  19. Relationship between plasma analytes and SPARE-AD defined brain atrophy patterns in ADNI.

    Directory of Open Access Journals (Sweden)

    Jon B Toledo

    Full Text Available Different inflammatory and metabolic pathways have been associated with Alzheimeŕs disease (AD. However, only recently multi-analyte panels to study a large number of molecules in well characterized cohorts have been made available. These panels could help identify molecules that point to the affected pathways. We studied the relationship between a panel of plasma biomarkers (Human DiscoveryMAP and presence of AD-like brain atrophy patterns defined by a previously published index (SPARE-AD at baseline in subjects of the ADNI cohort. 818 subjects had MRI-derived SPARE-AD scores, of these subjects 69% had plasma biomarkers and 51% had CSF tau and Aβ measurements. Significant analyte-SPARE-AD and analytes correlations were studied in adjusted models. Plasma cortisol and chromogranin A showed a significant association that did not remain significant in the CSF signature adjusted model. Plasma macrophage inhibitory protein-1α and insulin-like growth factor binding protein 2 showed a significant association with brain atrophy in the adjusted model. Cortisol levels showed an inverse association with tests measuring processing speed. Our results indicate that stress and insulin responses and cytokines associated with recruitment of inflammatory cells in MCI-AD are associated with its characteristic AD-like brain atrophy pattern and correlate with clinical changes or CSF biomarkers.

  20. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    Science.gov (United States)

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  1. Cerebral atrophy in Parkinson's disease - represented in CT

    International Nuclear Information System (INIS)

    Becker, H.; Schneider, E.; Hacker, H.; Fischer, P.A.; Frankfurt Univ.

    1979-01-01

    To clarify the importance of brain atrophy in relation to the symptoms of Parkinson's disease, 173 patients were examined by computed tomography (CT). In 51.4% of the CT findings, brain atrophy was considered to be pathological. Statistically significant relations of age and sex were found with regard to the extent and localization of brain atrophy. Cortical atrophy also showed a significant dependence on duration of disease. Linear measurements at the lateral ventricles and the third ventricle lead us to assume that brain atrophy in Parkinson's patients is more prevalent than in normal patients within the scope of age involution. (orig.)

  2. Cerebral atrophy in Parkinson's disease - represented in CT

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H; Schneider, E; Hacker, H; Fischer, P A [Frankfurt Univ. (Germany, F.R.). Abt. fuer Neuroradiologie; Frankfurt Univ. (Germany, F.R.). Abt. fuer Neurologie)

    1979-01-01

    To clarify the importance of brain atrophy in relation to the symptoms of Parkinson's disease, 173 patients were examined by computed tomography (CT). In 51.4% of the CT findings, brain atrophy was considered to be pathological. Statistically significant relations of age and sex were found with regard to the extent and localization of brain atrophy. Cortical atrophy also showed a significant dependence on duration of disease. Linear measurements at the lateral ventricles and the third ventricle lead us to assume that brain atrophy in Parkinson's patients is more prevalent than in normal patients within the scope of age involution.

  3. Computed tomographic (CT) study of the brains of 357 elderly demented patients. Clinical usefulness of CT measurements of brain atrophy and its correlation with mental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Kazuhiko; Endo, Hidetoshi; Yamamoto, Takayuki; Kuzuya, Fumio

    1988-05-01

    It is well known that there is some limitation in the diagnostic effectiveness of brain computed tomography (CT) of dementia. Some investigators suggested certain correlation between brain atrophy and degree of psychological imparement in demented patients, but others did not agree with these suggestions. Authors have felt that the number of samples is very important in statistical analyses, thus they collected a great number of appropriate samples of dementia: that is, 59 of Alzheimer disease (AD), 120 of senile dementia of Alzheimer type (SDAT) and 178 of vascular dementia (VD), and compared these CT findings with those of 100 non-demented people. Firstly, we observed no relation between aging and brain atrophy in any type of dementia while there was a certain relation in non-demented people. Secondly, the female brain could easily become atrophic physiologically and was more severely atrophic in case of dementia compared with the male brain. Thirdly, it was impossible to differentiate SDAT from VD only by measuring values of dilatation of ventricles (maximum width of the third ventricle and cella media index) and sylvian fissures (''sylvian index''). Finally, it was observed that there was deep relation between the results of clinical assessments and the degree of brain atrophy in SDAT, because individual specificity in the type of atrophy was not variable in this type of dementia. Moreover all functions: that is, motor, intellectual, and emotional functions in SDAT patients, were impaired in the same degree respectively. From these results, authors could know many available characteristics of atrophy in the brains of demented patients through the following easy methods of measurement: linear measure method and ventricular-brain method, because we could analyse a sufficient number of samples.

  4. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Studies on atrophy of the brain in chronic alcoholics examined by CT scan

    International Nuclear Information System (INIS)

    Shinoda, Keiichi; Kimura, Fumiharu; Kawamura, Hiroshi; Takenaka, Masazumi; Mozai, Toshiji

    1983-01-01

    A study of atrophy of the brain using CT scan was performed in 113 patients with chronic alcoholism who had history of alcohol abuse over 150 grams in average as amount of absolute ethanol for more than ten years. They had no focal cerebral lesions such as infarction, hemorrhage or tumor, nor clinical neurological deficits. Prominent enlagement of cortical sulci and lateral ventricles was found in chronic alcoholics when compared with age-matched controls. The most remarkable change among 6 indices in all age group was enlargement of cortical sulci. The ratio of lateral ventricle area to intracranical area was more significantly increased compared with the widening of the lateral ventricle determined as a distance between two tips of bilateral frontal horns or intercaudate distance. Forty-eight of 96 patients in whom EEG was examined, showed abnormalities such as dominant slow background activities and sporadic slow bursts, which were found more frequently (25/38, 66%) in patients over 50 years of age. No correlation was found between the occurrence of EEG abnormalities and cerebral atrophy or between the degree of cerebral atrophy and the severity of hepatic dysfunction. It is concluded from our study that atrophy of the brain in chronic alcoholics may be clearly estimated by CT planimetry of the ratio of lateral ventricle area to intracranial area. (J.P.N.)

  6. Studies on atrophy of the brain in chronic alcoholics examined by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, Keiichi; Kimura, Fumiharu; Kawamura, Hiroshi; Takenaka, Masazumi; Mozai, Toshiji (Osaka Medical Coll., Takatsuki (Japan))

    1983-09-01

    A study of atrophy of the brain using CT scan was performed in 113 patients with chronic alcoholism who had history of alcohol abuse over 150 grams in average as amount of absolute ethanol for more than ten years. They had no focal cerebral lesions such as infarction, hemorrhage or tumor, nor clinical neurological deficits. Prominent enlargement of cortical sulci and lateral ventricles was found in chronic alcoholics when compared with age-matched controls. The most remarkable change among 6 indices in all age group was enlargement of cortical sulci. The ratio of lateral ventricle area to intracranical area was more significantly increased compared with the widening of the lateral ventricle determined as a distance between two tips of bilateral frontal horns or intercaudate distance. Forty-eight of 96 patients in whom EEG was examined, showed abnormalities such as dominant slow background activities and sporadic slow bursts, which were found more frequently (25/38, 66%) in patients over 50 years of age. No correlation was found between the occurrence of EEG abnormalities and cerebral atrophy or between the degree of cerebral atrophy and the severity of hepatic dysfunction. It is concluded from our study that atrophy of the brain in chronic alcoholics may be clearly estimated by CT planimetry of the ratio of lateral ventricle area to intracranial area.

  7. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    A David Smith

    2010-09-01

    Full Text Available An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins.To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159.Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B(6 and B(12 in 271 individuals (of 646 screened over 70 y old with mild cognitive impairment. A subset (187 volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d, vitamin B(12 (0.5 mg/d and vitamin B(6 (20 mg/d, the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans.A total of 168 participants (85 in active treatment group; 83 receiving placebo completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63-0.90] in the active treatment group and 1.08% [0.94-1.22] in the placebo group (P =  0.001. The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P =  0.001. A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category.The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment with homocysteine-lowering B vitamins. Sixteen percent of those over 70 y old have mild

  8. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry

    Science.gov (United States)

    Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2011-01-01

    35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new α-entropy-based information-theoretic measure of image correspondence, called the Jensen–Rényi divergence (JRD). Methods 3D T1-weighted brain MRIs of 26 AIDS patients (CDC stage C and/or 3 without HIV-associated dementia; 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell count: 299.5 ± 175.7/µl; log10 plasma viral load: 2.57 ± 1.28 RNA copies/ml) and 14 HIV-seronegative controls (37.6 ± 12.2 years; 8M/6F) were fluidly registered by applying forces throughout each deforming image to maximize the JRD between it and a target image (from a control subject). The 3D fluid registration was regularized using the linearized Cauchy–Navier operator. Fine-scale volumetric differences between diagnostic groups were mapped. Regions were identified where brain atrophy correlated with clinical measures. Results Severe atrophy (~15–20% deficit) was detected bilaterally in the primary and association sensorimotor areas. Atrophy of these regions, particularly in the white matter, correlated with cognitive impairment (P=0.033) and CD4+ T-lymphocyte depletion (P=0.005). Conclusion TBM facilitates 3D visualization of AIDS neuropathology in living patients scanned with MRI. Severe atrophy in frontoparietal and striatal areas may underlie early cognitive dysfunction in AIDS patients, and may signal the imminent onset of AIDS dementia complex. PMID:17035049

  9. Practical one-dimensional measurements of age-related brain atrophy are validated by 3-dimensional values and clinical outcomes: a retrospective study

    International Nuclear Information System (INIS)

    Dunham, C. Michael; Cook, Albert J. II; Paparodis, Alaina M.; Huang, Gregory S.

    2016-01-01

    Age-related brain atrophy has been represented by simple 1-dimensional (1-D) measurements on computed tomography (CT) for several decades and, more recently, with 3-dimensional (3-D) analysis, using brain volume (BV) and cerebrospinal fluid volume (CSFV). We aimed to show that simple 1-D measurements would be associated with 3-D values of age-related atrophy and that they would be related to post-traumatic intracranial hemorrhage (ICH). Patients ≥60 years with head trauma were classified with central atrophy (lateral ventricular body width >30 mm) and/or cortical atrophy (sulcus width ≥2.5 mm). Composite atrophy was the presence of central or cortical atrophy. BV and CSFV were computed using a Siemens Syngo workstation (VE60A). Of 177 patients, traits were age 78.3 ± 10, ICH 32.2 %, central atrophy 39.5 %, cortical atrophy 31.1 %, composite atrophy 49.2 %, BV 1,156 ± 198 mL, and CSFV 102.5 ± 63 mL. CSFV was greater with central atrophy (134.4 mL), than without (81.7 mL, p < 0.001). BV was lower with cortical atrophy (1,034 mL), than without (1,211 mL; p < 0.001). BV was lower with composite atrophy (1,103 mL), than without (1,208 mL; p < 0.001). CSFV was greater with composite atrophy (129.1 mL), than without (76.8 mL, p < 0.001). CSFV÷BV was greater with composite atrophy (12.3 %), than without (6.7 %, p < 0.001). Age was greater with composite atrophy (80.4 years), than without (76.3, p = 0.006). Age had an inverse correlation with BV (p < 0.001) and a direct correlation with CSFV (p = 0.0002) and CSFV÷BV (p < 0.001). ICH was greater with composite atrophy (49.4 %), than without (15.6 %; p < 0.001; odds ratio = 5.3). BV was lower with ICH (1,089 mL), than without (1,188 mL; p = 0.002). CSFV÷BV was greater with ICH (11.1 %), than without (8.7 %, p = 0.02). ICH was independently associated with central atrophy (p = 0.001) and cortical atrophy (p = 0.003). Simple 1-D measurements of age-related brain atrophy are associated with 3-D values. Clinical

  10. Frontal parenchymal atrophy measures in multiple sclerosis.

    Science.gov (United States)

    Locatelli, Laura; Zivadinov, Robert; Grop, Attilio; Zorzon, Marino

    2004-10-01

    The aim of this study was to establish whether, in a cross-sectional study, the normalized measures of whole and regional brain atrophy correlate better with tests assessing the cognitive function than the absolute brain atrophy measures. The neuropsychological performances and disability have been assessed in 39 patients with relapsing-remitting multiple sclerosis (MS). T1- and T2-lesion load (LL) of total brain and frontal lobes (FLs) were measured using a reproducible semiautomated technique. The whole brain volume and the regional brain parenchymal volume (RBPV) of FLs were obtained using a computerized interactive program, which incorporates semiautomated and automated segmentation processes. Normalized measures of brain atrophy, i.e., brain parenchymal fraction (BPF) and regional brain parenchymal fraction (RBPF) of FLs, were calculated. The scan-rescan, inter- and intrarater coefficient of variation (COV) and intraclass correlation coefficient (ICC) have been estimated. The RBPF of FLs showed an acceptable level of reproducibility which ranged from 1.7% for intrarater variability to 3.2% for scan-rescan variability. The mean ICC was 0.88 (CI 0.82-0.93). The RBPF of FLs demonstrated stronger magnitudes of correlation with neuropsychological functioning, disability and quantitative MRI lesion measures than RBPV. These differences were statistically significant: PColor Word Interference test, Pcognitive functions, whereas BPAV did not. The correlation analysis results were supported by the results of multiple regression analysis which showed that only the normalized brain atrophy measures were associated with tests exploring the cognitive functions. These data suggest that RBPF is a reproducible and sensitive method for measuring frontal parenchymal atrophy. The normalized measures of whole and regional brain parenchymal atrophy should be preferred to absolute measures in future studies that correlate neuropsychological performances and brain atrophy measures

  11. Detection of cerebral atrophy in type- II diabetes mellitus by magnetic resonance imaging of brain

    International Nuclear Information System (INIS)

    Khan, G.; Khan, N.; Aziz, A.

    2010-01-01

    Background: Diabetes is a metabolic disorder that affects many systems in the body. Cerebral atrophy is one of the complications of diabetes and research is on going to find out its aetiopathological factors. The main aim of the study was to determine the frequency of cerebral atrophy in type-II diabetes mellitus using magnetic resonance imaging of the brain. Methods: One hundred diabetic patients (Random blood sugar >126 mg/dl) were recruited in this study after the informed consent from every patient. Duration of diabetes was five years and more in all the patients as determined by their glycosylated haemoglobin which was >6 in all the patients. All the patients were undergone MRI of brain using 1.5 Tesla power magnetic resonance imaging machine of Picker Company. Evan's index, a specific parameter for measurement of cerebral atrophy was calculated on MR images and was used in this study. Results: In male group the frequency of cerebral atrophy was 22 (47%) and in female group it was found to be 23 (43%). When we study the overall population the frequency was found to be 45 (45%). The results are well in concordance with the previous data published on this issue. Conclusions: Cerebral atrophy, a complication of long standing diabetes is quite frequent in our population and is well diagnosed by MRI. (author)

  12. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mehrabian, S.; Raycheva, M.; Traykova, M.; Stankova, T.; Penev, L.; Georgieva-Kozarova, G.; Grigorova, O.; Traykov, L.

    2012-01-01

    Full text: Background: This article reports a rare case of active neurosyphilis in a 33-years-old man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer's disease. Few number of cases described bilateral hippocampal atrophy mimicking Alzheimer's disease in neurosyphilis. Case presentation: The clinical feature is characterized by a progressive cognitive decline and behavioral changes for the last 18 months. Neuropsychological examination revealed mild to moderate dementia (MMSE=16) with impaired memory, attention and executive dysfunction. Pyramidal, extrapyramidal signs, dysarthria and impairment in coordination were documented. Brain magnetic resonance imaging showed cortical atrophy with marked bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of Venereal Disease Research Laboratory test - Treponema Pallidum. Hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High dose intravenous penicillin therapy was administered. During the follow up examination at 6 month, the clinical signs, and neuropsychological examinations, and cerebrospinal fluid samples showed improvement. Conclusion: This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition and needs early aggressive antibiotic therapy

  13. Brain atrophy and lesion load are related to CSF lipid-specific IgM oligoclonal bands in clinically isolated syndromes

    International Nuclear Information System (INIS)

    Magraner, Maria Jose; Bosca, Isabel; Simo-Castello, Maria; Casanova, Bonaventura; Garcia-Marti, Gracian; Alberich-Bayarri, Angel; Marti-Bonmati, Luis; Coret, Francisco; Alvarez-Cermeno, Jose C.; Villar, Luisa M.

    2012-01-01

    The objective of this work is to study the relationship between the presence of lipid-specific oligoclonal IgM bands (LS-OCMB) in CSF, with both T2 lesion volume (T2LV) accumulation and brain atrophy (percentage change of brain volume-PCBV-and brain parenchyma fraction-BPF) in patients with clinically isolated syndromes (CIS) suggestive of demyelination. Twenty-four CIS patients were included in this prospective study. IgG oligoclonal bands (OCGB) and LS-OCMB were determined in paired serum and CSF samples within 3 months since clinical onset. Brain MRI studies were scheduled at baseline, 3 months, first and second years after CIS onset. Differences in T2LV, PCBV and BPF between CIS patients according to the type of OCB were studied. Nine patients had no OCB; 15 had only OCGB, and seven had OCGB + LS-OCMB present in the CSF. LS-OCMB were associated with greater T2LV in all scheduled MRI studies. At the end of follow-up (year 2), it was threefold higher in patients with these antibodies than in those without LS-OCMB (3.95 cm 3 vs. 1.36 cm 3 , p = 0.001). At that point, brain atrophy was also higher in patients with LS-OCMB (BPF, 0.73 in LS-OCMB+ patients vs. 0.76 in negative ones, p = 0.03). The rate in brain atrophy was higher in the first group of patients as well. Considering only patients with OCGB, the presence of LS-OCMB was also related to greater T2LV, T2LV increase and a trend towards higher atrophy rate. The presence of LS-OCMB in the first event suggestive of demyelination is related to an early increase in lesion load and brain atrophy. These data are in line with prospective studies showing the clinical prognostic value of LS-OCMB. (orig.)

  14. Clinical study on eating disorders. Brain atrophy revealed by cranial computed tomography scans

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Shinichi

    1988-06-01

    Cranial computed tomography (CT) scans were reviewed in 34 patients with anorexia nervosa (Group I) and 22 with bulimia (Group II) to elucidate the cause and pathological significance of morphological brain alterations. The findings were compared with those from 47 normal women. The incidence of brain atrophy was significantly higher in Group I (17/34, 50%) and Group II (11/22, 50%) than the control group (3/47, 6%). In Group I, there was a significant increase in the left septum-caudate distance, the maximum width of interhemispheric fissure, the width of the both-side Sylvian fissures adjacent to the skull, and the maximum width of the third ventricle. A significant increase in the maximum width of interhemispheric fissure and the width of the left-side Sylvian fissure adjacent to the skull were noted as well in Group II. Ventricular brain ratios were significantly higher in Groups I and II than the control group (6.76 and 7.29 vs 4.55). Brain atrophy did not correlate with age, body weight, malnutrition, eating behavior, depression, thyroid function, EEG findings, or intelligence scale. In Group I, serum cortisol levels after the administration of dexamethasone were correlated with ventricular brain ratio. (Namekawa, K) 51 refs.

  15. Regional cerebral blood flow and brain atrophy in senile dementia of Alzheimer type (SDAT). Comparing with multi-infarct dementia (MID), and aged control

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K; Kobayashi, S; Yamaguchi, S; Kitani, M; Tsunematsu, T

    1987-05-01

    To investigate the relationship between the reduction of cerebal blood flow and brain atrophy in SDAT, these were measured in 13 cases of senile dementia of Alzheimer type, and compared to 15 cases of multi-infarct Dementia, 39 cases of lacunar infarction without dementia (non-demented CVD group) and 69 cases of aged normal control. Brain atrophy was evaluated by two-dimensional method on CT film by digitizer and regional cerebral blood flow (rCBF) was measured by /sup 133/Xe inhalation method. The degree of brain atrophy in SDAT was almost similar of that of MID. But it was more severe than that of non-demented group. MID showed the lowest rCBF among these groups. SDAT showed significantly lower rCBF than that of aged control, but rCBF in SDAT was equal to that of lacunar stroke without dementia. Focal reduction of cerebral blood flow in bilateral fronto-parietal and left occipital regions were observed in SDAT. Verbal intelligence score (Hasegawa's score) correlated with rCBF and brain atrophy index in MID, and a tendency of correlation between rCBF and brain atrophy in MID was also observed. However, there was no correlation among those indices in SDAT. These findings suggest that the loss of brain substance dose not correspond to the reduction of rCBF in SDAT and simultaneous measurement of rCBF and brain atrophy was useful to differ SDAT from MID.

  16. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Evaluation of supra- and infratentorial brain atrophy by computerized tomography in spinocerebellar degeneration

    International Nuclear Information System (INIS)

    Yamamoto, Hiroko; Asano, Yasuhiko; Watanabe, Takatoshi; Hirao, Yoshitaka; Mizuno, Yasushi; Sobue, Itsuro

    1986-01-01

    Measurement of various parameters of supra- and infratentorial brain atrophy in computerized tomographs of 142 cases of spinocerebellar degeneration (SCD) and 100 age and sex matched controls was carried out in order to investigate whether these parameters would correspond to the subtypes of this disease and differing grades of various clinical manifestations. One supra- and all infratentorial parameters of SCD showed statistically significant atrophy with a risk of P < 0.005. Among the subtypes, OPCA had a more severely atrophied pons than LCCA (P < 0.005), Menzel (P < 0.05) and SSP (P < 0.01). There was a correlation between the distribution of symptoms like gait, speech, ataxia of extremities and ocular movement disorders, and distribution and degree of infratentorial atrophy with statistical significance (P < 0.05 ∼ P < 0.005). The degree of atrophy of the pons and the width of the IV ventricle were directly proportional to the duration of the illness in cases of less than 10 years, but not to those of over 10 years. Follow-up CT scan was done for 24 patients, 12 within 3 years, 12 after the lapse of 3 years. The latter group showed statistically significant atrophy between the 1st and 2nd scans in several parameters, but there was no significance between those of the former group. (author)

  18. Evaluation of supra- and infratentorial brain atrophy by computerized tomography in spinocerebellar degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroko; Asano, Yasuhiko; Watanabe, Takatoshi; Hirao, Yoshitaka; Mizuno, Yasushi; Sobue, Itsuro

    1986-08-01

    Measurement of various parameters of supra- and infratentorial brain atrophy in computerized tomographs of 142 cases of spinocerebellar degeneration (SCD) and 100 age and sex matched controls was carried out in order to investigate whether these parameters would correspond to the subtypes of this disease and differing grades of various clinical manifestations. One supra- and all infratentorial parameters of SCD showed statistically significant atrophy with a risk of P < 0.005. Among the subtypes, OPCA had a more severely atrophied pons than LCCA (P < 0.005), Menzel (P < 0.05) and SSP (P < 0.01). There was a correlation between the distribution of symptoms like gait, speech, ataxia of extremities and ocular movement disorders, and distribution and degree of infratentorial atrophy with statistical significance (P < 0.05 -- P < 0.005). The degree of atrophy of the pons and the width of the IV ventricle were directly proportional to the duration of the illness in cases of less than 10 years, but not to those of over 10 years. Follow-up CT scan was done for 24 patients, 12 within 3 years, 12 after the lapse of 3 years. The latter group showed statistically significant atrophy between the 1st and 2nd scans in several parameters, but there was no significance between those of the former group.

  19. Analysis of MRI in chronic alcoholics with brain atrophy

    International Nuclear Information System (INIS)

    Park, Jin Sook; Kim, Myung Soon; Whang, Kum

    1997-01-01

    To quantitatively evaluate by MRI brain atrophy and abnormal parenchymal signal intensity on T2-weighted spin echo image in alcoholics. MRI of 24 alcoholic patients were retrospectively evaluated to measure brain atrophy (cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci) and abnormal high signal lesions of brain parenchyma on T2-weighted spin echo image, and were compared with age matched controls (n=29). The alcoholics and controls were divided into two age groups, younger (30-49 years) and older (50-72 years), and statistical analysis was then performed. Axial and sagittal T1- and T2-weighted spin echo images were obtained using a 0.5 Tesla superconductive system. Statistical significant parameters in the supratentorial region were cerebral sulcal width, distance between lateral ends of frontal horns of both lateral ventricles, and third ventricular width (p < 0.05), and in the infratentorial region were fourth ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). In the younger age group, statistical significant parameters were cerebral sulcal width, third ventricular width, ambient cistern width, cerebellopontine angle cistern width, number of cerebellar sulci, and number of vermian sulci (p < 0.05) and in the older group were cerebral sulcal width, bifrontal horn distance, third ventricular width, fourth ventricular width, number of cerebellar sulci, and number of vermian sulci (p < 0.05). Abnormal high signal intensity on T2-weighted spin echo images were seen in 46% of alcoholics (11/24) and in 13% of controls (3/29). High signal lesions in the older group were statistically significant (p < 0.05). Atrophic brain changes and periventricular high signal foci on T2-weighted spin echo image are

  20. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  1. Study of brain atrophy using X-ray computed tomography. Measurement of CSF space-cranial cavity ratio (CCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Masayoshi

    1987-04-01

    Cerebrospinal fluid space-cranial cavity ratio (CCR) of 811 subjects with no brain damage were investigated using X-ray computed tomography. Brain volume of healthy adults aged 20 - 59 years was almost constant and decreased gradually after 60 years. CCR of men aged 20 - 49 years kept constant value and increased with aging after 50 years. CCR of women aged 20 - 59 years kept equal value and CCR increased with aging after 60 years. Brain atrophy with aging was investigated in this study also. In retrospective study, CCR of patients in any age diagnosed brain atrophy in daily CT reports were beyond the normal range of CCR of healthy subjects aged 20 - 49 years. In 48 patients with Parkinson's disease, almost of CCR of them were included within normal range of CCR in age-matched control.

  2. Correlations between regional cerebral blood flow and age-related brain atrophy: a quantitative study with computed tomography and the xenon-133 inhalation method

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Hatazawa, J.; Kubota, K.; Abe, Y.; Fujiwara, T.; Matsuzawa, T.

    1983-01-01

    One hundred and two subjects (40 men and 62 women) neither having a history of neurologic deficits nor showing organic lesions on computed tomographic examination of the brain were studied. Ages of the subjects ranged from 26 to 81 years. Regional cerebral blood flow was measured by the xenon-133 inhalation method, and the volume percentage of brain with respect to the cranial cavity (craniocerebral index) was calculated by means of computer programs. Regional cerebral blood flow was computed as the fast component of two-compartmental analysis and as the initial slope index value. The percentage of each subject's craniocerebral index in relation to the standard for subjects with non-atrophied brains (brain volume index) was calculated as the indicator of brain atrophy. Both the mean brain fast component values and the mean brain initial slope index values correlated closely with the brain volume index in the elderly. Low cerebral blood flow values coincided with loss of brain substance in the final stage of age-related brain atrophy, but not in the intermediate stage

  3. Calculation of brain atrophy using computed tomography and a new atrophy measurement tool

    Science.gov (United States)

    Bin Zahid, Abdullah; Mikheev, Artem; Yang, Andrew Il; Samadani, Uzma; Rusinek, Henry

    2015-03-01

    Purpose: To determine if brain atrophy can be calculated by performing volumetric analysis on conventional computed tomography (CT) scans in spite of relatively low contrast for this modality. Materials & Method: CTs for 73 patients from the local Veteran Affairs database were selected. Exclusion criteria: AD, NPH, tumor, and alcohol abuse. Protocol: conventional clinical acquisition (Toshiba; helical, 120 kVp, X-ray tube current 300mA, slice thickness 3-5mm). Locally developed, automatic algorithm was used to segment intracranial cavity (ICC) using (a) white matter seed (b) constrained growth, limited by inner skull layer and (c) topological connectivity. ICC was further segmented into CSF and brain parenchyma using a threshold of 16 Hu. Results: Age distribution: 25-95yrs; (Mean 67+/-17.5yrs.). Significant correlation was found between age and CSF/ICC(r=0.695, pautomated software and conventional CT. Compared to MRI, CT is more widely available, cheaper, and less affected by head motion due to ~100 times shorter scan time. Work is in progress to improve the precision of the measurements, possibly leading to assessment of longitudinal changes within the patient.

  4. A cross-sectional MRI study of brain regional atrophy and clinical characteristics of temporal lobe epilepsy with hippocampal sclerosis.

    LENUS (Irish Health Repository)

    2012-02-01

    PURPOSE: Applying a cross-sectional design, we set out to further characterize the significance of extrahippocampal brain atrophy in a large sample of \\'sporadic\\' mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE+HS). By evaluating the influence of epilepsy chronicity on structural atrophy, this work represents an important step towards the characterization of MRI-based volumetric measurements as genetic endophenotypes for this condition. METHODS: Using an automated brain segmentation technique, MRI-based volume measurements of several brain regions were compared between 75 patients with \\'sporadic\\' MTLE+HS and 50 healthy controls. Applying linear regression models, we examined the relationship between structural atrophy and important clinical features of MTLE+HS, including disease duration, lifetime number of partial and generalized seizures, and history of initial precipitating insults (IPIs). RESULTS: Significant volume loss was detected in ipsilateral hippocampus, amygdala, thalamus, and cerebral white matter (WM). In addition, contralateral hippocampal and bilateral cerebellar grey matter (GM) volume loss was observed in left MTLE+HS patients. Hippocampal, amygdalar, and cerebral WM volume loss correlated with duration of epilepsy. This correlation was stronger in patients with prior IPIs history. Further, cerebral WM, cerebellar GM, and contralateral hippocampal volume loss correlated with lifetime number of generalized seizures. CONCLUSION: Our findings confirm that multiple brain regions beyond the hippocampus are involved in the pathogenesis of MTLE+HS. IPIs are an important factor influencing the rate of regional atrophy but our results also support a role for processes related to epilepsy chronicity. The consequence of epilepsy chronicity on candidate brain regions has important implications on their application as genetic endophenotypes.

  5. Prediction of brain atrophy using three drug scores in neuroasymptomatic HIV-infected patients with controlled viremia

    Directory of Open Access Journals (Sweden)

    Marko Novakovic

    2015-09-01

    Conclusions: Although based on similar type of research, ΣCPE2010 is a superior drug score compared to ΣCPE2008. ΣME is an efficient drug score in determining brain damage. Both ΣCPE2010 and ΣME scores should be taken into account in preventive strategies of brain atrophy and neurocognitive impairment in HIV-infected patients.

  6. The Effect of Disease-Modifying Drugs on Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Pierre Branger

    Full Text Available The quantification of brain atrophy in relapsing-remitting multiple sclerosis (RRMS may serve as a marker of disease progression and treatment response. We compared the association between first-line (FL or second-line (SL disease-modifying drugs (DMDs and brain volume changes over time in RRMS.We reviewed clinical trials in RRMS between January 1, 1995 and June 1, 2014 that assessed the effect of DMDs and reported data on brain atrophy in Medline, Embase, the Cochrane database and meeting abstracts. First, we designed a meta-analysis to directly compare the percentage brain volume change (PBVC between FLDMDs and SLDMDs at 24 months. Second, we conducted an observational and longitudinal linear regression analysis of a 48-month follow-up period. Sensitivity analyses considering PBVC between 12 and 48 months were also performed.Among the 272 studies identified, 117 were analyzed and 35 (18,140 patients were included in the analysis. Based on the meta-analysis, atrophy was greater for the use of an FLDMD than that of an SLDMD at 24 months (primary endpoint mean difference, -0.86; 95% confidence interval: -1.57--0.15; P = 0.02. Based on the linear regression analysis, the annual PBVC significantly differed between SLDMDs and placebo (-0.27%/y and -0.50%/y, respectively, P = 0.046 but not between FLDMDs (-0.33%/y and placebo (P = 0.11 or between FLDMDs and SLDMDs (P = 0.49. Based on sensitivity analysis, the annual PBVC was reduced for SLDMDs compared with placebo (-0.14%/y and -0.56%/y, respectively, P<0.001 and FLDMDs (-0.46%/y, P<0.005, but no difference was detected between FLDMDs and placebo (P = 0.12.SLDMDs were associated with reduced PBVC slope over time in RRMS, regardless of the period considered. These results provide new insights into the mechanisms underlying atrophy progression in RRMS.

  7. 3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry

    Science.gov (United States)

    Hua, Xue; Leow, Alex D.; Lee, Suh; Klunder, Andrea D.; Toga, Arthur W.; Lepore, Natasha; Chou, Yi-Yu; Brun, Caroline; Chiang, Ming-Chang; Barysheva, Marina; Jack, Clifford R.; Bernstein, Matt A.; Britson, Paula J.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret; Fleisher, Adam S.; Fox, Nick C.; Boyes, Richard G.; Barnes, Josephine; Harvey, Danielle; Kornak, John; Schuff, Norbert; Boreta, Lauren; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2008-01-01

    Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/−7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials. PMID:18378167

  8. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  9. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant in Cognitively Impaired Patients.

    Directory of Open Access Journals (Sweden)

    Eric R Braverman

    Full Text Available To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54, 57.14% central atrophy (N=88, and 44.52% temporal atrophy (N=69. A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III scores differentially across various brain loci. Delayed latency (p=0.0740 was marginally associated with temporal atrophy; reduced fractional anisotropy (FA in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115. Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787. In the centrum semiovale (CS, reduced FA correlated with visual memory (p=0.0622. Lower demyelination correlated with higher P300 amplitude (p=0.0002. Compared to males, females have higher demyelination (p=0.0064. Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165. Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087. In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740; high auditory memory and low temporal atrophy (p=0.0417; and high working memory and low temporal atrophy (p=0.0166. Central atrophy correlated with aging and immediate memory (p=0.0294: the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  10. Evoked Potentials and Memory/Cognition Tests Validate Brain Atrophy as Measured by 3T MRI (NeuroQuant) in Cognitively Impaired Patients.

    Science.gov (United States)

    Braverman, Eric R; Blum, Kenneth; Hussman, Karl L; Han, David; Dushaj, Kristina; Li, Mona; Marin, Gabriela; Badgaiyan, Rajendra D; Smayda, Richard; Gold, Mark S

    2015-01-01

    To our knowledge, this is the largest study evaluating relationships between 3T Magnetic Resonance Imaging (MRI) and P300 and memory/cognitive tests in the literature. The 3T MRI using NeuroQuant has an increased resolution 15 times that of 1.5T MRI. Utilizing NeuroQuant 3T MRI as a diagnostic tool in primary care, subjects (N=169; 19-90 years) displayed increased areas of anatomical atrophy: 34.62% hippocampal atrophy (N=54), 57.14% central atrophy (N=88), and 44.52% temporal atrophy (N=69). A majority of these patients exhibited overlap in measured areas of atrophy and were cognitively impaired. These results positively correlated with decreased P300 values and WMS-III (WMS-III) scores differentially across various brain loci. Delayed latency (p=0.0740) was marginally associated with temporal atrophy; reduced fractional anisotropy (FA) in frontal lobes correlated with aging, delayed P300 latency, and decreased visual and working memory (p=0.0115). Aging and delayed P300 latency correlated with lower FA. The correlation between working memory and reduced FA in frontal lobes is marginally significant (p=0.0787). In the centrum semiovale (CS), reduced FA correlated with visual memory (p=0.0622). Lower demyelination correlated with higher P300 amplitude (p=0.0002). Compared to males, females have higher demyelination (p=0.0064). Along these lines, the higher the P300 amplitude, the lower the bilateral atrophy (p=0.0165). Hippocampal atrophy correlated with increased auditory memory and gender, especially in males (p=0.0087). In considering temporal lobe atrophy correlations: delayed P300 latency and high temporal atrophy (p=0.0740); high auditory memory and low temporal atrophy (p=0.0417); and high working memory and low temporal atrophy (p=0.0166). Central atrophy correlated with aging and immediate memory (p=0.0294): the higher the immediate memory, the lower the central atrophy. Generally, the validation of brain atrophy by P300 and WMS-III could lead to cost

  11. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    International Nuclear Information System (INIS)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva; Koivisto, Timo; Aeikiae, Marja; Niskanen, Eini; Koenoenen, Mervi; Haenninen, Tuomo

    2009-01-01

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  12. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Koivisto, Timo; Aeikiae, Marja [Kuopio University Hospital and University of Kuopio, Department of Neurosurgery, Kuopio (Finland); Niskanen, Eini [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Physics, Kuopio (Finland); Koenoenen, Mervi [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Clinical Neurophysiology, Kuopio (Finland); Haenninen, Tuomo [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland)

    2009-11-15

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  13. Laterality Influences Brain Atrophy in Parkinson's Disease - a Voxel-based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Maria Cristina Arci Santos

    2016-09-01

    Full Text Available Background: Several neuroimaging studies revealed widespread neurodegeneration in Parkinson's disease but only few considered the asymmetrical clinical presentation. Objective: To investigate gray matter (GM atrophy in Parkinson Disease considering the side of motor symptom onset. Methods: Sixty patients (57.87± 10.27 years diagnosed according to the Brain Bank criteria, 26 with right-sided disease onset (RDO and 34 with left-sided disease onset (LDO, were compared to 80 healthy controls (HC (57.1± 9.47 years. T1-weighted images were acquired on a 3T scanner. VBM8 (SPM8/Dartel on Matlab R2012b platform processed and analyzed the images. Statistics included a two-sample test (FWE p<0.05 with extent threshold of 20 voxels. In a secondary analysis, we used MRIcro software to flip the images right/left of 25 patients, which had a RDO, so that all images had the contralateral side of disease onset at the right hemisphere. Thirty-five HC images were flipped, as the hemispheres are not completely equivalent. Results: Compared to HC, GM atrophy in LDO was identified in the insula, putamen, anterior cingulate, frontotemporal cortex and right caudate. For the RDO group, anterior cingulate, insula, frontotemporal and occipital cortex. VBM of total brain-flipped images showed GM loss mainly in the left putamen, left olfactory cortex, amygdala, parahipocampal gyrus and in the rectus gyrus, insula, frontotemporal cortex, cuneus, precuneus and calcarine fissure bilaterally. (p<0.05 FWE corrected. Conclusions: The study revealed widespread GM atrophy in PD, predominantly in the left hemisphere. Future investigations should also consider handedness and side of onset to better characterize cerebral involvement and its progression in PD.

  14. Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy.

    Science.gov (United States)

    Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité

    2014-09-15

    To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Traumatic intracranial hemorrhage correlates with preinjury brain atrophy, but not with antithrombotic agent use: a retrospective study.

    Directory of Open Access Journals (Sweden)

    C Michael Dunham

    Full Text Available The impact of antithrombotic agents (warfarin, clopidogrel, ASA on traumatic brain injury outcomes is highly controversial. Although cerebral atrophy is speculated as a risk for acute intracranial hemorrhage, there is no objective literature evidence.This is a retrospective, consecutive investigation of patients with signs of external head trauma and age ≥60 years. Outcomes were correlated with antithrombotic-agent status, coagulation test results, admission neurologic function, and CT-based cerebral atrophy dimensions.Of 198 consecutive patients, 36% were antithrombotic-negative and 64% antithrombotic-positive. ASA patients had higher arachidonic acid inhibition (p = 0.04 and warfarin patients had higher INR (p<0.001, compared to antithrombotic-negative patients. Antithrombotic-positive intracranial hemorrhage rate (38.9% was similar to the antithrombotic-negative rate (31.9%; p = 0.3285. Coagulopathy was not present on the ten standard coagulation, thromboelastography, and platelet mapping tests with intracranial hemorrhage and results were similar to those without hemorrhage (p≥0.1354. Hemorrhagic-neurologic complication (intracranial hemorrhage progression, need for craniotomy, neurologic deterioration, or death rates were similar for antithrombotic-negative (6.9% and antithrombotic-positive (8.7%; p = 0.6574 patients. The hemorrhagic-neurologic complication rate was increased when admission major neurologic dysfunction was present (63.2% versus 2.2%; RR = 28.3; p<0.001. Age correlated inversely with brain parenchymal width (p<0.001 and positively with lateral ventricular width (p = 0.047 and cortical atrophy (p<0.001. Intracranial hemorrhage correlated with cortical atrophy (p<0.001 and ventricular width (p<0.001.Intracranial hemorrhage is not associated with antithrombotic agent use. Intracranial hemorrhage patients have no demonstrable coagulopathy. The association of preinjury brain atrophy with acute intracranial

  16. Sex-related and tissue-specific effects of tobacco smoking on brain atrophy: assessment in a large longitudinal cohort of healthy elderly

    Directory of Open Access Journals (Sweden)

    Quentin eDuriez

    2014-11-01

    Full Text Available We investigated the cross-sectional and longitudinal effects of tobacco smoking on brain atrophy in a large cohort of healthy elderly participants (65 to 80 years. MRI was used for measuring whole brain (WB, gray matter (GM, white matter (WM, and hippocampus (HIP volumes at study entry time (baseline, N=1,451, and the annualized rates of variation of these volumes using a 4-year follow-up MRI in a subpart of the cohort (N=1,111. Effects of smoking status (never, former, or current smoker at study entry and of lifetime tobacco consumption on these brain phenotypes were studied using sex-stratified AN(COVAs, including other health parameters as covariates. At baseline, male current smokers had lower GM, while female current smokers had lower WM. In addition, female former smokers exhibited reduced baseline HIP, the reduction being correlated with lifetime tobacco consumption. Longitudinal analyses demonstrated that current smokers, whether men or women, had larger annualized rates of HIP atrophy, as compared to either current or former smokers, independent of their lifetime consumption of tobacco. There was no effect of smoking on the annualized rate of WM loss. In all cases, measured sizes of these tobacco-smoking effects were of the same order of magnitude than those of age, and larger than effect sizes of any other covariate. These results demonstrate gender- and tissue specific effects of tobacco smoking on brain atrophy. They indicate that tobacco smoking is a major factor of brain aging, with notable effects on the hippocampus annualized-rate of atrophy after the age of 65.

  17. Comparison between MRI and 3D-SSP in olivopontocerebellar atrophy and cortical cerebellar atrophy

    International Nuclear Information System (INIS)

    Hamaguchi, Hirotoshi; Kanda, Fumio; Hosaka, Kayo; Fujii, Masahiko; Chihara, Kazuo

    2004-01-01

    We compared images of three-dimensional stereotactic surface projections (3D-SSP) of SPECT with MRI images in spinocerebellar degeneration patients (13 olivopontocerebellar atrophy (OPCA) and 7 cortical cerebellar atrophy (CCA)). We analyzed a brain blood flow pattern with an image of statistics by 123 I-IMP SPECT. In OPCA patients, a blood flow reduction was more remarkable in 3D-SSP than a degree of cerebellar atrophy in MRI. In patients with CCA, the cerebellum showed little blood flow reduction in 3D-SSP despite of apparent atrophy in MRI. Simultaneous examination both MRI and 3D-SSP might be useful for differential diagnosis of spinocerebellar degenerations. (author)

  18. Brain MRI lesions and atrophy are associated with employment status in patients with multiple sclerosis.

    Science.gov (United States)

    Tauhid, Shahamat; Chu, Renxin; Sasane, Rahul; Glanz, Bonnie I; Neema, Mohit; Miller, Jennifer R; Kim, Gloria; Signorovitch, James E; Healy, Brian C; Chitnis, Tanuja; Weiner, Howard L; Bakshi, Rohit

    2015-11-01

    Multiple sclerosis (MS) commonly affects occupational function. We investigated the link between brain MRI and employment status. Patients with MS (n = 100) completed a Work Productivity and Activity Impairment (WPAI) (general health version) survey measuring employment status, absenteeism, presenteeism, and overall work and daily activity impairment. Patients "working for pay" were considered employed; "temporarily not working but looking for work," "not working or looking for work due to age," and "not working or looking for work due to disability" were considered not employed. Brain MRI T1 hypointense (T1LV) and T2 hyperintense (T2LV) lesion volumes were quantified. To assess lesional destructive capability, we calculated each subject's ratio of T1LV to T2LV (T1/T2). Normalized brain parenchymal volume (BPV) assessed brain atrophy. The mean (SD) age was 45.5 (9.7) years; disease duration was 12.1 (8.1) years; 75 % were women, 76 % were relapsing-remitting, and 76 % were employed. T1LV, T1/T2, Expanded Disability Status Scale (EDSS) scores, and activity impairment were lower and BPV was higher in the employed vs. not employed group (Wilcoxon tests, p 0.05). In multivariable logistic regression modeling, adjusting for age, sex, and disease duration, higher T1LV predicted a lower chance of employment (p 0.05). We report a link between brain atrophy and lesions, particularly lesions with destructive potential, to MS employment status.

  19. A putative Alzheimer's disease risk allele in PCK1 influences brain atrophy in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Zongqi Xia

    2010-11-01

    Full Text Available Brain atrophy and cognitive dysfunction are neurodegenerative features of Multiple Sclerosis (MS. We used a candidate gene approach to address whether genetic variants implicated in susceptibility to late onset Alzheimer's Disease (AD influence brain volume and cognition in MS patients.MS subjects were genotyped for five single nucleotide polymorphisms (snps associated with susceptibility to AD: PICALM, CR1, CLU, PCK1, and ZNF224. We assessed brain volume using Brain Parenchymal Fraction (BPF measurements obtained from Magnetic Resonance Imaging (MRI data and cognitive function using the Symbol Digit Modalities Test (SDMT. Genotypes were correlated with cross-sectional BPF and SDMT scores using linear regression after adjusting for sex, age at symptom onset, and disease duration. 722 MS patients with a mean (±SD age at enrollment of 41 (±10 years were followed for 44 (±28 months. The AD risk-associated allele of a non-synonymous SNP in the PCK1 locus (rs8192708G is associated with a smaller average brain volume (P=0.0047 at the baseline MRI, but it does not impact our baseline estimate of cognition. PCK1 is additionally associated with higher baseline T2-hyperintense lesion volume (P=0.0088. Finally, we provide technical validation of our observation in a subset of 641 subjects that have more than one MRI study, demonstrating the same association between PCK1 and smaller average brain volume (P=0.0089 at the last MRI visit.Our study provides suggestive evidence for greater brain atrophy in MS patients bearing the PCK1 allele associated with AD-susceptibility, yielding new insights into potentially shared neurodegenerative process between MS and late onset AD.

  20. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    International Nuclear Information System (INIS)

    Meguro, K.; Yamadori, A.; Constans, J.M.; Courtheoux, P.; Theron, J.; Viader, F.

    2000-01-01

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  1. Atrophy of the corpus callosum correlates with white matter lesions in patients with cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Meguro, K.; Yamadori, A. [Section of Neuropsychology, Division of Disability Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, 980-8575 Sendai (Japan); Constans, J.M.; Courtheoux, P.; Theron, J. [MR Unit, University of Caen School of Medicine, Caen (France); Viader, F. [Department of Neuroradiology, University of Caen School of Medicine, Caen (France)

    2000-06-01

    Many studies of white matter high signal (WMHS) on T2-weighted MRI have disclosed that it is related to cerebral ischaemia and to brain atrophy. Atrophy of the corpus callosum (CC) has also been studied in relation to ischaemia. Our objective was to test the hypothesis that CC atrophy could be due to ischaemia. We therefore assessed CC, WMHS and brain atrophy in patients with risk factors without strokes (the risk factor group) and in those with infarcts (the infarct group), to investigate the relationships between these factors. We studied 30 patients in the infarct group, 14 in the risk factor group, and 29 normal subjects. Using axial T1-weighted MRI, cortical atrophy and ventricular enlargement (brain atrophy) were visually rated. Using axial T2-weighted MRI, WMHS was assessed in three categories: periventricular symmetrical, periventricular asymmetrical and subcortical. Using the mid-sagittal T1-weighted image, the CC was measured in its anterior, posterior, midanterior and midposterior portions. In the normal group, no correlations were noted between parameters. In the infarct group, there were significant correlations between CC and brain atrophy, and between CC atrophy and WMHS. After removing the effects of age, gender and brain atrophy, significant correlations were noted between some CC measures and subcortical WMHS. In the risk factor group, there were significant correlations between CC and brain atrophy and between CC atrophy and WMHS. After allowance for age, gender and brain atrophy, significant correlations between some CC measures and periventricular WMHS remained. The hypothesis that CC atrophy could be due to cerebral ischaemia was supported by other analyses. Namely, for correlations between the extent of infarcts and partial CC atrophy in patients with anterior middle cerebral artery (MCA) and with posterior MCA infarcts, there were significant correlations between the extent of infarct and midanterior CC atrophy in the former, and posterior

  2. Presymptomatic generalized brain atrophy in frontotemporal dementia caused by CHMP2B mutation

    DEFF Research Database (Denmark)

    Rohrer, Jonathan D; Ahsan, R Laila; Isaacs, Adrian M

    2009-01-01

    mutation carriers with a control group of 7 mutation-negative family members. Volumetric MRI brain scans were performed on all subjects at two time points, and rates of volume change were compared between the two groups. RESULTS: We demonstrate that generalized atrophy occurs presymptomatically in CHMP2B...... gene mutation carriers. CONCLUSIONS: This finding suggests that mutations in CHMP2B have widespread effects throughout the brain, leading to a neuro-anatomical signature distinct from other diseases in the frontotemporal lobar degeneration spectrum........ There are no detailed studies of brain imaging in CHMP2B mutation-associated FTD. This study aimed to investigate whether there were early or presymptomatic changes in this group of patients. METHODS: Subjects comprised 16 members of a Danish family with CHMP2B mutation-associated FTD. Nine subjects were presymptomatic...

  3. Cerebellar atrophy in epileptic patients

    International Nuclear Information System (INIS)

    Taneva, N.

    1991-01-01

    52 patients with epileptic seizures of different form, frequency and duration who had received long term treatment with anticonvulsive drugs were examined on Siretom 2000, a brain scanner of II generation. 6 standard incisions were made in all patients in the area of cerebellum, side ventricules and high convexity. Additional scanning with an incision width of 5 mm was made when pathological changes were detected. There were found 3 cases of cerebellar atrophy, 3 - cerebral atrophy, 1 - combined atrophy and 4 - with other changes. It was difficult to establish any relation between the rerebellar atrophy and the type of anticonvulsant used because treatment had usually been complex. 1 fig., 1 tab., 4 refs

  4. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Shigeru; Sawai, Fuyuki; Yamamoto, Yuta [Nara Medical Univ., Kashihara (Japan)] [and others

    1999-01-01

    To evaluate the relationship between blood pressure control and the progression of brain atrophy in the elderly, patients with essential hypertension and brain atrophy were longitudinally evaluated using computerized tomography (CT). The study evaluated 48 patients with essential hypertension aged 46-78 years, and 30 sex- and age-matched normotensive control subjects. The extent of brain atrophy as determined by caudate head index (CHI), the inverse cella media index (iCMI), and Evans` ratio (ER) was estimated twice at an interval of 5-9 years (mean, 6.9 years). The mean annual increases in CHI ({Delta}CHI), iCMI ({Delta}iCMI), and ER ({Delta}ER) were evaluated. Mean blood volume in the common carotid artery (BF) and the decrease in BF per year ({Delta}BF) were also determined. The {Delta}CHI, {Delta}iCMI, and {Delta}ER increased with age in the hypertensive subjects as well as the control group across all age groups evaluated. The {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly greater in the patients with essential hypertension in their 50s as compared with the controls. In patients with essential hypertension aged 65 years or older, the {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly lower in the group in whom the blood pressure was controlled within the range of borderline hypertension than the groups in which it was controlled in the range of normal or mild hypertension. In the younger patients under the age of 65 with essential hypertension, blood pressure control did not affect the {Delta}CHI, {Delta}iCMI, and {Delta}ER. The {Delta}CHI, {Delta}iCMI, and {Delta}ER were significantly correlated with {Delta}BF in both groups. These findings indicate that control of systolic blood pressure within the range of borderline hypertension may delay the progression of brain atrophy in elderly patients with essential hypertension. (author)

  5. Relationship between brain atrophy estimated by a longitudinal computed tomography study and blood pressure control in patients with essential hypertension

    International Nuclear Information System (INIS)

    Yamano, Shigeru; Sawai, Fuyuki; Yamamoto, Yuta

    1999-01-01

    To evaluate the relationship between blood pressure control and the progression of brain atrophy in the elderly, patients with essential hypertension and brain atrophy were longitudinally evaluated using computerized tomography (CT). The study evaluated 48 patients with essential hypertension aged 46-78 years, and 30 sex- and age-matched normotensive control subjects. The extent of brain atrophy as determined by caudate head index (CHI), the inverse cella media index (iCMI), and Evans' ratio (ER) was estimated twice at an interval of 5-9 years (mean, 6.9 years). The mean annual increases in CHI (ΔCHI), iCMI (ΔiCMI), and ER (ΔER) were evaluated. Mean blood volume in the common carotid artery (BF) and the decrease in BF per year (ΔBF) were also determined. The ΔCHI, ΔiCMI, and ΔER increased with age in the hypertensive subjects as well as the control group across all age groups evaluated. The ΔCHI, ΔiCMI, and ΔER were significantly greater in the patients with essential hypertension in their 50s as compared with the controls. In patients with essential hypertension aged 65 years or older, the ΔCHI, ΔiCMI, and ΔER were significantly lower in the group in whom the blood pressure was controlled within the range of borderline hypertension than the groups in which it was controlled in the range of normal or mild hypertension. In the younger patients under the age of 65 with essential hypertension, blood pressure control did not affect the ΔCHI, ΔiCMI, and ΔER. The ΔCHI, ΔiCMI, and ΔER were significantly correlated with ΔBF in both groups. These findings indicate that control of systolic blood pressure within the range of borderline hypertension may delay the progression of brain atrophy in elderly patients with essential hypertension. (author)

  6. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X.

    Science.gov (United States)

    Hagerman, R J; Leehey, M; Heinrichs, W; Tassone, F; Wilson, R; Hills, J; Grigsby, J; Gage, B; Hagerman, P J

    2001-07-10

    The authors report five elderly men with the fragile X premutation who had a progressive action tremor associated with executive function deficits and generalized brain atrophy. These individuals had elevated fragile X mental retardation 1 gene (FMR1) messenger RNA and normal or borderline levels of FMR1 protein. The authors propose that elevations of FMR1 messenger RNA may be causative for a neurodegenerative syndrome in a subgroup of elderly men with the FMR1 premutation.

  7. The effect of disease modifying therapies on brain atrophy in patients with relapsing-remitting multiple sclerosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Georgios Tsivgoulis

    Full Text Available The aim of the present meta-analysis was to evaluate the effect of disease-modifying drugs (DMD on brain atrophy in patients with relapsing-remitting multiple sclerosis (RRMS using available randomized-controlled trial (RCT data.We conducted a systematic review and meta-analysis according to PRISMA guidelines of all available RCTs of patients with RRMS that reported data on brain volume measurements during the study period.We identified 4 eligible studies, including a total of 1819 RRMS patients (71% women, mean age 36.5 years, mean baseline EDSS-score: 2.4. The mean percentage change in brain volume was found to be significantly lower in DMD versus placebo subgroup (standardized mean difference: -0.19; 95%CI: -0.27--0.11; p<0.001. We detected no evidence of heterogeneity between estimates (I2 = 30%, p = 0.19 nor publication bias in the Funnel plots. Sensitivity analyses stratifying studies according to brain atrophy neuroimaging protocol disclosed no evidence of heterogeneity (p = 0.16. In meta-regression analyses, the percentage change in brain volume was found to be inversely related with duration of observation period in both DMD (meta-regression slope = -0.03; 95% CI: -0.04--0.02; p<0.001 and placebo subgroups (meta-regression slope = -0.05; 95% CI: -0.06--0.04; p<0.001. However, the rate of percentage brain volume loss over time was greater in placebo than in DMD subgroup (p = 0.017, ANCOVA.DMD appear to be effective in attenuating brain atrophy in comparison to placebo and their benefit in delaying the rate of brain volume loss increases linearly with longer treatment duration.

  8. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns.

    Science.gov (United States)

    Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C

    2016-04-05

    We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (Prisk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.

  9. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gur, R.C.; Mozley, P.D.; Resnick, S.M.; Gottlieb, G.L.; Kohn, M.; Zimmerman, R.; Herman, G.; Atlas, S.; Grossman, R.; Berretta, D.; Erwin, R.; Gur, R.E.

    1991-01-01

    A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T 2 pixel values to correct field inhomogeneities (shading). Average (±SD) brain volume, excluding cerebellum, was 1090.91 ml and cerebrospinal fluid (DSF) volume was 127.91 ml. Brain volume was higher (by 5 ml) in the right hemisphere. Men had 91 ml higher brain and 20 ml higher CSF volume than women. Age was negatively correlated with brain volume and positively correlated with CSF volume. The slope fo the regression line with age for CSF was steeper for men than women. This difference in slopes was significant for sulca but not ventricular, CSF. The greatest amount of atrophy in elderly men was in the left hemisphere, whereas is women age effects were symmetric. The findings may point to neuroanatomic substrates of hemispheric specialization and gender differences in age-related changes in brain function. They suggest that women are less vulnerable to age-related changes in mental abilities, whereas men are particularly susceptible to aging effects on left hemispheric functions

  10. Severe brain atrophy after long-term survival seen in siblings with familial amyotrophic lateral sclerosis and a mutation in the optineurin gene: a case series

    Directory of Open Access Journals (Sweden)

    Ueno Hiroki

    2011-12-01

    Full Text Available Abstract Introduction Previous studies have shown widespread multisystem degeneration in patients with sporadic amyotrophic lateral sclerosis who develop a total locked-in state and survive under mechanical ventilation for a prolonged period of time. However, the disease progressions reported in these studies were several years after disease onset. There have been no reports of long-term follow-up with brain imaging of patients with familial amyotrophic lateral sclerosis at an advanced stage of the disease. We report the cases of siblings with amyotrophic lateral sclerosis with homozygous deletions of the exon 5 mutation of the gene encoding optineurin, in whom brain computed tomography scans were followed up for more than 20 years. Case presentation The patients were a Japanese brother and sister. The elder sister was 33 years of age at the onset of disease, which began with muscle weakness of her left lower limb. Two years later she required mechanical ventilation. She became bedridden at the age of 34, and died at the age of 57. A computed tomography scan of her brain at the age of 36 revealed no abnormality. Atrophy of her brain gradually progressed. Ten years after the onset of mechanical ventilation, atrophy of her whole brain, including the cerebral cortex, brain stem and cerebellum, markedly progressed. Her younger brother was 36 years of age at the onset of disease, which presented as muscle weakness of his left upper limb. One year later, he showed dysphagia and dysarthria, and tracheostomy ventilation was performed. He became bedridden at the age of 37 and died at the age of 55. There were no abnormal intracranial findings on brain computed tomography scans obtained at the age of 37 years. At the age of 48 years, computed tomography scans showed marked brain atrophy with ventricular dilatation. Subsequently, atrophy of the whole brain rapidly progressed as in his elder sister. Conclusion We conclude that a homozygous deletion

  11. Severe brain atrophy after long-term survival seen in siblings with familial amyotrophic lateral sclerosis and a mutation in the optineurin gene: a case series.

    Science.gov (United States)

    Ueno, Hiroki; Kobatake, Keitaro; Matsumoto, Masayasu; Morino, Hiroyuki; Maruyama, Hirofumi; Kawakami, Hideshi

    2011-12-12

    Previous studies have shown widespread multisystem degeneration in patients with sporadic amyotrophic lateral sclerosis who develop a total locked-in state and survive under mechanical ventilation for a prolonged period of time. However, the disease progressions reported in these studies were several years after disease onset. There have been no reports of long-term follow-up with brain imaging of patients with familial amyotrophic lateral sclerosis at an advanced stage of the disease. We report the cases of siblings with amyotrophic lateral sclerosis with homozygous deletions of the exon 5 mutation of the gene encoding optineurin, in whom brain computed tomography scans were followed up for more than 20 years. The patients were a Japanese brother and sister. The elder sister was 33 years of age at the onset of disease, which began with muscle weakness of her left lower limb. Two years later she required mechanical ventilation. She became bedridden at the age of 34, and died at the age of 57. A computed tomography scan of her brain at the age of 36 revealed no abnormality. Atrophy of her brain gradually progressed. Ten years after the onset of mechanical ventilation, atrophy of her whole brain, including the cerebral cortex, brain stem and cerebellum, markedly progressed. Her younger brother was 36 years of age at the onset of disease, which presented as muscle weakness of his left upper limb. One year later, he showed dysphagia and dysarthria, and tracheostomy ventilation was performed. He became bedridden at the age of 37 and died at the age of 55. There were no abnormal intracranial findings on brain computed tomography scans obtained at the age of 37 years. At the age of 48 years, computed tomography scans showed marked brain atrophy with ventricular dilatation. Subsequently, atrophy of the whole brain rapidly progressed as in his elder sister. We conclude that a homozygous deletion-type mutation in the optineurin gene may be associated with widespread

  12. Prevalence of brain atrophy in dogs submitted to cranial tomography in FMVZ - UNESP Botucatu: retrospective study; Prevalencia de atrofia cerebral em caes submetidos a tomografia craniana na FMVZ - UNESP Botucatu: estudo retrospectivo

    Energy Technology Data Exchange (ETDEWEB)

    Babicsak, Viviam Rocco; Belotta, Alexandra Frey; Oliveira, Hugo Salvador de; Zardo, Karen Maciel; Santos, Debora Rodrigues dos; Mamprim, Maria Jaqueline; Machado, Vania Maria de Vasconcelos; Vulcano, Luiz Carlos, E-mail: viviam.babicsak@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (FMVZ/UNESP), Botucatu, SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia . Dept. de Reproducao Animal e Radiologia Veterinaria

    2012-07-01

    Brain atrophy is diagnosed by imaging methods that allow the verification of the widening of cerebral sulci and ventricular dilatation. In this retrospective study, in which the cranial CT scans of 150 dogs were evaluated, brain atrophy was identified in 16 animals. Mixed breed dogs were the most affected, followed by poodles, maltese, dachshunds, yorkshires, pinschers and cockers. Brain atrophy was observed in animals of all age groups, being more prevalent in middle aged dogs followed by elderly animals, in which this alteration can be commonly found. The identification of reduced brain volume, however, may not be the cause of neurological signs expressed by animals since in some dogs of this study it was considered a finding. (author)

  13. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study.

    Science.gov (United States)

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Péran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2015-01-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.

  14. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder.

    Science.gov (United States)

    Wortmann, Saskia B; Ziętkiewicz, Szymon; Kousi, Maria; Szklarczyk, Radek; Haack, Tobias B; Gersting, Søren W; Muntau, Ania C; Rakovic, Aleksandar; Renkema, G Herma; Rodenburg, Richard J; Strom, Tim M; Meitinger, Thomas; Rubio-Gozalbo, M Estela; Chrusciel, Elzbieta; Distelmaier, Felix; Golzio, Christelle; Jansen, Joop H; van Karnebeek, Clara; Lillquist, Yolanda; Lücke, Thomas; Õunap, Katrin; Zordania, Riina; Yaplito-Lee, Joy; van Bokhoven, Hans; Spelbrink, Johannes N; Vaz, Frédéric M; Pras-Raves, Mia; Ploski, Rafal; Pronicka, Ewa; Klein, Christine; Willemsen, Michel A A P; de Brouwer, Arjan P M; Prokisch, Holger; Katsanis, Nicholas; Wevers, Ron A

    2015-02-05

    We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy

    International Nuclear Information System (INIS)

    Raininko, R.; Elovaara, I.; Virta, A.; Valanne, L.; Haltia, M.; Valle, S.L.

    1992-01-01

    One hundred and one persons infected with human immunodeficiency virus (HIV-1), in whom other central nervous system infections or diseases were excluded, underwent brain CT and/or MRI at various stages of HIV-1 infection: 29 were asymptomatic (ASX), 35 had lymphadenopathy syndrome (LAS), 17 had AIDS-related complex (ARC), and 20 had AIDS. A control group of 32 HIV-1-seronegative healthy persons underwent brain MRI. The most common finding was brain atrophy. The changes were bilateral and symmetrical, and they were more severe at later stages of infection. Non-specific small hyperintense foci were found on MRI in 13% of controls and 6-15% of the infected groups. Larger, diffuse, bilateral white matter infiltrates were detected in 4 demented patients with AIDS. Four patients with AIDS and 1 with LAS had focal hyperintense lesions in the internal capsules, lentiform nuclei or thalamus, often bilateral on MRI. One patient with AIDS examined with CT only, had low density in the lentiform nucleus. Loss of brain parenchyma can occur at an early stage of HIV-1 infection, and the atrophic process becomes more intense at later stages (ARC and AIDS). (orig./GDG)

  16. Clinical implications of brain atrophy by computed tomography in patients with age-related dementia

    International Nuclear Information System (INIS)

    Imai, Yukimitsu; Honma, Akira; Ashida, Hiroshi; Hasegawa, Kazuo

    1981-01-01

    The purpose of the present study is to clarify the clinical significance of brain atrophy by computed tomography in age-related dementia. Eighty elderly patients with clinical diagnosis of presenile or senile dementia whose mental states were assessed clinically and by several psychometric test were studied by computed tomography. Patients with suspected cerebrovascular disorders and normal pressure hydrocephalus were excluded. Three tomographic sections through anterior and posterior horns and cella media of lateral ventricles and cortex with intracranial space of 60 - 80 cm 2 were evaluated. CSF spaces (%) were measured as an index of brain atrophy. The measurement of CSF spaces (%) was carried out by the computerized planimetric method to avoid visual definition of ventricular borders. In this study, CSF spaces comprised ventricular and subarachnoid spaces. Hasegawa's dementia scale, Bender-Gestalt test and Kohs' block design test were employed for the cognitive assessment of the subjects. In two sections through lateral ventricles, significant correlations were obtained between CSF spaces (%) and scores of Hasegawa's dementia scale and Kohs' block design test. Scores of Bender-Gestalt test did not correlate with CSF spaces (%) in these two sections. In the section through cortex, no correlation were found between CSF spaces (%) and scores of any psychometric test. Also, no positive correlations were obtained between age and CSF spaces (%) in the three sections. (author)

  17. MRI of the spinocerebellar degeneration (multiple system atrophy, Holmes type, and Menzel-Joseph type)

    International Nuclear Information System (INIS)

    Mukai, Eiichiro; Makino, Naoki.

    1991-01-01

    We have analyzed MRI in 33 patients with several forms of spinocerebellar degeneration; 17 with multiple system atrophy, 10 with Holmes type, and 6 with Menzel-Joseph type. The MRIs were obtained using a 1.5-T GEMR System. Patients with multiple system atrophy demonstrated: atrophy of the brain stem, particularly basis pontis; decreased signal intensity of the white matter of pons; atrophy of the white matter of cerebellum; atrophy and decreased signal intensity of the putamen, particularly along their lateral and posterior portions; and atrophy of the cerebrum. Patients with Holmes type showed: atrophy of the cerebellum; atrophy of the vermis more than hemispheres; and nuclei of the cerebellum with no decreased intensity on T 2 -weighted sequences. Patients with Menzel-Joseph type demonstrated moderate atrophy of the brain stem and mild atrophy of the white matter of cerebellum. MRI is a useful diagnostic tool in the management of the spinocerebellar degeneration. (author)

  18. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Science.gov (United States)

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  19. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Mario Mascalchi

    Full Text Available Spinocerebellar ataxia type 2 (SCA2 is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years and 16 age- and gender-matched healthy controls (mean interval 3.3 years on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM and cortical gray matter (GM in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  20. "THE RELATION OF HYPERHOMOCYSTEINEMIA TO COGNITIVE FUNCTION AND BRAIN ATROPHY IN PATIENTS WITH MULTIPLE SCLEROSIS "

    Directory of Open Access Journals (Sweden)

    M. Ghaffarpour

    2007-06-01

    Full Text Available Cognitive impairment may be a common even at the onset of multiple sclerosis (MS. In this case-control study, we tried to find out the probable relationship between homocysteine levels and cerebral atrophy or cognitive impairment in patients with multiple sclerosis. One hundred fifty six patients who had MS according to McDonald diagnostic criteria were included in this study. Patients’ age, gender, and educational level, MS duration and clinical type, disability, cognitive function state based on minimental state examination (MMSE, presence of hyperhomocysteinemia, and brain atrophy were evaluated. There was no statistically significant relationship between hyperhomocysteinemia and cognitive status. Total homocysteine levels had a significant correlation with MMSE score only in those patients with elementary level of education. Also total homocysteine levels and overall cerebral atrophy did not indicate significant relationship according to those independent variables mentioned above except in the patients with EDSS less than 6. When intercaudate ratio > 0.10 was applied as a criterion for cerebral atrophy, we found that hyperhomocysteinemia related significantly to intercaudate ratio > 0.10 in females, aged between 21 and 30 years, MS duration ≤ 5 years, primary progressive MS and relapsing-remitting MS clinical types, EDSS ≤ 3 and elementary level of education. We suggest applying MMSE only for the first step of cognitive function survey. In the next steps, much more exact test must be used (e.g. MSNQ. Also we can not suggest measuring plasma homocysteine level as criterion for monitoring the cognitive function in patients with MS.

  1. Neither retinal nor brain atrophy can be shown in patients with isolated unilateral optic neuritis at the time of presentation

    DEFF Research Database (Denmark)

    Kallenbach, Klaus; Sander, Birgit; Tsakiri, Anna

    2011-01-01

    were calculated based on MRI. Additionally, visual evoked potentials (VEPs) were recorded. RESULTS: Neither OCT measurements nor brain volume measures revealed signs of localized or generalized atrophy in patients compared with healthy volunteers. Stratification of patients into high risk based...

  2. Global and regional brain atrophy is associated with low or retrograde facial vein flow in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Dejan Jakimovski

    2017-09-01

    Full Text Available Increased collateral facial vein (FV flow may be associated with structural damage in patients with multiple sclerosis (MS. The objective was to assess differences in FV flow and magnetic resonance imaging (MRI-derived outcomes in MS. The study included 136 MS patients who underwent neck and head vascular system examination by echo-color Doppler. Inflammatory MRI markers were assessed on a 3T MRI using a semi-automated edge detection and contouring/ thresholding technique. MRI volumetric outcomes of whole brain (WB, gray matter (GM, white matter (WM, cortex, ventricular cerebrospinal fluid (vCSF, deep gray matter (DGM, thalamus, caudate nucleus (CN, putamen, globus pallidus (GP, and hippocampus were calculated. Independent t-test and ANCOVA, adjusted for age, were used to compare groups based on FV flow quartiles. Thirty-four MS patients with FV flow ≤327.8 mL/min (lowest quartile had significantly lower WB (P327.8 mL/min (higher quartiles. There were no differences in T1-, T2- and gadolinium- enhancing lesion volumes between the quartile groups. The lack of an association between FV blood flow and inflammatory MRI measures in MS patients, but an association with brain atrophy, suggests that the severity of neurodegenerative process may be related to hemodynamic alterations. MS patients with more advanced global and regional brain atrophy showed low or retrograde FV volume flow.

  3. CT features of olivopontocerebellar atrophy in children

    International Nuclear Information System (INIS)

    Kumar, S.D.; Gururaj, A.K.; Jeans, W.D.

    1995-01-01

    Between 1990 and 1992, 14 children were seen in whom a clinical diagnosis of olivopontocerebellar atrophy (OPCA) had been made. The majority of patients presented with cerebellar ataxia and hypotonia. Five children had a family history of a similar illness in first-degree relatives. All cases had undergone clinical and neurologic examinations, routine laboratory tests and cranial CT. CT features were graded to quantitative the degree of atrophy in each cerebellar hemisphere, vermis and brain stem. All patients had varying degrees of atrophic changes of cerebellum, brain stem and cerebrum. These CT features appear to be distinctive enough to enable the diagnosis of OPCA to be made. (orig.)

  4. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    Science.gov (United States)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup

  5. Brain atrophy in Huntington's disease: A CT-scan study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Folstein, S.E.; Brandt, J.; McDonnell, A.; Folstein, M.

    1989-01-01

    CT-scan measurements of cortical and subcortical atrophy were carried out in 34 patients with Huntington's disease (HD). While a significant correlation was observed between parameters of subcortical atrophy (bicaudate ratio, bifrontal ratio and third ventricular ratio) and duration of the disease, there was no significant correlation between these parameters and age. On the other hand, measurements of cortical atrophy (frontal fissure ratio and cortical sulci ratio) correlated significantly with age but not with duration of the disease. When a group of 24 HD patients were compared on CT-scan measurements with a group of 24 age-matched normal controls, significant differences were obtained for all the variables examined, but the bicaudate ratio showed the highest sensitivity and specificity. Even mildly affected patients, with duration of motor symptoms less than 3 years had higher bicaudate ratios than age-matched controls. (orig.)

  6. Deformation-Based Atrophy Estimation for Alzheimer’s Disease

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru

    Alzheimer’s disease (AD) - the most common form of dementia, is a term used for accelerated memory loss and cognitive abilities enough to severely hamper day-to-day activities. One of the most globally accepted markers for AD is atrophy, in mainly the brain parenchyma. The goal of the PhD project...... and a new way to estimate atrophy from a deformation field. We demonstrate the performance of the proposed solution but applying it on the publicly available Alzheimer’s disease neuroimaging data (ADNI) initiative and compare to existing state-of-art atrophy estimation methods....

  7. Potential hippocampal region atrophy in diabetes mellitus type 2. A voxel-based morphometry VSRAD study

    International Nuclear Information System (INIS)

    Kamiyama, Kazutoshi; Sugihara, Masaki; Wada, Akihiko

    2010-01-01

    Among diabetes mellitus type 2 (DM2) patients, the frequency of cognitive dysfunction is higher and the relative risk of Alzheimer's disease (AD) is approximately twice that of nondiabetics. Cognitive impairment symptoms of AD are induced by limbic system dysfunction, and an early-stage AD brain without dementia has the potential for atrophy in the hippocampal region. In this study, we estimated potential hippocampal region atrophy in DM2 and pursued the association between DM2 and cognitive impairment/AD. Voxel-based morphometry analysis was performed in 28 diabetics (14 men, 14 women; ages 59-79 years, mean 70.7 years) and 28 sex- and age- matched (±1 year) nondiabetics. Severity of gray matter loss in the hippocampal region and whole brain were investigated. Group analysis was performed using two-tailed unpaired t-test; significance was assumed with less than 1% (P<0.01) of the critical rate. There was a significant difference between diabetics and nondiabetics regarding the severity of hippocampal region atrophy and whole-brain atrophy. Only diabetics showed a positive correlation for severity of hippocampal region atrophy and whole-brain atrophy (rs=0.69, P<0.0001). Aged DM2 patients have the potential for hippocampal region atrophy, and its dysfunction can be related to the expression of a cognitive impairment that resembles AD. (author)

  8. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  9. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis.

    Science.gov (United States)

    Kappus, Natalie; Weinstock-Guttman, Bianca; Hagemeier, Jesper; Kennedy, Cheryl; Melia, Rebecca; Carl, Ellen; Ramasamy, Deepa P; Cherneva, Mariya; Durfee, Jacqueline; Bergsland, Niels; Dwyer, Michael G; Kolb, Channa; Hojnacki, David; Ramanathan, Murali; Zivadinov, Robert

    2016-02-01

    Cardiovascular (CV) risk factors have been associated with changes in clinical outcomes in patients with multiple sclerosis (MS). To investigate the frequency of CV risks in patients with MS and their association with MRI outcomes. In a prospective study, 326 patients with relapsing-remitting MS and 163 patients with progressive MS, 61 patients with clinically isolated syndrome (CIS) and 175 healthy controls (HCs) were screened for CV risks and scanned on a 3T MRI scanner. Examined CV risks included hypertension, heart disease, smoking, overweight/obesity and type 1 diabetes. MRI measures assessed lesion volumes (LVs) and brain atrophy. Association between individual or multiple CV risks and MRI outcomes was examined adjusting for age, sex, race, disease duration and treatment status. Patients with MS showed increased frequency of smoking (51.7% vs 36.5%, p = 0.001) and hypertension (33.9% vs 24.7%, p=0.035) compared with HCs. In total, 49.9% of patients with MS and 36% of HCs showed ≥ 2 CV risks (p = 0.003), while the frequency of ≥ 3 CV risks was 18.8% in the MS group and 8.6% in the HCs group (p = 0.002). In patients with MS, hypertension and heart disease were associated with decreased grey matter (GM) and cortical volumes (p < 0.05), while overweight/obesity was associated with increased T1-LV (p < 0.39) and smoking with decreased whole brain volume (p = 0.049). Increased lateral ventricle volume was associated with heart disease (p = 0.029) in CIS. Patients with MS with one or more CV risks showed increased lesion burden and more advanced brain atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Frontal lobe atrophy of the brain in schizophrenia

    International Nuclear Information System (INIS)

    Hara, Tomio

    1981-01-01

    Reported here are the CT findings on cerebral atrophic lesion chiefly developed in the frontal lobe in schizophrenics with unusual organic encephalopathy. Encephalopathy was recognized in 84 (73%) of 115 schizophrenics and 13 (33%) of 40 neurotics. In an attempt to exclude the effects of aging on encephalopathy, the ages at CT and at the development of disease, the number of morbid years, subtypical schizophrenia and relation between the clinical severity and the atrophic condition were comparatively studied. As a result, cerebral atrophy tended to increase along with aging, but the findings differed in that atrophia classified by age covered the entire brain in general, whereas atrophia in schizophrenics was found in the frontal lobe. In particular, because of the fact that clinical severity and atrophia in the frontal lobe are high correlated and that severe atrophia is recognized even in young people, schizophrenia and atrophia in the frontal lobe are considered to be closely related to each other. It is therefore suggested that the CT findings are useful to clinicians for finding appropriate methods to deal with the prognosis of schizophrenics in their daily diagnosis and for the therapeutic prevention of encephalatrophy by stimulating the frontal lobe, thereby delaying mental deterioration. (author)

  11. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  12. Corpus callosum atrophy in patients with mild Alzheimer's disease

    DEFF Research Database (Denmark)

    Frederiksen, Kristian Steen; Garde, Ellen; Skimminge, Arnold

    2011-01-01

    Several studies have found atrophy of the corpus callosum (CC) in patients with Alzheimer's disease (AD). However, it remains unclear whether callosal atrophy is already present in the early stages of AD, and to what extent it may be associated with other structural changes in the brain......, such as age-related white matter changes (ARWMC) and progression of the disease....

  13. Cortical Brain Atrophy and Intra-Individual Variability in Neuropsychological Test Performance in HIV Disease

    Science.gov (United States)

    HINES, Lindsay J.; MILLER, Eric N.; HINKIN, Charles H.; ALGER, Jeffery R.; BARKER, Peter; GOODKIN, Karl; MARTIN, Eileen M.; MARUCA, Victoria; RAGIN, Ann; SACKTOR, Ned; SANDERS, Joanne; SELNES, Ola; BECKER, James T.

    2015-01-01

    Objective To characterize the relationship between dispersion-based intra-individual variability (IIVd) in neuropsychological test performance and brain volume among HIV seropositive and seronegative men and to determine the effects of cardiovascular risk and HIV infection on this relationship. Methods Magnetic Resonance Imaging (MRI) was used to acquire high-resolution neuroanatomic data from 147 men age 50 and over, including 80 HIV seropositive (HIV+) and 67 seronegative controls (HIV−) in this cross-sectional cohort study. Voxel Based Morphometry was used to derive volumetric measurements at the level of the individual voxel. These brain structure maps were analyzed using Statistical Parametric Mapping (SPM2). IIVd was measured by computing intra-individual standard deviations (ISD’s) from the standardized performance scores of five neuropsychological tests: Wechsler Memory Scale-III Visual Reproduction I and II, Logical Memory I and II, Wechsler Adult Intelligence Scale-III Letter Number Sequencing. Results Total gray matter (GM) volume was inversely associated with IIVd. Among all subjects, IIVd -related GM atrophy was observed primarily in: 1) the inferior frontal gyrus bilaterally, the left inferior temporal gyrus extending to the supramarginal gyrus, spanning the lateral sulcus; 2) the right superior parietal lobule and intraparietal sulcus; and, 3) dorsal/ventral regions of the posterior section of the transverse temporal gyrus. HIV status, biological, and cardiovascular disease (CVD) variables were not linked to IIVd -related GM atrophy. Conclusions IIVd in neuropsychological test performance may be a sensitive marker of cortical integrity in older adults, regardless of HIV infection status or CVD risk factors, and degree of intra-individual variability links with volume loss in specific cortical regions; independent of mean-level performance on neuropsychological tests. PMID:26303224

  14. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    International Nuclear Information System (INIS)

    Han, Jung Ho; Kim, Dong Gyu; Chung, Hyun-Tai; Paek, Sun Ha; Park, Chul-Kee; Kim, Chae-Yong; Hwang, Seung-Sik; Park, Jeong-Hoon; Kim, Young-Hoon; Kim, Jin Wook; Kim, Yong Hwy; Song, Sang Woo; Kim, In Kyung; Jung, Hee-Won

    2012-01-01

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 ± 13 years (range, 11–81 years). The mean follow-up duration was 56.8 ± 35.8 months (range, 12–160 months). The mean tumor volume was 2.78 ± 3.33 cm 3 (range, 0.03–23.30 cm 3 ). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1–48 months). The mean CALV was 334.0 ± 194.0 mm 2 (range, 44.70–1170 mm 2 ). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976–0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002–1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103–1.409; p < 0.009; OR = 7.256; 95% CI, 1.656–31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  15. The Risk Factors of Symptomatic Communicating Hydrocephalus After Stereotactic Radiosurgery for Unilateral Vestibular Schwannoma: The Implication of Brain Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jung Ho [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Dong Gyu, E-mail: gknife@plaza.snu.ac.kr [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, Hyun-Tai; Paek, Sun Ha; Park, Chul-Kee [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Chae-Yong [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Seung-Sik [Department of Social and Preventive Medicine, Inha University School of Medicine, Incheon (Korea, Republic of); Park, Jeong-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Kim, Young-Hoon [Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-do (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Jin Wook; Kim, Yong Hwy; Song, Sang Woo; Kim, In Kyung; Jung, Hee-Won [Department of Neurosurgery, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Neurosurgery, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    Purpose: To identify the effect of brain atrophy on the development of symptomatic communicating hydrocephalus (SCHCP) after stereotactic radiosurgery (SRS) for sporadic unilateral vestibular schwannomas (VS). Methods and Materials: A total of 444 patients with VS were treated with SRS as a primary treatment. One hundred eighty-one patients (40.8%) were male, and the mean age of the patients was 53 {+-} 13 years (range, 11-81 years). The mean follow-up duration was 56.8 {+-} 35.8 months (range, 12-160 months). The mean tumor volume was 2.78 {+-} 3.33 cm{sup 3} (range, 0.03-23.30 cm{sup 3}). The cross-sectional area of the lateral ventricles (CALV), defined as the combined area of the lateral ventricles at the level of the mammillary body, was measured on coronal T1-weighted magnetic resonance images as an indicator of brain atrophy. Results: At distant follow-up, a total of 25 (5.6%) patients had SCHCP. The median time to symptom development was 7 months (range, 1-48 months). The mean CALV was 334.0 {+-} 194.0 mm{sup 2} (range, 44.70-1170 mm{sup 2}). The intraclass correlation coefficient was 0.988 (95% confidence interval [CI], 0.976-0.994; p < 0.001). In multivariate analysis, the CALV had a significant relationship with the development of SCHCP (p < 0.001; odds ration [OR] = 1.005; 95% CI, 1.002-1.007). Tumor volume and female sex also had a significant association (p < 0.001; OR = 1.246; 95% CI, 1.103-1.409; p < 0.009; OR = 7.256; 95% CI, 1.656-31.797, respectively). However, age failed to show any relationship with the development of SCHCP (p = 0.364). Conclusion: Brain atrophy may be related to de novo SCHCP after SRS, especially in female patients with a large VS. Follow-up surveillance should be individualized, considering the risk factors involved for each patient, for prompt diagnosis of SCHCP.

  16. Shining a light on posterior cortical atrophy.

    Science.gov (United States)

    Crutch, Sebastian J; Schott, Jonathan M; Rabinovici, Gil D; Boeve, Bradley F; Cappa, Stefano F; Dickerson, Bradford C; Dubois, Bruno; Graff-Radford, Neill R; Krolak-Salmon, Pierre; Lehmann, Manja; Mendez, Mario F; Pijnenburg, Yolande; Ryan, Natalie S; Scheltens, Philip; Shakespeare, Tim; Tang-Wai, David F; van der Flier, Wiesje M; Bain, Lisa; Carrillo, Maria C; Fox, Nick C

    2013-07-01

    Posterior cortical atrophy (PCA) is a clinicoradiologic syndrome characterized by progressive decline in visual processing skills, relatively intact memory and language in the early stages, and atrophy of posterior brain regions. Misdiagnosis of PCA is common, owing not only to its relative rarity and unusual and variable presentation, but also because patients frequently first seek the opinion of an ophthalmologist, who may note normal eye examinations by their usual tests but may not appreciate cortical brain dysfunction. Seeking to raise awareness of the disease, stimulate research, and promote collaboration, a multidisciplinary group of PCA research clinicians formed an international working party, which had its first face-to-face meeting on July 13, 2012 in Vancouver, Canada, prior to the Alzheimer's Association International Conference. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: A MRS and MRI study.

    Science.gov (United States)

    Kuhla, Angela; Rühlmann, Claire; Lindner, Tobias; Polei, Stefan; Hadlich, Stefan; Krause, Bernd J; Vollmar, Brigitte; Teipel, Stefan J

    2017-01-01

    Transgenic animal models of Aβ pathology provide mechanistic insight into some aspects of Alzheimer disease (AD) pathology related to Aβ accumulation. Quantitative neuroimaging is a possible aid to improve translation of mechanistic findings in transgenic models to human end phenotypes of brain morphology or function. Therefore, we combined MRI-based morphometry, MRS-based NAA-assessment and quantitative histology of neurons and amyloid plaque load in the APPswe/PS1dE9 mouse model to determine the interrelationship between morphological changes, changes in neuron numbers and amyloid plaque load with reductions of NAA levels as marker of neuronal functional viability. The APPswe/PS1dE9 mouse showed an increase of Aβ plaques, loss of neurons and an impairment of NAA/Cr ratio, which however was not accompanied with brain atrophy. As brain atrophy is one main characteristic in human AD, conclusions from murine to human AD pathology should be drawn with caution.

  18. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  19. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  20. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study.

    Science.gov (United States)

    Galimberti, Daniela; Fumagalli, Giorgio G; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Serpente, Maria; Borroni, Barbara; Padovani, Alessandro; Tagliavini, Fabrizio; Masellis, Mario; Tartaglia, Maria Carmela; van Swieten, John; Meeter, Lieke; Graff, Caroline; de Mendonça, Alexandre; Bocchetta, Martina; Rohrer, Jonathan D; Scarpini, Elio

    2018-02-01

    We investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64 asymptomatic carriers, and 77 noncarriers. In addition, we evaluated a possible role of TMEM106B rs1990622 as a genetic modifier and correlated progranulin plasma levels and gray-matter atrophy. Plasma progranulin mean ± SD plasma levels in patients and asymptomatic carriers were significantly decreased compared with noncarriers (30.5 ± 13.0 and 27.7 ± 7.5 versus 99.6 ± 24.8 ng/mL, p 61.55 ng/mL, the test had a sensitivity of 98.8% and a specificity of 97.5% in predicting the presence of a mutation, independent of symptoms. No correlations were found between progranulin plasma levels and age, years from average age at onset in each family, or TMEM106B rs1990622 genotype (p > 0.05). Plasma progranulin levels did not correlate with brain atrophy. Plasma progranulin levels predict the presence of GRN null mutations independent of proximity to symptoms and brain atrophy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. The yearly rate of Relative Thalamic Atrophy (yrRTA: a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Manuel eMenéndez-González

    2014-08-01

    Full Text Available Despite a strong correlation to outcome, the measurement of gray matter (GM atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS. This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meaning of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy (TA with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the yearly rate of Relative Thalamic Atrophy (yrRTA. In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  2. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    Science.gov (United States)

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  3. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    International Nuclear Information System (INIS)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria; Bergstroem, Jakob; Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan; Flodmark, Olof; Lilja, Anders; Ekbom, Anders

    2010-01-01

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  4. Gender effects on age-related changes in brain structure.

    Science.gov (United States)

    Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K

    2000-01-01

    Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.

  5. Cognitive Function and Brain Atrophy Predict Non-pharmacological Efficacy in Dementia: The Mihama-Kiho Scan Project2

    Directory of Open Access Journals (Sweden)

    Ken-ichi Tabei

    2018-04-01

    Full Text Available We aimed to determine whether neuropsychological deficits and brain atrophy could predict the efficacy of non-pharmacological interventions. Forty-six participants with mild-to-moderate dementia were monitored for 6 months; 25 underwent an intervention involving physical exercise with music, and 21 performed cognitive stimulation tasks. Participants were categorized into improvement (IMP and no-IMP subgroups. In the exercise-with-music group, the no-IMP subgroup performed worse than the IMP subgroup on the Rivermead Behavioural Memory Test at baseline. In the cognitive-stimulation group, the no-IMP subgroup performed worse than the IMP subgroup on Raven’s Colored Progressive Matrices and the cognitive functional independence measure at baseline. In the no-IMP subgroup, voxel-based morphometric analysis at baseline revealed more extensive gray matter loss in the anterior cingulate gyrus and left middle frontal gyrus in the exercise-with-music and cognitive-stimulation groups, respectively. Participants with mild-to-moderate dementia with cognitive decline and extensive cortical atrophy are less likely to show improved cognitive function after non-pharmaceutical therapy.

  6. Cognitive Function and Brain Atrophy Predict Non-pharmacological Efficacy in Dementia: The Mihama-Kiho Scan Project2.

    Science.gov (United States)

    Tabei, Ken-Ichi; Satoh, Masayuki; Ogawa, Jun-Ichi; Tokita, Tomoko; Nakaguchi, Noriko; Nakao, Koji; Kida, Hirotaka; Tomimoto, Hidekazu

    2018-01-01

    We aimed to determine whether neuropsychological deficits and brain atrophy could predict the efficacy of non-pharmacological interventions. Forty-six participants with mild-to-moderate dementia were monitored for 6 months; 25 underwent an intervention involving physical exercise with music, and 21 performed cognitive stimulation tasks. Participants were categorized into improvement (IMP) and no-IMP subgroups. In the exercise-with-music group, the no-IMP subgroup performed worse than the IMP subgroup on the Rivermead Behavioural Memory Test at baseline. In the cognitive-stimulation group, the no-IMP subgroup performed worse than the IMP subgroup on Raven's Colored Progressive Matrices and the cognitive functional independence measure at baseline. In the no-IMP subgroup, voxel-based morphometric analysis at baseline revealed more extensive gray matter loss in the anterior cingulate gyrus and left middle frontal gyrus in the exercise-with-music and cognitive-stimulation groups, respectively. Participants with mild-to-moderate dementia with cognitive decline and extensive cortical atrophy are less likely to show improved cognitive function after non-pharmaceutical therapy.

  7. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry.

    Science.gov (United States)

    Tao, Guozhi; Datta, Sushmita; He, Renjie; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2009-07-15

    Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM) structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased atlas was constructed from 20 normal brains. The MS brain images were co-registered with the unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability, as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy and EDSS was observed for different DGM structures: (thalamus: r=-0.51, p=3.85 x 10(-7); caudate nucleus: r=-0.43, p=2.35 x 10(-5); putamen: r=-0.36, p=6.12 x 10(-6)). Atrophy of these structures also correlated with 1) T2 hyperintense lesion volumes (thalamus: r=-0.56, p=9.96 x 10(-9); caudate nucleus: r=-0.31, p=3.10 x 10(-3); putamen: r=-0.50, p=6.06 x 10(-7)), 2) T1 hypointense lesion volumes (thalamus: r=-0.61, p=2.29 x 10(-10); caudate nucleus: r=-0.35, p=9.51 x 10(-4); putamen: r=-0.43, p=3.51 x 10(-5)), and 3) normalized CSF volume (thalamus: r=-0.66, p=3.55 x 10(-12); caudate nucleus: r=-0.52, p=2.31 x 10(-7), and putamen: r=-0.66, r=2.13 x 10(-12)). More severe atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link between the white matter damage and DGM atrophy in MS.

  8. Correlation between hippocampal volumes and medial temporal lobe atrophy in patients with Alzheimer's disease

    OpenAIRE

    Dhikav, Vikas; Duraiswamy, Sharmila; Anand, Kuljeet Singh

    2017-01-01

    Introduction: Hippocampus undergoes atrophy in patients with Alzheimer's disease (AD). Calculation of hippocampal volumes can be done by a variety of methods using T1-weighted images of magnetic resonance imaging (MRI) of the brain. Medial temporal lobes atrophy (MTL) can be rated visually using T1-weighted MRI brain images. The present study was done to see if any correlation existed between hippocampal volumes and visual rating scores of the MTL using Scheltens Visual Rating Method. Materia...

  9. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. A clinical case of dentato-rubro-pallido-luysian atrophy (DRPLA)

    International Nuclear Information System (INIS)

    Katsube, Tomoko; Kobayashi, Shotai; Yamaguchi, Shuhei; Tsunematsu, Tokugoro; Shimada, Yasuo.

    1987-01-01

    Dentato-rubro-pallido-luysian atrophy (DRPLA) has been described as an atypical type of spino-cerebellar degeneration by J.K. Smith (1958). Choreo-athetoid movement characterizes the DRPLA. We here report a case of DRPLA that was suspected from clinical symptoms and CT brain examinations. Case report: A 36-year-old man was admitted to the hospital because of involuntary movements of the extremities in July, 1978. He had epileptic seizures since the age of 25. Since then, his intelligence had gradually been getting worse. At the same time, dysarthria (slow and slurred speech) also appeared. The neurological examination on admission revealed choreo-athetoid movements, with ataxia of the extremities, trancal ataxia, ataxic speech, moderate dementia, and a disturbance of the smooth-pursuit eye movements. He could not maintain his eye position in a steady gaze, but nystagmus was absent. A brain CT scan revealed a marked atrophy of the upper brain stem and cerebellar peduncle. The cerebral atrophy was mild, and caudate nuclei were spared. The electroencephalograph showed a slow, diffuse, high-voltage wave, with an associated spike and waves. The cerebrospinal fluid examination was normal. An electrophysiological examination revealed no myoclonus in the extremities. These clinical findings suggested that this case is a pseudo-Huntington form of DRPLA. (author)

  11. Longitudinal association between hippocampus atrophy and episodic-memory decline.

    Science.gov (United States)

    Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars

    2017-03-01

    There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  13. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    International Nuclear Information System (INIS)

    Sluimer, Jasper D.; Flier, Wiesje M. van der; Scheltens, Philip; Karas, Giorgos B.; Barkhof, Frederik; Schijndel, Ronald van; Barnes, Josephine; Boyes, Richard G.; Cover, Keith S.; Olabarriaga, Silvia D.; Fox, Nick C.; Vrenken, Hugo

    2009-01-01

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 ± 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  14. Vaginal Atrophy

    Science.gov (United States)

    ... an Endocrinologist Search Featured Resource Menopause Map™ View Vaginal Atrophy October 2017 Download PDFs English Editors Christine ... during this time, including vaginal dryness. What is vaginal atrophy? Vaginal atrophy (also referred to as vulvovaginal ...

  15. Relation of measured brain glucose utilisation and cerebral atrophy in man.

    Science.gov (United States)

    Schlageter, N L; Horwitz, B; Creasey, H; Carson, R; Duara, R; Berg, G W; Rapoport, S I

    1987-06-01

    The effect of cerebral atrophy on measured cerebral metabolic rates for glucose (CMRglc), as determined with positron emission tomography (PET), was examined in 49 healthy males aged 21-83 years. Global CMRglc and regional CMRglc for 34 grey matter regions parallel to and from 30 to 80 mm above the inferior orbital meatal (IOM) line were measured under resting conditions, using [18F]-fluorodeoxyglucose and an ECAT II positron emission tomograph. Using a GE 8800 CT/T scanner, slices parallel to and from 30 to 80 mm above the IOM line were analysed for CSF volume. Cerebral atrophy, indicated by increased CSF volume, was correlated significantly with global CMRglc, but accounted for no more than 13% of the variance in the CMRglc measurements. Methods for correcting for inter-subject variation in CSF volume were proposed. Global values for CMRglc, uncorrected or corrected for CSF volume, were found to be age invariant. These findings indicate that (a) cerebral atrophy has a small, but statistically significant effect on CMRglc as measured with PET; (b) CMRglc is age invariant in healthy males.

  16. Genetics Home Reference: gyrate atrophy of the choroid and retina

    Science.gov (United States)

    ... newborn period. Gyrate atrophy usually does not affect intelligence; however, abnormalities may be observed in brain imaging ... generated when protein is broken down by the body. In addition to its role in the urea ...

  17. Progression of brain atrophy in the early stages of Parkinson's disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment.

    Science.gov (United States)

    Tessa, Carlo; Lucetti, Claudio; Giannelli, Marco; Diciotti, Stefano; Poletti, Michele; Danti, Sabrina; Baldacci, Filippo; Vignali, Claudio; Bonuccelli, Ubaldo; Mascalchi, Mario; Toschi, Nicola

    2014-08-01

    The presence of brain atrophy and its progression in early Parkinson's disease (PD) are still a matter of debate, particularly in patients without cognitive impairment. The aim of this longitudinal study was to assess whether PD patients who remain cognitively intact develop progressive atrophic changes in the early stages of the disease. For this purpose, we employed high-resolution T1-weighted MR imaging to compare 22 drug-naïve de novo PD patients without cognitive impairment to 17 age-matched control subjects, both at baseline and at three-year follow-up. We used tensor-based morphometry to explore the presence of atrophic changes at baseline and to compute yearly atrophy rates, after which we performed voxel-wise group comparisons using threshold-free cluster enhancement. At baseline, we did not observe significant differences in regional atrophy in PD patients with respect to control subjects. In contrast, PD patients showed significantly higher yearly atrophy rates in the prefrontal cortex, anterior cingulum, caudate nucleus, and thalamus when compared to control subjects. Our results indicate that even cognitively preserved PD patients show progressive cortical and subcortical atrophic changes in regions related to cognitive functions and that these changes are already detectable in the early stages of the disease. Copyright © 2014 Wiley Periodicals, Inc.

  18. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  19. Progressive hemifacial atrophy with ciliary body atrophy and ocular hypotony

    Directory of Open Access Journals (Sweden)

    T Ashwini Kini

    2015-01-01

    Full Text Available Progressive hemifacial atrophy (PHA is a disease of unknown etiology affecting one-half of the face. Ocular involvement is uncommon. Atrophy of iris is rare, with only a few cases of partial atrophy being reported in the literature. We report a case of total atrophy of iris and ciliary body with associated ocular hypotony in a 16-year-old girl with PHA. We believe this is the first reported case of complete atrophy of iris and ciliary body in PHA. Ocular hypotony in PHA was thought to be due to intra-ocular inflammation. However in our case it appears to be secondary to severe atrophy of the ciliary body.

  20. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI

    International Nuclear Information System (INIS)

    Tavani, F.; Zimmerman, R.A.; Gatti, R.; Bingham, P.; Berry, G.T.; Sullivan, K.

    2003-01-01

    We describe MRI of the brain in 19 patients with ataxia-telangiectasia (AT) and correlate the appearances with the degree of neurologic deficit. We examined 10 male and nine female patients; 17 were aged between 2 and 12 years (mean 8 years) but a woman and her brother were 35 and 38 years old, and had a variant of AT. Ataxia was the first recognized sign of the disease in every patient. We detected the following patterns of cerebellar atrophy: in the youngest patient, aged 2 years, the study was normal; in the five next youngest patients 3-7 years of age, the lateral cerebellum and superior vermis showed the earliest changes of atrophy; and all but one of the other patients had moderate to marked diffuse atrophy of vermis and cerebellar hemispheres. There were 12 patients aged 9 years and above; one, who was normal, was 9 years old. The five patients who at the time of examination were unable to walk all had diffuse atrophy involving both vermis and cerebellar hemispheres. (orig.)

  1. Radiation Dose–Dependent Hippocampal Atrophy Detected With Longitudinal Volumetric Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Kaifi, Samar [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Dalia, Yoseph; Burkeen, Jeffrey; Murzin, Vyacheslav; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Kuperman, Joshua; White, Nathan S. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Farid, Nikdokht [Department of Radiology, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-02-01

    Purpose: After radiation therapy (RT) to the brain, patients often experience memory impairment, which may be partially mediated by damage to the hippocampus. Hippocampal sparing in RT planning is the subject of recent and ongoing clinical trials. Calculating appropriate hippocampal dose constraints would be improved by efficient in vivo measurements of hippocampal damage. In this study we sought to determine whether brain RT was associated with dose-dependent hippocampal atrophy. Methods and Materials: Hippocampal volume was measured with magnetic resonance imaging (MRI) in 52 patients who underwent fractionated, partial brain RT for primary brain tumors. Study patients had high-resolution, 3-dimensional volumetric MRI before and 1 year after RT. Images were processed using software with clearance from the US Food and Drug Administration and Conformité Européene marking for automated measurement of hippocampal volume. Automated results were inspected visually for accuracy. Tumor and surgical changes were censored. Mean hippocampal dose was tested for correlation with hippocampal atrophy 1 year after RT. Average hippocampal volume change was also calculated for hippocampi receiving high (>40 Gy) or low (<10 Gy) mean RT dose. A multivariate analysis was conducted with linear mixed-effects modeling to evaluate other potential predictors of hippocampal volume change, including patient (random effect), age, hemisphere, sex, seizure history, and baseline volume. Statistical significance was evaluated at α = 0.05. Results: Mean hippocampal dose was significantly correlated with hippocampal volume loss (r=−0.24, P=.03). Mean hippocampal volume was significantly reduced 1 year after high-dose RT (mean −6%, P=.009) but not after low-dose RT. In multivariate analysis, both RT dose and patient age were significant predictors of hippocampal atrophy (P<.01). Conclusions: The hippocampus demonstrates radiation dose–dependent atrophy after treatment for brain

  2. Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging.

    Science.gov (United States)

    Pelletier, Amandine; Bernard, Charlotte; Dilharreguy, Bixente; Helmer, Catherine; Le Goff, Melanie; Chanraud, Sandra; Dartigues, Jean-François; Allard, Michèle; Amieva, Hélène; Catheline, Gwénaëlle

    2017-03-09

    The cerebral substratum of age-related cognitive decline was evaluated in an elderly-cohort followed for 12 years (n=306). Participants, free of dementia, received neuropsychological assessments every two years and an MRI exam at baseline and four years later. Cognitive decline was evaluated on two broadly used tests to detect dementia: the Free and Cued Selective Reminding Test (FCSRT), a verbal episodic memory task, and the Isaacs Set Test (IST), a semantic fluency task. Using voxel-based approach, the relationship between cognitive decline with 1/ baseline grey matter volumes and 2/ grey matter volume loss between the two scans was explored. Baseline volumes analysis revealed that FCSRT and IST declines were both associated with lower volumes of the medial temporal region. Volumes loss analysis confirmed that both declines are related to medial temporal lobe atrophy and revealed that FCSRT decline was specifically associated with atrophy of the posterior cingulate cortex whereas IST decline was specifically related to temporal pole atrophy. These results suggest that cognitive decline across aging is firstly related to structural modifications of the medial temporal lobe, followed by an atrophy in the posterior midline structures for episodic memory and an atrophy of the temporal pole for semantic fluency.

  3. Deficits in memory and visuospatial learning correlate with regional hippocampal atrophy in MS.

    Science.gov (United States)

    Longoni, Giulia; Rocca, Maria A; Pagani, Elisabetta; Riccitelli, Gianna C; Colombo, Bruno; Rodegher, Mariaemma; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2015-01-01

    The hippocampus has a critical role in episodic memory and visuospatial learning and consolidation. We assessed the patterns of whole and regional hippocampal atrophy in a large group of multiple sclerosis (MS) patients, and their correlations with neuropsychological impairment. From 103 MS patients and 28 healthy controls (HC), brain dual-echo and high-resolution 3D T1-weighted images were acquired using a 3.0-Tesla scanner. All patients underwent a neuropsychological assessment of hippocampal-related cognitive functions, including Paired Associate Word Learning, Short Story, delayed recall of Rey-Osterrieth Complex Figure and Paced Auditory Serial Attention tests. The hippocampi were manually segmented and volumes derived. Regional atrophy distribution was assessed using a radial mapping analysis. Correlations between hippocampal atrophy and clinical, neuropsychological and MRI metrics were also evaluated. Hippocampal volume was reduced in MS patients vs HC (p right and hippocampus). In MS patients, radial atrophy affected CA1 subfield and subiculum of posterior hippocampus, bilaterally. The dentate hilus (DG:H) of the right hippocampal head was also affected. Regional hippocampal atrophy correlated with brain T2 and T1 lesion volumes, while no correlation was found with disability. Damage to the CA1 and subiculum was significantly correlated to the performances at hippocampal-targeted neuropsychological tests. These results show that hippocampal subregions have a different vulnerability to MS-related damage, with a relative sparing of the head of the left hippocampus. The assessment of regional hippocampal atrophy may help explain deficits of specific cognitive functions in MS patients, including memory and visuospatial abilities.

  4. Rapidly worsening bulbar symptoms in a patient with spinobulbar muscular atrophy

    Directory of Open Access Journals (Sweden)

    Montserrat Diaz-Abad

    2013-12-01

    Full Text Available X-linked spinobulbar muscular atrophy (Kennedy’s disease affects muscles and motor neurons, manifesting as weakness and wasting of bulbar, facial, and proximal limb muscles due to loss of anterior horn cells in the brain and spinal cord. We present the case of a patient with X-linked spinobulbar muscular atrophy with rapidly worsening bulbar symptoms caused by laryngopharyngeal irritation associated with a viral upper respiratory tract infection, seasonal allergies and laryngopharyngeal reflux, who dramatically improved with multimodality therapy.

  5. Brain computed tomography findings of aged schizophrenics

    International Nuclear Information System (INIS)

    Oomori, Masao; Koshino, Yoshifumi; Murata, Tetsuhito; Murata, Ichirou; Tani, Kazuhiko; Horie, Tan; Isaki, Kiminori

    1992-01-01

    Brain CT was performed in a total of 30 aged schizophrenic patients, consisting of 20 with no history of psychosurgery (lobotomy) and the other 10 lobotomized patients. The CT findings were compared with those from healthy aged persons. The group of schizophrenic patients had marked atrophy of the frontal lobe and dilatated Sylvian fissure as compared with the control group. There was no significant difference in ventricular factors between the two groups. These findings may have implications for the different mechanisms of the occurrence of atrophied brain surface and enlarged ventricle. The cerebral cortex involved in the occurrence of schizophrenia may be affected by aging-related cerebral atrophy, in addition to the morphological changes due to schizophrenia. Thus, schizophrenic cerebral atrophy was more noticeable than physiological aging-related atrophy. However, enlargement of the ventricle in the schizophrenic group progressed with aging in the same manner as that in the normal group. In comparing schizophrenic patients with or without a history of lobotomy, atrophy of the brain surface and enlargement of the ventricle were more marked in the lobotomized patients than the non-lobotomized patients. This confirmed that lobotomy, as well as surgical scar, is involved in the morphology of schizophrenic brain. (N.K.)

  6. Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers

    DEFF Research Database (Denmark)

    Eskildsen, Simon F; Østergaard, Lasse R; Rodell, Anders B

    2008-01-01

    with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy...... in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally...

  7. White matter atrophy and cognitive dysfunctions in neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Frederic Blanc

    Full Text Available Neuromyelitis optica (NMO is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain and VBM for focal brain volume (GM and WM, NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54% had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in

  8. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Sluimer, Jasper D. [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Diagnostic Radiology and Alzheimer Centre, PO Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der; Scheltens, Philip [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); Karas, Giorgos B.; Barkhof, Frederik [VU University Medical Centre, Department of Diagnostic Radiology, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); Schijndel, Ronald van [VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Informatics, Amsterdam (Netherlands); Barnes, Josephine; Boyes, Richard G. [UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Cover, Keith S. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands); Olabarriaga, Silvia D. [University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam (Netherlands); Fox, Nick C. [VU University Medical Centre, Department of Neurology, Amsterdam (Netherlands); UCL, Institute of Neurology, Dementia Research Centre, London (United Kingdom); Vrenken, Hugo [VU University Medical Centre, Alzheimer Centre, Amsterdam (Netherlands); VU University Medical Centre, Image Analysis Centre, Amsterdam (Netherlands); VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2009-12-15

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 {+-} 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate atrophy rates in six regions: frontal, medial temporal, temporal (extramedial), parietal, occipital lobes and insular cortex. In MCI, the highest atrophy rate was observed in the medial temporal lobe, comparable with AD. AD patients showed even higher atrophy rates in the extramedial temporal lobe. Additionally, atrophy rates in frontal, parietal and occipital lobes were increased. Cox proportional hazard models showed that all regional atrophy rates predicted conversion to AD. Hazard ratios varied between 2.6 (95% confidence interval (CI) = 1.1-6.2) for occipital atrophy and 15.8 (95% CI = 3.5-71.8) for medial temporal lobe atrophy. In conclusion, atrophy spreads through the brain with development of AD. MCI is marked by temporal lobe atrophy. In AD, atrophy rate in the extramedial temporal lobe was even higher. Moreover, atrophy rates also accelerated in parietal, frontal, insular and occipital lobes. Finally, in nondemented elderly, medial temporal lobe atrophy was most predictive of progression to AD, demonstrating the involvement of this region in the development of AD. (orig.)

  9. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    Raaphorst, J.; Tol, M.J. van; Groot, P.F.M.; Altena, E.; Werf, Y.D. van der; Majoie, C.B.; Kooi, A.J. van der; Berg, L.H. van den; Schmand, B.A.; Visser, M de; Veltman, D.J.

    2014-01-01

    OBJECTIVE: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). METHODS: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  10. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    Raaphorst, Joost; van Tol, Marie-Jose; Groot, Paul F. C.; Altena, Ellemarije; van der Werf, Ysbrand D.; Majoie, Charles B.; van der Kooi, Anneke J.; van den Berg, Leonard H.; Schmand, Ben; de Visser, Marianne; Veltman, Dick J.

    2014-01-01

    Objective: To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). Methods: fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in

  11. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy

    NARCIS (Netherlands)

    Raaphorst, Joost; van Tol, Marie-José; Groot, Paul F. C.; Altena, Ellemarije; van der Werf, Ysbrand D.; Majoie, Charles B.; van der Kooi, Anneke J.; van den Berg, Leonard H.; Schmand, Ben; de Visser, Marianne; Veltman, Dick J.

    2014-01-01

    To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in 18 patients with

  12. Quantitative MRI study of progressive cerebral atrophy in multiple system atrophy

    International Nuclear Information System (INIS)

    Konagaya, Masaaki; Matsuoka, Yukihiko; Konagaya, Yoko

    2002-01-01

    We investigated cerebral atrophy in multiple system atrophy (MSA) by quantitative analysis of MRI. The subjects were 28 patients with MSA (14 striato-nigral degeneration; SND, 14 olivo-ponto-cerebellar atrophy; OPCA. 106 MRI examinations were performed totally) and 85 normal persons for control. The ratios of the ventral pons to the infratentorial space in the sagittal section, the putamen, cerebrum, frontal lobe and parietal and occipital lobes to the intracranial space in the horizontal section, and the temporal lobe to the intracranial space in the coronal section were measured. In the early stage of the disease, OPCA showed significant atrophy of the ventral pons compared with SND, and conversely, SND demonstrated significantly smaller putamen than that in OPCA. According to the progression of the disease, the atrophy of these neural tissues progressed, which resulted in so significant differences between SND and OPCA. The cerebral atrophy was observed in 17 MSA patients. The atrophy of the frontal lobe was much frequent and prominent to that in the temporal lobe and parietal and occipital lobes. SND showed higher incidence of the cerebral atrophy than OPCA in the early stage of the disease. In long period follow-up cases, one case showed cerebral atrophy in earlier stage, and another case in late stage. We indicated the involvement of the cerebral hemispheres in MSA, especially the frontal lobe. (author)

  13. Quantitative MRI study of progressive cerebral atrophy in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Konagaya, Masaaki; Matsuoka, Yukihiko [Suzuka National Hospital, Suzuka, Mie (Japan); Konagaya, Yoko [JR Tokai General Hospital, Nagoya (Japan)

    2002-02-01

    We investigated cerebral atrophy in multiple system atrophy (MSA) by quantitative analysis of MRI. The subjects were 28 patients with MSA (14 striato-nigral degeneration; SND, 14 olivo-ponto-cerebellar atrophy; OPCA. 106 MRI examinations were performed totally) and 85 normal persons for control. The ratios of the ventral pons to the infratentorial space in the sagittal section, the putamen, cerebrum, frontal lobe and parietal and occipital lobes to the intracranial space in the horizontal section, and the temporal lobe to the intracranial space in the coronal section were measured. In the early stage of the disease, OPCA showed significant atrophy of the ventral pons compared with SND, and conversely, SND demonstrated significantly smaller putamen than that in OPCA. According to the progression of the disease, the atrophy of these neural tissues progressed, which resulted in so significant differences between SND and OPCA. The cerebral atrophy was observed in 17 MSA patients. The atrophy of the frontal lobe was much frequent and prominent to that in the temporal lobe and parietal and occipital lobes. SND showed higher incidence of the cerebral atrophy than OPCA in the early stage of the disease. In long period follow-up cases, one case showed cerebral atrophy in earlier stage, and another case in late stage. We indicated the involvement of the cerebral hemispheres in MSA, especially the frontal lobe. (author)

  14. Comparision between Brain Atrophy and Subdural Volume to Predict Chronic Subdural Hematoma: Volumetric CT Imaging Analysis.

    Science.gov (United States)

    Ju, Min-Wook; Kim, Seon-Hwan; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2015-10-01

    Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (pSubdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI.

  15. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson's syndrome

    Science.gov (United States)

    Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu

    2015-01-01

    Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680

  16. Regional differences of relationships between atrophy and glucose metabolism of cerebral cortex in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Toyama, H.; Uemura, K.; Kanekiyo, S.; Ishii, K.; Ishii, K.

    2002-01-01

    Aim: The purpose of this paper is to estimate a correlation between the extent of atrophy and the decline in the brain function measured with PET study among the patients with Alzheimer's disease by each brain lobe. Materials and Methods: Two groups, the normal controls (male: 8, female: 22 age: 62.4±4.9) and the patients with Alzheimer's disease (male: 6, female: 24, age: 65.9±7.2) participated in this study. The extent of atrophy was evaluated from the extracted gyrus on 2D-projection magnetic resonance imaging (MRI) and the cerebral cortical glucose metabolism was assessed on 2D-projection positron emission tomography (PET) image, and then a relationship between the cerebral atrophy and the function was evaluated by each brain lobe extracted automatically. 2D-projection of PET and MR images were made by means of the Mollweide method which keeps the area of the brain surface. In order to extract brain lobes from each subject automatically, the bitmap with different value by each brain lobe was made from a standard brain image and was automatically transformed to match each subject's brain image by using SPM99. A correlation image was generated between 2D-projection images of glucose metabolism and the area of the sulcus and the gyrus extracted from the correlation between MR and PET images clustered by K-means method. Results: The glucose metabolism of Alzheimer's disease was lower than that of normal control subjects at the frontal, parietal, and temporal lobes with the same extent of atrophy as that of the normal. There was high correlation between the area of gyrus and the glucose metabolism, and the correlation tendency of the Alzheimer's disease was steeper than that of the normal control at the parietal lobe. Conclusions: Combined analysis of regional morphology and function may be useful to distinguish pathological process such as early stage of Alzheimer's disease from normal physiological aging

  17. Characteristic MRI findings in multiple system atrophy: comparison of the three subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Naka, H.; Ohshita, T.; Murata, Y.; Imon, Y.; Mimori, Y.; Nakamura, S. [Department of Internal Medicine, Hiroshima University School of Medicine, Hiroshima (Japan)

    2002-03-01

    We reviewed MRI findings in 29 patients with probable multiple system atrophy (MSA) to see whether there were common and or less common neuroradiological findings in the various clinical subtypes. We divided the patients into three clinical subtypes according to initial and predominant symptoms: 14 with olivopontocerebellar atrophy (OPCA), eight with the Shy-Drager syndrome (SDS) and seven with striatonigral degeneration (SND). The patients showed atrophy of the brain stem and cerebellum, high signal on T2-weighted images of the base of the pons and middle cerebellar peduncles, high and low signal on T2-weighted images of the putamen and atrophy of frontal and parietal lobes. The degree of atrophy of the middle cerebellar peduncle and cerebellum was greater in OPCA patients and a high-signal lateral rim to the putamen more frequent in SND. However, all findings were observed in all subtypes, and the degrees of atrophy of the putamen and pons and the frequency of high signal in the base of the pons were similar in the subtypes. We also found atrophy of the cerebral hemispheres, especially the frontal and parietal lobes, but its degree was not significantly different in the various subtypes. Our findings suggest that, although MSA can be divided clinically into three subtypes, most of the features on MRI are common and overlap in the subtypes, independently of the clinical presentation. (orig.)

  18. Spatiotemporal Propagation of the Cortical Atrophy: Population and Individual Patterns

    Directory of Open Access Journals (Sweden)

    Igor Koval

    2018-05-01

    Full Text Available Repeated failures in clinical trials for Alzheimer’s disease (AD have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized

  19. Insulin is Differentially Related to Cognitive Decline and Atrophy in Alzheimer’s Disease and Aging

    Science.gov (United States)

    Burns, Jeffrey M.; Honea, Robyn A.; Vidoni, Eric D.; Hutfles, Lewis; Brooks, William M.; Swerdlow, Russell H.

    2012-01-01

    We assessed the relationship of insulin resistance with cognitive decline and brain atrophy over two years in early Alzheimer’s disease (AD, n=48) and nondemented controls (n=61). Intravenous glucose tolerance tests were conducted at baseline to determine insulin area-under-the-curve (AUC). A standard battery of cognitive tasks and MRI were conducted at baseline and 2-year follow-up. In nondemented controls, higher baseline insulin AUC was associated with 2-year decline in global cognitive performance (beta=−0.36, p=0.005). In early AD, however, higher insulin AUC was associated with less decline in global cognitive performance (beta=0.26, p=0.06), slower global brain atrophy (beta=0.40, p=0.01) and less regional atrophy in the bilateral hippocampi and cingulate cortices. While insulin resistance is associated with cognitive decline in nondemented aging, higher peripheral insulin may have AD-specific benefits or insulin signaling may be affected by systemic physiologic changes associated with AD. PMID:21745566

  20. The use of computed tomography in brain damage testing

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1980-01-01

    The article deals with the diagnosis of brain damage by the use of computerized tomography - especially referring to the injuries of boxers. Three conditions may be evaluated with computerized tomography: i) fenestration of the septum pellucidum; ii) cortical atrophy; and, iii) cerebral atrophy. It also appears that computerized tomography has a place in the evaluation of injuries sustained in the ring, as well as the detection of accelerated ageing of the brain or atrophy

  1. Significance of frontal cortical atrophy in Parkinson's disease: computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sang; Suh, Jung Ho; Chung, Tae Sub; Kim, Dong Ik [College of Medicine, Yonsei University, Seoul (Korea, Republic of)

    1987-10-15

    Fifty-five patients with Parkinson's disease were evaluated clinically and with brain computed tomography (CT) in order to determine the incidence of frontal cortical and subcortical atrophy. Twenty cases of age-related healthy control group were also scanned. The CT criteria of frontal cortical atrophy that was used in this study were the maximum width of frontal hemispheric cortical sulci and width of anterior interhemispheric fissure between frontal lobes comparing with maximum width of hemispheric cortical sulci except frontal lobes. And the criteria of frontal subcortical atrophy were bifrontal index bicaudate index, and Evans index. The results are as follows: 1. Cortical atrophic changes in Parkinson's disease were more prominent in frontal lobe rather than other causes of cortical atrophy. 2. Frontal cortical and subcortical atrophic changes were also more prominent in Parkinson's disease rather than age-related control group. 3. Subcortical atrophic changes in frontal lobe were always associated with cortical atrophic changes. 4. Changes of basal ganglia were hardly seen in Parkinson's disease. 5. Cortical atrophic changes in frontal lobe must be the one of significant findings in Parkinson's disease.

  2. Significance of frontal cortical atrophy in Parkinson's disease: computed tomographic study

    International Nuclear Information System (INIS)

    Lee, Kyung Sang; Suh, Jung Ho; Chung, Tae Sub; Kim, Dong Ik

    1987-01-01

    Fifty-five patients with Parkinson's disease were evaluated clinically and with brain computed tomography (CT) in order to determine the incidence of frontal cortical and subcortical atrophy. Twenty cases of age-related healthy control group were also scanned. The CT criteria of frontal cortical atrophy that was used in this study were the maximum width of frontal hemispheric cortical sulci and width of anterior interhemispheric fissure between frontal lobes comparing with maximum width of hemispheric cortical sulci except frontal lobes. And the criteria of frontal subcortical atrophy were bifrontal index bicaudate index, and Evans index. The results are as follows: 1. Cortical atrophic changes in Parkinson's disease were more prominent in frontal lobe rather than other causes of cortical atrophy. 2. Frontal cortical and subcortical atrophic changes were also more prominent in Parkinson's disease rather than age-related control group. 3. Subcortical atrophic changes in frontal lobe were always associated with cortical atrophic changes. 4. Changes of basal ganglia were hardly seen in Parkinson's disease. 5. Cortical atrophic changes in frontal lobe must be the one of significant findings in Parkinson's disease

  3. Utility of coronal contrast-enhanced fat-suppressed FLAIR in the evaluation of optic neuropathy and atrophy.

    Science.gov (United States)

    Boegel, Kevin H; Tyan, Andrew E; Iyer, Veena R; Rykken, Jeffrey B; McKinney, Alexander M

    2017-01-01

    Evaluating chronic sequelae of optic neuritis, such as optic neuropathy with or without optic nerve atrophy, can be challenging on whole brain MRI. This study evaluated the utility of dedicated coronal contrast-enhanced fat-suppressed FLAIR (CE-FS-FLAIR) MR imaging to detect optic neuropathy and optic nerve atrophy. Over 4.5 years, a 3 mm coronal CE-FS-FLAIR sequence at 1.5T was added to the routine brain MRIs of 124 consecutive patients, 102 of whom had suspected or known demyelinating disease. Retrospective record reviews confirmed that 28 of these 102 had documented onset of optic neuritis >4 weeks prior to the brain MRI. These 28 were compared to the other 22 ("controls") of the 124 patients who lacked a history of demyelinating disease or visual symptoms. Using coronal CE-FS-FLAIR, two neuroradiologists separately graded each optic nerve (n = 50 patients, 100 total nerves) as either negative, equivocal, or positive for optic neuropathy or atrophy. The scoring was later repeated. The mean time from acute optic neuritis onset to MRI was 4.1 ± 4.6 years (range 34 days-17.4 years). Per individual nerve grading, the range of sensitivity, specificity, and accuracy of coronal CE-FS-FLAIR in detecting optic neuropathy was 71.4-77.1%, 93.8-95.4%, and 85.5-89.0%, respectively, with strong interobserver (k = 0.667 - 0.678, p optic atrophy, interobserver agreement was moderate (k = 0.437 - 0.484, p optic neuropathy years after the onset of acute optic neuritis, but is less useful in detecting optic nerve atrophy.

  4. Semantic word category processing in semantic dementia and posterior cortical atrophy.

    Science.gov (United States)

    Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann

    2017-08-01

    There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Atrophy rates in asymptomatic amyloidosis: implications for Alzheimer prevention trials.

    Directory of Open Access Journals (Sweden)

    K Abigail Andrews

    Full Text Available There is considerable interest in designing therapeutic studies of individuals at risk of Alzheimer disease (AD to prevent the onset of symptoms. Cortical β-amyloid plaques, the first stage of AD pathology, can be detected in vivo using positron emission tomography (PET, and several studies have shown that ~1/3 of healthy elderly have significant β-amyloid deposition. Here we assessed whether asymptomatic amyloid-PET-positive controls have increased rates of brain atrophy, which could be harnessed as an outcome measure for AD prevention trials. We assessed 66 control subjects (age = 73.5±7.3 yrs; MMSE = 29±1.3 from the Australian Imaging Biomarkers & Lifestyle study who had a baseline Pittsburgh Compound B (PiB PET scan and two 3T MRI scans ~18-months apart. We calculated PET standard uptake value ratios (SUVR, and classified individuals as amyloid-positive/negative. Baseline and 18-month MRI scans were registered, and brain, hippocampal, and ventricular volumes and annualized volume changes calculated. Increasing baseline PiB-PET measures of β-amyloid load correlated with hippocampal atrophy rate independent of age (p = 0.014. Twenty-two (1/3 were PiB-positive (SUVR>1.40, the remaining 44 PiB-negative (SUVR≤1.31. Compared to PiB-negatives, PiB-positive individuals were older (76.8±7.5 vs. 71.7±7.5, p<0.05 and more were APOE4 positive (63.6% vs. 19.2%, p<0.01 but there were no differences in baseline brain, ventricle or hippocampal volumes, either with or without correction for total intracranial volume, once age and gender were accounted for. The PiB-positive group had greater total hippocampal loss (0.06±0.08 vs. 0.02±0.05 ml/yr, p = 0.02, independent of age and gender, with non-significantly higher rates of whole brain (7.1±9.4 vs. 4.7±5.5 ml/yr and ventricular (2.0±3.0 vs. 1.1±1.0 ml/yr change. Based on the observed effect size, recruiting 384 (95%CI 195-1080 amyloid-positive subjects/arm will provide 80% power to detect 25

  6. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson’s syndrome

    Directory of Open Access Journals (Sweden)

    Jin Yong eHong

    2015-09-01

    Full Text Available Pure akinesia with gait freezing (PAGF is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson’s syndrome (RS, but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical grey matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal and thalamic volumes were also smaller than controls, whereas subcortical grey matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical grey matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF.

  7. Progression of regional grey matter atrophy in multiple sclerosis.

    Science.gov (United States)

    Eshaghi, Arman; Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Prados, Ferran; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-06-01

    See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple

  8. Progression of regional grey matter atrophy in multiple sclerosis

    Science.gov (United States)

    Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-01-01

    Abstract See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse

  9. Consideration of the method of image diagnosis with respect to frontal lobe atrophy

    Science.gov (United States)

    Sato, K.; Sugawara, K.; Narita, Y.; Namura, I.

    1996-12-01

    Proposes a segmentation method for a quantitative image diagnosis as a means of realizing an objective diagnosis of the frontal lobe atrophy. From the data obtained on the grade of membership, the fractal dimensions of the cerebral tissue [cerebral spinal fluid (CSF), gray matter, and white matter] and the contours are estimated. The mutual relationship between the degree of atrophy and the fractal dimension has been analyzed based on the estimated fractal dimensions. Using a sample of 42 male and female cases, ranging In age from 50's to 70's, it has been concluded that the frontal lobe atrophy can be quantified by regarding it as an expansion of CSF region on the magnetic resonance imaging (MRI) of the brain. Furthermore, when the process of frontal lobe atrophy is separated into early and advanced stages, the volumetric change of CSF and white matter in frontal lobe displays meaningful differences between the two stages, demonstrating that the fractal dimension of CSF rises with the progress of atrophy. Moreover, an interpolation method for three-dimensional (3-D) shape reconstruction of the region of diagnostic interest is proposed and 3-D shape visualization, with respect to the degree and form of atrophy, is performed on the basis of the estimated fractal dimension of the segmented cerebral tissue.

  10. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  11. Spinal cord atrophy in anterior-posterior direction reflects impairment in multiple sclerosis.

    Science.gov (United States)

    Lundell, H; Svolgaard, O; Dogonowski, A-M; Romme Christensen, J; Selleberg, F; Soelberg Sørensen, P; Blinkenberg, M; Siebner, H R; Garde, E

    2017-10-01

    To investigate how atrophy is distributed over the cross section of the upper cervical spinal cord and how this relates to functional impairment in multiple sclerosis (MS). We analysed the structural brain MRI scans of 54 patients with relapsing-remitting MS (n=22), primary progressive MS (n=9), secondary progressive MS (n=23) and 23 age- and sex-matched healthy controls. We measured the cross-sectional area (CSA), left-right width (LRW) and anterior-posterior width (APW) of the spinal cord at the segmental level C2. We tested for a nonparametric linear relationship between these atrophy measures and clinical impairments as reflected by the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impairment Scale (MSIS). In patients with MS, CSA and APW but not LRW were reduced compared to healthy controls (P<.02) and showed significant correlations with EDSS, MSIS and specific MSIS subscores. In patients with MS, atrophy of the upper cervical cord is most evident in the antero-posterior direction. As APW of the cervical cord can be readily derived from standard structural MRI of the brain, APW constitutes a clinically useful neuroimaging marker of disease-related neurodegeneration in MS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Spinal cord atrophy in anterior-posterior direction reflects impairment in multiple sclerosis

    DEFF Research Database (Denmark)

    Lundell, H; Svolgaard, O; Dogonowski, A-M

    2017-01-01

    OBJECTIVE: To investigate how atrophy is distributed over the cross section of the upper cervical spinal cord and how this relates to functional impairment in multiple sclerosis (MS). METHODS: We analysed the structural brain MRI scans of 54 patients with relapsing-remitting MS (n=22), primary...... progressive MS (n=9), secondary progressive MS (n=23) and 23 age- and sex-matched healthy controls. We measured the cross-sectional area (CSA), left-right width (LRW) and anterior-posterior width (APW) of the spinal cord at the segmental level C2. We tested for a nonparametric linear relationship between...... and specific MSIS subscores. CONCLUSION: In patients with MS, atrophy of the upper cervical cord is most evident in the antero-posterior direction. As APW of the cervical cord can be readily derived from standard structural MRI of the brain, APW constitutes a clinically useful neuroimaging marker of disease...

  13. Visualizing stages of cortical atrophy in progressive MCI from the ADNI cohort

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Fonov, Vladimir; Coupé, Pierrick

    Amnestic mild cognitive impairment (MCI) is considered a condition where patients are at risk of developing clinically definite Alzheimer’s disease (AD) with an annual conversion rate of approximately 15%[1]. AD is characterized by progressive brain atrophy with major impact on the cerebral cortex...... and visualize the cortical atrophy at different stages in patients who eventually converted to clinically definite AD. We selected patients with a diagnosis of MCI from the ADNI database who converted to AD during the follow-up period. T1-weighted MRI scans were collected at time of conversion(n=140...

  14. Analysis of voxel-based rCBF in patients with olivopontocerebellar atrophy of multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Sang Ho; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Olivopontocerebellar Atrophy (OPCA) is one phenotype of multiple system atrophy (MSA) and is characterized neuropathologically by neuronal degeneration in the inferior olives, pons and cerebellar cortex. The diagnosis of OPCA requires clinical evaluation to exclude other diseases. And it's usually supported by atrophy of the cerebellum and brainstem visualized on CT or MRI. But there are some reports that the disease can occur without demonstrable atrophy in these anatomic studies. There are only a few reports about perfusion SPECT imaging in patients with OPCA. The aim of this study was to describe voxel-based rCBF of OPCA in comparison of healthy volunteers. We studied 5 patients with OPCA (1 men, 4 women: age 50.4{+-}9.6y) and age matched 13 healthy volunteers (4 men, 9 women: age 54.9{+-}6.6y). All subjects injected 20mCi of Tc-99m HMPAO and scanning was initiated 20 min after injection. Images were analyzed using SPM (SPM99) with Matlab 5.3. On visual analysis, in 3 patients with OPCA, SPECT image showed significant hypoperfusion in the cerebellum. In another 2 patients, diffuse hypoperfusion was found in the both cerebro-cerebellar hemispheres, untypical perfusion pattern in OPCA. So there is existed limitation to diagnosis by only visual analysis. On SPM analysis, in OPCA patients significantly decreased perfusion was present in culmen, tonsil, tuber in Lt. cerebellum and declive, tonsil, pyramid and inf. Semi-lunar lobule in Rt. cerebellum, Rt. inf. frontal gyrus and Rt. temporal lobe (p<0.001, uncorrected). We also performed individual analysis with SPM. Two of 5 patients have additional hypoperfusion brain lesions. In one patient, decreased perfusion found in Lt. temporal, both occipital lobe, Lt. parahippocampal gyrus. In another patient, decreased perfusion found in both frontal and parietal lobe. This study is one of a few trials analysis with SPM for OPCA. We defined the specific location of decreased perfusion in patients with OPCA.

  15. Analysis of voxel-based rCBF in patients with olivopontocerebellar atrophy of multiple system atrophy

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Sang Ho; Kim, Jae Woo

    2004-01-01

    Olivopontocerebellar Atrophy (OPCA) is one phenotype of multiple system atrophy (MSA) and is characterized neuropathologically by neuronal degeneration in the inferior olives, pons and cerebellar cortex. The diagnosis of OPCA requires clinical evaluation to exclude other diseases. And it's usually supported by atrophy of the cerebellum and brainstem visualized on CT or MRI. But there are some reports that the disease can occur without demonstrable atrophy in these anatomic studies. There are only a few reports about perfusion SPECT imaging in patients with OPCA. The aim of this study was to describe voxel-based rCBF of OPCA in comparison of healthy volunteers. We studied 5 patients with OPCA (1 men, 4 women: age 50.4±9.6y) and age matched 13 healthy volunteers (4 men, 9 women: age 54.9±6.6y). All subjects injected 20mCi of Tc-99m HMPAO and scanning was initiated 20 min after injection. Images were analyzed using SPM (SPM99) with Matlab 5.3. On visual analysis, in 3 patients with OPCA, SPECT image showed significant hypoperfusion in the cerebellum. In another 2 patients, diffuse hypoperfusion was found in the both cerebro-cerebellar hemispheres, untypical perfusion pattern in OPCA. So there is existed limitation to diagnosis by only visual analysis. On SPM analysis, in OPCA patients significantly decreased perfusion was present in culmen, tonsil, tuber in Lt. cerebellum and declive, tonsil, pyramid and inf. Semi-lunar lobule in Rt. cerebellum, Rt. inf. frontal gyrus and Rt. temporal lobe (p<0.001, uncorrected). We also performed individual analysis with SPM. Two of 5 patients have additional hypoperfusion brain lesions. In one patient, decreased perfusion found in Lt. temporal, both occipital lobe, Lt. parahippocampal gyrus. In another patient, decreased perfusion found in both frontal and parietal lobe. This study is one of a few trials analysis with SPM for OPCA. We defined the specific location of decreased perfusion in patients with OPCA

  16. Brain volume measurement using three-dimensional magnetic resonance images

    International Nuclear Information System (INIS)

    Ishimaru, Yoshihiro

    1996-01-01

    This study was designed to validate accurate measurement method of human brain volume using three dimensional (3D) MRI data on a workstation, and to establish optimal correcting method of human brain volume on diagnosis of brain atrophy. 3D MRI data were acquired by fast SPGR sequence using 1.5 T MR imager. 3D MRI data were segmented by region growing method and 3D image was displayed by surface rendering method on the workstation. Brain volume was measured by the volume measurement function of the workstation. In order to validate the accurate measurement method, phantoms and a specimen of human brain were examined. Phantom volume was measured by changing the lower level of threshold value. At the appropriate threshold value, percentage of error of phantoms and the specimen were within 0.6% and 0.08%, respectively. To establish the optimal correcting method, 130 normal volunteers were examined. Brain volumes corrected with height weight, body surface area, and alternative skull volume were evaluated. Brain volume index, which is defined as dividing brain volume by alternative skull volume, had the best correlation with age (r=0.624, p<0.05). No gender differences was observed in brain volume index in contrast to in brain volume. The clinical usefulness of this correcting method for brain atrophy diagnosis was evaluated in 85 patients. Diagnosis by 2D spin echo MR images was compared with brain volume index. Diagnosis of brain atrophy by 2D MR image was concordant with the evaluation by brain volume index. These results indicated that this measurement method had high accuracy, and it was important to set the appropriate threshold value. Brain volume index was the appropriate indication for evaluation of human brain volume, and was considered to be useful for the diagnosis of brain atrophy. (author)

  17. Fronto-striatal atrophy correlates of neuropsychiatric dysfunction in frontotemporal dementia (FTD and Alzheimer's disease (AD

    Directory of Open Access Journals (Sweden)

    Dong Seok Yi

    Full Text Available ABSTRACT Behavioural disturbances in frontotemporal dementia (FTD are thought to reflect mainly atrophy of cortical regions. Recent studies suggest that subcortical brain regions, in particular the striatum, are also significantly affected and this pathology might play a role in the generation of behavioural symptoms. Objective: To investigate prefrontal cortical and striatal atrophy contributions to behavioural symptoms in FTD. Methods: One hundred and eighty-two participants (87 FTD patients, 39 AD patients and 56 controls were included. Behavioural profiles were established using the Cambridge Behavioural Inventory Revised (CBI-R and Frontal System Behaviour Scale (FrSBe. Atrophy in prefrontal (VMPFC, DLPFC and striatal (caudate, putamen regions was established via a 5-point visual rating scale of the MRI scans. Behavioural scores were correlated with atrophy rating scores. Results: Behavioural and atrophy ratings demonstrated that patients were significantly impaired compared to controls, with bvFTD being most severely affected. Behavioural-anatomical correlations revealed that VMPFC atrophy was closely related to abnormal behaviour and motivation disturbances. Stereotypical behaviours were associated with both VMPFC and striatal atrophy. By contrast, disturbance of eating was found to be related to striatal atrophy only. Conclusion: Frontal and striatal atrophy contributed to the behavioural disturbances seen in FTD, with some behaviours related to frontal, striatal or combined fronto-striatal pathology. Consideration of striatal contributions to the generation of behavioural disturbances should be taken into account when assessing patients with potential FTD.

  18. Oligoclonal bands in the cerebrospinal fluid and increased brain atrophy in early stages of relapsing-remitting multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Rojas

    2012-08-01

    Full Text Available OBJECTIVE: To determine if the presence of oligoclonal bands (OB at early stages of multiple sclerosis was associated with higher brain atrophy, when compared with patients without OB. METHODS: Relapsing-remitting multiple sclerosis (RRMS patients with less than two years of disease onset and OB detection in cerebrospinal fluid (CSF were included. SIENAX was used for total brain volume (TBV, gray matter volume (GMV, and white matter volume (WMV. RESULTS: Forty patients were included, 29 had positive IgG-OB. No differences were found between positive and negative patients in gender, expanded disability status scale (EDSS, treatment received, and T2/T1 lesion load. TBV in positive IgG-OB patients was 1.5 mm³ x 10(6 compared with 1.64 mm³ x 10(6 in the negative ones (p=0.02. GMV was 0.51 mm³ x 10(6 in positive IgG-OB compared with 0.62 mm³ x 10(6 in negative ones (p=0.002. No differences in WMV (p=0.09 were seen. CONCLUSIONS: IgG-OB in the CSF was related to neurodegeneration magnetic resonance (MR markers in early RRMS.

  19. Computed tomographic myelography characteristics of spinal cord atrophy in juvenile muscular atrophy of the upper extremity

    International Nuclear Information System (INIS)

    Hirabuki, Norio; Mitomo, Masanori; Miura, Takashi; Hashimoto, Tsutomu; Kawai, Ryuji; Kozuka, Takahiro

    1991-01-01

    Although atrophy of the lower cervical and upper thoracic cord in juvenile muscular atrophy of distal upper extremity has been reported, the atrophic patterns of the cord, especially in the transverse section, have not been studied extensively. The aim of this study is to clarify the atrophic patterns of the cord by CT myelography (CTM) and to discuss the pathogenesis of cord atrophy. Sixteen patients with juvenile muscular atrophy of distal upper extremity were examined by CTM. Atrophy of the lower cervical and upper thoracic cord, consistent with the segmental weakness, was seen in all patients. Flattening of the ventral convexity was a characteristic atrophic pattern of the cord. Bilateral cord atrophy was commonly observed; 8/12 patients with unilateral clinical form and all 4 patients with bilateral form showed bilateral cord atrophy with dominance on the clinical side. There was no correlation between the degree of cord atrophy and duration of symptoms. Flattening of the ventral convexity, associated with purely motor disturbances, reflects selective atrophy of the anterior horns in the cord, which is attributable to chronic ischemia. Cord atrophy proved to precede clinical manifestations. The characteristic atrophy of the cord provides useful information to confirm the diagnosis without long-term observation. (author). 21 refs.; 3 figs.; 2 tabs

  20. Quantitative evaluation of pontine atrophy using computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chida, K.; Kamikura, I.; Takasu, T.; Goto, N.

    1989-03-01

    Pontine volume was measured and evaluated by computer tomography (CT) in 37 healthy adults and in 29 adult autopsied brains who did not have chronic neurologic diseases. The pons was cut serially into 5 mm slices in the autopsied brains. In the CT examinations both 5 mm and 2 mm slices were studied. Pontine areas in horizontal planes were measured using an image analyzer, then pontine volume was calculated by accumulation of the mean value of the areas and cranio-caudal length. Pontine volume was approximately 19 cm/sup 3/ and pontine atrophy could be defined as less than 12 cm/sup 3/ (i.e. the mean - 2 SD) in both methods, which heretofore have not been reported.

  1. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    International Nuclear Information System (INIS)

    Devinsky, O.; Sato, S.; Conwit, R.A.; Schapiro, M.B.

    1990-01-01

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS

  2. Long-term global and regional brain volume changes following severe traumatic brain injury: A longitudinal study with clinical correlates

    DEFF Research Database (Denmark)

    Sidaros, Annette; Skimminge, Arnold Jesper Møller; Liptrot, Matthew George

    2009-01-01

    with percent brain volume change (%BVC) ranging between − 0.6% and − 9.4% (mean − 4.0%). %BVC correlated significantly with injury severity, functional status at both scans, and with 1-year outcome. Moreover, %BVC improved prediction of long-term functional status over and above what could be predicted using......Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D...... scan time point using SIENAX. Regional distribution of atrophy was evaluated using tensor-based morphometry (TBM). At the first scan time point, brain parenchymal volume was reduced by mean 8.4% in patients as compared to controls. During the scan interval, patients exhibited continued atrophy...

  3. The aging brain and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Braffman, B.H.; Trojanowski, J.Q.; Atlas, S.W.

    1991-01-01

    Both the aging brain and neurodegenerative disorders are characterized by a lack of vital endurance of affected neurons resulting in their premature death. Neuronal shrinkage or atrophy and death are normal and inevitable aspects of normal or successful aging; this is unexpected, excessive, and premature in neurodegenerative disorders. These histologic changes result in the neuroimaging findings of focal and/or diffuse atrophy with consequent enlargement of cerebrospinal fluid (CSF) spaces. The aging brain and neurodegenerative disorders share other magnetic resonance (MR) changes, i.e., markedly hypointense extrapyramidal nuclei and hyperintense white matter foci. The sequelae of senescent vascular changes result in additional characteristic features of the aging brain. This paper presents the MR and neuropathologic manifestations of both the normal aging brain and the brain affected by neurodegenerative disorders

  4. Computed tomography brain changes in Parkinsonian dementia

    International Nuclear Information System (INIS)

    Inzelberg, R.; Teeves, T.; Reider, I.; Gerlenter, I.; Korczyn, A.D.; Tel Aviv Univ.

    1987-01-01

    In order to evaluate the relationship between brain atrophy and the motor and cognitive function in Parkinson's disease, we have evaluated CT changes in 132 consecutive patients and compared them to measures of physical and mental decline, using intercorrelations and variance analysis. The result demonstrated age as a most important factor relating to brain atrophy. After correction for this determinant, it became clear that the motor and cognitive parameters were interdependent but they affected similar CT parameters. The effect of motor decline was the stronger of the two and it was the only one which correlated with cortical atrophy. The results support the notion of subcortical changes underlying the dementia of Parkinson's disease. (orig.)

  5. Computed tomography brain changes in Parkinsonian dementia

    Energy Technology Data Exchange (ETDEWEB)

    Inzelberg, R; Teeves, T; Reider, I; Gerlenter, I; Korczyn, A D

    1987-11-01

    In order to evaluate the relationship between brain atrophy and the motor and cognitive function in Parkinson's disease, we have evaluated CT changes in 132 consecutive patients and compared them to measures of physical and mental decline, using intercorrelations and variance analysis. The result demonstrated age as a most important factor relating to brain atrophy. After correction for this determinant, it became clear that the motor and cognitive parameters were interdependent but they affected similar CT parameters. The effect of motor decline was the stronger of the two and it was the only one which correlated with cortical atrophy. The results support the notion of subcortical changes underlying the dementia of Parkinson's disease.

  6. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  7. Electromyographic and computed tomographic findings in five patients with monomelic spinal muscular atrophy

    NARCIS (Netherlands)

    de Visser, M.; Ongerboer de Visser, B. W.; Verbeeten, B.

    1988-01-01

    Five patients with monomelic spinal muscular atrophy are described. Clinical features included insidious onset of wasting and weakness of one limb, lack of involvement of the cranial nerves, brain stem, pyramidal tracts and sensory system, and a stable condition over a period of 4-20 years. Clinical

  8. Childhood optic atrophy.

    Science.gov (United States)

    Mudgil, A V; Repka, M X

    2000-02-01

    To determine the causes, and relative incidence of the common causes, of optic nerve atrophy in children under 10 years old and to compare prevalent aetiologies with those given in previous studies. The Wilmer Information System database was searched to identify all children, diagnosed between 1987 and 1997 with optic atrophy, who were under 10 years old at diagnosis. The medical records of these children were reviewed retrospectively A total of 272 children were identified, Complications from premature birth were the most frequent aetiology of optic atrophy (n = 44, 16%); 68% of these premature infants having a history of intraventricular haemorrhage. Tumour was the second most common aetiology (n = 40, 15%). The most frequent tumour was pilocytic astrocytoma (50%), followed by craniopharyngioma (17%). Hydrocephalus, unrelated to tumour, was the third most common aetiology (n = 26, 10%). In 114 cases (42%), the cause of optic atrophy became manifest in the perinatal period and/or could be attributed to adverse events in utero. A cause was not determined in 4% of cases. In the last decade, prematurity and hydrocephalus appear to have become important causes of optic atrophy in childhood. This trend is probably the result of improved survival of infants with extremely low birth weight.

  9. [Evaluation of diffuse cerebral atrophy in patients with a history of traumatic brain injury and its relation to cognitive deterioration].

    Science.gov (United States)

    Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M

    Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.

  10. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.

    Science.gov (United States)

    Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R

    2017-05-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  11. Voxel-based morphometry in the parkinson variant of multiple system atrophy

    International Nuclear Information System (INIS)

    Zhao Yanping; Wang Han; Li Zhou; Feng Feng

    2010-01-01

    Objective: To assess patterns of the gray and white matter atrophy in patients with multiple system atrophy-P (MSA-P) variant of whole brain compared with normal controls. Methods: Three dimensional fast spoiled gradient echo (3D-FSPGR) T 1 WI of whole brain were obtained from 13 patients with probable MSA-P and 14 age-matched normal controls. The volume of gray matter (GM) and white matter (WM) of MSA-P patients and normal controls was analyzed with voxel-based morphometry (VBM) using statistical parametric mapping (SPM) 8. Results: Compared with the controls, the MSA-P patients showed decreased gray matter and white matter in broad areas. Gray matter loss mainly symmetrically distributed in bilateral supplementary motor area (SMA), dorsal posterior cingulate cortex (DPCC), medial frontal gyrus, superior temporal gyrus, cerebellum cortex, eta Unilateral involvement of cortices mainly located in right primary motor cortex, somatosensory association cortex (SAC), and left ventral anterior cingulate cortex (VACC). There was white matter loss in bilateral superior frontal gyrus, bilateral precuneus, bilateral sub-gyrus of frontal lobe, left superior temporal gyrus, left cingulate gyrus, right orbitofrontal area, right sub- gyrus of temporal lobe, etc. Conclusion: VBM method is an automatic and comprehensive volumetry method and can objectively detect the difference of the whole brain structure in patients with probable MSA- P comparing with normal controls. (authors)

  12. Computed tomography in alcoholic cerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Haubek, A; Lee, K [Hvidovre Hospital Copenhagen (Denmark). Dept. of Radiology; Municipal Hospital, Copenhagen (Denmark). Dept. of Neurology)

    1979-01-01

    This is a controlled CT evaluation of the infratentorial region in 41 male alcoholics under age 35. Criteria for the presence of atrophy are outlined. Twelve patients had cerebellar atrophy. Vermian atrophy was present in all. Atrophy of the cerebellar hemispheres was demonstrated in eight patients as well. The results are statistically significant when compared to an age-matched group of 40 non-alcoholic males among whom two cases of vermian atrophy were found. There were clinical signs of alcoholic cerebellar atrophy in one patient only. The disparity between the clinical and the radiological data are discussed with reference to previous pneumoencephalographic findings. (orig.) 891 AJ/orig. 892 MKO.

  13. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy

    Science.gov (United States)

    Caciagli, Lorenzo; Bernasconi, Andrea; Wiebe, Samuel; Koepp, Matthias J.; Bernasconi, Neda

    2017-01-01

    Objective: It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. Methods: We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. Results: We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = −0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] −0.51 to −0.32; p 80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. Conclusions: While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression. PMID:28687722

  14. Brain damage in former association football players

    International Nuclear Information System (INIS)

    Sortland, O.; Tysvaer, A.T.

    1989-01-01

    Thirty-three former football players from the National Football Team of Norway were examined by cerebral computer tomography (CT). The CT studies, evaluated for brain atrophy, visually and by linear measurements compared two different normal materials. One third of the players were found to have central cerebral atrophy. It is concluded that the atrophy probably was caused by repeated small head injuries during the football play, mainly in connection with heading the ball. (orig.)

  15. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

    International Nuclear Information System (INIS)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew; Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M.; Churilov, Leonid; Donnan, Geoffrey A.; Parsons, Mark W.

    2016-01-01

    Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke. Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months. Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman's rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman's rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method. MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies. (orig.)

  16. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [Melbourne Brain Centre rate at The Royal Melbourne Hospital, Departments of Medicine and Neurology, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid; Donnan, Geoffrey A. [The University of Melbourne, Florey Institute of Neuroscience and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

    2016-01-15

    Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke. Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months. Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman's rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman's rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method. MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies. (orig.)

  17. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3.

    Science.gov (United States)

    Sadda, Srinivas R; Guymer, Robyn; Holz, Frank G; Schmitz-Valckenberg, Steffen; Curcio, Christine A; Bird, Alan C; Blodi, Barbara A; Bottoni, Ferdinando; Chakravarthy, Usha; Chew, Emily Y; Csaky, Karl; Danis, Ronald P; Fleckenstein, Monika; Freund, K Bailey; Grunwald, Juan; Hoyng, Carel B; Jaffe, Glenn J; Liakopoulos, Sandra; Monés, Jordi M; Pauleikhoff, Daniel; Rosenfeld, Philip J; Sarraf, David; Spaide, Richard F; Tadayoni, Ramin; Tufail, Adnan; Wolf, Sebastian; Staurenghi, Giovanni

    2018-04-01

    To develop consensus terminology and criteria for defining atrophy based on OCT findings in the setting of age-related macular degeneration (AMD). Consensus meeting. Panel of retina specialists, image reading center experts, retinal histologists, and optics engineers. As part of the Classification of Atrophy Meetings (CAM) program, an international group of experts surveyed the existing literature, performed a masked analysis of longitudinal multimodal imaging for a series of eyes with AMD, and reviewed the results of this analysis to define areas of agreement and disagreement. Through consensus discussions at 3 meetings over 12 months, a classification system based on OCT was proposed for atrophy secondary to AMD. Specific criteria were defined to establish the presence of atrophy. A consensus classification system for atrophy and OCT-based criteria to identify atrophy. OCT was proposed as the reference standard or base imaging method to diagnose and stage atrophy. Other methods, including fundus autofluorescence, near-infrared reflectance, and color imaging, provided complementary and confirmatory information. Recognizing that photoreceptor atrophy can occur without retinal pigment epithelium (RPE) atrophy and that atrophy can undergo an evolution of different stages, 4 terms and histologic candidates were proposed: complete RPE and outer retinal atrophy (cRORA), incomplete RPE and outer retinal atrophy, complete outer retinal atrophy, and incomplete outer retinal atrophy. Specific OCT criteria to diagnose cRORA were proposed: (1) a region of hypertransmission of at least 250 μm in diameter, (2) a zone of attenuation or disruption of the RPE of at least 250 μm in diameter, (3) evidence of overlying photoreceptor degeneration, and (4) absence of scrolled RPE or other signs of an RPE tear. A classification system and criteria for OCT-defined atrophy in the setting of AMD has been proposed based on an international consensus. This classification is a more complete

  18. Subcortical hyperintensity volumetrics in Alzheimer's disease and normal elderly in the Sunnybrook Dementia Study: correlations with atrophy, executive function, mental processing speed, and verbal memory.

    Science.gov (United States)

    Ramirez, Joel; McNeely, Alicia A; Scott, Christopher Jm; Stuss, Donald T; Black, Sandra E

    2014-01-01

    Subcortical hyperintensities (SHs) are radiological entities commonly observed on magnetic resonance imaging (MRI) of patients with Alzheimer's disease (AD) and normal elderly controls. Although the presence of SH is believed to indicate some form of subcortical vasculopathy, pathological heterogeneity, methodological differences, and the contribution of brain atrophy associated with AD pathology have yielded inconsistent results in the literature. Using the Lesion Explorer (LE) MRI processing pipeline for SH quantification and brain atrophy, this study examined SH volumes of interest and cognitive function in a sample of patients with AD (n = 265) and normal elderly controls (n = 100) from the Sunnybrook Dementia Study. Compared with healthy controls, patients with AD were found to have less gray matter, less white matter, and more sulcal and ventricular cerebrospinal fluid (all significant, P deep white SH (dwSH) (P processing speed (P memory (P <0.01) in patients with AD. These brain-behavior relationships and correlations with brain atrophy suggest that subtle, yet measurable, signs of small vessel disease may have potential clinical relevance as targets for treatment in Alzheimer's dementia.

  19. Muscular atrophy in diabetic neuropathy

    DEFF Research Database (Denmark)

    Andersen, H; Gadeberg, P C; Brock, B

    1997-01-01

    Diabetic patients with polyneuropathy develop motor dysfunction. To establish whether motor dysfunction is associated with muscular atrophy the ankle dorsal and plantar flexors of the non-dominant leg were evaluated with magnetic resonance imaging in 8 patients with symptomatic neuropathy, in 8 non...... confirmed that the atrophy predominated distally. We conclude that muscular atrophy underlies motor weakness at the ankle in diabetic patients with polyneuropathy and that the atrophy is most pronounced in distal muscles of the lower leg indicating that a length dependent neuropathic process explains...

  20. Preliminary evidence for obesity and elevations in fasting insulin mediating associations between cortisol awakening response and hippocampal volumes and frontal atrophy.

    Science.gov (United States)

    Ursache, Alexandra; Wedin, William; Tirsi, Aziz; Convit, Antonio

    2012-08-01

    Recent studies have demonstrated alterations in the cortisol awakening response (CAR) and brain abnormalities in adults with obesity and type 2 diabetes mellitus (T2DM). While adolescents with T2DM exhibit similar brain abnormalities, less is known about whether brain impairments and hypothalamic-pituitary-adrenal (HPA) axis abnormalities are already present in adolescents with pre-diabetic conditions such as insulin resistance (IR). This study included 33 adolescents with IR and 20 without IR. Adolescents with IR had a blunted CAR, smaller hippocampal volumes, and greater frontal lobe atrophy compared to controls. Mediation analyses indicated pathways whereby a smaller CAR was associated with higher BMI which was in turn associated with fasting insulin levels, which in turn was related to smaller hippocampal volume and greater frontal lobe atrophy. While we had hypothesized that HPA dysregulation may result from brain abnormalities, our findings suggest that HPA dysregulation may also impact brain structures through associations with metabolic abnormalities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Short-term mechanisms influencing volumetric brain dynamics

    NARCIS (Netherlands)

    Dieleman, Nikki; Koek, Huiberdina L.; Hendrikse, Jeroen

    2017-01-01

    With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist.

  2. Evolution of Cerebral Atrophy in a Patient with Super Refractory Status Epilepticus Treated with Barbiturate Coma

    Directory of Open Access Journals (Sweden)

    Christopher R. Newey

    2017-01-01

    Full Text Available Introduction. Status epilepticus is associated with neuronal breakdown. Radiological sequelae of status epilepticus include diffusion weighted abnormalities and T2/FLAIR cortical hyperintensities corresponding to the epileptogenic cortex. However, progressive generalized cerebral atrophy from status epilepticus is underrecognized and may be related to neuronal death. We present here a case of diffuse cerebral atrophy that developed during the course of super refractory status epilepticus management despite prolonged barbiturate coma. Methods. Case report and review of the literature. Case. A 19-year-old male with a prior history of epilepsy presented with focal clonic seizures. His seizures were refractory to multiple anticonvulsants and eventually required pentobarbital coma for 62 days and midazolam coma for 33 days. Serial brain magnetic resonance imaging (MRI showed development of cerebral atrophy at 31 days after admission to our facility and progression of the atrophy at 136 days after admission. Conclusion. This case highlights the development and progression of generalized cerebral atrophy in super refractory status epilepticus. The cerebral atrophy was noticeable at 31 days after admission at our facility which emphasizes the urgency of definitive treatment in patients who present with super refractory status epilepticus. Further research into direct effects of therapeutic coma is warranted.

  3. Progressive contralateral hippocampal atrophy following surgery for medically refractory temporal lobe epilepsy.

    Science.gov (United States)

    Elliott, Cameron A; Gross, Donald W; Wheatley, B Matt; Beaulieu, Christian; Sankar, Tejas

    2016-09-01

    Determine the extent and time course of volumetric changes in the contralateral hippocampus following surgery for medically refractory temporal lobe epilepsy (TLE). Serial T1-weighted MRI brain scans were obtained in 26 TLE patients pre- and post-temporal lobe epilepsy surgery as well as in 12 control subjects of similar age. Patients underwent either anterior temporal lobectomy (ATL) or selective amygdalohippocampectomy (SAH). Blinded, manual hippocampal volumetry (head, body, and tail) was performed in two groups: 1) two scan group [ATL (n=6); SAH (n=10)], imaged pre-surgery and on average at 5.4 years post-surgery; and 2) longitudinal group [ATL (n=8); SAH (n=2)] imaged pre-surgery and on post-operative day 1, 2, 3, 6, 60, 120 and a delayed time point (average 2.4 years). In the two scan group, there was atrophy by 12% of the unresected contralateral hippocampus (p<0.001), with atrophy being most pronounced (27%) in the hippocampal body (p<0.001) with no significant differences seen for the hippocampal head or tail. In the longitudinal group, significant atrophy was also observed for the whole hippocampus and the body with atrophy seen as early as post-operative day #1 which progressed significantly over the first post-operative week (1.3%/day and 3.0%./day, respectively) before stabilizing over the long-term to a 13% reduction in total volume. There was no significant difference in atrophy compared by surgical approach (ATL vs. SAH; p=0.94) or side (p=0.31); however, atrophy was significantly more pronounced in patients with ongoing post-operative seizures (hippocampal body, p=0.019; whole hippocampus, p=0.048). There were no detectable post-operative neuropsychological deficits attributable to contralateral hippocampal atrophy. Significant contralateral hippocampal atrophy occurs following TLE surgery, which begins immediately and progresses over the first post-operative week. The observation that seizure free patients had significantly less atrophy of the

  4. Study of the brain glucose metabolism in different stage of mixed-type multiple system atrophy

    International Nuclear Information System (INIS)

    Wang Ying; Zhang Benshu; Cai Li; Zhang Meiyun; Gao Shuo

    2014-01-01

    Objective: To investigate the brain glucose metabolism in different stage of mixed-type multiple system atrophy (MSA). Methods: Forty-six MSA patients with cerebellar or Parkinsonian symptoms and 18 healthy controls with similar age as patients were included. According to the disease duration,the patients were divided into three groups: group 1 (≤ 12 months, n=14), group 2 (13-24 months, n=13), group 3 (≥ 25 months, n=19). All patients and controls underwent 18 F-FDG PET/CT brain imaging. To compare metabolic distributions between different groups, SPM 8 software and two-sample t test were used for image data analysis. When P<0.005, the result was considered statistically significant. Results: At the level of P<0.005, the hypometabolism in group 1 (all t>3.49) was identified in the frontal lobe, lateral temporal lobe, insula lobe, anterior cingulate cortex, caudate nucleus and anterior cerebellar hemisphere. The regions of hypometabolism extended to posterolateral putamen and part of posterior cerebellar hemisphere in group 2 (all t>3.21). In group 3, the whole parts of putamen and cerebellar hemisphere were involved as hypometabolism (all t>4.08). In addition to the hypometabolism regions, there were also stabled hypermetabolism regions mainly in the parietal lobe, medial temporal lobe and the thalamus in all patient groups (all t>3.27 in group 1, all t>3.02 in group 2,all t>3.30 in group 3). Conclusions: Disease duration is closely related to the FDG metabolism in the MSA patients. Frontal lobe, lateral temporal lobe, anterior cingulate cortex and caudate nucleus can be involved at early stage of the disease. Putaminal hypometabolism begins in its posterolateral part. Cerebellar hypometabolism occurs early at its anterior part. Besides, thalamus shows hypermetabolism in the whole duration. 18 F-FDG metabolic changes of brain can reflect the development of mixed-type MSA. (authors)

  5. Computed tomographic (CT) study of the brains of 357 elderly demented patients

    International Nuclear Information System (INIS)

    Kono, Kazuhiko; Endo, Hidetoshi; Yamamoto, Takayuki; Kuzuya, Fumio

    1988-01-01

    It is well known that there is some limitation in the diagnostic effectiveness of brain computed tomography (CT) of dementia. Some investigators suggested certain correlation between brain atrophy and degree of psychological imparement in demented patients, but others did not agree with these suggestions. Authors have felt that the number of samples is very important in statistical analyses, thus they collected a great number of appropriate samples of dementia: that is, 59 of Alzheimer disease (AD), 120 of senile dementia of Alzheimer type (SDAT) and 178 of vascular dementia (VD), and compared these CT findings with those of 100 non-demented people. Firstly, we observed no relation between aging and brain atrophy in any type of dementia while there was a certain relation in non-demented people. Secondly, the female brain could easily become atrophic physiologically and was more severely atrophic in case of dementia compared with the male brain. Thirdly, it was impossible to differentiate SDAT from VD only by measuring values of dilatation of ventricles (maximum width of the third ventricle and cella media index) and sylvian fissures (''sylvian index''). Finally, it was observed that there was deep relation between the results of clinical assessments and the degree of brain atrophy in SDAT, because individual specificity in the type of atrophy was not variable in this type of dementia. Moreover all functions: that is, motor, intellectual, and emotional functions in SDAT patients, were impaired in the same degree respectively. From these results, authors could know many available characteristics of atrophy in the brains of demented patients through the following easy methods of measurement: linear measure method and ventricular-brain method, because we could analyse a sufficient number of samples. (author)

  6. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Duan Yunyun; Liu Yaou; Liang Peipeng; Jia Xiuqin; Yu Chunshui; Qin Wen; Sun Hui; Liao Zhangyuan; Ye Jing; Li Kuncheng

    2012-01-01

    Purpose: Previous studies have established regional grey matter (GM) loss in multiple sclerosis (MS). However, whether there is any regional GM atrophy in neuromyelitis optica (NMO) and the difference between NMO and MS is unclear. The present study addresses this issue by voxel-based morphometry (VBM). Methods: Conventional magnetic resonance imaging (MRI) and T1-weighted three-dimensional MRI were obtained from 26 NMO patients, 26 relapsing–remitting MS (RRMS) patients, and 26 normal controls. An analysis of covariance model assessed with cluster size inference was used to compare GM volume among three groups. The correlations of GM volume changes with disease duration, expanded disability status scale (EDSS) and brain T2 lesion volume (LV) were analyzed. Results: GM atrophy was found in NMO patients in several regions of frontal, temporal, parietal lobes and insula (uncorrected, p < 0.001). While extensive GM atrophy was found in RRMS patients, including most cortical regions and the deep grey matter (corrected for multiple comparisons, p < 0.01). Compared with NMO, those with RRMS had significant GM loss in bilateral thalami, caudate, left parahippocampal gyrus, right hippocampus and insula (corrected, p < 0.01). In RRMS group, regional GM loss in right caudate and bilateral thalami were strongly correlated with brain T2LV. Conclusions: Our study found the difference of GM atrophy between NMO and RRMS patients mainly in deep grey matter. The correlational results suggested axonal degeneration from lesions on T2WI may be a key pathogenesis of atrophy in deep grey matter in RRMS.

  7. Diabetes mellitus and optic atrophy in two siblings: a report on a new association and a review of the literature.

    Science.gov (United States)

    Khardori, R; Stephens, J W; Page, O C; Dow, R S

    1983-01-01

    Two siblings with diabetes mellitus and optic atrophy (Wolfram syndrome) are described. As often noted, they also had atonic urinary bladders. Only one of the siblings had some impairment of hearing. Other findings not previously reported that appeared in each subject were esophageal dysphagia and vertigo. An autopsy in one revealed brain stem hypoplasia and thinning and flattening of the optic nerves with atrophy of the lateral geniculate bodies.

  8. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    International Nuclear Information System (INIS)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S.

    1998-01-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.)

  9. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  10. Dominant optic atrophy

    Directory of Open Access Journals (Sweden)

    Lenaers Guy

    2012-07-01

    Full Text Available Abstract Definition of the disease Dominant Optic Atrophy (DOA is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3 encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8 are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7 are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of

  11. Cerebral atrophy as outcome measure in short-term phase 2 clinical trials in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Elskamp, I.J. van den; Boden, B.; Barkhof, F. [VU University Medical Center, Department of Radiology, MS Center Amsterdam, Amsterdam (Netherlands); Dattola, V. [VU University Medical Center, Department of Radiology, MS Center Amsterdam, Amsterdam (Netherlands); University of Messina, Department of Neurosciences, Psychiatric and Anaesthesiological Sciences, Messina (Italy); Knol, D.L. [VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); Filippi, M. [Scientific Institute and University Ospedale San Raffaele, Neuroimaging Research Unit, Milan (Italy); Kappos, L. [University Hospital, University of Basel, Department of Neurology, Basel (Switzerland); Fazekas, F. [Medical University of Graz, Department of Neurology, Graz (Austria); Wagner, K. [Bayer-Schering Pharma, Berlin (Germany); Pohl, C. [Bayer-Schering Pharma, Berlin (Germany); University Hospital Bonn, Department of Neurology, Bonn (Germany); Sandbrink, R. [Bayer-Schering Pharma, Berlin (Germany); Heinrich-Heine-University Dusseldorf, Department of Neurology, Dusseldorf (Germany); Polman, C.H. [VU University Medical Center, Department of Neurology, MS Center Amsterdam, Amsterdam (Netherlands); Uitdehaag, B.M.J. [VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); VU University Medical Center, Department of Neurology, MS Center Amsterdam, Amsterdam (Netherlands)

    2010-10-15

    Cerebral atrophy is a compound measure of the neurodegenerative component of multiple sclerosis (MS) and a conceivable outcome measure for clinical trials monitoring the effect of neuroprotective agents. In this study, we evaluate the rate of cerebral atrophy in a 6-month period, investigate the predictive and explanatory value of other magnetic resonance imaging (MRI) measures in relation to cerebral atrophy, and determine sample sizes for future short-term clinical trials using cerebral atrophy as primary outcome measure. One hundred thirty-five relapsing-remitting multiple sclerosis patients underwent six monthly MRI scans from which the percentage brain volume change (PBVC) and the number and volume of gadolinium (Gd)-enhancing lesions, T2 lesions, and persistent black holes (PBH) were determined. By means of multiple linear regression analysis, the relationship between focal MRI variables and PBVC was assessed. Sample size calculations were performed for all patients and subgroups selected for enhancement or a high T2 lesion load at baseline. A significant atrophy occurred over 6 months (PBVC = -0.33%, SE = 0.061, p < 0.0001). The number of baseline T2 lesions (p = 0.024), the on-study Gd-enhancing lesion volume (p = 0.044), and the number of on-study PBHs (p = 0.003) were associated with an increased rate of atrophy. For a 50% decrease in rate of atrophy, the sample size calculations showed that approximately 283 patients per arm are required in an unselected sampled population and 185 patients per arm are required in a selected population. Within a 6-month period, significant atrophy can be detected and on-study associations of PBVC and PBHs emphasizes axonal loss to be a driving mechanism. Application as primary outcome measure in short-term clinical trials with feasible sample size requires a potent drug to obtain sufficient power. (orig.)

  12. The assessment of changes in brain volume using combined linear measurements

    International Nuclear Information System (INIS)

    Gomori, J.M.; Steiner, I.; Melamed, E.; Cooper, G.

    1984-01-01

    All linear measurements employed for evaluation of brain atrophy, were performed on 148 computed tomograms of patients aged 28 to 84 without evidence of any nervous system disorder. These included size of lateral, third and fourth ventricles, width of the Sylvian and frontal interhemispheric fissures and cortical sulci and size of the pre-pontine cistern. Various parameters indicated decrease in brain mass with age. Since the atrophic process is a diffuse phenomenon, integration of several measurements evaluating separate brain regions was made. The bicaudate ratio and the Sylvian fissure ratio (representing both central and cortical atrophy) were combined arithmetically, resulting in a correlation of 0.6390 with age (p<0.0005). With a computed canonical correlation analysis: a formula was obtained which combined measurements of the lateral and third ventricles, the Sylvian fissure and the pre-pontine cistern. This formula yealded a correlation of 0.67795 (p<0.0005). These linear measurements will enable simple and reliable assessment of reduction in brain volume during the normal aging process and in disorders accompanied by brain atrophy. (orig.)

  13. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS.

    Science.gov (United States)

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. • Spinal cord atrophy progression was observed in NMO. • Spinal cord atrophy changes were associated with disability progression in NMO. • Brain lesion and atrophy were related to disability progression in MS.

  14. Utility of coronal contrast-enhanced fat-suppressed FLAIR in the evaluation of optic neuropathy and atrophy

    Directory of Open Access Journals (Sweden)

    Kevin H. Boegel

    Full Text Available Background and purpose: Evaluating chronic sequelae of optic neuritis, such as optic neuropathy with or without optic nerve atrophy, can be challenging on whole brain MRI. This study evaluated the utility of dedicated coronal contrast-enhanced fat-suppressed FLAIR (CE-FS-FLAIR MR imaging to detect optic neuropathy and optic nerve atrophy. Materials and methods: Over 4.5 years, a 3 mm coronal CE-FS-FLAIR sequence at 1.5T was added to the routine brain MRIs of 124 consecutive patients, 102 of whom had suspected or known demyelinating disease. Retrospective record reviews confirmed that 28 of these 102 had documented onset of optic neuritis >4 weeks prior to the brain MRI. These 28 were compared to the other 22 (“controls” of the 124 patients who lacked a history of demyelinating disease or visual symptoms. Using coronal CE-FS-FLAIR, two neuroradiologists separately graded each optic nerve (n = 50 patients, 100 total nerves as either negative, equivocal, or positive for optic neuropathy or atrophy. The scoring was later repeated. Results: The mean time from acute optic neuritis onset to MRI was 4.1 ± 4.6 years (range 34 days-17.4 years. Per individual nerve grading, the range of sensitivity, specificity, and accuracy of coronal CE-FS-FLAIR in detecting optic neuropathy was 71.4–77.1%, 93.8–95.4%, and 85.5–89.0%, respectively, with strong interobserver (k = 0.667 − 0.678, p < 0.0001, and intraobserver (k = 0.706 − 0.763, p < 0.0001 agreement. For optic atrophy, interobserver agreement was moderate (k = 0.437 − 0.484, p < 0.0001, while intraobserver agreement was moderate-strong (k = 0.491 − 0.596, p < 0.0001. Conclusion: Coronal CE-FS-FLAIR is quite specific in detecting optic neuropathy years after the onset of acute optic neuritis, but is less useful in detecting optic nerve atrophy. Keywords: Optic

  15. Feasibility of the Medial Temporal lobe Atrophy index (MTAi and derived methods for measuring atrophy of the medial temporal lobe

    Directory of Open Access Journals (Sweden)

    Francisco eConejo Bayón

    2014-11-01

    Full Text Available Introduction: the Medial Temporal-lobe Atrophy index (MTAi, 2D-Medial Temporal Atrophy (2D-MTA, yearly rate of MTA (yrRMTA and yearly rate of relative MTA (yrRMTA are simple protocols for measuring the relative extent of atrophy in the MTL in relation to the global brain atrophy. Albeit preliminary studies showed interest of these methods in the diagnosis of AD, FTLD and correlation with cognitive impairment in PD, formal feasibility and validity studies remained pending. As a first step, we aimed to assess the feasibility. Mainly, we aimed to assess the reproducibility of measuring the areas needed to compute these indices. We also aimed to assess the efforts needed to start using these methods correctly. Methods: a series of 290 1.5T-MRI studies from 230 subjects ranging 65-85 years old who had been studied for cognitive impairment were used in this study. Six inexperienced tracers (IT plus one experienced tracer (ET traced the three areas needed to compute the indices. Finally, tracers underwent a short survey on their experience learning to compute the MTAi and experience of usage, including items relative to training time needed to understand and apply the MTAi, time to perform a study after training and overall satisfaction. Results: learning to trace the areas needed to compute the MTAi and derived methods is quick and easy. Results indicate very good intrarater ICC for the MTAi, good intrarater ICC for the 2D-MTA, yrMTA and yrRMTA and also good interrater ICC for the MTAi, 2D-MTA, yrMTA and yrRMTA.Conclusion: our data support that MTAi and derived methods (2D-MTA, yrMTA and yrRTMA have good to very good intrarater and interrater reproducibility and may be easily implemented in clinical practice even if new users have no experience tracing the area of regions of interest.

  16. Advancing functional dysconnectivity and atrophy in progressive supranuclear palsy

    Directory of Open Access Journals (Sweden)

    Jesse A. Brown

    2017-01-01

    Full Text Available Progressive supranuclear palsy syndrome (PSP-S results from neurodegeneration within a network of brainstem, subcortical, frontal and parietal cortical brain regions. It is unclear how network dysfunction progresses and relates to longitudinal atrophy and clinical decline. In this study, we evaluated patients with PSP-S (n = 12 and healthy control subjects (n = 20 at baseline and 6 months later. Subjects underwent structural MRI and task-free functional MRI (tf-fMRI scans and clinical evaluations at both time points. At baseline, voxel based morphometry (VBM revealed that patients with mild-to-moderate clinical symptoms showed structural atrophy in subcortex and brainstem, prefrontal cortex (PFC; supplementary motor area, paracingulate, dorsal and ventral medial PFC, and parietal cortex (precuneus. Tf-fMRI functional connectivity (FC was examined in a rostral midbrain tegmentum (rMT-anchored intrinsic connectivity network that is compromised in PSP-S. In healthy controls, this network contained a medial parietal module, a prefrontal-paralimbic module, and a subcortical-brainstem module. Baseline FC deficits in PSP-S were most severe in rMT network integrative hubs in the prefrontal-paralimbic and subcortical-brainstem modules. Longitudinally, patients with PSP-S had declining intermodular FC between the subcortical-brainstem and parietal modules, while progressive atrophy was observed in subcortical-brainstem regions (midbrain, pallidum and posterior frontal (perirolandic cortex. This suggested that later-stage subcortical-posterior cortical change may follow an earlier-stage subcortical-anterior cortical disease process. Clinically, patients with more severe baseline impairment showed greater subsequent prefrontal-parietal cortical FC declines and posterior frontal atrophy rates, while patients with more rapid longitudinal clinical decline showed coupled prefrontal-paralimbic FC decline. VBM and FC can augment disease monitoring in PSP

  17. Evaluation of hepatic atrophy after transcatheter arterial embolization

    International Nuclear Information System (INIS)

    Chung, Hwan Hoon; Lee, Mee Ran; Oh, Min Cheol; Park, Chul Min; Seol, Hae Young; Cha, In Ho

    1995-01-01

    Hepatic atrophy has been recognized as a complication of hepatic and biliary disease but we have often found it in follow up CT after transcatheter arterial embolization (TACE). The purpose of this study is to evaluate the characteristics of hepatic atrophy after TACE. Of 53 patients who had TACE. We evaluated the relationship between the incidence of hepatic atrophy and the number of TACE, and also evaluated the average number of TACE in patients with hepatic atrophy. Of 20 patients who had received more than average number of TACE for development of hepatic atrophy (2 times with portal vein obstruction, 2.7 times without portal vein obstruction in this study), we evaluated the relationship between the lipiodol uptake pattern of tumor and the incidence of hepatic atrophy. There were 8 cases of hepatic atrophy (3 with portal vein obstruction, 5 without portal vein obstruction), average number for development of hepatic atrophy were 2.5 times. As the number of TACE were increased, the incidence of hepatic atrophy were also increased. Of 20 patients who received more than average number of TACE for development of hepatic atrophy, we noted 6 cases of hepatic atrophy in 11 patients with dense homogenous lipiodol uptake pattern of tumor and noted only 1 case of hepatic atrophy in 9 patient with inhomogenous lipiodol uptake pattern. Hepatic atrophy was one of the CT findings after TACE even without portal vein obstruction. Average number of TACE was 2.5 times and risk factors for development of hepatic atrophy were portal vein obstruction, increased number of TACE, and dense homogenous lipiodol uptake pattern of tumor

  18. Hippocampal atrophy and memory dysfunction associated with physical inactivity in community-dwelling elderly subjects: The Sefuri study.

    Science.gov (United States)

    Hashimoto, Manabu; Araki, Yuko; Takashima, Yuki; Nogami, Kohjiro; Uchino, Akira; Yuzuriha, Takefumi; Yao, Hiroshi

    2017-02-01

    Physical inactivity is one of the modifiable risk factors for hippocampal atrophy and Alzheimer's disease. We investigated the relationship between physical activity, hippocampal atrophy, and memory using structural equation modeling (SEM). We examined 213 community-dwelling elderly subjects (99 men and 114 women with a mean age of 68.9 years) without dementia or clinically apparent depression. All participants underwent Mini-Mental State Examination (MMSE) and Rivermead Behavioral Memory Test (RBMT). Physical activities were assessed with a structured questionnaire. We evaluated the degree of hippocampal atrophy (z-score-referred to as ZAdvance hereafter), using a free software program-the voxel-based specific regional analysis system for Alzheimer's disease (VSRAD) based on statistical parametric mapping 8 plus Diffeomorphic Anatomical Registration Through an Exponentiated Lie algebra. Routine magnetic resonance imaging findings were as follows: silent brain infarction, n  = 24 (11.3%); deep white matter lesions, n  = 72 (33.8%); periventricular hyperintensities, n  = 35 (16.4%); and cerebral microbleeds, n  = 14 (6.6%). Path analysis based on SEM indicated that the direct paths from leisure-time activity to hippocampal atrophy (β = -.18, p  physical inactivity, and hippocampal atrophy appeared to cause memory dysfunction, although we are unable to infer a causal or temporal association between hippocampal atrophy and memory dysfunction from the present observational study.

  19. Differential pharmacological effects on brain reactivity and plasticity in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Anna-Katharine eBrem

    2013-10-01

    Full Text Available Acetylcholinesterase inhibitors (AChEI are the most commonly prescribed monotherapeutic medications for Alzheimer’s disease (AD. However, their underlying neurophysiological effects remain largely unknown.We investigated the effects of monotherapy (AChEI and combination therapy (AChEI and memantine on brain reactivity and plasticity. Patients treated with monotherapy (AChEI (N=7 were compared to patients receiving combination therapy (COM (N=9 and a group of age-matched, healthy controls (HC (N=13. Cortical reactivity and plasticity of the motor cortex (MC were examined using transcranial magnetic stimulation (TMS. Cognitive functions were assessed with the cognitive subscale of the Alzheimer Disease Assessment Scale (ADAS-Cog, activities of daily living with the ADCS-ADL. In addition we assessed the degree of brain atrophy by measuring brain-scalp distances in seven different brain areas.Patient groups differed in resting motor threshold and brain atrophy, with COM showing a lower motor threshold but less atrophy than AChEI. COM showed similar plasticity effects as the HC group, while plasticity was reduced in AChEI. Long-interval intracortical inhibition (LICI was impaired in both patient groups when compared to HC. ADAS-Cog scores were positively correlated with LICI measures and with brain atrophy, specifically in the left IPL.AD patients treated with mono- or combination therapy show distinct neurophysiological patterns. Further studies should investigate whether these measures might serve as biomarkers of treatment response and whether they could guide other therapeutic interventions.

  20. The atrophy pattern in the subtypes of frontotemporal lobar degeneration and Alzheimer disease by structural MRI

    International Nuclear Information System (INIS)

    Zhang Bing; Zhang Xin; Li Ming; Chen Fei; Xu Jun; Wang Huiting; Qian Lai; Zhao Hui; Xu Yun; Zhu Bin

    2012-01-01

    Objective: To analyze the patterns of cortical atrophy of the two subtypes of frontotemporal lobar degeneration (FTLD), behavioural-variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA). And to compare them with that of Alzheimer disease (AD) to provide an objective basis for early diagnosis and differential diagnosis. Methods: A total of 83 patients were enrolled in this study and there were 30 patients with cognitively normal controls (CN), 30 with AD and 23 with FTLD (10 with bvFTD, 13 with PPA). Philips 3.0 T TX scanner and 8 channel head coil was employed. Three dimensional turbo fast echo (3D-TFE) T 1 WI sequence with high resolution was used to collect the volume data of gray matter. 3D-TFE T 1 WI images were normalized and segmented into gray matter map for statistical analysis by SPM 8 and VBM 8. The false discovery rate (FDR) was adopted in P value adjustment, P<0.001, and the cluster size was set at 5. The full width at half maximum (FWHM) was set at 4 mm for the smoothing. Paired t test was used for statistics. Results: In bvFTD, PPA and AD groups,there were diffuse regions with reduced volume in cerebral cortex and subcortical structures (such as the hippocampus, the amygdala, the caudate nuclei, et al). The most obvious atrophic region in bvFTD and PPA group was found in the frontotemporal. Compared with AD, gray matter atrophy in bvFTD was found in brain regions including bilateral temporal lobes, bilateral superior temporal pole gyri, bilateral middle temporal pole gyri, right fusiform gyrus and bilateral frontal lobes. Among them, temporal and frontal lobes atrophy had obvious right partial lateralizing, with 14 301 voxels in right temporal lobe and 5105 in left (t=-5.03, P<0.05). The number of atrophy voxels in right and left frontal lobe were 1344 and 125 (t=3.45, P<0.05). The left temporooccipital lobe atrophy was more obvious than the right in PPA,with 15 637 voxels in left and 10 723 in right (t=-2.65, P<0

  1. Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study.

    Science.gov (United States)

    Lu, Po H; Thompson, Paul M; Leow, Alex; Lee, Grace J; Lee, Agatha; Yanovsky, Igor; Parikshak, Neelroop; Khoo, Theresa; Wu, Stephanie; Geschwind, Daniel; Bartzokis, George

    2011-01-01

    Apolipoprotein E (ApoE) ε4 genotype is a strong risk factor for developing Alzheimer's disease (AD). Conversely, the presence of the ε2 allele has been shown to mitigate cognitive decline. Tensor-based morphometry (TBM), a novel computational approach for visualizing longitudinal progression of brain atrophy, was used to determine whether cognitively intact elderly participants with the ε4 allele demonstrate greater volume reduction than those with the ε2 allele. Healthy "younger elderly" volunteers, aged 55-75, were recruited from the community and hospital staff. They were evaluated with a baseline and follow-up MRI scan (mean scan interval = 4.72 years, s.d. = 0.55) and completed ApoE genotyping. Twenty-seven participants were included in the study of which 16 had the ε4 allele (all heterozygous ε3ε4 genotype) and 11 had the ε2ε3 genotype. The two groups did not differ significantly on any demographic characteristics and all subjects were cognitively "normal" at both baseline and follow-up time points. TBM was used to create 3D maps of local brain tissue atrophy rates for individual participants; these spatially detailed 3D maps were compared between the two ApoE groups. Regional analyses were performed and the ε4 group demonstrated significantly greater annual atrophy rates in the temporal lobes (p = 0.048) and hippocampus (p = 0.016); greater volume loss was observed in the right hippocampus than the left. TBM appears to be useful in tracking longitudinal progression of brain atrophy in cognitively asymptomatic adults. Possession of the ε4 allele is associated with greater temporal and hippocampal volume reduction well before the onset of cognitive deficits.

  2. Increased cerebrospinal fluid albumin and immunoglobulin A fractions forecast cortical atrophy and longitudinal functional deterioration in relapsing-remitting multiple sclerosis.

    Science.gov (United States)

    Kroth, Julia; Ciolac, Dumitru; Fleischer, Vinzenz; Koirala, Nabin; Krämer, Julia; Muthuraman, Muthuraman; Luessi, Felix; Bittner, Stefan; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Meuth, Sven G; Groppa, Sergiu

    2017-12-01

    Currently, no unequivocal predictors of disease evolution exist in patients with multiple sclerosis (MS). Cortical atrophy measurements are, however, closely associated with cumulative disability. Here, we aim to forecast longitudinal magnetic resonance imaging (MRI)-driven cortical atrophy and clinical disability from cerebrospinal fluid (CSF) markers. We analyzed CSF fractions of albumin and immunoglobulins (Ig) A, G, and M and their CSF to serum quotients. Widespread atrophy was highly associated with increased baseline CSF concentrations and quotients of albumin and IgA. Patients with increased CSF IgA and CSF IgM showed higher functional disability at follow-up. CSF markers of blood-brain barrier integrity and specific immune response forecast emerging gray matter pathology and disease progression in MS.

  3. Correlation of clinical course with MRI findings in olivo-pontocerebellar atrophy and late-cortical cerebellar atrophy

    International Nuclear Information System (INIS)

    Konagaya, Masaaki; Morishita, Shinji; Konagaya, Yoko; Takayanagi, Tetsuya; Iwasaki, Satoru

    1989-01-01

    We quantitatively analyzed 1.5 T MRI in 36 cases of sporadic spinocerebellar degeneration (SCD) and 30 control cases without intracranial lesions, using graphic analyzer. SCD consisted of 21 olivo-ponto-cerebellar atrophy (OPCA) and 15 late cortical cerebellar atrophy (LCCA). There was negative correlation between vermian size and the duration of illness both in OPCA (r=0.8960, p<0.001) and LCCA (r=0.7756, p<0.01), but the progression rate in OPCA was three times greater than that in LCCA. LCCA was suggested the preclinical vermian atrophy by the statistical regression study. In OPCA, the duration of illness also revealed significant correlations with atrophy of ventral pons (r=0.8308, p<0.001) and also cerebellar hemisphere (medial hemiphere; r=0.7278, p<0.001. lateral hemisphere; r=0.6039, p<0.01). OPCA showed diffuse atrophy of cerebellar hemisphere, whereas LCCA showed medial dominant atrophy. OPCA demonstrated significant correlation between the fourth ventricle dilatation and the duration of illness (r=0.6005, p<0.01). A discriminant study significantly separated OPCA, LCCA and control each other by sizes of ventral pons and cerebellar vermis (p<0.001). In T2 weighted MRI, 10 cases out of 14 LCCA did not show hypointensity in dentate nucleus in spite of normal appearance in the other portions usually decreased intensity. The dentate nucleus of OPCA showed a significant atrophy. The insidence of putaminal hypointensity in OPCA was significantly greater than that of control group (ki-quare=6.476, p<0.05). There were no atrophies in red nucleus and tegmentum of midbrain, which indicated minimum involvement in cerebellar efferent system both in OPCA and LCCA. We concluded that the quantitative and qualitative analysis of high field MRI is useful in clinical discrimination between OPCA and LCCA. (author)

  4. Genetics Home Reference: optic atrophy type 1

    Science.gov (United States)

    ... Nerve Atrophy Encyclopedia: Visual Acuity Test Health Topic: Color Blindness Health Topic: Optic Nerve Disorders Genetic and Rare ... Disease InfoSearch: Optic atrophy 1 Kids Health: What's Color Blindness? MalaCards: autosomal dominant optic atrophy, classic form Merck ...

  5. Cerebellar atrophy related to chronic exposure to toluene: case report

    Directory of Open Access Journals (Sweden)

    Benito Pereira Damasceno

    1994-03-01

    Full Text Available A 31-year-old woman presented slowly progressing ataxia and neurasthenic symptoms after 14-year occupational exposure to low concentration toluene vapour. Examination disclosed only cerebellar signs. Cognitive functions were normal except moderate visuo-spatial and constructive deficit CT imaging showed severe pancerebellar atrophy without pathological signs in other brain structures. Two years after she was removed from workplace, CT imaging and ataxia showed no worsening, while visuo-constructive function improved. The authors warn against possible neurotoxic risk associated with this kind of exposure.

  6. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis

    DEFF Research Database (Denmark)

    Popescu, Valeriu; Battaglini, M; Hoogstrate, W S

    2012-01-01

    Brain atrophy studies often use FSL-BET (Brain Extraction Tool) as the first step of image processing. Default BET does not always give satisfactory results on 3DT1 MR images, which negatively impacts atrophy measurements. Finding the right alternative BET settings can be a difficult and time-con...

  7. Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence.

    Science.gov (United States)

    Cooper, Janine M; Gadian, David G; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-06-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. © The Author 2013. Published by Oxford University Press.

  8. Changes in total cell numbers of the basal ganglia in patients with multiple system atrophy - A stereological study

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Ullerup, Birgitte H; Sunay, Fatma B

    2014-01-01

    Total numbers of neurons, oligodendrocytes, astrocytes, and microglia in the basal ganglia and red nucleus were estimated in brains from 11 patients with multiple system atrophy (MSA) and 11 age- and gender-matched control subjects with unbiased stereological methods. Compared to the control...

  9. Increased brain-predicted aging in treated HIV disease

    NARCIS (Netherlands)

    Cole, James H; Underwood, Jonathan; Caan, Matthan W A; De Francesco, Davide; van Zoest, Rosan A; Leech, Robert; Wit, Ferdinand W N M; Portegies, Peter; Geurtsen, Gert J; Schmand, Ben A; Schim van der Loeff, Maarten F; Franceschi, Claudio; Sabin, Caroline A; Majoie, Charles B L M; Winston, Alan; Reiss, Peter; Sharp, David J; Kalsbeek, A.

    OBJECTIVE: To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. METHODS: A

  10. Increased brain-predicted aging in treated HIV disease

    NARCIS (Netherlands)

    Cole, James H.; Underwood, Jonathan; Caan, Matthan W. A.; de Francesco, Davide; van Zoest, Rosan A.; Leech, Robert; Wit, Ferdinand W. N. M.; Portegies, Peter; Geurtsen, Gert J.; Schmand, Ben A.; Schim van der Loeff, Maarten F.; Franceschi, Claudio; Sabin, Caroline A.; Majoie, Charles B. L. M.; Winston, Alan; Reiss, Peter; Sharp, David J.; Schouten, J.; Kooij, K. W.; Elsenga, B. C.; Janssen, F. R.; Heidenrijk, M.; Schrijver, J. H. N.; Zikkenheiner, W.; van der Valk, M.; Henderiks, A.; Kootstra, N. A.; Harskamp-Holwerda, A. M.; Maurer, I.; Ruiz, M. M. Mangas; Booiman, T.; Girigorie, A. F.; Villaudy, J.; Frankin, E.; Pasternak, A.; Berkhout, B.; van der Kuyl, T.; Stege, J. A. ter; Twennaar, M. Klein; Su, T.; Siteur-van Rijnstra, E.; Weijer, K.; Bisschop, P. H. L. T.; Kalsbeek, A.; Wezel, M.; Visser, I.; Ruhé , H. G.; Tembo, L.; Stott, M.; Prins, M. [= Maria

    2017-01-01

    To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. A large sample of

  11. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study.

    Science.gov (United States)

    Snowdon, D A; Tully, C L; Smith, C D; Riley, K P; Markesbery, W R

    2000-04-01

    Previous studies suggested that low concentrations of folate in the blood are related to poor cognitive function, dementia, and Alzheimer disease-related neurodegeneration of the brain. Our aim was to determine whether serum folate is inversely associated with the severity of atrophy of the neocortex. Nutrients, lipoproteins, and nutritional markers were measured in the blood of 30 participants in the Nun Study from one convent who later died when they were 78-101 y old (mean: 91 y). At autopsy, several neuropathologic indicators of Alzheimer disease were determined, including the degree of atrophy of 3 lobes of the neocortex (frontal, temporal, and parietal) and the number of neocortical Alzheimer disease lesions (ie, senile plaques and neurofibrillary tangles) as assessed by a neuropathologist. The correlation between serum folate and the severity of atrophy of the neocortex was -0.40 (P = 0.03). Among a subset of 15 participants with significant numbers of Alzheimer disease lesions in the neocortex, the correlation between folate and atrophy was -0.80 (P = 0.0006). Atrophy may be specific to low folate because none of the 18 other nutrients, lipoproteins, or nutritional markers measured in the blood had significant negative correlations with atrophy. Among elderly Catholic sisters who lived in one convent, ate from the same kitchen, and were highly comparable for a wide range of environmental and lifestyle factors, low serum folate was strongly associated with atrophy of the cerebral cortex. Definitive evidence for this relation and its temporal sequence awaits the findings of other studies.

  12. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

    Science.gov (United States)

    Grothe, Michel J; Teipel, Stefan J

    2016-01-01

    Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology. © 2015 Wiley Periodicals, Inc.

  13. The inheritance of peripapillary atrophy

    NARCIS (Netherlands)

    Healey, Paul R.; Mitchell, Paul; Gilbert, Clare E.; Lee, Anne J.; Ge, Dongliang; Snieder, Harold; Spector, Timothy D.; Hammond, Christopher J.

    PURPOSE. To estimate the relative importance of genes and environment in peripapillary atrophy type beta (beta-PPA) in a classic twin study. METHODS. Female twin pairs (n = 506) aged 49 to 79 years were recruited from the St. Thomas' UK Adult Twin Registry. Peripapillary atrophy was identified from

  14. The selective value of computed tomography of the brain in Cerebritis due to systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Gaylis, N.B.; Altman, R.D.; Ostrov, S.; Quencer, R.

    1982-01-01

    Systemic lupus erythematosus (SLE) and steroid effects on the brain were measured by computed tomography (CT). Of 14 patients with SLE cerebritis, 10 (71%) had marked cortical atrophy and 4 (29%) minimal atrophy. None were normal by CT. Controls included 22 patients with SLE without cerebritis receiving cortiocosteroids; this group had normal CT scans in 16 (73%) and minimal cortical atrophy in the remaining 6 (27%). Follow-up CT on 5 patients with cerebritis was unchanged. CT of the brain is a minimally invasive technique for documenting SLE cerebritis. CT may also help differentiate cerebritis from the neuropsychiatric side effects of corticosteroids

  15. Genetics Home Reference: spinal muscular atrophy

    Science.gov (United States)

    ... difficulty breathing. Children with this type often have joint deformities (contractures) that impair movement. In severe cases, ... Proximal spinal muscular atrophy Washington University, St. Louis: Neuromuscular Disease Center: Spinal Muscular Atrophy Patient Support and ...

  16. Brain shrinking in chronic alcoholism: CT follow-up study in 65 patients

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, G.; Remmes, U.; Schupmann, A.

    1985-04-01

    CT follow-up studies were done in 65 alcoholics before an inpatient treatment and after a period with confirmed abstinence of 5 weeks duration. The scans were rated 'blind' by linear measurement of well defined distances. An improvement (Significant reduction of brain 'atrophy') was found in 33 patients (50.8%), 5 patients (7,7%) showed a trend towards progression of brain 'atrophy'. The possibility of recovery tends to be significantly greater in younger subjects. These findings and the results of recent MR follow-up studies are consistent with decreased free water during alcohol intoxication and an increase in brain water during alcohol withdrawal.

  17. Computed tomography of the brain in cases with venous vasculitis compared with an age-matched reference group

    International Nuclear Information System (INIS)

    Hannerz, J.; Ericson, K.; Bergstrand, G.; Berggren, B.M.; Edman, G.; Karolinska Sjukhuset, Stockholm; Karolinska Sjukhuset, Stockholm

    1988-01-01

    Patients with a particular, steroid-sensitive headache and often characteristic pathology at orbital phlebography, have been suggested to suffer from venous vasculitis. Fifty such patients were examined with computed tomography (CT) of the brain. The findings were compared with those of an age-matched reference group selected at random to represent normal subjects. The CT examinations were analyzed with respect to size of lateral ventricles and signs of atrophy. In both groups, there was a significant increase of atrophy with age. There was also a significantly higher degree of atrophy in the patient group as compared with the reference group. The findings indicate that the supposedly underlying venous vasculitis is related to early aging and atrophy of the brain. (orig.)

  18. Statistical analysis of CT brain scans in the evaluation of cerebral atrophy and hydrocephalus

    International Nuclear Information System (INIS)

    Oberthur, J.; Baddeley, H.; Jayasinghe, L.; Walsh, P.

    1983-01-01

    All the subjects with a visual CT diagnosis of atrophy or hydrocephalus showed variations from the normal in excess of two standard deviations so the standard deviation analysis method can be regarded as being as sensitive as the visual interpretation. However, three patients in the control group were also indicted although their results were only in the borderline range. Limitations of the study are discussed

  19. Seronegative Intestinal Villous Atrophy: A Diagnostic Challenge

    Directory of Open Access Journals (Sweden)

    Cláudio Martins

    2016-01-01

    Full Text Available Celiac disease is the most important cause of intestinal villous atrophy. Seronegative intestinal villous atrophy, including those that are nonresponsive to a gluten-free diet, is a diagnostic challenge. In these cases, before establishing the diagnosis of seronegative celiac disease, alternative etiologies of atrophic enteropathy should be considered. Recently, a new clinical entity responsible for seronegative villous atrophy was described—olmesartan-induced sprue-like enteropathy. Herein, we report two uncommon cases of atrophic enteropathy in patients with arterial hypertension under olmesartan, who presented with severe chronic diarrhea and significant involuntary weight loss. Further investigation revealed intestinal villous atrophy and intraepithelial lymphocytosis. Celiac disease and other causes of villous atrophy were ruled out. Drug-induced enteropathy was suspected and clinical improvement and histologic recovery were verified after olmesartan withdrawal. These cases highlight the importance for clinicians to maintain a high index of suspicion for olmesartan as a precipitant of sprue-like enteropathy.

  20. Mild Cognitive Impairment as a single sign of brain hemiatrophy in patient with Localized Scleroderma and Parry-Romberg Syndrome.

    Science.gov (United States)

    Klimiec, Elzbieta; Klimkowicz-Mrowiec, Aleksandra

    2016-01-01

    Neurologic involvement is well recognized in Systemic Scleroderma and increasingly reported in Localized Scleroderma. MRI brain abnormalities are often associated with symptoms such as seizures or headaches. In some cases they may be clinically silent. We describe a 23 years old female with head, trunk and limbs scleroderma who developed Parry-Romberg Syndrome. Brain MRI showed ipsilateral temporal lobe atrophy without any prominent neurologic symptoms. Neuropsychological examination revealed Mild Cognitive Impairment. During the 7 years of follow up we have noticed progression of face atrophy but no progression of brain atrophy. Cognitive functions have been stable. This case highlight that major MRI brain abnormalities in LS may occur with only subtle clinical manifestation such as Mild Cognitive Impairment. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    International Nuclear Information System (INIS)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip; Flier, Wiesje M. van der; Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik; Vrenken, Hugo

    2014-01-01

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  2. Quantitative regional validation of the visual rating scale for posterior cortical atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Christiane; Benedictus, Marije R.; Koedam, Esther L.G.M.; Scheltens, Philip [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Center, Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Versteeg, Adriaan; Wattjes, Mike P.; Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); Vrenken, Hugo [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, P.O. Box 7057, Amsterdam (Netherlands)

    2014-02-15

    Validate the four-point visual rating scale for posterior cortical atrophy (PCA) on magnetic resonance images (MRI) through quantitative grey matter (GM) volumetry and voxel-based morphometry (VBM) to justify its use in clinical practice. Two hundred twenty-nine patients with probable Alzheimer's disease and 128 with subjective memory complaints underwent 3T MRI. PCA was rated according to the visual rating scale. GM volumes of six posterior structures and the total posterior region were extracted using IBASPM and compared among PCA groups. To determine which anatomical regions contributed most to the visual scores, we used binary logistic regression. VBM compared local GM density among groups. Patients were categorised according to their PCA scores: PCA-0 (n = 122), PCA-1 (n = 143), PCA-2 (n = 79), and PCA-3 (n = 13). All structures except the posterior cingulate differed significantly among groups. The inferior parietal gyrus volume discriminated the most between rating scale levels. VBM showed that PCA-1 had a lower GM volume than PCA-0 in the parietal region and other brain regions, whereas between PCA-1 and PCA-2/3 GM atrophy was mostly restricted to posterior regions. The visual PCA rating scale is quantitatively validated and reliably reflects GM atrophy in parietal regions, making it a valuable tool for the daily radiological assessment of dementia. (orig.)

  3. Time to Amyloid Positivity and Preclinical Changes in Brain Metabolism, Atrophy, and Cognition: Evidence for Emerging Amyloid Pathology in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Philip S. Insel

    2017-05-01

    Full Text Available Background: Aβ pathology is associated with longitudinal changes of brain metabolism, atrophy, and cognition, in cognitively healthy elders. However, Aβ information is usually measured cross-sectionally and dichotomized to classify subjects as Aβ-positive or Aβ-negative, making it difficult to evaluate when brain and cognitive changes occur with respect to emerging Aβ pathology. In this study, we use longitudinal Aβ information to combine the level and rate of change of Aβ to estimate the time to Aβ-positivity for each subject and test this temporal proximity to significant Aβ pathology for associations with brain structure, metabolism, and cognition.Methods: In 89 cognitively healthy elders with up to 10 years of follow-up, we estimated the points at which rates of fluorodeoxyglucose (FDG PET, MRI, and cognitive and functional decline begin to accelerate with respect to the time to Aβ-positivity. Points of initial acceleration in rates of decline were estimated using mixed-effects models with penalized regression splines.Results: Acceleration of rates of FDG PET were observed to occur 20+ years before the conventional threshold for Aβ-positivity. Subtle signs of cognitive dysfunction were observed 10+ years before Aβ-positivity.Conclusions: Aβ may have subtle associations with other hallmarks of Alzheimer's disease before Aβ biomarkers reach conventional thresholds for Aβ-positivity. Therefore, we propose that emerging Aβ pathology occurs many years before cognitively healthy elders reach the current threshold for Aβ positivity (preclinical AD. To allow prevention in the earliest disease stages, AD clinical trials may be designed to also include subjects with Aβ biomarkers in the sub-threshold range.

  4. Alcohol-induced changes in the brain as assessed by MRI and CT

    Energy Technology Data Exchange (ETDEWEB)

    Geibprasert, Sasikhan [University of Toronto, Hospital for Sick Children, Division of Neuroradiology, Department of Diagnostic Imaging, Toronto, ON (Canada); Gallucci, Massimo [University Hospital ' ' S. Salvatore' ' , Division of Neuroradiology, Department of Diagnostic Imaging, L' Aquila (Italy); Krings, Timo [University of Toronto, Toronto Western Hospital, Division of Neuroradiology, Department of Medical Imaging, Toronto, ON (Canada)

    2010-06-15

    This review provides an overview of structural magnetic resonance imaging and computed tomography findings of direct and indirect alcohol-related toxic effects on the brain. In addition to ethanol-related changes to the brain, this article will also describe imaging findings in the acute setting of methanol and ethylene glycol poisoning. Alcohol will lead to brain atrophy, osmotic myelinolysis, Marchiafava-Bignami disease and, especially when related to malnutrition, may also cause Wernicke encephalopathy. Brain atrophy can be reversible if alcohol abuse is stopped. If not treated, Wernicke encephalopathy can lead to coma and death and an early diagnosis is important for immediate initiation of thiamine substitution. As clinical symptoms are often unspecific, the radiologist plays an important role in the detection of alcohol abuse and its related clinical conditions. (orig.)

  5. Alcohol-induced changes in the brain as assessed by MRI and CT

    International Nuclear Information System (INIS)

    Geibprasert, Sasikhan; Gallucci, Massimo; Krings, Timo

    2010-01-01

    This review provides an overview of structural magnetic resonance imaging and computed tomography findings of direct and indirect alcohol-related toxic effects on the brain. In addition to ethanol-related changes to the brain, this article will also describe imaging findings in the acute setting of methanol and ethylene glycol poisoning. Alcohol will lead to brain atrophy, osmotic myelinolysis, Marchiafava-Bignami disease and, especially when related to malnutrition, may also cause Wernicke encephalopathy. Brain atrophy can be reversible if alcohol abuse is stopped. If not treated, Wernicke encephalopathy can lead to coma and death and an early diagnosis is important for immediate initiation of thiamine substitution. As clinical symptoms are often unspecific, the radiologist plays an important role in the detection of alcohol abuse and its related clinical conditions. (orig.)

  6. A longitudinal study of brain volume changes in normal aging

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa, E-mail: takaoh-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Hayashi, Naoto [Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2012-10-15

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy.

  7. A longitudinal study of brain volume changes in normal aging

    International Nuclear Information System (INIS)

    Takao, Hidemasa; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    Purpose: To evaluate the effect of normal aging on brain volumes and examine the effects of age and sex on the rates of changes in global and regional brain volumes. Methods: A total of 199 normal subjects (65 females and 134 males, mean age = 56.4 ± 9.9 years, age range = 38.1–82.9 years) were included in this study. Each subject was scanned twice, at an interval of about 2 years (range = 1.5–2.3 years). Two-time-point percentage brain volume change (PBVC) was estimated with SIENA 2.6. Results: The mean annualized PBVC was −0.23%/y. Analysis of covariance (ANCOVA) for annual brain volume changes revealed a main effect of age. There was no main effect of sex, nor was there a sex-by-age interaction. Voxel-wise analysis revealed a negative correlation between age and edge displacement values mainly in the periventricular region. Conclusions: The results of our study indicate that brain atrophy accelerates with increasing age and that there is no gender difference in the rate of brain atrophy

  8. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness.

    Directory of Open Access Journals (Sweden)

    Christiane Schneider-Gold

    Full Text Available Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2. We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM.12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects.Clinical symptoms were depression (more pronounced in DM2, excessive daytime sleepiness (more pronounced in DM1, reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex.GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes to cognitive impairment

  9. Anti‐Ma2 associated paraneoplastic neurological syndrome presenting as encephalitis and progressive muscular atrophy

    Science.gov (United States)

    Waragai, M; Chiba, A; Uchibori, A; Fukushima, T; Anno, M; Tanaka, K

    2006-01-01

    A 36 year old man with a history of testicular germ cell tumour presented six months after bilateral orchidectomy with progressive amnesia, irritability, vertical gaze palsy, and generalised seizures. Eight months after initial onset of symptoms, he demonstrated a head drop with muscular atrophy of the upper limbs, shoulder girdle, and posterior neck. He reported no sensory disturbances and his sensory examination was normal. The overall clinical presentation was consistent with motor neurone disease. Cerebrospinal fluid analysis revealed mild pleocytosis and increased protein concentration. Serum and cerebrospinal fluid were positive for the anti‐Ma2 antibody by western blot analysis and immunostaining. Abnormal high signal in the grey matter was noted in the cervical spinal cord and brain by T2 weighted magnetic resonance imaging (MRI). The patient was treated with corticosteroids, intravenous immunoglobulin, and antiepileptic medication. The patient improved clinically and symptom progression ceased after initiation of treatment. There was complete resolution of the abnormal brain MRI lesions; however, the cervical spinal cord MRI lesion and muscular atrophy remained unchanged. It is suggested that the anti‐Ma2 antibody is involved not only in encephalitis, but may also play a role in the cervical spinal cord lesions resulting in a motor neurone disease‐like presentation. PMID:16361608

  10. Anti-Ma2 associated paraneoplastic neurological syndrome presenting as encephalitis and progressive muscular atrophy.

    Science.gov (United States)

    Waragai, M; Chiba, A; Uchibori, A; Fukushima, T; Anno, M; Tanaka, K

    2006-01-01

    A 36 year old man with a history of testicular germ cell tumour presented six months after bilateral orchidectomy with progressive amnesia, irritability, vertical gaze palsy, and generalised seizures. Eight months after initial onset of symptoms, he demonstrated a head drop with muscular atrophy of the upper limbs, shoulder girdle, and posterior neck. He reported no sensory disturbances and his sensory examination was normal. The overall clinical presentation was consistent with motor neurone disease. Cerebrospinal fluid analysis revealed mild pleocytosis and increased protein concentration. Serum and cerebrospinal fluid were positive for the anti-Ma2 antibody by western blot analysis and immunostaining. Abnormal high signal in the grey matter was noted in the cervical spinal cord and brain by T2 weighted magnetic resonance imaging (MRI). The patient was treated with corticosteroids, intravenous immunoglobulin, and antiepileptic medication. The patient improved clinically and symptom progression ceased after initiation of treatment. There was complete resolution of the abnormal brain MRI lesions; however, the cervical spinal cord MRI lesion and muscular atrophy remained unchanged. It is suggested that the anti-Ma2 antibody is involved not only in encephalitis, but may also play a role in the cervical spinal cord lesions resulting in a motor neurone disease-like presentation.

  11. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  12. Individual Assessment of Brain Tissue Changes in MS and the Effect of Focal Lesions on Short-Term Focal Atrophy Development in MS: A Voxel-Guided Morphometry Study

    Directory of Open Access Journals (Sweden)

    Jan Fox

    2016-04-01

    Full Text Available We performed voxel-guided morphometry (VGM investigating the mechanisms of brain atrophy in multiple sclerosis (MS related to focal lesions. VGM maps detect regional brain changes when comparing 2 time points on high resolution T1-weighted (T1w magnetic resonace imaging (MRI. Two T1w MR datasets from 92 relapsing-remitting MS patients obtained 12 months apart were analysed with VGM. New lesions and volume changes of focal MS lesions as well as in the surrounding tissue were identified by visual inspection on colour coded VGM maps. Lesions were dichotomized in active and inactive lesions. Active lesions, defined by either new lesions (NL (volume increase > 5% in VGM, chronic enlarging lesions (CEL (pre-existent T1w lesions with volume increase > 5%, or chronic shrinking lesions (CSL (pre-existent T1w lesions with volume reduction > 5% in VGM, were accompanied by tissue shrinkage in surrounding and/or functionally related regions. Volume loss within the corpus callosum was highly correlated with the number of lesions in its close proximity. Volume loss in the lateral geniculate nucleus was correlated with lesions along the optic radiation. VGM analysis provides strong evidence that all active lesion types (NL, CEL, and CSL contribute to brain volume reduction in the vicinity of lesions and/or in anatomically and functionally related areas of the brain.

  13. Impairment of visuospatial/visuoconstructional skills in multiple sclerosis patients: the correlation with regional lesion load and subcortical atrophy.

    Science.gov (United States)

    Marasescu, R; Cerezo Garcia, M; Aladro Benito, Y

    2016-04-01

    About 20% to 26% of patients with multiple sclerosis (MS) show alterations in visuospatial/visuoconstructive (VS-VC) skills even though temporo-parieto-occipital impairment is a frequent finding in magnetic resonance imaging. No studies have specifically analysed the relationship between these functions and lesion volume (LV) in these specific brain areas. To evaluate the relationship between VS-VC impairment and magnetic resonance imaging temporo-parieto-occipital LV with subcortical atrophy in patients with MS. Of 100 MS patients undergoing a routine neuropsychological evaluation, 21 were selected because they displayed VS-VC impairments in the following tests: Incomplete picture, Block design (WAIS-III), and Rey-Osterrieth complex figure test. We also selected 13 MS patients without cognitive impairment (control group). Regional LV was measured in FLAIR and T1-weighted images using a semiautomated method; subcortical atrophy was measured by bicaudate ratio and third ventricle width. Partial correlations (controlling for age and years of school) and linear regression analysis were employed to analyse correlations between magnetic resonance imaging parameters and cognitive performance. All measures of LV and brain atrophy were significantly higher in patients with cognitive impairment. Regional LV, bicaudate ratio, and third ventricle width are significantly and inversely correlated with cognitive performance; the strongest correlation was between third ventricle width and VC performance (Block design: P=.001; Rey-Osterrieth complex figure: P<.000). In the multivariate analysis, third ventricle width only had a significant effect on performance of VC tasks (Block design: P=.000; Rey-Osterrieth complex figure: P=.000), and regional FLAIR VL was linked to the VS task (Incomplete picture; P=.002). Measures of subcortical atrophy explain the variations in performance on visuocostructive tasks, and regional FLAIR VL measures are linked to VS tasks. Copyright © 2015

  14. Abnormal pain perception in patients with Multiple System Atrophy.

    Science.gov (United States)

    Ory-Magne, F; Pellaprat, J; Harroch, E; Galitzsky, M; Rousseau, V; Pavy-Le Traon, A; Rascol, O; Gerdelat, A; Brefel-Courbon, C

    2018-03-01

    Patients with Parkinson's disease or Multiple System Atrophy frequently experience painful sensations. The few studies investigating pain mechanisms in Multiple System Atrophy patients have reported contradictory results. In our study, we compared pain thresholds in Multiple System Atrophy and Parkinson's disease patients and healthy controls and evaluated the effect of l-DOPA on pain thresholds. We assessed subjective and objective pain thresholds (using a thermotest and RIII reflex), and pain tolerance in OFF and ON conditions, clinical pain, motor and psychological evaluation. Pain was reported in 78.6% of Multiple System Atrophy patients and in 37.5% of Parkinson's disease patients. In the OFF condition, subjective and objective pain thresholds were significantly lower in Multiple System Atrophy patients than in healthy controls (43.8 °C ± 1.3 vs 45.7 °C ± 0.8; p = 0.0005 and 7.4 mA ± 3.8 vs 13.7 mA ± 2.8; p = 0.002, respectively). They were also significantly reduced in Multiple System Atrophy compared to Parkinson's disease patients. No significant difference was found in pain tolerance for the 3 groups and in the effect of l-DOPA on pain thresholds in Multiple System Atrophy and Parkinson's disease patients. In the ON condition, pain tolerance tended to be reduced in Multiple System Atrophy versus Parkinson's disease patients (p = 0.05). Multiple System Atrophy patients had an increase in pain perception compared to Parkinson's disease patients and healthy controls. The l-DOPA effect was similar for pain thresholds in Multiple System Atrophy and Parkinson's disease patients, but tended to worsen pain tolerance in Multiple System Atrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology.

    Science.gov (United States)

    Gao, Yuyuan; Nie, Kun; Huang, Biao; Mei, Mingjin; Guo, Manli; Xie, Sifen; Huang, Zhiheng; Wang, Limin; Zhao, Jiehao; Zhang, Yuhu; Wang, Lijuan

    2017-09-29

    To analyze changes in cerebral grey matter volume and white matter density in non-dementia Parkinson's disease patients using voxel-based morphometry (VBM) technology; to investigate features of brain structure changes in Parkinson's disease patients with mild cognitive impairment (PD-MCI), and reveal their intrinsic pathological changes. Based on the diagnostic criteria of PD-MCI, 23 PD-MCI patients, 23 Parkinson's disease patients with normal cognition (PD-NC), and 21 age- and gender-matched healthy people were recruited for the study. Scans were performed on all subjects on a 3.0T MR scanner to obtain brain structural magnetic resonance images. Images were preprocessed using the VBM8 tool from SPM8 software package on the Matlab R2008a platform, and data were then analyzed using the SPM statistical software package to compare the differences of grey matter volume and white matter density between groups, and to evaluate the brain structural changes corresponding to the overall cognitive function. Compared to the control group, the PD-NC group suffered from grey matter atrophy, mainly found in the prefrontal lobe, limbic lobe and left temporal gyrus. The PD-MCI group suffered from grey matter atrophy found in the frontal lobe, limbic lobe, basal ganglia and cerebellum. Compared to the PD-NC group, the PD-MCI group suffered from grey matter atrophy found in the left-side middle temporal gyrus, inferior temporal gyrus and frontal lobe. The grey matter regions correlated with MMSE score (mainly memory related) including the right cingulate gyrus and the limbic lobe. The grey matter regions correlated with MoCA score (mainly non-memory related) including the frontal lobe, basal ganglia, parahippocampal gyrus, occipital lobe and the cerebellum. Additionally, overall cognitive function in non-dementia PD was mainly located in the frontal and limbic system, and was dominated by subcortical atrophy. Structural changes in PD-MCI patients are associated with overall

  16. White matter lesions and brain atrophy in systemic lupus erythematosus patients: correlation to cognitive dysfunction in a cohort of systemic lupus erythematosus patients using different definition models for neuropsychiatric systemic lupus erythematosus.

    Science.gov (United States)

    Cannerfelt, B; Nystedt, J; Jönsen, A; Lätt, J; van Westen, D; Lilja, A; Bengtsson, A; Nilsson, P; Mårtensson, J; Sundgren, P C

    2018-06-01

    Aim The aim of this study was to evaluate the extent of white matter lesions, atrophy of the hippocampus and corpus callosum, and their correlation with cognitive dysfunction (CD), in patients diagnosed with systemic lupus erythematosus (SLE). Methods Seventy SLE patients and 25 healthy individuals (HIs) were included in the study. To evaluate the different SLE and neuropsychiatric SLE (NPSLE) definition schemes, patients were grouped both according to the American College of Rheumatology (ACR) definition, as well as the more stringent ACR-Systemic Lupus International Collaborating Clinics definition. Patients and HIs underwent a 3 Tesla brain MRI and a standardized neuropsychological test. MRI data were evaluated for number and volume of white matter lesions and atrophy of the hippocampus and corpus callosum. Differences between groups and subgroups were evaluated for significance. Number and volume of white matter lesions and atrophy of the hippocampus and corpus callosum were correlated to cognitive dysfunction. Results The total volume of white matter lesions was significantly larger in SLE patients compared to HIs ( p = 0.004). However, no significant differences were seen between the different SLE subgroups. Atrophy of the bilateral hippocampus was significantly more pronounced in patients with NPSLE compared to those with non-NPSLE (right: p = 0.010; left p = 0.023). Significant negative correlations between cognitive test scores on verbal memory and number and volume of white matter lesions were present. Conclusion SLE patients have a significantly larger volume of white matter lesions on MRI compared to HIs and the degree of white matter lesion volume correlates to cognitive dysfunction, specifically to verbal memory. No significant differences in the number or volume of white matter lesions were identified between subgroups of SLE patients regardless of the definition model used.

  17. Hemifacial atrophy treated with autologous fat transplantation

    Directory of Open Access Journals (Sweden)

    Gandhi Vijay

    2005-01-01

    Full Text Available A 23-year-old male developed right hemifacial atrophy following marphea profunda. Facial asymmetry due to residual atrophy was treated with autologous fat harvested from buttocks with marked cosmetic improvement.

  18. Association of change in brain structure to objectively measured physical activity and sedentary behavior in older adults

    DEFF Research Database (Denmark)

    Arnardóttir, Nanna Ýr; Koster, A; Van Domelen, Dane R

    2016-01-01

    Many studies have examined the hypothesis that greater participation in physical activity (PA) is associated with less brain atrophy. Here we examine, in a sub-sample (n = 352, mean age 79.1 years) of the Age, Gene/Environment Susceptibility-Reykjavik Study cohort, the association of the baseline.......0007). These data suggest that objectively measured PA and SB late in life are associated with current and prior cross-sectional measures of brain atrophy, and that change over time is associated with PA and SB in expected directions. (C) 2015 Elsevier B.V. All rights reserved.......Many studies have examined the hypothesis that greater participation in physical activity (PA) is associated with less brain atrophy. Here we examine, in a sub-sample (n = 352, mean age 79.1 years) of the Age, Gene/Environment Susceptibility-Reykjavik Study cohort, the association of the baseline...

  19. Quantitative evaluation of tongue atrophy on midsagittal magnetic resonance images (MRIs)

    International Nuclear Information System (INIS)

    Ohnishi, Akio; Oishi, Tomonari; Murai, Yoshiyuki; Tsukamoto, Yoshiki; Ikeda, Masato

    1992-01-01

    This study was undertaken mainly to establish the quantitative parameter to evaluate the tongue atrophy on midsagittal MRIs and to show the clinical usefulness of such quantitative evaluation. Midsagittal MRIs of the tongue of consecutive 103 patients were analyzed. They were classified into 67 patients showing normal size (group without atrophy), 11 patients showing atrophy (group with atrophy) and 25 patients showing unsatifactory MRIs with artifacts based on the routine evaluation. The patients in the group without atrophy did not show any pathologic processes to produce tongue atrophy on clinical findings. The area and perimeter of tongue and oral cavity, and the ratio of tongue area to oral cavity area and the ratio of tongue perimeter to oral cavity perimeter on midsagittal MRIs were obtained in each patient of groups with and without atrophy by using quantitative image analysis system. In the group without atrophy, regression analysis of the data on age was made and the 95% confidence interval of the data for age was obtained. No evidence that the tongue becomes atrophic with aging was obtained in the group without atrophy. Patients in the group with atrophy were best separated from those in the group without atrophy statistically when the ratio of tongue area to oral cavity area was regressed on age. Among 11 patients in the group with atrophy, 6 patients were not regarded as having tongue atrophy on clinical neurological examinations. Therefore, the evaluation of midsagittal MRIs is clinically useful. (author)

  20. Prefrontal involvement related to cognitive impairment in progressive muscular atrophy.

    Science.gov (United States)

    Raaphorst, Joost; van Tol, Marie-José; Groot, Paul F C; Altena, Ellemarije; van der Werf, Ysbrand D; Majoie, Charles B; van der Kooi, Anneke J; van den Berg, Leonard H; Schmand, Ben; de Visser, Marianne; Veltman, Dick J

    2014-08-26

    To examine brain activation patterns during verbal fluency performance in patients with progressive muscular atrophy (PMA) and amyotrophic lateral sclerosis (ALS). fMRI was used to examine the blood oxygen level-dependent response during letter and category fluency performance in 18 patients with PMA, 21 patients with ALS, and 17 healthy control subjects, matched for age and education. fMRI results are reported at pfrontal gyrus (IFG, Brodmann area 45) during letter fluency, which was unaffected by performance, ARWMC, and IFG volume: patients with PMA showed lower activation than controls but higher than that of patients with ALS (ALSupper motor neuron signs. © 2014 American Academy of Neurology.

  1. MRI study of degenerative process in multiple system atrophy

    International Nuclear Information System (INIS)

    Yagishita, Toshiyuki; Kojima, Shigeyuki; Hirayama, Keizo

    1995-01-01

    The characteristic morphological changes of the brainstem and cerebellar regions of multiple system atrophy (MSA) were studied by MRI in varing subtypes, that is olivoponto cerebellar atrophy (OPCA: 23 cases), striatonigral degeneration (SND: 7 cases) and Shy-Drager's syndrome (SDS: 9 cases). OPCA was characterized by atrophy of the entire regions of the brainstem and the cerebellum. SND and SDS tended to show atrophy similar in type but lessin extent to OPCA. The common lesions in MSA were atrophy of the pontine base and cerebellum, and dilation of the fourth ventricle. Atrophy of the pontine base was more dominant in the inferior part than in the superior part, and cerebellar atrophy was more dominant in the superior part than in the inferior part, indicating that degeneration of the pontocerebellar pathway proceeds principally along fibers connecting the inferior part of the pons and the superior part of the cerebellum. Dilation of the fourth ventricle indicated atrophy of the middle cerebellar peduncle. In almost all the cases of OPCA and about a half the cases of SND and SDS, the pontine base and the middle cerebellar peduncle appeared as high signal intensity on T 2 weighted image and as low intensity on T 1 , suggesting degeneration and demyelination. In a few cases of OPCA, the dorsolateral part of the putamen were demonstrated as low signal intensity on T 2 weighted image. (author)

  2. Machine Learning-based Individual Assessment of Cortical Atrophy Pattern in Alzheimer's Disease Spectrum: Development of the Classifier and Longitudinal Evaluation.

    Science.gov (United States)

    Lee, Jin San; Kim, Changsoo; Shin, Jeong-Hyeon; Cho, Hanna; Shin, Dae-Seock; Kim, Nakyoung; Kim, Hee Jin; Kim, Yeshin; Lockhart, Samuel N; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2018-03-07

    To develop a new method for measuring Alzheimer's disease (AD)-specific similarity of cortical atrophy patterns at the individual-level, we employed an individual-level machine learning algorithm. A total of 869 cognitively normal (CN) individuals and 473 patients with probable AD dementia who underwent high-resolution 3T brain MRI were included. We propose a machine learning-based method for measuring the similarity of an individual subject's cortical atrophy pattern with that of a representative AD patient cohort. In addition, we validated this similarity measure in two longitudinal cohorts consisting of 79 patients with amnestic-mild cognitive impairment (aMCI) and 27 patients with probable AD dementia. Surface-based morphometry classifier for discriminating AD from CN showed sensitivity and specificity values of 87.1% and 93.3%, respectively. In the longitudinal validation study, aMCI-converts had higher atrophy similarity at both baseline (p < 0.001) and first year visits (p < 0.001) relative to non-converters. Similarly, AD patients with faster decline had higher atrophy similarity than slower decliners at baseline (p = 0.042), first year (p = 0.028), and third year visits (p = 0.027). The AD-specific atrophy similarity measure is a novel approach for the prediction of dementia risk and for the evaluation of AD trajectories on an individual subject level.

  3. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    Science.gov (United States)

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Brain MRI findings of neuropsychiatric lupus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang-Wook; Kwon, Bae Ju; Lee, Seung-Ro; Hahm, Chang-Kok; Moon, Won Jin; Jeon, Eui Yong; Bae, Sang-Chul [Hanyang Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-12-01

    To evaluate the brain MRI findings in patients with neuropsychiatric lupus. In 26 patients (M:F = 2:24 ; aged 9-48 years) in whom the presence of systemic lupus erythematosus was clinically or pathologically proven and in whom neuropsychiatric lupus was also clinically diagnosed, the findings of brain MRI were retrospectively evaluated. MR images were analyzed with regard to the distribution, location, size and number of lesions due to cerebral ischemia or infarction, the presence of cerebral atrophy, and the extent and degree of brain parenchymal and intravascular enhancement. The most common MRI findings were lesions due to cerebral ischemia or infarction occurring in 18 patients (69%), and located within deep periventricular white matter (n=10), subcortical white matter (n=8), the cerebral cortex (n=7), basal ganglia (n=7), or brain stem or cerebellum (n=2). The lesions were single (n=3) or multiple (n=15), and in 17 patients were less than 1cm in diameter in regions other than the cerebral cortex. In six of these patients, lesions of 1-4cm in diameter in this region were combined, and one occurred in the cerebral cortex only. Cerebral atrophy was seen in 16 patients (62%), in ten of whom there was no past history of treatment with steroids for more than six months. In 15 patients (58%), contrast-enhanced MR image revealed diffuse enhancement of the basal ganglia or intravascular enhancement. In no case were MRI findings normal. The primary mainfestations of neuropsychiatric lupus are multifocal ischemia or infarctions in the cerebral cortex, and subcortical and deep white matter, and the cerebral atrophy. Contrast-enhanced MR images also demonstrated diffuse enhancement of the basal ganglia and intravascular enhancement, both thought to be related to the congestion due to the stagnation of cerebral blood flow.

  5. Brain MRI findings of neuropsychiatric lupus

    International Nuclear Information System (INIS)

    Kim, Jang-Wook; Kwon, Bae Ju; Lee, Seung-Ro; Hahm, Chang-Kok; Moon, Won Jin; Jeon, Eui Yong; Bae, Sang-Chul

    2000-01-01

    To evaluate the brain MRI findings in patients with neuropsychiatric lupus. In 26 patients (M:F = 2:24 ; aged 9-48 years) in whom the presence of systemic lupus erythematosus was clinically or pathologically proven and in whom neuropsychiatric lupus was also clinically diagnosed, the findings of brain MRI were retrospectively evaluated. MR images were analyzed with regard to the distribution, location, size and number of lesions due to cerebral ischemia or infarction, the presence of cerebral atrophy, and the extent and degree of brain parenchymal and intravascular enhancement. The most common MRI findings were lesions due to cerebral ischemia or infarction occurring in 18 patients (69%), and located within deep periventricular white matter (n=10), subcortical white matter (n=8), the cerebral cortex (n=7), basal ganglia (n=7), or brain stem or cerebellum (n=2). The lesions were single (n=3) or multiple (n=15), and in 17 patients were less than 1cm in diameter in regions other than the cerebral cortex. In six of these patients, lesions of 1-4cm in diameter in this region were combined, and one occurred in the cerebral cortex only. Cerebral atrophy was seen in 16 patients (62%), in ten of whom there was no past history of treatment with steroids for more than six months. In 15 patients (58%), contrast-enhanced MR image revealed diffuse enhancement of the basal ganglia or intravascular enhancement. In no case were MRI findings normal. The primary mainfestations of neuropsychiatric lupus are multifocal ischemia or infarctions in the cerebral cortex, and subcortical and deep white matter, and the cerebral atrophy. Contrast-enhanced MR images also demonstrated diffuse enhancement of the basal ganglia and intravascular enhancement, both thought to be related to the congestion due to the stagnation of cerebral blood flow

  6. Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients.

    Directory of Open Access Journals (Sweden)

    Lucia V Schottlaender

    Full Text Available The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10 in brain tissue of multiple system atrophy (MSA patients differ from those in elderly controls and in patients with other neurodegenerative diseases.Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA type, 6 striatonigral degeneration (SND type, and 5 mixed type] was used for this study. Elderly controls (n = 37 as well as idiopathic Parkinson's disease (n = 7, dementia with Lewy bodies (n = 20, corticobasal degeneration (n = 15 and cerebellar ataxia (n = 18 patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.We detected a statistically significant decrease (by 3-5% in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001, specifically in OPCA (P = 0.001 and mixed cases (P = 0.005, when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001, idiopathic Parkinson's disease (P<0.001, corticobasal degeneration (P<0.001, and cerebellar ataxia (P = 0.001].Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.

  7. Brain volume and cognitive function in patients with revascularized coronary artery disease

    NARCIS (Netherlands)

    Ottens, Thomas H; Hendrikse, Jeroen; Nathoe, Hendrik M; Biessels, Geert Jan; van Dijk, Diederik

    2017-01-01

    BACKGROUND: The pathogenesis of cognitive dysfunction in patients with CAD remains unclear. CAD is associated with brain atrophy and specific lesions. Detailed knowledge about the association of brain volume measured with MRI, and cognitive function in patients with CAD is lacking. We therefore

  8. Computerized tomography of the brain in senile depression

    International Nuclear Information System (INIS)

    Yoshimura, Yoshitaka

    1995-01-01

    Brain CT was performed on 33 senile depression patients. Sixteen healthy volunteers served as controls. The correlation between changes of brain CT findings and mental symtoms was also studied. The CT findings were assessed by visual, linear, and two-dimensional methods, and mental symptoms were assessed according to Hamilton's Psychiatric Rating Scale for Depression. Arophic changes were observed in the bilateral frontal lobe and left basal ganglia areas. The correlation between severity of atrophy and mental symptom profile of depression was suggested. Depression patients, especially with marked atrophy in the frontal lobe, were prone to be indifferent to their job and hobby, to depress psychomotor, and to show marked physical symptoms. The atrophic sites observed in depression patients were also common in dementia, suggesting the correlation between senile depression and dementia. (S.Y.)

  9. MRI study of degenerative process in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Yagishita, Toshiyuki; Kojima, Shigeyuki; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine

    1995-02-01

    The characteristic morphological changes of the brainstem and cerebellar regions of multiple system atrophy (MSA) were studied by MRI in varing subtypes, that is olivoponto cerebellar atrophy (OPCA: 23 cases), striatonigral degeneration (SND: 7 cases) and Shy-Drager`s syndrome (SDS: 9 cases). OPCA was characterized by atrophy of the entire regions of the brainstem and the cerebellum. SND and SDS tended to show atrophy similar in type but lessin extent to OPCA. The common lesions in MSA were atrophy of the pontine base and cerebellum, and dilation of the fourth ventricle. Atrophy of the pontine base was more dominant in the inferior part than in the superior part, and cerebellar atrophy was more dominant in the superior part than in the inferior part, indicating that degeneration of the pontocerebellar pathway proceeds principally along fibers connecting the inferior part of the pons and the superior part of the cerebellum. Dilation of the fourth ventricle indicated atrophy of the middle cerebellar peduncle. In almost all the cases of OPCA and about a half the cases of SND and SDS, the pontine base and the middle cerebellar peduncle appeared as high signal intensity on T{sub 2} weighted image and as low intensity on T{sub 1}, suggesting degeneration and demyelination. In a few cases of OPCA, the dorsolateral part of the putamen were demonstrated as low signal intensity on T{sub 2} weighted image. (author).

  10. Traumatic Brain Injury Severity, Neuropathophysiology, and Clinical Outcome: Insights from Multimodal Neuroimaging

    Directory of Open Access Journals (Sweden)

    Andrei Irimia

    2017-10-01

    Full Text Available BackgroundThe relationship between the acute clinical presentation of patients with traumatic brain injury (TBI, long-term changes in brain structure prompted by injury and chronic functional outcome is insufficiently understood. In this preliminary study, we investigate how acute Glasgow coma score (GCS and epileptic seizure occurrence after TBIs are statistically related to functional outcome (as quantified using the Glasgow Outcome Score and to the extent of cortical thinning observed 6 months after the traumatic event.MethodsUsing multivariate linear regression, the extent to which the acute GCS and epileptic seizure occurrence (predictor variables correlate with structural brain changes (relative cortical atrophy was examined in a group of 33 TBI patients. The statistical significance of the correlation between relative cortical atrophy and the Glasgow Outcome Score was also investigated.ResultsA statistically significant correlative relationship between cortical thinning and the predictor variables (acute GCS and seizure occurrence was identified in the study sample. Regions where the statistical model was found to have highest statistical reliability in predicting both gray matter atrophy and neurological outcome include the frontopolar, middle frontal, postcentral, paracentral, middle temporal, angular, and lingual gyri. In addition, relative atrophy and GOS were also found to be significantly correlated over large portions of the cortex.ConclusionThis study contributes to our understanding of the relationship between clinical descriptors of acute TBI, the extent of injury-related chronic brain changes and neurological outcome. This is partly because the brain areas where cortical thinning was found to be correlated with GCS and with seizure occurrence are implicated in executive control, sensory function, motor acuity, memory, and language, all of which may be affected by TBI. Thus, our quantification suggests the existence of a

  11. Hypomelanosis of Ito and brain abnormalities: MRI findings and literature review

    International Nuclear Information System (INIS)

    Steiner, J.; Adamsbaum, C.; Desguerres, I.; Lalande, G.; Raynaud, F.; Ponsot, G.; Kalifa, G.

    1996-01-01

    We report the results of a 14-year retrospective study of brain MRI abnormalities in 12 pediatric patients presenting with hypomelanosis of Ito (HI). Miscellaneous brain abnormalities were found: one patient had a medulloblastoma, three had cortical malformations, and five demonstrated ''minor'' abnormalities such as dilated Virchow-Robin spaces or brain atrophy. We emphasize the polymorphism of brain abnormalities associated with HI. (orig.). With 5 figs., 1 tab

  12. Novel in vitro platform to investigate myotube atrophy

    OpenAIRE

    Oelkrug, Christopher; Horn, Katharina; Makert, Gustavo R.; Schubert, Andreas

    2015-01-01

    The electrical current exclusion (ECE) principle provides an alternative to common methods of cell diameter measurement and especially in atrophy and cancer associated cachexia research. C2C12 myoblasts were differentiated into myotubes and treated with 100 μM dexamethasone to induce atrophy in vitro. Subsequently, they were incubated for 24 h with media containing different concentrations of curcumin and/or branched-chain amino acids (BCAAs) in order to counteract atrophy. After treatment wi...

  13. Bilateral optical nerve atrophy secondary to lateral occipital lobe infarction.

    Science.gov (United States)

    Mao, Junfeng; Wei, Shihui

    2013-06-01

    To report a phenomenon of optical nerve atrophy secondary to lateral occipital lobe infarction. Two successive patients with unilateral occipital lobe infarction who experienced bilateral optical nerve atrophy during the follow-up underwent cranial imaging, fundus photography, and campimetry. Each patient was diagnosed with occipital lobe infarction by cranial MRI. During the follow-up, a bilateral optic atrophy was revealed, and campimetry showed a right homonymous hemianopia of both eyes with concomitant macular division. Bilateral optic atrophy was related to occipital lobe infarction, and a possible explanation for the atrophy was transneuronal degeneration caused by occipital lobe infarction.

  14. Agreement between different input image types in brain atrophy measurement in multiple sclerosis using SIENAX and SIENA

    NARCIS (Netherlands)

    Neacsu, V.; Jasperse, B.; Korteweg, T.; Knol, D.L.; Valsasina, P.; Filippi, M.; Barkhof, F.; Rovaris, M.; Vrenken, H.

    2008-01-01

    Purpose: To investigate whether multiple sclerosis (MS) atrophy can be assessed by SIENA and SIENAX software using other image types from MS research protocols than T1-weighted images without contrast agent, which are not always available. Materials and Methods: We selected 46 MS patients with

  15. Braille alexia during visual hallucination in a blind man with selective calcarine atrophy.

    Science.gov (United States)

    Maeda, Kengo; Yasuda, Hitoshi; Haneda, Masakazu; Kashiwagi, Atsunori

    2003-04-01

    The case of a 56-year-old man who has been blind for 25 years due to retinal degeneration is herein described. The patient complained of elementary visual hallucination, during which it was difficult for him to read Braille. Brain magnetic resonance imaging showed marked atrophy of the bilateral striate cortex. Visual hallucination as a release phenomenon of the primary visual cortex has never been reported to cause alexia for Braille. The present case supports the results of recent functional imaging studies of the recruitment of striate and prestriate cortex for Braille reading.

  16. Characterization of disuse skeletal muscle atrophy and the efficacy of a novel muscle atrophy countermeasure during spaceflight and simulated microgravity

    Science.gov (United States)

    Hanson, Andrea Marie

    Humans are an integral part of the engineered systems that will enable return to the Moon and eventually travel to Mars. Major advancements in countermeasure development addressing deleterious effects of microgravity and reduced gravity on the musculoskeletal system need to be made to ensure mission safety and success. The primary objectives of this dissertation are to advance the knowledge and understanding of skeletal muscle atrophy, and support development of novel countermeasures for disuse atrophy to enable healthy long-duration human spaceflight. Models simulating microgravity and actual spaceflight were used to examine the musculoskeletal adaptations during periods of unloading. Myostatin inhibition, a novel anti-atrophy drug therapy, and exercise were examined as a means of preventing and recovering from disuse atrophy. A combination of assays was used to quantify adaptation responses to unloading and examine efficacy of the countermeasures. Body and muscle masses were collected to analyze systemic changes due to treatments. Hindlimb strength and individual muscle forces were measured to demonstrate functional adaptations to treatments. Muscle fiber morphology and myosin heavy chain (MHC) expression was examined to identify adaptations at the cellular level. Protein synthesis signals insulin-like growth factor-1 (IGF-1), Akt, and p70s6 kinase; and the degradation signals Atrogin-1 and MuRF-1 were examined to identify adaptations at the molecular level that ultimately lead to muscle hypertrophy and atrophy. A time course study provided a thorough characterization of the adaptation of skeletal muscle during unloading in C57BL/6 mice, and baseline data for comparison to and evaluation of subsequent studies. Time points defining the on-set and endpoints of disuse muscle atrophy were identified to enable characterization of rapid vs. long-term responses of skeletal muscle to hindlimb suspension. Unloading-induced atrophy primarily resulted from increased protein

  17. Effects of smoking on brain aging, 2

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Matsuzawa, Taiju; Fujiwara, Takehiko

    1985-01-01

    Brain atrophy during normal aging and its relation to chronic smoking was studied using quantitative volumetric measurements of computed tomography. Study was performed about 159 smokers and 194 non-smokers with no neurological abnormality nor focal abnormality in CT scans. Each pixel of head CT scans was computed and Brain Volume Index (BVI) was calculated. BVI showed a significant decrease in smokers compared to non-smokers in three age groups, 50-to-54, 55-to-59 (p < 0.001, both) and 65-to-69 (p < 0.05). A dose-response study in the male showed that BVI in smokers was significantly lower than that for non smokers. Mean BVI tended to decrease when the smoking index increased but the trend was not significant. The systolic blood pressure and serum triglycrides of smokers were significantly higher than non-smokers (p < 0.002 and p < 0.05). It was suggested that age-related brain atrophy was enhanced by chronic smoking. Previously we showed that cerebral blood flow (CBF) was significantly lower in smokers than in non-smokers. Then, we suggest the following hypothesis; smoking chronically advances atherosclerosis, both atherosclerosis and high blood pressure reduce CBF, reduced CBF accelerated the lose of neurons which finally renders the brain atrophic. (author)

  18. One-Dimensional-Ratio Measures of Atrophy Progression in Multiple Sclerosis as Evaluated by Longitudinal Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Martola, J.; Wiberg Kristoffersen, M.; Aspelin, P.; Stawiarz, L.; Fredrikson, S.; Hillert, J.; Bergstroem, J.; Flodmark, O.

    2009-01-01

    Background: For decades, normalized one-dimensional (1D) measures have been used in the evaluation of brain atrophy. In multiple sclerosis (MS), the use of normalized linear measures over longitudinal follow-up remains insufficiently documented. Purpose: To evaluate the association between different regional atrophy measures and disability in MS patients over four decades in a longitudinal cross-sectional study. Material and Methods: 37 consecutively selected MS patients were included. At baseline, patients had a range of disease duration (1-33 years) and age (24-65 years). Each patient was followed by magnetic resonance imaging (MRI) for a mean of 9.25 years (range 7.3-10 years). Four 1D measures were applied at three time points on axial 5-mm T1-weighted images. Three clinical MS subgroups were represented: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). Results: There were significant changes in all 1D ratios during follow-up. The Evans ratio (ER) and the bifrontal ratio (BFR) were associated with the development of disability. Changes of ER and BFR reflected more aggressive disease progression, as expressed by MS severity score (MSSS). Conclusion: All four normalized ratios showed uniform atrophy progression, suggesting a consistent rate of atrophy over long-term disease duration independent of MS course. Disability status correlated with 1D measures, suggesting that serial evaluation of Evans and bifrontal ratios might contribute to the radiological evaluation of MS patients

  19. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    International Nuclear Information System (INIS)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng

    2001-01-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain

  20. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-09-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain.

  1. Orphan disease: Cherubism, optic atrophy, and short stature.

    Science.gov (United States)

    Jeevanandham, Balaji; Ramachandran, Rajoo; Dhanapal, Vignesh; Subramanian, Ilanchezhian; Sai, Venkata

    2018-01-01

    A 12-year-old female presented with complaints of progressive visual impairment in both her eyes. On clinical examination, she was short for her age and her ophthalmoscopic examination revealed bilateral optic atrophy. Computed tomography of the patient revealed multiple expansile lytic lesions of mandible suggesting cherubism. The optic atrophy was confirmed on magnetic resonance imaging, which additionally revealed bilateral retrocerebellar arachnoid cysts. This association of cherubism with optic atrophy and short stature was grouped as orphan disease by National Institutes of Health and only one case was reported in the literature so far.

  2. Botulinum Toxin and Muscle Atrophy: A Wanted or Unwanted Effect.

    Science.gov (United States)

    Durand, Paul D; Couto, Rafael A; Isakov, Raymond; Yoo, Donald B; Azizzadeh, Babak; Guyuron, Bahman; Zins, James E

    2016-04-01

    While the facial rejuvenating effect of botulinum toxin type A is well known and widespread, its use in body and facial contouring is less common. We first describe its use for deliberate muscle volume reduction, and then document instances of unanticipated and undesirable muscle atrophy. Finally, we investigate the potential long-term adverse effects of botulinum toxin-induced muscle atrophy. Although the use of botulinum toxin type A in the cosmetic patient has been extensively studied, there are several questions yet to be addressed. Does prolonged botulinum toxin treatment increase its duration of action? What is the mechanism of muscle atrophy and what is the cause of its reversibility once treatment has stopped? We proceed to examine how prolonged chemodenervation with botulinum toxin can increase its duration of effect and potentially contribute to muscle atrophy. Instances of inadvertent botulinum toxin-induced atrophy are also described. These include the "hourglass deformity" secondary to botulinum toxin type A treatment for migraine headaches, and a patient with atrophy of multiple facial muscles from injections for hemifacial spasm. Numerous reports demonstrate that muscle atrophy after botulinum toxin type A treatment occurs and is both reversible and temporary, with current literature supporting the notion that repeated chemodenervation with botulinum toxin likely responsible for both therapeutic and incidental temporary muscle atrophy. Furthermore, duration of response may be increased with subsequent treatments, thus minimizing frequency of reinjection. Practitioners should be aware of the temporary and reversible effect of botulinum toxin-induced muscle atrophy and be prepared to reassure patients on this matter. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  3. Muscle atrophy in patients wirh ckd results from fgf23/klotho-mediated supression of insulin/igf-i signaling

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    2012-06-01

    Full Text Available Muscle atrophy is a significant consequence of chronic kidney disease (CKD that increases a patient’s risk of mortality and decrease their quality of life. In CKD patients, the circulation levels of FGF23 are significantly increased, but the exact pathological significance of the increase and relationship between FGF23 and muscle atrophy are not clear. Because of Klohto, acts as a co-receptor of FGF23 is detectable in limited tissues including in kidney and brain, but not in skeletal muscles. In contrast, recently reports indicated that the extracellular domain of klohto is cleavage for some reason on the cell surface and detected in the blood in animals. In this study, we attempted to identify the causative factors responsible for the shedding of Klotho, and whether both FGF23 and Klohto induced muscle atrophy via reduction of insulin/IGF-I signaling. We first investigated by treating kidney cells with various factors related in pathological factors in CKD. As a result, we found that advanced glycation endproducts (AGEs, an accumulated in patients with CKD and diabetes mellitus, increases shedding of Klohto in kidney cells. It is common knowledge that insulin/IGF-I signaling is necessary for normal skeletal growth. As a result, we showed that both FGF23 and Klohto inhibited differentiation of cultured skeletal muscle cells through down-regulation of insulin/IGF-I signaling. These observations suggested a divergent role of FGF23 and soluble klohto in the regulation of skeletal muscle differentiation and thereby muscle atrophy under pathological conditioned in CKD patients. Our results further imply that FGF23/Klohto may serve a new therapeutic target for CKD-induced muscle atrophy.

  4. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  5. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review.

    Science.gov (United States)

    Last, Nicole; Tufts, Emily; Auger, Leslie E

    2017-01-01

    The present systematic review is based on the premise that a variety of neurodegenerative diseases are accompanied by grey matter atrophy in the brain and meditation may impact this. Given that age is a major risk factor for many of these progressive and neurodegenerative diseases and that the percentage of the population over the age of 65 is quickly increasing, there is an obvious need for prompt treatment and prevention advances in research. As there is currently no cure for Alzheimer's disease and other neurodegenerative diseases, many are seeking non-pharmacological treatment options in attempts to offset the disease-related cognitive and functional declines. On the basis of a growing body of research suggesting that meditation is effective in increasing grey matter volume in healthy participants, this paper systematically reviewed the literature regarding the effects of meditation on restoring grey matter volume in healthy individuals and those affected by neurodegeneration. This review searched PubMed, CINAHL, and APA PsycNET to identify original studies that included MRI imaging to measure grey matter volume in meditators and post-mindfulness-based intervention participants compared to controls. Thirteen studies were considered eligible for review and involved a wide variety of meditation techniques and included participants with and without cognitive impairment. All studies reported significant increases in grey matter volume in the meditators/intervention group, albeit in assorted regions of the brain. Limited research exists on the mechanisms through which meditation affects disease-related neurodegeneration, but preliminary evidence suggests that it may offset grey matter atrophy.

  6. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study

    Directory of Open Access Journals (Sweden)

    Christiane Möller

    2015-01-01

    Full Text Available We investigated the ability of cortical and subcortical gray matter (GM atrophy in combination with white matter (WM integrity to distinguish behavioral variant frontotemporal dementia (bvFTD from Alzheimer's disease (AD and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA and higher mean (MD, axial (L1 and radial diffusivity (L23 values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.

  7. Forever Young(er: Potential Age-defying Effects of Long-term Meditation on Gray Matter Atrophy

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2015-01-01

    Full Text Available While overall life expectancy has been increasing, the human brain still begins deteriorating after the first two decades of life and continues degrading further with increasing age. Thus, techniques that diminish the negative impact of aging on the brain are desirable. Existing research, although scarce, suggests meditation to be an attractive candidate in the quest for an accessible and inexpensive, efficacious remedy. Here, we examined the link between age and cerebral gray matter re-analyzing a large sample (n=100 of long-term meditators and control subjects aged between 24 and 77 years. When correlating global and local gray matter with age, we detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators. Moreover, the age-affected brain regions were much more extended in controls than in meditators, with significant group-by-age interactions in numerous clusters throughout the brain. Altogether, these findings seem to suggest less age-related gray matter atrophy in long-term meditation practitioners.

  8. Forever Young(er): potential age-defying effects of long-term meditation on gray matter atrophy

    Science.gov (United States)

    Luders, Eileen; Cherbuin, Nicolas; Kurth, Florian

    2015-01-01

    While overall life expectancy has been increasing, the human brain still begins deteriorating after the first two decades of life and continues degrading further with increasing age. Thus, techniques that diminish the negative impact of aging on the brain are desirable. Existing research, although scarce, suggests meditation to be an attractive candidate in the quest for an accessible and inexpensive, efficacious remedy. Here, we examined the link between age and cerebral gray matter re-analyzing a large sample (n = 100) of long-term meditators and control subjects aged between 24 and 77 years. When correlating global and local gray matter with age, we detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators. Moreover, the age-affected brain regions were much more extended in controls than in meditators, with significant group-by-age interactions in numerous clusters throughout the brain. Altogether, these findings seem to suggest less age-related gray matter atrophy in long-term meditation practitioners. PMID:25653628

  9. Orphan disease: Cherubism, optic atrophy, and short stature

    Directory of Open Access Journals (Sweden)

    Balaji Jeevanandham

    2018-01-01

    Full Text Available A 12-year-old female presented with complaints of progressive visual impairment in both her eyes. On clinical examination, she was short for her age and her ophthalmoscopic examination revealed bilateral optic atrophy. Computed tomography of the patient revealed multiple expansile lytic lesions of mandible suggesting cherubism. The optic atrophy was confirmed on magnetic resonance imaging, which additionally revealed bilateral retrocerebellar arachnoid cysts. This association of cherubism with optic atrophy and short stature was grouped as orphan disease by National Institutes of Health and only one case was reported in the literature so far.

  10. Crossed cerebellar atrophy in children: a neurologic sequela of extreme prematurity

    International Nuclear Information System (INIS)

    Rollins, N.K.; Wen, T.S.; Dominguez, R.

    1995-01-01

    We retrospectively identified eight children, aged 8 months to 13 years, in whom cerebellar atrophy associated with cerebral injury was diagnosed on MR or CT, and reviewed their past medical history, neurologic findings, and neuroimaging studies. Seven patients were born extremely premature, EGA 25-28 weeks, and had severe perinatal intracranial hemorrhage. Neurologic problems include severe developmental delay in seven, spastic paresis in six, and seizures in five. Neuroimaging showed severe unilaterial holohemispheric atrophy in four, bilateral asymmetric holohemispheric atrophy in two, and left temporoparietal atrophy in one. Cerebellar atrophy was unilateral in five and bilateral but asymmetric in two. Gliosis of the atrophic cerebellum occurred in one patient. Sequential neuroimaging in one patient showed evolution of crossed cerebellar atrophy at 8 months of age. The final patient, a term infant, had an idiopathic perinatal left cerebral infarct. (orig./MG)

  11. Early and Degressive Putamen Atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julia Krämer

    2015-09-01

    Full Text Available Putamen atrophy and its long-term progress during disease course were recently shown in patients with multiple sclerosis (MS. Here we investigated retrospectively the time point of atrophy onset in patients with relapsing-remitting MS (RRMS. 68 patients with RRMS and 26 healthy controls (HC were admitted to 3T MRI in a cross-sectional study. We quantitatively analyzed the putamen volume of individual patients in relation to disease duration by correcting for age and intracranial volume (ICV. Patient’s relative putamen volume (RPV, expressed in percent of ICV, was significantly reduced compared to HC. Based on the correlation between RPV and age, we computed the age-corrected RPV deviation (ΔRPV from HC. Patients showed significantly negative ΔRPV. Interestingly, the age-corrected ΔRPV depended logarithmically on disease duration: Directly after first symptom manifestation, patients already showed a reduced RPV followed by a further degressive volumetric decline. This means that atrophy progression was stronger in the first than in later years of disease. Putamen atrophy starts directly after initial symptom manifestation or even years before, and progresses in a degressive manner. Due to its important role in neurological functions, early detection of putamen atrophy seems necessary. High-resolution structural MRI allows monitoring of disease course.

  12. Evaluating Alzheimer's disease progression using rate of regional hippocampal atrophy.

    Directory of Open Access Journals (Sweden)

    Edit Frankó

    Full Text Available Alzheimer's disease (AD is characterized by neurofibrillary tangle and neuropil thread deposition, which ultimately results in neuronal loss. A large number of magnetic resonance imaging studies have reported a smaller hippocampus in AD patients as compared to healthy elderlies. Even though this difference is often interpreted as atrophy, it is only an indirect measurement. A more direct way of measuring the atrophy is to use repeated MRIs within the same individual. Even though several groups have used this appropriate approach, the pattern of hippocampal atrophy still remains unclear and difficult to relate to underlying pathophysiology. Here, in this longitudinal study, we aimed to map hippocampal atrophy rates in patients with AD, mild cognitive impairment (MCI and elderly controls. Data consisted of two MRI scans for each subject. The symmetric deformation field between the first and the second MRI was computed and mapped onto the three-dimensional hippocampal surface. The pattern of atrophy rate was similar in all three groups, but the rate was significantly higher in patients with AD than in control subjects. We also found higher atrophy rates in progressive MCI patients as compared to stable MCI, particularly in the antero-lateral portion of the right hippocampus. Importantly, the regions showing the highest atrophy rate correspond to those that were described to have the highest burden of tau deposition. Our results show that local hippocampal atrophy rate is a reliable biomarker of disease stage and progression and could also be considered as a method to objectively evaluate treatment effects.

  13. Different atrophy-hypertrophy transcription pathways in muscles affected by severe and mild spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Millino Caterina

    2009-04-01

    Full Text Available Abstract Background Spinal muscular atrophy (SMA is a neurodegenerative disorder associated with mutations of the survival motor neuron gene SMN and is characterized by muscle weakness and atrophy caused by degeneration of spinal motor neurons. SMN has a role in neurons but its deficiency may have a direct effect on muscle tissue. Methods We applied microarray and quantitative real-time PCR to study at transcriptional level the effects of a defective SMN gene in skeletal muscles affected by the two forms of SMA: the most severe type I and the mild type III. Results The two forms of SMA generated distinct expression signatures: the SMA III muscle transcriptome is close to that found under normal conditions, whereas in SMA I there is strong alteration of gene expression. Genes implicated in signal transduction were up-regulated in SMA III whereas those of energy metabolism and muscle contraction were consistently down-regulated in SMA I. The expression pattern of gene networks involved in atrophy signaling was completed by qRT-PCR, showing that specific pathways are involved, namely IGF/PI3K/Akt, TNF-α/p38 MAPK and Ras/ERK pathways. Conclusion Our study suggests a different picture of atrophy pathways in each of the two forms of SMA. In particular, p38 may be the regulator of protein synthesis in SMA I. The SMA III profile appears as the result of the concurrent presence of atrophic and hypertrophic fibers. This more favorable condition might be due to the over-expression of MTOR that, given its role in the activation of protein synthesis, could lead to compensatory hypertrophy in SMA III muscle fibers.

  14. A case of hepatic atrophy by irradiation

    International Nuclear Information System (INIS)

    Fukumoto, Takumi; Ku, Yonson; Saitoh, Yoichi

    1994-01-01

    A 44-year-old woman was treated with 60 Co irradiation (total dose 6000 rads) focused on the right side porta hepatis under the diagnosis of cholangiocarcinoma in 1975. Seventeen years after the treatment, she was admitted to our institution because of dull pain at right hypochondriac region. Adominal CT demonstrated an extreme hepatic atrophy and tumor mass in the right lobe of the liver. In November, 1991 right trisegmentectomy was performed under the diagnosis of hepatocellular carcinoma. Laparotomy revealed the extreme atrophy of the right lobe and associated hypertrophy of the left lobe of the liver. In this case radiation hepatitis occurred after irradiation to the liver and it was followed by the extreme hepatic atrophy as a long term effect of high dose irradiation on the liver. (author)

  15. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    Science.gov (United States)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  16. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy.

    Science.gov (United States)

    Lee, Yong-Hyeon; Seo, Dong-Hyun; Park, Ji-Hyung; Kabayama, Kazuya; Opitz, Joerg; Lee, Kwang Ho; Kim, Han-Sung; Kim, Tack-Joong

    2015-01-01

    Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS). This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP) on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy.

  17. Brain Perfusion SPECT Imaging in Sturge - Weber Syndrome : Comparison with MR Imaging

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Choi, Yun Young; Moon, Dae Hyuk; Yang, Seoung Oh; Ko, Tae Sung; Yoo, Shi Joon; Lee, Hee Kyung

    1996-01-01

    The purpose of this study was evaluate the characteristic perfusion changes in patients with Sturge-Weber syndrome by comparison of the findings of brain MR images and perfusion SPECT images. 99m Tc-HMPAO or 99m Tc-ECD interictal brain SPECTs were performed on 5 pediatric patients with Struge-Weber syndrome within 2 weeks after MR imaging. Brain SPECTs of three patients without calcification showed diminished perfusion in the affected area on MR image. A 3 month-old patient without brain atrophy or calcification demonstrated paradoxical hyperperfusion in the affected hemisphere, and follow-up perfusion SPECT revealed decreased perfusion in the same area. The other patient with advanced calcified lesion and atrophy on MR image showed diffusely decreased perfusion in the affected hemisphere, but a focal area of increased perfusion was also noted in the ipsilateral temporal lobe on SPECT. In conclusion, brain perfusion of the affected area of Sturge-Weber syndrome patients was usually diminished, but early or advanced patients may show paradoxical diffuse or focal hyperperfusion in the affected hemisphere. Further studies are needed for better understanding of these perfusion changes and pathophysiology of Struge-Weber syndrome.

  18. Studies of computed tomography as a contribution to differential diagnosis between dementia due to cerebrovascular disease (multi-infract type) and due to primarily degenerative cerebral atrophy (Alzheimers type)

    International Nuclear Information System (INIS)

    Kohlmeyer, K.

    1982-01-01

    Studies of computed tomography were performed in 367 patients diagnosed as dementia clinically. The mean age was 70.1 years. By the clinicians 240 were classified as senile dementia of Alzheimer's type, 79 as multiinfarct dementia, and 48 were not determined definitely. In 3%, the CT studies did detect treatable causes like tumors, subdural hematomas and communicating hydrocephalus. In about 57% was found by CT a diffuse brain atrophy without focal tissue changes as to expect if occurring a cerebrovascular disease. In 25% there were focal changes of the brain tissue in CT to define as residuals of infarctions in addition to the signs of cerebral atrophy. The results of the CT studies were normal in 15% despite of the evidence of dementia clinically. The analysis of the material did show that a cerebrovascular disease as a cause of dementia is suspected clinically in much more cases than CT studies are able to prove focal pathological changes of the brain tissue due to disorders of cerebral blood flow really. (orig.) [de

  19. Reviewing the options for local estrogen treatment of vaginal atrophy

    Directory of Open Access Journals (Sweden)

    Lindahl SH

    2014-03-01

    Full Text Available Sarah H Lindahl Sutter East Bay Medical Foundation, SEBMF – Diablo Division, Castro Valley, CA, USA Background: Vaginal atrophy is a chronic condition with symptoms that include vaginal dryness, pain during sex, itching, irritation, burning, and discharge, as well as various urinary problems. Up to 45% of postmenopausal women may be affected, but it often remains underreported and undertreated. This article aims to review the current recommendations for treatment of vaginal atrophy, and current data on the effectiveness and safety of local vaginal estrogen therapies. Methods: Literature regarding vaginal atrophy (2007–2012 was retrieved from PubMed and summarized, with emphasis on data related to the treatment of vaginal atrophy with local vaginal estrogen therapy. Results: Published data support the effectiveness and endometrial safety of low-dose local estrogen therapies. These results further support the general recommendation by the North American Menopause Society that a progestogen is not needed for endometrial protection in patients using low-dose local vaginal estrogen. Benefits of long-term therapy for vaginal atrophy include sustained relief of symptoms as well as physiological improvements (eg, decreased vaginal pH and increased blood flow, epithelial thickness, secretions. Conclusion: Currently available local vaginal estrogen therapies are well tolerated and effective in relieving symptoms of vaginal atrophy. Recent data support the endometrial safety of low-dose regimens for up to 1 year. Keywords: menopause, estrogen, local estrogen therapy, vaginal atrophy

  20. Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale

    Science.gov (United States)

    Bickart, Kevin C; Brickhouse, Michael; Negreira, Alyson; Sapolsky, Daisy

    2015-01-01

    Patients with frontotemporal dementia (FTD) often exhibit prominent, early and progressive impairments in social behaviour. We developed the Social Impairment Rating Scale (SIRS), rated by a clinician after a structured interview, which grades the types and severity of social behavioural symptoms in seven domains. In 20 FTD patients, we used the SIRS to study the anatomic basis of social impairments. In support of hypotheses generated from a prior study of healthy adults, we found that the relative magnitude of brain atrophy in three partially dissociable corticolimbic networks anchored in the amygdala predicted the severity of distinct social impairments measured using the SIRS. Patients with the greatest atrophy in a mesolimbic, reward-related (affiliation) network exhibited the most severe socioemotional detachment, whereas patients with the greatest atrophy in an interoceptive, pain-related (aversion) network exhibited the most severe lack of social apprehension. Patients with the greatest atrophy in a perceptual network exhibited the most severe lack of awareness or understanding of others’ social and emotional behaviour. Our findings underscore observations that FTD is associated with heterogeneous social symptoms that can be understood in a refined manner by measuring impairments in component processes subserved by dissociable neural networks. Furthermore, these findings support the validity of the SIRS as an instrument to measure the social symptoms of patients with FTD. Ultimately, we hope it will be useful as a longitudinal outcome measure in natural history studies and in clinical trials of putative interventions to improve social functioning. PMID:24133285

  1. What is ''normal aging brain for his/her age'' ? The first report

    International Nuclear Information System (INIS)

    Taki, Yasuyuki; Kinomura, Shigeo; Goto, Ryoi

    2005-01-01

    We evaluated the correlations between the gray matter volume, white matter volume and age, and determined normal aging brain for his/her age in every decade. We analyzed magnetic resonance images of the brain from 828 normal Japanese subjects. Significant negative correlation between the gray matter ratio (ratio of the gray matter volume in intracranial volume) and age was shown. From these results, we determined ''normal aging brain for his/her age'' and ''atrophied brain for his/her age'' in every decade. (author)

  2. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    Science.gov (United States)

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  3. The effect of partial agonist of serotonin-1A receptor on cognitive functions in animal model of schizophrenia

    OpenAIRE

    Antošová, Eliška

    2011-01-01

    Serotoin is a neurotransmitter participating in regulation of many physiologic fuctions. Main serotogenous neurons can be found in nukleus raphe of the brain stem. Nucleus raphe inervates many areas of the brain including the cerebal cortex and hipocampus. These structures are important for controling of higher cognitive functions. 5HT1A receptor is one of many subtypes of serotonin receptors and its activation inhibits iniciating of the action potencials. 5HT1A receptor is expressed presynap...

  4. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Hayashi, Norio; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Sanada, Shigeru; Suzuki, Masayuki; Matsui, Osamu

    2008-01-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: segmentation of the brain region; separation between the cerebrum and the cerebellum-brain stem; and segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain. (author)

  5. Novel in vitro platform to investigate myotube atrophy.

    Science.gov (United States)

    Oelkrug, Christopher; Horn, Katharina; Makert, Gustavo R; Schubert, Andreas

    2015-04-01

    The electrical current exclusion (ECE) principle provides an alternative to common methods of cell diameter measurement and especially in atrophy and cancer associated cachexia research. C2C12 myoblasts were differentiated into myotubes and treated with 100 μM dexamethasone to induce atrophy in vitro. Subsequently, they were incubated for 24 h with media containing different concentrations of curcumin and/or branched-chain amino acids (BCAAs) in order to counteract atrophy. After treatment with curcumin, an increase in cell diameter was detectable; the highest increase with 13.9 ± 0.4% was seen with 10 μM curcumin. The combination of curcumin and BCAAs showed an increase of 13.4 ± 1.2 %. Cell diameter measurement via the ECE showed that curcumin, and curcumin in combination with BCAAs, were able to restore atrophic C2C12 myotubes. Therefore, the application of ECE in muscle atrophy and also cancer-associated cachexia research allows rapid screening of novel compounds in order to test their efficacy in vitro. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Association of Progressive Cerebellar Atrophy With Long-term Outcome in Patients With Anti-N-Methyl-d-Aspartate Receptor Encephalitis.

    Science.gov (United States)

    Iizuka, Takahiro; Kaneko, Juntaro; Tominaga, Naomi; Someko, Hidehiro; Nakamura, Masaaki; Ishima, Daisuke; Kitamura, Eiji; Masuda, Ray; Oguni, Eiichi; Yanagisawa, Toshiyuki; Kanazawa, Naomi; Dalmau, Josep; Nishiyama, Kazutoshi

    2016-06-01

    Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disorder that occurs with IgG antibodies against the GluN1 subunit of NMDAR. Some patients develop reversible diffuse cerebral atrophy (DCA), but the long-term clinical significance of progressive brain and cerebellar atrophy is unknown. To report the long-term clinical implications of DCA and cerebellar atrophy in anti-NMDAR encephalitis. A retrospective observational study and long-term imaging investigation was conducted in the Department of Neurology at Kitasato University. Fifteen patients with anti-NMDAR encephalitis admitted to Kitasato University Hospital between January 1, 1999, and December 31, 2014, were included; data analysis was conducted between July 15, 2015, and January 18, 2016. Neurologic examination, immunotherapy, and magnetic resonance imaging (MRI) studies were performed. Long-term MRI changes in association with disease severity, serious complications (eg, pulmonary embolism, septic shock, and rhabdomyolysis), treatment, and outcome. The clinical outcome of 15 patients (median age, 21 years, [range, 14-46 years]; 10 [67%] female) was evaluated after a median follow-up of 68 months (range, 10-179 months). Thirteen patients (87%) received first-line immunotherapy (intravenous high-dose methylprednisolone, intravenous immunoglobulin, and plasma exchange alone or combined), and 4 individuals (27%) also received cyclophosphamide; 2 patients (13%) did not receive immunotherapy. In 5 patients (33%), ovarian teratoma was found and removed. Serious complications developed in 4 patients (27%). Follow-up MRI revealed DCA in 5 patients (33%) that, in 2 individuals (13%), was associated with progressive cerebellar atrophy. Long-term outcome was good in 13 patients (87%) and poor in the other 2 individuals (13%). Although cerebellar atrophy was associated with poor long-term outcome (2 of 2 vs 0 of 13 patients; P = .01), other features, such as DCA without cerebellar atrophy

  7. Effect of Oenothera odorata Root Extract on Microgravity and Disuse-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Yong-Hyeon Lee

    2015-01-01

    Full Text Available Muscle atrophy, a reduction of muscle mass, strength, and volume, results from reduced muscle use and plays a key role in various muscular diseases. In the microgravity environment of space especially, muscle atrophy is induced by muscle inactivity. Exposure to microgravity induces muscle atrophy through several biological effects, including associations with reactive oxygen species (ROS. This study used 3D-clinostat to investigate muscle atrophy caused by oxidative stress in vitro, and sciatic denervation was used to investigate muscle atrophy in vivo. We assessed the effect of Oenothera odorata root extract (EVP on muscle atrophy. EVP helped recover cell viability in C2C12 myoblasts exposed to microgravity for 24 h and delayed muscle atrophy in sciatic denervated mice. However, the expressions of HSP70, SOD1, and ceramide in microgravity-exposed C2C12 myoblasts and in sciatic denervated mice were either decreased or completely inhibited. These results suggested that EVP can be expected to have a positive effect on muscle atrophy by disuse and microgravity. In addition, EVP helped characterize the antioxidant function in muscle atrophy.

  8. Spinal Muscular Atrophy FAQ

    Science.gov (United States)

    ... as ALS (Lou Gehrig’s Disease), cystic fibrosis and Duchenne muscular dystrophy. Approximately 1 in 50 Americans, or about 6 ... Pediatric Neuromuscular Clinical Research Network ( PNCR ) and the Muscular ... is the SMN2 gene? Muscle weakness and atrophy in SMA results from the ...

  9. Reversible brain shrinkage in abstinent alcoholics, measured by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, G.; Naegele, T.; Klose, U.; Petersen, D.; Mann, K.

    1988-11-01

    Magnetic resonance imaging of the intracranial CSF volume was compared before and after 5 weeks of confirmed abstinence in 9 alcohol-dependent patients. All patients showed a highly significant reduction in CSF volume in accordance with reexpansion of the brain after alcohol abstinence. T2 values for white matter, estimated by linear regression from 16 echoes of a CPGM sequence, however, showed no significant increase such as occurs in rehydration. This indicates, that alcohol-induced reversible brain atrophy cannot be attributed to fluctuation of free water in the brain only.

  10. Regional patterns of grey matter atrophy and magnetisation transfer ratio abnormalities in multiple sclerosis clinical subgroups: a voxel-based analysis study.

    Science.gov (United States)

    Mallik, Shahrukh; Muhlert, Nils; Samson, Rebecca S; Sethi, Varun; Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2015-04-01

    In multiple sclerosis (MS), demyelination and neuro-axonal loss occur in the brain grey matter (GM). We used magnetic resonance imaging (MRI) measures of GM magnetisation transfer ratio (MTR) and volume to assess the regional localisation of reduced MTR (reflecting demyelination) and atrophy (reflecting neuro-axonal loss) in relapsing-remitting MS (RRMS), secondary progressive MS (SPMS) and primary progressive MS (PPMS). A total of 98 people with MS (51 RRMS, 28 SPMS, 19 PPMS) and 29 controls had T1-weighted volumetric and magnetisation transfer scans. SPM8 was used to undertake voxel-based analysis (VBA) of GM tissue volumes and MTR. MS subgroups were compared with controls, adjusting for age and gender. A voxel-by-voxel basis correlation analysis between MTR and volume within each subject group was performed, using biological parametric mapping. MTR reduction was more extensive than atrophy. RRMS and SPMS patients showed proportionately more atrophy in the deep GM. SPMS and PPMS patients showed proportionately greater cortical MTR reduction. RRMS patients demonstrated the most correlation of MTR reduction and atrophy in deep GM. In SPMS and PPMS patients, there was less extensive correlation. These results suggest that in the deep GM of RRMS patients, demyelination and neuro-axonal loss may be linked, while in SPMS and PPMS patients, neuro-axonal loss and demyelination may occur mostly independently. © The Author(s), 2014.

  11. Early brain vulnerability in Wolfram syndrome.

    Directory of Open Access Journals (Sweden)

    Tamara Hershey

    Full Text Available Wolfram Syndrome (WFS is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development.

  12. Early Brain Vulnerability in Wolfram Syndrome

    Science.gov (United States)

    Hershey, Tamara; Lugar, Heather M.; Shimony, Joshua S.; Rutlin, Jerrel; Koller, Jonathan M.; Perantie, Dana C.; Paciorkowski, Alex R.; Eisenstein, Sarah A.; Permutt, M. Alan

    2012-01-01

    Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development. PMID:22792385

  13. Screening of Toll-like receptors expression in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Agander, Tina Klitmøller

    2013-01-01

    The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system, thus...... inclusions in oligodendrocytes. α-Synuclein can act as a danger-associated molecular pattern and alter TLR expression thereby activating inflammatory responses in the brain. In this study, using real-time PCR, we assessed the expression of TLRs (TLR1-10) in selected areas of MSA brains (substantia nigra......TLR-1 mRNA were elevated in substantia nigra and striatum whereas levels of hTLR-8 and hTLR-9 mRNAs were significantly higher in cerebella from MSA patients. The concerted alteration of expression of multiple TLRs in MSA brains can be of relevance for understanding the pathogenesis of the disease....

  14. A case of dentato-rubro-pallido-luysian atrophy

    International Nuclear Information System (INIS)

    Usui, Sadanari; Komiya, Tadatoshi

    1988-01-01

    A clinical case of dentato-rubro-pallido-luysian atrophy (DRPLA) was reported. We established several aspects on the basis of MRI findings and a neuro-otological study. A 47-year-old woman had gait disturbance, involuntary movements, speech disturbance, and memory disturbance at the age of 42. She was admitted to the hospital because of worsening of the gait disturbance. Neurological examinations showed choreo-athetosis of the face, neck and upper extremities, mental disturbance, and scanning speech. However, she had neither ocular disturbance nor epilepsy or myoclonus. On the MRI-CT, an atrophy of midbrain and pontine tegmentum was observed. The neuro-otological study showed gaze nystagmus at the horizontal gaze, rebound nystagmus, hypometria of the saccade, saccadic pursuit, reduction of the optokinetic nystagmus, and increase in caloric nystagmus by means of visual input. A severe atrophy of the brainstem tegmentum and a mild atrophy of the cerebellar hemisphere and cerebral cortex are regarded as neuro-radiological features of DRPLA. Moreover, tegmental atrophy is related to ocular disturbance as a clinical feature. Various neuro-otological findings reveal many systems of ocular movements, i.e., a smooth pursuit system, a saccade system, and a vestibulo-ocular reflex system, involving flocculus. DRPLA can be clinically diagnosed by means of clinical features, MRI findings, and neuro-otological findings. A variety of neuro-otological abnormalities may indicate a progression of the ocular disturbance and a variety of lesions. (author)

  15. Generalized cerebral atrophy seen on MRI in a naturally exposed animal model for creutzfeldt-jakob disease

    Directory of Open Access Journals (Sweden)

    Dasanu Constantin A

    2010-11-01

    Full Text Available Abstract Background Magnetic resonance imaging has been used in the diagnosis of human prion diseases such as sCJD and vCJD, but patients are scanned only when clinical signs appear, often at the late stage of disease. This study attempts to answer the questions "Could MRI detect prion diseases before clinical symptoms appear?, and if so, with what confidence?" Methods Scrapie, the prion disease of sheep, was chosen for the study because sheep can fit into a human sized MRI scanner (and there were no large animal MRI scanners at the time of this study, and because the USDA had, at the time of the study, a sizeable sample of scrapie exposed sheep, which we were able to use for this purpose. 111 genetically susceptible sheep that were naturally exposed to scrapie were used in this study. Results Our MRI findings revealed no clear, consistent hyperintense or hypointense signal changes in the brain on either clinically affected or asymptomatic positive animals on any sequence. However, in all 37 PrPSc positive sheep (28 asymptomatic and 9 symptomatic, there was a greater ventricle to cerebrum area ratio on MRI compared to 74 PrPSc negative sheep from the scrapie exposed flock and 6 control sheep from certified scrapie free flocks as defined by immunohistochemistry (IHC. Conclusions Our findings indicate that MRI imaging can detect diffuse cerebral atrophy in asymptomatic and symptomatic sheep infected with scrapie. Nine of these 37 positive sheep, including 2 one-year old animals, were PrPSc positive only in lymph tissues but PrPSc negative in the brain. This suggests either 1 that the cerebral atrophy/neuronal loss is not directly related to the accumulation of PrPSc within the brain or 2 that the amount of PrPSc in the brain is below the detectable limits of the utilized immunohistochemistry assay. The significance of these findings remains to be confirmed in human subjects with CJD.

  16. MR spectroscopy detection of lactate and lipid signals in the brains of healthy elderly people

    Energy Technology Data Exchange (ETDEWEB)

    Sijens, P.E.; Heijboer, R.J.J.; Oudkerk, M. [Dept. of Radiology, Univ. Hospital Groningen (Netherlands); Heijer, T. den; Leeuw, F.E. de; Groot, J.C. de; Hofman, A.; Breteler, M.M.B. [Dept. of Epidemiology and Biostatistics, Erasmus University Medical School, Rotterdam (Netherlands); Achten, E. [Dept. of Magnetic Resonance, Gent University Hospital (Belgium)

    2001-08-01

    Magnetic resonance spectroscopy was used to assess the presence of brain lactate and lipid signals, frequently associated with the presence of pathology, in healthy persons of 60-90 years old (n=540). Lactate and lipid signals were observed in, respectively, 25 and 6% of women, and 18 and 2% of men. Upon adjustment for age, and for MRI-detected cerebral atrophy and white matter lesions, the gender differences in lactate and lipid remained the same (p=0.05 and p=0.03, respectively). Brain lactate and lipid signals appear to be intrinsic to aging. However, the presence of these metabolites in very focal areas only, rather than in any distributed fashion within the brain (the latter generally the case with cerebral atrophy and white matter lesions), strongly suggests the existence of asymptomatic focal pathology not shown on MRI. (orig.)

  17. Computed tomography of skeletal muscles in childhood spinal progressive muscular atrophies

    International Nuclear Information System (INIS)

    Arai, Yumi; Osawa, Makiko; Sumida, Sawako; Shishikura, Keiko; Suzuki, Haruko; Fukuyama, Yukio; Kohno, Atsushi

    1992-01-01

    Computed tomographic (CT) scanning of skeletal muscles was performed in patients with type 1 and type 2 spinal progressive muscular atrophy (SPMA) and Kugelberg-Welander disease (K-W) to delineate the characteristic CT features of each category. Marked muscular atrophy was observed in type 1 SPMA, and both muscular atrophy and intramuscular low density areas in type 2 SPMA, changes being more pronounced in older patients. In contrast, in K-W, muscular atrophy was slight, and intramuscular low density areas constituted the most prominent findings. These observations indicate that SPMA and K-W are each characterized by distinct CT findings. (author)

  18. Is the Supraspinatus Muscle Atrophy Truly Irreversible after Surgical Repair of Rotator Cuff Tears?

    Science.gov (United States)

    Chung, Seok Won; Kim, Sae Hoon; Tae, Suk-Kee; Yoon, Jong Pil; Choi, Jung-Ah

    2013-01-01

    Background Atrophy of rotator cuff muscles has been considered an irreversible phenomenon. The purpose of this study is to evaluate whether atrophy is truly irreversible after rotator cuff repair. Methods We measured supraspinatus muscle atrophy of 191 patients with full-thickness rotator cuff tears on preoperative magnetic resonance imaging and postoperative multidetector computed tomography images, taken at least 1 year after operation. The occupation ratio was calculated using Photoshop CS3 software. We compared the change between pre- and postoperative occupation ratios after modifying the preoperative occupation ratio. In addition, possible relationship between various clinical factors and the change of atrophy, and between the change of atrophy and cuff integrity after surgical repair were evaluated. Results The mean occupation ratio was significantly increased postoperatively from 0.44 ± 0.17 to 0.52 ± 0.17 (p < 0.001). Among 191 patients, 81 (42.4%) showed improvement of atrophy (more than a 10% increase in occupation ratio) and 33 (17.3%) worsening (more than a 10% decrease). Various clinical factors such as age tear size, or initial degree of atrophy did not affect the change of atrophy. However, the change of atrophy was related to repair integrity: cuff healing failure rate of 48.5% (16 of 33) in worsened atrophy; and 22.2% (18 of 81) in improved atrophy (p = 0.007). Conclusions The supraspinatus muscle atrophy as measured by occupation ratio could be improved postoperatively in case of successful cuff repair. PMID:23467404

  19. Brain MR imaging of systemic lupus erythematodes

    International Nuclear Information System (INIS)

    Kobayashi, Satoshi; Suzuki, Masayuki; Ueda, Fumiaki; Arai, Kazunori; Kobayashi, Takeshi; Kadoya, Masumi; Matsui, Osamu; Takashima, Tsutomu

    1996-01-01

    Brain MR imaging of 13 patients with systemic lupus erythematodus (SLE) were reviewed. Two major findings was obtained. One was deep white matter hyperintensity (DWMH) and periventricular hyperintensity (PVH), the other was cerebral infarction. In comparison with the same age group, relatively severe brain atrophy was also observed. It was thought that these findings were induced from the vasculitis caused by SLE. However, the influence of the steroid therapy could not be excluded. No definite correlation between MR findings and clinical symptoms were seen. In conclusion, when we interpret brain MR imaging of the patients with SLE, special attention should be paid to their age. (author)

  20. Analysis of computed X-ray tomography of the brain in incontinence patients with senile dementia

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuyuki; Machida, Toyohei; Oishi, Yukihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Kamachi, Chikahumi; Okabe, Tsutomu; Akazawa, Kouhei; Takasaka, Satoshi

    1994-02-01

    To evaluate the condition of incontinence in patients with senile dementia, we performed computed tomography X-rays to the brain and analyzed the relationship among the circulatory defect of the brain, the brain atrophy and the degree of incontinence. There were 92 patients subjected to this study who were hospitalised due to senile dementia; 74 patients had vascular dementia, 10 patients had senile dementia of Alzheimer type, and 8 patients had the mixed type. (age range: 54-95 years; mean: 80.3 years). The degree of incontinence in these patients varied as follows: 18 patients with continence, 16 patients with moderate incontinence, 58 patients with total incontinence. The diagnosis of circulatory defect of the brain was based on computed tomography observation of periventricular lucency (P.V.L.), and the degree of brain atrophy was evaluated based on 4 criteria: the Lateral body ratio, the Huckman number, the Evans ratio, and the enlargement of the subarachnoid space. Among the 92 patients, P.V.L. was present in 31 patients, among them 27 patients suffered from incontinence. There was a significant correlation between P.V.L. and incontinence (p<0.001). As the incontinence progressively worsened (Continence, Moderate incontinence, Total incontinence), the lateral body ratio increased to 24.8, 27.8, 28.6, (p<0.05). The Huckman number also increased to 18.3, 19.3, 21.3, (p<0.01), and the evans ratio likewise 29.9, 32.3, 33.7 (p<0.01). The enlargement of the subarachnoid space was also correlated with the severity of incontinence. We conclude that urinary incontinence originating from senile dememtia is connected to brain atrophy and is strongly influenced by the circulatory disorders of the brain. (author).

  1. Can endurance exercise preconditioning prevention disuse muscle atrophy?

    Directory of Open Access Journals (Sweden)

    Michael P Wiggs

    2015-03-01

    Full Text Available Emerging evidence suggests that exercise training can provide a level of protection against disuse muscle atrophy. Endurance exercise training imposes oxidative, metabolic, and heat stress on skeletal muscle which activates a variety of cellular signaling pathways that ultimately leads to the increased expression of proteins that have been demonstrated to protect muscle from inactivity –induced atrophy. This review will highlight the effect of exercise-induced oxidative stress on endogenous enzymatic antioxidant capacity (i.e., superoxide dismutase, glutathione peroxidase, and catalase, the role of oxidative and metabolic stress on PGC1-α, and finally highlight the effect heat stress and HSP70 induction. Finally, this review will discuss the supporting scientific evidence that these proteins can attenuate muscle atrophy through exercise preconditioning.

  2. Benefits of Laser Therapy in Postmenopausal Vaginal Atrophy

    Science.gov (United States)

    Brînzan, Daniela; Pǎiuşan, Lucian; Daşcǎu, Voicu; Furǎu, Gheorghe

    2011-08-01

    Maybe the worst aspect of menopause is the decline of the quality of the sexual life. The aim of the study is to demonstrate the beneficial effects of laser therapy in comparison with topical application of estrogen preparations, for the treatment of vaginal atrophy and sexual dysfunctions induced by menopause. A total of 50 menopausal patients were examined during a one year period. The methods used for objectifying vaginal atrophy and sexual dysfunctions were history taking, local clinical exam and PAP smear. From this group, 40 patients had vaginal atrophy with sexual dysfunctions. They have been treated differently, being included in four groups: patients treated with local estrogens, patients treated with intravaginal laser therapy, patients treated with both laser therapy and estrogens, patients treated with estrogens and placebo laser therapy. Therapeutic benefit, improvement of vaginal atrophy and quality of sexual life, were objectified by anamnesis (questionnaire), local and general clinical examination and PAP smear. The best results have been obtained, by far, in the 3rd group, followed by the women treated only with laser. In conclusion, we can say that laser therapy is the best way for solving the sexual inconveniences of menopause.

  3. Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy

    Science.gov (United States)

    ... myoclonic epilepsy Spinal muscular atrophy with progressive myoclonic epilepsy Printable PDF Open All Close All Enable Javascript ... boxes. Description Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes ...

  4. ''Routine'' brain CT in psychiatric patients - does it make sense?

    International Nuclear Information System (INIS)

    Pickuth, D.; Heywang-Koebrunner, S.H.; Spielmann, R.P.

    1999-01-01

    Purpose: To prospectively assess the spectrum of brain CT findings in psychiatric patients and to determine the number of patients that had an underlying cause for the symptoms. Patients and methods: Over a period of six months, 142 patients (78 males, 64 females; median age 61 [18-91] years) were referred for CT brain scans. Their scans were reviewed, along with the clinical information that was provided in the request form. All the hard copies were reviewed to assess areas of ischaemia, infarction, atrophy, tumours, and haematomas. The majority of requests were to exclude vascular event or space-occupying lesions. Clinical indications included mood disorders (depression, mania), schizophrenic disorders, dementia, personality and behavioural disorders. Results: 31 (22%) were normal. 111 (78%) had varying degrees of ischaemia, infarction and cerebral/cerebellar atrophy. 7 (4.9%) had space-occupying lesions which included two gliomas and five meningiomas. There were two chronic subdural haematomas and one arteriovenous malformation. Conclusion: 1. In our series, pathologic findings in 'routine' brain CT's were encountered in 78%. 2. The incidence of brain tumours was 4.9%, compared with 0.00005% of the general population. 3. CT scanning in psychiatric patients is cost-effective and especially indicated when there is an atypical presentation, or inadequate response to standard treatment. (orig.) [de

  5. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  6. Crossed cerebellar atrophy in cases with cerebrovascular disease

    International Nuclear Information System (INIS)

    Yagishita, Toshiyuki; Kojima, Shigeyuki; Hirayama, Keizo; Iwabuchi, Sadamu.

    1989-01-01

    Crossed cerebellar atrophy (CCA) was investigated by X-ray CT to establish the incidence, mechanism, and the relation to cerebral lesions in 130 cases of unilateral supratentorial cerebrovascular diseases. The 130 cases consisted of 83 males and 47 females with cerebral infarction (65 cases) and cerebral hemorrhage (65 cases). The patients' average age was 57.6 years. Crossed cerebellar atrophy was demonstrated in 8 cases (6.2%), 6 of whom had massive cerebral infarction in the middle cerebral artery area (9.2% of the 65 cases of cerebral infarction. The six cases of CCA caused by cerebral infarction had lesions in the frontal and temporal lobes. Two had a cerebral hemorrhage in the putamen and in the thalamus, respectively, accounting for 3.1% of the 65 cases of cerebral hemorrhage. Of the 2 cases, one had putaminal hemorrhage, and the other had thalamic hemorrhage. Cerebrovascular stroke had occured in these patients with CCA more than 2 months previously. In 5 of the 8 cases of CCA, atrophy was present in the basis pedunculi and the basis pontis on the side of the cerebral lesion. However, neither dilation nor deformity of the fourth ventricle was present in any of the patients, suggesting that none of the CCA patients had atrophy of the dentate nucleus. The CCA patients had massive cerebral lesion in the frontal and temporal lobes or atrophy of the basis pedunculi and basis pontis, suggesting the presence of the transsynaptic degeneration of the cortico-ponto-cerebellar pathway. In the case of the thalamic hemorrhage, who had not hemorrhagic lesion in the frontal and temporal lobes, atrophy of the basis peduncli and basis pontis was not observed. Though dilation or deformity of the fourth ventricle is not observed in this case, presence of the degeneration of the dentate-rubro-thalamic pathway cannot be denied. CCA seems to be caused by both the transsynaptic degeneration of the cortico-ponto-cerebellar pathway and the dentate-rubro-thalamic pathway. (J.P.N.)

  7. Protective Effect of Human Leukocyte Antigen (HLA Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women

    Directory of Open Access Journals (Sweden)

    Lisa M. James

    2018-03-01

    Full Text Available Background: Reduction of brain volume (brain atrophy during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017. Methods: Seventy-one cognitively healthy women (32–69 years old underwent a structural Magnetic Resonance Imaging (sMRI scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N = 60 or carried the DRB1*13:02 allele (N = 11. We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume was the dependent variable and age was the independent variable. Findings: In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. Interpretation: These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain

  8. [Histological changes of gastric atrophy and intestinal metaplasia after Helicobacter pylori eradication].

    Science.gov (United States)

    Lee, Yonggu; Jeon, Yong Cheol; Koo, Tai Yeon; Cho, Hyun Seok; Byun, Tae Jun; Kim, Tae Yeob; Lee, Hang Lak; Eun, Chang Soo; Lee, Oh Young; Han, Dong Soo; Sohn, Joo Hyun; Yoon, Byung Chul

    2007-11-01

    Long-term Helicobater pylori infection results in atrophic gastritis and intestinal metaplasia, and increases the risk of gastric cancer. However, it is still controversial that eradication of H. pylori improves atrophy or metaplasia. Therefore, we investigated histological changes after the H. pylori eradication in patients with atrophy or metaplasia. One hundred seven patients who received successful eradication of H. pylori infection in Hanyang University, Guri Hospital from March 2001 to April 2006, were enrolled. Antral biopsy was taken before the eradication to confirm the H. pylori infection and grade of atrophy or metaplasia by updated Sydney System. After a certain period of time, antral biopsy was repeatedly taken to confirm the eradication and investigate histological changes of atrophy or metaplasia. Mean age of the patients was 55.3+/-11.3, and average follow-up period was 28.7+/-13.9 months. Endoscopic diagnosis included gastric ulcer, duodenal ulcer, non-ulcer antral gastritis. Atrophy was observed in 41 of 91 and their average score was 0.73+/-0.92. After the eradication of H. pylori, atrophy was improved (0.38+/-0.70, p=0.025). However, metaplasia which was observed in 49 of 107, did not significantly improve during the follow-up period. Newly developed atrophy (7 of 38) or metaplasia (18 of 49) was observed in patients who without atrophy or metaplasia initially. Their average scores were slightly lower than those of cases with pre-existing atrophy or metaplasia without statistical significance. After the eradication of H. pylori infection, atrophic gastritis may be improved, but change of intestinal metaplasia is milder and may take longer duration for improvement.

  9. Progressive cerebral atrophy in neuromyelitis optica.

    Science.gov (United States)

    Warabi, Yoko; Takahashi, Toshiyuki; Isozaki, Eiji

    2015-12-01

    We report two cases of neuromyelitis optica patients with progressive cerebral atrophy. The patients exhibited characteristic clinical features, including elderly onset, secondary progressive tetraparesis and cognitive impairment, abnormally elevated CSF protein and myelin basic protein levels, and extremely highly elevated serum anti-AQP-4 antibody titer. Because neuromyelitis optica pathology cannot switch from an inflammatory phase to the degenerative phase until the terminal phase, neuromyelitis optica rarely appears as a secondary progressive clinical course caused by axonal degeneration. However, severe intrathecal inflammation and massive destruction of neuroglia could cause a secondary progressive clinical course associated with cerebral atrophy in neuromyelitis optica patients. © The Author(s), 2015.

  10. Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis.

    Science.gov (United States)

    Gobbi, C; Rocca, M A; Riccitelli, G; Pagani, E; Messina, R; Preziosa, P; Colombo, B; Rodegher, M; Falini, A; Comi, G; Filippi, M

    2014-02-01

    Involvement of selected central nervous system (CNS) regions has been associated with depression and fatigue in MS. We assessed whether specific regional patterns of lesion distribution and atrophy of the gray (GM) and white matter (WM) are associated with these symptoms in MS. Brain dual-echo and 3D T1-weighted images were acquired from 123 MS patients (69 depressed (D), 54 non-depressed (nD), 64 fatigued, 59 non-fatigued) and 90 controls. Lesion distribution, GM and WM atrophy were estimated using VBM and SPM8. Gender, age, disease duration and conventional MRI characteristics did not differ between D-MS and nD-MS patients. Fatigued patients experienced higher EDSS and depression than non-fatigued ones. Lesion distribution and WM atrophy were not related to depression and fatigue. Atrophy of regions in the frontal, parietal and occipital lobes had a combined effect on depression and fatigue. Atrophy of the left middle frontal gyrus and right inferior frontal gyrus were selectively related to depression. No specific pattern of GM atrophy was found to be related to fatigue. Depression in MS is linked to atrophy of cortical regions located in the bilateral frontal lobes. A distributed pattern of GM atrophy contributes to the concomitant presence of depression and fatigue in these patients.

  11. Dissociating Memory Networks in Early Alzheimer’s Disease and Frontotemporal Lobar Degeneration - A Combined Study of Hypometabolism and Atrophy

    Science.gov (United States)

    Frisch, Stefan; Dukart, Juergen; Vogt, Barbara; Horstmann, Annette; Becker, Georg; Villringer, Arno; Barthel, Henryk; Sabri, Osama; Müller, Karsten; Schroeter, Matthias L.

    2013-01-01

    Introduction We aimed at dissociating the neural correlates of memory disorders in Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). Methods We included patients with AD (n = 19, 11 female, mean age 61 years) and FTLD (n = 11, 5 female, mean age 61 years) in early stages of their diseases. Memory performance was assessed by means of verbal and visual memory subtests from the Wechsler Memory Scale (WMS-R), including forgetting rates. Brain glucose utilization was measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and brain atrophy by voxel-based morphometry (VBM) of T1-weighted magnetic resonance imaging (MRI) scans. Using a whole brain approach, correlations between test performance and imaging data were computed separately in each dementia group, including a group of control subjects (n = 13, 6 female, mean age 54 years) in both analyses. The three groups did not differ with respect to education and gender. Results Patients in both dementia groups generally performed worse than controls, but AD and FTLD patients did not differ from each other in any of the test parameters. However, memory performance was associated with different brain regions in the patient groups, with respect to both hypometabolism and atrophy: Whereas in AD patients test performance was mainly correlated with changes in the parieto-mesial cortex, performance in FTLD patients was correlated with changes in frontal cortical as well as subcortical regions. There were practically no overlapping regions associated with memory disorders in AD and FTLD as revealed by a conjunction analysis. Conclusion Memory test performance may not distinguish between both dementia syndromes. In clinical practice, this may lead to misdiagnosis of FTLD patients with poor memory performance. Nevertheless, memory problems are associated with almost completely different neural correlates in both dementia syndromes. Obviously, memory functions are carried out by

  12. A case of multiple system atrophy-parkinsonian type with stuttering- and palilalia-like dysfluencies and putaminal atrophy.

    Science.gov (United States)

    Kikuchi, Yoshikazu; Umezaki, Toshiro; Uehara, Taira; Yamaguchi, Hiroo; Yamashita, Koji; Hiwatashi, Akio; Sawatsubashi, Motohiro; Adachi, Kazuo; Yamaguchi, Yumi; Murakami, Daisuke; Kira, Jun-Ichi; Nakagawa, Takashi

    2017-11-14

    Both developmental and acquired stuttering are related to the function of the basal ganglia-thalamocortical loop, which includes the putamen. Here, we present a case of stuttering- and palilalia-like dysfluencies that manifested as an early symptom of multiple system atrophy-parkinsonian type (MSA-P) and bilateral atrophy of the putamen. The patient was a 72-year-old man with no history of developmental stuttering who presented with a stutter for consultation with our otorhinolaryngology department. The patient was diagnosed with MSA-P based on parkinsonism, autonomic dysfunction, and bilateral putaminal atrophy revealed by T2-weighted magnetic resonance imaging. Treatment with levodopa improved both the motor functional deficits related to MSA-P and stuttering-like dysfluencies while reading; however, the palilalia-like dysfluencies were much less responsive to levodopa therapy. The patient died of aspiration pneumonia two years after his first consultation at our hospital. In conclusion, adult-onset stuttering- and palilalia-like dysfluencies warrant careful examination of the basal ganglia-thalamocortical loop, and especially the putamen, using neuroimaging techniques. Acquired stuttering may be related to deficits in dopaminergic function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Morphometric changes of whole brain in patients with alcohol addiction: a voxel-based morphometry study

    International Nuclear Information System (INIS)

    Li Jinfeng; Chen Zhiye; Ma Lin

    2011-01-01

    Objective: To evaluate morphometric changes of brain in patients with alcohol addiction by voxel-based morphometry. Methods: Fifteen patients with alcohol addiction and 15 health controls were recruited and underwent fluid attenuated inversion recovery (FLAIR) and 3D fast spoiled gradient echo (FSPGR) T 1 -weighted sequences on a 3.0 T MRI system. 3D FSPGR T 1 structure images were normalized, segmented and smoothed, and then underwent voxel-based morphometry. An ANCOVA was applied with age, body mass index (BMI), and education years as covariates because of exact sex match. A statistical threshold of P 0.05). Conclusions: Regional gray and white matter atrophy can be the initial changes in patients with alcohol addiction and the frontal region is a relative specific damaged brain region. VBM has a potential value for the detection of subtle brain atrophy in patients with alcohol addiction. (authors)

  14. Orphan disease: Cherubism, optic atrophy, and short stature

    OpenAIRE

    Balaji Jeevanandham; Rajoo Ramachandran; Vignesh Dhanapal; Ilanchezhian Subramanian; Venkata Sai

    2018-01-01

    A 12-year-old female presented with complaints of progressive visual impairment in both her eyes. On clinical examination, she was short for her age and her ophthalmoscopic examination revealed bilateral optic atrophy. Computed tomography of the patient revealed multiple expansile lytic lesions of mandible suggesting cherubism. The optic atrophy was confirmed on magnetic resonance imaging, which additionally revealed bilateral retrocerebellar arachnoid cysts. This association of cherubism wit...

  15. Quantitative analysis of structural variations in corpus callosum in adults with multiple system atrophy (MSA)

    Science.gov (United States)

    Bhattacharya, Debanjali; Sinha, Neelam; Saini, Jitender

    2017-03-01

    Multiple system atrophy (MSA) is a rare, non-curable, progressive neurodegenerative disorder that affects nervous system and movement, poses a considerable diagnostic challenge to medical researchers. Corpus callosum (CC) being the largest white matter structure in brain, enabling inter-hemispheric communication, quantification of callosal atrophy may provide vital information at the earliest possible stages. The main objective is to identify the differences in CC structure for this disease, based on quantitative analysis on the pattern of callosal atrophy. We report results of quantification of structural changes in regional anatomical thickness, area and length of CC between patient-groups with MSA with respect to healthy controls. The method utilizes isolating and parcellating the mid-sagittal CC into 100 segments along the length - measuring the width of each segment. It also measures areas within geometrically defined five callosal compartments of the well-known Witelson, and Hofer-Frahma schemes. For quantification, statistical tests are performed on these different callosal measurements. From the statistical analysis, it is concluded that compared to healthy controls, width is reduced drastically throughout CC for MSA group and as well as changes in area and length are also significant for MSA. The study is further extended to check if any significant difference in thickness is found between the two variations of MSA, Parkinsonian MSA and Cerebellar MSA group, using the same methodology. However area and length of this two sub-MSA group, no substantial difference is obtained. The study is performed on twenty subjects for each control and MSA group, who had T1-weighted MRI.

  16. A preliminary DTI study showing no brain structural change associated with adolescent cannabis use

    Directory of Open Access Journals (Sweden)

    Brown Kyle

    2006-05-01

    Full Text Available Abstract Analyses were performed on brain MRI scans from individuals who were frequent cannabis users (N = 10; 9 males, 1 female, mean age 21.1 ± 2.9, range: 18–27 in adolescence and similar age and sex matched young adults who never used cannabis (N = 10; 9 males, 1 female, mean age of 23.0 ± 4.4, range: 17–30. Cerebral atrophy and white matter integrity were determined using diffusion tensor imaging (DTI to quantify the apparent diffusion coefficient (ADC and the fractional anisotropy (FA. Whole brain volumes, lateral ventricular volumes, and gray matter volumes of the amygdala-hippocampal complex, superior temporal gyrus, and entire temporal lobes (excluding the amygdala-hippocampal complex were also measured. While differences existed between groups, no pattern consistent with evidence of cerebral atrophy or loss of white matter integrity was detected. It is concluded that frequent cannabis use is unlikely to be neurotoxic to the normal developing adolescent brain.

  17. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    palsy with PET image. RESULTS:All 31 children were involved in the final analysis.No one was dropped out in this study.①Analytic results of glucose metabolism in brain cells:Glucose metabolism of 28 children was abnormal,and the abnormal rate was 90%.The symptoms of glucose metabolism were as the same as those of hypometabolism.A total of 13 cases had multi-focal abnormality,8 mono-focal abnormality,7 glucose-diffused abnormality.and 3 normality.②Correlation between MRI examination and abnormal degree of PET imagling:Three cases had normal PET imagling but abnormal MRI examination. Among children with mono-focal abnormality of PET imagling,2 had brain atrophy,3 poor brain white matter,5 encephalomalacia focus, 1 hydrocephalus.and 1 normality.Among children with multi-focal abnormality of PET imagling,3 had brain atrophy,4 poor brain white matter,5 encephaiomalacia focus,and 1 hydrocephalus.Among children with glucose-diffused abnormality of PET imagling,3 had brain atrophy,2 poor brain white matter,1 hydrocephalus,and 1 nor mality.There were significant differences between various groups of MRI abnormality and abnormal degree of PET imagling(P<0.01),and brain atrophy was the main symptom.③Correlation between vanous types of cerebral palsy and abnormal degree of PET imagling:Among 10 children with cerebral palsy,one case had normal PET imagling,2 mono-focal abnormality,4 multi-focal abnormality,and 3 diffused abnormality.Among 13 children with cerebral palsy of mixed type.there wer 1,4,6 and 2 cases with normal and abnormal PEI imagling,respectively.Among 4 children with cerebral palsy of gradual-movement type,there were 0,1,2 and 1 cases with normal and abnormal PET imagling,respectively.Among 4 children with cerebrel palsy of ataxia,there was 1 and 1 case with normal and abnormal PET imaging,respectively.There were significant differences between various types of cerebral palsy and abnormal degree of PET imagling(P<0.01),and spasm and mixed types were obvious

  18. Renal Atrophy Secondary to Chemoradiotherapy of Abdominal Malignancies

    International Nuclear Information System (INIS)

    Yang, Gary Y.; May, Kilian Salerno; Iyer, Renuka V.; Chandrasekhar, Rameela M.A.; Wilding, Gregory E.; McCloskey, Susan A.; Khushalani, Nikhil I.; Yendamuri, Saikrishna S.; Gibbs, John F.; Fakih, Marwan; Thomas, Charles R.

    2010-01-01

    Purpose: To identify factors predictive of renal atrophy after chemoradiotherapy of gastrointestinal malignancies. Methods and Materials: Patients who received chemotherapy and abdominal radiotherapy (RT) between 2002 and 2008 were identified for this study evaluating change in kidney size and function after RT. Imaging and biochemical data were obtained before and after RT in 6-month intervals. Kidney size was defined by craniocaudal measurement on CT images. The primarily irradiated kidney (PK) was defined as the kidney that received the greater mean kidney dose. Receiver operating characteristic (ROC) curves were generated to predict risk for renal atrophy. Results: Of 130 patients, median age was 64 years, and 51.5% were male. Most primary disease sites were pancreas and periampullary tumors (77.7%). Median follow-up was 9.4 months. Creatinine clearance declined 20.89%, and size of the PK decreased 4.67% 1 year after completion of chemoradiation. Compensatory hypertrophy of the non-PK was not seen. Percentage volumes of the PK receiving ≥10 Gy (V 10 ), 15 Gy (V 15 ), and 20 Gy (V 20 ) were significantly associated with renal atrophy 1 year after RT (p = 0.0030, 0.0029, and 0.0028, respectively). Areas under the ROC curves for V 10 , V 15 , and V 20 to predict >5% decrease in PK size were 0.760, 0.760, and 0.762, respectively. Conclusions: Significant detriments in PK size and renal function were seen after abdominal RT. The V 10 , V 15 , and V 20 were predictive of risk for PK atrophy 1 year after RT. Analyses suggest the association of lower-dose renal irradiation with subsequent development of renal atrophy.

  19. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    Science.gov (United States)

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  20. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/1 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Ivan Rattray

    Full Text Available Huntington's disease (HD is caused by the expansion of a CAG repeat in the huntingtin (HTT gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rapid pathological decline. Compared to the R6/2 line, fewer descriptions of the progressive pathologies exhibited by R6/1 mice exist. The association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood in many models of HD. In attempt to link these factors in the R6/1 mouse line, we have performed detailed assessments of behavior and of regional brain abnormalities determined through longitudinal, in vivo magnetic resonance imaging (MRI, as well as an end-stage, ex vivo MRI study and histological assessment. We found progressive decline in both motor and non-motor related behavioral tasks in R6/1 mice, first evident at 11 weeks of age. Regional brain volumes were generally unaffected at 9 weeks, but by 17 weeks there was significant grey matter atrophy. This age-related brain volume loss was validated using a more precise, semi-automated Tensor Based morphometry assessment. As well as these clear progressive phenotypes, mutant HTT (mHTT protein, the hallmark of HD molecular pathology, was widely distributed throughout the R6/1 brain and was accompanied by neuronal loss. Despite these seemingly concomitant, robust pathological phenotypes, there appeared to be little correlation between the three main outcome measures: behavioral performance, MRI-detected brain atrophy and histopathology. In conclusion, R6/1 mice exhibit many features of HD, but the underlying mechanisms driving these clear behavioral disturbances and the brain volume loss, still remain unclear.

  1. Computerized tomography in diagnosing cerebral atrophy (measurements of the ventricular system and hemispheric sulci in healthy adults)

    International Nuclear Information System (INIS)

    Taneva, N.

    1996-01-01

    Brain atrophy problem faced in healthy adults and in patients with a variety of diseases is disputable in the literature. An important issue of interpretation of CT-results is the criterion of normal values of the ventricular system and sulci. The results obtained in this investigation of forty healthy adults help to establish the values in norm and pathology. The data are compared with those reported by other authors. A number of characteristic features, attributable to gender and age, are noted. 10 refs., 2 tabs., 2 figs. (author)

  2. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems.

    Science.gov (United States)

    Komatsu, Riyo; Okazaki, Tatsuma; Ebihara, Satoru; Kobayashi, Makoto; Tsukita, Yoko; Nihei, Mayumi; Sugiura, Hisatoshi; Niu, Kaijun; Ebihara, Takae; Ichinose, Masakazu

    2018-05-22

    Repetition of the onset of aspiration pneumonia in aged patients is common and causes chronic inflammation. The inflammation induces proinflammatory cytokine production and atrophy in the muscles. The proinflammatory cytokines induce muscle proteolysis by activating calpains and caspase-3, followed by further degradation by the ubiquitin-proteasome system. Autophagy is another pathway of muscle atrophy. However, little is known about the relationship between aspiration pneumonia and muscle. For swallowing muscles, it is not clear whether they produce cytokines. The main objective of this study was to determine whether aspiration pneumonia induces muscle atrophy in the respiratory (the diaphragm), skeletal (the tibialis anterior, TA), and swallowing (the tongue) systems, and their possible mechanisms. We employed a mouse aspiration pneumonia model and computed tomography (CT) scans of aged pneumonia patients. To induce aspiration pneumonia, mice were inoculated with low dose pepsin and lipopolysaccharide solution intra-nasally 5 days a week. The diaphragm, TA, and tongue were isolated, and total RNA, proteins, and frozen sections were stored. Quantitative real-time polymerase chain reaction determined the expression levels of proinflammatory cytokines, muscle E3 ubiquitin ligases, and autophagy related genes. Western blot analysis determined the activation of the muscle proteolysis pathway. Frozen sections determined the presence of muscle atrophy. CT scans were used to evaluate the muscle atrophy in aged aspiration pneumonia patients. The aspiration challenge enhanced the expression levels of proinflammatory cytokines in the diaphragm, TA, and tongue. Among muscle proteolysis pathways, the aspiration challenge activated caspase-3 in all the three muscles examined, whereas calpains were activated in the diaphragm and the TA but not in the tongue. Activation of the ubiquitin-proteasome system was detected in all the three muscles examined. The aspiration challenge

  3. Liver atrophy after percutaneous transhepatic portal embolization occurs in two histological phases: Hepatocellular atrophy followed by apoptosis.

    Science.gov (United States)

    Iwao, Yasuhito; Ojima, Hidenori; Kobayashi, Tatsushi; Kishi, Yoji; Nara, Satoshi; Esaki, Minoru; Shimada, Kazuaki; Hiraoka, Nobuyoshi; Tanabe, Minoru; Kanai, Yae

    2017-11-18

    To clarify the histological changes associated with liver atrophy after percutaneous transhepatic portal embolization (PTPE) in pigs and humans. As a preliminary study, we performed pathological examinations of liver specimens from five pigs that had undergone PTPE in a time-dependent model of liver atrophy. In specimens from embolized lobes (EMB) and nonembolized lobes (controls), we measured the portal vein to central vein distance (PV-CV), the area and number of hepatocytes per lobule, and apoptotic activity using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Immunohistochemical reactivities were evaluated for light chain 3 (LC3) and lysosomal-associated membrane protein 2 (LAMP2) as autophagy markers and for glutamine synthetase and cytochrome P450 2E1 (CYP2E1) as metabolic zonation markers. Samples from ten human livers taken 20-36 d after PTPE were similarly examined. PV-CVs and lobule areas did not differ between EMB and controls at day 0, but were lower in EMB than in controls at weeks 2, 4, and 6 ( P ≤ 0.001). Hepatocyte numbers were not significantly reduced in EMB at day 0 and week 2 but were reduced at weeks 4 and 6 ( P ≤ 0.05). Apoptotic activity was higher in EMB than in controls at day 0 and week 4. LC3 and LAMP2 staining peaked in EMB at week 2, with no significant difference between EMB and controls at weeks 4 and 6. Glutamine synthetase and CYP2E1 zonation in EMB at weeks 2, 4, and 6 were narrower than those in controls. Human results were consistent with those of porcine specimens. The mechanism of liver atrophy after PTPE has two histological phases: Hepatocellular atrophy is likely caused by autophagy in the first 2 wk and apoptosis thereafter.

  4. White matter lesions and temporal lobe atrophy related to incidence of both dementia and major depression in 70-year-olds followed over 10 years.

    Science.gov (United States)

    Gudmundsson, P; Olesen, P J; Simoni, M; Pantoni, L; Östling, S; Kern, S; Guo, X; Skoog, I

    2015-05-01

    A number of studies have suggested associations between dementia and depression in older adults. One reason could be that these disorders share structural correlates, such as white matter lesions (WMLs) and cortical atrophy. No study has examined whether these lesions precede both dementia and depression independently of each other in the general population. Whether WMLs and cortical atrophy on computed tomography predict dementia and depression was investigated in a population-based sample of 70-year-olds (n = 380) followed over 10 years. Exclusion criteria were dementia, major depression, history of stroke and a Mini-Mental State Examination score below 26 at baseline in 2000-2001. Dementia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, third edition, revised, and depression according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition. Primary outcomes included dementia and major depression at 10-year follow-up. Adjusted logistic regression models, including both WMLs and temporal lobe atrophy, showed that moderate to severe WMLs [odds ratio (OR) 3.96, 95% confidence interval (CI) 1.23-12.76] and temporal lobe atrophy (OR 2.93, 95% CI 1.13-7.60) predicted dementia during a 10-year follow-up independently of major depression. Similarly, both moderate to severe WMLs (OR 3.84, 95% CI 1.25-11.76) and temporal lobe atrophy (OR 2.52, 95% CI 1.06-5.96) predicted depression even after controlling for incident dementia. White matter lesions and temporal lobe atrophy preceded 10-year incidence of both dementia and depression in 70-year-olds. Shared structural correlates could explain the reported associations between dementia and depression. These brain changes may represent independent and complementary pathways to dementia and depression. Strategies to slow progression of vascular pathology and neurodegeneration could indirectly prevent both dementia and depression in older adults. © 2015 EAN.

  5. Cued recall measure predicts the progression of gray matter atrophy in patients with amnesic mild cognitive impairment.

    Science.gov (United States)

    Koric, Lejla; Ranjeva, Jean-Philippe; Felician, Olivier; Guye, Maxime; de Anna, Francesca; Soulier, Elisabeth; Didic, Mira; Ceccaldi, Mathieu

    2013-01-01

    Amnesic mild cognitive impairment (aMCI) is a heterogeneous syndrome that could be subdivided into distinct neuropsychological variants. To investigate relationships between the neuropsychological profile of memory impairment at baseline and the neuroimaging pattern of grey matter (GM) loss over 18 months, we performed a prospective volumetric brain study on 31 aMCI patients and 29 matched controls. All subjects were tested at baseline using a standardized neuropsychological battery, which included the Free and Cued Selective Recall Reminding Test (FCSRT) for the assessment of verbal declarative memory. Over 18 months, patients with impaired free recall but normal total recall (high index of cueing) on the FCSRT developed subcortical and frontal GM loss, while patients with impaired free and total recall (low index of cueing) developed GM atrophy within the left anterior and lateral temporal lobe. In summary, cued recall deficits are associated with a progression of atrophy that closely parallels the spatiotemporal distribution of neurofibrillary degeneration in early Alzheimer's disease (AD), indicating possible AD pathological changes. © 2013 S. Karger AG, Basel.

  6. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes.

    Science.gov (United States)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen

    2015-08-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.

  7. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy

    Science.gov (United States)

    Shabanpoor, Fazel; Hammond, Suzan M; Abendroth, Frank; Hazell, Gareth; Wood, Matthew J.A.

    2017-01-01

    Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases. PMID:28118087

  8. Clinical and MRI correlation in multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Negoro, Kiyoshi; Morimatsu, Mitsunori (Yamaguchi Univ., Ube (Japan). School of Medicine)

    1994-05-01

    By using magnetic resonance imaging (MRI), we studied 11 patients with multiple system atrophy (MSA): 5 olivo-pontocerebellar atrophy (OPCA), 2 Shy-Drager syndrome (SDS), and 4 striatonigral degeneration (SND). The diagnoses of OPCA, SDS and SND were clinically made. The MR images were performed on 1.5 tesla MRI unit (Siemens Asahi Medical, Magnetom H15), using a T[sub 2]-weighted spin echo (SE) sequence (TR: 2000-3000 ms, TE: 80-90 ms), a T[sub 1]-weighted SE sequence (TR: 550, TE: 15), and a proton density-weighted (PD) SE sequence (TR: 2000-3000, TE: 12-22). In the patients with OPCA, MRI revealed cerebellar and brainstem atrophy and degeneration of pontine transverse fibers more marked than in the patients with SDS and SND. T[sub 2]-weighted images showed low intensity in posterolateral putamina in one OPCA patient and all of SDS and SND patients. PD images demonstrated the abnormal slit-like high signals in posterolateral putamina in three SND. The degree of cerebellar ataxia was not well correlated with cerebellar and brainstem atrophy and degeneration of pontine transverse fibers. There was a positive correlation between the atrophy of cerebellum and brainstem and the duration of cerebellar ataxia. In most of the patients with Parkinsonism, MRI demonstrated abnormal low signals in putamina on T[sub 2]-weighted images. There were positive correlations between the abnormal low signals putamina and the duration and severity of Parkinsonism. Though abnormal low signals in lateral putamina may be seen in normal aging and other disorders on T[sub 2]-weighted images, it is useful to evaluate Parkinsonism in MSA. We believe that the abnormal slit-like high signals in posterolateral putamina in MSA may suggest loss of neurons and gliosis. (author).

  9. Fronto-striatal atrophy in behavioural variant frontotemporal dementia & Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Maxime eBertoux

    2015-07-01

    Full Text Available Behavioural variant frontotemporal dementia (bvFTD has only recently been associated with significant striatal atrophy, whereas the striatum appears to be relatively preserved in Alzheimer’s disease (AD. Considering the critical role the striatum has in cognition and behaviour, striatal degeneration, together with frontal atrophy, could be responsible of some characteristic symptoms in bvFTD and emerges therefore as promising novel diagnostic biomarker to distinguish bvFTD and AD. Previous studies have, however, only taken either cortical or striatal atrophy into account when comparing the two diseases. In this study, we establish for the first time a profile of fronto-striatal atrophy in 23 bvFTD and 29 AD patients at presentation, based on the structural connectivity of striatal and cortical regions. Patients are compared to 50 healthy controls by using a novel probabilistic connectivity atlas, which defines striatal regions by their cortical white matter connectivity, allowing us to explore the degeneration of the frontal and striatal regions that are functionally linked. Comparisons with controls revealed that bvFTD showed substantial fronto-striatal atrophy affecting the ventral as well as anterior and posterior dorso-lateral prefrontal cortices and the related striatal subregions. By contrast, AD showed few fronto-striatal atrophy, despite having significant posterior dorso-lateral prefrontal degeneration. Direct comparison between bvFTD and AD revealed significantly more atrophy in the ventral striatal-ventromedial prefrontal cortex regions in bvFTD. Consequently, deficits in ventral fronto-striatal regions emerge as promising novel and efficient diagnosis biomarker for bvFTD. Future investigations into the contributions of these fronto-striatal loops on bvFTD symptomology are needed to develop simple diagnostic and disease tracking algorithms.

  10. Fingolimod's Impact on MRI Brain Volume Measures in Multiple Sclerosis: Results from MS-MRIUS.

    Science.gov (United States)

    Zivadinov, Robert; Medin, Jennie; Khan, Nasreen; Korn, Jonathan R; Bergsland, Niels; Dwyer, Michael G; Chitnis, Tanuja; Naismith, Robert T; Alvarez, Enrique; Kinkel, Peter; Cohan, Stanley; Hunter, Samuel F; Silva, Diego; Weinstock-Guttman, Bianca

    2018-05-11

    Evidence is needed to understand the effect of fingolimod on slowing down brain atrophy progression in multiple sclerosis (MS) patients in clinical practice. We investigated the effect of fingolimod on brain atrophy in MS patients with active disease (clinically and/or magnetic resonance imaging [MRI]) versus no evidence of active disease (NEAD). MS and clinical outcome and MRI in the United States (MS-MRIUS) is a multicenter, retrospective study that included 590 relapsing-remitting MS patients, who initiated fingolimod, and were followed for a median of 16 months. Patients with active disease at baseline (245, 41.5%) were defined as those who had one or more relapses in the year previous starting fingolimod, and/or displayed gadolinium enhancing lesions(s) at baseline MRI scan, whereas patients with NEAD at baseline (345, 58.5%) did not fulfill these criteria. Annualized percentage brain volume change (PBVC) and percentage lateral ventricle volume change (PLVVC) over the follow-up were analyzed in both groups. Over the follow-up, the rate of PBVC was -.38% in active disease and -.25% in NEAD patients (P = .076), whereas PLLVC was 1.76% in active disease and .28% in NEAD patients (P = .046). No changes in timed 25-foot walk (P = .619) and Expanded Disability Status Scale (P = .275) scores or MRI lesion accumulation (P > 0.08) were detected, although the active disease group had a higher proportion of relapses during the follow-up period (P = .02). The study provides real-world evidence that rate of brain atrophy in MS patients with underlying active disease and NEAD in fingolimod treated patients is below the established pathological cutoff for loss of whole brain volume (>-.4%) or expansion of lateral ventricles (> 3.5%). Copyright © 2018 by the American Society of Neuroimaging.

  11. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  12. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    Science.gov (United States)

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  13. MRI assessment of whole-brain structural changes in aging.

    Science.gov (United States)

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P age ( r 2 >0.29; P 26.48, P aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests increased lesion differentiation. Further research is to integrate MRI tests for a clinical tool to aid the diagnosis and intervention of brain aging.

  14. αA crystallin may protect against geographic atrophy-meta-analysis of cataract vs. cataract surgery for geographic atrophy and experimental studies.

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    Full Text Available BACKGROUND: Cataract and geographic atrophy (GA, also called advanced "dry" age-related macular degeneration are the two major causes of visual impairment in the developed world. The association between cataract surgery and the development of GA was controversial in previous studies. METHODS/PRINCIPAL FINDINGS: We performed a meta-analysis by pooling the current evidence in literature and found that cataract is associated with an increased risk of geographic atrophy with a summary odds ratio (OR of 3.75 (95% CI: 95% CI: 1.84-7.62. However, cataract surgery is not associated with the risk of geographic atrophy (polled OR=3.23, 95% CI: 0.63-16.47. Further experiments were performed to analyze how the αA-crystallin, the major component of the lens, influences the development of GA in a mouse model. We found that theαA-crystallin mRNA and protein expression increased after oxidative stress induced by NaIO(3 in immunohistochemistry of retinal section and western blot of posterior eyecups. Both functional and histopathological evidence confirmed that GA is more severe in αA-crystallin knockout mice compared to wild-type mice. CONCLUSIONS: Therefore, αA-crystallin may protect against geographic atrophy. This study provides a better understanding of the relationship between cataract, cataract surgery, and GA.

  15. Atomoxetine Prevents Dexamethasone-Induced Skeletal Muscle Atrophy in Mice

    Science.gov (United States)

    Jesinkey, Sean R.; Korrapati, Midhun C.; Rasbach, Kyle A.; Beeson, Craig C.

    2014-01-01

    Skeletal muscle atrophy remains a clinical problem in numerous pathologic conditions. β2-Adrenergic receptor agonists, such as formoterol, can induce mitochondrial biogenesis (MB) to prevent such atrophy. Additionally, atomoxetine, an FDA-approved norepinephrine reuptake inhibitor, was positive in a cellular assay for MB. We used a mouse model of dexamethasone-induced skeletal muscle atrophy to investigate the potential role of atomoxetine and formoterol to prevent muscle mass loss. Mice were administered dexamethasone once daily in the presence or absence of formoterol (0.3 mg/kg), atomoxetine (0.1 mg/kg), or sterile saline. Animals were euthanized at 8, 16, and 24 hours or 8 days later. Gastrocnemius muscle weights, changes in mRNA and protein expression of peroxisome proliferator–activated receptor-γ coactivator-1 α (PGC-1α) isoforms, ATP synthase β, cytochrome c oxidase subunit I, NADH dehydrogenase (ubiquinone) 1 β subcomplex, 8, ND1, insulin-like growth factor 1 (IGF-1), myostatin, muscle Ring-finger protein-1 (muscle atrophy), phosphorylated forkhead box protein O 3a (p-FoxO3a), Akt, mammalian target of rapamycin (mTOR), and ribosomal protein S6 (rp-S6; muscle hypertrophy) in naive and muscle-atrophied mice were measured. Atomoxetine increased p-mTOR 24 hours after treatment in naïve mice, but did not change any other biomarkers. Formoterol robustly activated the PGC-1α-4-IGF1–Akt-mTOR-rp-S6 pathway and increased p-FoxO3a as early as 8 hours and repressed myostatin at 16 hours. In contrast to what was observed with acute treatment, chronic treatment (7 days) with atomoxetine increased p-Akt and p-FoxO3a, and sustained PGC-1α expression and skeletal muscle mass in dexamethasone-treated mice, in a manner comparable to formoterol. In conclusion, chronic treatment with a low dose of atomoxetine prevented dexamethasone-induced skeletal muscle wasting and supports a potential role in preventing muscle atrophy. PMID:25292181

  16. Comparison with hippocampal atrophy and hypoperfusion in Alzheimer's disease

    International Nuclear Information System (INIS)

    Chung, YA; Kim, SH; Chung, SK; Juh, RH; Sohn, HS; Suh, TS; Choe, BY

    2004-01-01

    Objective: Hypoperfusion and hippocampal atropy of the medial temporal lobe are peculiarity of Alzheimer's disease (AD). The manual ROI (region of interest) technique for hippocampal volume estimation is specific and sensitive for the detection of hippocampal atrophy. In patients with AD reported a significant correlation between hippocampal volume and hypoperfusion. This study investigated correlations between atrophy distinct medial temporal lobe structure and hypoperfusion in hippocampal volumetry. Methods: The hippocampi were individually outlined on Tl-weighted volumetry MRI and calculated with MATLAB in 12 patients with AD. All volume measurements were performed by a segmentation technique with a combination of tracing and thresholding. The volume of a given structure in each slice was obtained by automatically counting the number of pixels within the segmented regions and multiplying the number by a voxel size. In order to permit direct regional comparisons, both of each patient's Tc- 99m ECD SPECT was then registered to the patient's MRI. Delineation continued anteriorly in each contiguous slice reaching the head of the hippocampus, which was distinguished from the overlying amygdala by the presence of the alveus or uncal recess. The right hippocampus (RH) was measured first, followed by the left hippocampus (LH). The accuracy of registration was investigated in a validation study with developed brain phantom. Results:The mean total intracranial volume of the AD was significantly smaller volume (1492.9 cm 3 ) and hypo perfused than those in normal subjects. The mean hippocampal volumes were 2.01 cm 3 and l.99 cm 3 for the RH and LH. The correlations between volume and hypoperfusion in the affected hippocampi were found to be significant; especially the medial temporal lobe is markedly hypo perfused. Conclusion: Volumetry is the most sensitive tool for the detection of hippocampal abnormality in AD, and significant correlation between asymmetry in

  17. Analysis of the presence or absence of atrophy of the subgenual and subcallosal cingulate cortices using voxel-based morphometry on MRI is useful to select prescriptions for patients with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Niida A

    2014-12-01

    Full Text Available Akira Niida,1 Richi Niida,2 Hiroshi Matsuda,3 Makoto Motomura,4 Akihiko Uechi5 1Department of Radiology, Nanbu Hospital, Itoman City, Okinawa, Japan; 2Department of Psychiatry, Nanto Clinic, Urasoe City, Okinawa, Japan; 3Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira City, Tokyo, Japan; 4Department of Human Sciences, University of the Ryukyus, Nakagami County, Okinawa, Japan; 5Cognitive Neuroscience Research Project, Kansai Gaidai University, Hirakata City, Osaka, Japan Objective: We objectively evaluated the presence or absence of atrophy of the subgenual anterior cingulate cortex (sgACC and the subcallosal anterior cingulate cortex (scACC, using new voxel-based morphometry (VBM software employing Statistical Parametric Mapping software v8 and diffeomorphic anatomic registration through an exponentiated lie algebra. We prepared a database covering young-mature adulthood and investigated the clinical usefulness of the evaluation. Subjects and methods: One hundred seven patients with major depressive disorder (MDD, 74 patients with bipolar disorder (BD, and 240 healthy control subjects underwent 1.5T magnetic resonance imaging scanning. Using new VBM software and databases covering young-mature adults and the elderly, target volumes of interest were set in the sgACC and scACC, four indicators (severity, extent, ratio, and whole-brain extent were determined, and the presence or absence of atrophy of the sgACC and scACC was evaluated on the basis of the indicators. In addition, the relationships between the presence or absence of atrophy of the sgACC and scACC and performance of diagnosing MDD and BD and therapeutic drugs were investigated. Results: It was clarified that the disease is likely to be MDD when atrophy is detected in the sgACC, and likely to be BD when no atrophy is detected in the sgACC but is detected in the scACC. Regarding the relationship with therapeutic drugs, it was clarified that, when

  18. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS

    International Nuclear Information System (INIS)

    Liu, Yaou; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Liu, Zheng; Dong, Huiqing; Weiler, Florian; Hahn, Horst K.; Shi, Fu-Dong; Butzkueven, Helmut; Barkhof, Frederik; Li, Kuncheng

    2018-01-01

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. (orig.)

  19. Different patterns of longitudinal brain and spinal cord changes and their associations with disability progression in NMO and MS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Beijing Key Lab of MRI and Brain Informatics, Beijing (China); VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); Tianjin Medical University General Hospital, Department of Neurology and Tianjin Neurological Institute, Tianjin (China); Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Liu, Zheng; Dong, Huiqing [Capital Medical University, Department of Neurology, Xuanwu Hospital, Beijing (China); Weiler, Florian; Hahn, Horst K. [Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen (Germany); Shi, Fu-Dong [Tianjin Medical University General Hospital, Department of Neurology and Tianjin Neurological Institute, Tianjin (China); Butzkueven, Helmut [University of Melbourne, Department of Medicine, Parkville (Australia); Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam (Netherlands); UCL, Institutes of Neurology and Healthcare Engineering, London (United Kingdom); Li, Kuncheng [Xuanwu Hospital, Capital Medical University, Department of Radiology, Beijing (China); Beijing Key Lab of MRI and Brain Informatics, Beijing (China)

    2018-01-15

    To investigate the longitudinal spinal cord and brain changes in neuromyelitis optica (NMO) and multiple sclerosis (MS) and their associations with disability progression. We recruited 28 NMO, 22 MS, and 20 healthy controls (HC), who underwent both spinal cord and brain MRI at baseline. Twenty-five NMO and 20 MS completed 1-year follow-up. Baseline spinal cord and brain lesion loads, mean upper cervical cord area (MUCCA), brain, and thalamus volume and their changes during a 1-year follow-up were measured and compared between groups. All the measurements were also compared between progressive and non-progressive groups in NMO and MS. MUCCA decreased significantly during the 1-year follow-up in NMO not in MS. Percentage brain volume changes (PBVC) and thalamus volume changes in MS were significantly higher than NMO. MUCCA changes were significantly different between progressive and non-progressive groups in NMO, while baseline brain lesion volume and PBVC were associated with disability progression in MS. MUCCA changes during 1-year follow-up showed association with clinical disability in NMO. Spinal cord atrophy changes were associated with disability progression in NMO, while baseline brain lesion load and whole brain atrophy changes were related to disability progression in MS. (orig.)

  20. Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners.

    Science.gov (United States)

    Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian

    2016-07-01

    Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Dyke–Davidoff–Masson syndrome with crossed cerebellar atrophy

    Directory of Open Access Journals (Sweden)

    Sanjay M. Khaladkar

    2017-09-01

    Full Text Available Dyke–Davidoff–Masson syndrome is a rare condition with classical, clinical and radiological changes – mental retardation, hemiparesis, facial asymmetry, seizures and cerebral hemiatrophy with calvarial changes. Contralateral cerebellar atrophy is rare and occurs if insult occurs after 1 month of age. We report a case of a 6-year-old female child presenting with right-sided hemiparesis, convulsions and left cerebral hemiatrophy with an old infarct in left middle cerebral artery (MCA territory, ipsilateral calvarial thickening and right (crossed cerebellar atrophy.

  2. Intellectual impairment and brain MRI findings in myotonic dystrophy. With a special reference to hippocampal atrophy and white matter lesions

    International Nuclear Information System (INIS)

    Kato, Etsuko; Takahashi, Satoshi; Yonezawa, Hisashi

    1995-01-01

    We performed a correlative study between intellectual impairment, CTG repeat expansion and magnetic resonance imaging (MRI) abnormalities, including hippocampal atrophy, white matter lesions and ventricular dilatation in 15 patients with myotonic dystrophy (MD). They included 4 males and 11 females aged from 20 to 66 years, averaging 43 years of age and 15 years of duration of illness. Nine patients had intellectual impairment (WAIS-R<80). Negative correlations were found between full scale IQ (FSIQ), duration of illness (p<0.05) and CTG repeat expansion (p<0.05). Compared with normal controls, the patients with MD showed a significant reduction in size of the hippocampal head (p<0.01), which was positively correlated to FSIQ, verbal IQ and performance IQ levels (p<0.05). Ten patients had white matter lesions. Severer white matter lesions tended to be recognized in patients with longer duration of illness and with decreased FSIQ level. These results suggest that hippocampal atrophy and white matter lesions are related to intellectual impairment in patients with MD. (author)

  3. Malnutrition and Risk of Structural Brain Changes Seen on Magnetic Resonance Imaging in Older Adults.

    Science.gov (United States)

    de van der Schueren, Marian A E; Lonterman-Monasch, Sabine; van der Flier, Wiesje M; Kramer, Mark H; Maier, Andrea B; Muller, Majon

    2016-12-01

    To study the associations between protein energy malnutrition, micronutrient malnutrition, brain atrophy, and cerebrovascular lesions. Cross-sectional. Geriatric outpatient clinic. Older adults (N = 475; mean age 80 ± 7). Nutritional status was assessed using the Mini Nutritional Assessment (MNA) and according to serum micronutrient levels (vitamins B1, B6, B12, D; folic acid). White matter hyperintensities (WMHs), global cortical brain atrophy, and medial temporal lobe atrophy on magnetic resonance imaging (MRI) were rated using visual rating scales. Logistic regression analyses were performed to assess associations between the three MNA categories (malnutrition (MNA = 17-23.5). Participants at risk of malnutrition (odds ratio (OR) = 1.93, 95% confidence interval (CI) = 1.01-3.71) or who were malnourished (OR = 2.80, 95% CI = 1.19-6.60) had a greater probability of having severe WMHs independent of age and sex than those with adequate nutritional status. Results remained significant after further adjustments for cognitive function, depressive symptoms, cardiovascular risk factors, history of cardiovascular disease, smoking and alcohol use, and micronutrient levels. Lower vitamin B1 (OR = 1.51, 95% CI = 1.11-2.08) and B12 (OR = 1.45, 95% CI = 1.02-2.04) levels were also related to greater risk of severe WMHs, independent of age and sex. Results remained significant after additional adjustments. MNA and vitamin levels were not associated with measures of brain atrophy. Malnutrition and lower vitamin B1 and B12 levels were independently associated with greater risk of WMHs. Underlying mechanisms need to be further clarified, and whether nutritional interventions can modify these findings also needs to be studied. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  4. [123I]FP-CIT (DaTSCAN) and SPET in the diagnostics of Parkinson's disease and Parkinsonian syndromes

    International Nuclear Information System (INIS)

    Chmielowski, K.; Szalus, B.; Pietrzykowski, J.; Brodacki, B.; Kotowicz, J.; Skrobowska, E.

    2003-01-01

    The aim of study was to verify the diagnostic value of the radiopharmaceutic [ 123I ]FP-CIT (DaTSCAN) in functional imaging of the presynaptical dopaminergic system in patients with Parkison's disease and parkinsonian syndromes: multiple system atrophy, orthostatic hypotonia Shy-Drager, essential tremor. That pilot study group consisted of 8 patients in which either preliminary diagnosis or suspicion of Parkinson's disease, parkinsonian syndrome or multiple system atrophy was set. Imaging of the brain with SPET (dual head detector Varicam Elscint) and MRI were performed. The radiopharmaceutic [ 123I ] FP-CIT (DaTSCAN) was administered intravenously in the dose 145 -148 MBq. SPET images were reconstructed by filtered backprojection with the use of Butterworth filter. The images were inspected visually. Images from SPET and MRI were superimposed by means of the workstation Hermes (Nucklear Diagnostic) with designatad regions interest (ROI) in the striatum and occipital cortex in order to assess semiquantitatively the binding of dopamine transporter. In the group of 8 patients evaluated with the use of [ 123I ]FP-CIT DaTSCAN four had normal results, and four - abnormal. The preliminary diagnosis was sustained in 3/8 of patients (including Parkinson's disease in two patients and multiple system atrophy in one patient). In the remainig 5 patients the preliminary diagnosis was changed, namely: in 2 cases the essential tremor was diagnosed, in 1 case - Parkinson's disease, in 1 case - orthostaic Sky-Drager, and in 1 case - despite the tremor of the upper limbs - results were normal. In all 8 patients the tracer proved to be useful in the confirmation of clinical diagnosis, especially in the differentiation between the essential tremor and Parkinson's disease. In the case of multiple system atrophy the imaging revealed significant loss of nigrostriatal dopaminergic neurons. Such loss was observed also in the cases of Parkinson's disease affecting the posterior parts of the

  5. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  6. Changes in the Cell Population in Brain White Matter in Multiple System Atrophy

    DEFF Research Database (Denmark)

    Nykjaer, Charlotte Havelund; Brudek, Tomasz; Salvesen, Lisette

    2017-01-01

    . OBJECTIVES AND METHODS: To establish the extent of involvement of the white matter in the disease, we have used stereology to quantify the total number of neurons and glial cells (oligodendrocytes, astrocytes, and microglia) in the brains from 10 MSA patients and 11 controls. RESULTS: The mean total number...... of white matter interstitial neurons in the patient brains was 0.5 × 10(9) (coefficient of variation = standard deviation/mean = 0.37), which was significantly lower than the 1.1 × 10(9) (0.41) in the control brains (P = .001) and equal to a reduction by ∼50%. The patient brains had a significantly higher...... number of white matter microglia, 1.5 × 10(9) (0.47) versus 0.7 × 10(9) (0.39) microglia in the control subjects (P = .003) and equal to an increase by ∼ 100%. There was no significant difference in mean total numbers of white matter oligodendrocytes and astrocytes between the groups. CONCLUSIONS: We...

  7. Cytokine profiling in the prefrontal cortex of Parkinson's Disease and Multiple System Atrophy patients.

    Science.gov (United States)

    Rydbirk, Rasmus; Elfving, Betina; Andersen, Mille Dahl; Langbøl, Mia Aggergaard; Folke, Jonas; Winge, Kristian; Pakkenberg, Bente; Brudek, Tomasz; Aznar, Susana

    2017-10-01

    Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are neurodegenerative diseases characterized neuropathologically by alpha-synuclein accumulation in brain cells. This accumulation is hypothesized to contribute to constitutive neuroinflammation, and to participate in the neurodegeneration. Cytokines, which are the main inflammatory signalling molecules, have been identified in blood and cerebrospinal fluid of PD patients, but studies investigating the human brain levels are scarce. It is documented that neurotrophins, necessary for survival of brain cells and known to interact with cytokines, are altered in the basal ganglia of PD patients. In regards to MSA, no major study has investigated brain cytokine or neurotrophin protein expression. Here, we measured protein levels of 18 cytokines (IL-2, 4-8, 10, 12, 13, 17, G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and 1β, TNF-α) and 5 neurotrophins (BDNF, GDNF, bFGF, PDGF-BB, VEGF) in the dorsomedial prefrontal cortex in brains of MSA and PD patients and control subjects. We found altered expression of IL-2, IL-13, and G-CSF, but no differences in neurotrophin levels. Further, in MSA patients we identified increased mRNA levels of GSK3β that is involved in neuroinflammatory pathways. Lastly, we identified increased expression of the neurodegenerative marker S100B, but not CRP, in PD and MSA patients, indicating local rather than systemic inflammation. Supporting this, in both diseases we observed increased MHC class II + and CD45 + positive cells, and low numbers of infiltrating CD3 + cells. In conclusion, we identified neuroinflammatory responses in PD and MSA which seems more widespread in the brain than neurotrophic changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dominant inherited distal spinal muscular atrophy with atrophic and hypertrophic calves

    NARCIS (Netherlands)

    Groen, R J; Sie, O G; van Weerden, T W

    The clinical, electrophysiological, radiological and morphological data of 3 members of a family with autosomal dominant distal spinal muscular atrophy (DSMA) are reported. One patient has the clinical picture of peroneal muscular atrophy with atrophic calves. His father and sister suffer from

  9. Prevention of pectus excavatum for children with spinal muscular atrophy type 1.

    Science.gov (United States)

    Bach, John R; Bianchi, Carlo

    2003-10-01

    To demonstrate the elimination of pectus excavatum and promotion of more normal lung growth and chest wall development by the use of high-span positive inspiratory pressure plus positive end-expiratory pressure (PIP+PEEP), patients with spinal muscular atrophy type 1 with paradoxical breathing were placed on high-span PIP+PEEP when sleeping from the point of diagnosis of spinal muscular atrophy. Although the appearance of pectus excavatum is ubiquitous in untreated infants with spinal muscular atrophy type 1, after institution of high-span PIP+PEEP, pectus resolves and lungs and chest walls grow more normally. High-span PIP+PEEP is indicated for all infants diagnosed with spinal muscular atrophy who demonstrate paradoxical breathing for the purpose of promoting more normal lung and chest development.

  10. MR imaging of brain tissue changes in acute and chronic solvent intoxication

    International Nuclear Information System (INIS)

    Rinck, P.A.; Nilsen, G.; Kvaerness, J.

    1988-01-01

    Acute and chronic intoxication with solvents is found both as an occupational hazard and as self-inflicted in addicts to solvent. Objective demonstration of such brain tissue changes is difficult with conventional imaging methods, and in most cases findings are negative. In a preliminary study, the brains of eight patients (aged 28-62 years) exposed to aggressive solvents for 1-27 years were examined with magnetic resonance imaging. All of the patients showed brain atrophy of varying extent, and seven of eight patients (all except the youngest and least exposed) had brain lesions that somewhat resembled dymyelinating changes (focal and confluent periventricular and deep white matter lesions, brain stem and cerebellar lesions); one patient showed cloudy, poorly defined lesions

  11. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  12. Recommendations for the management of postmenopausal vaginal atrophy

    DEFF Research Database (Denmark)

    Sturdee, D W; Panay, N; Ulrich, Lian

    2010-01-01

    for hormone replacement therapy (HRT) over recent years that has suggested an increased risk of breast cancer, heart disease and stroke. But, regardless of whether these scares are justified, local treatment of vaginal atrophy is not associated with these possible risks of systemic HRT. Other reasons...... dryness can be helped by simple lubricants but the best and most logical treatment for urogenital atrophy is to use local estrogen. This is safe, effective and with few contraindications. It is hoped that these guidelines and recommendations, produced to coincide with World Menopause Day 2010, will help...

  13. Bilateral hippocampal atrophy in temporal lobe epilepsy: Effect of depressive symptoms and febrile seizures

    Science.gov (United States)

    Finegersh, Andrey; Avedissian, Christina; Shamim, Sadat; Dustin, Irene; Thompson, Paul M.; Theodore, William H.

    2011-01-01

    Summary Purpose Neuroimaging studies suggest a history of febrile seizures, and depression, are associated with hippocampal volume reductions in patients with temporal lobe epilepsy (TLE). Methods We used radial atrophy mapping (RAM), a three-dimensional (3D) surface modeling tool, to measure hippocampal atrophy in 40 patients with unilateral TLE, with or without a history of febrile seizures and symptoms of depression. Multiple linear regression was used to single out the effects of covariates on local atrophy. Key Findings Subjects with a history of febrile seizures (n = 15) had atrophy in regions corresponding to the CA1 and CA3 subfields of the hippocampus contralateral to seizure focus (CHC) compared to those without a history of febrile seizures (n = 25). Subjects with Beck Depression Inventory II (BDI-II) score ≥14 (n = 11) had atrophy in the superoanterior portion of the CHC compared to subjects with BDI-II <14 (n = 29). Significance Contralateral hippocampal atrophy in TLE may be related to febrile seizures or depression. PMID:21269286

  14. Electroencephalography reveals lower regional blood perfusion and atrophy of the temporoparietal network associated with memory deficits and hippocampal volume reduction in mild cognitive impairment due to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Moretti DV

    2015-02-01

    Full Text Available Davide Vito MorettiNational Institute for the research and cure of Alzheimer’s disease, S. John of God, Fatebenefratelli, Brescia, Italy Background: An increased electroencephalographic (EEG upper/lower alpha power ratio has been associated with less regional blood perfusion, atrophy of the temporoparietal region of the brain, and reduction of hippocampal volume in subjects affected by mild cognitive impairment due to Alzheimer’s disease as compared with subjects who do not develop the disease. Moreover, EEG theta frequency activity is quite different in these groups. This study investigated the correlation between biomarkers and memory performance.Methods: EEG α3/α2 power ratio and cortical thickness were computed in 74 adult subjects with prodromal Alzheimer’s disease. Twenty of these subjects also underwent assessment of blood perfusion by single-photon emission computed tomography (SPECT. Pearson’s r was used to assess the correlation between cortical thinning, brain perfusion, and memory impairment.Results: In the higher α3/α2 frequency power ratio group, greater cortical atrophy and lower regional perfusion in the temporoparietal cortex was correlated with an increase in EEG theta frequency. Memory impairment was more pronounced in the magnetic resonance imaging group and SPECT groups.Conclusion: A high EEG upper/low alpha power ratio was associated with cortical thinning and less perfusion in the temporoparietal area. Moreover, atrophy and less regional perfusion were significantly correlated with memory impairment in subjects with prodromal Alzheimer’s disease. The EEG upper/lower alpha frequency power ratio could be useful for identifying individuals at risk for progression to Alzheimer’s dementia and may be of value in the clinical context.Keywords: electroencephalography, perfusion, atrophy, temporoparietal network, memory deficits, hippocampal volume, mild cognitive impairment, Alzheimer’s disease

  15. Progressive Diaphragm Atrophy in Pediatric Acute Respiratory Failure.

    Science.gov (United States)

    Glau, Christie L; Conlon, Thomas W; Himebauch, Adam S; Yehya, Nadir; Weiss, Scott L; Berg, Robert A; Nishisaki, Akira

    2018-02-05

    Diaphragm atrophy is associated with delayed weaning from mechanical ventilation and increased mortality in critically ill adults. We sought to test for the presence of diaphragm atrophy in children with acute respiratory failure. Prospective, observational study. Single-center tertiary noncardiac PICU in a children's hospital. Invasively ventilated children with acute respiratory failure. Diaphragm thickness at end-expiration and end-inspiration were serially measured by ultrasound in 56 patients (median age, 17 mo; interquartile range, 5.5-52), first within 36 hours of intubation and last preceding extubation. The median duration of mechanical ventilation was 140 hours (interquartile range, 83-201). At initial measurement, thickness at end-expiration was 2.0 mm (interquartile range, 1.8-2.5) and thickness at end-inspiration was 2.5 mm (interquartile range, 2-2.8). The change in thickness at end-expiration during mechanical ventilation between first and last measurement was -13.8% (interquartile range, -27.4% to 0%), with a -3.4% daily atrophy rate (interquartile range, -5.6 to 0%). Thickening fraction = ([thickness at end-inspiration - thickness at end-expiration]/thickness at end-inspiration) throughout the course of mechanical ventilation was linearly correlated with spontaneous breathing fraction (beta coefficient, 9.4; 95% CI, 4.2-14.7; p = 0.001). For children with a period of spontaneous breathing fraction less than 0.5 during mechanical ventilation, those with exposure to a continuous neuromuscular blockade infusion (n = 15) had a significantly larger decrease in thickness at end-expiration compared with children with low spontaneous breathing fraction who were not exposed to a neuromuscular blockade infusion (n = 18) (-16.4%, [interquartile range, -28.4% to -7.0%] vs -7.3%; [interquartile range, -10.9% to -0%]; p = 0.036). Diaphragm atrophy is present in children on mechanical ventilation for acute respiratory failure. Diaphragm contractility, measured as

  16. The Retina in Multiple System Atrophy: Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Carlos E. Mendoza-Santiesteban

    2017-05-01

    Full Text Available BackgroundMultiple system atrophy (MSA is a rare, adult-onset, rapidly progressive fatal synucleinopathy that primarily affects oligodendroglial cells in the brain. Patients with MSA only rarely have visual complaints, but recent studies of the retina using optical coherence tomography (OCT showed atrophy of the peripapillary retinal nerve fiber layer (RNFL and to a lesser extent the macular ganglion cell layer (GCL complex.MethodsWe performed a literature review and meta-analysis according to the preferred reporting items for systematic reviews and meta-analyses guidelines for studies published before January 2017, identified through PubMed and Google Scholar databases, which reported OCT-related outcomes in patients with MSA and controls. A random-effects model was constructed.ResultsThe meta-analysis search strategy yielded 15 articles of which 7 met the inclusion criteria. The pooled difference in the average thickness of the RNFL was −5.48 μm (95% CI, −6.23 to −4.73; p < 0.0001, indicating significant thinning in patients with MSA. The pooled results showed significant thinning in all the specific RNFL quadrants, except in the temporal RNFL quadrant, where the thickness in MSA and controls was similar [pooled difference of 1.11 µm (95% CI, −4.03 to 6.26; p = 0.67]. This pattern of retinal damage suggests that MSA patients have preferential loss of retinal ganglion cells projecting to the magnocellular pathway (M-cells, which are mainly located in the peripheral retina and are not essential for visual acuity. Visual acuity, on the other hand, relies mostly on macular ganglion cells projecting to the parvocellular pathway (P-cells through the temporal portion of the RNFL, which are relatively spared in MSA patients.ConclusionThe retinal damage in patients with MSA differs from that observed in patients with Parkinson disease (PD. Patients with MSA have more relative preservation of temporal sector of the RNFL and less

  17. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  18. Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Bonte, Stijn [IBiTech, Ghent, (Belgium); Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium); University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Vandemaele, Pieter; Deblaere, Karel; Goethals, Ingeborg [University Hospital, Department of Radiology and Nuclear Medicine, Ghent (Belgium); Verleden, Stijn; Audenaert, Kurt [University Hospital, Department of Psychiatry, Ghent (Belgium); Holen, Roel van [Ghent University, iMinds - Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Ghent (Belgium)

    2017-05-15

    The mechanisms of ageing of the healthy brain are not entirely clarified to date. In recent years several authors have tried to elucidate this topic by using {sup 18}F-FDG positron emission tomography. However, when correcting for partial volume effects (PVE), divergent results were reported. Therefore, it is necessary to evaluate these methods in the presence of atrophy due to ageing. In this paper we first evaluate the performance of two PVE correction techniques with a phantom study: the Rousset method and iterative deconvolution. We show that the ability of the latter method to recover the true activity in a small region decreases with increasing age due to brain atrophy. Next, we have calculated age-dependent recovery factors to correct for this incomplete recovery. These factors were applied to PVE-corrected {sup 18}F-FDG PET scans of healthy subjects for mapping the agedependent metabolism in the brain. Many regions in the brain show a reduced metabolism with ageing, especially in grey matter in the frontal and temporal lobe. An increased metabolism is found in grey matter of the cerebellum and thalamus. Our study resulted in age-dependent recovery factors which can be applied following standard PVE correction methods. Cancelling the effect of atrophy, we found regional changes in {sup 18}F-FDG metabolism with ageing. A decreasing trend is found in the frontal and temporal lobe, whereas an increasing metabolism with ageing is observed in the thalamus and cerebellum.

  19. Re-irradiation for metastatic brain tumors with whole-brain radiotherapy

    International Nuclear Information System (INIS)

    Akiba, Takeshi; Kunieda, Etsuo; Kogawa, Asuka; Komatsu, Tetsuya; Tamai, Yoshifumi; Ohizumi, Yukio

    2012-01-01

    The objective of this study was to determine whether second whole-brain irradiation is beneficial for patients previously treated with whole-brain irradiation. A retrospective analysis was done for 31 patients with brain metastases who had undergone re-irradiation. Initial whole-brain irradiation was performed with 30 Gy/10 fractions for 87% of these patients. Whole-brain re-irradiation was performed with 30 Gy/10 fractions for 42% of these patients (3-40 Gy/1-20 fractions). Three patients underwent a third whole-brain irradiation. The median interval between the initial irradiation and re-irradiation was 10 months (range: 2-69 months). The median survival time after re-irradiation was 4 months (range: 1-21 months). The symptomatic improvement rate after re-irradiation was 68%, and the partial and complete tumor response rate was 55%. Fifty-two percent of the patients developed Grade 1 acute reactions. On magnetic resonance imaging, brain atrophy was observed in 36% of these patients after the initial irradiation and 74% after re-irradiation. Grade ≥2 encephalopathy or cognitive disturbance was observed in 10 patients (32%) after re-irradiation. Based on univariate analysis, significant factors related to survival after re-irradiation were the location of the primary cancer (P=0.003) and the Karnofsky performance status at the time of re-irradiation (P=0.008). A Karnofsky performance status ≥70 was significant based on multivariate analysis (P=0.050). Whole-brain re-irradiation for brain metastases placed only a slight burden on patients and was effective for symptomatic improvement. However, their remaining survival time was limited and the incidence of cognitive disturbance was rather high. (author)

  20. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  1. The diagnosis of thymoma and thymic atrophy in patients with myasthenia gravis

    International Nuclear Information System (INIS)

    Sund, K.K.; Skeie, G.O.; Gilhus, N.E.; Aarli, J.A.; Varhaug, J.E.

    1997-01-01

    The authors have compared clinical, immunological and radiological data in 20 patients with myasthenia gravis and thymoma and in 21 patients with myasthenia gravis and thymic atrophy. The median age at onset was 54 years in the thymoma group and 63 years in the thymic atrophy group. The severity of the disease was similar in the two groups, and there was no significant difference in the concentration of acetylcholine receptor antibodies. CA antibodies were demonstrated in 17/20 thymoma patients and in 6/21 with thymic atrophy, while 19/20 thymoma patients had antibodies to titin, compared with 9/21 among those with thymic atrophy. The diagnosis and treatment of patients with myasthenia gravis is based upon an evaluation of clinical, immunological and radiological data. 28 refs., 2 tabs

  2. The relationship between tear severity, fatty infiltration, and muscle atrophy in the supraspinatus.

    Science.gov (United States)

    Barry, Jeffrey J; Lansdown, Drew A; Cheung, Sunny; Feeley, Brian T; Ma, C Benjamin

    2013-01-01

    Fatty infiltration and muscle atrophy have been described as interrelated characteristic changes that occur within the muscles of the rotator cuff after cuff tears, and both are independently associated with poor outcomes after surgical repair. We hypothesize that fatty infiltration and muscle atrophy are two distinct processes independently associated with supraspinatus tears. A retrospective review of 377 patients who underwent shoulder magnetic resonance imaging at one institution was performed. Multivariate analysis was performed based on parameters including age, sex, rotator cuff tear severity, fatty infiltration grade, and muscle atrophy. A total of 116 patients (30.8%) had full-thickness tears of the supraspinatus, 153 (40.6%) had partial thickness tears, and 108 (28.7%) had no evidence of tear. With increasing tear severity, the prevalence of substantial fatty infiltration (grade ≥2) increased: 6.5% of patients with no tears vs 41.4% for complete tears (P tear severity: 36.1% of no tears vs 77.6% of complete tears (P muscle atrophy when taking into account sex, age, and tear severity. Fatty infiltration and muscle atrophy are independently associated processes. Fatty infiltration is also related to increasing age, muscle tear severity, and sex, whereas muscle atrophy is related to increasing age but not tear severity. In patients without rotator cuff tears, fatty infiltration and atrophy prevalence increased independently with increasing age. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  3. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy

    Science.gov (United States)

    Yakabe, Mitsutaka; Ota, Hidetaka; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-01-01

    Background Interleukin-6 (IL-6) is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear. Methods Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB) and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy. Results Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1) expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice. Conclusion Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy. PMID:29351340

  4. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Mitsutaka Yakabe

    Full Text Available Interleukin-6 (IL-6 is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear.Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy.Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1 expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice.Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy.

  5. Preliminary application of voxel-based morphometry technique on brain changes in neuromyelitis

    International Nuclear Information System (INIS)

    Xiao Hui; Ma Lin; Chen Ziqian; Lou Xin; Chen Zhiye

    2011-01-01

    Objective: To investigate the changes of brain volumes in neuromyelitis optica (NMO) patients using voxel-based morphometry (VBM) method, and preliminarily explore the pattern of cerebral anatomical impairment. Methods: Twenty-three clinically defined NMO patients and 15 gender and age matched healthy volunteers underwent 3-dimensional (3D) fast spoiled gradient echo (FSPGR) sequence scanning on 3.0 Tesla MR system. Raw data was processed and analyzed using statistical parametric mapping (SPM) 5. Whole brain volumes included grey matter volume (GMV), white matter volume (WMV), total intracranial volume (TIV), grey matter fraction (GMF), white matter fraction (WMF), brain tissue fraction (BTF) and regional brain volumes between the two groups were compared by independent samples t-test and an Pearson were performed to compare the regional brain volumes and the ages. Results: GMV of NMO group [(610.2±55.0) ml] was significantly decreased comparing to healthy control group [(657.2±36.3) ml] (t=-2.915, P<0.05). The age of NMO patients [(40±9) years old] showed negative correlation with GMF [(42.5±2.6) %] (r=-0.673, P<0.05). Regional brain volume analysis showed decreased GMV in left insula and bilateral posterior cingutates in NMO patients, while decreased WMV was found in left frontal and left parietal white matter. Conclusion: VBM could detect brain volume changes sensitively. Total grey matter volume in NMO patients was decreased comparing to HC group. Regional grey matter atrophy in NMO patients occurred in left insular and bilateral posterior cingutates, regional white matter atrophy occurred in left frontal and left parietal lobe. (authors)

  6. Brain correlates of musical and facial emotion recognition: evidence from the dementias.

    Science.gov (United States)

    Hsieh, S; Hornberger, M; Piguet, O; Hodges, J R

    2012-07-01

    The recognition of facial expressions of emotion is impaired in semantic dementia (SD) and is associated with right-sided brain atrophy in areas known to be involved in emotion processing, notably the amygdala. Whether patients with SD also experience difficulty recognizing emotions conveyed by other media, such as music, is unclear. Prior studies have used excerpts of known music from classical or film repertoire but not unfamiliar melodies designed to convey distinct emotions. Patients with SD (n = 11), Alzheimer's disease (n = 12) and healthy control participants (n = 20) underwent tests of emotion recognition in two modalities: unfamiliar musical tunes and unknown faces as well as volumetric MRI. Patients with SD were most impaired with the recognition of facial and musical emotions, particularly for negative emotions. Voxel-based morphometry showed that the labelling of emotions, regardless of modality, correlated with the degree of atrophy in the right temporal pole, amygdala and insula. The recognition of musical (but not facial) emotions was also associated with atrophy of the left anterior and inferior temporal lobe, which overlapped with regions correlating with standardized measures of verbal semantic memory. These findings highlight the common neural substrates supporting the processing of emotions by facial and musical stimuli but also indicate that the recognition of emotions from music draws upon brain regions that are associated with semantics in language. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Global gray matter changes in posterior cortical atrophy: A serial imaging study

    NARCIS (Netherlands)

    Lehmann, M.; Barnes, J.; Ridgway, G.R.; Ryan, N.S.; Warrington, E.K.; Crutch, S.J.; Fox, N.C.

    2012-01-01

    Background: Posterior cortical atrophy (PCA) is a neurodegenerative condition predominantly associated with Alzheimer's disease (AD) pathology. Cross-sectional imaging studies have shown different atrophy patterns in PCA patients compared with typical amnestic Alzheimer's disease (tAD) patients,

  8. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    Science.gov (United States)

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  9. Subcortical hyperintensity volumetrics in Alzheimer’s disease and normal elderly in the Sunnybrook Dementia Study: correlations with atrophy, executive function, mental processing speed, and verbal memory

    OpenAIRE

    Ramirez, Joel; McNeely, Alicia A; Scott, Christopher JM; Stuss, Donald T; Black, Sandra E

    2014-01-01

    Introduction Subcortical hyperintensities (SHs) are radiological entities commonly observed on magnetic resonance imaging (MRI) of patients with Alzheimer’s disease (AD) and normal elderly controls. Although the presence of SH is believed to indicate some form of subcortical vasculopathy, pathological heterogeneity, methodological differences, and the contribution of brain atrophy associated with AD pathology have yielded inconsistent results in the literature. Methods Using the Lesion Explor...

  10. Food strategies of renal atrophy based on Avicenna and conventional medicine

    Directory of Open Access Journals (Sweden)

    Marjan Mahjour

    2017-10-01

    Full Text Available Kidneys have an important role in the body. Any damage to kidney role can damage many organs of the body. Traditional Persian Medicine (TPM or Iranian traditional medicine (ITM is an ancient temperamental medicine with many literatures about kidney diseases and Avicenna (980–1025 AD describes kidney diseases in details. This is a review study by searching of the most important clinical and pharmaceutical TPM textbooks such as The Canon of Medicine by Avicenna and scientific data banks using keywords such as “Hozal-e-Kolye”, renal atrophy, tubular atrophy, kidney, chronic kidney disease, and end stage renal disease. This paper found that “Hozal-e-Kolye” in TPM texts is the same tubular atrophy in conventional medicine due to some similar symptoms between them. Lifestyle modification and use of proposed foodstuffs can be considered as a complementary medicine in addition to conventional treatments to manage these patients. TPM scholars prescribed some foodstuffs such as camel milk, sheep's milk and Ficus carica for this disease as a complementary management. This study aimed to explain HK (the same tubular atrophy considering their similar symptoms and introduce some foodstuffs. It seems using of foodstuffs affecting tubular atrophy based on TPM literatures can has a role as a supplemental method in company with conventional medicine management.

  11. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  12. Brain computed tomography of the hypertensive patients

    Energy Technology Data Exchange (ETDEWEB)

    Bae, W. K.; Park, C. K.; Cho, O. K.; Hahm, C. K. [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1980-12-15

    Now a day, hypertension is more increasing in frequency and ranked the top of the causes of death in Korea and other nations. Most of cerebrovascular accidents in hypertensive patients are composed of vascular occlusive changes and hemorrhages. In cerebral angiogram, we can only detect occlusion of large artery and large mass effect from hematoma or cerebral infarction without identification of its entity. The computed tomogram, however, is the best way for evaluation of cerebrovascular diseases including detection of nature, location, amount, and associated changes. This study includes evaluation of computed tomograms of 106 patients with hypertension during the period of 17 months from Feb. 1979 to June 1980 in the department of radiology, college of Medicine, Hanyang University. The results were as follows. 1. Age distribution of the total 106 patients was broad ranging from 25 years to 76 years. 67.9% of patients were over the age of 50. The male and female sex ratio was 3:2. 2. 28 out of 106 patients were normal and 78 patients revealed abnormal on C. T. findings; those were intracranial hemorrhage (35 patients), cerebral infarction (32 patients) and brain atrophy (11 patients). 3. All of the intracranial hemorrhage except one were intracerebral hemorrhage; those were located in the cerebral hemisphere (19 patients), basal ganglia (15 patients) and brain stem (1 patient). The except one case of intracranial hemorrhage was subdural hematoma. 7 patients of intraventricular hemorrhage and 1 patient of subarachnoid hemorrhage were combined with intracerebral hemorrhage. 2/3 of patients who had hemorrhage in cerebral hemisphere revealed lesions in the parietal and temporal lobes. 4. In cases of cerebral infarction, the cerebral hemisphere was most common site of lesion (20 cases), and the next was basal ganglia (11 cases). Most of the infarcts in cerebral hemisphere were located in the parietal and temporal lobes. The left basal ganglia was more commonly involved

  13. Brain computed tomography of the hypertensive patients

    International Nuclear Information System (INIS)

    Bae, W. K.; Park, C. K.; Cho, O. K.; Hahm, C. K.

    1980-01-01

    Now a day, hypertension is more increasing in frequency and ranked the top of the causes of death in Korea and other nations. Most of cerebrovascular accidents in hypertensive patients are composed of vascular occlusive changes and hemorrhages. In cerebral angiogram, we can only detect occlusion of large artery and large mass effect from hematoma or cerebral infarction without identification of its entity. The computed tomogram, however, is the best way for evaluation of cerebrovascular diseases including detection of nature, location, amount, and associated changes. This study includes evaluation of computed tomograms of 106 patients with hypertension during the period of 17 months from Feb. 1979 to June 1980 in the department of radiology, college of Medicine, Hanyang University. The results were as follows. 1. Age distribution of the total 106 patients was broad ranging from 25 years to 76 years. 67.9% of patients were over the age of 50. The male and female sex ratio was 3:2. 2. 28 out of 106 patients were normal and 78 patients revealed abnormal on C. T. findings; those were intracranial hemorrhage (35 patients), cerebral infarction (32 patients) and brain atrophy (11 patients). 3. All of the intracranial hemorrhage except one were intracerebral hemorrhage; those were located in the cerebral hemisphere (19 patients), basal ganglia (15 patients) and brain stem (1 patient). The except one case of intracranial hemorrhage was subdural hematoma. 7 patients of intraventricular hemorrhage and 1 patient of subarachnoid hemorrhage were combined with intracerebral hemorrhage. 2/3 of patients who had hemorrhage in cerebral hemisphere revealed lesions in the parietal and temporal lobes. 4. In cases of cerebral infarction, the cerebral hemisphere was most common site of lesion (20 cases), and the next was basal ganglia (11 cases). Most of the infarcts in cerebral hemisphere were located in the parietal and temporal lobes. The left basal ganglia was more commonly involved

  14. Causes and Correlates of Brain Atrophy: A population-based MRI study

    NARCIS (Netherlands)

    T. den Heijer (Tom)

    2004-01-01

    markdownabstract__Abstract__ In 1906, Alois Alzheimer described for the first time a form of dementia that later became known as Alzheimer’s disease. At necropsy, he had observed that the brain of a 51-year-old woman with progressive cognitive decline was filled with –at that time still

  15. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  16. Brain stem type neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kataoka, Satoshi; Hirose, Genjiro; Kosoegawa, Hiroshi; Oda, Rokuhei; Yoshioka, Akira

    1987-01-01

    Two cases of brain stem type Neuro-Behcet's syndrome were evaluated by brain CT and Magnetic Resonance Imaging (Super-conducting type, 0.5 tesla) to correlate with the neurological findings. In the acute phase, low density area with peripheral enhancement effect and mass effect were seen at the brain stem in brain CT. MRI revealed a extensive high intensity signal area mainly involving the corticospinal tract in the meso-diencephalon as well as pons by T 2 weighted images (spin echo, TR = 1, 600 msec, TE = 90 msec) and the value of T 1 , T 2 , at the brain stem lesion were prolonged moderately. After high dose steroid treatment, the low density area in brain CT and high signal area in MRI were gradually reduced in its size. Peripheral enhancement effect in brain CT disappeared within 10 months in case 1, one month in the other case. In the chronic stage, the reduction of low density area and atrophy of brain stem were noted in brain CT. The lesion in chronic stage had low intensity in T 1 , T 2 weighted images and the T 1 , T 2 values at the lesion were mildly prolonged in MRI. Sequentially CT with enhancement and MRI examinations with T 1 , T 2 weighted images were useful to detect the lesion and to evaluate the activity, evolution of brain stem type Neuro-Behcet's syndrome. (author)

  17. Hypoxic ischemia encephalopathy leading to external hydrocephalus and the cerebral atrophy: mechanism and differential diagnosis

    International Nuclear Information System (INIS)

    Huang Zhenglin; Mo Xiaorong

    2002-01-01

    Objective: It is a study of the mechanism and differential diagnosis of the infant external hydrocephalus and cerebral atrophy. Methods: In total 84 cases of neonatal hypoxic ischemia encephalopathy followed by infant external hydrocephalus were investigated, among which 26 patients gradually were found having developed cerebral atrophy in follow up. Results: Characteristic dilation of the frontal-parietal subarachnoid space and the adjacent cistern was noted on the CT images of the external hydrocephalus. CT revealed the enlarged ventricle besides the dilated subarachnoid space in the cases of cerebral atrophy, while these two entities were indistinguishable on CT in the early stage. Conclusion: Clinical manifestations make a major differential diagnosis of the external hydrocephalus and cerebral atrophy: tic and mild delayed development of locomotion over major presentation of external hydrocephalus, while cerebral atrophy is featured by remarkable dysnoesia and severe delayed development of locomotion. In addition, hemiplegia and increased muscular tension are presented in a few cases of cerebral atrophy

  18. Porencephaly in dogs and cats: relationships between magnetic resonance imaging (MRI) features and hippocampal atrophy.

    Science.gov (United States)

    Hori, Ai; Hanazono, Kiwamu; Miyoshi, Kenjirou; Nakade, Tetsuya

    2015-07-01

    Porencephaly is the congenital cerebral defect and a rare malformation and described few MRI reports in veterinary medicine. MRI features of porencephaly are recognized the coexistence with the unilateral/bilateral hippocampal atrophy, caused by the seizure symptoms in human medicine. We studied 2 dogs and 1 cat with congenital porencephaly to characterize the clinical signs and MRI, and to discuss the associated MRI with hippocampal atrophy. The main clinical sign was the seizure symptoms, and all had hippocampal atrophy at the lesion side or the larger defect side. There is association between hippocampal atrophy or the cyst volume and the severe of clinical signs, and it is suggested that porencephaly coexists with hippocampal atrophy as well as humans in this study.

  19. Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures

    Science.gov (United States)

    Booth, F. W.; Criswell, D. S.

    1997-01-01

    Skeletal muscle adapts to loading; atrophying when exposed to unloading on Earth or in spaceflight. Significant atrophy (decreases in muscle fiber cross-section of 11-24%) in humans has been noted after only 5 days in space. Since muscle strength is determined both by muscle cross-section and synchronization of motor unit recruitment, a loss in muscle size weakens astronauts, which would increase risks to their safety if an emergency required maximal muscle force. Numerous countermeasures have been tested to prevent atrophy. Resistant exercise together with growth hormone and IGF-I are effective countermeasures to unloading as most atrophy is prevented in animal models. The loss of muscle protein is due to an early decrease in protein synthesis rate and a later increase in protein degradation. The initial decrease in protein synthesis is a result of decreased protein translation, caused by a prolongation in the elongation rate. A decrease in HSP70 by a sight increase in ATP may be the factors prolonging elongation rate. Increases in the activities of proteolytic enzymes and in ubiquitin contribute to the increased protein degradation rate in unloaded muscle. Numerous mRNA concentrations have been shown to be altered in unloaded muscles. Decreases in mRNAs for contractile proteins usually occur after the initial fall in protein synthesis rates. Much additional research is needed to determine the mechanism by which muscle senses the absence of gravity with an adaptive atrophy. The development of effective countermeasures to unloading atrophy will require more research.

  20. Proximal spinal muscular atrophy: current orthopedic perspective

    Directory of Open Access Journals (Sweden)

    Haaker G

    2013-11-01

    Full Text Available Gerrit Haaker, Albert Fujak Department of Orthopaedic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Abstract: Spinal muscular atrophy (SMA is a hereditary neuromuscular disease of lower motor neurons that is caused by a defective "survival motor neuron" (SMN protein that is mainly associated with proximal progressive muscle weakness and atrophy. Although SMA involves a wide range of disease severity and a high mortality and morbidity rate, recent advances in multidisciplinary supportive care have enhanced quality of life and life expectancy. Active research for possible treatment options has become possible since the disease-causing gene defect was identified in 1995. Nevertheless, a causal therapy is not available at present, and therapeutic management of SMA remains challenging; the prolonged survival is increasing, especially orthopedic, respiratory and nutritive problems. This review focuses on orthopedic management of the disease, with discussion of key aspects that include scoliosis, muscular contractures, hip joint disorders, fractures, technical devices, and a comparative approach of conservative and surgical treatment. Also emphasized are associated complications including respiratory involvement, perioperative care and anesthesia, nutrition problems, and rehabilitation. The SMA disease course can be greatly improved with adequate therapy with established orthopedic procedures in a multidisciplinary therapeutic approach. Keywords: spinal muscular atrophy, scoliosis, contractures, fractures, lung function, treatment, rehabilitation, surgery, ventilation, nutrition, perioperative management

  1. Diagnosis of multiple system atrophy.

    Science.gov (United States)

    Palma, Jose-Alberto; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio

    2018-05-01

    Multiple system atrophy (MSA) may be difficult to distinguish clinically from other disorders, particularly in the early stages of the disease. An autonomic-only presentation can be indistinguishable from pure autonomic failure. Patients presenting with parkinsonism may be misdiagnosed as having Parkinson disease. Patients presenting with the cerebellar phenotype of MSA can mimic other adult-onset ataxias due to alcohol, chemotherapeutic agents, lead, lithium, and toluene, or vitamin E deficiency, as well as paraneoplastic, autoimmune, or genetic ataxias. A careful medical history and meticulous neurological examination remain the cornerstone for the accurate diagnosis of MSA. Ancillary investigations are helpful to support the diagnosis, rule out potential mimics, and define therapeutic strategies. This review summarizes diagnostic investigations useful in the differential diagnosis of patients with suspected MSA. Currently used techniques include structural and functional brain imaging, cardiac sympathetic imaging, cardiovascular autonomic testing, olfactory testing, sleep study, urological evaluation, and dysphagia and cognitive assessments. Despite advances in the diagnostic tools for MSA in recent years and the availability of consensus criteria for clinical diagnosis, the diagnostic accuracy of MSA remains sub-optimal. As other diagnostic tools emerge, including skin biopsy, retinal biomarkers, blood and cerebrospinal fluid biomarkers, and advanced genetic testing, a more accurate and earlier recognition of MSA should be possible, even in the prodromal stages. This has important implications as misdiagnosis can result in inappropriate treatment, patient and family distress, and erroneous eligibility for clinical trials of disease-modifying drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Parry-Romberg syndrome (progressive hemifacial atrophy) with spasmodic dysphonia--a rare association.

    Science.gov (United States)

    Mugundhan, K; Selvakumar, C J; Gunasekaran, K; Thiruvarutchelvan, K; Sivakumar, S; Anguraj, M; Arun, S

    2014-04-01

    Parry-Romberg syndrome is a rare clinical entity characterised by progressive hemifacial atrophy with appearance of 'saber'. Various neurological and otorhinolaryngological disorders are associated with this syndrome. The association of Parry -Romberg syndrome with Spasmodic dysphonia has rarely been reported. A 37 year old female presented with progressive atrophy of tissues of left side of face for 10 years and change in voice for 1 year. On examination, wasting and atrophy of tissues including tongue was noted on left side of the face. ENT examination revealed adductor spasmodic dysphonia. We report the rare association of Parry -Romberg syndrome with spasmodic dysphonia.

  3. Computerized tomographic study on the brain of patients with alcohol dependence

    International Nuclear Information System (INIS)

    Kato, Akira; Tsuji, Motohiro; Nakamura, Michihiko; Nakajima, Teruo.

    1991-01-01

    One hundred ten patients with alcohol dependence and 56 psychiatric patients with either senile dementia, amphetamine psychosis, epilepsy or chronic schizophrenia were investigated with a CT scan of the brain. The maximum width of the 3rd ventricle was measured, and the presence/absence of enlargement of the lateral ventricle and of atrophy of the frontal lobe was determined independently by 3 physicians. The width of the 3rd ventricle in alcoholic and the other patients examined was gradually enlarged with aging, and the width in these patients was significantly larger than that in the age-matched control patients who were selected from the patients with amphetamine psychosis, epilepsy or schizophrenia. The enlargement of the lateral ventricles observed in the alcoholic patients always accompanied the enlargement of the 3rd ventricle, but not vice versa. The alcoholic patients with frontal lobe atrophy showed a higher incidence of withdrawal delirium than the patients without atrophy. These findings suggest that the chronic intake of alcohol might affect primarily the area around the 3rd ventricle, resulting in enlargement of this ventricle and consequential enlargement of the lateral ventricles and also that the alcoholic patients with frontal lobe atrophy could have a high risk for a manifestation of alcoholic withdrawal delirium. (author)

  4. Notch Signaling Mediates Skeletal Muscle Atrophy in Cancer Cachexia Caused by Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2016-01-01

    Full Text Available Skeletal muscle atrophy in cancer cachexia is mediated by the interaction between muscle stem cells and various tumor factors. Although Notch signaling has been known as a key regulator of both cancer development and muscle stem cell activity, the potential involvement of Notch signaling in cancer cachexia and concomitant muscle atrophy has yet to be elucidated. The murine K7M2 osteosarcoma cell line was used to generate an orthotopic model of sarcoma-associated cachexia, and the role of Notch signaling was evaluated. Skeletal muscle atrophy was observed in the sarcoma-bearing mice, and Notch signaling was highly active in both tumor tissues and the atrophic skeletal muscles. Systemic inhibition of Notch signaling reduced muscle atrophy. In vitro coculture of osteosarcoma cells with muscle-derived stem cells (MDSCs isolated from normal mice resulted in decreased myogenic potential of MDSCs, while the application of Notch inhibitor was able to rescue this repressed myogenic potential. We further observed that Notch-activating factors reside in the exosomes of osteosarcoma cells, which activate Notch signaling in MDSCs and subsequently repress myogenesis. Our results revealed that signaling between tumor and muscle via the Notch pathway may play an important role in mediating the skeletal muscle atrophy seen in cancer cachexia.

  5. Cranial computed tomography in aging of the brain

    International Nuclear Information System (INIS)

    Okudera, Hiroshi; Hara, Hideaki; Kobayashi, Shigeaki

    1988-01-01

    Computed tomography (CT) scans of 450 healthy persons were reviewed to examine aging of the brain. The subjects were divided according to age groups. Calcification of the choroid plexus and falx cerebri was associated with aging. The number of fissures, observed as an index of atrophy in the cerebral cortex, tended to increase with aging. There was no correlation between cella media index, which represents calcification in the cerebral artery and the size of the cerebral ventricle, and aging. Cella media index increased up to the age of 70; however, this was inverse in the 80 years or older age group. Cerebral arteriosclerosis and atrophied basilar nucleus of the cerebrum were supposed to be negative factors for living longer. Considering the two factors, persons in their seventies and eighties were divided into two groups. (Namekawa, K.)

  6. Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2014-01-01

    Full Text Available Cisplatin (CisPt is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.

  7. Assessment of vaginal atrophy: a review

    NARCIS (Netherlands)

    Weber, M. A.; Limpens, J.; Roovers, J. P. W. R.

    2015-01-01

    The aim of this study is to provide an evidence-based definition of vaginal atrophy (VA) and present an overview of subjective and objective measurements of VA applicable in clinical practice and research. A systematic literature search was performed in MEDLINE and EMBASE to identify studies

  8. Association between anti-endomysial antibody and total intestinal villous atrophy in children with coeliac disease.

    Directory of Open Access Journals (Sweden)

    Ozgenc F

    2003-01-01

    Full Text Available BACKGROUND: There is growing evidence to suggest that detection of anti-gliadin antibody (AGA and anti-endomysial antibody (EmA can serve as sensitive markers of the degree of histological abnormalities in patients with coeliac disease. AIM: To evaluate the association between the presence of AGA and EmA and villous atrophy in intestinal biopsies of children with suspected coeliac disease. SETTINGS AND DESIGN: Intestinal samples of 46 children with failure to thrive, chronic diarrhoea, malabsorption and short stature with either AGA and/or EmA positivity were evaluated, retrospectively. The diagnosis of coeliac disease was based on ESPGHAN criteria. METHODS AND MATERIAL: Patients with total villous atrophy who fulfilled the ESPGHAN criteria for the diagnosis of coeliac disease were diagnosed to have coeliac disease. Nine patients without villous atrophy were taken as negative controls for this study. AGA-IgA was measured both by immunoflourescence (IF and ELISA and EmA-IgA by IF while patients were on normal diet. Relationship between autoantibody positivity and intestinal total villous atrophy was evaluated. RESULTS: Overall positivity for AGA IgA was 85% (39/46 by IF+ELISA and EmA positivity was 85% (39/46 by IF within the study group. Histological examination revealed total villous atrophy with lymphocyte infiltration and crypt hyperplasia in 37 (80% patients. AGA IgA was positive in 14 (38% and 31 (84% of these children by ELISA and IF, respectively. EmA positivity was detected in 35/37 (95% cases with atrophy and 4/9 (44% without atrophy (p=0.002. Thirty out of 37 (81% patients with villous atrophy had both AGA IgA (IF and EmA positivity (p=0.186. All of the sixteen patients that had both positive AGA IgA (ELISA+IF and EmA had total villous atrophy (p=0.037. CONCLUSION: A significant association between total villous atrophy and EmA positivity has been documented in this study.

  9. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Clinical evaluation of dose-volume-effect relationship in radiation injury of the brain

    International Nuclear Information System (INIS)

    Saito, Mari

    1990-01-01

    Radiation brain injury, including functional disturbances or morphological changes (brain atrophy, periventricular lucencies or ventricular dilatation), were studied by CT in patients with primary intracranial neoplasms who were followed-up for at least 5 months after receiving radiotherapy. Each of 33 patients with medulloblastoma, pinealregion tumor or malignant lymphoma received a total dose of 40-61 Gy by conventional fractionation using a whole brain irradiation field boosted by a localized field. Of these patients, 19 (58%) developed radiation brain injury. It was concluded that the volume-dose was one of the most important factors influencing the development of radiation brain injury. Age at the time of radiotherapy and time of follow-up after the treatment were also considered to be important factors. (author)

  11. A Possible Link between Gastric Mucosal Atrophy and Gastric Cancer after Helicobacter pylori Eradication.

    Directory of Open Access Journals (Sweden)

    Tomomitsu Tahara

    Full Text Available The effect of H. pylori eradication in gastric cancer prevention can be attributed to the improvement of atrophic gastritis, which is a known risk of gastric cancer. However, gastric cancer has also been diagnosed after long-term H. pylori eradication. This study aimed to clarify the association between gastric atrophy and gastric cancer after H. pylori eradication, including its clinicopathological features.A total of 55 consecutive patients with 64 early gastric cancers (EGCs diagnosed after H. pylori eradication were enrolled. The degree of endoscopic atrophy and the histological degrees of mononuclear cell infiltration, atrophy, and metaplasia in the corpus and adjacent mucosa of the EGCs were determined and scored.The majority of EGCs (63/64 were located within the endoscopically assessed atrophic mucosa or along the atrophic border. The adjacent mucosa of the EGCs presented significantly higher degrees of all histological parameters than in the corpus (mononuclear cell infiltration, 0.86+/-0.09 vs. 0.51+/-0.11, P = 0.016; atrophy, 1.77+/-0.13 vs. 0.65+/-0.14, P<0.0001; metaplasia, 1.68+/-0.13 vs. 0.48+/-0.1, P<0.0001. The degree of endoscopic atrophy improved in the patients with longer post-H. pylori eradication periods; however, this trend was not observed for the histological parameters, and high degrees of atrophy and metaplasia were observed in the adjacent mucosa of the EGCs compared with the corpus during all periods (all P<0.05. The histological degrees of atrophy and metaplasia in the adjacent mucosa were particularly higher in the patients who underwent eradication due to gastric ulcers.Severe gastric atrophy remained in the adjacent mucosa of the EGCs after H. pylori eradication, which may be linked to gastric carcinogenesis.

  12. Brain Perfusion in Corticobasal Syndrome with Progressive Aphasia

    Directory of Open Access Journals (Sweden)

    Yoshitake Abe

    2016-04-01

    Full Text Available Background: Brain perfusion may differ between patients with corticobasal syndrome (CBS with and without aphasia. Methods: Twenty-six (9 males and 17 females; mean age 76 ± 5.3 years patients with CBS were enrolled in the study. Brain MRI and single-photon emission computed tomography were performed in all subjects. Language was evaluated using the Standard Language Test of Aphasia. The patients were divided into two subgroups according to the presence or absence of progressive aphasia. Differences in the regional cerebral blood flow (rCBF between the two groups were detected based on voxel-by-voxel group analysis using Statistical Parametric Mapping 8. Results: All patients exhibited asymmetric motor symptoms and signs, including limb apraxia, bradykinesia, and akinetic rigidity. Of 26 patients, 9 had a clinically obvious language disturbance, characterized as nonfluent aphasia. Almost all CBS patients with aphasia exhibited cortical atrophy predominantly in the left frontal and temporal lobes with widening of the Sylvian fissure on MRI. The rCBF in the left middle frontal gyrus differed significantly between CBS patients with and without aphasia. Conclusion: CBS patients with aphasia exhibit motor symptoms predominantly on the right side and cortical atrophy mainly in the left perisylvian cortices. In particular, left frontal dysfunction might be related to nonfluent aphasia in CBS.

  13. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    OpenAIRE

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Objective: Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic chil...

  14. Carbocalcitonin treatment in Sudeck's atrophy

    International Nuclear Information System (INIS)

    Nuti, R.; Vattimo, A.; Martini, G.; Turchetti, V.; Righi, G.A.

    1987-01-01

    The efficacy of new calcitonin, the amino analog of eel calcitonin (carboCT) on Sudeck's atrophy of the foot was investigated in 14 patients. CarboCT was administered at the dose of 40 Medical Research Council (MRC) units per day, and the duration of treatment was two to ten months. No adverse effects were noted. Bone pain and local edema decreased associated with improvement of motility. CarboCT induced a slight decrease in plasma calcium, plasma phosphate, and 24-hour urinary calcium excretion. An increase in cAMP/Cr ratio, an index of parathyroid function, was also observed (probably a manifestation of the hypocalcemic effect of calcitonin and secondary parathyroid stimulation). The whole body retention of 99mTc-MDP represents a valuable index of bone turnover, it decreased progressively and significantly on treatment. A dynamic study of local bone uptake of 99mTC-MDP was performed in eight patients. After carboCT therapy, statistically significant decreases in local blood flow, early uptake, and delayed uptake were appreciated in the involved foot. These findings lead to the conclusion that carboCT is effective in the treatment of Sudeck's atrophy

  15. Carbocalcitonin treatment in Sudeck's atrophy.

    Science.gov (United States)

    Nuti, R; Vattimo, A; Martini, G; Turchetti, V; Righi, G A

    1987-02-01

    The efficacy of new calcitonin, the amino analog of eel calcitonin (carboCT) on Sudeck's atrophy of the foot was investigated in 14 patients. CarboCT was administered at the dose of 40 Medical Research Council (MRC) units per day, and the duration of treatment was two to ten months. No adverse effects were noted. Bone pain and local edema decreased associated with improvement of motility. CarboCT induced a slight decrease in plasma calcium, plasma phosphate, and 24-hour urinary calcium excretion. An increase in cAMP/Cr ratio, an index of parathyroid function, was also observed (probably a manifestation of the hypocalcemic effect of calcitonin and secondary parathyroid stimulation). The whole body retention of 99mTc-MDP represents a valuable index of bone turnover, it decreased progressively and significantly on treatment. A dynamic study of local bone uptake of 99mTC-MDP was performed in eight patients. After carboCT therapy, statistically significant decreases in local blood flow, early uptake, and delayed uptake were appreciated in the involved foot. These findings lead to the conclusion that carboCT is effective in the treatment of Sudeck's atrophy.

  16. Spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Lieberman, Andrew P

    2018-01-01

    Spinal and bulbar muscular atrophy (SBMA) is an adult-onset degenerative disorder of the neuromuscular system resulting in slowly progressive weakness and atrophy of the proximal limb and bulbar muscles. The disease is caused by the expansion of a CAG/glutamine tract in the amino-terminus of the androgen receptor. That SBMA exclusively affects males reflects the fact that critical pathogenic events are hormone-dependent. These include translocation of the polyglutamine androgen receptor from the cytoplasm to the nucleus and unfolding of the mutant protein. Studies of the pathology of SBMA subjects have revealed nuclear aggregates of the mutant androgen receptor, loss of lower motor neurons in the brainstem and spinal cord, and both neurogenic and myopathic changes in skeletal muscle. Mechanisms underlying disease pathogenesis include toxicity in both lower motor neurons and skeletal muscle, where effects on transcription, intracellular transport, and mitochondrial function have been documented. Therapies to treat SBMA patients remain largely supportive, although experimental approaches targeting androgen action or promoting degradation of the mutant androgen receptor protein or the encoding RNA are under active study. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    Science.gov (United States)

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Brain MR imaging in children with psychomotor developmental delay

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Toshinori; Korogi, Yukunori; Sakamoto, Yuji; Furusawa, Mitsuhiro; Hamatake, Satoshi; Takahashi, Mutsumasa [Kumamoto Univ. (Japan). School of Medicine

    1994-06-01

    Fifty-two patients with developmental delay of unknown cause underwent MR imaging of the brain. Their ages ranged from 5 months to 22 years, with a mean of 2.2 years. Thirty-seven (71%) had positive MR findings, including nine with congenital malformation, nine with atrophy, six with white matter lesion, five with delayed myelination, five with atrophy and delayed myelination, two with acquired injury of corpus callosum, and one with ulegyria. Congenital malformations obtained included holoprosencephaly, polymicrogyria, dysgenesis of corpus callosum, hypoplasia of cerebellum, and tuberous sclerosis. Abnormal MR findings were frequently observed both in the children with neurologic physical findings and in generally retarded children, while in the children with suspected autism, MR imaging did not demonstrate any abnormalities. Of 24 patients with epilepsy, abnormal MR findings were obtained in 17 patients (71%). The frequency of white matter lesion and atrophy was slightly higher in the patients with epilepsy. However, no significant correlations were found between MR findings and the presence of epilepsy. Also, no significant correlations were obtained between MR findings and the degree of developmental quotient (DQ). Severely injured cases did not necessarily show abnormal findings on MRI. (author).

  19. Brain MR imaging in children with psychomotor developmental delay

    International Nuclear Information System (INIS)

    Hirai, Toshinori; Korogi, Yukunori; Sakamoto, Yuji; Furusawa, Mitsuhiro; Hamatake, Satoshi; Takahashi, Mutsumasa

    1994-01-01

    Fifty-two patients with developmental delay of unknown cause underwent MR imaging of the brain. Their ages ranged from 5 months to 22 years, with a mean of 2.2 years. Thirty-seven (71%) had positive MR findings, including nine with congenital malformation, nine with atrophy, six with white matter lesion, five with delayed myelination, five with atrophy and delayed myelination, two with acquired injury of corpus callosum, and one with ulegyria. Congenital malformations obtained included holoprosencephaly, polymicrogyria, dysgenesis of corpus callosum, hypoplasia of cerebellum, and tuberous sclerosis. Abnormal MR findings were frequently observed both in the children with neurologic physical findings and in generally retarded children, while in the children with suspected autism, MR imaging did not demonstrate any abnormalities. Of 24 patients with epilepsy, abnormal MR findings were obtained in 17 patients (71%). The frequency of white matter lesion and atrophy was slightly higher in the patients with epilepsy. However, no significant correlations were found between MR findings and the presence of epilepsy. Also, no significant correlations were obtained between MR findings and the degree of developmental quotient (DQ). Severely injured cases did not necessarily show abnormal findings on MRI. (author)

  20. Thymus Atrophy and Double-Positive Escape Are Common Features in Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Juliana de Meis

    2012-01-01

    Full Text Available The thymus is a primary lymphoid organ in which bone marrow-derived T-cell precursors undergo differentiation, leading to migration of positively selected thymocytes to the T-cell-dependent areas of secondary lymphoid organs. This organ can undergo atrophy, caused by several endogenous and exogenous factors such as ageing, hormone fluctuations, and infectious agents. This paper will focus on emerging data on the thymic atrophy caused by infectious agents. We present data on the dynamics of thymus lymphocytes during acute Trypanosoma cruzi infection, showing that the resulting thymus atrophy comprises the abnormal release of thymic-derived T cells and may have an impact on host immune response.

  1. Differentiation of normal pressure hydrocephalus and cerebral atrophy by computed tomography and spinal infusion test

    Energy Technology Data Exchange (ETDEWEB)

    Tans, J T.J. [Nijverheidsorganisatie TNO, The Hague (Netherlands). Dept. of Neurology and Research Unit TNO for Clinical Neurophysiology

    1979-01-01

    The diagnostic value of computed tomography (CT) and spinal infusion test (SIT) was investigated in 27 patients with normal pressure hydrocephalus (NPH) and 35 patients with cerebral atrophy. The most consistent CT finding of NPH was dilatation of the temporal horns, that of cerebral atrophy widening of the convexity sulci. However, 43% of patients with cerebral atrophy demonstrated no cortical atrophy. The SIT showed an excellent relation with isotope cisternography and continuous intracranial pressure recording. NPH and cerebral atrophy were correctly differentiated in 71% by CT and SIT. A normal SIT and a CT scan without the typical features of NPH exclude impairment of cerebrospinal fluid absorption. An abnormal SIT and a CT scan showing ventricular enlargement without dilatation of convexity sulci, require isotope cisternography and possibly intracranial pressure recording to determine the degree of the absorption deficit.

  2. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  3. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  4. Cerebral blood flow of the non-affected brain in patients with malignant brain tumors as studied by SPECT

    International Nuclear Information System (INIS)

    Araki, Yuzo; Imao, Yukinori; Hirata, Toshifumi; Ando, Takashi; Sakai, Noboru; Yamada, Hiroshi

    1990-01-01

    In 40 patients (age range, 20-69 years) receiving radiation and chemotherapy for brain tumors, the mean cerebral blood flow (mCBF) in the non-affected area has been examined by single photon emission CT (SPECT) with Xe-133. Forty volunteers (age range, 25-82 years) served as controls. Although mCBF during external irradiation was transiently increased, it was significantly decreased at 3 months after beginning of external irradiation compared with that in the control group. Factors responsible for the decrease in mCBF were radiation doses, lesion volume, the degree of cerebral atrophy, and age; this was more pronounced when chemotherapy such as ACNU was combined with radiation. A decreased mCBF was independent of intraoperative radiation combined with external radiation and either local or whole brain irradiation. SPECT with Xe-133 was useful in determining minute changes in cerebral blood flow that precedes parenchymal brain damage. (N.K.)

  5. Hyaluronate fragments reverse skin atrophy by a CD44-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Gürkan Kaya

    2006-12-01

    Full Text Available BACKGROUND: Skin atrophy is a common manifestation of aging and is frequently accompanied by ulceration and delayed wound healing. With an increasingly aging patient population, management of skin atrophy is becoming a major challenge in the clinic, particularly in light of the fact that there are no effective therapeutic options at present. METHODS AND FINDINGS: Atrophic skin displays a decreased hyaluronate (HA content and expression of the major cell-surface hyaluronate receptor, CD44. In an effort to develop a therapeutic strategy for skin atrophy, we addressed the effect of topical administration of defined-size HA fragments (HAF on skin trophicity. Treatment of primary keratinocyte cultures with intermediate-size HAF (HAFi; 50,000-400,000 Da but not with small-size HAF (HAFs; 400,000 Da induced wild-type (wt but not CD44-deficient (CD44-/- keratinocyte proliferation. Topical application of HAFi caused marked epidermal hyperplasia in wt but not in CD44-/- mice, and significant skin thickening in patients with age- or corticosteroid-related skin atrophy. The effect of HAFi on keratinocyte proliferation was abrogated by antibodies against heparin-binding epidermal growth factor (HB-EGF and its receptor, erbB1, which form a complex with a particular isoform of CD44 (CD44v3, and by tissue inhibitor of metalloproteinase-3 (TIMP-3. CONCLUSIONS: Our observations provide a novel CD44-dependent mechanism for HA oligosaccharide-induced keratinocyte proliferation and suggest that topical HAFi application may provide an attractive therapeutic option in human skin atrophy.

  6. Growth and atrophy of neurons labeled at their birth in a song nucleus of the zebra finch

    International Nuclear Information System (INIS)

    Konishi, M.; Akutagawa, E.

    1990-01-01

    The robust nucleus of the archistriatum (RA) is one of the forebrain nuclei that control song production in birds. In the zebra finch (Poephila guttata), this nucleus contains more and larger neurons in the male than in the female. A single injection of tritiated thymidine into the egg on the 6th or 7th day of incubation resulted in labeling of many RA neurons with tritium. The size of tritium-labeled neurons and the tissue volume containing them did not differ between the sexes at 15 days after hatching. In the adult brain, tritium-labeled neurons and the tissue volume containing them were much larger in the male than in the female. Also, tritium-labeled RA neurons were large in females which received an implant of estrogen immediately after hatching. The gender differences in the neuron size and nuclear volume of the zebra finch RA are, therefore, due not to the replacement of old neurons by new ones during development but to the growth and atrophy of neurons born before hatching. Similarly, the masculinizing effects of estrogen on the female RA are due not to neuronal replacement but to the prevention of atrophy and promotion of growth in preexisting neurons

  7. Brain MRI findings in patients with initial cerebral thrombosis and the relationship between incidental findings, aging and dementia

    International Nuclear Information System (INIS)

    Iwamoto, Toshihiko; Okada, Toyohiro; Ogawa, Kimikazu; Yanagawa, Kiyotaka; Uno, Masanobu; Takasaki, Masaru

    1994-01-01

    To estimate the relationship between aging, dementia and changes observed on magnetic resonance imaging (MRI) seen in elderly patients with cerebral thrombosis, MRI findings in 103 patients with an initial stroke event (thrombosis group) were compared with those of 37 patients with hypertension/diabetes (high risk group) and 78 patients without those disorders (low risk group). In addition to the causative lesions in the thrombosis group, periventricular hyperintensities (PVH), spotty lesions (SL), silent infarctions (SI), ventricular dilatation (VD), and cortical atrophy (CA) were analyzed in these groups. Infarctions located in the internal capsule/corona radiata were the most frequent causative lesion. Compared to the low risk group, a high incidence of patchy/diffuse PVH, SI, and severe CA was seen in both the thrombosis group and the high risk group. Widespread PVH and multiple SL increased with age in the thrombosis group, while severe CA was seen in each group. SI and VD tended to increase after age 60, though they were not significant. Dementia, diagnosed in 40 out of 78 patients, increased with age. Multivariate analysis revealed the degree of the effects of MRI findings on dementia to be marked in PVH, brain atrophy, causative lesions, and SL, in that order. These results indicated that diffuse PVH and brain atrophy, developing with age, promoted dementia in the elderly with vascular lesions. Moreover, they suggested that a variety of silent brain lesions recognized on MRI other than infarction can affect symptoms in the elderly. (author)

  8. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  9. Prevalence and pattern of gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Andrew S. [University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Long, Suzanne S.; Zoga, Adam C.; Read, Paul J.; Deely, Diane M.; Parker, Laurence; Morrison, William B. [Thomas Jefferson University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2015-12-15

    To evaluate gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI. A retrospective MRI study of 185 individuals was performed. The inclusion criterion was age ≥50. Exclusion criteria were hip surgery, fracture, infection, tumor, or inadequate image quality. Greater trochanteric bursitis was graded none, mild, moderate, or severe. Gluteus medius, gluteus minimus, and iliopsoas tendinopathy was graded normal, tendinosis, low-grade partial tear, high-grade partial tear, or full thickness tear. Gluteus medius, gluteus minimus, tensor fascia lata, and iliopsoas muscle atrophy was scored using a standard scale. Insertion site of tendinopathy and location of muscle atrophy were assessed. Descriptive and statistical analysis was performed. There was increasing greater trochanteric bursitis and gluteus medius and minimus tendinopathy and atrophy with advancing age with moderate to strong positive associations (p < 0.0001) for age and tendinopathy, age and atrophy, bursitis and tendinopathy, and tendinopathy and atrophy for the gluteus medius and minimus. There is a weak positive association (p < 0.0001) for age and tensor fascia lata atrophy, and no statistically significant association between age and tendinopathy or between age and atrophy for the iliopsoas. Fisher's exact tests were statistically significant (p < 0.0001) for insertion site of tendon pathology and location of muscle atrophy for the gluteus medius. Gluteus medius and minimus tendon pathology and muscle atrophy increase with advancing age with progression of tendinosis to low-grade tendon tears to high-grade tendon tears. There is an associated progression in atrophy of these muscles, which may be important in fall-related hip fractures. (orig.)

  10. Prevalence and pattern of gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI

    International Nuclear Information System (INIS)

    Chi, Andrew S.; Long, Suzanne S.; Zoga, Adam C.; Read, Paul J.; Deely, Diane M.; Parker, Laurence; Morrison, William B.

    2015-01-01

    To evaluate gluteus medius and minimus tendon pathology and muscle atrophy in older individuals using MRI. A retrospective MRI study of 185 individuals was performed. The inclusion criterion was age ≥50. Exclusion criteria were hip surgery, fracture, infection, tumor, or inadequate image quality. Greater trochanteric bursitis was graded none, mild, moderate, or severe. Gluteus medius, gluteus minimus, and iliopsoas tendinopathy was graded normal, tendinosis, low-grade partial tear, high-grade partial tear, or full thickness tear. Gluteus medius, gluteus minimus, tensor fascia lata, and iliopsoas muscle atrophy was scored using a standard scale. Insertion site of tendinopathy and location of muscle atrophy were assessed. Descriptive and statistical analysis was performed. There was increasing greater trochanteric bursitis and gluteus medius and minimus tendinopathy and atrophy with advancing age with moderate to strong positive associations (p < 0.0001) for age and tendinopathy, age and atrophy, bursitis and tendinopathy, and tendinopathy and atrophy for the gluteus medius and minimus. There is a weak positive association (p < 0.0001) for age and tensor fascia lata atrophy, and no statistically significant association between age and tendinopathy or between age and atrophy for the iliopsoas. Fisher's exact tests were statistically significant (p < 0.0001) for insertion site of tendon pathology and location of muscle atrophy for the gluteus medius. Gluteus medius and minimus tendon pathology and muscle atrophy increase with advancing age with progression of tendinosis to low-grade tendon tears to high-grade tendon tears. There is an associated progression in atrophy of these muscles, which may be important in fall-related hip fractures. (orig.)

  11. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  12. Congenital contractural arachnodactyly with neurogenic muscular atrophy: case report

    Directory of Open Access Journals (Sweden)

    Scola Rosana Herminia

    2001-01-01

    Full Text Available We report the case of a 3-1/2-year-old girl with hypotonia, multiple joint contractures, hip luxation, arachnodactyly, adducted thumbs, dolichostenomelia, and abnormal external ears suggesting the diagnosis of congenital contractural arachnodactyly (CCA. The serum muscle enzimes were normal and the needle electromyography showed active and chronic denervation. The muscle biopsy demonstrated active and chronic denervation compatible with spinal muscular atrophy. Analysis of exons 7 and 8 of survival motor neuron gene through polymerase chain reaction did not show deletions. Neurogenic muscular atrophy is a new abnormality associated with CCA, suggesting that CCA is clinically heterogeneous.

  13. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    Science.gov (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  14. Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain

    Energy Technology Data Exchange (ETDEWEB)

    Laasonen, E.M.

    1984-01-01

    After surgery necessitated by lumbar back pain syndromes, radiolucency verified by CT may appear in the sacrospinal muscle group on the operate side. This radiolucency represents muscular atrophy and is in its most severe form a result of the replacement of muscle tissue with adipose tissue. Such muscular atrophy appeared in the present series in 31 out of all 156 patients (19.9%) and in 29 out of 94 patients operated on because of radiating lumbar back pain (30.9%). The radiological appearance, extent, and HU values of this muscular atrophy are presented in detail. Only weak correlations with the multitude of clinical symptoms and signs were found in this retrospective study. The effects of irreversible muscular atrophy on the indications for surgery and physiotherapy are discussed.

  15. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Diffusion MRI and the Detection of Alterations Following Traumatic Brain Injury

    Science.gov (United States)

    2017-06-13

    vascular injury, disruption of water home- ostasis), changes in tissue composition (e.g., increased or decreased cellu- larity), and alterations in...related alterations Tissue environment Expected diffusion changes Major citations dMRI evidence Neurons cell loss necrosis and apoptosis atrophy...structure and signaling, vascular coupling, and waste removal, among others. Astrocytes are at least as numerous as neurons in the brain (Herculano-Houzel

  17. Brain CT image and handedness of schizophrenia

    International Nuclear Information System (INIS)

    Hirose, Katsutoshi; Maehara, Katsuya; Iizuka, Reiji; Mikami, Akihiro.

    1989-01-01

    Brain CT images were reviewed of 98 schizophrenic patients and 90 healthy persons in relation to handedness and aging. CT images were further reconstructed to examine morphologically subtle changes in each region. Schizophrenic patients had progressive brain atrophy and dilated lateral ventricles, especially on the left side and in the posterior part of the lateral ventricle. These findings were more marked in left-handed than in right-handed schizophrenic patients. According to age groups, there were significant differences between schizophrenic and normal persons over the age of 40. The incidence of left handedness was significantly higher in schizophrenic patients in their fourties than the age-matched normal persons (31.4% vs 15.1%). Morphological abnormality and laterality might be due to the same pathologic consequences. (N.K.)

  18. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  19. Atrophy of sacrospinal muscle groups in patients with chronic, diffusely radiating lumbar back pain

    International Nuclear Information System (INIS)

    Laasonen, E.M.

    1984-01-01

    After surgery necessitated by lumbar back pain syndromes, radiolucency verified by CT may appear in the sacrospinal muscle group on the operate side. This radiolucency represents muscular atrophy and is in its most severe form a result of the replacement of muscle tissue with adipose tissue. Such muscular atrophy appeared in the present series in 31 out of all 156 patients (19.9%) and in 29 out of 94 patients operated on because of radiating lumbar back pain (30.9%). The radiological appearance, extent, and HU values of this muscular atrophy are presented in detail. Only weak correlations with the multitude of clinical symptoms and signs were found in this retrospective study. The effects of irreversible muscular atrophy on the indications for surgery and physiotherapy are discussed. (orig.)

  20. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Directory of Open Access Journals (Sweden)

    Joo Wan Kim

    2015-01-01

    Full Text Available The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF on sciatic neurectomy- (NTX- induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation.

  1. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model

    Directory of Open Access Journals (Sweden)

    Andrew D. Vigotsky

    2015-11-01

    Full Text Available Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

  2. Leiomodin-3-deficient mice display nemaline myopathy with fast-myofiber atrophy

    Directory of Open Access Journals (Sweden)

    Lei Tian

    2015-06-01

    Full Text Available Nemaline myopathy (NM is one of the most common forms of congenital myopathy, and affects either fast myofibers, slow myofibers, or both. However, an animal model for congenital myopathy with fast-myofiber-specific atrophy is not available. Furthermore, mutations in the leiomodin-3 (LMOD3 gene have recently been identified in a group of individuals with NM. However, it is not clear how loss of LMOD3 leads to NM. Here, we report a mouse mutant in which the piggyBac (PB transposon is inserted into the Lmod3 gene and disrupts its expression. Lmod3PB/PB mice show severe muscle weakness and postnatal growth retardation. Electron microscopy and immunofluorescence studies of the mutant skeletal muscles revealed the presence of nemaline bodies, a hallmark of NM, and disorganized sarcomeric structures. Interestingly, Lmod3 deficiency caused muscle atrophy specific to the fast fibers. Together, our results show that Lmod3 is required in the fast fibers for sarcomere integrity, and this study offers the first NM mouse model with muscle atrophy that is specific to fast fibers. This model could be a valuable resource for interrogating myopathy pathogenesis and developing therapeutics for NM as well as other pathophysiological conditions with preferential atrophy of fast fibers, including cancer cachexia and sarcopenia.

  3. Schisandrae Fructus Supplementation Ameliorates Sciatic Neurectomy-Induced Muscle Atrophy in Mice

    Science.gov (United States)

    Kim, Joo Wan; Ku, Sae-Kwang; Kim, Ki Young; Kim, Sung Goo; Han, Min Ho; Kim, Gi-Young; Hwang, Hye Jin; Kim, Byung Woo; Kim, Cheol Min

    2015-01-01

    The objective of this study was to assess the possible beneficial skeletal muscle preserving effects of ethanol extract of Schisandrae Fructus (EESF) on sciatic neurectomy- (NTX-) induced hindlimb muscle atrophy in mice. Here, calf muscle atrophy was induced by unilateral right sciatic NTX. In order to investigate whether administration of EESF prevents or improves sciatic NTX-induced muscle atrophy, EESF was administered orally. Our results indicated that EESF dose-dependently diminished the decreases in markers of muscle mass and activity levels, and the increases in markers of muscle damage and fibrosis, inflammatory cell infiltration, cytokines, and apoptotic events in the gastrocnemius muscle bundles are induced by NTX. Additionally, destruction of gastrocnemius antioxidant defense systems after NTX was dose-dependently protected by treatment with EESF. EESF also upregulated muscle-specific mRNAs involved in muscle protein synthesis but downregulated those involved in protein degradation. The overall effects of 500 mg/kg EESF were similar to those of 50 mg/kg oxymetholone, but it showed more favorable antioxidant effects. The present results suggested that EESF exerts a favorable ameliorating effect on muscle atrophy induced by NTX, through anti-inflammatory and antioxidant effects related to muscle fiber protective effects and via an increase in protein synthesis and a decrease in protein degradation. PMID:26064425

  4. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene.

    Directory of Open Access Journals (Sweden)

    Emilia J Sitek

    Full Text Available Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M. In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum.

  5. A Patient with Posterior Cortical Atrophy Possesses a Novel Mutation in the Presenilin 1 Gene

    Science.gov (United States)

    Sitek, Emilia J.; Narożańska, Ewa; Pepłońska, Beata; Filipek, Sławomir; Barczak, Anna; Styczyńska, Maria; Mlynarczyk, Krzysztof; Brockhuis, Bogna; Portelius, Erik; Religa, Dorota; Barcikowska, Maria

    2013-01-01

    Posterior cortical atrophy is a dementia syndrome with symptoms of cortical visual dysfunction, associated with amyloid plaques and neurofibrillary tangles predominantly affecting visual association cortex. Most patients diagnosed with posterior cortical atrophy will finally develop a typical Alzheimer's disease. However, there are a variety of neuropathological processes, which could lead towards a clinical presentation of posterior cortical atrophy. Mutations in the presenilin 1 gene, affecting the function of γ-secretase, are the most common genetic cause of familial, early-onset Alzheimer's disease. Here we present a patient with a clinical diagnosis of posterior cortical atrophy who harbors a novel Presenilin 1 mutation (I211M). In silico analysis predicts that the mutation could influence the interaction between presenilin 1 and presenilin1 enhancer-2 protein, a protein partner within the γ-secretase complex. These findings along with published literature support the inclusion of posterior cortical atrophy on the Alzheimer's disease spectrum. PMID:23593396

  6. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization

    Science.gov (United States)

    Fox, Daniel K.; Ebert, Scott M.; Bongers, Kale S.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.; Kunkel, Steven D.

    2014-01-01

    Immobilization causes skeletal muscle atrophy via complex signaling pathways that are not well understood. To better understand these pathways, we investigated the roles of p53 and ATF4, two transcription factors that mediate adaptations to a variety of cellular stresses. Using mouse models, we demonstrate that 3 days of muscle immobilization induces muscle atrophy and increases expression of p53 and ATF4. Furthermore, muscle fibers lacking p53 or ATF4 are partially resistant to immobilization-induced muscle atrophy, and forced expression of p53 or ATF4 induces muscle fiber atrophy in the absence of immobilization. Importantly, however, p53 and ATF4 do not require each other to promote atrophy, and coexpression of p53 and ATF4 induces more atrophy than either transcription factor alone. Moreover, muscle fibers lacking both p53 and ATF4 are more resistant to immobilization-induced atrophy than fibers lacking only p53 or ATF4. Interestingly, the independent and additive nature of the p53 and ATF4 pathways allows for combinatorial control of at least one downstream effector, p21. Using genome-wide mRNA expression arrays, we identified p21 mRNA as a skeletal muscle transcript that is highly induced in immobilized muscle via the combined actions of p53 and ATF4. Additionally, in mouse muscle, p21 induces atrophy in a manner that does not require immobilization, p53 or ATF4, and p21 is required for atrophy induced by immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as essential and complementary mediators of immobilization-induced muscle atrophy and discover p21 as a critical downstream effector of the p53 and ATF4 pathways. PMID:24895282

  7. CT findings of cervical spondylosis associated with muscle atrophy in the upper extremity

    Energy Technology Data Exchange (ETDEWEB)

    Torigoe, Yasuyuki [Okayama Univ. (Japan). School of Medicine

    1995-11-01

    The shape, site and size of osteophytes in cervical spondylosis associated with muscle atrophy were studied by CT to know their relation with pathogenesis. Subjects were: muscle atrophy group (30 cases, 59.5-year-old in a mean, operation was performed on 26), spondylosis group (20, 60.0 year-old) and normal group (10, 60.2-year-old). Their cervical vertebral regions were subjected to the scout roentgenography, CT and myelography. Osteophytes were measured on the x-ray film copied from CT-monitoring image. In the muscle atrophy group, about the shape around vertebral foramen, the occipitofrontal diameter of vertebral canal was found larger than in spondylosis group. Osteophytes were often localized at the outer position of paramedian site, of which constriction was rather smaller. The shape of the vertebral arch was keen. Clinically, the muscle atrophy group was considered to be of myelosis under such conditions as having less affective lesion on spinal cord. (H.O.)

  8. A study of brain MRI findings in children with epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Sachiko; Sumida, Sawako; Muto, Ayako; Osawa, Makiko; Ono, Yuko [Tokyo Women' s Medical Coll. (Japan); Uchida, Moriyasu; Maruyama, Hiroshi

    2000-06-01

    Magnetic resonance imaging in the brain was performed in 293 patients with childhood-onset (<15 y.o.) epilepsy who had been classified into 4 groups, idiopathic localization-related epilepsy (ILRE), 78 patients; idiopathic generalized epilepsy (IGE), 116 patients; symptomatic localization-related epilepsy (SLRE), 68 patients and symptomatic generalized epilepsy (SGE), 31 patients, with the Classification of Epilepsies and Epileptic Syndrome (1989 International League Against Epilepsy). The examination was performed with a 1.5 T magnet. One hundred twenty-five patients (42.7%) showed abnormal findings, and the incidence in each group was as follows: Idiopathic epilepsy: The rate of abnormal findings in the ILRE and IGE groups was 21.8% and 20.7%, respectively. Most of the abnormal findings were secondary changes, such as diffuse or localized brain atrophy. Of the congenital abnormalities, the main finding was arachnoid cyst. Symptomatic epilepsy: The rate of abnormality in the SLRE patients was 88.2%, and 85% of the findings were secondary changes, i.e., brain atrophy, or degeneration of the white matter. In the SGE group, the rate was 77.4%, with an almost equal percentage of congenital and secondary changes. Of 255 patients who were examined by electroencephalography (EEG) on the same day as MRI, about 50% showed a correlation between the EEG records and the MRI abnormalities. However, only 8 patients showed a correlation in localization between the EEG and MRI abnormalities. (author)

  9. A study of brain MRI findings in children with epilepsy

    International Nuclear Information System (INIS)

    Kanematsu, Sachiko; Sumida, Sawako; Muto, Ayako; Osawa, Makiko; Ono, Yuko; Uchida, Moriyasu; Maruyama, Hiroshi

    2000-01-01

    Magnetic resonance imaging in the brain was performed in 293 patients with childhood-onset (<15 y.o.) epilepsy who had been classified into 4 groups, idiopathic localization-related epilepsy (ILRE), 78 patients; idiopathic generalized epilepsy (IGE), 116 patients; symptomatic localization-related epilepsy (SLRE), 68 patients and symptomatic generalized epilepsy (SGE), 31 patients, with the Classification of Epilepsies and Epileptic Syndrome (1989 International League Against Epilepsy). The examination was performed with a 1.5 T magnet. One hundred twenty-five patients (42.7%) showed abnormal findings, and the incidence in each group was as follows: Idiopathic epilepsy: The rate of abnormal findings in the ILRE and IGE groups was 21.8% and 20.7%, respectively. Most of the abnormal findings were secondary changes, such as diffuse or localized brain atrophy. Of the congenital abnormalities, the main finding was arachnoid cyst. Symptomatic epilepsy: The rate of abnormality in the SLRE patients was 88.2%, and 85% of the findings were secondary changes, i.e., brain atrophy, or degeneration of the white matter. In the SGE group, the rate was 77.4%, with an almost equal percentage of congenital and secondary changes. Of 255 patients who were examined by electroencephalography (EEG) on the same day as MRI, about 50% showed a correlation between the EEG records and the MRI abnormalities. However, only 8 patients showed a correlation in localization between the EEG and MRI abnormalities. (author)

  10. Reduced modulation of scanpaths in response to task demands in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Pertzov, Yoni; Yong, Keir X X; Nicholas, Jennifer; Crutch, Sebastian J

    2015-02-01

    A difficulty in perceiving visual scenes is one of the most striking impairments experienced by patients with the clinico-radiological syndrome posterior cortical atrophy (PCA). However whilst a number of studies have investigated perception of relatively simple experimental stimuli in these individuals, little is known about multiple object and complex scene perception and the role of eye movements in posterior cortical atrophy. We embrace the distinction between high-level (top-down) and low-level (bottom-up) influences upon scanning eye movements when looking at scenes. This distinction was inspired by Yarbus (1967), who demonstrated how the location of our fixations is affected by task instructions and not only the stimulus' low level properties. We therefore examined how scanning patterns are influenced by task instructions and low-level visual properties in 7 patients with posterior cortical atrophy, 8 patients with typical Alzheimer's disease, and 19 healthy age-matched controls. Each participant viewed 10 scenes under four task conditions (encoding, recognition, search and description) whilst eye movements were recorded. The results reveal significant differences between groups in the impact of test instructions upon scanpaths. Across tasks without a search component, posterior cortical atrophy patients were significantly less consistent than typical Alzheimer's disease patients and controls in where they were looking. By contrast, when comparing search and non-search tasks, it was controls who exhibited lowest between-task similarity ratings, suggesting they were better able than posterior cortical atrophy or typical Alzheimer's disease patients to respond appropriately to high-level needs by looking at task-relevant regions of a scene. Posterior cortical atrophy patients had a significant tendency to fixate upon more low-level salient parts of the scenes than controls irrespective of the viewing task. The study provides a detailed characterisation of

  11. Intellectual function, activities of daily living and computerized tomography of the brain in geriatric demented patients

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Fumiaki; Ogura, Chikara; Kishimoto, Akira; Okubo, Masayo; Imamoto, Atsushi [Tottori Univ., Yonago (Japan). School of Medicine; Tsuchie, Harutaka; Sugihara, Kanichiro; Fujii, Shozo

    1984-09-01

    Thirty eight patients of geriatric dementia (mean age 74.9 years) were examined by computerized tomography (CT) and their intellectual functions and activities of daily living (ADL) were evaluated. CT was evaluated by both visual assessment method and direct measuring method. Intellectual function was evaluated by Jikei University dementia rating scale. ADL was evaluated by both Hasegawa's rating scale and Sengoku's rating scale. Results were as follows: significant influence by age was observed in intellectual functions and ADL of subjects above 75 years old. There were good correlations between the higher intellectual function, the better grooming and hygiene, and less needs of nursing care. The severe brain atrophy evaluated by the visual assessment method was correlated with the depressed level of intellectual function. When brain atrophy is mild despite high degree of dementia, reexamination should be made to explore somatic diseases inducing depression of mental activity. It also should be noted that sex and age difference is important in studying geriatric patients.

  12. Intellectual function, activities of daily living and computerized tomography of the brain in geriatric demented patients

    International Nuclear Information System (INIS)

    Omura, Fumiaki; Ogura, Chikara; Kishimoto, Akira; Okubo, Masayo; Imamoto, Atsushi; Tsuchie, Harutaka; Sugihara, Kanichiro; Fujii, Shozo.

    1984-01-01

    Thirty eight patients of geriatric dementia (mean age 74.9 years) were examined by computerized tomography (CT) and their intellectual functions and activities of daily living (ADL) were evaluated. CT was evaluated by both visual assessment method and direct measuring method. Intellectual function was evaluated by Jikei University dementia rating scale. ADL was evaluated by both Hasegawa's rating scale and Sengoku's rating scale. Results were as follows: significant influence by age was observed in intellectual functions and ADL of subjects above 75 years old. There were good correlations between the higher intellectual function, the better grooming and hygiene, and less needs of nursing care. The severe brain atrophy evaluated by the visual assessment method was correlated with the depressed level of intellectual function. When brain atrophy is mild despite high degree of dementia, reexamination should be made to explore somatic diseases inducing depression of mental activity. It also should be noted that sex and age difference is important in studying geriatric patients. (author)

  13. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin

    1983-01-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways. (J.P.N.)

  14. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin [Nippon Medical School, Tokyo

    1983-04-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways.

  15. Divergent structural brain abnormalities between different genetic subtypes of children with Prader-Willi syndrome.

    Science.gov (United States)

    Lukoshe, Akvile; White, Tonya; Schmidt, Marcus N; van der Lugt, Aad; Hokken-Koelega, Anita C

    2013-10-22

    Prader-Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.

  16. Isolated atrophy of the abductor digiti quinti in patients with rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Fernandes de Mello, Ricardo; Garcia Rondina, Ronaldo; Valim, Valeria; Santos Belisario, Stephano; Batista, Elton Francisco [Universidade Federal do Espirito Santo, Department of Internal Medicine, Vitoria, ES (Brazil); Burgomeister Lourenco, Rafael [HUCAM/UFES, Division of Medical Imaging, Vitoria, ES (Brazil); Duque, Ruben Horst [HUCAM/UFES, Division of Rheumatology, Vitoria, ES (Brazil)

    2017-12-15

    We aim to discuss the association of isolated atrophy of the abductor digiti quinti muscle in patients with rheumatoid arthritis as well as review the anatomy and imaging findings of this condition on MRI. A consecutive series of 55 patients diagnosed with rheumatoid arthritis according to the 2010 ACR/EULAR classification criteria were recruited. MRI of the clinically dominant feet was performed using a 1.5-T scanner. The study population was predominantly female (94.5%), and the age range was 31-79 years (mean 57.5 ± 11). A total of 55 ankles were examined by MRI, and 20 patients (36.3%), all females, showed abductor digiti quinti denervation signs. Seven patients demonstrated severe fatty atrophy of the abductor digiti quinti, corresponding to Goutallier grade 4, 2 patients showed moderate fatty atrophy (Goutallier grade 3), and the remaining 11 patients showed less than 50% fatty atrophy, corresponding to a Goutallier grade 2. Substantial agreement was found for both intra- and interobserver agreement regarding the Goutallier grading system. Prevalence of signs of abductor digiti quinti denervation on MRI was high in the studied population, suggesting that rheumatoid arthritis may be associated with inferior calcaneal nerve compression. (orig.)

  17. Isolated atrophy of the abductor digiti quinti in patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Andrade Fernandes de Mello, Ricardo; Garcia Rondina, Ronaldo; Valim, Valeria; Santos Belisario, Stephano; Batista, Elton Francisco; Burgomeister Lourenco, Rafael; Duque, Ruben Horst

    2017-01-01

    We aim to discuss the association of isolated atrophy of the abductor digiti quinti muscle in patients with rheumatoid arthritis as well as review the anatomy and imaging findings of this condition on MRI. A consecutive series of 55 patients diagnosed with rheumatoid arthritis according to the 2010 ACR/EULAR classification criteria were recruited. MRI of the clinically dominant feet was performed using a 1.5-T scanner. The study population was predominantly female (94.5%), and the age range was 31-79 years (mean 57.5 ± 11). A total of 55 ankles were examined by MRI, and 20 patients (36.3%), all females, showed abductor digiti quinti denervation signs. Seven patients demonstrated severe fatty atrophy of the abductor digiti quinti, corresponding to Goutallier grade 4, 2 patients showed moderate fatty atrophy (Goutallier grade 3), and the remaining 11 patients showed less than 50% fatty atrophy, corresponding to a Goutallier grade 2. Substantial agreement was found for both intra- and interobserver agreement regarding the Goutallier grading system. Prevalence of signs of abductor digiti quinti denervation on MRI was high in the studied population, suggesting that rheumatoid arthritis may be associated with inferior calcaneal nerve compression. (orig.)

  18. Diagnostic value of 18F-FDG PET and 11C-PIB PET on early stage posterior cortical atrophy

    Directory of Open Access Journals (Sweden)

    Shuai LIU

    2015-08-01

    Full Text Available Background  Posterior cortical atrophy (PCA is a kind of progressive neurodegenerative disease with cortical visual impairment as the first symptom. Because of rare clinical incidence, early onset age, special clinical symptoms and unobvious MRI abnormality, the definitive diagnosis of PCA is difficult. This study used 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET and 11C-Pittsburgh compound B (11C-PIB PET for PCA patients with unobvious MRI abnormality, so as to discuss the value of PET in the early diagnosis of PCA.  Methods  Five patients diagnosed as PCA in our hospital between April 2012 and March 2015 were enrolled in this study. Cognitive function was measured by Mini-Mental State Examination (MMSE, Montreal Cognitive Assessment (MoCA, Activities of Daily Living (ADL and Clock Drawing Test (CDT. Brain MRI, 18F-FDG PET and 11C-PIB PET were performed to analyze glucose metabolism and perfusion of posterior cortex.  Results Neuropsychological tests revealed that the ability of writing, calculating, visuospatial and executive function of all these patients were impaired. Color vision tests showed abnormal results. MRI showed that the posterior atrophy (PA scores were 0-2 (average 1 on the left side and 0-1 (average 0.80 on the right side. The medial temporal atrophy (MTA scores were 1-3 (average 1.80 on the left side and 1-4 (average 2 on the right side. The ventricular enlargement (VE scores were 1-2 (average 1.80 on the left side and 1-2 (average 1.60 on the right side. 18F-FDG PET showed glucose metabolism decreased obviously on bilateral temporo-parieto-occipital cortex, precuneus and cingulate gyrus, and slightly on frontal lobes and subcortical structure. 11C-PIB PET showed radioactive 11C-PIB deposition on bilateral frontal, temporal, parietal and occipital cortex, and the outline of cerebellar cortex was clear.  Conclusions  For PCA patients whose parietal and occipital cortical atrophy is not obvious on MRI, 18F-FDG PET

  19. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  20. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...

  1. Clinico-epidemiologic characteristics of spinal muscular atrophy ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    Deletion;. Chromosome 5;. Mutations. Abstract Spinal muscular atrophy (SMA) is characterized by progressive hypotonia and muscular weakness because of progressive degeneration of alpha motor neuron from anterior horn cells in the spinal cord. It is inherited by an autosomal recessive pattern. The precise frequency of ...

  2. Preimplantation genetic diagnosis of spinal muscular atrophy

    NARCIS (Netherlands)

    Dreesen, JCFM; Bras, M; de Die-Smulders, C; Dumoulin, JCM; Cobben, JM; Evers, JLH; Smeets, HJM; Geraedts, JPM

    After Duchenne muscular dystrophy, spinal muscular atrophy (SMA) is the most common severe neuromuscular disease in childhood. Since 1995, homozygous deletions in exon 7 of the survival motor neuron (SMN) gene have been described in >90-95% of SMA patients. However, the presence of a highly

  3. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    DEFF Research Database (Denmark)

    Jonasson, L S; Axelsson, J; Riklund, K

    2017-01-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET...... cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events...... from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function...

  4. Additional corpus biopsy enhances the detection of Helicobacter pylori infection in a background of gastritis with atrophy

    Science.gov (United States)

    2012-01-01

    Background The best sites for biopsy-based tests to evaluate H. pylori infection in gastritis with atrophy are not well known. This study aimed to evaluate the site and sensitivity of biopsy-based tests in terms of degree of gastritis with atrophy. Methods One hundred and sixty-four (164) uninvestigated dyspepsia patients were enrolled. Biopsy-based tests (i.e., culture, histology Giemsa stain and rapid urease test) and non-invasive tests (anti-H. pylori IgG) were performed. The gold standard of H. pylori infection was defined according to previous criteria. The sensitivity, specificity, positive predictive rate and negative predictive rate of biopsy-based tests at the gastric antrum and body were calculated in terms of degree of gastritis with atrophy. Results The prevalence rate of H. pylori infection in the 164 patients was 63.4%. Gastritis with atrophy was significantly higher at the antrum than at the body (76% vs. 31%; pgastritis with atrophy increased regardless of biopsy site (for normal, mild, moderate, and severe gastritis with atrophy, the sensitivity of histology Giemsa stain was 100%, 100%, 88%, and 66%, respectively, and 100%, 97%, 91%, and 66%, respectively, for rapid urease test). In moderate to severe antrum or body gastritis with atrophy, additional corpus biopsy resulted in increased sensitivity to 16.67% compare to single antrum biopsy. Conclusions In moderate to severe gastritis with atrophy, biopsy-based test should include the corpus for avoiding false negative results. PMID:23272897

  5. Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration.

    Science.gov (United States)

    Dysli, Chantal; Wolf, Sebastian; Zinkernagel, Martin S

    2016-05-01

    To investigate fluorescence lifetime characteristics in patients with geographic atrophy (GA) in eyes with age-related macular degeneration and to correlate the measurements with clinical data and optical coherence tomography (OCT) findings. Patients with GA were imaged with a fluorescence lifetime imaging ophthalmoscope. Retinal autofluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Mean retinal fluorescence lifetimes were analyzed within GA and the surrounding retina, and data were correlated with best corrected visual acuity and OCT measurements. Fluorescence lifetime maps of 41 eyes of 41 patients (80 ± 7 years) with GA were analyzed. Mean lifetimes within areas of atrophy were prolonged by 624 ± 276 ps (+152%) in the short spectral channel and 418 ± 186 ps (+83%) in the long spectral channel compared to the surrounding tissue. Autofluorescence lifetime abnormalities in GA occurred with particular patterns, similar to those seen in fundus autofluorescence intensity images. Within the fovea short mean autofluorescence lifetimes were observed, presumably representing macular pigment. Short lifetimes were preserved even in the absence of foveal sparing but were decreased in patients with advanced retinal atrophy in OCT. Short lifetimes in the fovea correlated with better best corrected visual acuity in both spectral channels. This study established that autofluorescence lifetime changes in GA present with explicit patterns. We hypothesize that the short lifetimes seen within the atrophy may be used to estimate damage induced by atrophy and to monitor disease progression in the context of natural history or interventional therapeutic studies.

  6. Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study

    International Nuclear Information System (INIS)

    Karas, Giorgos; Scheltens, Philip; Jones, Bethany; Rombouts, Serge; Schijndel, Ronald van; Klein, Martin; Flier, Wiesje van der; Vrenken, Hugo; Barkhof, Frederik

    2007-01-01

    Alzheimer's disease (AD) usually first presents in elderly patients, but may also develop at an earlier age. Patients with an early age at onset tend to present with complaints other than memory impairment, such as visuospatial problems or apraxia, which may reflect a different distribution of cortical involvement. In this study we set out to investigate whether age at onset in patients with AD determines the pattern of atrophy on cerebral MRI scans. We examined 55 patients with AD over a wide age range and analyzed their 3-D T1-weighted structural MRI scans in standard space using voxel-based morphometry (VBM). Regression analysis was performed to estimate loss of grey matter as a function of age, corrected for mini-mental state examination (MMSE) scores and sex. The VBM analyses identified multiple areas (including the temporal and parietal lobes), showing more atrophy with advancing age. By contrast, a younger age at onset was found to be associated with lower grey matter density in the precuneus. Regionalized volumetric analysis of this region confirmed the existence of disproportionate atrophy in the precuneus in patients with early-onset AD. Application of a multivariate model with precuneus grey matter density as input, showed that precuneal and hippocampal atrophy are independent from each other. Additionally, we found that a smaller precuneus is associated with impaired visuospatial functioning. Our findings support the notion that age at onset modulates the distribution of cortical involvement, and that disproportionate precuneus atrophy is more prominent in patients with a younger age of onset. (orig.)

  7. In vivo MRI of the fetal brain.

    Science.gov (United States)

    Girard, N; Raybaud, C; Dercole, C; Boubli, L; Chau, C; Cahen, S; Potier, A; Gamerre, M

    1993-01-01

    We report MRI of the brain in 45 fetuses; the findings were confirmed by pathological examination or postnatal neuroradiological studies. MRI necessitates medication to eliminate fetal motion; curare was injected into the umbilical cord, and MRI is therefore limited to cases in which umbilical cord puncture is indicated. T1-weighted images were obtained in axial, sagittal and coronal planes; the last of these were generally as the most useful as regards morphology. We demonstrated cerebral malformations (n = 13), brain haemorrhage (n = 1), a facial angioma (n = 1), a facial mass (n = 1), hydrocephalus (n = 5), unilateral ventricular enlargement (n = 1), atrophy (n = 4), a porencephalic cyst (n = 1) and normal appearances of the brain in 18 cases. Twenty-two of the fetuses were born alive, and the clinical and/or neuroradiological examination confirmed the antenatal findings. The diagnosis was also confirmed in 8 cases in which a neuropathological examination was possible.

  8. Hunter syndrome in an 11-year old girl on enzyme replacement therapy with idursulfase: brain magnetic resonance imaging features and evolution.

    Science.gov (United States)

    Manara, Renzo; Rampazzo, Angelica; Cananzi, Mara; Salviati, Leonardo; Mardari, Rodica; Drigo, Paola; Tomanin, Rosella; Gasparotto, Nicoletta; Priante, Elena; Scarpa, Maurizio

    2010-12-01

    Mucopolysaccharidosis type II (MPS-II, Hunter disease) is a X-linked recessive disorder. Affected females are extremely rare, mostly due to skewed X chromosome inactivation. A few papers outline MPS-II brain magnetic resonance imaging (MRI) "gestalt" in males, but neuroradiological reports on females are still lacking. We present an 11-year-old girl affected by the severe form of MPS-II who was followed up over a time span of 8 years, focusing on clinical and brain MRI evolution. In the last 2.5 years, the patient has been treated with enzyme replacement therapy (ERT) with idursulfase (Elaprase™, Shire Human Genetic Therapies AB, Sweden). On brain and cervical MRI examination, abnormalities in our patient did not differ from those detected in male patients: J-shaped pituitary sella, enlargement of perivascular spaces, brain atrophy, mild T2-hyperintensity in the paratrigonal white matter, diffuse platyspondylia, and mild odontoid dysplasia with odontoid cup. Brain atrophy progressed despite ERT introduction, whereas perivascular space enlargement did not change significantly before and after ERT. Cognitive impairment worsened independently from the course of white matter abnormality. Despite a profound knowledge of genetic and biochemical aspects in MPS-II, neuroradiology is still poorly characterized, especially in female patients. Spinal and brain involvement and its natural course and evolution after ERT introduction still need to be clarified.

  9. Impaired emotional autobiographical memory associated with right amygdalar-hippocampal atrophy in Alzheimer's disease patients.

    Science.gov (United States)

    Philippi, Nathalie; Botzung, Anne; Noblet, Vincent; Rousseau, François; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We studied the influence of emotions on autobiographical memory (AbM) in patients with Alzheimer's disease (AD), characteristically triggering atrophy in the hippocampus and the amygdala, two crucial structures sustaining memory and emotional processing. Our first aim was to analyze the influence of emotion on AbM in AD patients, on both the proportion and the specificity of emotional memories. Additionally, we sought to determine the relationship of emotional AbM to amygdalar-hippocampal volumes. Eighteen prodromal to mild AD patients and 18 age-matched healthy controls were included. We obtained 30 autobiographical memories per participant using the modified Crovitz test (MCT). Analyses were performed on global scores, rates and specificity scores of the emotional vs. neutral categories of memories. Amygdalar-hippocampal volumes were extracted from 3D T1-weighted MRI scans and tested for correlations with behavioral data. Overall, AD patients displayed a deficit in emotional AbMs as they elicited less emotional memories than the controls, however, the specificity of those memories was preserved. The deficit likely implied retrieval or storage as it was extended in time and without reminiscence bump effect. Global scores and rates of emotional memories, but not the specificity scores, were correlated to right amygdalar and hippocampal volumes, indicating that atrophy in these structures has a central role in the deficit observed. Conversely, emotional memories were more specific than neutral memories in both groups, reflecting an enhancement effect of emotion that could be supported by other brain regions that are spared during the early stages of the disease.

  10. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  11. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  12. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  13. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  14. Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI.

    Directory of Open Access Journals (Sweden)

    Thomas Jubault

    Full Text Available Idiopathic Parkinson's disease (PD is a neurodegenerative disorder characterized by the dysfunction of dopaminergic dependent cortico-basal ganglia loops and diagnosed on the basis of motor symptoms (tremors and/or rigidity and bradykinesia. Post-mortem studies tend to show that the destruction of dopaminergic neurons in the substantia nigra constitutes an intermediate step in a broader neurodegenerative process rather than a unique feature of Parkinson's disease, as a consistent pattern of progression would exist, originating from the medulla oblongata/pontine tegmentum. To date, neuroimaging techniques have been unable to characterize the pre-symptomatic stages of PD. However, if such a regular neurodegenerative pattern were to exist, consistent damages would be found in the brain stem, even at early stages of the disease. We recruited 23 PD patients at Hoenn and Yahr stages I to II of the disease and 18 healthy controls (HC matched for age. T1-weighted anatomical scans were acquired (MPRAGE, 1 mm3 resolution and analyzed using an optimized VBM protocol to detect white and grey matter volume reduction without spatial a priori. When the HC group was compared to the PD group, a single cluster exhibited statistical difference (p<0.05 corrected for false detection rate, 4287 mm3 in the brain stem, between the pons and the medulla oblongata. The present study provides in-vivo evidence that brain stem damage may be the first identifiable stage of PD neuropathology, and that the identification of this consistent damage along with other factors could help with earlier diagnosis in the future. This damage could also explain some non-motor symptoms in PD that often precede diagnosis, such as autonomic dysfunction and sleep disorders.

  15. Computerized axial tomography in the detection of brain damage

    International Nuclear Information System (INIS)

    Cala, L.A.; Mastaglia, F.L.

    1980-01-01

    The cranial computerized axial tomography (CAT) findings in groups of patients with epilepsy, migraine, hypertension, and other general medical disorders have been reviewed to assess the frequency and patterns of focal and diffuse brain damage. In addition to demonstrating focal lesions in a proportion of patients with seizures and in patients presenting with a stroke, the CAT scan showed a premature degree of cerebral atrophy in an appreciable proportion of patients with long-standing epilepsy, hypertension and diabetes, and in some patients with migraine, valvular and ischaemic heart disease, chronic obstructive airways disease, and chronic renal failure. The value of CAT as a means of screening for brain damage in groups of individuals at risk is discussed

  16. Early Expansion of the Intracranial CSF Volume After Palliative Whole-Brain Radiotherapy: Results of a Longitudinal CT Segmentation Analysis

    International Nuclear Information System (INIS)

    Sanghera, Paul; Gardner, Sandra L.; Scora, Daryl; Davey, Phillip

    2010-01-01

    Purpose: To assess cerebral atrophy after radiotherapy, we measured intracranial cerebrospinal fluid volume (ICSFV) over time after whole-brain radiotherapy (WBRT) and compared it with published normal-population data. Methods and Materials: We identified 9 patients receiving a single course of WBRT (30 Gy in 10 fractions over 2 weeks) for ipsilateral brain metastases with at least 3 years of computed tomography follow-up. Segmentation analysis was confined to the tumor-free hemi-cranium. The technique was semiautomated by use of thresholds based on scanned image intensity. The ICSFV percentage (ratio of ICSFV to brain volume) was used for modeling purposes. Published normal-population ICSFV percentages as a function of age were used as a control. A repeated-measures model with cross-sectional (between individuals) and longitudinal (within individuals) quadratic components was fitted to the collected data. The influence of clinical factors including the use of subependymal plate shielding was studied. Results: The median imaging follow-up was 6.25 years. There was an immediate increase (p < 0.0001) in ICSFV percentage, which decelerated over time. The clinical factors studied had no significant effect on the model. Conclusions: WBRT immediately accelerates the rate of brain atrophy. This longitudinal study in patients with brain metastases provides a baseline against which the potential benefits of more localized radiotherapeutic techniques such as radiosurgery may be compared.

  17. Analysis of large brain MRI databases for investigating the relationships between brain, cognitive, and genetic polymorphisms

    International Nuclear Information System (INIS)

    Mazoyer, B.

    2006-01-01

    A major challenge for the years to come is the understanding of the brain-behaviour relationships, and in particular the investigation and quantification of the impact of genetic polymorphism on these relationships. In this framework, a promising experimental approach, which we will refer to as neuro-epidemiologic imaging, consists in acquiring multimodal (brain images, psychometric an d sociological data, genotypes) data in large (several hundreds or thousands ) cohorts of subjects. Processing of such large databases requires on first place the conception and implementation of automated 'pipelines', including image registration, spatial normalisation tissue segmentation, and multivariate statistical analysis. Given the number of images and data to be processed, such pipelines must be both fully automated and robust enough to be able to handle multi-center MRI data, e.g. having inhomogeneous characteristics in terms of resolution and contrast. This approach will be illustrated using two databases collected in aged healthy subjects, searching for the impact of genetic and environmental on two markers of brain aging, namely white matter hyper-signals, and grey matter atrophy. (author)

  18. Age dependent white matter lesions and brain volume changes in healthy volunteers

    DEFF Research Database (Denmark)

    Christiansen, P; Larsson, H B; Thomsen, C

    1994-01-01

    The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles was meas......The brain of 142 healthy volunteers aged 21 to 80 years were investigated using MR imaging. The number and size of the white matter hyperintensity lesions (WMHL) in the cerebral hemispheres were determined. Furthermore, the volume of the cerebral hemispheres and of the lateral ventricles...... was measured. An almost linear increase in the number of volunteers with WMHL was seen with aging for males and females. With aging a significant decrease in the volume of the cerebral hemispheres was found for males, and a significant increase in the volume of the lateral ventricles was seen for both males...... and females. Our results suggest that with aging central atrophy increases more (relatively) than cortical atrophy. No correlation was found between the decreasing volume of the cerebral hemispheres and the increasing number and size of WMHL, nor between the increasing volume of the lateral ventricles...

  19. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    Science.gov (United States)

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the

  20. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    Science.gov (United States)

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.